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ABSTRACT 

 

Electrical motors are key to the growth of any modern society. In order to ensure 

optimal utilisation of the motors, the shaft speed and armature current must be 

controlled. Currently, the most efficient way of achieving both speed and current control 

in electrical motors is through power electronic switching, thus making the system both 

nonlinear and time varying. The combination of electric motors and control electronics 

is referred to as electric drives.  

Due to the inherent nonlinear nature of electrical drives, the system is prone to complex 

dynamical phenomena including bifurcations, chaos, co-existing attractors and fractal 

basin boundaries. The types of nonlinear phenomena that occur in some of the more 

common electrical drive systems, namely permanent magnet dc (PMDC) drives, series 

connected dc (SCDC) drives and switched reluctance motor (SRM) drives, are 

considered for analysis in this project. 

The nominal steady state behaviour of these drives is a periodic orbit with a mean value 

close to the reference value. But as some system parameters are being varied, the 

nominal orbit of the system referred to as the period-1 orbit, may lose its stability 

leading to the birth of new attracting orbit that is periodic, quasi-periodic or chaotic in 

nature.  

The most common technique for performing stability analysis of a periodic orbit is the 

Poincaré map approach, which has been successfully applied in DC-DC converters. 

This method involves reducing the continuous time dynamical system into a discrete 

time nonlinear iterative map and the periodic orbit into a fixed point. The stability of the 

periodic orbit then depends on the eigenvalue of the Jacobian matrix of the map 

evaluated at the fixed point. However, for some power electronic based system the 

nonlinear map cannot be derived in closed form due to the transcendental nature of the 

equation involved.  

In this project, the recently introduced Monodromy matrix approach is employed for the 

stability analysis of the periodic orbit in electrical drives. This method is based on 

Filippov’s method of differential inclusion and has been successfully applied in the 

stability analysis of periodic orbits in both low order and higher order DC-DC 
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converters. This represents the first application of the technique in electrical drives. The 

Monodromy matrix approach involves computing the State Transition Matrix (STM) of 

the system around the nominal orbit including the STM at the switching manifold 

(sometimes referred to as the Saltation matrix). Also, by manipulating some of the 

parameters in the Saltation matrix, it is possible to control the instabilities and thus 

extend the system parameter range for nominal period-1 operation. 

The experimental validation of the nonlinear phenomena in a proportional integral (PI) 

controlled PMDC drive, which is absent in literature, is presented in this thesis. The 

system was implemented using dsPIC30F3010 which is a low cost and high 

performance digital signal controller. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction   

Electrical motors can be found in steel rolling mills, drilling machines, railway traction, 

industrial robots, and in most household items and office equipment. They convert 

electrical energy into mechanical energy by exploiting the 19
th

 century discovery by 

Michael Faraday that a current carrying coil within a magnetic field will experience a 

force. Today, there are several variants of electric motors whose operation depend on 

this simple principle.  

In order to ensure more diverse application of electric motors, there is a need for both 

speed and torque control. This was achieved in the past with DC motors by connecting a 

rheostat in series with either the armature or field winding or through the use of an 

external dc generator [1-3]. These old control techniques were expensive, inefficient 

and complex. The amount of heat dissipated in the rheostat was also a huge problem to 

deal with. With the recent advances in power electronics, digital electronics and 

microprocessors, speed and torque control of electric motors can now be efficiently 

achieved through a process known as pulse width modulation (PWM). The PWM 

signals are used to turn ON and turn OFF the power electronic switches so as to control 

the average voltage applied at the motor terminals and thus achieve speed control. The 

entry of power electronic switches into the market has also led to gradual transition 

from brushed DC motors to brushless DC and AC motors since speed control of the 

later can now be achieved through variable frequency inverters. The electric motor 

along with the speed and current transducers, the power converter circuit and control 

electronics are referred to as an electric drive [3].                                                      

Despite the huge benefits that could be derived by the adoption of power electronic 

switches for both speed and torque control of electric motors, the PWM switching 

action makes the entire drive system to be time varying and nonlinear [4-8]. The 

topologies of such systems during the switch ON states are often different from those 

during the switch OFF states, thereby classifying these systems as non-smooth or 
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piecewise smooth systems (PWS) (see Chapter 2 for details). Also due to the switching 

action, the trajectories of the state variables of the system will converge to a periodic 

orbit or limit cycle at the steady state instead of converging to an equilibrium point thus 

adding to the complexity of the system.  

As some drive parameters such as the supply voltage or controller gains are being varied 

by the operators, this nominal orbit loses stability leading to the birth of new attracting 

orbit that is periodic, quasi-periodic or chaotic in nature. This change in qualitative 

behaviour of the system is referred to as a bifurcation [9, 10]. If the period of the new 

attracting orbit is double the period of the nominal orbit, the bifurcation will be referred 

to as period doubling bifurcation. But if the new attracting orbit is quasi-periodic in 

nature, the phenomena will be referred to as Neimark-Sacker or Hopf bifurcation [11-

15].  While the period doubling route to chaos has been observed in virtually all drives 

operating with simple proportional control, the Neimark-Sacker bifurcation had been 

observed when a more practical proportional integral controller was employed. Also, 

the complex phenomena of co-existing attractors and fractal basin boundaries were 

observed in full-bridge converter DC drives operating within certain parameter ranges. 

Since the desire of most electrical engineers is to maintain the system within the 

nominal period-1 behaviour, there is a need for thorough understanding of the 

mechanism through which this nominal orbit loses stability. One common approach for 

performing the stability analysis of the periodic orbit in switched mode power electronic 

(SMPE) systems including the electrical drives is to discard the switching details and 

retain only the average dynamics of the system. This is known as the averaging 

technique [16, 17]. This technique produces a model that can be easily analysed using 

several tools available from linear control theory, but is not suitable for detecting fast-

scale instabilities that occur at the PWM frequency [18]. Also the state space averaging 

technique works well only within specific system topological configuration and 

parameter limits [19]. Consequently, a model based on the averaging technique will not 

be able to detect the subharmonics and chaotic dynamics of the state variables that could 

occur in SMPE systems.  

In order to overcome the limitations of the averaging technique and also to obtain more 

information on the evolution of the state variables in SMPE systems, Deane and Hamill 

[5] introduced the Poincaré  map based analytical technique. In this technique, the states 

of the system are sampled in synchronism with the PWM frequency to obtain a discrete 
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time map of the form Xn=f(Xn-1). Once the nonlinear map is obtained, the stability of the 

system can be determined by evaluating the eigenvalues of the Jacobian matrix of the 

map at the fixed points. To date, the Poincaré map method has been the most widely 

used approach for performing the stability analysis of periodic orbits in SMPE systems. 

It has been successfully employed in the stability analysis of DC-DC converters [20, 21] 

and permanent magnet DC drives employing a simple DC chopper [7]. But for some 

higher order DC-DC converters and some electrical drives, this map cannot be derived 

in closed form due to the transcendental form of the equations involved.  

In this project, an alternative analysis technique based on Filippov’s method of 

differential inclusion [22] is adopted. This approach is referred to as the Monodromy 

matrix (MM) approach and is suitable for the stability analysis of both closed and non-

closed orbits. The key idea is to obtain the state transition matrix (STM) around the 

nominal orbit (known as the Monodromy matrix) and obtain its eigenvalues (known as 

the Floquet multipliers). The nominal orbit is stable if the absolute value of the Floquet 

multipliers is within the unit circle and unstable otherwise. Since the nominal orbits of 

most SMPE systems are usually non-smooth, the STM at the switching manifold 

(known as the Saltation matrix) must also be taken into account in computing the MM. 

The MM approach has been successfully applied in the stability analysis of periodic 

orbits in both low order and high order DC-DC converters [23, 24]. This work 

represents its first application in electrical drive systems. 

The stabilisation of the nonlinear dynamical phenomena (namely bifurcations and chaos) 

which occur in piecewise smooth systems such as electrical drives is of key interest to 

researchers in nonlinear dynamics. One approach proposed by Ott et. al. [25]is to locate 

and target the infinite unstable periodic orbit (UPO) embedded in the chaotic attractor. 

This technique was demonstrated in power electronic buck converter and boost 

converter circuit by Banerjee et. al. [26-28]. But this method has been found to be 

complex and has high sensitivity to noise. An interesting feature of the MM technique is 

the ease with which it can be applied in the stabilisation of the nonlinear phenomena. 

This could be achieved by manipulation of the Saltation matrix of the system and is well 

illustrated in this project. Thus the overall goal of the project is to analyse the nonlinear 

phenomena in some common electrical drive systems (namely permanent magnet dc 

(PMDC) drives, series connected dc (SCDC) drives and switched reluctance motor 

(SRM) drives) using the Monodromy matrix approach and to develop an efficient 

controller based on the Saltation matrix to stabilise the observed phenomena. 
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1.2 Analysis of Nonlinear Phenomena in Switched Mode Power 

Electronic Systems 

The two most common SMPE systems are power converters (DC-DC and DC-AC) and 

electrical drive systems. The basic operation of these systems involve toggling between 

different sets of circuit topologies under the control of a feedback law [18]. Under 

closed loop control, the PWM duty ratio (d) is adjusted continuously thus making the 

entire closed loop system nonlinear. In this section, a brief overview will be given of 

past reports on the analysis of nonlinear phenomena in SMPE systems.  

1.2.1 Analysis of Nonlinear Phenomena in Power Converters 

The occurrence of nonlinear bifurcation and chaotic phenomena in SMPE systems were 

reported in DC-DC converters earlier than in electrical drives. In 1984, Brockett and 

Wood [29] reported that a DC-DC buck converter can exhibit nonlinear bifurcations and 

chaotic phenomena. The first detailed study of these nonlinear phenomena in DC-DC 

converter was conducted in 1988 by Hamill and Jefferies [30] . They showed for the 

first time that the concept of the iterative nonlinear map can be employed in the study of 

nonlinear phenomena in a first order DC-DC buck converter with wide band feedback 

control. Two years later (1990), Deane and Hamill [31], validated experimentally the 

initial analysis and simulation report of bifurcation and chaos in DC-DC converter  

using both first-order and second-order buck converters as example systems. Later, in 

1992, Hamill, Deane and Jefferies [32] carried out further investigations on the 

nonlinear phenomena in a DC-DC buck converter by  using both iterative maps and 

Lyapunov exponent computations, and the  results were also experimentally validated.  

The success of the trio (Dean, Hamill and Jefferies) in the analysis of the nonlinear 

phenomena in DC-DC buck converters stimulated much interest in the investigation of 

the nonlinear phenomena in other power converters. Further research and experimental 

validation of the nonlinear phenomena in buck converter [26, 33, 34], boost converters 

[13, 27, 35, 36], buck-boost [37, 38], Cuk converters [39, 40], and DC-AC inverter [41, 

42] have been reported in literature. 

1.2.2 Analysis of Nonlinear Phenomena in Electrical Drives 

The success of the initial research on nonlinear phenomena in simple DC-DC buck 

converters stimulated research in other SMPE systems especially the electrical drives. 

Research on nonlinear bifurcation and chaotic phenomena in electrical drives started 

with AC drives in the pioneering work conducted in 1989 by Kuroe et. al. [43] in 
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inverter-fed induction motor drive systems. Using the Poincaré map approach they 

analysed the period doubling bifurcation in a three-phase inverter-fed induction drive 

system employing V/F control. In 1994, Nagy [44] studied the bifurcation and chaotic 

phenomena in tolerance-band based current controlled induction motor drives. Also in 

1994 Hemati [45] reported the strange attractors in a permanent magnet blushless DC 

drive system by transforming the drives mathematical model into a Lorenz system. In 

1997, Chau et al. [7] investigated the bifurcation and chaotic phenomena in a simple 

DC drive using the proportional gain and the supply voltage as bifurcation parameters.  

Also in 1997, Chau et al. [46] investigated the subharmonics and chaotic phenomena in 

both voltage mode and current mode controlled DC drives. In 1999, Chau et al. [47] 

extended the nonlinear analysis to switched reluctance motor drives.  

Later in 2000, Suto et al. [48] reported the period adding route to chaos in a hysteresis 

current controlled AC drive. In 2002, Li et al. [49] investigated the chaotic behaviour in 

a permanent magnet synchronous motor (PMSM) by reducing the system model to a 

Lorentz system. The paper looked at three different cases in which the trajectories of the 

state variables of the PMSM can approach an equilibrium point, a limit cycle or a 

chaotic attractor at steady state. In 2004, Gao et al. [50] reported the occurrence of a 

Hopf bifurcation and chaos in a synchronous reluctance drive. The paper showed that at 

some parameters of the drive, the attracting equilibrium point may lose stability and the 

trajectories begin to converge on a limit cycle. Further variation of the parameter caused 

the trajectories to depart from the limit cycle and converge on a strange or chaotic 

attractor. In 2009, Dai et al. [12] reported the Hopf bifurcation and chaos resulting from 

torus break down in a simple DC drive employing a PI controller. The phenomena of 

phase locking and period adding were also discussed in this paper. 

1.3 Control of Nonlinear Phenomena in Electric Drives 

These sub-harmonic and chaotic behaviours in electrical drive systems are viewed as 

undesirable by most engineers and some work has been conducted on how to stabilise 

such systems. Some common stabilization technique that have been tested on electrical 

drive are the Pyragas time delayed approach [51, 52], artificial intelligence techniques, 

nonlinear feedback, sliding mode and adaptive back-stepping. In 2000, Chen et al. [53] 

employed time-delayed feedback approach to stabilise the chaotic dynamics in an 

experimental DC drive. Also in 2000, Asakura et al. [54] employed neural networks to 

stabilize the chaotic dynamics of an induction drive system. Nonlinear feedback control 

[55], sliding mode control [56] and adaptive back-stepping control [57] have all been 
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applied to the stabilization of chaos in a permanent magnet synchronous motor (PMSM). 

In this project, the nonlinear sub-harmonic and chaotic phenomena in the steady state 

trajectories of electrical drives were stabilised by manipulating the Saltation matrix 

component of the Monodromy matrix. This technique is less complex than existing 

methods and was successfully applied in stabilising the subharmonics and chaos in 

PMDC Drives, SCDC drives and SRM drives. 

1.4 Objectives of the Nonlinear Analysis of Electrical Drives 

The qualitative behaviour of all nonlinear systems including electrical drives often 

changes when some of the system parameters are being varied. Some of the needs for a 

thorough nonlinear analysis of drives are: 

a. To help designers predict the dynamic behaviour as the system parameters are 

being varied.  

b. To help designers in setting the operational parameter limits of the drives. For 

instance at some range of the system parameters the steady state behaviour will 

be the nominal period-T orbit, while at some other ranges the steady state 

trajectory will be either of period-nT , quasi-periodic or  chaotic. 

c. To develop methods to control the sub-harmonics and chaotic dynamics of the 

drives and thus extend the system parameter range for nominal period-T 

operation. 

1.5 Contributions to Knowledge 

The main contributions of this project are: 

a. The first application of the Monodromy matrix approach in the analysis of the 

instability in steady state dynamics of electrical drives. Existing studies were all 

based on the Poincaré map technique. 

b. The first analytical validation of the fast-scale bifurcation in a full-bridge 

converter PMDC drive. The existing report of the nonlinear phenomena in this 

drive is based on numerical simulation [58]. 

c. The first reporting of co-existing attractors and fractal basin boundaries in 

electrical drives. 

d. The first application of the Monodromy matrix approach in the analysis of a 

fast-scale bifurcation in piecewise-smooth systems with nonlinear vector fields 

such as switched reluctance motor drives. Existing applications of this technique 
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were in piecewise-smooth systems with linear vector fields (such as DC-DC 

converters). 

e. The first analytical validation of the fast-scale bifurcation in series connected 

DC drives. 

f. The first experimental validation of Neimark-Sacker bifurcation in a dc chopper-

fed DC drive operating with a PI controller. 

g. The first application of the Saltation matrix manipulation technique in the 

control of fast scale instability and chaos in electrical drives.  

1.6 Thesis layout 

This thesis is structured as follows: 

Chapter 2 gives background knowledge of complex dynamical phenomena in nonlinear 

system using examples from some popular physical systems.  Some of the concepts 

discussed in this chapter will be applied throughout the thesis. 

Chapter 3 gives an overview of electrical drives and their control techniques. A brief 

discussion of the various components of electrical drives is given. Also the various 

available power converter options and drives control strategies are discussed. The 

chapter is concluded with a brief review of the common modelling approaches for 

electric drives. 

Chapter 4 presents the analysis of the nonlinear phenomena in an example piecewise 

linear electrical drives (namely DC chopper-fed PMDC Drives). The complex 

dynamical behaviour of the system when the simple proportional controller and the 

more practical proportional integral (PI) controller are employed is investigated. Also 

experimental validation of the observed phenomenon in the PI controlled drive was 

carried out using dsPIC30F3010 digital signal controller and details of the experimental 

set up is presented in Appendix A.  

Chapter 5 gives an analysis of the steady state instabilities in three-phase SRM Drives. 

The chapter began with a brief overview of SRM operation followed by various SRM 

control strategies. Finally, a stability analysis of the period-1 orbit was carried out. Also, 

since this system is piecewise nonlinear, the state transition matrix (STM) along each 

vector fields in the periodic orbit was computed using matrix differential equations, 

instead of the simple exponential matrix applied in computing the STM in piecewise 

linear systems such as DC-DC converters and PMDC drives. 
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In Chapter 6, control of nonlinear sub-harmonics and chaotic phenomena in electrical 

drives are discussed. Three control options are discussed and applied to control the 

nonlinear phenomena in DC chopper PMDC Drives and SRM drives.  

In Chapter 7, the nonlinear phenomena in SCDC drive is analysed and controlled using 

one of the control techniques discussed in Chapter 6. Also since this system is piecewise 

nonlinear, matrix differential equation was applied in computing the STM along each 

vector fields in the periodic orbit. 

In Chapter 8, the analysis and control of nonlinear phenomena in a full-bridge converter 

PMDC drive is presented. Unlike the DC chopper-fed PMDC Drives, full-bridge 

converter PMDC drive can be used to achieve four quadrant operations. 

Chapter 9 gives the conclusion of this study and suggestions for future work. 

1.7 List of Publications 

This project has led to the following publications: 

 [1]    Nelson Okafor, Bashar Zahawi, Damian Giaouris and Soumitro Banerjee, 

“Chaos, Co-existing Attractors and Fractal Basin Boundary in DC Drives with 

Full-Bridge Converter ” IEEE International Symposium on Circuits and Systems, 

(ISCAS 2010), Paris, France, May 2010. 

[2]    Nelson Okafor, Bashar Zahawi, Damian Giaouris and Soumitro Banerjee, 

“Analysis of Fast-Scale Instability in DC Drives with Full-Bridge Converter 

using Filippov’s method” IET  Power Electronics Machine and Drives 

Conference (PEMD 2010), Brighton, UK, April 2010. 
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CHAPTER 2 

OVERVIEW OF Nonlinear      

dynamical systems 

 

This chapter gives a general overview of nonlinear dynamical systems and the complex 

phenomena they exhibit. The concept of stability analysis of invariant sets will be 

discussed in detail. The background given here will be very useful when analysing the 

nonlinear behaviour of the various electrical drive systems discussed in later chapters. 

2.1 Basic Ideas 

Dynamics can be defined as a science of change [59] and dynamical systems are replete 

in nature. This includes the motion of the planets, the motion of fluids, the flow of 

current in electric circuit, the dissipation of heat in solids, the propagation and detection 

of seismic waves, and the increase and decrease of human or animal population [60]. 

Virtually all dynamic systems are composed of: 

 A set of independent state variables which evolve with time and can be used to 

completely describe the behaviour of the system. 

 A function which connects the rate of change of the state variables with the state 

variables themselves and other  system inputs and parameters [18]. 

 The time evolution of these state variables can be modelled by using either a 

differential equation or a difference equation, and such models are developed by 

applying some physical laws such as Newtons laws of motion, Kirchhoff’s laws, 

Faradays laws etc. The block diagram of a typical dynamical system in state space 

representation is shown in Fig. 2.1 

 

   

 

 

  Fig. 2.1 Block diagram representation of a dynamical system 

 

     Y       U 

X=[x1;x2;x3;....xn ] 
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where U is a vector representation of all the possible external inputs to the system, X is 

the state vector containing the system state variables, and  Y is the output vector 

containing all the possible system outputs.  The state variables of a dynamical system 

are not necessarily the outputs of the system. Only measurable state variables are 

referred to as the system outputs and will depend on the number of available sensing 

devices [61]. 

 

2.2 Classifications of Dynamical systems 

Dynamical systems can be classified using several criteria as discussed below: 

2.2.1 Deterministic and Non-Deterministic Systems 

Dynamical systems can be broadly classified as either deterministic or non-

deterministic. A system is said to be deterministic if the future value of the state 

variables can be completely predicted once the initial or past states and other system 

parameters are known [62].  For instance, if the angular position (θ(t0)) of a simple 

pendulum at t=t0 is known, then the position at any other time in the future (θ(t)) should 

be predictable. Deterministic systems can be modelled using either ordinary differential 

equation or iterative maps depending on whether the state variables evolve in a 

continuous or discrete manner.  

Similarly, systems whose behaviours are random in nature and cannot be easily 

predicted are referred to as non-deterministic or stochastic systems. A typical example 

of a non-deterministic system is the price of stocks in the stock market. Even if the price 

yesterday is known, the price today could be difficult to predict. 

2.2.2 Continuous Time and Discrete Time Systems 

Continuous time systems (CTS) are dynamical systems whose state variables evolve 

continuously with time. Continuous time systems are often modelled using ordinary 

differential equations  of the form below [63]. 

)),((
)(

tt
dt

td
Xf

X
                                                                     (2.1) 

where   nT

nxxxt R ........)( 21X  is the state vector, x1, x2... xn are the state 

variables and the function f(X(t),t) is the vector field. There are different possible 

solutions for a system of the form (2.1) depending on the initial values of the state 

variables. Such solutions (also referred to as the flow or trajectory) are used to predict 
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future values of the state variables as t . Assuming   00 XX t  is the initial state 

vector for system (2.1), the flow or solution will be expressed as    00, X,X ttt  . 

Such a solution can be evaluated analytically or numerically depending on whether the 

system is linear or nonlinear as discussed in section 2.2.3. Systems of the form (2.1) can 

be referred to as autonomous if the vector field does not depend on time and non-

autonomous otherwise [60]. 

There are also dynamical systems where the state variables evolve in a discrete manner. 

Such systems are referred to as discrete time systems (DTS) and are often modelled 

using an iterative map or difference equation of the form below [62]. 

)(1 nn XfX                                    (2.2) 

where n is an integer, X n denotes the present state of the system, X n+1 denotes the state 

of the system at the next observation instant (hour, minute, second, etc.), and f(X) is the 

evolution rule that relates the present state to the next state.   

2.2.3 Linear and Nonlinear Systems  

Linear systems are dynamical systems in which the time evolution rules for the state 

variables are expressed as linear differential equations [60]. Such systems obey the 

principle of superposition [61] and a change in any of the system parameters causes 

only quantitative, but not qualitative change in the nature of the flow [10]. Linear 

systems usually have only one equilibrium point whose stability does not depend on the 

system parameter and they can be modelled using the state equation of the form (2.3) 

and output equation of the form (2.4)  [61]. 

)()(
)(

tt
dt

td
BUAX

X
                                                                   (2.3)

)()()( ttt DUCXY                       (2.4) 

where   nT

nxxxt R ........)( 21X  is the state vector,  Tmuuu .....  U 21 is the 

input vector,  Tpyyy .....  Y 21 is the output vector, A is an (n  n) state matrix, B is an 

(n  m) input matrix, C is an (p  n) output matrix and D is an (p  m) feed forward 

matrix which is often zero in most systems.   

Linear systems can be further classified as linear time invariant (LTI) and linear time 

varying (LTV) systems. If the parameters in the state matrix (A) vary with time, then 
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the system will be referred to as LTV, but if the parameters in the state matrix remain 

constant over time, the system will be referred to as LTI. Also, if the input or external 

forcing function to the system is zero ( 0)( tU ), the system will be referred to as 

homogenous, and if ( 0)( tU ), the system will be referred to as non-homogenous. 

Linear systems usually have analytical solutions. Assuming   00 XX t  is the initial state 

for the non-homogenous LTI system (2.3), the solution  tX can be expressed as

      dλeettt

t

t

ttt
)(,

0

0 )(

0

)(

00 BUXX,X
AA




 . Systems whose state equations 

cannot be expressed in the form (2.3) are considered as nonlinear. Precisely without 

exceptions, all systems in the real world are nonlinear at least to some extent. The 

evolution rule for the state variables in such systems are usually expressed as nonlinear 

differential equations. Unlike linear systems, nonlinear systems can only be solved 

using numerical techniques and are characterised by multiple equilibrium points. A 

small change in any of the system parameters can lead to sudden and dramatic changes 

in both the qualitative and quantitative behaviour of the system [10]. A very widely 

referred to nonlinear system is the Lotka-Volterra model of two competing species [9] 

which is expressed as  

2

2

2

23

yxyy
dt

dy

xyxx
dt

dx





                                                                              (2.5) 

where x and y represent the populations of the two species competing for the same food 

source or resources. The product terms (xy), and the square terms x
2
 and y

2
 make the 

system nonlinear.  

2.2.4 Smooth and Non-smooth Systems 

Dynamical systems can also be classified as either smooth or non-smooth. If the vector 

fields of the system (2.1) are differentiable everywhere in a given domain, the system 

will be referred to as smooth. On the other hand, a system is said to be non-smooth or 

piecewise smooth if it is described by differential equations with discontinuous right 

hand sides as shown below 
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                  (2.6) 

where R1, R2,...Rn are different regions of the state space, separated by (n-1) 

dimensional surfaces given by algebraic equation of the form 0)(  Xn  called 

switching manifolds.  Systems of the form (2.6) are also referred to as Filippov’s type 

systems [22, 23]. If the separate vector fields are linear, the system will be referred to as 

a piecewise linear system, and if the vector fields are nonlinear, the system will be 

referred to as a piecewise nonlinear system. Filippov type systems have very interesting 

practical applications. Typical examples include mechanical systems with dry friction, 

impact, and back lash, and switched mode power electronic systems including electrical 

drives. 

2.3 The Concept of Invariant Sets  

Consider the general equation (2.1) in nD R . The set DM  is invariant if the 

solution X(t) with MX )0( is contained in M for -∞<t<+∞ . If this property is valid 

only for t ≥0, then M is called a positive invariant set, whereas if the property is valid 

for t ≤0, then M is called a negative invariant set [63]. Invariant sets represent constant 

solution of the dynamical system and any solution that start on the invariant set always 

remain there forever. Typical examples of invariant sets are equilibrium points, periodic 

orbit, quasi-periodic orbits, and chaotic orbits. Invariant sets play a vital role in the 

overall behaviour of the system as system stability depends on the stability of the 

invariant set. Stable invariant sets can attract trajectories of nearby initial points and are 

referred to as attractors or sinks while unstable invariant sets repel trajectories of nearby 

initial points and are known as repellers or sources [10]. Some invariants sets in 

nonlinear dynamical systems are briefly discussed in the following subsections, while 

the stability analysis of invariant sets is discussed in sections 2.4 and 2.5. 

2.3.1 Equilibrium Points 

An equilibrium point (EP), also known as a critical point or fixed point (FP) is used to 

indicate the equilibrium or constant solution of a dynamical system. Assuming the 

initial state of the system is  XX0 , then  XX )(t  for all time where X is the EP 



CHAPTER-2                                    OVERVIEW OF NONLINEAR DYNAMICAL SYSTEMS

   

14 
 

[9]. For continuous type systems of the form (2.1), the EP occurs when 0)( 
Xf , where 

))(( tXf is the vector field, while for a discrete type system or iterative map of the form 

(2.2) the fixed point occurs when   XXf )( . While linear systems often have only one 

EP, nonlinear systems are characterised by multiple equilibrium points whose stability 

depends on the system parameters. For instance the competing species model (2.5) 

which is nonlinear have four equilibrium points at (0,0), (0,2), (3,0) and (1,1) [60]. All 

trajectories starting from an equilibrium point will remain there. The stability analysis 

of EPs is discussed in section 2.4. 

2.3.2 Periodic Orbits  

Another common steady state behaviour in higher order nonlinear systems (second 

order and above) is the periodic orbit or limit cycle. Suppose that )()( tt X is a 

solution of the equation (2.1) and nDt R)(X  and suppose there exists a positive 

number T such that )()( tTt   for all Rt , then )(t is called a periodic solution or 

periodic orbit of period T [63]. Since the value of the state variables are repeated every 

time period T, periodic solutions produce a closed trajectory or orbit in the state space. 

