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Abstract 

Aggregated electrical activity from brain regions recorded via an electroencephalogram (EEG), 

reveal that the brain is never at rest, producing a spectrum of ongoing oscillations that 

change as a result of different behavioural states and neurological conditions. In particular, 

this thesis focusses on pathological oscillations associated with absence seizures that typically 

affect 2-16 year old children. Investigation of the cellular and network mechanisms for absence 

seizures studies have implicated an abnormality in the cortical and thalamic activity in the 

generation of absence seizures, which have provided much insight to the potential cause of this 

disease. A number of competing hypotheses have been suggested, however the precise cause 

has yet to be determined. This work attempts to provide an explanation of these abnormal 

rhythms by considering a physiologically based, macroscopic continuum mean-field model of 

the brain's electrical activity. The methodology taken in this thesis is to assume that many 

of the physiological details of the involved brain structures can be aggregated into continuum 

state variables and parameters. The methodology has the advantage to indirectly encapsulate 

into state variables and parameters, many known physiological mechanisms underlying the 

genesis of epilepsy, which permits a reduction of the complexity of the problem. That is, a 

macroscopic description of the involved brain structures involved in epilepsy is taken and then 

by scanning the parameters of the model, identification of state changes in the system are 

made possible. Thus, this work demonstrates how changes in brain state as determined in 

EEG can be understood via dynamical state changes in the model providing an explanation 

of absence seizures. Furthermore, key observations from both the model and EEG data 

motivates a number of model reductions. These reductions provide approximate solutions of 

seizure oscillations and a better understanding of periodic oscillations arising from the involved 

brain regions. Local analysis of oscillations are performed by employing dynamical systems 

theory which provide necessary and sufficient conditions for their appearance. Finally local 

and global stability is then proved for the reduced model, for a reduced region in the parameter 

space. The results obtained in this thesis can be extended and suggestions are provided for 

future progress in this area. 



Keywords: Mathematical EEG modelling, Ki sets, generalised epilepsy, Nonlinear dynamics, 

Normal forms, Bifurcations, Piecewise Linear Systems, Limit Cycles, Global Stability. 
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Chapter 1 

Introduction 

In this chapter, an overview of the problem is provided. We first highlight the importance and 

the complexity in studying the central nervous system and then bring to the attention the the­

oretical hypothesis under which we pursue our study. A summary of basic neurophysiological 

terminology can be found in Appendix A. 

1.1 The need to study the central nervous system 

The central nervous system- the brain - is an intriguing, complex and unique biophysical sys­

tem. Significantly, it determines the behaviour of an individual organism and allows for it to 

interact with the surrounding world. The remarkable capabilities of the brain naturally gives 

rise to challenging questions regarding the underlying mechanisms responsible for all activ­

ity arising, in normal and pathological states. Through increasing knowledge of the nervous 

system, diagnosis and therapy of many neurological disorders such as epilepsy, depression, 

Parkinson's and schizophrenia has improved. Furthermore, understanding the neurophysio­

logical basis of brain activity may inspire great ideas in other scientific and engineering fields 

and lead to the development of new technologies. The complexity of the brain is such that neu­

roscience is now an aggregate of different scientific fields and to unveil the secrets of the brain 

may only be possible by unifying the efforts of these different methodologies and expertise. 
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1.1.1 Why study epilepsy? 

In particular, this thesis focusses on epilepsy, one the most common neurological disorders, 

with studies indicating a life-time prevalence of between 0.5% and 1% of the total popula­

tion [6]. For instance, approximately 2 million people in the United States have epilepsy, and 

3% of the general population will experience a seizure at some point in their lives [7]. As 

a chronic disorder, epilepsy carries significant mortality ( > 2000 deaths per annum in the 

UK) [34] and morbidity [25] as well as reduced quality of life. It is a disease with high medical 

costs, for example, estimated £1.93 billion per year in the UK alone. The term 'epilepsy' 

encompasses over 40 recognized types of seizure syndromes [117] and because of this variety, 

diagnosis can be complicated. This diversity arises from the numerous underlying molecular, 

cellular and network mechanisms, as well as from the spatial and temporal characteristics of 

the seizure oscillations. These may be observed via electrical recordings using scalp electrodes 

(EEG). Most seizure types are grouped in two basic categories: partial and generalised. Par­

tial seizures occur within localised regions of the brain, whereas generalised seizures appear 

throughout the fore brain. If the partial seizure does not cause a disruption of consciousness, 

it is said to be simple; if it does, then it is referred to as complex. Medical sciences have 

made significant progress in diagnosis and treatments of both types of seizures leading to the 

development of a number of anti-epileptic drugs (AEDs) and surgery [140]. The majority of 

patients have partial epilepsy, of which only 25% have a good response to AEDs and 30% show 

no response to AEDs at all [53]. In fact, in some cases, chronic use of AEDs can cause toxic 

syndromes. These patients, with poor or absent response to AEDs, account for the majority 

of costs and mortality. Alternatively, surgery may provide a cure or alleviate the syndrome if 

AEDs fail. The goal of surgical treatment is to remove the focal area producing the seizure. 

However, only a minority of patients are suitable candidates for surgery as some types of 

seizure lack a well defined focal region, which may happen in the case of generalised seizures 

and some forms of complex partial syndromes. Furthermore, surgery should be carefully con­

sidered after establishing if the correct drugs were used in the diagnosis, seizure frequency, 

severity of the attacks and risk of the surgery, where in some cases neurological complications 

can develop [16, 115]. The shortcomings of these existing methods encourage the search for 

new forms of treatments. One interesting option of study is to try to identify the cellular 

or network mechanisms by which epilepsy develops (epileptogenesis), as this could provide 
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a means to control the cellular or neuronal network abnormalities. Importantly, an insight 

into the control mechanisms could provide a technique to suppress the seizure, which, in turn 

would provide a novel approach to treatment. While compelling, this direction of study con­

fronts the inherent structural and functional complexity of the central nervous system. Thus, 

to make progress in linking seizure activity with the underlying physiology, we must begin my 

understanding the architectural organisation of the brain. 

1.2 The brain as a complex multi-scale system 

1.2.1 Structure and functionality of the brain 

The brain may be viewed as a collection of interconnected neurons (typically 1012 in the human 

brain), and each neuron has approximately 104 chemical and electrical synaptic connections in 

addition to being surrounded by glial cells. At an abstract level we could say that behaviour 

results due to the direct sum of the neuronal activity. However, this view point does not 

address the critical issue of neurons processing information at different spatia-temporal scales 

and their organisation into functional circuits mediating behaviour. Furthermore, macroscopic 

brain activity could result as more than simply the sum of the involved microscopic dynamics 

(e.g. single neuron or neural circuitry). Some neuroscientists believe that the brain developed 

by successive addition of more complex parts and behaviours imposing regulation on more 

primitive parts [112]. Thus the brainstem, limbic system and neocortex form three distinct 

levels of increasing complexity both in spatial organisation and evolutionary development. 

1.2.2 Neocortex 

The top hierarchical level of spatial cortical organisation is described via cytological stud­

ies [137], revealing an average cortical thickness of 3mm and having a layered appearance 

because of differences in the relative densities of different types of neurons at different corti­

cal depths. The total cortical area is divided into 2 hemispheres each approximately 400mm 

in diameter with about 1010 neurons. Within each hemispheres exists 10 lobes each roughly 
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170mm in diameter with around 109 neurons. Each lobe is defined in terms of prominent 

features called sulci and gyri formed by the folding of the cortex. Pioneering work of Broca 

supported the evidence of a regional functional organisation linking an impaired function to 

well defined regional activation [24]. These regions are more or less 50mm in diameter with 

nearly 108 neurons. They are connected via corticocortical axons which may span 1cm, con­

necting adjacent gyri (lobes/regions) or linking two separate cortical regions, such as frontal 

and occipital lobes having axons nearly 20cm long! The largest functional elements have 

been called cortical fields or macrocolumns approximately 0.5- 3mm in diameter and 105-106 

neurons reflecting ensemble activation in response to a stimulus. 

This range of spatial operation is reported by several authors using techniques such as EEG [113], 

functional Magnetic Resonance Imaging (fMRI) [112] or experiments using a Golgi-staining 

method [19] showing that within a macrocolumn the majority of cells project their axons· to 

distances, of no more than 3mm. Furthermore, high-resolution techniques indicate subdivi­

sions (possibly overlapped) of cortical fields (columns) [24, 86] or laminar-vertical organisation 

of neurons with a diameter in the range of 0.3mm and with about 103-104 neurons forming a 

unit with a precise function, for instance a response to a specific stimuli (e.g. the visual cor­

tex). This type of modular unit is defined by the spatial extent of its extracortical-columnar 

input. That is, cortical axons that are not specific to sensory input (limbic and brainstem 

systems) but originate from another column. Quantitative anatomic estimates, suggest there 

exists 2 x 106 columns where each project excitatory axons to between 10 and 100 other 

columns and receive input from a similar number [158]. This high degree of interconnectivity 

makes it difficult to define any specific 'neural circuit'. 

Smaller scale activations are measured using extracellular electrodes which determines neural 

ensemble activity spanning 10ttm or more. These methods include Single Unit Activity (SUA) 

and Multi Unit Activity (MUA) [3, 99] and Local Field Potentials (LFP), of the order mm 

to cm scale [76, 118]. At small spatial scales the complexity of neural interactions increases 

dramatically and the lack of specificity of intracortical connections contradicts the traditional 

view of the neural circuit (micro circuits). Neurophysiological data demonstrates a high 

degree of interconnectivity among neurons which suggests the idea of a 'neural thong', which 

is not a circuit in the traditional sense but rather a mass of tissue [26]. These views are 

supported by quantitative anatomical findings which shows that almost every cortical neurons 
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lies within two or three synapses of any other cortical neuron and are densely interconnected 

with approximately 4-km of axon length per cubic millimetre [19]! 