An isolated closed trajectory in the state space which other non-closed trajectories spiral 

either towards or away from as t  is known as a limit cycle [9, 60].  

2.3.3 Quasi-periodic Orbits 

Another steady state behaviour that could occur in high order nonlinear dynamical 

systems is the quasi-periodic orbit. The steady state behaviour is said to be quasi-

periodic if the trajectories move on the surface of a torus. This motion is often 

associated with two sets of frequencies that are related to one another by an irrational 

ratio [10, 18]. Quasi-periodic behaviour have been reported in the boost converter [13], 

Cúk converter [40] and in DC drives employing the proportional integral (PI) controller 

[12].  

 

2.4 Stability Analysis of  Equilibium Points 

An EP can be said to be stable if it attracts the trajectories of nearby initial points and 

unstable otherwise. For linear systems of the form (2.3), the stability of the EP can be 

evaluated simply by obtaining the eigenvalues (λ) of the state matrix (A) or by finding 

the roots of the characteristic equation of the transfer function, while in nonlinear 

systems the stability analysis of EP can be performed by adding a small perturbation to 
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the original system near the EP and then observing if the perturbation grows or shrinks 

over time. If the perturbation shrinks to zero as t then the EP is said to be 

asymptotically stable, but if the perturbation grows infinitely, then the EP will be said to 

be unstable. Assuming an autonomous nonlinear system of the form ))(()( tt XfX 
 is 

perturbed near its EP (
X ), then an approximate linear system of the form (2.7) will be 

obtained. 

)()(
)(

t
dt

td
PXJ

P 
              

                                                                             (2.7) 

where 
 XXP )()( tt  is a measure of the perturbation near the EP ( X ), and J( X ) is 

the Jacobian matrix (2.8) of the system evaluated at the EP.
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XJ                              (2.8) 

The stability of the EP will depend on the eigenvalues (λ1, λ2, λ3,…. λn) of  J( X ) 

obtained by solving the characteristic equation det(J( X )-Iλ)=0. For LTI system of the 

form (2.3), the Jacobian matrix is the same as the state matrix (A). The above 

linearization technique is suitable for studying the local behaviour of trajectories near 

the EP. For first order nonlinear systems of the form ))(()( txftx  , the characteristic 

value or the eigenvalues can be simply obtained by evaluating the derivative of  f(x(t)) 

with respect to x(t) at the EP.
 

 *xx


dx

xdf )(
                                              (2.9) 

If λ<0 the EP will be stable and will be referred to as node or sink, but if λ>0, then the 

EP will be unstable and will be referred to as a repeller or source.    
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2.5 Stability Analysis of  Periodic Orbits 

The stability analysis of periodic orbits or limit cycles is necessary as this steady state 

behaviour is common in practical systems such as SMPE systems including electrical 

drives. A periodic orbit of period (T) can lose stability as system parameters are varied 

and orbits of period (nT), quasi-periodic or chaotic orbits may emerge. If all the 

trajectories that start near the limit cycle (both inside and outside) spiral towards it as 

t , then the limit cycle is said to be asymptotically stable [60] . If trajectories on 

one side spirals towards the limit cycle, while those on the other side spiral away as 

t  then the limit cycle is said to be semi-stable. But, if the trajectories on both sides 

of the limit cycle spiral away as t , then the limit cycle is said to be unstable. If 

nearby trajectories neither converges, nor departs from the limit cycle, then the limit 

cycle is said to be stable. The two common techniques for performing the stability 

analysis of limit cycles are the Poincaré map approach and the Floquet theory.  

2.5.1 Poincaré Map Techniques 

The Poincaré map technique is the most common method for performing the stability 

analysis of limit cycles. The idea is to reduce a continuous time dynamical systems into 

a discrete time system or a differential equation into a difference equation (iterative 

map). Once, the iterative map corresponding to the differential equation is derived, the 

stability of the periodic orbit of the continuous time system can be ascertained by 

analysing the stability of  the fixed point of the iterative map [4, 62, 64]. If the fixed 

point is stable then the periodic orbit is stable and vice-versa.  

Assuming that the trajectory of the state variables in a general non-autonomous 

nonlinear system )),(()( ttt XfX  ,X(t0)=X0 ) is a periodic orbit described by 

     dtfttt

t

t

)),,((, 0000

0

X,XX,X 0                                                                       (2.10)
                                                 

                
 

then the iterative map equivalent of the continuous system can be obtained by placing a 

Poincaré section of order n-1( Fig. 2.2) in the state space or by sampling the states at 

every periodic interval (t=t0+nT) where T is the period and n =0,1,2,..∞ [9, 10].  The 

state vector after the time interval (T) (X(T+t0))  can be expressed as a function of the 

initial state vector (X0) as follows 
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     dtfttTtT

tT

t

)),,((, 000000

0

0

X,XX,X 0 



   

                                                  (2.11)
  

 

 

  

 

 

 

 

 

                         

                        Fig. 2.2 Poincaré section (PS) for a simple 3
rd

 order system.  

Equation (2.11) can be generalised to an iterative map of the form (2.12) where Xn is 

the present state and Xn+1 is the state of the system after the periodic interval (T).
                                         

 

 dtfP

tT

t

)),,(()( 0

0

0

nnn1n X,XXX 


 
    

                        (2.12) 
 

At the fixed point of the iterative map, we have P(Xp)= Xp . Consequently, 

PPP XX,X  


 dtf

tT

t

)),,(( 0

0

0

                   (2.13) 

and  

0)),,(( 0

0

0




 dtf

tT

t

PX,
                                                                                               

(2.14) 

The fixed point of the map (XP) can be obtained by solving equation (2.14) numerically. 

To analyse the stability of the periodic orbit we need to analyse the stability of the fixed 

point of the map (XP). Since the iterative map (2.12) is a nonlinear map, the stability 

analysis of its fixed point will be achieved by evaluating the Jacobian matrix of the map 














n

n

X

X )(P
  at the fixed point and then obtaining its eigenvalues. The fixed point (XP) 

and thus the periodic orbit is stable if the absolute values of the eigenvalues are within 

x1 

x2 

XP 

x2 

X0 

X(T+ t0) 

 PS 
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the unit circle and unstable otherwise.
 
The Poincaré map technique thus involves four 

key steps as outlined below: 

 Convert the continuous time system to a discrete time system by deriving a 

nonlinear iterative map equivalent of the original differential equation. 

 Obtain the fixed point of the map. 

 Obtain the Jacobian matrix of the map and evaluate it at the fixed point. 

 Obtain the eigenvalues of the Jacobian matrix. 

The key limitation of this technique is that it may be difficult to derive the iterative map 

in closed form in some systems [23].   

2.5.2  Floquet Theory 

In the Poincaré map approach the orbital stability was deduced by transforming the 

continuous time system into a discrete time system (an iterative map) and the periodic 

orbit into a fixed point and thereafter linearizing the system around the fixed point. In 

Floquet theory the orbital stability is deduced by linearizing the system around the 

periodic orbit. The periodic orbit is first given an initial perturbation and the evolution 

of the perturbation is evaluated using the fundamental solution matrix or state transition 

matrix (STM).The STM is obtained by integrating the initial value problem of the 

variational equation [65]. Floquet theory is suitable for the stability analysis of both 

smooth and non-smooth orbits. The variational equation and the derivation of the STM 

will be discussed in section 2.5.2.1, while the application of the STM in the stability 

analysis of both smooth and non-smooth orbits will be discussed in sections 2.5.2.2 and 

2.5.2.3, respectively. 

2.5.2.1 Variational Equation 

Assuming   )),(,( ttft XX    nt X
 
is the model of a general non-automous nonlinear 

dynamical system whose initial state vector is   0XX 0t . Then the solution or the 

trajectory of the state varaibles in state space can be  described by the function 

 00,)( X,X ttt  . By taking a time derivative of the solution we have the expression: 

 
     0XX,         X,

X,
 00000

00 ,,,,
,

tttttf
dt

ttd



                    (2.15) 

Then by taking partial derivative of  (2.15) with respect to the initial state vector 0X  we 

have the equation: 



CHAPTER-2                                    OVERVIEW OF NONLINEAR DYNAMICAL SYSTEMS

   

19 
 

 
      

nn

tttttttfdt

ttd




























I
X

X,
     

X

X,

X

X,

X

X,

0

000

0

0000

0

00

,
,

,,,

,





                   

(2.16) 

The  partial derivative of the solution with respect to the initial condition 
 

0

00,

X

X,



 tt
is 

known as the STM and is used to describe the time evolution of the state variables or 

the perturbation from t= t0  to any other time (t) in the future.  The STM can be abridged 

to  00, X,tt .   

Consequently, equation (2.16) can be re-arranged in the form below 

 

    
    nntttt

tttf

dt

ttd








IX,     X,

X

X,X,
00000

0000 ,,,
,,, 

                               

(2.17) 

The matrix differential equation (2.17) is known as the variational equation [65] and can 

be solved to obtain the STM. For simple LTI systems of the form (2.3) the STM 

(  00, X,tt ) can be obtained by solving an exponential matrix of the form ( )( 0A tt
e

 ), but 

for general non-autonomous systems of the form (2.1) the STM could be obtained by 

solving the matrix differential equation (2.17).  

2.5.2.2  Stability  Analysis of  Smooth Orbits  

Smooth and non-smooth dynamical systems were earlier discussed in section 2.2.4. In 

this section the stability analysis of a smooth periodic orbit using Floquet theory will be 

discussed. Assuming the steady state trajectory of a smooth nonlinear dynamical 

systems   )),(,( ttft XX    nRt X is a periodic orbit of the form     00, X,Xss ttt   

where 0X  is the initial condition. To analyse the stability of this orbit using Floquet 

theory, the system  will be given an initial small perturbation (Fig. 2.3) and the 

difference between the original and perturbed trajactories after some time interval (T) 

corresponding to the period of the original orbit will be ascertained using the 

fundamental solution matrix. 

 

 

 

 



CHAPTER-2                                    OVERVIEW OF NONLINEAR DYNAMICAL SYSTEMS

   

20 
 

 t X  
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 1t Xss

 
 0t Xss

 

 1t Xss
 

 000 , X,tt  

 001, X,tt   00, X,tt  

 0t Xss
 

 

 

 

 

  

 

 

                     Fig. 2.3   Time evolution of a perturbation for a smooth dynamical system 

If    0000 , X,XX 0ss ttt   is the initial state vector of the original orbit and 

   )(, 00000 tpttt  X,XX 0ss   is a nearby initial point, then the initial perturbation 

(p(t0)) will be expressed as (2.18), and the perturabtion at any time (t) will be expressed 

as (2.19). 

     00000000000 ,,)(,)( X,X,X, tttttptttp  
         

                             (2.18) 

     0000000 ,)(,,)( X,X,X, tttptttttp  
  

                                    (2.19) 

where    )(, 000 tpttt  X,Xss   is the perturbed trajectory and  00, X,tt is the original 

periodic orbit.The time evolution of the perturbation can be evaluated by using a 

linearization techinque such as the Taylor series around the periodic orbit as shown in 

(2.20) with the higher order terms being ignored. 

)()),((

)(
)),(()(

0

)()(

tpttA

tp
ttf

dt

tdp

ss

tXtX ss










X         

X

X

                                                                         
(2.20) 

Equation (2.20) is a simple homogenous linear time varying model with 

)),((
)),((

ttA
ttf

ssX
X

X





 as the state matrix. The stability of the periodic orbit depends on 

the stability of this simple linear system and could be deduced by finding the eigenvalue 

of the state matrix )),(( ttA ssX . But, unfortunately )),(( ttA ssX is a function of time and its 

eigenvalue cannot be easily ascertained. An alternative way of solving (2.20) is through 

the use of the fundamental solution matrix or the state transition matrix (STM) 
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 00, X,tt  which has already been derived in section 2.5.2.1. By applying the STM, the 

time evolution of the perturbation will be expressed as 

    )(,,)( 00000 tptttttp  X,X,
                             

(2.21) 

If the orbit is periodic then the perturbation after some time interval                                                     

T,
 

  )(,)( 00000 tptTtTtp  X,  will need to be evaluated to compute its stability, 

where T is the period of the orbit and  000 , X,tTt  is the state transition matrix around 

the orbit known as the Monodromy matrix. The stability of this orbit depends on the 

eigenvalue of the Monodromy matrix (also known as Floquet multipliers). The periodic 

orbit is stable if the absolute value of the Floquet multipliers is within the unit circle and 

unstable otherwise. The Monodromy matrix is thus the same as the Jacobian matrix of 

the Poincaré  Map evaluated at the fixed point.   

An interesting property of the STM is that if the evolution of the perturbation from the 

initial time (t0) to any time (t) in the future is broken into smaller intervals (as shown in 

Fig. 2.3) then the total STM from t0 to t is the product of the state transition matrices of 

each interval. This property is known as the transition property of the STM and is 

illustrated in the following equation: 

   

    )(,,

)(,,

000111

00000

tptttt

tptttt





X,X,                     

X,X,

                 
(2.22) 

where    00  X Xss t
 
and   11  X Xss t .  

The transition property of STM is very useful in performing the stability analysis of 

non-smooth orbit where the STM along the different vector fields that make up the orbit 

are to be computed separately. Assuming Fig. 2.4 is an arbitrary periodic orbit produced 

by a smooth 3
rd

 order nonlinear dynamical system of the form   ),),(( ttft XX  ,

  3Rt X  then the stability of this orbit as a system parameter such as β is varied  can 

be determined simply by deriving the Monodromy matrix (2.23) and obtaining its 

eigenvalues.  
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                   Fig.  2.4 Arbitrary periodic orbit of a smooth 3
rd

 order nonlinear system 

  )0,(),(),(,)0,( 11223 ttttttTTM  3        
                                                  (2.23) 

where  AB tt , is the state transition matrix from t=tA to t=tB and M(T,0) is the state 

transition matrix round the arbitrary periodic orbit known as the Monodromy matrix. 

The state transition matrices  AB tt ,  are evaluated by solving matrix differential 

equations of the form (2.17). 

 
2.5.2.3  Stability Analysis of  Non-Smooth Orbits 

The evolution of the state variables in non-smooth systems is often characterized by 

sharp bends and twists as the trajectory moves from one region of the state space to 

another thereby making the orbit non-smooth. The stability analysis of non-smooth 

orbits is necessary as such orbits are commonly encountered in switched mode power 

electronic systems including electrical drives. The procedure for performing the stability 

analysis of a non-smooth orbit is similar to that employed for the smooth orbit, but in 

this case the state transition matrix at the switching manifold (known as the Saltation or 

jump or updating matrix [65] [66]) must also be taken into consideration. The need for 

considering the Saltation matrix will be obvious if the time evolution of the perturbation 

of a non-smooth trajectory is considered. Assuming (2.24) defines a non-smooth system 

with two vector fields ),,(1 tf X  and ),,(2 tf X . 
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                                                            (2.24) 
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where ),,(1 tf X is the vector field that governs the evolution of the state variables in 

region -R of the state space, and ),,(2 tf X  is the vector field that govern the evolution 

of the state variables in region R of the state space. The concept of solution for this 

type of system is defined by Filippov’s method of differential inclusions [22]. Assuming 

the two regions are separated by a switching manifold ))(( ,tth X such that: 







)(,0))((

)(,0))((

)(,0))((

t,tth

t,tth

t,tth

XX

R XX

R XX

2

1

        (2.25) 

where  is the switching hypersurface. If    0000 , X,XX 0 ttt   is the initial state 

vector of the original orbit and    )(, 00000 tpttt  X,XX 0   is the initial point when 

a small perturbation (p(t0)) is applied (Fig. 2.5). To obtain the perturbation (p(t)) at 

future time (t),  we need  to compute the STM along the trajectory from the initial time 

(t0 ) to time (t). For smooth systems (2.21) (p(t)) is given by 

    )(,,)( 00000 tptttttp  X,X, where  00, X,tt  is the STM from the start time (t0) 

to time (t) and is obtained by solving a matrix differential  

 

 

 

  

 

 

 

 

Fig.  2.5  Time evolution of a perturbation for a non-smooth dynamical 

system 

equation of the form (2.16).  But, for a non-smooth system it could be seen from        

Fig. 2.5 that the perturbed trajectory and the original trajectory may hit the switching 

surface at different times and the vector field is discontinuous at the switching surface. 
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Consequently, the STM will be discontinuous at the switching instant. Hence, there is a 

need for the Saltation matrix which relates the perturbation vector before the switching 

manifold )( tp and the perturbation vector after the switching manifold )( tp as 

shown below  

)()(   tptp  S                      (2.26) 

where  S is the Saltation matrix [65], and is expressed as shown below. 
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                    (2.27) 

where 1f  is the vector field before the switching manifold expressed as 

),),((lim 11 ttff
Σtt

X


 , 2f is the vector field after the switching manifold expressed as 

),),((lim 22 ttff
Σtt

X


 , n is the normal to the hypersurface given by  (2.28), n
T
 is the 

transpose of the normal to the hypersurface and nnI is an identity matrix of  the same 

order as that of the system. 
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                                                                                                         (2.28) 

Consequently, the perturbation (p(t)) will be expressed as 

 
   00

000

,)(,

)(,)(

X,SX,        

X,

ttttt

tptttp

 


                                                                               (2.29) 

Assuming Fig. 2.6 is an arbitrary non-smooth orbit of a non-smooth system, to 

determine the stability of this orbit we need to obtain the STM for ],0[ Tt where T is 

the period of the orbit. Since the trajectory crosses the switching hypersurface twice in 

once cycle, the STM around the orbit (the Monodromy matrix) can be expressed as 

),0,())(,,()0,( 012 XSXS   tttTTM                                              (2.30) 
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R  
R  

  

)()0( TXX   

)( tX  

2S  

1S  

where S1 is the Saltation matrix that govern the transition of the trajectory from region 

R  to region R and S2 is the Saltation matrix that govern the transition of the 

trajectory from region R back to region R .   

 

 

 

 

 

 

 

        Fig. 2.6   Arbitrary periodic orbit of a non-smooth system 

The stability of the non-smooth orbit will then be ascertained by computing the 

eigenvalues of the Monodromy matrix (the Floquet multipliers). The procedures 

outlined here will be applied in the stability analysis of non-smooth orbits in electrical 

drives discussed in chapters 4, 5, 7 and 8. 

2.6   Complex Behaviour of Nonlinear Dynamical Systems 

Unlike linear systems, nonlinear systems are prone to complex dynamical phenomena 

namely bifurcations, chaos, co-existing attractors and fractal basin boundaries. These 

phenomena can cause qualitative changes in the steady state trajectory of the system 

thereby making long time predictability difficult.  

2.6.1 Bifurcations 

A bifurcation can be defined as a change in the qualitative behavior of a nonlinear 

system as some system parameter is being varied thus leading to the birth or death of an 

attracting set [9, 60]. At some values of system parameters one of the invariant sets 

could be an attractor and trajectories of initial points converge on it at steady state, 

while at some other parameter values, the previous attractor may begin to repel and 

another invariant set begins to attract. It is also possible for all the invariant sets to 

vanish under parameter variation. The system parameter value at which a bifurcation 

occurs is referred to as a bifurcation point. The concept of the bifurcation can be used to 
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k  

*x  

 Stable EPs
 

 Unstable EPs
 

 No Equilibrium Point for k>0
 

explain some physical phenomena such as the buckling of beams as loads are varied. A 

graphical plot of the equilibrium state against the bifurcation parameters is referred to as 

a bifurcation diagram.  The two main class of bifurcations are smooth and non-smooth 

bifurcation [4]. The former is very common in smooth dynamical systems and include 

saddle node, transcritical, pitchfork, hopf and period-doubling bifurcations. The later 

(including border collisions) could be found only in systems of non-smooth or 

Filippov’s type. These types of bifurcation are explained below. 

2.6.1.1 Saddle Node Bifurcation 

This type of bifurcation is characterised by a sudden loss or acquisition of  a stable 

attracting set as the system parameter moves across a critical value [67]. As the system 

parameter is varied, two EPs move towards each other, collide and mutually annihilate 

[9]. The saddle node bifurcation is also known as a fold bifurcation. Systems that 

exhibits saddle node bifurcation can be normalised to the form: 

2xk
dt

dx
                (2.31)  

where k is the bifurcation parameter and x is the state variable. For k<0, the system has 

two EPs, one stable )( kx 
   and the other unstable )( kx 

. But for k>0, 

all the EPs disappears. This qualitative change that occurs at k=0 is known as a saddle 

node bifurcation. The bifurcation diagram of the system of form (2.31) is shown in    

Fig. 2.7 

 

 

  

 

 

 

           

              Fig.  2.7  Bifurcation diagram for a saddle node bifurcation.  
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2.6.1.2 Transcritical Bifurcation 

This type of bifurcation involves the switching of stability status between two 

equilibrium solutions as the system parameters are being varied [9]. It often occurs in 

physical system where an equilibrium point exists for all the parameter values. Systems 

which exhibit this behaviour can be normalised to the form: 
 

2xkx
dt

dx
           

                      (2.32) 

The two EPs of the system (2.8) occur at )0( x  and )( kx 
. For k<0, the EP at 

)0( x is stable and attract trajectories of initial points, while the EP at )( kx 
is 

unstable. But for k>0, the EP at )0( x becomes unstable while the EP at )( kx 

becomes stable and thus attract trajectories. This exchange of stability at k=0 is known 

as a transcritical bifurcation and is illustrated in Fig. 2.8.  

 

 

 

 

 

 

  

 

 

            Fig. 2. 8  Bifurcation diagram for a transcritical bifurcation 

 
2.6.1.3 Pitch-Fork Bifurcation 

The Pitchfork bifurcation can be classified as either supercritical or subcritical [9] and 

is very common in systems that have spatial symmetry.  A Supercritical pitchfork 

bifurcation occurs when a stable equilibrium point loses stability and two co-existing 

stable equilibrium points appear. Systems that exhibit supercritical pitchfork bifurcation 

can be normalised to: 
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3xkx
dt

dx
                                      (2.33)                                                                           

As the system parameter (k) is varied from left to right, the stable equilibrium point at 

the origin loses stability and two stable equilibrium points emerge. This exchange of 

stability status between one equilibrium point and a pair of equilibrium points at k=0 is 

known as a Supercritical Pitch-Fork Bifurcation. The bifurcation diagram of the system 

is shown in Fig. 2.9.  

 

 

 

 

 

 

 

 

Fig. 2. 9 Bifurcation diagram for a supercritical pitchfork bifurcation 

 

A Subcritical pitchfork bifurcation on the other hand occurs in systems of the form: 

3xkx
dt

dx


   
                   (2.34) 

When the bifurcation parameter (k) is below the bifurcation point (k<0), we have three 

equilibrium points at )0( x  and )( kx 

 with only the equilibrium point at the 

origin being stable and the other two unstable. But for (k>0), the two equilibrium points 

)( kx  vanish and only the unstable equilibrium point at the origin remains. The 

bifurcation diagram of such a system is shown in Fig. 2.10. 
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           Fig.  2.10  Bifurcation diagram for a subcritical pitchfork bifurcation 

 

2.6.1.4 Hopf Bifurcation 

This type of bifurcation occurs when a stable spiral point loses stability and a stable 

limit cycle is born [67]. Systems that exhibit this kind of bifurcation can be normalized 

to a second-order equation of the form: 

)]([

)]([

2

2

2

121
2

2

2

2

112
1

xxxx
dt

dx

xxxx
dt

dx









                                           (2.35) 

The stability of the EP in this system depends on the eigenvalues of the Jacobian matrix 

of the system. For  μ < 0, the EP at the origin is stable as the real part of the eigenvalues 

of the Jacobian matrix are negative, but for μ > 0, the real part of the eigenvalues 

becomes positive and the EP at the origin loses stability. The trajectories of the various 

initial points will now depart from the origin and converge on a new attractor (a limit 

cycle). Another form of Hopf bifurcation that occurs in discrete systems is the Neimark-

Sacker bifurcation and it occurs when pair of complex conjugate eigenvalues assume a 

magnitude of 1. The analysis and experimental validation of a Neimark-sacker 

bifurcation in a laboratory PI controlled permanent magnet DC drive is discussed in 

Chapter 4.  
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2.6.1.5 Period Doubling Bifurcation 

This type of bifurcation is characterized by a sudden doubling of the period of a stable 

periodic orbit or limit cycle and it occurs when one of the eigenvalues of the system 

becomes -1. The Period doubling bifurcation is also known as a flip bifurcation or a 

fast-scale instability and is commonly observed in SMPE systems including electrical 

drives. 

2.6.1.6 Border Collision Bifurcation 

The border collision bifurcation is very common in non-smooth systems where two or 

more systems with different topologies operate at different parameter values. The 

border collision bifurcation is also referred to as a non-smooth bifurcation and is 

characterised by abrupt discontinuities, bending and jumps which do not resemble the 

patterns seen in standard or smooth bifurcations [18]. In PWM controlled electrical 

drives, border collisions occur due to saturation nonlinearities.   

2.6.2 Chaos  

Another complex behaviour peculiar to nonlinear systems is chaos. Chaos can be 

defined as an aperiodic behaviour of nonlinear deterministic systems that is highly 

sensitive to initial conditions [9]. An early example of chaos in nonlinear systems was 

the Lorenz system (2.36) [9]. A small change in the initial condition of the system can 

lead to significant change in the steady state trajectory thereby making long term 

predictability of chaotic systems nearly impossible.  

213
3

3121
2

21
1 )(

xxx
dt

dx

xxxcx
dt

dx

xx
dt

dx











                    (2.36) 

The occurrence of chaos in a system can be proved by examining the divergence of the 

trajectories of two nearby initial points in state space. A system is said to be chaotic if  

two nearby initial points to the chaotic attractor evolves into two uncorrelated 

trajectories after few iterations or if the Lyapunov exponent is positive [10, 18]. Chaos is 

said to be ubiquitous as it has been reported in many physical and biological systems 

including chemical systems [68], fetal heart rates [69], mechanical systems [70] and in 

power electronics systems [7, 20, 28, 30, 64, 71]. The two common routes to chaos are 
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the period doubling route to chaos and the quasi-periodic route to chaos. These are 

discussed in Chapter 4. Chaotic attractors are also referred to as strange attractors.                                               

2.6.3 Co-existing Attractors and Fractal Basin Boundaries  

Co-existing attractors occur when two or more stable states exist at the same time in a 

dynamical system. For instance when the EP at the origin in system (2.33) loses 

stability via a supercritical pitchfork bifurcation, the two new attractors ( k ) could 

be referred to as co-existing attractors. When two or more attractors co-exist, the set of 

initial conditions whose trajectories converge on a given attractor is referred to as the 

basin of attraction for that attractor and the boundary separating the different basins is 

referred to as the separatrix [10]. For example the line x=0 separates the basin of the 

two attracting sets k  after the supercritical pitchfork bifurcation and all trajectories 

whose initial point is above zero converges on k  while all trajectories whose initial 

point is less than zero  converge on k  . If the boundary separating the different 

basins is highly irregular and difficult to isolate, then the phenomena will be referred to 

as fractal. In Chapter 4, the fractal phenomena associated with dc chopper-fed PMDC 

drive will be discussed, while the fractal phenomena in full-bridge converter PMDC 

drive is discussed in Chapter 8. 

2.7  Summary 

In this chapter the complex phenomena associated with nonlinear dynamical systems 

and the concept of invariant sets (constant solution of dynamical systems) were 

discussed. It has been shown that as system parameters are varied a stable invariant set 

may lose stability and a new stable invariant set may emerge or the invariant set may 

vanish completely. Also more than one stable invariant set may co-exist at the same 

time thereby making the system behaviour very uncertain and difficult to predict. These 

phenomena occur in most nonlinear systems including electrical drives. In the next 

chapter the fundamentals of electrical drives and the modelling techniques for nonlinear 

analysis of drives will be discussed. 
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CHAPTER 3 

ELECTRICAL DRIVES FUNDAMENTALS  

 

3.1 Introduction  

Electrical drives are found in homes, industry, automobiles, aircrafts, space crafts, etc.  