However, other experimentalists continue to seek a basic functional unit. The minicolumn, 

approximately 20- 50JLm in diameter and containing roughly 102 neurons, has been proposed 

as the basic unit [112]. These units can be defined by the characteristic short lateral spread 

of axons of inhibitory interneurons. The axons of these cells run along the minicolumn axes, 

so that interneurons are more densely connected along the cortical depth. These findings 

are supported by physiological experiments using extracellular electrodes which show high 

correlation of electric potentials at different locations along the axes, whereas lateral shifts 

of the electrodes beyond the diameter of minicolumns have lower correlations. Estimates 

suggest that approximately 85% of cortical neurons are pyramidal cells and the remaining 

inhibitory interneurons [19], implying a column might be subdivided into approximately 100 

minicolumns. Furthermore, physiologists conjecture that minicolumns sharpen the bound­

aries of modules by inhibiting pyramidal cells of adjacent columns, thereby limiting dynamic 

interactions to more local regions [112]. A schematic of the multiscale structure of the brain 

is illustrated in Fig 1.1. 

Having considered the spatial extent, we now focus on temporal issues. The time scales of 

processes occurring at the macro-column scale vary dramatically and most of these activities 

occur simultaneously. For instance, multiple methods of information transfer occur concur­

rently at different time scales over short distances [26]. These include reciprocal synapses 

directly between adjacent dendrites [129], fast chemical transport, and the passive spread of 

extra-cellular fields that can excite adjacent neurons [159, 160]. 

A neuron itself is an elaborate dynamical element with a number of diverse dynamical pro­

cesses occurring on different time scales ranging from sub-milliseconds (opening and closing 

of single ionic channels) to seconds (flow of 'slow' ionic currents), minutes (changes in synap­

tic conductances), days (growth and development of new synaptic connections) and decades 

(death of neurons). Each neuron generates a brief electric impulse which lasts 1 - 2ms and 

is sent along its axon, which synapses into the next neuron. The electric impulse stimulates 

the next neuron generating a post-synaptic potential at the level of the dendrites, which lasts 

about 1 to 10ms. The extracellular field produced by an action potential is less than the 
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diameter of a minicolumn [1] which suggests nonsynaptic interactions between neuron within 

the same minicolumn. Thus the concept of ·neural circuitry" at small cale may also be inac­

curate. A burst of action potential discharge from corticocortical column produce excitatory 

input to other corticocortical column . Since the di tance between column, vary. their activa­

t ion depends on the ri e times of post-synaptic potcntials and on delays due to fin ite velocity 

of action potential propagation (6-9m/. econd in myelinated axon ). For in tance, in columns 

linked by small axons about lcm in length , i. e. connected to an adjacent lobe, Lhe activation 

delay neglecLing the po t.-synaptic potential i l ms. Whereas, delays along long axon. 20cm 

in length arc around 20 to 30ms. However. corLkocorbcal axons consistently Lend to project 

more densely to close regions than to remote ones, which suggc ts the pos. ibility of travelling 

waves at relatively large scales spanning lcm or more. All these processes occuring at different 

spatia-temporal scales give rise to complex behaviour uch ac:; oscillations, synchronisation and 

regulari ation and as well as changes in the structure of local connectivity which is believed 

to be related to learning or even to more complex b ehaviour. 

Brain 

Map, 
Systems 

Networks 

Neurons 

Synapse. 
Dendrite, 
AJ(ons 

I m 

I· IOcm 

I mm 

IOO~m 

l )tm 

Membranes, 
Molecules. I A 
Ion 

Genes 

micro lesions I 

Millisecond Second Minute !lour Day 

Figure 1.1: Levels of neural organisation and spatial temporal scales at which experimental 

studies of brain systems are performed. Figure adapted from Churchland and Sejnowski /33}. 

1.2.3 The oretical hypothesis and mathematical modelling 

Systematic experimental results on the multi-. cale charactcri tics of the brain have induced 

a number of theoretical and modelling approaches. The concept of modularity propo cd by 
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Fodor suggested that the brain is composed of modules that perform 'computations' [56]. 

Modularism is an empirical formulation based on lesion studies and pathological damage in 

humans and reflects the underlying stucture of rational thought and not the anatomy and 

physiological structure of the brain. Alternatively, Shepherd considers the brain as being 

composed of functional units and these elementary units are formed at different levels of 

organisation [143]. The general approach here is to model brain function using networks. 

However, the limitations of network theory stems from its failure to deal with the hierarchical 

organisation of the brain: microscopic, mesoscopic and macroscopic. The previously high­

lighted experiments demonstrate that at small scales the concept of 'neuronal networks' is not 

well established, at least when attempting to model a complex system such as the neocortex. 

However, network theory suffices to model neural chains in limbic and brainstem systems (e.g. 

sensorimotor systems). 

Additionally, scientific theory must make connections to experiments determining laws that 

characterise the observations. The dynamical hypothesis by Gelder [61] proposes that the 

same laws that govern physical systems also govern the laws of cognitive systems, and that 

therefore, cognitive science should use dynamical systems theory rather than syntax rules. 

This view assumes that the brain operates on many spatia-temporal levels of organisation. 

However, one of the reasons for the great progress seen in the study of non living matter 

is the presence of the so-called separation of scales between fundamental forces of nature. 

Separation of scales is a mathematical technique that allows to subdivide a complex problem 

into smaller and manageable building blocks, each having a set of rules of interaction on 

various scales. However, the presence of separation of scales in complex living matter, such 

as the central nervous system, is not apparent and is still a source of great debate among 

neuroscientists. One explanation for the uncertainty of this approach in neuroscience is the 

fact that many processes in the brain operate on several spatial and/or temporal scales, thus 

providing strong interactions between them. For instance, neurons produce spikes whose 

timing is in some cases up to a millisecond precise [17, 103, 166]. On the other hand, there 

are examples showing that a lot of information is transmitted between neurons via variations 

in the average firing rate, which occur on the time scale of hundreds of milliseconds [18, 71]. 

Thus, it is still unclear when and how to 'coarse-grain' in order to move from one scale to 

another, as well as if this procedure is applicable at all. This difficulty leaves open the question 

of what is most important in the 'neural code', precise spike timing or average firing rate? 
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The emerging answer seems to indicate that both of them are essential and that their relative 

importance may depend on the situation and context [48, 101, 111, 165]. It may therefore 

be impossible to separate temporal scales in this case and the dynamical processes with time 

scales from 1 ms to 100 ms or even minutes should be analyzed simultaneously. Despite 

this latter argument, dynamics - the modelling of change, is applicable at every level, from 

subcellular to populations of neurons and using this theory mathematical models have proven 

successful in characterising neuronal events at various scales. For example, Axonal activity by 

Hodgkin and Huxley [73] which allowed one to explain the generation of action potentials, and 

the extension of the dynamical equations using the cable equation explained the propagation 

of electric activity along the axon. Assemblies of interconnected neuron models have been 

shown to display synchrony and local oscillations [62]. Large scale simulations whereby the 

trajectory of individual neurons are followed have been valuable in providing hypothesis of 

how brain activity might be organised. An example of latter is a simulation of an orientation 

hypercolumn of the visual cortex providing new insight into the origin of orientation in the 

visual cortex [ 14 7]. 

The extreme complexity of neural interactions at small scales, in which dynamic function is 

determined largely by physiological parameters of unknown magnitudes, provides substantial 

motivation for the development of macroscopic theories of neocortical dynamics- Neural field 

theory. The neural field theory views brain operation at hierarchical levels above the single 

neuron, i.e the principal functional unit is a neural-ensemble (e.g. cortical column in the cortex 

or glomerlus in the olfactory bulb) and not a single neuron. Properties of neuronal-ensembles 

differ as much from those of a neuron as neuron properties differ from those of a patch mem­

brane. Different field theories have been developed, however, these are in general all tied to 

the brain redundancy hypothesis. This assumes that strongly interconnected neurons within a 

column have approximately the same pattern of synaptic connections and respond similarly 

to very nearly identical stimuli. This redundancy might have various purposes, for example, 

to increase reliability. Because of redundancy, we can study networks of local populations of 

neurons by using continuum averages to obtain variables representing for example the average 

number of action potentials generated by the neurons from a cortical column per unit time, 

or any other averaged neuron characteristic. An example of this form of modelling approach 

is that of Wilson and Cowan [169] where they use continuum variables to describe the aver­

age time activity of the interaction of inhibitory and excitatory neural populations of specific 
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regions in the brain. An interesting application of this modelling approach was used to make 

quantitative comparisons with the measured response of a rat whisker barrel neurons and the 

resulting model provided insight in the understanding of spatial and temporal integration of 

ensemble activity [124]. Alternatively, studies by Freeman [57] through physiological experi­

ments determined the dynamical model equations characterising the response dynamics of a 

neural mass (generally columns) when stimulated by electrical currents. These studies demon­

strate that the neural-mass can be thought of as the principal functional unit to appropriately 

characterise EEG and this is the approach chosen herein. 

1.3 Aim and Scope of this work 

One form of generalised epilepsy that has received particular attention during the last two 

decades, and that this work further explores is the absence (or petit-ma0 seizure [125]. These 

seizures typically affect 2-16 year old children, and are associated with loss of cognitive abilities 

and behavioural arrest, which may last a few seconds. When returning to normal activity the 

patients have no memory of the event. Since these seizures can occur tens or hundreds of times 

a day, an incorrect diagnosis of attention-deficit disorder or daydreaming is frequently made. 

There is a classic pattern of three per second, generalised spike-wave discharges observed in 

EEG during petit-mal seizures. This is illustrated in Fig 1.2 showing an intracranial EEG 

trace. 

-3Hz s~~ 
o t 2 3 •seconds' 

Figure 1.2: A 3Hz spike wave intracranial EEG trace of a patient undergoing an absence 

attack. (Figure adapted from {157}}. 

For many years, the anatomical origin of absence seizures and the accompanying EEG pat­

tern were debated. The results of some experiments supported the hypothesis that absence 

seizures originated in the thalamus. For example, electrical stimulation ofthe thalamus in cats 

produced synchronous EEG discharges that resembled the absence pattern [81]. Also, record-
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ings from electrodes implanted in the thalamus of a child with absence epilepsy demonstrated 

three-per-second EEG discharges during typical seizures [167). Other work, suggested that 

the cerebral cortex itself was the primary origin of these seizures. For example, similar EEG 

discharges can be produced by applying proconvulsant agents to the cortical surface [105). 