Most modern homes often have several electrical drives hidden in devices such as 

vacuum cleaners, dishwashers, washing machines, refrigerators, air conditioning units, 

etc. The rotational speed and torque in modern electrical drives are controlled by the 

toggling ON and OFF of power electronic switches via pulse width modulated (PWM) 

signals

The “switch ON” equivalent circuit topology is often different from the “switch OFF” 

circuit topology thus classifying these systems as non-smooth or Filippov’s type 

systems as discussed in section 2.2.4. Also due to the switching of the power electronic 

devices, electrical drives are inherently nonlinear in nature and are susceptible to 

complex nonlinear phenomena, namely bifurcation and chaos. Thus, special modeling 

techniques such as the average model [16, 17, 19] and nonlinear iterative mapping    

[20, 72] will be applied for a comprehensive analysis of the drives performance.  

In this chapter, the fundamentals of electrical drives with emphasis on DC drives, and 

switched reluctance motor (SRM) drives will be discussed. The material provided here 

will be useful in Chapters 4-8 where the nonlinear phenomena in DC drives and SRM 

drives are analysed and controlled. 

3.2 Components of an Electrical Drive System 

A typical modern electrical drive (Fig.3.1) consist of an electric motor, a power 

converter and control electronics, working together to move a mechanical load [3]. An 

input power supply that provides the energy needed by the drive and sensors for closed- 

loop control, are also needed as integral parts of the system. 
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                                      Fig.  3.1 Components of an electric drive system 

 

3.2.1 Electric Motors 

Electric motors are a key component of electric drive systems and they convert the input 

electrical energy into mechanical energy [2]. There are several variants of electrical 

motors in use today and possible classification criteria include the commutation 

strategy, the input power source and the type of torque being produced, as shown in 

Table 3.1. In terms of the commutation strategy, we typically have mechanical 

commutation and electronic commutation. An example of an electrical motor employing 

mechanical commutation is the conventional brushed DC motor (BDCM) which comes 

in four variants: separately excited (SE), series connected (SC), shunt connected (SHC), 

and compound motors (CM). Separately excited DC motors can also be subdivided into 

permanent magnet DC (PMDC) motors and field excited DC (FEDC) motors. The 

commutation strategy in those motors involves the use of mechanical commutators and 

carbon brushes. As the commutators and brushes wear out due to friction, conventional 

dc motors require routine maintenance. But, the ease at which the speed of conventional 

dc motors can be controlled makes them appealing for variable speed application and 

many industrial drives today still rely on brushed DC motors.  

To overcome the problems caused by the wear and tear in mechanical commutators, 

electronic commutation is employed. Electronic commutation (brushless schemes) is 

based on the idea that a rotating magnetic field is produced by balanced three phase AC 

currents flowing in the stator coils. Typical examples of electrical motors employing 

electronic commutation are brushless DC motors (BLDCM), inverter-fed induction 
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motors (IM) & permanent magnet synchronous motors (PMSM), and synchronous 

reluctance motors (SR). Other variants of electronically commutated motors include 

switched reluctance motors (SRM) and stepper motors (SM) that rely on the principle of 

reluctance torque.  

Table 3.1  Classification of electric motors. 

     ELECTRIC MOTOR INPUT POWER COMMUTATION 

STRATEGY 

FORM OF 

TORQUE 

Brushed DC Motors DC  Mechanical Electromagnetic  

Brushless DC Motors DC Electronic Electromagnetic 

Induction Motor(IM) AC Electronic Electromagnetic 

Permanent Magnet 

Synchronous Motors 

AC Electronic Electromagnetic 

Synchronous Reluctance 

Motors 

AC Electronic     Reluctance 

Switched Reluctance 

Motors 

DC Electronic     Reluctance  

Stepper Motors DC Electronic     Reluctance 

            

In this thesis, the complex dynamics of electrical drives representing the two main 

commutation strategies are studied in details. Permanent magnet DC (PMDC) drives 

and Series connected DC (SCDC) drives are selected as examples of mechanically 

commutated motors while the SRM drive is selected as an example of an electronically 

commutated motor.  

3.2.2  Power Converters 

Power converters are used to adjust the voltage, current and frequency of the input 

electrical power for the purposes of motor speed and torque control. They receive 

electrical energy from the mains at constant voltage and frequency and then supply 

electrical energy to the motor at variable voltage and frequency [2]. The power 

conversion process could be DC-DC (chopper), DC-AC (inverter), or AC-DC-AC 

(rectifier + inverter). 

3.2.3   Control Electronics 

In general, the state variables of an electrical drive system can be controlled either in 

open loop or closed loop.  In closed loop control, the controller compares the actual 

state of the system measured by sensors with the reference state to produce an error 

signal. Based on the error signal a pulse width modulated (PWM) signal of appropriate 

duty ratio will be produced to turn ON or OFF the power switches in the power 
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converter and thus achieve the required speed or current control [2].  Control electronics 

can be implemented in analog form using operational amplifiers and comparators or in 

digital form using microprocessors. Most modern drives make use of the later. 

3.2.4    Mechanical Loads 

Electrical motors are designed to carry mechanical loads of one form or the other. The 

mechanical load imposes an opposing torque to the electrical torque produced by the 

motor. The load can be a constant load or may vary with the shaft speed. The load can 

also introduce nonlinearity in the drive’s dynamic model. For example the load torque 

imposed on the shaft by a fan or pump type load is proportional to the square of the 

speed (TL α ω
2
) thus making the system nonlinear. 

3.3 Permanent Magnet DC Drives 

Prior to the recent advances in power electronics and microprocessor technology, the 

most common drive system used for variable speed application was the DC drive. DC 

drives are relatively easy to analyse and control and are commonly used in several 

domestic and industrial applications (children toys, robots, paper mills, steel rolling 

mills etc). Typically PMDC drives consist of a permanent magnet DC motor, the power 

converter, and control electronics. The power converter can be a DC chopper (for first 

quadrant motoring operation), a full-bridge converter (for two quadrant operation) or 

even an active front end full-bridge converter (for four quadrant operation). The 

permanent magnet provides the field excitation, but since the permanent magnet flux is 

fixed, PMDC drives are widely used in low power applications [3]. In this section, the 

fundamentals of DC chopper fed PMDC drives will be discussed. 

3.3.1 System Overview  

The schematic diagram and equivalent circuit of DC-chopper fed PMDC drives 

(operating under open loop control) are shown in Fig. 3.2.  The drive consists of the 

PMDC motor, an electronic switch (S) and free-wheeling diode (D). The switch (BJT, 

MOSFET, IGBT) is controlled by a PWM signal fed through an appropriate device 

driver. The PMDC motor consists of a field circuit (a permanent magnet), and an 

armature circuit comprising the armature coils, mechanical commutators (not shown) 

and brushes. The coils and the commutator are mounted on the rotor shaft and rotate 

with the rotor while the brushes are mounted on the stator and are stationary. 
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                                                                        (a)

 

                                                                                                                                                                           

(b) 

Fig. 3.2  Open loop PMDC drives (a) System schematic diagram (b) Equivalent circuit 

of the drive. 

The speed of the motor depends on the average voltage applied at the armature 

terminals which depends on the duty cycle (d) of the PWM signal. 

dVV inavg                                                                                                                  (3.1) 

where d is the ratio of the switch ON time (Ton) to the period of the switching cycle (T). 
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T

T
d on                        (3.2) 

and offon TTT   

Since ]10[ ,  d  , the average voltage applied at the armature terminals using the DC 

Chopper will be between 0 and Vin, thus making it possible to achieve a speed range 

from zero to full speed. 

                                                                                                                     

3.3.2 PMDC Drive Operation 

The operation of the open loop PMDC drive can be described using Fig.3.2.  When the  

PWM signal is High, the switch (S) is closed and +Vin is applied at the terminals of the 

armature coil directly under the north pole of the permanent magnet (PM) thus causing 

current i(t) to flow in the coil via the brushes. The interaction of the permanent magnet 

flux )(t and the armature current produces a force F (also known as Lorentz force) at 

both ends of the winding. The force produces an electrical torque (Te) that causes anti-

clockwise rotation of the shaft. When the PWM signal is Low, the switch opens and the 

diode (D) conducts thus causing zero volts to be applied at the armature coil terminals. 

The armature current thus decays via the diode. The switch ON and switch OFF circuit 

topologies are shown in Fig.3.3 and Fig.3.4, respectively.  

 

                                    Fig. 3.3  Switch ON circuit topology of a PMDC drive 

 



CHAPTER-3                                                           ELECTRICAL DRIVES FUNDAMENTALS 
   

38 
 

 

              Fig. 3.4 Switch OFF circuit topology of a PMDC drive 

 

If the armature current decays to zero during the switch OFF interval, the operational 

mode will be referred to as discontinuous conduction mode (DCM), otherwise it will be 

referred to as continuous conduction mode (CCM). In order for the drive to operate in 

CCM, the inductance of the motor winding must be high enough to ensure that the 

current does not drop to zero during the switch OFF interval.  

The force (F) and the electrical torque (Te) produced are functions of the armature 

current and field flux as shown below: 

liBF                                                                                                                    (3.3) 

iKT te               (3.4) 

where )(t is the field flux, i is the armature current, B is the field flux density, l is the 

length of the armature coil being linked by the field flux and Kt is the torque constant. 

)(t is constant in PMDC motor and consequently the electrical torque produced will 

depend only on the armature current as expressed below: 

iKT te                                                                                                                      (3.5) 

As the rotor rotates, an emf (E) will be induced at the terminals of the armature coil as it 

is being linked by the field flux )(t . This emf is commonly referred to as back emf and 

is proportional to the field flux and the shaft angular velocity (ω(t)). 

  eb KE                                                                                                           (3.6) 

Since   is constant for the PMDC motor the back emf can also be expressed as

 eb KE .  
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3.3.3 Mathematical Model of Open Loop PMDC Drive 

Under CCM operation, the system will alternate between two different topological 

states as the switch is turned ON and OFF. The mathematical model depicting the 

switch ON state will be different from the mathematical model for the switch OFF state. 

When the switch is ON and the diode is OFF (Fig.3.3) the mathematical model will be 

expressed as: 
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                                                                         (3.8)                                                                                                                    

 where i(t) is the armature current, (t) is the shaft speed, L is the armature inductance, 

R is the armature resistance, Ke and Kt are the back emf and the torque constants, 

respectively, B is the viscous damping factor, TL is the load torque, J  is the moment of 

inertia, and Vin is the supply voltage.  

But when the switch is OFF and the diode conducts (Fig.3.4), the mathematical model 

will be expressed as: 

 
J

tBTtiK

dt

td Lt )()()(  


                                                                         
(3.9) 
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(3.10) 

The switch ON model (3.7) and (3.8) and the switch OFF model (3.9) and (3.10) can be 

abridged in state space form as shown below: 

onon VXA)(X  )(tt                                                                                                  (3.11) 
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offoff VXA)(X  )(tt                                                                                                 (3.12) 
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In order to ensure easy comparison of results, the parameters of the DC chopper-fed 

PMDC DC drive used in this thesis  are the same as those used in [7] : Ke=0.1356Vs/rad, 

Kt=0.1324 NM/A, R=3.5 Ω, L=36 mH, B=0.000564 Nm.rad
-1

.sec, Vin=100 V, T=4 msec, 

J=9.71×10
-4 

N.m.rad
-1

.sec
2
. 

The steady state speed and current when the duty cycle (d=0.5) and Load torque 

(TL=0.39 NM) are as shown in Fig.3.5 and Fig.3.6.  From the Figures, it could be seen 

that the steady state behaviour of the state variables is a periodic ripple of the same 

period as the external clock signal. This is referred to as a period-1 orbit. In chapter 4 it 

will be shown that as some system parameters (such as the supply voltage and controller 

gains of the closed loop PMDC drive) are being varied, the nominal period-1 orbit may 

lose stability and a new stable orbit of period-nT or a quasi-periodic orbit may appear. 

The study of the mechanism through which such instability (or bifurcation) occurs is a 

major contribution of this thesis.  
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                       Fig. 3. 5 Open loop speed response (d=0.5, TL=0.39 NM ) 

 

                        Fig. 3.6 Open loop current response (d=0.5, TL=0.39 NM) 

  

3.4   Series Connected DC Drives  

A SCDC motor is a dc motor in which the field winding is connected in series with the 

armature circuit (ia= if = i).  This motor can produce high torque at low speed and is thus 

widely used in traction applications.  The schematic diagram and equivalent circuit of 

the open loop SCDC drive are shown in Fig.3.7. The drive consists of the SCDC motor, 

an electronic switch (S), and free-wheeling diode (D). The motivation for investigation 

of the dynamics of the SCDC drive is due to the rich nonlinearity in the system [73, 74]. 
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         (a)  

 

              

                                                                                   (b) 

Fig. 3.7  Open loop SCDC drive (a) System schematic diagram (b) Equivalent circuit of 

the drive 

There are three key sources of nonlinearity in a SCDC motor drive. First the electrical 

torque is proportional to the square of the current (below field saturation) and secondly 

the back EMF is proportional to the product of current and speed [74]. The third source 

of nonlinearity is introduced by the power electronic switching in the SCDC drive. Due 

to these nonlinearities, the SCDC drive is prone to complex nonlinear dynamical 

phenomena, namely bifurcation and chaos.  

The expression for the electrical torque and back-emf is similar to (3.4) and (3.6), but in 

a SCDC motor, the field flux ( ) is not constant and varies with the armature current 

(ia=if=i).  As the load increases, the current (i) will increase and so will the field flux.  
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Under very heavy load and high current, the field flux will saturate as shown in Fig. 3.8. 

But, under light load and low current, the motor will operate in the linear region of the 

saturation curve and the field flux will be expressed as a linear function of  current  [3] 

[74] as shown: 

iC                                                                                                                        (3.17) 

where C  is the constant of  proportionality. 

 

 

 

 

 

                            

                                 Fig. 3.8  Magnetic saturation curve of a SCDC motor 

Consequently, the electrical torque and back-emf will be expressed as: 

22 iKiCKiKT te                                                                                  (3.18) 

 iKiCKE eb                                                                                                              (3.19) 

Thus when the switch is ON and the diode is OFF the system behaviour will be 

described by the dynamic equations: 
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But when the switch is OFF and the diode conducts the system behaviour will be 

described by the equations:   

 
J

BTiK

dt

td Lt  


2)(  

                                                                               
(3.22)

 

 

 

Field Current (A) 

Flux (Wb) 



CHAPTER-3                                                           ELECTRICAL DRIVES FUNDAMENTALS 
   

44 
 

L

iKiR

dt

tdi e 


)(
                                                                                                 (3.23) 

where R=Ra+Rf 
(the sum of the resistances of the armature and field coils) and L=La+Lf  

(the sum of the inductances of the armature and field coils). The square term for the 

electrical torque (Kti
2
 ) and the product term for the back-emf (Keiω) make the SCDC 

drive inherently nonlinear. Assuming the state vector 
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switch ON and switch OFF equations can be abridged as shown below: 
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The investigation of the nonlinear bifurcation and chaotic phenomena of the SCDC 

drive is discussed in Chapter 7. 

3.5 Closed Loop Control Schemes for DC Drives 

Closed loop control of shaft speed (ω) and armature current (i) in DC drives is very 

important in most drives applications. The two commonly used control schemes are 

voltage mode control and current mode control [2]. Voltage mode control is designed 

for control of the shaft speed while current mode control is aimed at control of the 

rotational torque (Te) produced by the motor.  Also, the two control schemes can be 

combined to form what is commonly referred to as cascade or two loop control in which 

the inner feedback loop is for armature current (or torque) control while the outer 

feedback loop is for speed control. All closed loop control schemes involve the 

comparison of a reference state (speed or current) with the actual state obtained from 

sensors and then carrying out some compensation actions. The voltage mode control 

scheme is discussed in section 3.5.1 while the current mode control scheme is discussed 

in section 3.5.2. 
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3.5.1 Voltage Mode Control 

Voltage mode control is aimed at speed control of DC drives. Assuming that the load 

torque (TL) and friction constant (B) in the open loop PMDC drive are negligible then 

the steady state speed will be expressed as eavgeq KV /
 
where dVV inavg  . Thus to 

control the steady state speed )( eq  we need to control the average voltage applied to the 

armature by adjusting the PWM duty cycle (d ). This control strategy is described below 

using the DC chopper fed PMDC drive as an example system.  

A schematic diagram of a DC chopper fed PMDC drive operating under voltage mode 

control is shown in Fig.3.9. The system consists of three main subsystems: the PMDC 

motor , the power converter  (a dc chopper)  and the control electronics [7].  The dc 

chopper comprises a dc source, power switch (BJT, MOSFET, IGBT) and a free-

wheeling diode, while the control electronics comprise an operational amplifier (Op-

Amp), comparator and a signal generator. 

   

 

                                   Fig. 3.9  Voltage mode controlled DC drive. 

In this scheme, the output speed ω(t) in the form of an analogue voltage from a tacho-

generator is compared with the reference speed ωref to obtain the speed error signal

))()(( reftte   . The speed error is then multiplied by the gain of the operational 

amplifier to obtain the control signal ))(()( refcon tgtV   . The PWM signal is 

obtained by comparing a high frequency sawtooth signal Vramp(t) with the control signal. 

When the sawtooth signal is greater than the control signal, the PWM waveform goes 
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high, the switch closes and the diode is reverse biased. But when the sawtooth signal is 

lower than the control signal, the PWM signal goes low, the switch opens and the diode 

is forward biased. The PWM duty cycle (d) is varied continuously to ensure that the 

actual speed ω(t) tracks the reference speed ωref . The comparison of the sawtooth signal 

and the control signal to produce the PWM signal is shown in Fig. 3.10. 

 

 

 

  

 

 

  

 

 

 

 

 

                                          Fig. 3.10  PWM waveform generation  

3.5.2 Current Mode Control 

In applications where the DC motor is required to operate with a fixed torque regardless 

of the speed (for example in steel mill line tensioning) [2], current mode control is 

adopted. A schematic diagram of a current mode controlled DC drive is shown in        

Fig. 3.11. The reference current (Iref) is compared with the actual armature current (i) to 

obtain a signal to reset a latch that was previously set by an external clock signal of 

period (T). When the S–R latch is set by the clock pulse, the power switch (S) is closed 

and the diode (D) is reverse biased. The armature current rises until it reaches the 

reference current (Iref) causing the latch to be reset. When the latch is reset, the switch 

opens and the diode is forward biased. The armature current then decays through the 

diode. The switch will remain open until the arrival of the next clock pulse when it will 

close again and the cycle repeats. The interaction of the armature current, the reference 

current, and the external clock pulse is as shown in Fig. 3.12. 
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             Fig. 3.11  Current controlled DC drive 

 

 

 

 

 

 

           

 

 

 

Fig. 3.12 Armature current, reference current and the external clock   

pulse in a current controlled DC drive. 

 

In most practical applications, the current reference is provided by an outer speed 

control loop thereby forming what is referred to as cascade or two loop control. The 

inner current loop is always faster than the outer speed loop and the diagram of this 

arrangement is shown in Fig. 3.13. 
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                          Fig. 3.13  Two loop control of a DC drive   

 

3.6  Switched Reluctance Motor Drives 

The Switched Reluctance Motor (SRM) is a low cost electronically commutated motor 

with a very simple mechanical structure. It has windings in the stator but the rotor is 

made up of stacked steel laminations and does not have any windings or permanent 

magnets [75, 76]. Both the stator and rotor poles are salient and torque is produced due 

to the tendency of the rotor poles to move to a position where the reluctance of the 

energized phase will be minimum [77]. Conventionally, the stator windings are grouped 

into phases. Each phase is energized separately and is electrically separate from the 

adjacent phase. A phase is energized (stroked) when its inductance is rising and de-

energized when the inductance gets to its maximum value.  

Owing to its simple mechanical structure and advances in power electronic technology 

the SRM is now seen as a viable candidate for variable speed applications and much 

research has been conducted in this area in the last two decades [75, 76, 78-84]. 

Moreover, the fault tolerance incorporated in most SRM drives make them suitable for 

some of the most sensitive applications including aerospace. 

The mechanical simplicity of the machine is in sharp contrast to the complexity of its 

modelling and analysis caused by its inherent nonlinear characteristics. Such nonlinear 

systems are characterized  by complex dynamical phenomena including bifurcation, 

chaos, co-existing attractors and fractal basin boundaries [9, 71]. In this section the 
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basic characteristics of a SRM drive are discussed starting with its principles of 

operation in section 3.6.1 and the phase commutation logic in section 3.6.2. The 

different SRM drive operational modes are discussed in section 3.6.3. The information 

provided in this chapter will be useful in Chapter 5 where the complex nonlinear 

phenomena in a three-phase SRM drive are explored. 

3.6.1 Principles of Operation of a SRM  

As the name implies, the motion of a typical SRM (Fig.3.14) is produced as a result of 

the variable reluctance in the air gap between the stator and rotor poles [77, 80]. When 

current is applied to a phase winding, an mmf (Ni) is produced which in turn causes flux 

to flow through a magnetic path (the active phase poles, air gap and rotor structure). The 

expression for the mmf is: 

)( RiNmmf                                                              (3.26) 

where N is the number of turns in the phase winding, i  is the phase current,   is the 

phase flux and R(θ) is the reluctance of the magnetic flux path.  The reluctance (R) is a 

function of the rotor position (θ) due to the salient rotor and stator poles. The reluctance 

is maximum when the stator and rotor poles are unaligned (known as the unaligned 

position) and minimum when the stator and rotor poles are aligned.  In order to 

minimize the reluctance of the magnetic circuit created by the energized phase, the 

magnetized stator pole pulls the adjacent rotor pole to alignment leading to the 

production of a reluctance torque [80]. If magnetic saturation effects are negligible 

(usually under light load conditions), then the instantaneous electrical torque produced 

by each phase [77] can be expressed as: 





d

dL
iT

)(
5.0 2                                                                                                          (3.27) 

where 
)(

)(
2




R

N
L   is the inductance of the phase coil. The inductance is usually 

maximum at the aligned position (where the reluctance is minimum) and minimum at 

the unaligned position where the reluctance is maximum.  

A SRM drive consist of a switched reluctance motor, a power converter circuit (usually 

an asymmetric drive circuit) and the control electronics. A standard asymmetric drive 

power converter circuit used for 3-phase SRM control is shown in Fig. 3.15.  The circuit 

consist of six power electronic switches (BJT, MOSFET, IGBT) and six freewheeling 
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diodes. The phase coils are connected between two of the power switches thereby 

eliminating the possibility of shoot-through faults that usually occur when two switches 

on the same leg of the power converter are switched ON at the same time. 
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Fig. 3.14   Diagram of a 3-phase 12/8 SRM (2 stator poles pairs per 

phase) 
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                    Fig. 3.15 Asymmetric drive power converter circuit 

3.6.2   SRM Phase Commutation Strategy 

The phase activation and de-activation of a SRM is controlled by the commutation logic 

using the rotor position and the phase inductance cycle as a guide. Each phase is 

activated at (θ=θon) when its inductance begins to rise and deactivated at (θ= θoff) when 

the inductance reaches its’ maximum value. The inductance cycle of each phase 

corresponds to the rotor pole pitch (2π/Nr) and the inductance cycle of adjacent phases 

are separated by an angle (θs=2π/mNr) known as the phase separating angle. Thus if the 

inductance cycle of phase A starts at (θ= θ1), the inductance cycle of the adjacent phase 

will start at (θ= θ1+ θs) and the inductance cycle for the third phase will start at (θ= θ1+ 
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2θs). To keep the analysis simple, the conduction interval (θoff - θon ) or dwell angle of 

each phase is made to correspond with the phase separating angle.  The phase 

commutation sequence of the three-phases of an 12/8 SRM within one inductance cycle 

of 45 mechanical degrees (or 360 electrical degrees) is shown in Fig.3.16 (θon=5.5˚, θoff  

=20.5˚ and phase separating angle=15˚).  

 

Fig. 3.16  SRM Commutation Sequence (the 3 phases are stroked once in one 

inductance cycle of 45 mechanical degrees). 

 

3.6.3   SRM Drive Operational Modes 

The three main operational modes of SRM drive are the single pulse operation, soft 

chopping operation and hard chopping operation [77]. 

3.6.3.1   Single Pulse Operation 

The single pulse operational mode is usually employed in high speed SRM drive 

applications. In this mode, the upper and lower leg switches of the active phase are 

turned ON at the switch ON angle (θon) and OFF at the switch OFF angle (θoff ). This 

operational mode can be illustrated using phase1 of the SRM drive in Fig.3.15. At θ= 

θon, the two switches (Q1 and Q2) will be turned ON and +Vin will be applied across the 

phase coil terminals. The two diodes (D1 and D2) will be reverse biased and the phase 

current will rise. Then at the end of the conduction interval (θ=θoff), the two switches 

will be turned OFF and the two diodes will be forward biased. A negative voltage (-Vin) 

will be applied across the phase coil terminals and the phase current will decay to zero. 

Two different topological states can be identified in each phase (Table 3.2). Typical 

current and voltage waveforms for this mode of operation are shown in Fig.3.17. 
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                Table 3.2 Topological states for single pulse operation 

      System States                 
 

Q1 Q2 D1 D2    Vin 

         State1 1 1 0 0  +Vin 

         State2  0 0 1 1  -Vin 

 
                              

  

                        

  

                          

 

                         

                           

 

 

 

 

     Fig. 3.17 Phase1 voltage and current waveforms for single pulse operation  

 

3.6.3.2   Soft Chopping PWM Operation 

The Soft chopping technique is used to regulate the phase current (by regulating the 

average voltage applied across the phase coils) and is widely used in low speed SRM 

drive applications. In this mode, the lower leg switch of the active phase is left ON, 

while the upper switch is turned ON and OFF by applying a PWM signal of constant or 

variable duty ratio. In closed loop operation, this PWM signal may be generated by 

comparing a control signal (Vcon(t)) with a fixed frequency saw-tooth signal (Vramp(t)) as 

detailed in Chapter 5.  This operational mode can be illustrated (for a constant duty ratio 

PWM signal) using the asymmetric drive circuit shown in Fig.3.15. At θ= θon, the lower 

switch (Q2) is switched ON and a PWM signal of constant duty ratio will be applied to 

the upper switch (Q1). When the PWM signal is high, Q1 is turned ON and +Vin will be 

applied across the phase coil terminals. The two diodes (D1 and D2) will then be 

reverse biased and the phase current will rise. When the PWM signal is low, Q1 is 

turned OFF and the winding will be short-circuited through the lower leg switch Q2 and 

i1 

t 

-Vin 

+Vin 

t 
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t 

the diode D1. At the end of the conduction interval (θ= θoff), the two switches will be 

turned OFF and the two diodes will be forward biased. A negative voltage (Vin) will be 

applied across the phase coil terminals and the phase current will decay to zero.  Three 

different topological states can be identified in each phase (Table 3.3). Typical phase 

current and voltage waveforms for this mode of operation are shown in Fig.3.18. 

                         Table 3. 3 Topological states for soft chopping operation 

       System State                 
 

Q1 Q2 D1 D2 Vin 
         State1 1 1 0 0 +Vin 

         State2 0 1 1 0 0 

         State3 0 0 1 1 -Vin 

          

                             

 

                           

 

  

 

 

 

 

 

 

 

 Fig. 3.18 Phase1 voltage and current waveforms for soft-chopping  

operation 

 
3.6.3.3   Hard Chopping PWM Operation 

The hard chopping operational mode is similar to the soft chopping mode, but in this 

mode both the upper and lower leg switches are turned ON when the PWM signal is 

high and turned OFF when the PWM signal is low. Thus +Vin is applied when the PWM 

signal is high and Vin will be applied (as the two diodes conducts) when the PWM 

signal is low. The increased current and torque ripple are drawbacks of this mode of 

operation. The number of topological states for each phase is similar to the single pulse 
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mode of operation and typical phase current and voltage waveforms are shown in        

Fig. 3.19.                        

                    

 

 

                                     

 

 

 

                    

 

                         

                        

                                       

Fig. 3.19  Phase1 voltage and current waveforms for hard 

chopping   operation. 

3.7 Modelling Techniques for Nonlinear Analysis of Electrical Drives 

Similar to other SMPE based systems, electrical drives adopt different topological states 

(multiple subsystems) as the power electronic switches are turned ON and OFF.  The 

switch ON topology is often different from the switch OFF topology thereby making the 

system to be time varying and non-linear. Also due to the switching, the invariant set 

(steady state or constant solution of the system) is a periodic orbit rather than an 

equilibrium point. The common techniques for modelling the dynamic behaviour of  

SMPE based systems including electric drives are the state space average model         

[14, 16, 17, 19] and iterative mapping [20, 72]. 