The mechanism that generates absence seizures is now believed to involve an alteration in 

the circuitry between the thalamus and the cerebral cortex [58, 93, 145). The accepted tha­

lamocortical loop hypothesis for the epileptogenesis of absence seizure is supported by electro­

physiological in-vivo recordings (i.e. measuring directly from live neurons in an animal) and 

from in-vitro neural-tissue slice preparations. In addition, neuronal network models [43, 151) 

have complemented mostly in-vitro recordings which have allowed a hypothesis of a possible 

'control mechanism' within the circuitry loop causing the seizure. However, these models have 

only been able to replicate the in-vitro findings which have led to some controversies about 

the 'control mechanism' in the thalamocortical loop [39, 123). Thus this work is driven by 

the controversies and difficulties in implementing neuronal models at the microscopic scale by 

alternatively proposing Freeman type macroscopic scale models [57) inspired by the thalam­

ocortical loop findings. This type of approach is appropriate since during seizure, the brain 

enters a hypersynchronous state entraining nearby neural-mass to the same dynamical os­

cillations. The second motivation for this approach is because scalp EEG is a non-invasive 

technique and is readily available to easily assist diagnosis. 

The rest of this thesis is arranged as follows: Chapter 2 provides a general introduction 

to dynamical systems theory, bifurcation analysis, normal forms and computational tools 

that allows analysis of dynamical models. A section is also provided on the implementation 

of the numerical integration and bifurcation code we developed to analyse our systems of 

equations. We further introduce the concept of hybrid systems and piecewise linear systems 

and show how this method can be used to understand oscillations in high dimensional systems. 

In particular, this theory enables a proof of global stability of periodic solutions appearing 

in dynamical models. These solutions are ubiquitous in brain oscillations, particularly in 

epilepsy, and understanding their local and global properties is crucial. Chapter 3 gives 

an introduction to the theory and mathematical description of EEG explaining the origin 

of electric potential appearing in extracellular space. The complexity of the brain makes 

these mathematical first principles inadequate to interpret spatio-temporal dynamics generally 

observed in EEG. This difficulty leads to alternative mathematical approaches termed neural 
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fields, population density and mass action. In particular this thesis follows the mass action 

framework as it based on electrophysiologcal experiments measuring local field responses of 

neural masses to stimuli or induced by electrical pulses. We also review the main brain 

structures believed to be implicated in absence seizures. Previous experiments and detailed 

computational models have clarified many competing hypotheses in the literature and the 

overriding hypothesis explaining these types of seizures is presented. However, controversies 

on the underlying mechanisms for epileptogenesis still persist mostly because of the difficulty 

in replicating in-vivo activity observed when measuring the implicated neurons. Despite this 

difficulty, 'order parameter field models' (i.e. models that lump important variables of a 

physical system into a parameter) can still be applied and by applying bifurcation theory it is 

possible to search for the important activity transitions in the parameter space. Thus the main 

methodology used in this thesis is neural mass - order parameter field models (a combination 

of mass action models and some features of neural field models). Chapter 4, presents the 

mathematical formulation of the neural mass - order parameter field model which incorporates 

key brain structures implicated in absence seizures. We then demonstrate how changes in 

brain state as determined using EEG can be understood via dynamical state changes in the 

model, which then provides an explanation for the observed pathological oscillations. Various 

key observations in the global model leads us to a reduction of the model which allows for 

some analytical interpretation of spike-wave activity. The solutions are termed 'two-bump' 

solutions as they resemble spike-wave forms, however they are not spike-wave as these are only 

approximations and a possible interpretation. Chapter 5 is motivated by these reduction 

findings and we further investigate these oscillations by applying numerical continuation tools 

to understand the bifurcations appearing in this system and also by presenting analytical 

conditions for their appearance. Chapter 6 further extends the results from chapter 5 by 

applying normal form theory to the reduced system and then finally we apply hybrid systems 

and piecewise linear systems to prove global stability of the periodic oscillations appearing in 

the model, however in a restricted parameter set of the model. Chapter 7 concludes this 

thesis by outlining the contributions achieved and suggests possible future work. All relevant 

material and calculations performed in the thesis are provided in the appendix and numerical 

codes developed are to be found in the attached CD. 

Elements of chapter 4 appear in (21] and [136]. Results from Chapter 6-7 have been submitted 

and are available as a preprints (134, 135]. 
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Chapter 2 

Mathematical Framework and 

Methodologies 

This chapter reviews some of the mathematical and computational methodologies used in 

this thesis. The first section introduces relevant theory from dynamical systems, bifurcation 

analysis and normal forms. Here we assume that an ensemble of neurons can be represented 

as a dynamical system. The next section introduces a new approach for the analysis of 

hybrid systems and piecewise linear dynamical systems. The proposed approach allows for 

investigation of some of the global properties of a system. The following section provides 

the ideas used to implement the numerical simulation code to find approximate solutions 

of dynamical systems with delays and associated bifurcation diagrams. The final section 

then considers a brief discussion of continuation packages to numerically analyse the solution 

behaviour of a dynamical system. 

2.1 Dynamical Systems 

The notion of a dynamical system is the mathematical formalisation of the general scientific 

concept of a deterministic process. The future and past states can be computed to a certain 

extent by the present state and the laws governing their evolution, provided these laws do not 

change in time. 
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Definition 2.1.1 A dynamical system is a triple {T, U, <I>1
}, where T is a time set, U is a 

state space, and q,t : U--> U is a family of evolution operators parameterised by t E T. 

For the precise definition and proofs refer, for example, to [20). The state space U can be any 

differential manifold, such as a circle, sphere or torus. However, this thesis will only consider 

the Euclidean domain. T is a unidimensional set representing time. For example when T E Z 

the system is called a map, however when T E lR the dynamical system is called a flow. 

Generally the flow is a solution to an initial value problem and we only consider the following 

types: Ordinary Differential Equations (ODEs), Delay Differential Equations (DDEs) and 

Delay Partial Differential Equations (DPDEs). In particular for DPDEs a search for global 

uniform solutions in an infinite domain allows the reduction of this description to an DDE. 

Furthermore, in some cases it is possible to reduce a DDE into an ODE. 

2.1.1 Ordinary differential equations- ODE 

In this framework, the evolution of the system is described in terms of a relationship that 

contains functions of only one independent variable (usually time), and one or more of its 

derivatives with respect to the state variables. This may be written in the following form: 

{ 

:i; = F(x, v) 

x(O) = xo, 
(2.1) 

where x0 is the initial state and F E Ck (JRn X lRm, lRn) is the tangent field of the flow (a vector 

field) given by 

F( ) - d<I>t(x) 
x,v - dt ' 

where v should be thought of as the control parameters. The term dynamics generally denotes 

the description of solution behaviour obtained through quantitative, qualitative or numerical 

techniques. Moreover, the solution x(t) = <I>1(xo) : I x U --> U is guaranteed to exist and 

be unique in some interval I = ( -71 , 72), 7; > 0 by the smoothness of F. Furthermore, the 

following conditions hold for any initial condition x 0 and any t, s E T: 

1. If T E lR the flow is continuous. If T E Z the flow is discrete 
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2. The flow preserves the identity, i.e <I>0 (x0 ) = x0 (no time, no evolution) 

3. The flow maps a point in phase space back into the phase space; that is, .pt+•(x0 ) = 

<I>1(<I>'(x0)) (determinism). 

An orbit is a set of the form Or(x0 ) = { x : x = <I>1(x0), t E I} C U and the phase portrait is 

the classification of the different types of orbits in the phase space. In particular two special 

solutions that can occur on a vector field are: 

1. Stationary solutions (or equilibria) x* E U are those that solve F(x*, v) = 0. Equiva­

lently, we have <I>1(x*, v) = x* for all t E JRn and hence { x*} is invariant. 

2. Periodic orbits (or limit cycles) are points x• E U such that there exists 7 E lR (7 > 0) 

and q,r(x*, v) = x*. The periodic orbit is defined as the closed curve {x: x = <I>1(x*), 0::; 

t < 7*}, where 7* is the smallest number 7 such that q,r(x*, v) = x•, and it is called the 

period of the periodic orbit. 

2.1.2 Delay differential equations- DDE 

A delay equation depends on both the present and previous state of the system. This work 

focusses on delay equations with a single fixed delay which is represented as follows: 

{ 

:i; = F(x(t),x(t- 7), v), 

x(t) = r.p(t), t ::; 0 

t>O 
(2.2) 

where FE Ck(JR2n x JRm, JRn) and 7 E lR is the fixed delay, while v E JRm represents a number 

of control parameters and the functional component {x(t-7), -7 < t-7 < 0} represents past 

states. The existence of a unique solution requires a continuous function (history) as initial 

data on the interval [-7, 0], i.e r.p : [-7, 0] -> lRn. The latter implies that the phase space is 

an infinite dimensional space of continuous functions with values in the physical space JRn. 

Denoting the infinite dimensional space as C then r.p E C (contrast this with an ODE setting 

where both physical space and state space are lRn). The evolution operator is now defined as 

<I>1(r.p): C-> C which describes how the initial conditions r.p E C evolve in time, t. The solution 

is then given by a vector valued function x(t): [0, oo)-> JRn. 
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2.1.3 Dynamics in the hyperbolic space 

Once a dynamical system is defined it is necessary to study the solution behaviour in different 

regions of its phase space. To predict the directions taken by phase trajectories of a system at 

some location x of the phase space, one can compute the gradient of the flow in each direction 

of x (i.e. evaluate the partial derivatives of the flow). The formalisation of this process is given 

below, which under certain conditions will determine trajectories of the system. Consider the 

vector field (2.1) with an isolated equilibrium x* E U and let J be the partial derivative ofF 

with respect to x at ( x*, v*), i.e. 

J = DF(x*, v*) = (~;).. . 
J ,,J=l, ... ,n 

Consider that the parameter(s) v are fixed. Let a E IC be the spectrum of J, i.e. the set 

of all complex eigenvalues of J, where an eigenvalue of the matrix J is a scalar >. E a such 

that the system of equation (J- .>.)e = 0 has nontrivial solutions. The eigenvalues are 

then solutions to the characteristic polynomial det( J - >.I) = 0. Furthermore, suppose that 

E = { e1, ... , em} C m:.n is the set of generalised eigenvectors of J (i.e. the set of eigenvectors 

of J that solve in e the above system of equations which form a vector space with a basis 

in m:.n and such that the action of the matrix J on E as an operator becomes one of scalar 

multiplication). These sets can be split into three disjoint sets in the following way: 

1. Let E, =span{ e1 , .•. , em1 } be the stable linear-invariant subspace corresponding to the 

eigenvalues of J having negative real part, i.e a,= {A E a[Re.>. < 0}. 

2. Let Eu = span{ em1+I> ... , em,} be the corresponding unstable subspace associated to 

the eigenvalues having positive real part au = {.>. E a[Re.>. > 0}. 

3. Let Eo = span{ em,+I> ... , em} be the centre space corresponding to the eigenvalues of 

J having zero real part, i.e a0 = {.>. E a[Re.>. = 0}. 

The phase space is then the direct sum of the subspaces, that is, m:.n = E, E9 Eo E9 Eu. Let also 

Eh = E, E9 E, denote the hyperbolic space. Furthermore we have the following definitions for 

stationary solutions: 
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Definition 2.1.2 The equilibrium point x* is called 

1. hyperbolic if J has no eigenvalues with zero real parts. M ore precisely that detJ # 0 . i. e, 

is nonsingular. 

2. non-hyperbolic if J has at least one eigenvalue with zero real part. It may still be non­

singular. 

3. elliptic, if all eigenvalues have zero real part (but requires that the imaginary parts are 

not zero). 

The dynamics in the hyperbolic space is given locally by the flow x(t) = eJt and its qualitative 

behaviour is completely given by the spectral properties of the linear map J. This is given in 

the following Theorem: 

Theorem 2.1.1 (Hartman-GroJ3man) If the dynamical system (2.1} has an isolated hy­

perbolic equilibrium x* E U, then (2.1) is locally topologically conjugate to its linearisation 

:i; = Jx. (2.3) 

That is, there is a local homeomorphism (continuous mapping with continuous inverse) f : 

lRn-+ lRn taking each orbit i[>t(x) of (2.1} to an orbit in wt(x) of (2.3}. The homeomorphism 

is not required to preserve parameterisation in time; that is, for any x and t, there is a t1, 

which could differ from t, such that 

If it preserves time parameterisation ( t = t 1), the equivalence is called conjugacy. 

If the system has initial condition, xo, in E. or Eu, then x 0etJ, remains in E. or Eu for all t. 

Thus for any dynamical system with hyperbolic equilibrium x*, the flow will remain on the 

following invariant sets: 

M;oc(x*) - {x E U: i[>tx-+ x*, t-+ oo, i[>tx E U for t ::0: 0} 

M~0c(x*) - { x E U: i[>tx -+ x*, t-+ -oo, i[>tx E U for t :::; 0} 
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M;oc and M~oc are the local submanifolds of U with the same dimensions as E, and E,. and 

tangent to these eigenspaces at x*. The corresponding global manifolds allowing time to flow 

forward/backward for the unstable/stable respectively are defined as 

Ms(x*) - U q/(M;oc(x*)) 
t::;o 

M,.(x*) - U !Pt(M~oc(x*)) 
t"':O 

Local stable (unstable) manifolds corresponding to distinct equilibria points cannot intersect. 

However, intersections of stable and unstable manifolds of distinct equilibrium points or of 

the same fixed points can occur. Such intersections are the source of complex dynamics. 

2.1.4 Dynamics in the Centre Space 

The flow of a dynamical system is considerably different if some of its eigenvalues have zero 

real part. In the directions of the phase space where the eigenvalues have zero real parts 

the systems behaviour cannot be predicted by Theorem 2.1.1. Thus the flow of the linear 

version of a system cannot be directly related with its nonlinear counterpart. Fortunately, in 

this case, one can address whether the nonlinear system possesses a manifold having similar 

properties to the linear space spanned by the centre eigenspace and this can be answered by 

the following centre manifold theory. 

Theorem 2.1.2 (Centre Manifold) Suppose the following dynamical system 

X= Jx + N(x, v), X E lRn, v E lRm. (2.4) 

If the spectrum a0 of J is nonempty, then there exists a nonlinear mapping 

and a neighbourhood U of x = 0 in lRn such that the centre manifold 

M0 = {(z, h(z, v))iz E Eo}, I vi « 1 

has the following properties: 
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1. {Invariance} The centre manifold M0 is locally invariant with respect to {2.4). More 

precisely, if an initial state x(O) E M0 nU, then x(t) E M0 as long as x(t) E U. That 

is, x( t) can leave M0 only when it leaves the neighbourhood U. 

2. {Attractivity) If the unstable subspace Ev. = {0}, that is, if no eigenvalues of J has 

positive real part, then the centre manifold is locally attractive. That is, all solutions 

staying in U tend exponentially to some solution of {2.4} on M0. 

The centre manifold M0 is parameterised by z E E0 and therefore it has the same dimension 

as the centre space E0• Moreover, it passes through the origin x = 0 and is tangent to E0 at 

the origin. The centre manifold is not unique, though any two such manifolds have the same 

initial terms in their Taylor series. 

2.1.5 Centre Manifold Reduction 

To find the centre manifold and the restriction of (2.4) to it, the Iooss and Adelmeyer method­

ology (78] is employed in this thesis. Let Ih and II0 be projectors from JRn to the subspaces 

Eh and Eo respectively. It is required that 

keriih =Eo, and keriio = Eh, 

that is, IThEo = 0 and IToEh = 0. The projectors can easily be found by determining the dual 

basis to Eo and Eh· Recall, that the set of row-vectors JI, · · · fm is dual to the set of columns 

vectors e11 ••• , em if it satisfies the K ronecker delta function: 

< e;,fi >= L:e;kfjk = 8;i = . . 
m { 0 i # j 
k 1 z = J 

where < ·, · > is the inner product of two vectors. The projectors are then given by 

m2 m 

ITh = Led; and IIo = L ed;. 
i=l i=m2+l 

Notice that IIh + IIo =I, where I is the identity matrix. The projectors also commute with 

the J acobian J, that is, 
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Let x(t) be the solution of (2.4) such that x(t) EM/) nU. Since by invariance the solutions stays 

on M0 for some timet, then it be can represented as the following near identity transformation: 

x(t) = z(t) + h(z(t), v) (2.5) 

where z(t) = II0x(t) is the projection onto the centre subspace E0 . Differentiating this with 

respect to t and using equation (2.4) gives 

z + Dh(z, v)z = J z + Jh(z, v) + N(z + h(z, v), v) (2.6) 

It is now possible to project both sides of the above equation (2.6) to Eo and to Eh. Since 

II0Jh(z, v) = 0 and IIhJ z = 0 two equations are obtained, the first one gives the flow on the 

centre manifold: 

{ 
z = Joz + IIoN(z + h(z, v), v), 

zi=O 

and the second equation is a quasi-linear partial differential equation that can be used to 

determine the unknown function h as follows: 

Dh(z, v)z = Jhh(z, v) + IIhN(z + h(z, v), v) 

2.1.6 Normal Form Theory 

Normal form theory allows one to reduce an analytical vector field to a simpler set of system 

equations describing the flow locally near a fixed point. The simpler set of equations contains 

the essential terms of the Taylor series of the vector field. 

Theorem 2.1.3 (Normal Form) There are polynomials P E Ck(JH:.n x JH:.m,JH:.n) and G E 

Ck(JH:.n x JH:.m, JH:.n) of degree :::; k with P(O, 0) = 0, D.P(O, 0) = 0 and G(O, 0) = 0 and 

D.G(O, 0) = 0 such that by the near identity transformation 

x = x+P(x,v) (2.7) 

equation (2.4) transforms to the following 

x = Jx + G(x, v) (2.8) 

where G(x, v) is the normal form in a new coordinate system x containing only the essential 

terms of the Taylor series of N(x, v) around x = 0. 

19 



The loss and Adelemyer method makes it possible to combine the centre manifold and normal 

form reduction in one unique step. This technique was initially proposed by Elphick [49], where 

it was shown that it is always possible to find a near identity coordinate transformation that 

maps the centre space to the hyperbolic space and one can then incorporate this transformation 

directly into the normal form. It is found in [49] that the near identity transformation (2. 7) 

can be substituted by (2.5). In this case, equation (2.8) is instead transformed to a new 

coordinate system, having the following form: 

z=Jz+G(z,v). (2.9) 

With this polynomial substitution it is possible to find the so called homological operator 

which allows one to evaluate the coefficients of the reduced vector field G(z, v) and the reduc­

tion function h(z, v) in one unique computation. However, the procedure differs from other 

methodologies (for example Birkhoff normal form) in that it does not perform the Taylor 

expansion directly, rather it assumes that the structure of the vector field on the centre man­

ifold is known. The Ansiitze of the reduced vector field and the near identity transformation 

are inserted into the homological operator to obtain the coefficients. Under this observation 

we obtain the homological operator by substituting equation (2.9) into (2.6) and rearranging 

terms which results as · 

Jh(z, v)- Dz[h(z, v)](Jz) = G(z, v)- N(z + h(z, D), v) + Dz[h(z, v)](G(z, v)). (2.10) 

2.1. 7 Separation of time scales 

A direct application of the centre manifold is the so called separation of time scales, a method 

often used in neural field models. Consider a generic two-dimensional system given by the 

following 

dx 1 
dt = Tx F(x,y), 

dy 1 
dt = Tw G(x, y), 

where Tx and Tw are time constants. If Tw » Tx then the time scale that governs the evolution 

of x is much faster than that of y. In this case y can be treated as a constant in the fast 

equation and the fast system will evolve in time until it reaches a (possibly time dependent) 
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steady state X 88 (y, t) which depends on the "parameters" y. Note that this procedure is only 

valid if the fast variable has a unique solution when holding the slow variable fixed. That 

is, suppose the slow variable is varied in a nearby region, then there must be only a single 

behaviour for the fast system. Substituting the steady state solution Xss(Y, t) into the slow 

system the following reduced system is obtained: 

dy 1 
-d = -G(Xss(Y, t), y). 

t Tw 

If the fast system tends to a time-dependent solution, such as a periodic solution, then it is 

possible to apply the "Averaging Theorem" which states that the behaviour of 

dy 1 
dt = Tw G(y, t), with G(y, t + T) = G(y, t), 

is close to the behaviour of the averaged system 

d- 1 1T 
d; = TwT 0 G(y, T)dT, 

where T is the period of the system, y is the average of the system and the resulting averaged 

equations depends only on the slow variables. 