3.7.1 State Space Average Model 

Assuming there is only one switching during the PWM cycle period (T), the steady state 

behaviour of most electrical drives in CCM could be described by a non-smooth, time 

varying dynamic equation of the form: 

t 

t 

i1 

-Vin 

+Vin 
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for      Xf

for      Xf

 
X

OFF

ON















TtdTt

dTtt

dt

td

)),((

0)),((
)(

                                                                    (3.28)  

where ))(( tXfON and ))(( tXfOFF are the vector fields that describes the trajectories of the 

state variables when the switch is turned ON and OFF, respectively, dT  is the switching 

instant, d is the duty cycle and T  is the PWM switching period. 

The time varying nature of the dynamic equation (3.28) makes the analysis of SMPE 

systems difficult. The state space average model (developed by R.D. Middlebrook [16]) 

is aimed at transforming the time varying system into a time invariant system thereby 

making analysis using conventional control theory tools (Nyquist plot, Bode plot, Root 

locus etc ) possible. The main idea is to discard the switching details of the system and 

retain only the average dynamics [18].  Using the model (3.28) as an example, the state 

space average model could be described by the equation: 

   ))(())((
)(

ttd
dt

td
XfXf 

X
OFFON                                                                  (3.29)  

where d is the fraction of the time the switch is turned ON or the fraction of time the 

vector field ))(( tXfON is active, and   is the fraction of time the switch is turned OFF, 

which is also the time interval the vector field ))(( tXfOFF  is active.  

d1                                                                                                                    (3.30) 

By substituting the expression for   in (3.29), the average model can be expressed as: 

   ))(()1())((
)(

tdtd
dt

td
XfXf 

X
OFFON 

                                                         

(3.31) 

To complete the derivation of the average model in closed loop drives applications, 

there is a need to obtain the expression that defines the duty cycle (d) as a nonlinear 

function of both the system state variables and the other parameters. The state space 

average modelling approach can be illustrated using the open-loop PMDC drive        

(Fig. 3.2) whose dynamic model can be expressed as: 

  

for      VXAXf

for      VXAXf

 
X

offoffOFF

ononON















TtdTtt

dTttt

dt

td

,)())((

0,)())((
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(3.32) 
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Based on the open loop PMDC drive dynamic model (3.32), the state space average 

model can be expressed as:  

   

offoffon

offoffonon

VVVAX           

VXAVXA 
X





)()(

)()1()(
)(

dt

tdtd
dt

td

                                          

(3.33) 

where AAA offon  as defined in (3.14).  onV
 
and

offV  have also been previously 

defined in (3.15) and (3.16), respectively. 

Using the state space average model for the open loop PMDC drive (3.33), the speed 

and current response when operating at a duty cycle (d=0.5) and a load torque of       

0.39 NM are shown in Fig. 3.20 and Fig. 3.21, respectively. 

 

              Fig. 3.20  Speed response using the average model  

 

                          Fig. 3.21  Armature current response using the average model 
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The steady state value of the average model response (Fig. 3.20 and Fig. 3.21) is 

actually the average value of the periodic ripple in the original system (Fig. 3.5 and Fig. 

3.6). The average model can be used to predict low frequency instabilities such as slow 

scale bifurcations but cannot predict fast-scale instabilities such as a period doubling 

bifurcation [18]. 

3.7.2 The Iterative Map Model 

The iterative map or Poincaré map model is commonly used to study the complex 

dynamics of SMPE based systems including electrical drives. The idea is to convert the 

continuous time system to a discrete time system and the differential equation to a 

difference equation or iterative map. The periodic orbit of the continuous time system 

will correspond to the fixed point of the map thereby making the analysis easier. The 

iterative map model is suitable for predicting both slow scale and fast-scale instabilities 

in the system. 

To derive the iterative map model of an electrical drive, the state variables will need to 

be sampled at a fixed time interval (T) corresponding to the period of the saw-tooth 

signal. The expression that relates the state at t= nT to the state at t= (n+1)T can then be 

obtained. The Poincaré map model of an electrical drive will be of the form: 

),( ndn1n XfX                                                                                                          (3.34) 

where 
nX is the state of the system at t=nT, 

1nX  is the state of the system at t= (n+1)T  

and nd is the duty cycle. Since we are concerned mostly with the steady state behaviour 

of the drive system, the Poincaré map that describes the behaviour at steady state will 

suffice. The equivalent iterative map to describe the behaviour of the open-loop PMDC 

drive is described below. The approach is to solve the dynamic equation (3.32) over the 

intervals ],0[ dTt  and ],[ TdTt  and thereafter stacking the solutions over one 

switching period. 

11 )(

),()(),()(

MdTK

dTdTdTTT
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dT



 

X         

VXX off 
                                                               (3.35) 
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By substituting (3.36) into (3.35), the solution at the end of the switching period can be 

expressed as: 

    Xf         

XX

 ,d

MMKKKT

))0((

)0()( 12121




                                                                                 (3.37) 

where
2121 ,,, MMKK are derived from equations (3.35) and (3.36) and 

)(
),( AB ttA

AB ett


 . Equation (3.37) is the iterative map or Poincaré map that relates the 

state at t=0 to the state at t=T and can be written in the form ),( ndn1n XfX  where dn 

is the duty cycle at the end of each PWM cycle. If the steady state behaviour is periodic, 

then the present state 
nX  will be equal to the state at the end of the clock cycle 

1nX 
and 

the fixed point (FP) of the map will be derived as: 

    X         

XX

n

n1n

 

MMKKK



 12121
                                                                                     (3.38) 

             

(]-IXX -1

FPn

 

MMKKK )[ 12121 
                                                                     (3.39) 

To complete the derivation of the Poincaré map in closed loop SMPE based systems, we 

need to compute the duty cycle dn, but the equation involved is usually nonlinear and  

transcendental [23] thereby making the derivation of the Poincaré map in closed form 

difficult.  

3.8 Summary 

In this chapter the fundamentals of electrical drive operation with emphasis on DC 

drives and SRM drives are discussed. The details covered include the operating 

principles, commutation strategies, mathematical models, and control schemes 

employed in electrical drive systems. The Chapter is concluded with an overview of the 

modelling techniques commonly used for the nonlinear analysis of electrical drives; 

state space average modelling and the iterative mapping approach. The state space 

average modelling technique is a much simpler approach but it is only useful in 

capturing slow scale instability, and connot detect fast-scale instabilities. The iterative 

map modelling technique is more complex but is capable of detecting both slow scale 

and fast-scale instabilities. In the next chapter the nonlinear phenomena that occur in a 

PMDC drive system will be analysed in detail. 
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CHAPTER 4 

Analysis of NONLINEAR PHENOMENA IN 

DC CHOPPER-FED PERMANENT MAGNET 

DC DRIVEs 

 

4.1 Introduction 

Switched mode power electronic based systems including electrical drives often exhibit 

complex, nonlinear behaviour. The nominal steady state behaviour of such systems is a 

periodic ripple with a mean value close to the reference state and the same period as the 

external clock. This operating regime is referred to as a period-1 operating mode, and 

the steady state trajectory in this operating mode is known as a period-1 orbit. As some 

system parameter (such as the supply voltage or controller gains) is being varied, this 

nominal orbit loses stability, and another attracting orbit of period-nT (subharmonics) or 

a quasiperiodic orbit emerges. This qualitative change in the steady state trajectory of 

the system under parameter variation (also known as bifurcation) is typical of all 

nonlinear systems, and was discussed in Chapter 2. Further variation of the parameter 

leads to the birth of an aperiodic or chaotic orbit.   

In this Chapter, the nonlinear phenomena in DC chopper-fed PMDC drives employing 

simple proportional control and the more practical proportional integral (PI) control will 

be analysed. Apart from the period doubling (or fast-scale bifurcation) that was 

reported by Chau et al. [7, 8] when the proportional controller was employed, the 

phenomena of co-existing attractors and fractal basin boundary at some parameter 

values are observed and reported in this thesis for the first time in this simple 

deterministic system. Also, when employing a PI controller, a Neimark-Sacker (or slow 

scale bifurcation) was observed and experimentally validated. The analysis and 

experimental validation of the Neimark-Sacker bifurcation in a PI controlled PMDC 

drive which is presently absent from literature is one of the major contributions of this 

thesis. The first report of Neimark-Sacker bifurcation in DC drive was by Tse et. al. [3] 

but this was neither analysed nor experimentally validated. 
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Similar to other SMPE systems such as DC-DC converters, the analysis of the nonlinear 

phenomena in PMDC drives will involve the stability analysis of a limit cycle or 

periodic orbit rather than an equilibrium point, hence its complexity. The most common 

technique for performing the stability analysis of a limit cycle is the Poincaré map or 

iterative map approach [20, 30, 72]. But, as was discussed in Chapter 2 and Chapter 3, 

the iterative map will be difficult to derive in closed form in some power electronic 

systems (including electrical drives) due to the transcendental nature of the equations 

involved. Also, the iterative map approach is very complicated when applied to higher 

order drives such as the SRM drives. In this project, an alternative technique for 

stability analysis of the periodic orbit will be employed. This technique (also referred to 

as Monodromy matrix approach in some literature) is based on Filippov’s method of 

differential inclusion [22] and will achieve the same objective as the Poincaré map 

technique, but in a much more straightforward way. It has been successfully employed 

in analysing stick-slip oscillations in mechanical systems [65], and subharmonics 

oscillations in DC-DC converters [23, 24, 66]. This represents its first application in an 

electrical drive system. The key idea is to obtain the state transition matrix (STM) 

around the nominal orbit (known as the Monodromy matrix) and evaluate its 

eigenvalues known as Floquet multipliers. The nominal orbit is stable if the absolute 

values of the Floquet multipliers is within the unit circle and unstable otherwise. The 

Monodromy matrix and its eigenvalues can be used to predict slow scale and fast-scale 

instabilities that occur in electrical drive systems. 

This chapter is organized as follows: in section 4.2, nonlinear phenomena in DC 

chopper-fed PMDC drives operating under proportional control is investigated. The 

fast-scale bifurcation phenomenon in the drive will be initially investigated using 

numerical simulations and will be validated by the stability analysis of the nominal 

period-1 orbit of the drive using the Monodromy matrix approach.  Also, the occurrence 

of co-existing attractors and fractal basin boundaries at some system parameter values 

are investigated both numerically and analytically.  In section 4.3, the nonlinear 

phenomena in a more practical PI controlled PMDC drive is analyzed (using both the 

Monodromy matrix and state space averaging technique) and experimentally validated. 

Section 4.4 is the chapter summary. 
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4.2  Nonlinear Analysis of  DC Chopper Fed PMDC Drives Employing 

the Proportional Controller 

 

4.2.1  System Overview. 

The schematic diagram of DC-chopper fed voltage mode controlled PMDC drive 

employing the proportional controller was earlier shown in Fig. 3.9 but will be repeated 

in Fig. 4.1 for easy reference. The system consists of three main components namely the 

PMDC motor, the power converter (a dc chopper) and the control electronics. The shaft 

speed ω(t) is controlled by control of the average voltage at the armature terminals via 

pulse width modulation (PWM). Under CCM, the system will alternate between two 

circuit topologies (detailed in Chapter 3) at steady state, depending on the relative 

magnitudes of the control signal Vcon(t) and the sawtooth signal Vramp(t). 

                      
Fig. 4.1  Schematic diagram of voltage mode controlled DC chopper-fed PMDC drive. 

When the sawtooth signal is greater than the control signal, the PWM output goes high, 

the switch (S) closes, the diode (D) opens (is reverse biased) and the system model will 

be described by the equation: 

onon VXA
X

 )(
)(

t
dt

td
                                                                                                 

(4.1)                                                                                            

But when the sawtooth signal is lower than  the control signal, the PWM output goes 

low, the switch (S) opens, the diode (D) conducts (becomes forward biased) and the 

system model will be described by the equation:                       
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offoff VXA
X

 )(
)(

t
dt

td
                                                                                               

(4.2)
 

For the purpose of nonlinear analysis equations (4.1) and (4.2) can be combined leading 

to the equation below: 
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offoffOFF
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tVtVtt

tVtVtt

dt

td

rampcon
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(4.3) 

where ))(( tXfOFF
is the vector field before the switching manifold, ))(( tXfON

is the 

vector field after the switching manifold and    TT
txtxtitt )()()()( 21       )X(   is the 

state vector.  

))(())(()( 1 refrefcon txKptKptV  
                                                          

(4.4)
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VV
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t
VVVtV DLLULramp 

                                                
(4.5) 

where VL is the lower voltage of the sawtooth signal, VU 
is the upper voltage of the 

sawtooth signal, (VD = VU -VL), and T  is the PWM period. 
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4.2.2  Dynamic Behaviour of  DC Chopper-fed PMDC Drives 

The nominal steady state behaviour of a DC chopper-fed PMDC drive is DC waveforms 

with periodic ripple at the same frequency as the PWM signal (Figs. 4.2 and 4.3). As 

some system parameters such as the proportional gain (Kp) or supply voltage (Vin) are 

being varied, this nominal orbit (also known as period-1 orbit)  loses stability via a 

period doubling or fast-scale bifurcation [7] and a new orbit whose period is double the 

period of the original orbit emerges (Figs. 4.4 and 4.5). Further variation of the system 

parameter leads to period doubling bifurcation cascades and chaos (Figs. 4.6 and 4.7). 

In order to confirm the occurrence of chaos, the system response to slight  variation in 

the initial condition was tested, and the result (Fig. 4.8) indicates that the steady state 

behaviour depends on the initial condition, thus satisfying the property of a chaotic 
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system [9]. Also the chaotic phase portrait in Fig. 4.7 indicates that the occurrence of 

chaos does not imply that the steady state trajectory is unbounded, hence the term 

‘strange attractor’ [9]. The bifurcation diagram of the system as the proportional gain is 

being varied is shown in Fig. 4.9, while the bifurcation diagram as the supply voltage is 

being varied is shown in Fig. 4.10. The fixed parameters of the system are: 

Kt=0.1324NM/A,L=36mH, R=3.5Ω, B=0.000564Nm.rad
-1

.sec, Ke=0.1356Vs/rad,T=4ms, 

J=9.71×10
-4

N.m.rad
-1

.sec
2
.       

 

Fig. 4.2 Nominal period-1 current and speed trajectory in time domain;                       

Kp=1.2 , Vin=100 V. 

 

                                                 Fig. 4.3 Period-1 phase portrait.  
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          Fig. 4.4  Period-2 current and speed trajectory at Kp=2.4. 

                                                                    

 

                   Fig. 4.5 Period-2 phase portrait.  
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(b) 

                                                    

 

         Fig. 4.6  Chaotic current and speed trajectory at Kp=3.2.  

 

                                     Fig. 4.7  Chaotic phase portrait 
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Fig. 4.8 Results of the sensitivity to initial conditions test at Kp=3.2 showing the 

divergence of the speed trajectories when ω(0)=0.55Rad/s and i(0)=0.55A (blue) 

and when  ω(0)=0.56 Rad/s and i(0)=0.56 A (red).  

 

Fig. 4.9  Bifurcation diagram showing speed as the proportional gain is varied;   

Vin =100 V. 
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Fig. 4.10 Bifurcation diagram showing speed as the supply voltage is varied; 

Kp=2. 

 

The bifurcation diagrams (Fig. 4.9 and Fig. 4.10) summarised the steady instability that 

occurs in DC Chopper-fed PMDC drives as the proportional gain or supply voltage are 

varied. The diagrams were obtained by varying the system’s bifurcation parameter over 

some interval (1.1-5 for the proportional gain and 40V-160V for the supply voltage), 

and sampling the states at a discrete interval (T), corresponding to the period of the 

PWM signal. The steady state samples are then stored and plotted against the 

bifurcation parameter.   

As the proportional gain (Kp) is varied (Fig. 4.9), the system operates at nominal 

period-1 orbit for Kp[1.1, 2.34] and then loses stability via a period doubling 

bifurcation, leading to the birth of a period-2 attractor. From Kp = 2.34 to Kp = 2.8, the 

period-2 attractor is the only attracting set in the system. As Kp is varied further, the 

system undergoes period doubling bifurcation cascades leading to the birth of the 

chaotic attractor. At Kp=3.5, an intermittent period-3 window appeared which also 

undergoes period doubling route to chaos as the gain is varied further.   

Similarly, as the supply voltage is varied (Fig. 4.10) it could be seen that the system 

operates at nominal period-1 behaviour for Vin[40V,111.83V], but at Vin =111.83V this 

nominal orbit loses stability and a period-2 orbit emerges. The period-2 orbit remains 

stable (attracts trajectories of initial points) until Vin =123.5V when it lost stability and 

begins to repel. For Vin[125V,160V], the system behaviour is aperiodic or chaotic and 

will be difficult to predict in the long term.                          
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4.2.3  Stability Analysis of the Period-1 orbit using the Monodromy Matrix 

Approach 

To analyze the fast-scale bifurcation in a DC chopper-fed PMDC drive employing the 

proportional controller, we have to perform a stability analysis of the period-1 orbit of 

the drive. In this thesis, the Monodromy matrix approach (detailed in Chapter2) will be 

employed in the analysis. The period-1 orbit of a DC Chopper-fed PMDC drive is 

shown in Fig. 4.3 but is repeated here (Fig. 4.11) for convenience, while a typical 

interaction of the control signal and the ramp signal for one PWM cycle is shown in Fig. 

4.12. To analyze the stability of the orbit we need to study the system steady state 

dynamics for t[0,T] where T is the period of the PWM cycle. 

 

               Fig. 4.11 Period-1 orbit of a DC Chopper-fed PMDC drive  

From Figure 4.11, the state transition matrix (STM) over a complete cycle of the orbit 

(the so called Monodromy matrix) is expressed as: 

)0,(),()0,( 12   ttTTM SS
                                                      (4.6) 

where ),( AB tt  is the STM from t=tA to t=tB and is expressed as )(
),( AB ttA

AB ett


 , S1 

is the Saltation matrix that govern the transition of the trajectory from the switch OFF 

(SOFF) region of the state space to the switch ON region (SON), and S2 is the Saltation 

matrix that govern the transition from region SON to region SOFF, 
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VL 

VU 

TTdt  )1( is the switching instant and
T

T
d ON . Consequently, the 

Monodromy matrix will be expressed as: 

   
 

 AttTA
eeTM 1

)(

2)0,( SS
                                                              (4.7) 

where the Saltation matrices  S1, S2 and the switching instant )( t are the only unknowns. 

 

 

 

                      

 

 

               

 

 

           

 

  

Fig. 4.12  Interaction of the control signal and the ramp signal for one PWM 

cycle. 

 

As detailed in Chapter 2 and in [23, 65, 66] the Saltation matrix can be expressed as: 
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th ))((
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X
fn

nff
IS

                                                                      

(4.8)

 

where h defines the location of  the switching hypersurface, n is the normal vector to the 

hypersurface, f is the vector field before the switching instant and is given by  

)),((lim tt
tt

Xf 
, f is the vector field after the switching instant and is given by 

)),((lim tt
tt

Xf 
, and I is an identity matrix of the same order with the system. The 

Time 

Vramp(t) 

Vcon(t) 

t=0  t=t∑ t=T 
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Time 
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Saltation matrices for the DC chopper-fed PMDC drive can be derived following the 

procedure described below. 

Assuming the initial state vector of the system is X(0) (Fig.4.11), then for t[0, t∑]  (Fig. 

4.12) Vcon(t) is greater than Vramp(t), the PWM output is low, the switch is OFF and the 

system dynamics is described by offoffOFF VXAXfX  )())(()( ttt .  

Similarly, for t[t∑, T], Vcon(t) is less than Vramp(t), the PWM output is high, the switch 

is ON and the system dynamics is described by ononON VXAXfX  )())(()( ttt ,
  
with 

the last value of the state vector X(t∑) serving as the initial state. 

At t= t∑, the trajectory crossed from the switch OFF region of the state space to the 

switch ON region and the switching hypersurface expression is given by: 

T

t
VVVtxKptVtVth LULreframpcon ))(())(()()())(( 1  X

                                          
(4.9) 

Since Vcon(t)= Vramp(t) at the switching instant (t= t∑), the hypersurface or switching 

equation is given by: 

0
)(

)())(( 1 


 
Kp

VVV
txth LUL

ref


X

                                                                  
(4.10) 

where TTdt  )1( . 

From (4.9), the partial derivative of the hypersurface expression with respect to time 

t

th



 ))((X
  and the normal (n) to the hypersurface can be expressed as: 

T

VV

t

th LU )())(( 




 X

                                                                                                  
(4.11) 
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0

Kp
                    (4.12)                  

and the transpose of the normal to the hypersurface (n
T
) is given by  ]0[    n KpT   

ononON VXAff   )(t         (4.13) 

offoffOFF VXAff   )(t                                                                                        (4.14) 
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Consequently the Saltation matrix (S1) is given by: 
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where the state vector at the switching instant X(t∑) is the only unknown and will be 

obtained by computing the initial state vector X(0) and the switching instant t∑. From 

Fig.4.11 we have: 
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By substituting (4.21) into (4.20) we get: 
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Consequently the initial state X(0) will be expressed as : 
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Equation (4.24) expresses the initial condition X(0) in terms of the switching instant 

TTdt  )1( . To obtain the value of the state vector at the switching instant 

X(t∑), the switching instant (t∑) and the initial state vector X(0) must be known. Thus 

the duty ratio  will need to be calculated. This can be achieved by making use of the 

hypersurface expression (4.10) and the expression for the state vector at the switching 

instant (4.21), giving the equation: 
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By substituting the expression for X(0) in equation (4.24) into equation (4.25) we have 

the expression (4.26) with the duty ratio   as the only unknown. This equation can be 

solved numerically for the duty ratio using the Newton-Raphson technique. 
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Once the duty ratio )( is known, the initial state vector X(0) will be easily evaluated 

from equation (4.24), and the state vector at the switching instant X(t∑) will be 

computed from equation (4.21). The Saltation matrix (S1) will then be evaluated by 

substituting X(t∑) into equation (4.18). 

The Saltation matrix S2 governs the transition from the region SON back to the region 

SOFF at the end of the switching cycle (t=T) as shown in Fig. 4.11. 
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(4.27) 

But because of the sudden discontinuity of the sawtooth signal at t=T,  




Ttt

th ))((X

and consequently 
















10

01

2S .  

By substituting the Saltation matrices (S1, S2) and the switching instant )( Tt   into 

equation (4.7), the Monodromy matrix can be evaluated. The stability of the nominal    

period-1 orbit depends on the eigenvalues of the Monodromy matrix (the so called 

Floquet multipliers). The nominal orbit will be stable if the absolute value of the 

Floquet multipliers is within the unit circle and unstable otherwise.  

The computed duty ratio ( ), initial state X(0), and the state vector at the switching 

instant X(t∑) as the proportional gain (Kp) is varied are shown in Table 4.1, while the 

computed Saltation matrix, Monodromy matrix, and Floquet multipliers are shown in 

Table 4.2. A plot of the proportional gain against the duty ratio is shown in Fig. 4.13, 

while the eigenvalue loci are shown in Fig. 4.14. 
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Table 4.1   Changes in duty ratio, the initial state, and the state vector at the switching 

instant as the proportional gain is varied 

 

From Table 4.1, it could be seen that as the proportional gain is changed from 2.33 to 

2.34 the duty ratio remains nearly constant. Consequently the product term 

 
 AttTA

ee
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in equation (4.7) does not change leading to the conclusion that the 

change in Monodromy matrix (Table 4.2) was mainly due to changes in the Saltation 

matrix as the system parameters are being varied. The sensitivity of the Saltation matrix 

to system parameter changes is the basis for the control of the fast-scale bifurcation and 

chaos that will be discussed in Chapter 6. 
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Table 4.2   Computed Saltation matrix and Monodromy matrix as the proportional gain 

is varied 

 

 

                               Fig. 4.13 Duty ratio against proportional gain 
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                          Fig. 4.14 Eigenvalue loci as the proportional gain is varied. 

 

The analytical results shown in Table 4.2 and the eigenvalue loci (Fig.4.14) indicate that 

the period-1 orbit loses stability when Kp=2.34 (as one of the Floquet multipliers moves 

out of the unit circle at this parameter value). This is in full agreement with the 

numerically obtained bifurcation diagram shown in Fig. 4.9. 

Also, when the proportional gain (Kp) is kept fixed at 2, and the supply voltage (Vin) is 

varied, the computed duty ratio, initial state, and the state vector at the switching instant 

are shown in Table 4.3, while the computed Saltation matrix, Monodromy matrix, and 

Floquet multiplier are shown in Table 4.4. The eigenvalue loci are shown in Fig. 4.15. 

The results in Table 4.4 and the eigenvalue loci in Fig. 4.15 indicate that the period-1 

orbit loses stability when Vin=111.83V in agreement with the numerically obtained 

bifurcation diagram in Fig.4.10. The system stability boundary indicating the stable 

(nominal period-1) and unstable (subharmonics) regions as the supply voltage and 

proportional gain are varied is shown in   Fig. 4.16.  
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Table 4.3  Changes in duty ratio, the initial state, and the state vector at the switching 

instant as the supply voltage is varied. 

  

 

         Fig. 4.15  Eigenvalue loci as the supply voltage is varied 
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Table 4.4  Computed Saltation matrix and Monodromy matrix as the supply voltage is 

varied. 

                                                                     

                             

                 Fig. 4.16  System stability boundary (supply voltage against proportional gain). 
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4.2.4  Co-existing Attractors and Fractal Basin Boundary in DC Chopper-fed 

PMDC Drives 

Apart from the period doubling route to chaos reported above, another form of 

complexity arises when two or more asymptotically stable periodic orbits or attracting 

sets co-exist as the system parameters are being varied. This is usually referred to as co-

existing attractors [62], and when this occurs, trajectories of the system selectively 

converge on either of the attracting sets, depending on the initial state of the system [62], 

[60]. In a DC Chopper-fed PMDC Drive employing the proportional controller, three 

different co-existing attracting sets (period-1, period-3 and period-4 attractors) were 

identified when the proportional gain parameter was set to 2. Trajectories of the initial 

points of the system selectively converge on any of the attracting sets (Table 4.5), thus 

making future prediction of system performance nearly impossible. The period-3 

attractor is born when the control signal skips one cycle of the ramp signal (Fig. 4.17) as 

a result of the change in the initial condition, while the period-4 attractor is born when 

the control signal skips two cycles of the ramp signal (Fig. 4.18). Efforts to isolate the 

basin of attractions of each of the attracting sets reveal the occurrence of a fractal 

phenomenon (Fig. 4.19). The basin of attraction of a given attractor is the set of initial 

conditions whose trajectories converge on the attractor. If co-existing attractors exist, 

the boundary demarcating the basins of the different attracting sets is referred to as 

separatrix. 

Table 4.5 Possible attracting sets when Kp=2, for ω(0)[90,92.5] rad/s and   

i(0)[2,4.5] A 

Initial Speed ω(0), Rad/s Initial Current i(0),A Attractor 

90 2 Period-1  

90.2 2.2 Period-4 

90.4 2.4 Period-1 

90.6 2.6 Period-4 

90.8 2.8 Period-3 

91 3 Period-3 

91.5 3.5 Period-1 

92 4 Period-1 

92.5 4.5 Period-3 
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                                                                                      (a)       

 

                   (b) 

Fig. 4.17  Period-3 behaviour (a) Control and ramp signals (b) Period-3 phase 

portrait; Kp=2, ω(0)=90.8 rad/s, i(0)=2.8 A. 
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      (a) 

 

       (b) 

Fig. 4.18 Period-4 behaviour (a) Control and ramp signal (b) Period-4 

phase portrait; Kp=2, ω(0)=90.2  rad/s, i(0)=2.2 A. 
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Fig. 4.19 Basin of attraction showing the co-existence of period-1(blue),  period-

3(red), and period-4 (black) attractors at Kp=2, for (ω(0)[90,94] rad/s and 

i(0)[2,4.1] A.  

From Table 4.5 and Fig. 4.19, it could be seen that the boundary of demarcation 

between the basin of attractions of the three attracting sets is not clear, hence the fractal 

phenomenon. The bifurcation diagram of the system showing the birth and death of the 

co-existing period-3 attractor is shown in Fig. 4.20. 