2.1.8 Local Bifurcations 

Bifurcation theory is concerned with the persistence of steady state solutions and the change 

of the flow of a dynamical system as the system parameters are varied. Smoothly changing 

the system parameters corresponds to a change in the eigenvalues of the system and in-turn 

the dynamics may switch from hyperbolic space to the centre space or vice versa. Thus 

a continuous change in system parameters may result in a discontinuous change in system 

dynamics. The continuity of the eigenvalues and persistence of hyperbolic equilibria with 

respect to the parameters is determined by the following theorem. 

Theorem 2.1.4 (Implicit Function Theorem) Consider the dynamical system (2.1} with 

a hyperbolic equilibria at (x*, v*), also consider the definition of the spectrum of a dynamical 

system. IfO rf: u then detJ ~ 0 and J is invertible at (x*,v*), then there is neighbourhood of 

v* in which the stability/instability is preserved under small changes of v. More precisely, it 

is possible to find a unique coo function g: JE_m--> JE.n such that x* = g(v) and F(g(v), v) = 0. 
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This work only presents the Adronov-Hopf and Saddle-Node Theorems as they are the bifur­

cation types found so far in the model studied in this Thesis. However the reader is asked to 

refer to [63] for detailed accounts of other local and global bifurcations sets. 

Saddle-Node 

The saddle-node bifurcation is the basic mechanism by which fixed points are created and 

destroyed. As a parameter is varied, two fixed points move toward each other, collide, and 

mutually annihilate. 

Theorem 2.1.5 (Saddle-node bifurcation) Consider the vector field (2.1) on IRn and as­

sume that for all (x, v) near some point (x*, v*) = (0, 0) F has some continuous (mixed) 

d · t" t d · l d" th" d d · aF aF 82F a'F a'F I'~th ~ ll erwa lVeS up 0 an lnC U zng lr Or"< er, l. e., ax , av , ax2 , • · • , ax8v8v, 8v8v8v • J e J 0 OW-

ing conditions are satisfied: 

1. F(O,O) = 0, 

2. The equilibrium is non-hyperbolic; that is, ~~ (0, 0) = 0, 

3. The vector field has a nonzero quadratic term at the bifurcation point; that is, ~;. f= 0, 

4. The vector field is non-degenerate with respect to the bifurcation parameter v = (v1 , • • • , vm); 

that is, the m-dimensional vector a= ~~ (0, 0) = (~~, .. · , g:;,,? f= 0. (This is referred 

to the transversality condition), 

then the vector field (2.1) has a saddle-node bifurcation with quadratic tangency at the equi­

librium. From the above conditions it follows that any system with saddle node bifurcation 

has Taylor series of the form: x = a + bx2 + higher order terms, where a is given by the dot 

product a= a· v and b = ~~)' f= 0. Although v is a multidimensional parameter, only its 

projection on the vector a is relevant (to the leading order). 

Andronov-Hopf 

Andronov-Hopf bifurcations first considered in [74] are amongst the most important bifur­

cations observed in neuronal dynamics, since they describe the onset (or disappearance) of 

periodic activity, which is ubiquitous in the brain. A more intuitive version of the Hopf theo­

rem by Mee (109, 110] which allows for a graphical interpretation of the theorem is presented. 
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The theorem states that if an n-dimensional ordinary differential equation depends on a real 

parameter v, and if on linearising about an equilibrium point, pairs of complex conjugate 

eigenvalues of the linearised system cross the imaginary axis as v varies through certain criti­

cal values, then for near critical values of v there exists a limit cycle close to the equilibrium 

point. Just how near to criticality v is, is only determined when the curvature coefficient is 

nonzero. The curvature coefficient determines the stability of the limit cycle. The global Hopf 

theorems do not transfer easily from 2 to n dimensions. The Hopf bifurcation theorem, how­

ever, is local and the transition is possible due to the invariant manifold and centre manifold 

theorem which lets us take the eigenspace of the bifurcating eigenvalues as an approximation 

to a two dimensional manifold (the centre manifold) that contains the limit cycle (if there is 

one). The Hopf bifurcation theorem for two dimensions can thus be used to establish existence 

of limit cycles in the centre space, which then implies existence in the whole phase space. 

Theorem 2.1.6 (Hopf bifurcation) Consider the vector field {2.1} on JRn (n ;::: 2} and 

Ck(k 2: 4) jointly in x E JRn and v E JRm. Let (x*, v*) = (0, 0) be the critical point. Suppose 

1. F(O, 0) = 0, 

2. The Jacobian J at the critical point has a pair of complex conjugate eigenvalues ±iw 

{w > 0) and no other eigenvalues with zero real part, 

3. The curvature coefficient {2.11} is nonzero, 

then there is a range either positive or of negative values l:!.v = v - v* in which every value 

of v corresponds to a unique limit cycle at a distance 0 ( ~) from v*, and of period 

~ + O(l:!.v). Furthermore, 

1. If a < 0 and the real parts of all the other eigenvalues are strictly negative then the limit 

cycle is attracting {supercritical), while if a > 0 and the real parts of other eigenvalues 

are strictly positive the limit cycle is repelling (subcritical). 

The curvature coefficient a is given by: 

(2.11) 
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where uT E Eh and v E E0, normalised so that uT v = 1. Repeated subscripts imply summation 

from 1 ton and FJk = 8J:.(~~) (where Fv(x, v) is the pth component of the vector field F(x, v) 

evaluated at the critical point (x*, v*)). For two dimensional systems it is shown in [109] that 

the curvature coefficient is given by 

a - 1
1
6 

(Ffn + Ff22 + Ff12 + Fi22) 

l~w(FMFA + Fi2l- F[2(FA + Fi2l- FAFf1 + Fi2Fi2)) 

(2.12) 

(2.13) 

If the curvature is non-vanishing then the limit cycle manifold is parabolic and the limit cycle 

grows as Jlv -v*l (i.e. much faster than jv- v*l at first). If the curvature vanishes, it is 

possible, though not certain, that the parabolic manifold is flat out to infinity, in whic!J case 

the periodic orbits exists only at the critical parameter value. An example of this case is 

given by the linear system x + vx + x = 0 and an example where the curvature coefficient 

vanishes but the manifold is nevertheless not flat is given by, x + vx + x = g(x, ±),where all 

the partial derivatives of g at the origin vanish up to the 4th order, but there is non-vanishing 

5th partial derivative. It is "unlikely" and generically does not happen in the one-parameter 

family of systems that two pairs of complex eigenvalues or a pair and a real eigenvalue cross 

simultaneously into the positive half of the complex plane. In the case of systems that depend 

on two or more parameters, such cases may generically occur, giving rise to so-called "eo­

dimension two or higher bifurcation"; see e.g. [66, 98]. 

2.2 Constructive Global Analysis of Hybrid systems 

This section reviews a recent mathematical formalism for the analysis of Hybrid systems 

proposed by Gongalves [28]. The theory presented in [28] can be seen as an extension of theory 

of Poincare Mappings for the local analysis of limit cycles on maps, but also generalises to 

global stability analysis. Hybrid systems are characterised by interactions between continuos 

(smooth) dynamics and discrete events. These systems typically contain variables or signals 

that take values from a continuous set and also variables that take values from a discrete, 

typically finite set. Discrete events, such as saturation limits, can act to trap the evolving 

system state within a constrained region of state space. Therefore even when the underlying 

continuous dynamics are unstable, the discrete events can introduce a stable limit set. In 
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particular, we are interested in the results obtained for a class of Hybrid systems known as 

Piecewise Linear Systems (PLS}. 

P LS are characterised by three components; a set of affine linear systems; a switching rule to 

switch among them, which depends on present values of x and possibly on past values of the 

state and switching surfaces consisting of hyper-planes of dimension n -1 defined respectively 

as: 

:i; = A,x + B,., x E !Rn 

a(x) E {1, · · · , M} (2.14) 

SJ = {xiCJx + di = 0}, j = {1, · · · , N} 

This work only considers switching rules that only depend on the present values of the state 

x. In such case the state space is partitioned into M (possibly unbounded) sets called cells 

defined as U; = {xla(x(t)) = i} with i = {1, · · · , M} such that U; n Uj = 0, i ¥ j. Altogether 

there are M x N boundaries. In each cell, U;, the system dynamics is given by a linear system 

:i; = A;x + B;. A solution of (2.14), is a function (x(t), a(x(t))) satisfying (2.14), where x(t) 

is simply the flow of the affine system within a cell and a(x(t)) is piecewise constant. t is the 

switching time of a solution of (2.14). 

Assume that the existence of a solution is always guaranteed for any initial condition. If an 

initial condition is an interior point of a cell, then the existence of a solution is guaranteed 

at least from the initial condition to the first intersection with a switching surface. This 

follows since the system is affine linear in the cell. When an initial condition belongs to a 

switching surface, however, there may be a unique solution, multiple solutions, or no solution. 

Multiple solutions can occur if the vector fields from either side of the switching surface flow 

in opposite directions, i.e. an initial condition x0 belonging to the switching surface cannot 

be uniquely attributed by a switching rule a(xo) to either vector field. The non existence of 

solutions may occur if the vector fields from either side of the switching surface point towards 

the switching surface. In this case as soon as a switching rule a(x0 ) is assigned to one of 

the vector field, it must switch immediately. Since, by definition a switching rule is piecewise 

constant, arbitrarily fast switches are not possible. Therefore this scenario does not result in 

a solution. The reader will verify in Chapter 6 that this last case scenario does not occur in 

the system model analysed in this thesis and thus the above technique is applicable. However 

this problem has been extensively studied in [55], where the approach is to define a dynamical 
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system on the switching surface and let the trajectory evolve until it can "escape" to either 

side of the switching surface. This technique is known as sliding modes. 

2.2.1 Local Stability 

The section reviews the theory of Poincare mappings to establish a link with the theory of 

local stability of limit cycles in piecewise linear system. 

2.2.2 Poincare Mappings 

The proofs and computational details can be found in (72, 119]. Consider a dynamical system 

of the form: 

x = F(x), x E lRn, (2.15) 

having a periodic solution (or limit cycle) with period T, i.e. x(t) = x(t + T) 'tit 2': 0 and 

denote it by 1 C lRn. LetS C lRn be an (n -!)-dimensional hyperplane (Poincare surface of 

section) transversal to 'Y as well as all orbits close to 'Y· Without loss of generality assume that 

'Y intersects Sin a unique point x*. Due to the continuity of the flow q,t(x) with respect to the 

initial condition, trajectories starting on a neighbourhood D C S of x* will, in approximately 

finite time T, intersect S in the vicinity of x*. That is, a Poincare map effectively samples 

the flow of a periodic system once every period. Hence the first return map can be defined as 

follows: 

(2.16) 

The stability of the Poincare map (2.16) is determined by linearising P at the fixed point x•. 

i.e. 

(2.17) 

From the definition (2.15), it follows that DP(x') is closely related to the trajectory sensitiv­

ities a<T>T<;~>(x') (Monodromy matrix). In fact it is shown in (72] that 

, _ ( F(x*)C•) 8<I>T(x•l(x*) 
DP(x)- I- C•F(x*) 8x ' (2.18) 
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where c• is a vector normal to the hyperplane S. It is also shown in [72] that one eigenvalue 

of the Monodromy matrix is always 1 and the corresponding eigenvector lies along F(x*). The 

remaining eigenvalues of a.pT<;:l(x•) coincide with the eigenvalues of DP(x*), and are known 

as the characteristic multipliers mi of the periodic solution. Characteristic multipliers are 

independent of the choice of the cross-section S and hence the following: 

L If all m; lie within a unit circle, i.e !m; I < 1, Vi, then the map is stable and periodic 

solution is stable. 

2. If all mi lie outside the unit circle then the periodic solution is unstable. 

3. If some m; lie outside the unit circle then the periodic solution is unstable in some 

directions, but stable in other directions. This can occur for example in saddle cycles. 

Interestingly, there exists a particular hyperplane S*, such that 

DP(x*)>. = <JiT(x) (x*)>., 

where >. E S*. This hyperplane S* is the hyperplane spanned by the n - 1 eigenvectors of 

<JiT(x) (x*) that are aligned with F(x*). Therefore the vector C* that is normal to 8* is the 

eigenvector of <JiT(x) (x*) corresponding to the eigenvalue 1. The hyperplane S* is invariant 

under <jiT(xl(x*), i.e <jiT(xl(x*) maps vectors>. E S* back into s·. 

An extension to the Poincare mappings for local analysis of limit cycles in piecewise linear 

systems is given by the following propositions (the proofs are found in [28]). 

Proposition 2.2.1 (Existence of Limit Cycles for PLS) Consider the PLS. Assume there 

exists a limit cycle 'Y with k switches per cycle and with period t* = ti + t2 + · · · + t;; > 0. Then 

the following conditions hold: 

gk(ti, ... , tj;) = Ck(I- Ek ... Et)-1 [~Ek ... Ei+l(E;- I)Z; + (Ek- I)zk] - dk = 0, 

where E; = e#i and Zi = Aj1 Bi. The periodic orbit is governed by system 1 on [0, ti), and 

the by the system i on [ti + · · · + tj_1, ti + · · · + ti), i = 2, ... , k. Furthermore, the periodic 

solution 7 can be obtained with the initial condition x0 E Sk 
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Proposition 2.2.2 (Local Stability for PLS) Consider the PLS. Assume there exists a 

limit cycle "( with period t* and transversal to the SWitching surfaces 81, ... , Sk at Xj, ... Xk 

respectively. The Jacobian of the map P is given by the concatenation of the intermediate 

Jacobians w = wkwk-1· .. w2wl where 

W (I v;C;) A·t· 
i= --- e'", 

C;v; 
v; = A,x; + B;, i = 1, ... ,k, (2.19) 

where C; are vectors normal to the hyperplane S;. The limit cycle 'Y is locally stable if W has 

all its eigenvalues inside the unit disc. Note the similarity of equations (2.18) and (2.19). 

2.2.3 Global asymptotic stability 

The fundamentally new concept introduced in Constructive Global Analysis of Hybrid Sys­

tems [28) is to infer global dynamical properties of a system through finding quadratic Lya­

punov functions on the switching surfaces. Earlier studies [69, 122) had proposed continuity of 

the Lyapunov functions along the switching surfaces and this result lead to the idea that the 

intersection of two Lyapunov functions at a switching surfaces (one from each side) defined a 

unique quadratic Lyapunov function on the switching surface. It is then demonstrated in [28) 

that a quadratic Lyapunov function on the switching surface in a PLS denoted Quadratic Sur­

face Lyapunov FUnction (SuLF) exists and that SuLF (as opposed to searching for Lyapunov 

functions in the state space) is sufficient to efficiently analyse global stability of equilibriums 

and limit cycles. This follows since a PLS behaves linearly inside a cell and only three scenarios 

can occur to a trajectory entering a cell at some point x0 on a switching surface: 

1. The cell is unbounded and there exists a trajectory that will grow unbounded without 

ever switching. This occurs when x0 belongs to an unstable region. If the piecewise 

linear system has one equilibrium point or limit cycle, then these are not globally stable. 

2. There is a locally stable equilibrium point in the cell and the trajectory will asymptoti­

cally converge and will not switcil. 
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3. The trajectory will switch in finite time. This case is interesting as a system can switch 

between cells and exhibit complex dynamics, in particular, limit cycles can occur. 

In order to analyse a PLS using SuLF it is first necessary to define impact maps from one 

switching surface to the next and by combining all the impact maps associated with the PLS 

it is possible to study the above scenarios, in particular infer global stability of limit cycles. 

2.2.4 Impact Maps 

The central concept used to analyse the flow of a PLS from one switching surface to the 

next switching surface is that of Impact Maps. An impact map is simply a function that 

maps vectors from one switching surface to the next switching surface. To make things clear 

consider system (2.14) where we only analyse locally the flow from switching surface 81 to 82. 

Let both 81 and 82 be defined on the boundaries of subset of cell U E JRn and the linear time 

invariant system :i; = A0x + B 0 , x E U is allowed to have stable, unstable or pure imaginary 

eigenvalues. Define the departure set 8f c 81 where any trajectory starting at 8f satisfies 

x(t) E 82, for some finite switching time t ;::: 0, and x(T) E u• on [0, t], where u• is the 

closure of U (i.e U* = U U {xjx is a limit point U} ). Let the arrival set 8g c 82 be the set 

of those points x2 = x(t), that is, the image of 8f. Any point belonging to the switching 

surface x1 E 8f and x2 E 82 can be parameterised in their respective hyperplanes. For that, 

let Xt =xi+ flt and x2 = x2 + fl2, where xi E 81, x2 E 82 and flt, fl2 are any vectors such 

that flt E 8f- xi and fl2 E 82- x2. In this case Ctflt = C2fl2 = 0. The impact map then 

reduces to the study of a map from fl 1 to fl2. However, since the map is multi-valued (i.e. the 

same initial condition fl1 can have multiple switching times) the following definition can be 

introduced: 

Definition 2.2.1 (Expected switching times) Let x(O) =xi+ fl1 • Define tto., as the set 

of all times t; ;::: 0 such that the trajectory x(t) with initial condition x(O) satisfies C2x(t;) = d2 

and x( t) E U* on [0, t;]. Define also the set of expected switching times of the impact map 

from flt E 8f - xi to fl2 E 8g - x2 as 

T ={tit E tto..,flt E 8f- x~}. 
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In general a map between switching surface is nonlinear, however a map induced by a linear 

time invariant flow, can be represented as a linear transformation analytically parameterised 

by a scalar function of the state (in this case switching times t~~.J and this is given by the 

following theorem: 

Theorem 2.2.1 (Impact Map) Assume C2xj(t) =F d2 for all t ET. Define the transition 

function as 

{ 
H(t): eA:,:A:xj(t)- x;)w(t), 

w(t) - d, c,x;(t) · 

H(t) : lR --> JRn-l, 

Then, for any ll.1 E Sf - xj there exists a t E T such that the impact map is given by 

such t E t~~., is the switching time associated with ll2• 

From the above theorem it is clear that ll.1 is a nonlinear function of ll.2. However, fixing 

the switching time t determines the set of points xj + ll.1 E S0 such that every point in that 

set has a switching time t. In this view the map is linear. Furthermore, the set of points Sf 

that have a switching time t is a convex subset of a linear manifold of dimension n - 2 which 

is denoted as St and defined as 81 = {tit E t~~., xj + ll.1 E Sf}. Note that since the impact 

map is multi-valued, a point Sf may belong to more than one set 81 • Also as t ET changes, 

81 covers every single point of Sf, i.e sg = {xix E S1,t ET}. Finally note that the above 

theorem states that a trajectory cannot intersect the switching surface 82 for all t E T. 

2.2.5 Quadratic surface Lyapunov functions 

Previous studies [69, 122] have tried formulating piecewise quadratic Lyapunov functions for 

piecewise linear systems and with success these results are able to analyse equilibrium points of 

piecewise linear systems. These techniques are based on the search of Lyapunov functions and 

determining their stability in the state space. Recall the following definitions for Lyapunov 

stability testing: 
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Definition 2.2.2 (Stability in the sense of Lyapunov) An equilibrium point x• of the 

system x = A(t)x is Lyapunov stable, if for any E > 0, there exists a value o(t0 , e) > 0 

such that if llx(to)- x*ll < o, then llx(t)- x*ll < E, regardless ojt(t >to). The equilibrium 

point is uniformly stable in the sense of Lyapunov if o = o(E), i.e., if the constant o does not 

depend on initial time t0 . 