 

                  Fig. 4.20 Bifurcation diagram showing the birth and death of the period-3 

attractor as the proportional gain is being varied. 
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4.2.5 StabilityAnalysis of the Period-3 orbit using the Monodromy Matrix 

Approach 

In order to analytically ascertain the system parameter values at which the co-existing 

period-3 attractor loses its stability, we need to perform the stability analysis of the 

period-3 orbit of the drive. From Fig. 4.17b, the Monodromy matrix can be expressed as: 

)(

1

)(

2

)(

3

)3(

1112333

1133

)0,(),(),(),3()0,3(
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where S1, S2, and S3 are the Saltation matrices at the three switching instants Tt 11  , 

Tt  2  and TTt 33 2   respectively. 1 is the fraction of time the power switch will 

be OFF during the first PWM cycle and 3 is the fraction of time the switch will be OFF 

during the third PWM cycle. Since the switch is OFF throughout the second PMW cycle,

12  . S2 is an identity matrix as the partial derivative of the switching hypersurface 

with respect to time is infinity at t=T , while S1 and S3 are derived following the same 

procedure adopted during the analysis of the period-1 orbit.  
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To complete the derivation of the Saltation matrices (S1 and S3), the switching instants

)( 1t  and )( 3t , and the state vectors at the switching instants )( 1tX and )( 3tX are to be 

computed.  

From Fig. 4.17b, we have: 

11
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where the expression for a1,a2, a3,a4,b1, b2, b3, and b4 can be deduced directly from 

equations (4.31-4.34).  a1, a2, b1 and b2 are functions of the duty ratio (δ1), while a3, a4, 

b3 and b4 are functions of the duty ratio (δ3). Since the orbit is of period-3, X(3T)=X(0) 

and the initial state X(0) can be expressed as: 
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where the two duty ratios δ1 and δ3 are the only unknowns, and will be obtained using 

the switching conditions and the expressions for the state vector at the switching 

instants in (4.31) and (4.33).  
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From Fig. 4.17a, the first switching occurs at t=t∑1 when the control signal Vcon(t) 

intercepts the ramp signal (Vcon(t∑1)= Vramp(t∑1)), while the third switching occurs at       

t= t∑3 (Vcon(t∑3)= Vramp(t∑3)). Consequently, we have: 
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Using the expression for the state vector at the switching instants in (4.31) and (4.33) 

we have: 
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By substituting the expression for X(0) (equation 4.35) into equations (4.38) and (4.39) 

we will have two equations with the two duty ratios (δ1 and δ3) as unknowns. Equations 

(4.38) and (4.39) can be solved using the Newton-Raphson technique to obtain the two 

duty ratios. Once the two duty ratios are known, the two switching instants (t∑1 and t∑3), 

the state vector at the switching instants (X(t∑1) and X(t∑3)), and the Saltation matrices  

(S1 and S3) can be evaluated. The Monodromy matrix for the period-3 orbit (4.28) will 

then be obtained.  

The computed Saltation matrices, Monodromy matrix and Floquet multipliers as the 

proportional gain is varied are shown in Table 4.6, while the eigenvalue loci are shown 

in Fig. 4.21. From the tabulated result and the eigenvalue loci, it could be seen that the 

co-existing period-3 attractor loses stability when the proportional gain is set to 2.09, 

which is in agreement with the bifurcation diagram of the system (Fig. 4.20) obtained 

through numerical simulation. 
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Table 4.6  Monodromy matrix and Floquet multipliers showing the gain 

parameter value at which the co-existing period-3 orbit loses stability. 

 

 

                                    Fig. 4.21 Eigenvalue loci for the period-3 orbit. 
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4.3  Nonlinear Analysis of  DC Chopper Fed PMDC Drives Employing   

the Proportional Integral Controller 

 

The period doubling bifurcation route to chaos in DC chopper-fed PMDC drives 

employing the proportional controller was investigated in the last section using both 

numerical simulation and analytical techniques. In this section, the nonlinear analysis is 

extended to DC chopper-fed PMDC drives employing a more practical PI controller. 

Initial numerical simulations by Dong Dai et al. [12] confirmed the occurrence of a 

slow-scale (or Neimark-Sacker) bifurcation in a PI controlled PMDC drive, but the 

observation was neither analyzed nor experimentally validated. The purpose of this 

section is to analyze and experimentally validate for the first time the occurrence of a 

Neimark-Sacker bifurcation in a PMDC drive employing the PI controller. Both the 

Monodromy matrix approach and the state space averaging technique will be applied in 

the analysis. 

4.3.1   System Overview 

A schematic diagram of the DC chopper-fed PMDC drive operating with a proportional 

integral (PI) controller is shown in Fig. 4.22. The system is composed of three main 

components namely a permanent magnet brushed DC (PMDC) motor, power converter 

unit (DC chopper), and PI compensation network. The tacho-generator produces a 

voltage proportional to the actual speed, which is compared with the reference speed (an 

analog voltage from the potentiometer) to obtain an error signal. The error signal is used 

by the controller to produce a control voltage Vcon(t) that is compared with a 20kHz 

sawtooth signal Vramp(t) to produce the PWM signal u(t).  

The PWM signal will be high when the control signal is greater than the sawtooth signal 

and will be low otherwise. The power switch (S) and the freewheeling diode (D) operate 

in a cyclic and complementary manner depending on the PWM signal. When the PWM 

signal is high, the switch turns ON, and the diode will be reverse biased (OFF). But 

when the PWM signal is low, the switch turns OFF, and the diode will be forward 

biased (ON), thus providing a return path for the decaying armature current.   
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              Fig. 4.22 DC chopper-fed PMDC drive employing the PI controller 

Based on the condition of the switch (S) and the diode (D), the system is modelled by a 

3rd order piecewise-affine set of equations as shown: 
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where u(t) is the PWM signal whose value is 1 when the switch is ON, and 0 when the 

switch is OFF. The 3
rd

 state variable vi(t) is due to the integrator in the PI controller loop. 

For the sake of compact notation, the mathematical model of the PI controlled PMDC 

drive can be expressed as: 
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 while Vrampt(t) has been previously defined in (4.5).  
                            

 

4.3.2  System Dynamic Behaviour    

The nominal behaviour of a DC chopper-fed PMDC drive employing the PI controller is 

a period-1 orbit (Figs. 4.23 to 4.25). But as the integral gain (Ki) or the supply 

voltage(Vin) is varied, the Period-1 orbit loses stability via Neimark-Sacker or Hopf 

bifurcation [13-15, 85, 86] and a quasiperiodic orbit or the so called torus is born. While 

the supply voltage (Vin) is fixed at 24V and the integral gain is varied, the Neimark-

Sacker bifurcation occurs at Ki=1612 (Figs. 4.26 to 4.28). Further variation of the 

integral gain causes the system to make a transition from CCM to DCM (Figs. 4.29 to 

4.31). The bifurcation diagrams of the system as the integral gain is varied are shown in 

Figs. 4.32 and 4.33. Similarly, with the integral gain fixed at 1580 while varying the 

supply voltage, the Neimark-Sacker bifurcation occured at Vin=57V (Fig. 4.34 and 

4.35). Further variation of the supply voltage caused the system to make a transition 

from CCM to DCM (Fig. 4.36 and 4.37). The bifurcation diagrams of the system as the 

supply voltage is varied are shown in Figs. 4.38 and 4.39.  

It is also observed that the onset of the Neimark sacker bifurcation depends on the 

electrical time constant (Te=L/R) of the PMDC motor. The higher the electrical time 

constant of the PMDC motor (high inductance and low resistance) the earlier the onset 

of the Neimark-Sacker bifurcation, as shown in Fig. 4.40. The figure confirms that 

Neimark-Sacker bifurcation occurs at low value of the integral gain if the electrical time 

constant of the PMDC motor is increased. The parameters of the system are: R=7.8 Ω, 

L=5mH, TL=0.087NM, Ke=0.0984Vs/rad, Kt=0.09NM/A, ref=100rad/s, 

B=0.000015Nm/rad/sec, J=4.8400e-005Nm/rad/sec
2
, fs=20kHz, T=0.05ms, VL=0, 

VU=8V, and Kp=1.   
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Fig. 4. 23  Period-1 speed and current trajectory; Ki=1000, Vin=24V, and Te=0.641ms. 

 

 

Fig. 4.24 Interaction of the control signal and the ramp signal; period-1 

operating mode.                                                                       
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          Fig. 4.25  Period-1 phase portrait.  

 

 

                 Fig. 4.26  Quasi-periodic current trajectory (CCM) at Ki=1612. 
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Fig. 4. 27  Interaction of control and ramp signal during quasi-periodic operation at 

Ki=1612. 
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Fig. 4.28  Phase portrait of speed against current and integrator output 

(Torus) at Ki=1612.   
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                     Fig. 4. 29  Transition from CCM to DCM at Ki=1640.   

 

 

Fig. 4. 30  Interaction of control and ramp signal during quasi-periodic 

operation (DCM). 
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                   Fig. 4.31 Phase portrait of armature current against speed in DCM.  

 

 

Fig. 4.32 Bifurcation diagram of speed against the integral gain      

(Vin=24 V). 
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Fig. 4.33  Speed and current dynamics as the integral gain is varied 

(Vin=24V). 

 

                          Fig. 4. 34  Quasi-periodic current at Vin=57 V (Ki=1580). 
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         Fig. 4. 35  Phase portrait of armature current against speed at Vin=57 V (Torus). 

 

 

Fig. 4. 36 Transition from CCM to DCM at Vin=65 V. 
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Fig. 4. 37 Phase portrait of armature current against speed (DCM) as the supply     

voltage is varied.    

  

 

       Fig. 4.38 Bifurcation diagram of speed against supply voltage (Ki=1580). 
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Fig. 4.39  Speed and current dynamics as the supply voltage is being varied 

(Ki=1580). 

              Fig. 4.40  Quasiperiodic current at Ki=56.2, R=3 , L=55 mH, Te=18.33 ms.  
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controller, a digital controller was adopted due to its flexibility and the built-in 

peripherals that are suitable for motor speed control. Also the qualitative behaviour of 

the system under parameter variation (which is the key emphasis of this research) is the 

same for both analog and discrete PI implementation. 

 

                                 Fig. 4.41  The experimental set up.  

The power converter and the DSC were mounted on a flexible dsPIC30F3010 

development board (Fig. 4.43) which can be easily configured as a dc chopper, a full 

bridge converter or a 3 phase inverter (depending on the application). The PI control 

algorithm was implemented in C language, and the executable program was 

downloaded to the DSC via a Microchip ICD2 debugger device. Details of the 

experimental setup are discussed in appendix A. The measured period-1 behaviour of 

the system is shown in Figs. 4.44 to 4.45, while the measured quasi-periodic behaviour 

as the integral gain and supply voltage are varied is shown in Figs. 4.46 to 4.55. 

                          

 

                                          Fig. 4.42 PMDC motor and DC generator unit 
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  Fig. 4.43 Flexible DsPIC30F3010 development board.    

        

 

Fig. 4.44  Measured period-1 current and speed at Kp=328, Ki= 3933,          

and Vin=24 V (ωref =100 rad/s). 
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                    Fig.4. 45 Measured PWM output for period-1 operation.     

                                                    

 

Fig. 4.46  Measured quasi-periodic current (CCM) at Ki=9175 

corresponding to Fig. 4.26. 
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Fig. 4. 47  Measured PWM output during quasi-periodic operation (CCM) 

corresponding to Fig. 4.27. 

           

 

Fig. 4.48  Measured phase portrait of armature current against speed (or the so 

called  Torus) at Ki=9175 corresponding to Fig. 4.28. 
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Fig. 4.49  Measured quasi-periodic current (DCM) at Ki=9831 corresponding to 

Fig. 4.29      

      

 

Fig. 4.50  Measured PWM output during quasi-periodic operation in DCM 

(corresponding to Fig. 4.30). 
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Fig. 4.51 Measured quasi-periodic phase portrait in DCM (Torus) at Ki=9831 

corresponding to Fig. 4.31. 

      

 

Fig. 4. 52 Measured quasi-periodic current (CCM) as Vin is increased to 56.07 V 

while Ki is fixed at 3933 (corresponds to Fig. 4.34). 

 

Fig. 4.53 Measured quasi-periodic phase portrait at Vin =56.07 V    

(corresponding to Fig. 4.35). 
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Fig. 4. 54 Measured quasi-periodic current (DCM) at Vin=61.5V  

(corresponding to Fig. 4.36). 

 

 

Fig. 4. 55 Measured quasi-periodic orbit (DCM) at Vin=61.5V          

(corresponding to Fig. 4.37).  
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to 4.51) are in agreement with the numerical results presented in Figs. 4.26-4.31. 

Similarly, the measured quasi-periodic orbits as the supply voltage is varied (Figs. 4.52 

to 4.55) correspond well with the numerical results (Figs. 4.34-4.37).                                                                                   

4.3.4    Analysis of the Neimark-Sacker Bifurcation 

In this section, the occurrence of the Neimark-Sacker bifurcation will be analysed using 

both the Monodromy matrix approach and the state space averaging technique. The 

Monodromy matrix approach can detect both fast-scale and slow-scale instabilities, 

while the state space averaging technique (see Chapter3 for details) can detect only 

slow-scale instabilities such as a Neimark-Sacker bifurcation. 

4.3.4.1 Analysis of the Neimark-Sacker Bifurcation Using the Monodromy             

Matrix Approach 

To analyse the Neimark-Sacker bifurcation using the Monodromy matrix approach, we 

need to obtain the STM around the nominal period-1 orbit for t[0, T] and calculate its 

eigenvalues. A Neimark-Sacker bifurcation is said to occur when two of the eigenvalues 

of the system leave the unit circle at the same time. From Fig.4.25, the Monodromy 

matrix can be expressed as: 

)0,(),()0,(   ttTTM onoff S
                                                      (4.47) 

 where ),( AB tt  is the STM from t=tA to t=tB  and is expressed as 
)(

),( AB ttA

AB ett


 , S 

is the Saltation matrix  that govern the transition of the trajectory from the switch ON 

region of the state space to the switch OFF region, and Tdt  is the switching 

instant. Thus: 
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                                                                    (4.48)                                                              

where the Saltation matrice (S) and the switching instant )( t are the only unknowns. 

The Saltation matrix can be expressed as: 
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where h defines the location of  the switching hypersurface, n  is the normal vector to 

the hypersurface, 1f is the vector field before the switching instant, 2f  is the vector field 

after the switching instant, and I is an identity matrix of the same order of the system.  

1111 )()),((lim VXAXff   
ttt

tt                                                                       (4.50) 

2VXAXff   
)()),((lim 222 ttt

tt                                                                      (4.51) 

where A1, A2, V1, and V2 have been previously defined, and )( tX is the state vector at 

the switching instant. The transition from the first sub-system (switch ON state) to the 

second sub-system (switch OFF state) occurs when Vcon(t)=Vramp(t), and thus the 

switching hypersurface is expressed as: 

T

t
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                                                                                                      (4.54) 

Consequently to obtain the Saltation matrix (S) and the Monodromy matrix, the only 

unknown is the switching instant t∑, and this can be obtained following the same 

procedure outlined in section 4.2.3. The computed Saltation matrix, Monodromy matrix, 

and Floquet multipliers as the integral gain is varied are as shown in Table 4.7. From 

the Table it could be seen that the Neimark-Sacker bifurcation occurs at Ki=1612 which 

is in agreement with the bifurcation diagram of Fig. 4.32. 
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Table 4.7  Saltation matrix and Monodromy matrix as the integral gain is varied. 
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4.3.4.2  Analysis of the Neimark-Sacker Bifurcation Using the State Space Average 

Model 

To analyse the Neimark-Sacker bifurcation using the state space averaging technique 

[16], we need to obtain an average or time invariant equivalent model of the original 

time varying model of the system (equation 4.43). If the new model is linear time 

invariant then its stability can be deduced by finding the eigenvalue of the state matrix 

or by applying other tools such as root locus or the Routh stability criterion. The period-

T state space average model of the PI controlled PMDC drive is expressed as follows: 

221

21

21

VVVXA           

VXAVXA           

XfXf
X







dt

tdtd

tdtd
dt

td

)()(

))(()1())((

))(()1())((
)(

21                                              (4.55)                               

where (d ) is the fraction of time sub-system1 (switch ON state) is active, 1- d is the 

fraction of time sub-system 2 (switch OFF state) is active, )(tX is the period-T averaged 

state vector and A1=A2=A. The expressions for V1, V2, and the state matrix A have 

been previously defined. 

To complete the average model, we need to derive the expression for the duty cycle (d) 

using the switching condition Vcon(t)=Vramp(t) , where 

)())(()( 31 txKtxKptV irefcon   . 
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d




31)(
                                                                           (4.56) 

where VD =VU -VL. Thus, the duty cycle is a function of the state variables of the system. 

By substituting the expression for the duty cycle (d) in equation (4.55), the average 

model is expressed as: 
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(4.59) 

From (4.58), it could be seen that the state matrix ( Aavg) of the average model is a 

function of the integral gain (Ki), the proportional gain (Kp), and the supply voltage 

(Vin). Assuming Kp and Vin are kept constant, the response of the average model at 

Ki=1400 and Ki=1612 are as shown in Figs. 4.56 and 4.57, respectively. 

 

               Fig. 4. 56  Stable spiral point at Ki=1400, Kp=1, Vin=24 V. 
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 Fig. 4.57 Stable limit cycle (Torus) due to the Neimark-Sacker bifurcation at   

Ki=1612, Kp=1, Vin =24 V. 

The simulation results indicate the existence of a stable spiral point at Ki=1400, and a 

stable limit cycle due to the Neimark-Sacker bifurcation at Ki=1612, in agreement with 

the bifurcation diagram of Fig. 4.32. 

To analytically validate the occurrence of the Neimark-Sacker bifurcation using the 

average model, the eigenvalue of the state matrix (Aavg) will be computed as the system 

parameters (Ki, Vin, Kp) are being varied. As discussed in Chapter 2, a Neimark-Sacker 

bifurcation is said to occur if a stable spiral point loses stability and a stable limit cycle 

appears. The spiral point is stable (attracts) when the real part of all the eigenvalues of 

the state matrix is negative, and unstable when the real part suddenly becomes positive. 

Assuming Vin=24V, Kp=1, and the integral gain is varied, the computed eigenvalues of 

the state matrix are shown in Table 4.8, and the eigenvalue loci are shown in Fig. 4.58. 
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   Table 4.8  Eigenvalues of the state matrix as the integral gain is varied. 
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                Fig. 4. 58 Eigenvalue loci as the integral gain is varied from 100 to 1615. 
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From Table 4.8 and Fig. 4.58, it could be seen that the Neimark-Sacker bifurcation 

occurs at Ki=1612 as the real part of the complex conjugate eigenvalues is zero at that 

parameter value. At Ki=1613, the real part of the complex conjugate eigenvalues 

crosses to the positive side of the complex eigenvalue plane, indicating the occurrence 

of the Neimark-Sacker bifurcation.      

4.4 Summary 

In this chapter, the nonlinear phenomena in DC chopper-fed PMDC drive have been 

investigated. When the simple proportional controller was employed, the drive 

exhibited a period doubling bifurcation cascades route to chaos, as well as co-existing 

attractors with fractal basin boundaries. But when the proportional integral controller 

was employed, a slow scale instability or Neimark-Sacker bifurcation was observed. 

The Neimark-Sacker bifurcation was analysed (using both the Monodromy matrix and 

state space averaging techniques) and experimentally validated using a dsPIC30F3010 

DSC. The experimental results are in good agreement with the analytical and simulation 

results thus confirming the occurrence of Neimark-Sacker bifurcation in the PI 

controlled PMDC drive. In the next chapter, the nonlinear analysis will be extended to a 

switched reluctance drive which is an example of a piecewise nonlinear system. 
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CHAPTER 5 

ANALYSIS OF NONLINEAR PHENOMENA IN 

SWITCHED RELUCTANCE DRIVEs 

 

5.1  Introduction. 

In Chapter 4, nonlinear phenomena in a typical piecewise linear electrical drive, namely 

PMDC drives were analyzed. In this chapter, the nonlinear analysis is extended to a 

three-phase 12/8 switched reluctance drive (Fig. 5.1), which is an example of a 

piecewise nonlinear system.                                                                                                                                 

   

                                        

 

 

 

 

 

 

 

            Fig. 5.1 Architecture of the three-phase 12/8 SRM drive. 

The system consists of a conventional 12/8 SRM, asymmetric drive power converter 

circuit, speed controller and commutation logic circuits, and position sensor. θON is the 

phase switch ON angle, θOFF is the phase switch OFF angle, ωref is the reference 

speed ,θ is the actual shaft position, and four of the stator poles make one phase. In 

digital implementation, the speed controller and the commutation logic will be 

implemented within the microprocessor. The expanded view of the controller and power 

converter circuit is shown in Fig. 5.2.  
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  Fig. 5.2  Expanded view of the controller and power converter circuit 

The nominal behaviour of the system is a period-1 orbit, but this nominal orbit can lose 

stability via fast-scale or period doubling bifurcation as some system parameter such as 

the proportional gain is being varied, as initially reported in [47]. Further variation of 

the parameter leads to period doubling bifurcation cascades and chaos. In this Chapter, 

the Monodromy matrix approach will be applied in analysing the fast-scale bifurcation 

in the 3-phase, 12/8 SRM drive.  The complexity of the analysis is compounded by the 

fact that the SRM drive model consist of nonlinear vector fields, and thus the state 

transition matrix (STM) along the orbit will be computed by solving matrix differential 

equation (MDE), instead of the simple exponential matrix  used in piecewise linear 

systems such as PMDC drive and DC-DC converters.  

This chapter is structured as follows. In section 5.2, the operation of the 12/8 SRM drive 

will be described, while the system mathematical model is derived in section 5.3. The 

dynamic behaviour of the drive is discussed in section 5.4, and the fast-scale bifurcation 

is analysed in section 5.5 using the Monodromy matrix technique.  
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5.2    System Operation 

As shown in Fig.5.1, closed loop operation of the SRM drive relies on rotor position 

feedback. In this project, the soft-chopping SRM operational mode (see Chapter 3 for 

details) is considered. Once the actual rotor position is obtained from the position sensor, 

the commutation logic (detailed in Chapter3) will determine which SRM phase is to be 

activated, and the appropriate lower leg switch (Q2, Q4 or Q6) will be switched ON. 

The inputs to the commutation logic are the rotor position (θ), the phase switch ON 

angle (θon), and the phase switch OFF angle (θoff). While the commutation logic is 

running, the PWM generator will compare the ramp signal (Vramp(t)) and the control 

signal (Vcon(t)), to obtain the required PWM signal. When the ramp signal is greater 

than the control signal, the PWM output will be high, and the upper leg switches (Q1, 

Q3 or Q5) will be switched ON, but when the control signal is greater than the ramp 

signal, the PWM output will be low, and the upper leg switch will be switched OFF. To 

ensure that the ramp signal always starts from its lowest value at the beginning of the 

conduction interval θ[θon, θoff] of any given phase, the ramp signal is made to be a 

function of the angle (θ). The synchronization unit ensures that the PWM operation 

takes place only in the upper switch of the energized phase, while the other phases will 

be idle.  

For efficient operation of the drive, the switch ON angle (θon) corresponds to the angle 

when the phase inductance begins to rise, and the switch OFF angle (θoff) corresponds to 

the angle when the phase inductance gets to maximum. Each phase must be stroked 

(energized) once within one inductance cycle of 2π/Nr, where Nr is the number of rotor 

poles. The commutation sequence of the 12/8 SRM whose dynamic behavior is studied 

in this project was shown earlier in section 3.6.2, but repeated here (Fig.5.3) for 

convenience, for θon=5.5˚ and θoff =20.5˚. The possible topological states, during the 

drive operation, can be illustrated by considering only one phase of the drive.  

Assuming the shaft position θ=5.5˚= θon, the lower leg switch Q2 will be turned ON, 

and the diode (D2) will be reverse biased (OFF) (phase1 activated). Then, if the PWM 

signal is high, the upper leg switch Q1 will be switched ON, and diode (D1) will be 

reverse biased (OFF), thus causing +Vin to be applied at the phase coil terminal. But, if 

the PWM signal is low, Q1 will be turned OFF, and D1 will be forward biased 

(switched ON), thus causing 0V to be applied at the phase1 coil terminal. At θ=20.5˚= 

θoff, phase1 will be de-energized by switching OFF the upper and lower leg switches, 
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thus causing D1 and D2 to be forward biased, and  -Vin to be applied at the phase1 coil 

terminal. The phase1 switch OFF angle (θ=20.5˚) corresponds to the phase2 switch ON 

angle. The three possible topological states applicable to any of the energized phases 

due to the soft-chopping operation are shown in Table 5.1.  

 

Fig. 5.3 SRM commutation sequence for one inductance cycle of 45˚ 

mechanical. (θon=5.5˚=0.095rad, θoff  =20.5˚=0.3577rad and phase 

separating angle=15˚).   

 

Table 5.1 Possible topological states during the conduction                    

interval of any phase. 

System State Q1 Q2 D1 D2 Vin 

Vr amp > Vcon 1 1 0 0 +Vin 

Vr amp < Vcon 0 1 1 0 0 

Defluxing  0 0 1 1 -Vin 

 

5.3   System Mathematical Model 

The mathematical model of the SRM comprises the electromagnetic equations of the 

phase windings and the mechanical equations. Assuming that mutual inductance effects 

are ignored, the electromagnetic circuit created by any energized phase in an n-phase 

SRM can be described by [78, 80, 82] : 

                                                                                  

(5.1) 

where Vj  is the  voltage across the phase coil terminals, R is the electrical resistance of 

the phase coil, ij is the  phase current, λj is the phase flux linkage, and θ is the rotor 
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position. The flux linkage is a function of the phase current and inductance and is given 

by 

                                                                
(5.2)

                                                          
 

where N is the number of turns in the stator poles,   is the magnetic flux produced, and 

L(θ,ij) is the inductance of the phase coil. Since the phase flux linkage is a function of 

two independent variables, its derivative with time can be expressed as: 

                                            
(5.3) 

When operating under low speed and light load conditions, the magnetic saturation 

effect will be negligible and the inductance of the phase coil will be expressed as a 

function of the rotor position only. Consequently, the phase flux linkage will be 

expressed as a linear function of the phase current and the rotor position as shown 

below: 

                                                                                                       (5.4) 

The electromagnetic equation (5.1) will thus be expressed as: 

                                                                                         (5.5) 

where the term ijωdL(θ)/dθ is the back EMF produced at the phase coil terminals.
                          

 

The phase inductance profile (L(θ)) for the 12/8 SRM, based on the linear flux               

linkage model is a function of  the rotor position [47] and is as expressed below:
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(5.7)

                          

 where G is the slope of the rising portion of the inductance profile, Lmin is the minimum 

inductance, and Lmax is the maximum inductance. The angular interval 0<θ<θx is the 

unaligned position while the angular interval θy<θ<π/Nr is the aligned position. The 

inductance cycle of 12/8 SRM is deg).457583.0/2(  radNpi r
 Assuming θx=5.5, 

θy=20.5, Lmin=0.34mH, and G=7.8mH/rad, then the inductance profile for one phase of 

the 12/8 SRM is as shown in Fig.5.4. 

                          

                      

                            Fig. 5.4 Inductance profile for one phase of the 12/8 SRM. 

The mechanical equations of the system are: 

 
                                                                   (5.8)

   

 
                                           (5.9)

                  

where Te is the total electrical torque produced by all the phases, TL is the load torque, B 

is the friction coefficient, and J is the load inertia. Based on the linear flux linkage 

model, the expression for the electrical torque produced by each energized phase is:

  

  

                                                                                 (5.10) 

where W is the co-energy or the total energy under the magnetisation curve of each 

phase [77].
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(5.11)

  

Thus, the per phase torque will be given by 

                                                                                     
(5.12)

                 

Since the phase inductance is a piecewise linear function of the rotor position (5.6), the  

torque produced by each phase will also be a piecewise linear function of the rotor 

position as shown below. 

                                                              

(5.13)

 

This implies that the per phase torque is zero during the aligned and unaligned positions. 