The above definition makes clear that a stable time-invariant system is uniformly stable be­

cause the initial time t 0 does not affect the qualitative behaviour of the system. Furthermore, 

the state vector will remain within distance E of the x*, only if the initial condition is set to 

be at a distance from x* by an amount no larger that o. Clearly, the condition o < E must be 

satisfied or else the system will have an initial condition not satisfying the desired bounds of 

the state vector. Lyapunov stability does not require that the system in question approach 

x*, but only that it remains within the bounding radius E. A Lyapunov stable system further 

requires x• to be asymptotically stable, i.e. if llx(t)- x*ll-> 0 as t--> oo. An equilibrium that 

is globally stable is one such that the constant o can be chosen arbitrarily large. This implies 

any initial condition will take the system to be bounded near x• or asymptotically approach 

x*. For linear systems all stability is global since equilibria x• are either isolated points or 

subspaces. However, for nonlinear systems multiple equilibria can exist, which means it is 

sometimes necessary to define regions of attraction around attractors, i.e. stable equilibria. 

These are called basins of attraction, denoting the region in the state space from which an 

initial condition will approach the equilibrium point. While the definitions above give the 

meaning of stability, they do little to determine stability of a given system (except that is now 

easy to anticipate the stability conditions for a time-invariant system based on the locations 

of its eigenvalues and in this case determine the directions of the phase trajectories). One 

possible form to determine stability is to use the results of section (2.1.3) which uses the spec­

trum of the matrix to determine the stability. Alternatively, a different method for testing 

stability of linear, zero-input system is called Lyapunov's direct method. It is based on the 

concept of energy and dissipative systems and is given by the following theorem: 

Theorem 2.2.2 (Lyapunov Global Stability) Consider the vector field {2.1), with x E U 

and the parameters v fixed. The origin x• of the vector field {2.1) is Lyapunov stable if there 

exists a Lyapunov function (energy junction) V(x) : U--> lR such that the following conditions 

are satisfied: 
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1. V(x) > 0 for all x =f 0 and for all t, V(x) = 0 only when x = x*. i.e V{x) is positive 

definite. 

2. d~~x) ::; 0 for all x =f 0 and for all t, i.e. decreases along trajectories, in other words, 

the d~~x) is negative semidefinite. 

Futhermore, x* is globally Lyapunov stable, if in addition to the above conditions, V(x) is 

unbounded as llxll -> oo. If the second condition is altered to ~~x) < 0 for all x =f 0 and for 

all t (negative definite) then the theorem is strengthened to asymptotic stability. 

Definition (2.2.2) and Theorem (2.2.2) are also applicable to discrete-time systems. However, it· 

is necessary to substitute the derivative ~~xl, by first difference, ll.V(xk) = V(xK+t)- V(xk)· 

In the case of linear systems, it is sufficient to consider quadratic forms as Lyapunov functions. 

This is largely because for linear systems, stability implies global stability, and the parabolic 

shape of a quadratic function satisfies all the criteria of Theorem (2.2.2). 

The above results are suitable when considering global stability of equilibriums of piecewise 

linear systems, however they do not generalise to the study of piecewise linear systems that 

exhibit limit cycles. In this case it is possible to construct Lyapunov functions on the switching 

surface (SuLF) and from this determine stability of equilibriums and also of limit cycles. The 

following section reviews the main results proved (28]. 

Consider system (2.14) with the impact maps defined in section (2.2.4). It follows that to 

demonstrate global stability it is first necessary to define quadratic Lyapunov functions Vi 

and V2 respectively on the switching surfaces st and s~ given by: 

where P; > 0, g; and a; are parameters to be determined, with i = {1, 2}. Once the parameters 

are determined then the next step is to show that the impact map from st to s~ are contracting 

in some sense. In particular, an impact map is quadratically stable if there exist P; > 0, a;, 

g; such that 

(2.20) 
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Applying Theorem (2.2.1) to the above inequality (2.20) and using both facts that the map 

.6.1 to .6.2 is linear in St and that, as t ranges over T, St covers every point in Sf the main 

global stability theorem for impact maps is obtained: 

Theorem 2.2.3 (Stability of impact map) Define 

(2.21) 

The impact map from .6.1 E Sf- xi to .6.2 E S~- x2 is quadmtically stable if and only if there 

exist P1, P2 > 0 and 91, 92, a1,a2 such that 

R(t) > 0 St- xi, (2.22) 

for all expected switching times t E T. 

Thus, if the above piecewise linear system exhibits a limit cycle (i.e. having trajectories from 

81 to 82 and in turn from 82 to SI) then it is first necessary to determine SuLF on 8 1 and 82. 

Once the quadratic functions are determined it is easy to show that the limit cycle is stable 

or not by applying Theorem (2.2.3) which proves that the impact maps 81 to 82 and from 82 

to 81 are contracting. In other words, the trajectories contract to a global stable fixed point 

in the hyper-planes. 

2.3 Numerical simulation of Delay Equations 

At present theoretical aspects of DDEs theory are elaborated with almost the same complete­

ness as the corresponding parts of ODE theory. However, unlike ODE even for linear DDE 

there are no general methods of finding solutions in explicit form. Various specific numerical 

methods are constructed for solving specific delay differential equations. For development of 

DDE numerical analysis consult for example [12, 90, 120]. 

In general the procedure taken to numerically solve DDEs is to transform the DDE into an 

ODE at each time step, and thus one can use the usual numerical schemes for ODE's to 

solve the equation at every time step. This method is known as the method of steps. For 
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example, consider (2.2), if x(t) = cp(t) fort E[-T, 0], where cp is a given continuous function, 

then the solution x(t) fort E[O, Tj for equation equation( 2.2) satisfies the following ODE: 

d 
dt x(t) = H(x(t), v) for t E [0, Tj, x(O) = cp(O), (2.23) 

where H(x(t), v) = F(x(t), cp(t- T), v). This equation has a unique solution and the solution 

of equation (2.23) coincides with the solution of equation (2.2) on [0, Tj. Once the solution x(t) 

is known on [0, T], then the same procedure can be repeated to compute x(t) for [T, 2Tj and 

so on. However it should be noted that additional numerical interpolation scheme is required 

when solving DDE with variable delays, this requirement is necessary since sometimes points 

(in between points) of the solution which were not computed are needed to evaluate the vector 

field F at a later time step. The above requirement is reported in [120] and stated in the 

following theorem, which in turn is proved in [8]: 

Theorem 2.3.1 (Order of convergence) Given an ODE method of order p combined with 

an interpolant of order q, if discontinuities not exceeding order r, occur only at meshpoints, 

then the order of the resulting DDE solver is min(p, q, r). 

The above theorem underlines the fact that ODE methods can be used to solve DDEs with 

the same order of convergence provided the right interpolating scheme is used. Hence this 

results in the following numerical algorithm: 

1. Consider a uniform partition tr =to+ rh, r = {0, 1, ... , N}, of the interval [t0 , t0 + t,] 
where h = tJIN and assume the ratio Tjh =N.,. is a positive integer. Where t0 and t1 

is the initial and final time of the simulations respectively. 

2. Compute the approximate solution Xr+l E JRn of the true solution x(tr) by first inter­

polating the pre-history {x;: i :::=: O,r- N.,. :Si :S r} denoted by {x{} (corresponds 

to the discretised version of cp : [-T, 0] ---+ JRn) of the discrete model on the interval 

[tr- T, tr]· The result of this interpolating is continuous set of values in this interval and 

will be denoted by I( { x;k}) where I is the interpolating function. Secondly calculate 

Xr+l = Xr + hF*(xn I( {xi"}), v) where F* is some ODE numerical integration method. 

3. Repeat the process until the final simulation time tr is reached. So X[to,tr) will be the 

approximate solution to the DDE. 
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2.3.1 Implementation of the numerical code 

For our purpose of this thesis the method as described in the previous section 2.3 is used. In 

particular, the fourth order Runge-Kutta and cubic spline interpolation schemes are employed. 

The relevant functions stem from [126] and the code developed can be found in a CD provided 

in the appendix. The following next explains the specific implementation developed in this 

thesis. Recall that the standard Runge-Kutta 4th orderfor the non-autonomous (i.e. explicit 

dependence on time) ODE :i; = H(t, x(t), v), where H E Ck(R x Rn x Rm, Rn) and the 

parameter v is considered fixed is given by: 

P1 - hH(tr, Xr, v), 

h P1 
P2 - hH(tr + 2' Xr + 2' v), 

h P2 
P3 - hH(tr + 2' Xr + 2' v), (2.24) 

P4 - hH(tr + h, Yr + P3, v), 

Xr+l - Xr + ~ (p1 + 2p2 + 2p3 + P4) + O(h5
). 

Since the objective is to solve an autonomous DDE the following transformation is applied, 

H = F(x(t), rp(t- r), v) which gives rise to the following extended scheme: 

p; - hF(xr,Xr-N,,v), 
1 1 

p; hF( Pr Pr-N, ) - Xr + 2'Xr-N, +-2-,v' 
2 2 

p~ hF( + Pr + Pr-N, ) (2.25) - Xr 2' Xr-NT' -2-, V ' 

p~ - hF(xr + p~, Xr-N, + P~-N,> v), 

Xr+1 - Xr + ~ (p~ + 2p; + 2p~ + p:) + O(h"), 

where the error term O(h") should be determined by the order convergence theorem. The 

extended scheme can be seen as acting as a second order interpolant to find the midpoint for 

the delayed values via steps k; and k;. In other words, the scheme uses three tirr;e points 

tr-N,, tN,+h/2 and tr-Nd1 in order to evaluate at tr the next approximation value Xr+l· Since 

for the delayed variables the initial and end points are known it is possible to use cubic splines. 

Thus by the order convergence theorem the method is third order accurate. 

The pre-history function <p : [-r, 0] --> Rn was defined to be zero vectors for -r ::; t < 0 and a 

non-zero vector fort= 0. The discretised function {x{} was implemented by a FIFO (First In 
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First Out table) where for every new Xr+l value evaluated the FIFO shifts values one position, 

updating Xr+l in the first index (head) of the table. Since at tr every new approximation value 

Xr+! depends on three time points tr-N,, t N,+h/2 and tr-N,+l (2 * r /h) + 1 entries are required 

in the FIFO. 