To avoid zero starting torque most SRM drives usually employ a special start-up 

algorithm. The mechanical equation for the linear flux linkage model is thus: 

                                                                 
(5.14)

                 

where Te is the total torque produced by all the separate phases in an n-phase SRM 

expressed as [78] : 

                                                                         
(5.15)

                                                                       
 

where θs is the phase separating angle. Assuming the firing angles (θon and θoff) 

correspond with θx and θy, and the phase separating angle (θs) is equal to the dwell angle 

(θD=θoff – θon), then the torque produced by any energized phase during the dwell angle 

or conduction interval is given by 

                                                                                                             
(5.16)
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Within the period of maximum inductance, i.e. the aligned position (θ [θy, π/Nr]), the 

torque produced will be zero as dL/dθ is zero. If the phase current of the energized 

phase decays to zero within the period of maximum inductance, then the total torque 

produced at any instant is the same as the torque produced by the energized phase. Also, 

there will be no overlap among the different phase currents and the sum of all the phase 

currents (i = i1+ i2+ … in) at any instant will be same as the current in the activated 

phase [87]. As a result, the mathematical model for the SRM based on the three possible 

topological states during the conduction interval of any of the phases is expressed as 

                                                

(5.17)

  

 

 

where θ(t) is the shaft position, ω(t) is the angular speed, and i(t) is the sum of all phase 

currents at any instant t.  
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To express the system in a form suitable for the stability analysis, the system equation  

(5.17)  can be rearranged as 
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where TT txtxtxtitttX )]()()([)]()()([)( 321           is the state vector. 
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where C is an integer constant that determines the number of cycles of the ramp signal 

within the conduction interval

 

of each phase. 

 

5.4  System's Dynamic Behaviour 

Under soft-chopping operation, the nominal steady state dynamics of the state variables 

is a period-1 orbit (Figs. 5.5 to 5.7). But as some system parameter such as the 

proportional gain (g) is varied, the nominal orbit loses stability via a period doubling or 

fast-scale bifurcation leading to the birth of a new attractor whose period is double the 

period of original orbit (Figs. 5.8 to 5.10). Further variation of the system parameter 

leads to period doubling bifurcation cascades and chaos (Fig. 5.11 to 5.13). The 

bifurcation diagram of the system as the proportional gain is varied is shown in Fig.5.14, 

and the system parameters used in the simulation are shown in Table 5.2. 

 

Fig. 5.5  Period-1 speed trajectory at g=10. 
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Fig. 5. 6  Sum of all phase current (i=i1+i2+i3) against time during                        

period-1 operation.      

      
             

Fig. 5. 7 Trajectory of speed against the sum of all phase current during 

one inductance cycle of the drive ])
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         Fig. 5.8  Period-2 speed trajectory of  12/8 SRM at g=15. 

 

   Fig. 5. 9 Sum of all the phase current against time during period-2 operation. 

                                      

   Fig. 5.10  Period-2 phase portrait.  

0.36 0.37 0.38 0.39 0.4
100.1

100.15

100.2

100.25

100.3

Time (s)

S
pe

ed
 (

ra
d/

s)

0.37 0.375 0.38 0.385 0.39 0.395 0.4
0

10

20

30

40

Time (s)

C
ur

re
nt

 (
A

)

100.1 100.15 100.2 100.25 100.3
0

10

20

30

40

Speed (rad/s)

C
u
rr

e
n

t 
(A

)



CHAPTER-5         NONLINEAR PHENOMENA IN SWITCHED RELUCTANCE DRIVES 
   

126 
 

 

                                Fig. 5.11 Chaotic speed trajectory of 12/8 SRM at g=20.                                                                                    

 

      Fig. 5.12  Chaotic current trajectory. 

 

   Fig.5.13   Chaotic phase portrait. 
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                     (a)  

 

         (b)        

Fig. 5.14 Bifurcation diagrams of the system (a) Speed against 

proportional gain (b) Sum of all phase current against proportional gain.      
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Table 5.2 SRM drive parameters. 

Vin(V) 100 

R(Ω) 0.1 

Lmin(mH) 0.34 

ωref(rad/s) 100 

G(mH/rad) 7.8 

TL(NM)  1 

J(kgm
2
) 0.025 

B(Nm/rads
-1

) 0.0005 

Ns 12 

Nr 8 

θon(degree) 5.5 

θoff (degree) 20.5 

θT(degree) 7.5 

VU(V) 4 

VL(V) 0 

C 2 

 

                     

5.5 Analysis of the Fast-Scale Bifurcation 

To analyse the fast-scale bifurcation in the 12/8 SRM drive, we have to perform the 

stability analysis of the of the period-1 orbit of the system (Fig. 5.7). By employing  the 

Monodromy matrix approach [23, 88] the key task is to obtain the state transition matrix 

(STM) along the entire orbit and its eigenvalues (Floquet multipliers). The orbit is 

stable if the absolute value of the Floquet multipliers falls within the unit circle and 

unstable otherwise. From Fig. 5.7, the Monodromy matrix can be expressed as 

                                      

(5.25)
 

where M(T,0) is the STM from t=0  to t=T, Φ(tB,tA) is the STM from t= tA to t= tB, S1, 

S2, S3 and S4 are the STM across the switching manifolds (the Saltation matrices). 
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5.5.1 Computing the State Transition Matrix Φ(tB,tA)  

If the vector field describing the trajectory of the system is linear, the STM along any 

section of the orbit (Φ(tB,tA)) can be simply obtained by computing the exponential 

matrix of the form (e
A(tB- tA)

). But for the SRM and other systems with nonlinear vector 

fields, the STM is obtained by solving a matrix differential equation of the form below 

                                                                         

(5.26)

        

 

where J(t) is the Jacobian matrix evaluated along the orbit from t = t0 to any other future time(t) 

and is given by: 

                              (5.27)

                       

Based on (5.26), Φ(tΣ1,0) , Φ(tΣ2, tΣ1), Φ(tΣ3, tΣ2), Φ(tΣ4, tΣ3), and Φ(tΣT, tΣ4) are evaluated 

as shown below. 

      

(5.28)

                                                   

 

where Φ(0,0) is an identity matrix of order 3 and J1(t) is the Jacobian matrix of the first 

vector field (f1(X(t)) evaluated along the orbit from t=0 to t= tΣ1. 
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The STM from t= tΣ1 to t= tΣ2 (Φ(tΣ2, tΣ1)) is also evaluated following a similar approach 

as shown below 

                                                        

(5.31)

                                                                                     

where

 

J2(t)  is the Jacobian matrix of the second vector field (f2(X(t)) and is to be evaluated 

along the orbit from t= tΣ1 to  t= tΣ2. 

       (5.32) 

                                                                     

                                            

(5.33) 

where , while P and Q have been earlier defined. 

Φ(tΣ3, tΣ2), Φ(tΣ4, tΣ3), and Φ(tΣT, tΣ4) are evaluated by following a similar procedure. 

5.5.2 Computing the Saltation Matrices. 

Since there are interactions of different vector fields in the period-1 orbit of the SRM, 

the state transition matrices at the switching manifolds must be evaluated. 

                  (5.34)                                                                            

where h1(X(t)) is the first switching hypersurface, n1 is the normal vector to the 

hypersurface, and I is a (3x3) identity matrix. The first switching occurs when 

Vcon(t)=Vramp(t) and thus the switching hypersurface is given by                                                                                         
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The normal n1 to the hypersurface is expressed as 

                                                     

(5.36)
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(5.41)

                                                                                     

 

By substituting equations (5.37), (5.38), (5.39) and (5.41) into (5.34), the Saltation 

matrix (S1) can be evaluated. S2, S3, and S4 were computed following a similar procedure. 

The computed Monodromy matrix and Floquet multipliers at different values of the 

proportional gain are shown in Table 5.3 and the eigenvalue loci are shown in Fig. 5.15. 

Table 5.3  Computed Monodromy matrix and Floquet multipliers 

G        Monodromy Matrix Floquet       

Multipliers 
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0.1916-    38.9344-     437.4463-

0.0028        0.6511-         0.6909-

0.0000         0.0002            1.0003

















0.2934-          0.7179     415.0809-

0.0028          0.7916-       0.7507-

0.0000         0.0002-          1.0001

















0.3187-       12.9489     409.3241- 

0.0026         0.8204-     0.7790-   

0.0000         0.0003-           1.0000

















0.3984-       55.9577     388.8347- 

0.0024        0.8973-         0.7952-

0.0000        0.0006-           0.9999
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               Fig. 5.15 Eigenvalue loci at different values of the proportional gain             

From Table 5.3 and Fig. 5.15 it could be seen that the nominal period-1 orbit losses 

stability at g=14.1V/rad
-1

 as the absolute value of one of the Floquet multipliers fell 

outside the unit circle at that value of the proportional gain. This is in agreement with 

the bifurcation diagram of the system (Fig. 5.14) that was obtained via numerical 

simulation.      

5.6 Summary 

In this chapter, the fast scale bifurcation in a three-phase 12/8 SRM has been 

investigated using the Monodromy matrix approach. It has been found that the stability 

of the nominal period-1 orbit depends on the eigenvalues of the state transition matrix 

around the entire orbit (the Monodromy matrix). This technique can be applied to the 

stability analysis of other SRM drives such as 4/2, 6/4, and 8/6 SRM drives. In the next 

chapter, the control of nonlinear phenomena in electrical drives will be discussed. 
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CHAPTER 6 

Control of nonlinear phenomena 

in electrical drives 

 

 

6.1 Introduction 

In Chapter 4 and Chapter 5 the nonlinear bifurcation and chaotic phenomena in two 

selected electrical drive systems, namely a DC chopper-fed PMDC drive and a three-

phase 12/8 SRM drive were extensively discussed. As some system parameter such as 

the controller gains or the supply voltage is being varied, the nominal period-1 orbit in 

the drives may lose stability leading to the birth of period-nT or chaotic orbits. Hence 

there is a need to develop controllers that are capable of compensating for the parameter 

variations.  

The development of controllers to extend the period-1 operation of switched mode 

power electronic systems over a wider range of system parameters have been a 

challenging topic. Popular techniques are the OGY (Ott, Grebogi and Yorke) method 

[25] and the Pyragas techniques [51-53, 89]. The basis of these control techniques lies 

in the fact that a chaotic attractor contains several unstable periodic orbits (UPO) which 

can be located and stabilized.  But these techniques have been found to be complex as 

so many computations are to be performed online [28].  

In this thesis, the Monodromy matrix based stabilization technique [23, 24, 88] will be 

applied. The goal of this stabilization technique is to ensure that the absolute values of 

the eigenvalues of the Monodromy matrix (the Floquet multipliers) remain within the 

unit circle irrespective of the system parameter variation. This can be achieved by 

manipulating the Saltation matrix (the state transition matrix at the switching manifold 

of the UPO) component of the Monodromy matrix. Thus, the key task is to locate the 

UPO and then stabilize it by manipulating the Saltation matrix. This chapter is 

organised as follows: in section 6.2 the control of fast-scale bifurcation in DC chopper-

fed PMDC drive employing the proportional controller will be discussed, while the 
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control of fast-scale bifurcation in the three-phase 12/8 SRM is discussed in section 6.3. 

Section 6.4 is the chapter summary. 

6.2 Control of Fast-scale Bifurcation in a DC Chopper-fed PMDC Drive  

Employing a Proportional Controller 

The nominal behaviour of a DC chopper-fed PMDC Drive employing the proportional 

controller is a period-1 orbit. But as was reported in Chapter 4, this nominal behaviour 

can lose stability via fast-scale bifurcation when the supply voltage (Vin) is greater than 

111.83V or when the proportional gain (Kp) is greater than 2.34. In this section, the 

Monodromy matrix based stabilization approach will be applied to control this 

instability. As the system parameter is varied, the controller will ensure that the Floquet 

multipliers lie on a circle of radius 0.8223 (chosen as a radius of stable eigenvalues).   

6.2.1 Locating the Unstable Periodic Orbit of the PMDC Drive 

Locating the UPO as system parameters are being varied simply involves enforcing 

periodicity and then computing analytically the duty ratio that will ensure period-1 

operation. Once the duty ratio is computed, the initial state vector (X(0)) and the state 

vector at the switching instant (X(t∑) for the UPO will be determined using the 

procedure described in Chapter4. For instance, when the supply voltage (Vin) was 100V, 

the attractor was a period-1 orbit, but when the supply voltage was changed to 113V 

(see Fig.4.10), the attractor was a period-2 orbit and the previously stable period-1 orbit 

began to repel (unstable). By enforcing periodicity (or assuming that X(0)=X(T)) and 

following the procedure outlined in Chapter 4, the unstable period-1 orbit (at Vin=113V) 

embedded in the period-2 attractor could be located (Fig. 6.1). The switching instant    

(t∑ =δT ), the initial state X(0), and the state vector at the switching instant (X(t∑ ) of the 

UPO are: t∑ =0.0031s, T.   . ]   X 509048586100[)0(  and T.   .t ]   X 319728518100[)(  .  
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          Fig. 6.1  Unstable period-1 orbit embedded in the period-2 attractor at Vin =113V. 

Once the UPO is located, it will be stabilized by manipulating the Saltation matrix 

components of the Monodromy matrix. The Monodromy matrix of the UPO is 

expressed as: 

)0,(),()0,(   ttTTM S                     (6.1) 

where ),( AB tt  is the STM  from t=tA to t=tB  and is expressed as )(
),( AB ttA

AB ett


 , 

and S is the Saltation matrix  that govern the transition of the trajectory from the switch 

OFF region of the state space to switch ON region. As discussed in Chapter4, the 

Saltation matrix can be expressed as: 
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In order to ensure that the absolute value of the Floquet multipliers is within the unit 

circle for a wide range of system parameters, the Saltation matrix is to be manipulated. 

Some of the possible approaches for manipulating the Saltation matrix are discussed in 

section 6.2.2. 

6.2.2 Manipulating the Saltation Matrix 

From equation (6.2), the Saltation matrix can be manipulated without causing major 

structural change in the system by adding a small time varying signal to the switching 

hypersuface h(X(t) or by adding a signal that is a function of the state variable to h(X(t). 

The addition of small time varying signal will cause a change in the term tth  /)(X( ), 

while adding a signal that is a function of the state variable will cause a change in the 

term X/)(X(  th . The changes in the switching hypersurface should be small in order 

to keep the switching instant ),( Tt   the initial state vector (X(0)), and the state 

vector at the switching instant ))(( tX
 
unchanged (so as to maintain the location of the 

UPO), but should be significant enough to cause change in either tth  /)(X(  or  

X/)(X(  th . Techniques for the Saltation matrix manipulation are discussed in [23, 88]. 

In this thesis three of these methods are explored. 

6.2.2.1 Saltation Matrix Manipulation Based on the Injection of a Low Amplitude 

Sinusoidal Signal 

In this scheme, a low amplitude sinusoidal signal is added to the switching hypersurface 

by replacing the reference speed (ωref) with ωref(1+ αsin(ωt)) where ω=2π/T, T  is the 

period of the sawtooth signal and the parameter α is chosen to determine the desired 

location of the Floquet multipliers. Since the parameter α is usually very small, this 

change will have little effect on the control signal (Vcon(t)) and the location of the 

switching instant )( Tt   , but can cause significant change in the Saltation matrix 

as illustrated in equations below:  

  0)(
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From (6.7), it could be seen that the introduction of a low amplitude sinusoidal signal 

will have a significant effect on the Saltation matrix. Since the Monodromy matrix of 

the UPO is expressed as  
 ttT

eeTM
AA

S
)(

)0,(  and the switching instant 

)( Tt   is unchanged, then it could be deduced that the Monodromy matrix is only 

influenced by the Saltation matrix.  

To design a controller based on this approach the value of the parameter (α) necessary 

to force the Floquet multipliers to lie on a radius of 0.8223 (see Fig.4.14 and Fig.4.15), 

as the system parameters are varied will be computed. Thus, we need to solve (6.8) to 

obtain the required value of the parameter (α)  using Newton-Raphson or other 

numerical techniques. 

 8223.0)))0,((( TMeigabs          (6.8) 

where )0,(TM is a function of α. If the supply voltage (Vin) is used as the bifurcation 

parameter, then the value of the parameter (α) will be computed offline for selected 

values of the supply voltage, and a polynomial equation that relates (α) with Vin will be 

developed using the Matlab Polyfit function. By using this polynomial function, a look 

up table will be developed to obtain the value of the parameter (α) that is necessary to 

ensure period-1 operation (an eigenvalue radius of 0.8223) as Vin is being varied. The 

third order polynomial function that relates Vin and  the control parameter (α) is as 

shown in (6.9), and the computed optimal values of  the  parameter (α) as Vin is being 

varied are shown in Fig. 6.2. 

043101065.8)(1088.5)(10471)( 42638 .VVV.V in
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       Fig. 6.2 Required values of (α) against supply voltage 

From Fig.6.2, the required value of the control parameter when the supply voltage is 

113V is 3101  . By substituting this value into (6.7) and using the value of the state 

vector at the switching instant of the UPO ( T.   .t ]   X 319728518100[)(   ) computed 

earlier, the Saltation matrix will be 
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3071076280

3071076280
  whose absolute value is 

0.8223. This confirms that the injection of a low amplitude sinusoidal signal in the 

switching hypersurface is capable of stabilising the UPO at Vin=113V as the Floquet 

multiplier now lies on a circle of radius 0.8223 as desired. 

This new controller can be referred to as a supervising controller and could easily be 

implemented using a digital signal processor. The inputs to the supervising controller 

are the supply voltage (Vin) and the reference speed (ωref), and the output of the 

controller is ωref×α×sin(ωt). The control parameter (α) is computed by solving (6.9). A 

schematic diagram of the DC chopper-fed PMDC drive based on the new controller is 

shown in Fig. 6.3.  
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Fig. 6.3 Schematic diagram of DC chopper-fed PMDC drive with the supervisory 

controller. 

To test the response of the new control scheme to system parameter variation, the 

supply voltage was changed to 113V and the system response is as shown in Fig. 6.4. 

 

      Fig. 6.4  Response of the supervising controller at Vin =113V  

From Fig.6.4, it could be seen that the system trajectories approached the period-2 

attractor without the supervising controller, but after the introduction of the supervising 

controller at t = 1.18s, the trajectories approached a period-1 orbit. Thus, it is clear that 

the introduction of the low amplitude sinusoidal signal was able to stabilize the unstable 

period-1 orbit embedded in the period-2 attractor with little effect on the location of the  
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UPO. This control technique is also suitable for stabilizing the unstable period-1 orbit 

embedded in the chaotic attractor of the DC chopper-fed PMDC drive as shown in 

Fig.6.5                                  

 

Fig. 6.5 Stabilization of unstable period-1 orbit embedded in a chaotic attractor 

at Vin=140V. 

 

6.2.2.2 Saltation Matrix Manipulation Based on changing the slope of the Ramp Signal 

Another technique for changing the time derivative of the switching hypersurface 

( tth  /)(X( ) and thus the Saltation matrix (S) is by changing the slope of the sawtooth 

or ramp signal ))((
T

t
VVVV LULr  . This can be achieved by manipulating either the 

upper or the lower values of the ramp signal (VU or VL). To illustrate this control 

technique, the upper value of the ramp signal is replaced with )( UVk  where k is the 

control parameter. Consequently, the time derivative of the switching hypersurface

tth  /)(X(  becomes
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 , and the Saltation matrix will be expressed as 

shown below: 
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To design the controller based on this approach, the value of the parameter (k) necessary 

to force the Floquet multipliers to lie on a radius of 0.8223 as system parameters are 

varied, will be computed. Thus, we need to solve (6.8) with k as the unknown 

parameter.  

If the supply voltage (Vin) is still used as the bifurcation parameter, the required value of 

the parameter (k) will be computed offline for selected  values of Vin  and a polynomial 

equation that relates (k) with Vin will be developed using the Matlab Polyfit function. 

The 3
rd

 order polynomial function that relates Vin and the control parameter (k) is as 

shown in (6.11) and the computed optimal values of the parameter (k) necessary to 

ensure period-1 operation are shown in Fig.6.6. 
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  Fig. 6.6  Computed values of the parameter (k) as the supply voltage is varied. 

The schematic diagram of the DC chopper-fed PMDC drive based on this second 

controller is as shown in Fig.6.7. 
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Fig. 6.7 Schematic diagram of the DC chopper-fed PMDC drive based on the second 

control approach 

To test the response of the new control scheme the supply voltage was changed to 113V 

and the system response is as shown in Fig. 6.8.                

        

Fig. 6.8  Response of the second controller at Vin=113 V  

From Fig.6.8, it could be seen that the supervising controller can effectively stabilise the 

unstable period-1 orbit embedded in the period-2 attractor. This control approach is also 

suitable for stabilizing the unstable period-1 orbit embedded in the chaotic attractor of 

the PMDC drive, as shown in Fig.6.9.  
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  Fig. 6.9  Stabilization of the chaotic attractor at Vin =130 V. 

 

6.2.2.3 Saltation Matrix Manipulation by Adding a Signal Proportional to the Shaft 

Speed 

Apart from manipulating the time derivative of the switching manifold ( dtth /)((X ), 

the Saltation matrix (S) can also be altered by manipulating the normal to the switching 

hypersurface
































T

x

tXh

x

tXh
ttXh

21

))(())((
)),((     n . This can be achieved by 

adding a constant signal (β) to the feedback speed ( )(1 tx ). Based on this alteration, the 
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switching hypersurface will be expressed as: 
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The normal to the switching surface (n) will then be expressed as: 
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Based on the expression for the normal to the switching hypersurface (6.13), the 

Saltation matrix will be expressed as:  
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To design the supervising controller based on this approach the value of the parameter 

(β) necessary to force the Floquet multipliers to lie on a radius of 0.8223, as the system 

parameters are varied will be computed. Thus, we need to solve (6.8) with β as the 

unknown parameter 

 

The 3
rd

 order polynomial function that relates the supply voltage (Vin) and the control 

parameter (β) is as shown in (6.15), and the computed optimal values of the parameter 

(β) necessary to ensure period-1 operation are shown in Fig.6.10. 
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                           Fig. 6.10  Computed  values of the control parameter (β) 
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Fig. 6.11  Schematic diagram of the DC chopper-fed PMDC drive based on the 3rd 

controller 

 

 

Fig. 6.12  Response of the 3
rd

 controller when the supply voltage was changed to 

113V. 

As could be seen from Fig.6.12, the manipulation of the normal to the switching surface 

can effectively stabilise the unstable period-1 orbit embedded in the period-2 attractor. 
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The UPO stabilization steps based on the three techniques described above are 

summarized below: 

 Locate the UPO by finding the initial state X(0) and the state vector at the 

switching instant X(t∑). 

 Manipulate the Saltation matrix and thus the Monodromy matrix of the UPO 

using any of the three techniques described above, while ensuring that the 

location of the UPO remains unchanged. 

 Using the new expression for the Monodromy matrix, determine the required 

value of the control parameter necessary to ensure stable period-1 operation as 

the system parameters are being varied. 

 Develop a look up table that relates the control parameter to the bifurcation 

parameter. 

6.3   Control of Fast-scale Bifurcation in a SRM Drive 

The Saltation matrix based stabilization approach can also be extended to piecewise 

nonlinear electrical drives like the SRM drive. As discussed in Chapter 5, the nominal 

period-1 behaviour in the SRM drive (Fig.5.5) can lose stability as the proportional gain 

is being varied leading to the birth of a new orbit whose period is double the period of 

the nominal period-1 orbit (Fig.5.6). By using the first stabilization approach 

(introduction of a low amplitude sinusoidal signal) and selection of the required value of 

the control parameter (α), the Saltation matrix (5.34), and thus the Monodromy matrix 

(5.25) can be manipulated with little influence on the location of the UPO. The 

hypersurface expression (5.35) and its time derivative (5.38) thus become: 
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where T/2  and T is the duration of the period-1 orbit. With the introduction of the 

low amplitude sinusoidal signal, the time derivative of the switching hypersurface that 

was initially zero (5.38), has now been changed to ))cos(( tref   thus influencing 

the Saltation matrix (S1). The system response for a sudden change in the proportional 
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gain from g=10 to g=15 is as shown in Fig.6.13. From Fig.6.13a, it could be seen that 

without the supervising controller, the step change will lead to the birth of a period-2 

orbit. Fig.6.13b shows how the period-2 orbit is stabilised back to the nominal period-1 

orbit due to the supervising controller. The result confirms the effectiveness of this 

control technique in stabilizing the SRM drive.  

 

        (a) 

 

                   (b)

     

 

Fig. 6.13  System response due to step change in proportional gain from g=10 to 

g=15 (a) Without the supervising controller (b) With the supervising 

controller. 
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6.4  Summary 

In this chapter, the control of the fast-scale (period doubling) bifurcation in the DC 

chopper-fed PMDC drive and the SRM drive (by the alteration of the Saltation matrix 

component of the Monodromy matrix) is discussed. Three stabilization options based on 

Saltation matrix manipulation were explored, and the results of the control action 

confirmed the effectiveness of these stabilization techniques. 
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CHAPTER 7 

Analysis and control of NONLINEAR 

PHENOMENA IN A SERIES CONNECTED DC 

MOTOR DRIVE 

 

 

7.1 Introduction 

In Chapter 4, nonlinear phenomena in a PMDC drive were investigated. In this Chapter, 

the nonlinear analysis is extended to a series connected DC (SCDC) motor drive whose 

mathematical model was derived in Chapter 3. As discussed in Chapter 3, there are 

three key sources of nonlinearity in an SCDC drive. Firstly, the electrical torque is 

proportional to the square of the current (below field saturation). Secondly, the back 

EMF is proportional to the product of current and speed. The last source of nonlinearity 

is introduced by the power electronic switching in the SCDC drive.  

Due to these nonlinearities the SCDC drive is prone to complex, nonlinear dynamical 

phenomena, namely bifurcation and chaos. The first report of bifurcation behaviour in 

an SCDC drive was presented in 2011 [90], but no analytical validation of this 

phenomenon exists in the literature. The key reason could be that unlike PMDC drives 

and DC-DC converters (whose model is piecewise linear), the mathematical model of 

an SCDC drive is piecewise nonlinear making the analysis more difficult. 

In this chapter, the fast-scale instability (period doubling bifurcation) in an SCDC is 

analysed using the Monodromy matrix approach [23, 66]. The complexity of the 

analysis is compounded by the fact that the SCDC drive model comprises nonlinear 

vector fields, thereby making the computation of the STM along each vector field 

difficult. Unlike the simple exponential matrix approach used in piecewise linear 

systems, the STM along each vector field in an SCDC drive is obtained by solving a 

matrix differential equation (MDE). Analytical results obtained using this approach are 

compared with the numerically obtained bifurcation diagram of the system, and the two 

show good agreement.  Also, by manipulating the Saltation matrix component of the 

Monodromy matrix, the fast-scale instability was controlled. 
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This chapter is structured as follows. In section 7.2, a brief description of the SCDC 

drive and its mathematical formulation is given, while the bifurcation behaviour of the 

system is discussed in section 7.3. The analysis of the fast-scale bifurcation is discussed 

in section 7.4, and bifurcation control is discussed in section 7.5. Section 7.6 is the 

summary of the chapter. 

7.2   System Description 

The schematic diagram of the DC chopper-fed SCDC drive is shown in Fig. 7.1. The 

system consists of three main components, namely the SCDC motor, the power 

converter (a dc chopper) and the control electronics. Speed control is achieved by 

regulating the average voltage applied at the armature terminals via control of the power 

electronic switches. 

 

                                       Fig. 7.1 Schematic diagram of an SCDC drive 

As a result of the power electronic switching, the system will toggle between two 

different subsystems in the steady state. The mathematical model of the system is given 

by a differential equation with a discontinuous right hand side as shown: 
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(7. 3) 

 
                                                                         

 

 

                                                                  (7. 4) 

 

                                                                                (7. 5) 

and . 

where i(t) is the armature and field  current, (t) is the motor speed,  is the 

sum of the resistances of the armature and field coils,  is the sum of the 

armature and field coil inductances, KE and KT  are the back emf constant and the torque 

constant, respectively, B is the friction coefficient, VL and VU are the lower and upper 

ramp signal voltages, TL is the load torque, J is the moment of inertia, T is the period of 

the PWM signal, Vcon is the output of the  proportional controller, g is the gain of the 

operational amplifier,  and ωref  is the reference speed. The parameters of the system are: 

R=7.2, L=0.0917H, TL=0.2NM, KE= KT =0.1236N.m/A
2
, J=7.046e-4Kg-m

2
,B=4e-

4N.m.rad.sec, J=0.000557 N.m.rad.sec
2
, T=10msec,VL=0, VU=8V and ref=100rad/sec. 

7.3   Bifurcation Behaviour of Series Connected DC drive 

The nominal behaviour of an SCDC drive is a period-1 orbit (Fig. 7.2) whose mean 

value is close to the reference value and with the same period as the external clock 

signal. But as some system parameters such as the proportional gain is being varied, this 

nominal orbit loses stability and a new orbit whose period is double the period of the 

original orbit (Fig. 7.3) emerges. Further variation of the system parameter leads to 

period doubling bifurcation cascades and chaos (Fig. 7.4). The bifurcation diagram of 

the system is shown in Fig. 7.5. 
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               (a)              

 

                 (b) 

Fig. 7. 2 Nominal period-1 behaviour of the SCDC drive at g=1.2         

(a) Current and speed (b) Trajectory of speed against current. 
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      (a)         

 

              (b) 

Fig. 7. 3  Period-2 behaviour of the SCDC drive at g=5 (a) Current and speed 

(b) Trajectory of speed against current. 
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                                   (a) 

 

             (b) 

Fig. 7. 4  Chaotic response of the SCDC drive at g=14 (a) Current and speed        

(b) Phase portrait of speed against current. 

 

 

 

 

 

0.7 0.75 0.8 0.85 0.9 0.95 1

1

1.5

2

Time (s)

C
u

rr
e

n
t 

(A
)

0.7 0.75 0.8 0.85 0.9 0.95 1
99.5

100

100.5

101

Time (s)

S
p

e
e

d
 (

ra
d

/s
)

99.6 99.8 100 100.2 100.4 100.6 100.8 101
0.5

1

1.5

2

Speed (rad/s)

C
u

rr
e

n
t 

(A
)



CHAPTER-7        NONLINEAR PHENOMENA IN A SERIES CONNECTED DC DRIVES 

   

156 
 

                

                               Fig. 7.5  Bifurcation diagram of speed against proportional gain 

 

7.4 Analysis of the Period Doubling Bifurcation in a Series Connected 

DC Drive via the Monodromy Matrix Approach 

To analytically ascertain the bifurcation parameter value at which the nominal period-1 

orbit (Fig. 7.2b) loses stability we have to study the system dynamics for tє [0, T] where 

T is the period of the orbit. By employing the Monodromy matrix approach [23, 88] the 

key task is to compute the state transition matrix (STM) along the entire orbit and obtain 

its eigenvalues. The nominal orbit is stable if the absolute values of the eigenvalues fall 

within the unit circle and is unstable otherwise. From Fig. 7.2b, the Monodromy matrix 

of the period-1 orbit can be expressed as: 

                                                                           (7.6)

                         

where M(T,0) is the STM from t=0  to t=T (the Monodromy matrix), Φ(tB, tA) is the 

STM from t= tA to t= tB, and S is the STM across the switching manifold (the Saltation 

matrix). Since the vector fields in an SCDC drive are nonlinear, the STM along each of 

the two vector fields are obtained by solving a matrix differential equation instead of the 

simple exponential matrix found in piecewise linear systems. 

Thus, Φ (tΣ, 0) and Φ (T, tΣ) are evaluated as follows: 
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(7.7)

 

where the initial condition Φ(0,0) is an identity matrix of order 2, and J1(t) is the 

Jacobian matrix of the first vector field (f1(X(t)) which is to be  evaluated along the orbit 

from t=0 to t= tΣ. 

                 

(7.8) 

Similarly, Φ(T, tΣ)  is to be evaluated by solving the matrix differential equation:
   

                                                                                       
(7.9)

           
 

where J2(t) is the Jacobian matrix of the second vector field and is to be evaluated along 

the orbit from t= tΣ  to t=T.  

                                                                                                        (7.10) 

To complete the derivation of the Monodromy matrix, the Saltation matrix or the STM 

at the switching instant (t∑) needs to be computed. This is expressed as:

  

                                                                       

(7.11)

 

where :  

                                             (7.12) 
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                                                    (7.13) 

Since the switching between the different subsystems occurs when Vcon(t)=Vramp(t), the 

switching hypersurface ( ) is expressed as: 

                                        
(7.14) 

The partial derivative of   with respect to time and the normal vector are 

expressed as:

 

                                                                                                  
(7.15) 

 

=                                                                            (7.16) 

The transpose of the normal to the hypersurface  is expressed as [1    0]. 
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(7. 18) 

 

Consequently, the Saltation matrix is given by: 

 






























L

txtxKRtx
J

txBTtxK

t
e

Lt

)()()(

)()(

))((
122

1

2

2 

Xff offOFF

)(( th X

0))((
1

))(()()())(( 1 









T

t
VVV

g
txtVtVth LULreframpcon X

)(( th X

gT

VV

t

th LU








 )())((X





























2

1

))((

))((

)),((

x

th

x

th

tth
X

X

Xn 








0

1

)T
(n





















0

00

)

L

Vin

T
nf(f OFFON

 
 

J

txBTtxK

L

txtxKRtx
J

txBTtxK

Lt

e

Lt

T )()(

)()()(

)()(

]1[ 1

2

2

122

1

2

2

































 

 

0   fn OFF



CHAPTER-7        NONLINEAR PHENOMENA IN A SERIES CONNECTED DC DRIVES 

   

159 
 

                                                      

(7. 19) 

The computed Monodromy matrix and Floquet multipliers for various values of the 

bifurcation parameter (g) are shown in Table 7.1. From the Table, it could be seen that 

the nominal period-1 orbit loses stability at g=4.6 as one of the Floquet multipliers 

leaves the unit circle at this parameter value. This is in agreement with the bifurcation 

diagram of the system (Fig. 7.5).
   

     Table 7. 1 Computed Monodromy matrix and Floquet multipliers
 

Gain(g)

 
 

Monodromy 

Matrix 

Floquet 
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1.7373 

0.1695 

 

7.5  Control of the Period Doubling Bifurcation in a Series Connected 

DC Drive 

In Chapter 6, the various techniques for bifurcation and chaos control in electrical drives 

based on Saltation matrix manipulation were discussed. In this chapter, the first 

approach (injection of low amplitude sinusoidal signal in the switching hypersurface) 

will be adopted. The main idea is to locate the unstable periodic orbit (UPO) and then 
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stabilise it by injecting a low amplitude sinusoidal signal in the switching hypersurface

. This can be achieved by replacing the reference speed (ωref) with ωref 

(1+asinωt), where the control parameter ‘a’ is usually very small, and ω=2π/T. As a 

result, the switching hypersurface  and its partial derivative with respect to 

time  will be expressed as: 

                                           (7.20)    

                                       

                                                         

(7.21)

   

Consequently, the Saltation matrix will be a function of the control parameter ‘a’, and 

will be expressed as:  

 

         

(7.22)
 

 

By appropriate selection of the control parameter “a”, the Saltation matrix and thus the 

Monodromy matrix can be adjusted with little influence on the PWM duty cycle. To test 

the response of the proposed controller, a step change of the proportional gain from 

g=1.2 to g=5 was introduced. The system response without the proposed controller is 

shown in Fig. 7.6, while the system response with the proposed controller is shown in 

Fig. 7.7. 
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                Fig. 7. 6 Step change from g=1.2 to g=5 (without the proposed controller).
                          

 

               Fig. 7.7 Step change from g=1.2 to g=5 (with the bifurcation controller). 

 

7.6  Summary 

In this chapter, the fast-scale bifurcation in SCDC drive is analysed and controlled using 

the Monodromy matrix approach. Unlike piecewise linear systems such as PMDC 

drives and DC-DC converters where the STM is computed using simple exponential 

matrix, the STM in an SCDC drive is computed by solving MDEs, hence the 

complexity of the analysis. By manipulation of the Saltation matrix component of the 

Monodromy matrix, the period doubling bifurcation was controlled thus extending the 

system parameter range for nominal period-1 operation.  
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CHAPTER 8 

Analysis and control of NONLINEAR 

PHENOMENA IN FULL-BRIDGE CONVERTER 

DC DRIVE 

 

8.1 Introduction. 

In Chapter 4, the nonlinear phenomena in a DC chopper-fed PMDC employing the 

proportional and proportional integral controller were investigated. In this appendix, the 

nonlinear analysis is extended to a PMDC employing a full-bridge converter. Unlike the 

DC chopper-fed PMDC drive, the full-bridge converter drive can achieve four quadrant 

operations (forward motoring, forward braking, reverse motoring and reverse braking) 

and will be more suitable for traction applications [91]. Nonlinear bifurcation and 

chaotic phenomena in full-bridge converter PMDC drive were first reported in [58], but 

analytical validation of this phenomena is absent from the literature.  

In this project, the fast-scale bifurcation phenomena in a full-bridge converter PMDC 

drive will be analyzed using the Monodromy matrix approach. Also, by manipulation of 

the Saltation matrix component of the Monodromy matrix, the onset of the drive’s fast-

scale bifurcation is controlled thus extending the system parameter range for nominal 

period-1 operation. Apart from the fast scale bifurcation, the co-existence of period-1 

and period-3 attractors at the same system parameter range was observed in this system 

and efforts to isolate the basins of attraction of the two attracting sets revealed the 

occurrence of fractal phenomena. Using the Monodromy matrix approach it was 

established that the co-existing period-3 attractor is born via a saddle node bifurcation. 

This chapter is structured as follows. In section 8.2, a brief overview of a full-bridge 

converter PMDC drive is given, while the dynamic behavior of the system is discussed 

in section 8.3. The analysis of the fast-scale bifurcation is carried out in section 8.4, and 

control of the fast-scale bifurcation via Saltation matrix manipulation is discussed in 

section 8.5. In section 8.6, the co-existence of period-1 and period-3 attracting sets will 

be discussed. Section 8.7 is the summary of the chapter. 
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8.2  System Overview 

The DC chopper fed PMDC drive can  be operated only in the first quadrant of the 

speed-torque plane. In order to achieve four quadrant operation as some applications 

demand, a full-bridge converter DC drive (Fig. 8.1)  must be employed. The system 

consists of the PMDC drive, a full-bridge converter circuit, and the control electronics.  

 

  Fig. 8. 1 Full bridge converter PMDC Drive 

The full-bridge converter consists of four power electronic switches (T1, T2, T3,       

and T4) and four freewheeling diodes.  When using the bipolar PWM scheme, the two 

devices on each leg of the power converter act in a cyclic and complementary manner. 

For instance if T1 and T4 are switched ON, T2 and T3 are to be switched OFF and vice-

versa. 

Usually a control voltage Vcon (t) is compared with a sawtooth signal Vramp(t) to produce 

the PWM output which controls the switches. If the PWM output is high (Vcon(t)  less 

than Vramp (t)), T1 and T4 will be switched ON, while T2 and T3 will be switched OFF. 

But if the PWM output is low (Vcon (t) greater than Vramp (t)), T2 and T3 will be switched 

ON, while T1 and T4 will be switched OFF. As a result, the system will alternate 

between two topological states that will be referred to as state 1 and state 2. 
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In state 1, +Vin is applied at the armature terminals, while in state 2,  -Vin is applied to 

decrease the speed. As a result, the system behaviour is described by a differential 

equation with a discontinuous right hand side as shown: 
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8.3 Dynamic Behaviour of  a Full-Bridge Converter PMDC Drive 

The nominal steady state behaviour of the full-bridge converter PMDC drive is a 

period-1 orbit (Fig. 8.2). However, as some system parameter such as the supply voltage 

is varied, the desired period-1 orbit loses stability  and a new orbit whose period is 

double the period of the original orbit emerges [58] (Fig. 8.3). Further variation of the 

system parameter leads to several period-doubling bifurcation cascades and chaos. The 

bifurcation diagram of the system as the supply voltage is varied is shown in Fig. 8.4. 

The fixed parameters of the system are: Ke=0.1356Vs/rad, Kt=0.1324NM/A,        
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R=2.8, L=53.7mH, TL=0.38NM, g=1.2, B=0.000275Nm.rad.sec, T=10msec,                   

J=5.57×10
-4

N.m.rad.sec
2
, VL=0, VU=8V, ref=100rad/sec . 

                                     

 

           (a) 

 

            (b) 

Fig. 8. 2  Period-1 behaviour at Vin=35V (a) current and speed response (b) phase 

portrait. 
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          (a) 

 

           (b) 

Fig. 8. 3 Period-2 trajectory at Vin=56V (a) current and speed response               

(b) phase portrait. 
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                (a) 

 

                                (b) 

Fig. 8. 4  Bifurcation diagrams of the system (a) speed against supply 

voltage (b) current against supply voltage. 
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)0,(),()0,(   ttTT SM                                                                                (8.4)                        

where ),( AB tt  is the STM from 
Att  to 

Btt  , 
t  is the switching instant and is a 

function of the PWM duty ratio ( TdTdt )1(  ), and )(S is the state transition 

matrix across the switching manifold (also known as the Saltation matrix). Since the 

vector fields are linear, the STM )),(( AB tt can be expressed as an exponential matrix

)(
),( AB ttA

AB ett


 .  

According to [23, 66], the Saltation matrix can be expressed as: 

 
 ttthT
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(8.5) 

where h defines the location of  the switching hypersurface, n is the normal vector to the 

hypersurface h, f stands for )),((lim tt
tt

Xf 
, f stands for )),((lim tt

tt
Xf 

and I  is an 

identity matrix of the same order as that of the system. For the period-1 limit cycle 

(t[0,T]), the switching between the two vector fields occurs when Vcon(t)=Vramp(t) and 

the switching hypersurface h could be expressed as:  

0
/)(

)()),(( 1 
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The normal to the hypersurface and its partial derivative with respect to time 

 ttth   )),((X  are expressed as:  
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Consequently, the Saltation matrix for the full-bridge converter PMDC drive for 

(t[0,T]) will be expressed as: 
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(8.13) 

where the switching instant )( Tdt   and the state vector at the switching instant 

)(( tX are the only unknowns, and could be obtained  from the limit cycle diagram 

(Fig.8.2b) as follows: 

 dVeteT

T

t

TtT












  )()(
)()0()( A

XXX
A

                                                           (8.14)        




dVeet

t

tt





 


 
0

)()(
)0()(

AA
XX                                                                            (8.15) 

By substituting the expression for )( tX  into (8.14), the initial state )0(X can be 

expressed as: 
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Equation (8.16) expresses the initial state X(0) in terms of the switching instant

)( Tdt  . To obtain the value of the state vector at the switching instant, X(t), the  

values of X(0) and t must be known. To obtain the duty ratio d   and thus the 

switching instant t , we make use of the hypersurface expression (8.6) and the 

expression for the switching instant (8.15) giving the equation: 
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(8.18)     

By substituting the expression for X(0) in (8.16) into (8.18), equation (8.18) can be 

solved numerically for the duty ratio using the Newton-Raphson method. Once the duty 

ratio ( d  ) is computed, the switching instant )( Tdt  , initial state X(0), and the state 

vector at the switching instant )( tX will be evaluated. The Saltation matrix(S) will then 

be evaluated by substituting the value of )( tX  into the equation (8.13). 

Consequently, the Monodromy matrix  
 ttT

eeT
AA

SM
)(

)0,(  could then be 

evaluated. The computed Saltation matrix, Monodromy matrix and Floquet multipliers 

as the supply voltage (Vin) is being varied are shown in Table 8.1, and the eigenvalue 

loci are shown in   Fig. 8.5. Both the tabulated result and the eigenvalue loci indicate 

that the period-1 orbit loses stability at Vin=55V as one of the Floquet multipliers moved 

out of the unit circle at that parameter value. This is in full agreement with the 

bifurcation diagram of the system shown in Fig. 8.4. 



CHAPTER-8   NONLINEAR PHENOMENA IN FULL-BRIDGE CONVERTER DC DRIVES 

   

171 
 

                             

                                           Fig. 8.5 Eigenvalue loci for Vin[30V,55V].  

 

                                  Table 8. 1 Monodromy matrix and Floquet multipliers for  

Vin[35V,55V].    

 

 

 

 

 

 

 

 

 

 

 

 

            

8.5 Control  of  the Fast-scale Bifurcation in a Full Bridge Converter 

PMDC Drive  

The purpose of a fast-scale bifurcation controller is to extend the system parameter 

range for desirable period-1 operation. As was discussed in Chapter 6, three different 
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techniques based on Saltation matrix manipulation could be explored. In this chapter, 

the Saltation matrix manipulation based on the introduction of a low amplitude 

sinusoidal signal will be adopted. This can be achieved by changing the value of the 

reference speed (ref) to ref (1+asint), where ω=2π/T and ‘a’ is the control parameter. 

Since the value of ‘a’ is usually very small, the change in (ref) will has little effect in 

the control signal )))(()(( refcon tgtV   .  

Consequently, the switching instant )( Tdt  and the duty ratio will be relatively 

unchanged. But, very small values of ‘a’ will have a substantial effect on both the 

Saltation matrix and the Monodromy matrix. This can be illustrated by taking the time 

derivative of the switching hypersurface h(X(t),t). By replacing
ref in equation (8.6) 

with ))sin(1( taref    the hypersurface equation and its time derivative will be 

expressed as:  

0
)((
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The Saltation matrix will thus be expressed as: 
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(8.21) 

From equation (8.21), the Saltation matrix and hence the Monodromy matrix is a 

function of the control parameter ‘a’. To design a controller for the fast-scale 

bifurcation, we need to determine the values of ‘a’ capable of placing the Floquet 

multipliers (eigenvalues of the Monodromy matrix) within the unit circle. This can be 

achieved by solving the nonlinear transcendental equation (8.22), where 0.7686 is the 

radius of the stable eigenvalues (Fig. 8.5).
 

07686.0))0,(( Teig M                                                                          (8.22) 

where the Monodromy matrix )0,(TM is a function of  the control parameter ‘a’. By 

solving equation (8.22) for different values of the supply voltage, a polynomial equation 



CHAPTER-8   NONLINEAR PHENOMENA IN FULL-BRIDGE CONVERTER DC DRIVES 

   

173 
 

that expresses the control parameter ‘a’ as a function of the supply voltage was obtained 

using Matlab Polyfit function. Based on the polynomial equation, a look table (Fig. 8.6) 

that could be used to determine the required value of the control parameter as the supply 

voltage is varied, was created. 

 

122436 1011.61001.31096.41074.2)(   inininin VVVVa                          (8.23)    

  

          Fig. 8. 6 Computed value of the control parameter as the Supply voltage is varied. 

To test the response of the bifurcation controller, a step change in supply voltage from 

Vin=50V to 57V was performed. The system response to the step change without the 

bifurcation controller is shown in Fig.8.7, while the system response with the 

bifurcation controller is at Fig. 8.8. Without the bifurcation controller, the step change 

resulted in period-2 steady-state subharmonics. But the bifurcation controller was able 

to restore the nominal period-1 operation within a very short time interval. 
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                            Fig. 8.8 Step response with the bifurcation controller. 

 

8.6  Co-existing Attractors and Fractal Basin Boundaries in a Full 

Bridge Converter DC Drive 

If the control signal Vcon(t) was changed to ))(()( tgtV refcon   instead of  

))(( reftg    as described above, the system will still undergo the conventional 

period doubling route to chaos, but co-existence of period-1 and period-3 attractors at 

some system parameter values was also observed. The analysis of this phenomenon 

using the Monodromy matrix approach revealed that the period-3 attractor was born via 

a saddle node bifurcation at some critical value of the supply voltage.  

8.6.1  System Dynamic Behaviour with the Change in Control Signal 

As a result of the change in the control signal, the system behavior could be described 

by:  
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(8.24)

 

where  )(tXf and  )(tXf have been previously defined in (8.2) and (8.3), respectively. 

As the supply voltage is varied from 30 V to 130V, the bifurcation diagram based on the 

new control signal is shown in Fig. 8.9.  
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            Fig. 8. 9 Bifurcation diagram of the system based on the new control signal. 

From Fig. 8.9 it could be seen that for (30V < Vin < 38.516V) the only attracting set is 

the period-1 attractor, but at Vin=38.516V a period-3 orbit gains stability via a saddle 

node bifurcation and thus co-exists with the stable period-1 orbit. To confirm the 

occurrence of co-existing attractors in the region Vin[38.516,50] the  system was 

simulated at Vin=40V  using two different sets of initial values, and the results are 

shown in Fig. 8.10 and Fig. 8.11. When the initial state is ω(0)=0, i(0)=0, the trajectory 

converged on the period-1 attractor, but when the initial state is ω(0)=3rad/sec, i(0)= 2A, 

the trajectory converged on the period-3 attractor. 

 

 

 Fig. 8. 10 Period-1 attractor at Vin=40V, i(0)=0, ω(0)=0. 
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              Fig. 8.11 Period-3 attractor at Vin=40V, i(0)=2A, ω(0)=3Rad/s. 

Further attempt to ascertain the basin of attraction of the two attracting sets revealed the 

occurrence of a riddled or fractal basin boundary (Fig. 8.12), thus making any future 

prediction of system behaviour practically impossible. 

            
        Fig. 8. 12  Basin of attraction of the co-existing period-1 and period-3 attractors.   

In Fig. 8.12, initial points whose trajectories converged on the period-1 attractor are 

marked as blue, while initial points whose trajectories converged on the period-3 

attractor are marked as red. It is thus obvious that the boundaries of the two attracting 

sets are difficult to isolate, hence the fractal phenomena.  
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8.6.2 Analysis of the Birth and Death of the Co-existing Period-3 Attractor Using  

the Monodromy Matrix Approach 

To ascertain the system parameter values at which the co-existing period-3 attractor 

gains and loses stability, we need to perform the stability analysis of the period-3 orbit 

(Fig. 8.11). By employing the Monodromy matrix technique, we need to obtain the 

STM over the entire period-3 cycle (t[0,3T]) and evaluate its eigenvalues. From 

Fig.8.11, the Monodromy matrix can be expressed as: 

)(

1

)(

2

)(

3

)3(

1112333

1133

)0,(),(),(),3()0,3(
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ttTTttTT
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(8.25) 

where S1, S2, and S3 are the Saltation matrices at the three switching instants 1t , T, and 

3t  respectively. The switching instants (
1t and 3t ) depend on the PWM duty ratio 

which varies around the limit cycle ( Tdt 11  and TdTt 33 2  ). Hence, to evaluate 

the Monodromy matrix we need to evaluate the two duty ratios d1 and d3 as well as the 

three Saltation matrices. The Saltation matrix S2 is an identity matrix as the switching 

hypersurface is discontinuous at t=T, while S1 and S3 are computed following the same 

procedure described in section 4.2.6. The computed Saltation matrices, Monodromy 

matrix and Floquet multiplier as the supply voltage is varied are shown in Table 8.2. 

From the tabuled results, it could be seen that the period-3 orbit suddenly gained 

stability at Vin=38.516V via a saddle node bifurcation and thereafter co-existed with the 

period-1 attractor. At Vin=49.8V, the period-3 orbit lost stability (as the absolute value 

of one of the Floquet multipliers falls outside the unit circle), which is in agreement 

with the bifurcation diagram shown in Fig. 8.9. 
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 Table 8. 2 Computed Saltation matrices, Monodromy matrix and Floquet multipliers. 

           

8.7  Summary 

In this chapter, the nonlinear phenomena in Full bridge converter PMDC drive are 

analysed using the Monodromy matrix approach. Apart from the period doubling 

bifurcation cascades that were earlier reported, the system also exhibits co-existing 

attractors with riddled or fractal basin boundaries. The co-existence of stable period-1 

and period-3 attracting sets and fractal basin boundaries in full-bridge converter PMDC 

drives will have some practical implications, especially when the drive is used in high 

precision applications such as in medical equipments or robotic arms. Under such 

circumstance, the much desired period-1 orbit may not be achieved with certainty as the 

system operators are unlikely to maintain absolute control over the initial state of the 

system.  
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Chapter 9 

Conclusion AND SUGGESTIONS          

FOR FUTURE WORK 

 

 

9.1 Conclusion 

In this thesis, the nonlinear phenomena in some commonly used electrical drives 

(PMDC drives, SRM drives and SCDC drives) are analysed for the first time and 

controlled using the recently introduced Monodromy matrix approach. The desired 

invariant set in these drives is a period-1 orbit, but as some system parameter is varied 

the period-1 orbit loses stability and a period-nT orbit (in PMDC drives employing 

proportional control, SRM drives and SCDC drives) or a quasi-periodic orbit (in PI 

controlled PMDC drives) is born. The birth of a period-nT orbit from the period-1 orbit 

is known as a fast-scale instability or period doubling bifurcation, while the birth of a 

quasi-periodic orbit is known as a slow-scale instability or Neimark-Sacker bifurcation. 

Further variation of the system parameter leads to the birth of an aperiodic or chaotic 

attractor. The occurrence of co-existing attractors with fractal basin of attraction was 

also observed for the first time in both the DC chopper fed and full-bridge converter 

PMDC drive. 

To ascertain analytically the system parameter value at which the fast-scale instability 

occurs, the Monodromy matrix based technique was employed. This method (which is 

based on Filippov’s method of differential inclusion) was found to be simpler and more 

straightforward to apply than the conventional Poincaré map technique, and this thesis 

represents the first application of the technique in the analysis and control of electrical 

drive systems. To perform the stability analysis of the nominal period-1 orbit using the 

Monodromy matrix technique the STM around the entire orbit (including the STM at 

the switching manifold known as the Saltation matrix) was obtained. The orbital 

stability depends on the eigenvalue of the Monodromy matrix (also referred to as 

Floquet multipliers). The period-1 orbit is stable if the absolute values of the Floquet 

multipliers are within the unit circle and unstable otherwise.  
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Also, to ascertain the system parameter value at which the slow-scale instability 

(Neimark-Sacker bifurcation) occurs, both the Monodromy matrix and state space 

average techniques were employed, and results from the two analytical techniques 

showed good agreement. A Neimark-Sacker bifurcation occurs when two of the 

eigenvalues of the Monodromy matrix leave the unit circle at the same time or when the 

eigenvalues of the state matrix of the average model suddenly crossed to the positive 

side of the complex eigenvalue plane. It should be noted that the state space averaging 

technique is suitable for analysing only slow scale instability, while the Monodromy 

matrix approach is suitable for analysing both slow scale and fast-scale instabilities. The 

occurrence of the Neimark-Sacker bifurcation in the PI controlled PMDC drive was 

further validated experimentally (for the first time) using a low cost digital signal 

controller (dsPIC30F3010). Numerical, analytical and experimental results showed 

good agreement.  

Another advantage of the Monodromy matrix approach is the insight it gives in terms of 

the control of the fast-scale instability. By manipulation of the Saltation matrix 

component of the Monodromy matrix, the fast-scale instability can be controlled and the 

system parameter range for nominal period-1 operation extended. Three control 

techniques based on Saltation matrix manipulation were employed (detailed in chapter 

6) and were found to be successful in controlling the onset of the fast-scale instability in 

the selected electrical drive systems. The goal of the controller is to push the Floquet 

multiplier back to the unit circle and this could be achieved by manipulating either the 

partial derivative of the switching hypersurface with respect to time )/)((( dtth X or by 

manipulating the normal to the hypersurface )/)((( XX dth .  

9.2 Suggestions for Future Work 

In this thesis, the nonlinear phenomena in PMDC drives, SRM drives and SCDC drives 

were analysed and controlled using the Monodromy matrix approach. Future work in 

this area may include: 

 Combining the Saltation matrix based control technique with artificial 

intelligence (AI) techniques such as artificial neural network (ANN) and fuzzy 

logic in developing an optimal controller for the nonlinear phenomena in 

electrical drives. 

 Combining the Saltation matrix based control technique with sliding mode 

control scheme for a more robust control of electrical drive systems. 
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 The application of the Monodromy matrix technique in the stability analysis of 

brushless DC drives, permanent magnet synchronous drives, and full-bridge 

converter DC drives employing the unipolar PWM switching technique.  

 The application of the Monodromy matrix technique in the stability analysis of 

complex systems with more than one interacting electrical drives such as robotic 

arms, unmanned aerial vehicles etc. 
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APPENDIX a 

Experimental set-up 

 

 

A.1 Introduction  

The experiment set up used in this investigation consisted of a PMDC motor and 

electronic load unit, the power converter circuit and the control electronics. The shaft 

speed was measured using a 3 channel quadrature encoder (HEDS-5540). The power 

converter and the control electronics are mounted on a flexible dsPIC30F3010 inverter 

board originally built for a three-phase brushless DC motor drive (Fig.4.43). The board 

was slightly modified in this project to enable the use of the built-in quadrature encoder 

interface (QEI) peripheral in the dsPIC30F3010 digital signal controller (DSC). Only 

two of the three inverter legs (or four power MOSFETS) are used, thus forming an H-

bridge. The speed control algorithm was implemented in C language using the 

Microchip MPLAB integrated development environment (IDE) and C30 compiler. The 

executable code was downloaded to the DSC using the Microchip ICD2 debugging 

device. The hardware set up is shown in Fig.A.1  

 

 

 

                                        

 

 

                  

              Fig. A.1  Hardware set up         
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A.2 Control and Power Circuits 

The block diagram representation of the control and power circuits is shown in Fig. A.2. 

The key dsPIC30F3010 peripherals used in this project are the 10-bit analogue to digital 

conversion (ADC) unit, the QEI module, and the motor control PMW (MCPWM) 

module. Detail information on these peripherals could be found in the device data sheet. 

The reference speed (ωref) is provided by the potentiometer (whose output is connected 

to one of the ADC pins of the DSC) and the actual speed is measured by the quadrature 

encoder. The voltage pulses produced by the three channels of the encoder (phase A, 

phase B and Index) are processed using the built-in QEI peripheral to obtain the actual 

speed. The speed can be measured by counting the number of encoder pulses in a fixed 

time interval or by measuring the time it takes to obtain a fixed number of encoder 

pulses. 

  

 

 

 

 

 

   

 

 

  

           

 

 

 

 

                                  Fig. A. 2  Control and power Circuit 
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The speed error (the difference between the reference speed and the actual speed) is 

processed by the PI control algorithm to obtain the modulation index (control signal). 

The modulation index is then processed by the motor control PWM (MCPWM) 

peripheral of the DSC to obtain the four PWM outputs (PWM1L, PWM1H, PWM2L, 

and PWM2H) used to turn the power switches in the H-bridge ON and OFF. By varying 

the PWM duty cycle the average voltage applied at the armature terminals and the 

motor speed can be controlled. The power switch used in this project is 1RF540 N 

channel Power MOSFET, and the device driver is high speed power MOSFET/IGBT 

driver (IR2130) which has three independent high and low side output channels 

(H01,2,3 and L01,2,3). Fig. A.3 shows the status of the four power switches in the H-

bridge during forward motoring operation.  

 

 

                   Fig. A.3  Forward motoring operation 

 

A.3 Configuring the dsPIC30F30F3010 Peripherals in C Language 

The configuration of the three key peripherals of the DsPIC30F3010 (QEI, MCPWM, 

and ADC) using C language will be discussed in this section. Three software routines: 

QEI_CONFIG (), MCPWM_CONFIG () and ADC_CONFIG () were created for this 

role.  

A.3.1 QEI Configuration 

Quadrature or optical encoders are commonly used for shaft speed and position 

measurements in closed loop digital implementations of electrical drives. Usually, three 
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output channels (phase A, phase B and Index) provide information on the movement of 

the motor shaft including distance and direction. The QEI peripheral in dsPIC30F3010 

is used for processing the signals from the quadrature encoder, thus relieving the burden 

from the CPU. The peripheral is composed of digital filters for conditioning the input 

signals, quadrature decoder logic for interpreting the phase A and phase B signals, and 

an up/down counter for accumulating the count. The four control registers that govern 

the operation of the QEI peripheral are: 

 QEI Control Register (QEICON). This 16bit register allows the control of the 

QEI operation and status flag. 

 Digital Filter Control Register (DFLTCON). This register allows the control of 

the digital input  filter operation 

 Position Count Register (POSCNT). This register allows  writing or reading of 

the 16bit position counter. 

 Maximum Count Register (MAXCNT). This register holds a value that will be 

compared with the pulse count in the POSCNT register. The CPU will be 

interrupted if the pulse count in POSCNT register matches the value stored in 

MAXCNT register. 

/******************QEI peripheral configuration*****************************    

//The software routine implemented to configure the above registers is listed below. The 

//quadrature encoder used is HEDS-5540 which has 3 output channels and 500 counts 

//per revolution (CPR). The QEI peripheral is configured in ×4 operating mode thus 

//increasing the encoder resolution to 2000 CPR. 

**********************************************************************/ 

void QEI_CONFIG(void) 

{ 

QEICONbits.QEIM = 0;  

QEICONbits.CNTERR = 0;  

QEICONbits.QEISIDL = 0;  

QEICONbits.SWPAB = 0;  

QEICONbits.PCDOUT = 0;  
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QEICONbits.POSRES = 0; 

DFLTCONbits.CEID = 1;  

DFLTCONbits.QEOUT = 1;  

DFLTCONbits.QECK = 7;  

POSCNT = 0; // Reset position counter 

MAXCNT=50; 

QEICONbits.QEIM =7; 

 IFS2bits.QEIIF=0;//QEI Interrupt flag reset. 

return; 

}  

A.3.2 MCPWM Configuration 

Speed control in modern electrical drives is achieved using PWM. In the past, PWM 

was implemented using special PWM chips or circuits, thus increasing the overall cost 

of the system. The MCPWM peripheral in dsPIC30F3010 is aimed at simplifying the 

task of producing PWM signals. The peripheral has 3 PWM generators and each PWM 

generator can produce two PWM outputs. Thus, the 3 PWM generators can produce 6 

PWM outputs. Two output pins are provided for each PWM generator and the output 

pin pair can be configured for complementary or independent operation. Also the PWM 

output of any of the pins can be overridden manually using the OVDCON register of the 

MCPWM peripheral. The key control registers that need to be configured are: 

 PWM time base control register (PTCON) 

  PWM time base register (PTMR) 

 PWM time base period register (PTPER) 

 PWM control register 1 and 2 (PWMCON1 and PWMCON2) 

 Dead time control registers 1 and 2 (DTCON1 and DTCON2    ) 

 Fault A and B control registers (FLTACON and FLTBCON  ) 

 PWM Duty cycle registers (PDC1, PDC2 and PDC3) 
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/*******************The MCPWM Peripheral Configuration*******************       

 //The software routine implemented to configure the control registers is shown below.   

//PWM_FREQ=20000hz                                                                                                 

//FCY=30000000(30MIPS)                                                                                                

//Independent PWM mode is implemented.   

**********************************************************************/ 

void MCPWM_CONFIG(void) 

{ 

         PTCON = 0x8000; //Timebase On, runs in idle, no post or prescaler, free-running. 

          PTPER = (FCY/PWM_FREQ)-1; //FCY and PWM_FREQ are constants. 

          SEVTCMP = 0;  

          PWMCON1 = 0x0FFF;    

          PWMCON2 = 0x0004; 

          FLTACON = 0x0000;  

          OVDCON = 0; 

          PDC1 = 0; 

          PDC2 =0;  

          PDC3 = 0; 

          IFS2bits.PWMIF = 0; 

          IFS2bits.FLTAIF =0;       

          return; 

} 
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A.3.3 ADC Configuration 

The speed reference is obtained via the potentiometer connected to one of the 

DsPIC30F3010 analogue input pins. The analogue voltage from the potentiometer is 

converted to discrete value using the 10-bit ADC peripheral available in dsPIC30F3010. 

To use this peripheral, the following control registers were configured: 

 A/D Control Register 1, 2 and 3( ADCON1, ADCON2 and ADCON3) 

 A/D Input Channel Select Register (ADCHS) 

 A/D Port Configuration Register (ADPCFG) 

  A/D Input Scan Select Register (ADCSSL) 

 

/************************The ADC Peripheral Configuration******************                

//The software routine implemented to configure the control registers is listed below.                                                                                               

//Clearing of the ADCON1 samp bit ends sampling and starts conversion.                                                                                                 

**********************************************************************/ 

Void ADC_CONFIG (void) 

{ 

ADPCFG = 0b1111111111111000; 

ADCHS = 2;  

ADCON1 = 0x030E;  

 ADCON2 = 0x0200;  

 ADCON3 = 0x007;  

 ADCSSL = 0x003F;        

 IFS0bits.ADIF = 0; 

 ADCON1bits.ADON=1; 

 return;  

} 



REFERENCES 

   

189 
 

REFERENCES 

 

[1] T. Wildi, Electrical Machines, Drives, and Power Systems, Fifth ed.: Prentice 

Hall, 2002. 

[2] A. Hughes, Electric Motors and Drives, Third ed.: Newnes, 2006. 

[3] M. A. El-Sharkawi, Fundamentals of Electric Drives: Brooks/Cole, 2000. 

[4] S. Banerjee and G. Verghese, Nonlinear Phenomena in Power Electronics: 

Bifurcation, Chaos, Control and Applications: Wiley-IEEE Press, 2001. 

[5] J. H. B. Deane and D. C. Hamill, "Instability, subharmonics, and chaos in power 

electronic systems," Power Electronics, IEEE Transactions on, vol. 5, pp. 260-

268, 1990. 

[6] D. C. Hamill, "Power electronics: a field rich in nonlinear dynamics," Workshop 

on Nonlinear Dynamics of Electronic Systems, pp. 164-179, 1995. 

[7] K. T. Chau, J. H. Chen, C. C. Chan, J. K. H. Pong, and D. T. W. Chan, "Chaotic 

behavior in a simple DC drive," in Power Electronics and Drive Systems, 1997. 

Proceedings., 1997 International Conference on, 1997, pp. 473-479 vol.1. 

[8] J. H. Chen, K. T. Chau, and C. C. Chan, "Analysis of chaos in current-mode-

controlled DC drive systems," Industrial Electronics, IEEE Transactions on, vol. 

47, pp. 67-76, 2000. 

[9] S. H. Strogatz, Nonlinear Dynamics and Chaos : With Applications to Physics, 

Biology, Chemistry, and Engineering .    New York , United States: Perseus 

Books Publishing, LLC, 1994. 

[10] R. C. Hilborn, Chaos and Nonlinear Dynamics : An Introduction for Scientist 

and Engineers, 2nd Edition ed.  New  York: Oxford University Press inc, 2000. 

[11] C. K. Tse, Y. M. Lai, and H. H. C. Iu, "Hopf bifurcation and chaos in a 

hysteretic current-controlled Cuk regulator," in Power Electronics Specialists 

Conference, 1998. PESC 98 Record. 29th Annual IEEE, 1998, pp. 1091-1097 

vol.2. 

[12] D. Dai, X. Ma, B. Zhang, and C. K. Tse, "Hopf bifurcation and chaos from torus 

breakdown in voltage-mode controlled DC drive systems," Chaos, Solitons & 

Fractals, vol. 41, pp. 1027-1033, 2009. 

[13] A. El Aroudi, L. Benadero, E. Toribio, and G. Olivar, "Hopf bifurcation and 

chaos from torus breakdown in a PWM voltage-controlled DC-DC boost 

converter," Circuits and Systems I: Fundamental Theory and Applications, IEEE 

Transactions on, vol. 46, pp. 1374-1382, 1999. 

[14] A. El Aroudi, E. Rodriguez, R. Leyva, and E. Alarcon, "A Design-Oriented 

Combined Approach for Bifurcation Prediction in Switched-Mode Power 

Converters," Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. 

57, pp. 218-222, 2010. 

[15] D. Giaouris, S. Banerjee, O. Imrayed, K. Mandal, B. Zahawi, and V. Pickert, 

"Complex Interaction Between Tori and Onset of Three-Frequency Quasi-

Periodicity in a Current Mode Controlled Boost Converter," Circuits and 

Systems I: Regular Papers, IEEE Transactions on, vol. 59, pp. 207-214. 

[16] R. D. Middlebrook and S. C. uk, "A general unified approach to modeling 

switching-converter power stages," IEEE Power Electronics Specialists Conf., 

Cleverand, OH, pp. 18–34., 1976. 

[17] P. T. Krein, J. Bentsman, R. M. Bass, and B. C. Lesieutre, "On the use of 

averaging for the analysis of power electronic systems," in Power Electronics 



REFERENCES 

   

190 
 

Specialists Conference, 1989. PESC '89 Record., 20th Annual IEEE, 1989, pp. 

463-467 vol.1. 

[18] C. K. Tse, Complex Behaviour of Switching  Power converter: CRC  Press, 2004. 

[19] J. Mahdavi, A. Emaadi, M. D. Bellar, and M. Ehsani, "Analysis of power 

electronic converters using the generalized state-space averaging approach," 

Circuits and Systems I: Fundamental Theory and Applications, IEEE 

Transactions on, vol. 44, pp. 767-770, 1997. 

[20] M. di Bernardo and F. Vasca, "Discrete-time maps for the analysis of 

bifurcations and chaos in DC/DC converters," Circuits and Systems I: 

Fundamental Theory and Applications, IEEE Transactions on, vol. 47, pp. 130-

143, 2000. 

[21] J. H. B. Deane and D. C. Hamill, "Chaotic behaviour in current-mode controlled 

DC-DC convertor," Electronics Letters, vol. 27, pp. 1172-1173, 1991. 

[22] A. F. Filippov, Differential Equations With Discontinuous Righthand Sides. . 

Dordrecht, The Netherlands Kluwer, 1988. 

[23] D. Giaouris, S. Banerjee, B. Zahawi, and V. Pickert, "Stability Analysis of the 

Continous Conduction Mode Buck Converter Via Filippov's Method," IEEE 

Transactions on Circuits and Systems, vol. 55, May 2008. 

[24] A. Elbkosh, D. Giaouris, V. Pickert, B. Zahawi, and S. Banerjee, "Stability 

analysis and control of bifurcations of parallel connected DC/DC converters 

using the monodromy matrix," in Circuits and Systems, 2008. ISCAS 2008. 

IEEE International Symposium on, 2008, pp. 556-559. 

[25] E. Ott, C. Grebogi, and J. A. Yorke, "Controlling chaos," Physical Review 

Letters, vol. 64, p. 1196, 1990. 

[26] K. Chakrabarty and S. Banerjee, "Control of chaos in piecewise linear systems 

with switching nonlinearity," Physics Letters A, vol. 200, pp. 115-120, 1995. 

[27] G. Poddar, K. Chakrabarty, and S. Banerjee, "Control of chaos in the boost 

converter," Electronics Letters, vol. 31, pp. 841-842, 1995. 

[28] G. Poddar, K. Chakrabarty, and S. Banerjee, "Experimental control of chaotic 

behavior of buck converter," Circuits and Systems I: Fundamental Theory and 

Applications, IEEE Transactions on, vol. 42, pp. 502-504, 1995. 

[29] J. Baillieul, R. Brockett, and R. Washburn, "Chaotic motion in nonlinear 

feedback systems," IEEE Transactions on circuits and system, vol. 27, pp. 990 - 

997, 1980  

[30] D. C. Hamill and D. J. Jeffries, "Subharmonics and chaos in a controlled 

switched-mode power converter," Circuits and Systems, IEEE Transactions on, 

vol. 35, pp. 1059-1061, 1988. 

[31] J. H. B. Deane and D. C. Hamill, "Analysis, simulation and experimental study 

of chaos in the buck converter," in Power Electronics Specialists Conference, 

1990. PESC '90 Record., 21st Annual IEEE, 1990, pp. 491-498. 

[32] D. C. Hamill, J. H. B. Deane, and D. J. Jefferies, "Modeling of chaotic DC-DC 

converters by iterated nonlinear mappings," IEEE Transactions on Power 

Electronics, vol. 7, pp. 25-36, 1992. 

[33] M. d. Bernardo, C. Budd, and A. Champneys, "Grazing, skipping and sliding: 

Analysis of the non-smooth dynamics of the DC/DC buck converter," 

Nonlinearity, 1998. 

[34] C. K. Tse and M. Di Bernardo, "Complex behavior in switching power 

converters," Proceedings of the IEEE, vol. 90, pp. 768-781, 2002. 

[35] H. Lihong, J. Meimei, D. Zhongwen, and W. Jianhua, "Chaos control for the 

Boost converter under current-mode control," in Control and Decision 

Conference (CCDC), 2010 Chinese, pp. 3579-3583. 



REFERENCES 

   

191 
 

[36] S. Banerjee and K. Chakrabarty, "Nonlinear modeling and bifurcations in the 

boost converter," Power Electronics, IEEE Transactions on, vol. 13, pp. 252-

260, 1998. 

[37] H. Lihong, J. Meimei, and S. Guangyan, "Chaos control for the Buck-Boost 

converter under current-mode control," in Advanced Computational Intelligence 

(IWACI), 2010 Third International Workshop on, pp. 426-431. 

[38] C. D. Xu, K. W. E. Cheng, H. Zhang, X. K. Ma, and K. Ding, "Study of 

Intermittent Bifurcations and Chaos in Buck-Boost Converters with Input 

regulators," in Power Electronics Systems and Applications, 2006. ICPESA '06. 

2nd International Conference on, 2006, pp. 268-272. 

[39] C. K. Tse and W. C. Y. Chan, "Instability and chaos in a current-mode 

controlled Cuk converter," in Power Electronics Specialists Conference, 1995. 

PESC '95 Record., 26th Annual IEEE, 1995, pp. 608-613 vol.1. 

[40] C. K. Tse, Y. M. Lai, and H. H. C. Iu, "Hopf bifurcation and chaos in a free-

running current-controlled Cuk switching regulator," Circuits and Systems I: 

Fundamental Theory and Applications, IEEE Transactions on, vol. 47, pp. 448-

457, 2000. 

[41] L. Ming, D. Dong, M. Xikui, and H. H. C. Iu, "Fast-scale period-doubling 

bifurcation in voltage-mode controlled full-bridge inverter," in Circuits and 

Systems, 2008. ISCAS 2008. IEEE International Symposium on, 2008, pp. 2829-

2832. 

[42] M. Li, D. Dai, and X. Ma, "Slow-Scale and Fast-Scale Instabilities in Voltage-

Mode Controlled Full-Bridge Inverter," Circuits, Systems, and Signal 

Processing, vol. 27, pp. 811-831, 2008. 

[43] Y. Kuroe and S. Hayashi, "Analysis of bifurcation in power electronic induction 

motor drive systems," in Power Electronics Specialists Conference, 1989. PESC 

'89 Record., 20th Annual IEEE, 1989, pp. 923-930 vol.2. 

[44] I. Nagy, "Tolerance band based current control of induction machines 

highlighted with the theory of chaos," in Power Electronics Congress, 1994. 

Technical Proceedings. CIEP '94., 3rd International, 1994, pp. 155-160. 

[45] N. Hemati, "Strange attractors in brushless DC motors," Circuits and Systems I: 

Fundamental Theory and Applications, IEEE Transactions on, vol. 41, pp. 40-

45, 1994. 

[46] K. T. Chau, J. H. Chen, C. C. Chan, and D. T. W. Chan, "Modeling of 

subharmonics and chaos in DC motor drives," in Industrial Electronics, Control 

and Instrumentation, 1997. IECON 97. 23rd International Conference on, 1997, 

pp. 523-528 vol.2. 

[47] J. H. Chen, K. T. Chau, C. C. Chan, and Q. Jiang, "Subharmonics and Chaos in 

Switched Reluctance Motor Drives," Power Engineering Review, IEEE, vol. 22, 

pp. 57-57, 2002. 

[48] Z. Suto, I. Nagy, and E. Masada, "Period adding route to chaos in a hysteresis 

current controlled AC drive," in Advanced Motion Control, 2000. Proceedings. 

6th International Workshop on, 2000, pp. 299-304. 

[49] L. Zhong, P. Jin Bae, J. Young Hoon, Z. Bo, and C. Guanrong, "Bifurcations 

and chaos in a permanent-magnet synchronous motor," Circuits and Systems I: 

Fundamental Theory and Applications, IEEE Transactions on, vol. 49, pp. 383-

387, 2002. 

[50] Y. Gao and K. T. Chau, "Hopf bifurcation and chaos in synchronous reluctance 

motor drives," Energy Conversion, IEEE Transactions on, vol. 19, pp. 296-302, 

2004. 



REFERENCES 

   

192 
 

[51] K. Pyragas, "Continuous control of chaos by self-controlling feedback," Physics 

Letters A, vol. 170, pp. 421-428, 1992. 

[52] K. Pyragas, "Control of Chaos via an Unstable Delayed Feedback Controller," 

Physical Review Letters, vol. 86, p. 2265, 2001. 

[53] J. H. Chen, K. T. Chau, S. M. Siu, and C. C. Chan, "Experimental stabilization 

of chaos in a voltage-mode DC drive system," Circuits and Systems I: 

Fundamental Theory and Applications, IEEE Transactions on, vol. 47, pp. 

1093-1095, 2000. 

[54] T. Asakura, K. Yoneda, Y. Saito, and M. Shioya, "Chaos detection in velocity 

control of induction motor and its control by using neural network," in Signal 

Processing Proceedings, 2000. WCCC-ICSP 2000. 5th International Conference 

on, 2000, pp. 1633-1638 vol.3. 

[55] R. Haipeng and L. Ding, "Nonlinear feedback control of chaos in permanent 

magnet synchronous motor," Circuits and Systems II: Express Briefs, IEEE 

Transactions on, vol. 53, pp. 45-50, 2006. 

[56] W. Cheng, Y. Tong, and C. Li, "Chaos Control of Permanent Magnet 

Synchronous Motor via Sliding Mode Variable Structure Scheme," in Intelligent 

Systems and Applications (ISA), 2011 3rd International Workshop on, pp. 1-4. 

[57] G. Xiaohui and H. Jin, "Chaos control of permanent magnet synchronous 

motor," in Electrical Machines and Systems, 2005. ICEMS 2005. Proceedings of 

the Eighth International Conference on, 2005, pp. 484-488 Vol. 1. 

[58] T. Tang, M. Yang, H. Li, and D. Shen, "A New Discovery and Analysis on 

Chaos and Bifurcation in DC Motor Drive System with Full-bridge Converter," 

in Industrial Electronics and Applications, 2006 1ST IEEE Conference 

Singapore, 2006. 

[59] A. Ralph and C. Shaw, Dynamics--The geometry of behaviour, 1982. 

[60] J. R. Brannan and W. E. Boyce, Differential Equations :An Introduction  to 

Modern Methods and Applications.    Hoboken, NJ, United States: John 

Wiley&Sons,Inc, 2007. 

[61] B. C. Kuo, Automatic Control Systems. New Jersey: Prentice-Hall,Inc, 1995. 

[62] K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos, an introduction to 

dynamical systems. 

[63] F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Second 

ed.: Springer, 1996. 

[64] D. C. Hamill, J. H. B. Deane, and D. J. Jefferies, "Modeling of chaotic DC-DC 

converters by iterated nonlinear mappings," Power Electronics, IEEE 

Transactions on, vol. 7, pp. 25-36, 1992. 

[65] R. I. Leine and H. Nijmeijer, Dynamics and Bifurcations of Non-Smooth 

Mechanical Systems. New-York: Springer-Verlag, 2004. 

[66] D. Giaouris, S. Maity, S. Banerjee, V. Pickert, and B. Zahawi, "Application of 

Filippov method for the analysis of subharmonic instability in dc\–dc converters 

            " Int. J. of  Circuit Theory Applications, vol. 37, pp. 899-919, 2009. 

[67] J. R. Brannan and W. E. Boyce, "Differential equations--An introduction to 

modern methods and Applictaions." 

[68] N. Hong, L. Chao, Z. Yajun, and S. Haiyi, "The bifurcation analysis and chaos 

anti-control of a differential-algebraic system," in Bio-Inspired Computing: 

Theories and Applications (BIC-TA), 2010 IEEE Fifth International Conference 

on, pp. 104-108. 

[69] D. Borserio, H. Villanueva, and J. Falconer, "Chaotic analysis of fetal heart rate 

variability," in Engineering in Medicine and Biology Society, 1994. Engineering 



REFERENCES 

   

193 
 

Advances: New Opportunities for Biomedical Engineers. Proceedings of the 

16th Annual International Conference of the IEEE, 1994, pp. 1258-1259 vol.2. 

[70] U. Galvanetto, S. R. Bishop, and X. Daolin, "Adaptive control of chaotic stick-

slip mechanical systems," in Control of Oscillations and Chaos, 2000. 

Proceedings. 2000 2nd International Conference, 2000, pp. 225-228 vol.2. 

[71] S. Banerjee, "Coexisting attractors, chaotic saddles, and fractal basins in a power 

electronic circuit," Circuits and Systems I: Fundamental Theory and 

Applications, IEEE Transactions on, vol. 44, pp. 847-849, 1997. 

[72] D. C. Hamill and J. H. B. Deane, "Modelling of chaotic dc-dc converters by 

iterative nonlinear  mapping," IEEE    Trans.  Power Electronics., vol. Vol.7, pp. 

25-36, Jan. 1992. 

[73] J. Chiasson, "Nonlinear Differential-Geometric Technique for Control of a 

Series DC Motor," IEEE Transactions on Control Systems and Technology, vol. 

2, pp. 35-42, 1994. 

[74] S. Mehta and J. Chiasson, "Nonlinear control of a series DC motor: theory and 

experiment," Industrial Electronics, IEEE Transactions on, vol. 45, pp. 134-141, 

1998. 

[75] F. Ismail, S. Wahsh, and A. Z. Mohamed, "High-performance prediction for 

variable-speed switched reluctance drives," in Energy Conversion Engineering 

Conference, 1997. IECEC-97., Proceedings of the 32nd Intersociety, 1997, pp. 

348-352 vol.1. 

[76] O. Cornea, D. Popovici, and A. Argeseanu, "A switched reluctance motor drive 

model using standard simulink library components," in Optimization of 

Electrical and Electronic Equipment, 2008. OPTIM 2008. 11th International 

Conference on, 2008, pp. 69-74. 

[77] T. J. E. Miller, Switched Reluctance Motors and Their Control: Oxford 

University Press, 1993. 

[78] F. Soares and P. J. C. Branco, "Simulation of a 6/4 Switched Reluctance Motor 

Based on Matlab/Simulink Environment," IEEE Transactions on Aerospace and 

Electronic Systems, vol. 37, 2001. 

[79] X. Wang and J. K. Hale, "On monodromy matrix computation," Computer 

Methods in Applied Mechanics and Engineering, vol. 190, pp. 2263-2275, 2001. 

[80] H. Vasquez and J. K. Parker, "A new simplified mathematical model for a 

switched reluctance motor in a variable speed pumping application," 

Mechatronics, vol. 14, pp. 1055-1068, 2004. 

[81] H. Vasquez, J. Parker, and T. Haskew, "Control of a 6/4 switched reluctance 

motor in a variable speed pumping application," Mechatronics, vol. 15, pp. 

1061-1071, 2005. 

[82] Z. Suying and L. Hui, "Modeling and Simulation of Switched Reluctance Motor 

Double Closed Loop Control System," in Intelligent Control and Automation, 

2006. WCICA 2006. The Sixth World Congress on, 2006, pp. 6151-6155. 

[83] B. C. Mecrow, E. A. El-Kharashi, J. W. Finch, and A. G. Jack, "Preliminary 

Performance Evaluation of Switched Reluctance Motors with Segmental 

Rotors," IEEE Transactions on Energy Conversion, vol. 19, pp. 679-686, 2004. 

[84] B. C. Mecrow, C. Weiner, and A. C. Clothier, "The Modeling of Switched 

Reluctance Machines With Magnetically Coupled Windings," IEEE 

TRANSACTIONS ON INDUSTRY APPLICATIONS vol. 37, 2001. 

[85] M. di Bernardo, F. Garofalo, L. Glielmo, and F. Vasca, "Quasi-periodic 

behaviors in DC/DC converters," in Power Electronics Specialists Conference, 

1996. PESC '96 Record., 27th Annual IEEE, 1996, pp. 1376-1381 vol.2. 



REFERENCES 

   

194 
 

[86] M. Debbat, A. El Aroudi, R. Giral, and L. Martinez-Salamero, "Hopf bifurcation 

in PWM controlled asymmetrical interleaved dual boost DC-DC converter," in 

Industrial Technology, 2003 IEEE International Conference on, 2003, pp. 860-

865 Vol.2. 

[87] J. H. Chen, K. T. Chau, C. C. Chan, and J. Quan, "Subharmonics and chaos in 

switched reluctance motor drives," Energy conversion, ieee transactions on, vol. 

17, pp. 73-78, 2002. 

[88] D. Giaouris, A. Elbkosh, S. Banerjee, B. Zahawi, and V. Pickert, "Control of 

switching circuits using complete-cycle solution matrices," in Industrial 

Technology, 2006. ICIT 2006. IEEE International Conference on, 2006, pp. 

1960-1965. 

[89] A. N. Natsheh, N. B. Janson, and J. G. Kettleborough, "Control of chaos in a 

DC-DC boost converter," in Industrial Electronics, 2008. ISIE 2008. IEEE 

International Symposium on, 2008, pp. 317-322. 

[90] K. Chakrabarty, U. Kar, and S. Kundu, "Bifurcation behavior  and Co-existing 

attractor of PWM controlled DC drives," in India Conference (INDICON), 2011 

Annual IEEE, pp. 1-6. 

[91] T. H. Abdelhamid, "Performance of Single-phase DC Drive System Controlled 

by Uniform P WM Full-Bridge DC-DC Converter," in 10th Meditwranean 

Electrotechnical Conference, MEleCon 2000, 2000. 

 

 