The main code execution considers two nested loops, in total, Ni * [Transient + Print] itera­

tions where the inner-loop (Transient) ignores transient effects and only asymptotic dynamics 

(Print) are observed, where Ni = j * N, j EN (i.e. the code is divided into sequences of loops 

of intervals [t0 , t0 + t,] where tr = t0 +rh, r = {0, 1, ... , N} ). At every j the parameter of 

interest 1/ is increased or decreased uniformly. The next iteration j + 1 allows the initial con­

ditions to be either initialised to some random values or to be updated with the data from the 

previous iteration (i.e. if the system starts in some basin of attraction it will remain closely to 

it). In the latter case, to evolve nearby the basin of attraction the subsequent 'Iransient loops 

are omitted. In addition the Print stage allows one to print out both the data for the time 

series solution x(t) at every change of parameter and the stable bifurcations. The bifurcations 

are evaluated by determining the relative maximum and minimum of the observable(s). Thus 

the amplitudes of the stable manifolds reveal the different dynamics. 

Future adjustments to the code could address the following aspects: 

1. Searching for discontinuities in the derivatives could be important if smooth solutions 

to the time series are required. However from simulation we observe that the numer­

ical scheme is stable enough and provides an excellent approximation. Guide lines on 

numerical treatment on this issue can be found in [50, 121] 

2. If the system model depends only on a fixed delay r which in some sense is an easier 

system to handle, then if we consider r = N * h (h = time step) then interpolation is 

no longer required, this implies that only true pre-history values are used. With this 

approach one can expect faster convergence to the solution and better results. The EEG 

model used in this thesis could benefit with this change if future large scale simulations 

is required. 
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2.4 Numerical Continuation 

The intention of this section is not to provide an exhaustive explanation of continuation 

methods as the purpose here is only to provide a brief explanation of the figures produced 

by the continuation packages XPPAuto and DDE-Biftool that are used in thesis. For an 

excellent introduction to the subject refer to the fundamental paper of Keller [89], along with 

other comprehensive books [96, 142]. Numerical continuation is concerned with analysing the 

solution behaviour and determining the bifurcations that occur on a dynamical system as the 

systems parameters are varied. Solutions in general vary as the parameters are changed and 

in this view the solutions can be seen as being parameterised forming a smooth continuum, 

which are called solution continuation branches or termed solution paths. In particular, a brief 

review on continuation of only one-parameter family of stationary and periodic solutions is 

presented. 

2.4.1 XPP-Auto 

XPPAuto is an integrated software package to compute numerically solutions of ODE and 

to follow numerically solutions paths in parameter space. For early contributions in the 

development of the package consult Doedel [44, 45, 46]. In particular this work uses the 

current version by Ermentrout [52]. 

2.4.2 Parameter continuation 

Parameter continuation is a numerical technique used to compute invariant sets or attractors 

(e.g. equilibria or periodic orbits) by directly solving a set of algebraic equations which are the 

defining conditions for the invariant sets to exist. This is achieved by following solution paths 

in the parameter space of smooth parameterised system (algebraic conditions) of n equations 

in n unknowns 

(2.26) 
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That is, the goal is to use a numerical strategy to compute a sequence of points along the 

solution curve g(v) ~ {(xi, vi), i = 0 · · · N} such that F(xi, vi) = 0. The key idea to solve 

parameterised nonlinear systems of equation is to use the implicit function Theorem 2.1.4, 

where a smooth path of solutions g(v) can be continued locally if the Jacobian ofF is nonsin­

gular. As these solutions are followed, extra algebraic conditions can be monitored to detect 

bifurcations and compute stability of the attractors. The resulting bifurcation diagram is the 

signature of the problem. 

2.4.3 Continuation of stationary solutions 

Consider the initial value problem (2.1) where the aim is to follow a branch of stationary 

solutions F(x, v) = 0 as one of the parameters in the vector v is varied. In this case the 

algebraic equations to be solved are just the vector field of the initial value problem F(x, v) = 
F(x, v) = 0. One strategy to solve the nonlinear equation as the parameter vis varied is to use 

a fixed point iteration method such as the Newton's method. That is, suppose a solution Xi of 

equation (2.26) at vi exists, as well as its derivative x{ with respect to the parameter v. The 

next iteration is to compute the solution Xi+! at lli+l =vi+ flv such that F(Xi+J, Vi+J) = 0. 

By Newton's method the following applies: 

with x?+l = x;+flax{. If the Jacobian J is nonsingular, !:lv is sufficiently small and the initial 

guess Xi is sufficiently close to the true solution then Newton's method will converge. After 

convergence, the new derivative vector ±j+1 with respect to the parameter can be obtained by 

solving the following: 

where Jv is the matrix with partial derivatives with respect to the parameters. This equation 

follows from differentiating F(g(v), v) = 0 with respect to v at v =vi+!· 

The above method works well if the solutions are regular, however will fail if a Fold bifurcation 

occurs, since the implicit function theorem is not satisfied. That is, the Jacobian of the 
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vector field becomes nonsingular. To solve this problem Keller [89) proposed the pseudo­

arclength method which allows the continuation of any regular solution, including folds. The 

pseudo-arclength differs from other methods by not parameterising the solution curve (to be 

found g) by the physical parameter v. Instead, it uses a geometrical parameter s. Thus a 

parameterisation by s means that solutions of :F(x, v) = 0 depend at least locally on s, i.e. the 

solution curve is now g(s) = (x(s), v(s)). In this case for a particular value of s, the system 

:F(x, v) = 0 consists of n equations for the (n + 1) unknowns (x, v) and thus one additional 

scalar equation is needed to form an extended system. One possibility is to parameterise the 

curve by some approximation to the arc length s along a curve, thus the following formulation 

holds true, arc(x, v, s) = (x;+l- x;) 2 + (vi+1 - v;) 2 = !::.s2 . However, since this equation is 

nonlinear, Keller proposes to linearise and replace the above with pseudo-arc length version, 

thus the resulting method is the following extended system: 

"'"( ) = ( F(xi+b Vi+t) ) = O 
J x,v - ' 

< i;, (xi+ 1 - x;) > + < v;, (v;+l - v;) > -!::.s 

where (i;, z.i;) is the tangent vector to the curve (x(s), v(s)) at (x;, v;). 

2.4.4 Continuation of periodic solutions 

Finding limit cycles x(t), t E (0, T) of the vector field (2.1), and following them as the 

parameter v changes is more complicated and there are no regular ways to solve this problem. 

Note that the period T of the solution is not known a priori, and moreover T might vary 

with the parameter v. One possible form of solving this is to fix the interval of periodicity by 

the transformation r-+ tfT and formulate the problem as a periodic boundary-value problem 

(BVP) on a fixed interval. Thus equation (2.1) transforms to the following: 

{ 
~~ = TF(x(r), v), 

x(O) = x{1), 
(2.27) 

where solutions of period 1 are to be found (i.e. T-periodic solution of equation (2.1)). Assume 

that points (xk-t(·), Tk-1> vk_t) have been computed and it is required to iterate forward to 

find (xk(·), Tk, vk)· However, note that equation (2.27) does not uniquely specify x and T, 

since x(r) can be translated freely in time, that is, if x(r) is a periodic solution then so is 

x( r + o) for any o. Thus, an extra phase condition </> is needed in order to "select" a solution 
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among all those corresponding to the cycle .P( { x( T ), T E [0, 1]}) = 0. There are several ways to 

set up a phase condition. One possibility is using a Poincare section by defining a hyperplane 

So that selects a solution passing at T = 0 through a point on the following surface: 

So= {x E .!Rn: h(x) = 0}, 

where h ( x) is some smooth scalar function. In this case the following phase condition is 

obtained: 

.P(x) = h(x(O)) =< x(O)- Xk-1(0), Xk-1(0) >= 0. (2.28) 

The above equation (2.28) specifies a solution Xk_1(T) passing at T = 0 through the hy­

perplane orthogonal to the closed curve {x: x = Xk- 1(T),T E [0, 1]}. However, the most 

reliable numerical condition is known as the integral phase condition which corresponds to the 

following: 

(2.29) 

The above condition (2.29) is obtained by minimising the distance of the true solution x(T) 

(possibly shifted x(T+6) to Xk-1(T). That is, a minimisation of the following equation has to 

be carried out: 

D(6) = [ llx(T + .5)- xk_I(T)WdT. 

The optimal solution x( T + .5) satisfies ~~ = 0, which results in: 

11 
< X(T)- Xk-!(T), X(T) > dT = 0. 

Integrating by parts the above equation and using periodicity results in the integral phase 

condition (2.29). So equation (2.27) and the phase condition (2.29) represent a well-posed 

continuation problem for computing the unknowns x(O) and T. In practice, the XPPAuto 

package uses the Keller's method (89] to trace out a branch of periodic solutions. In particular, 

this allows calculation of folds along such a branch. The Keller's continuation equation has 

the following form: 

11 

< x(T)- Xk-1(T), x(T) > dT+ < T- n-1, tk-1 > + < 1/- Vk-1, Vk-1 > -l:!..s = 0.(2.30) 

The complete formulation then consists of equations (2.27)-(2.30), which are to be solved 

for x(·)k, n, and Vko These equations can then be solved by any boundary value problem 
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(BVP) numerical technique. The most frequently used discretisation method for boundary 

value problems are collocation, finite differences or multiple shooting methods which are not 

presented here. However, for a complete reference on these techniques consult for example [44, 

97, 106]. This then leads to a large system of algebraic equations :F(x, v) = 0, where here 

x = (xk> Tk) with k = {1, · · · , N}. 

2.4.5 Locating Codimension-1 bifurcations 

When following a stationary or periodic solution branch, one can encounter bifurcation points, 

where the solution losses hyperbolicity (i.e. eigenvalues with zero real part, or a periodic solu­

tion with at least one nontrivial Floquet multipliers of unit modulus). To detect codimension-1 

bifurcations of stationary and periodic solutions of (2.1) continuation algorithms use test func­

tions. Such a test function 7/;(x, v) is evaluated along a branch during continuation. The basic 

feature of a test function for detecting a bifurcation (x*, v*) is 7/;(x, v) = 0. That is, the 

bifurcation is a zero of the test function. Moreover, it is required that 'if; be continuous in a 

neighbourhood of (x*, v*), and to change sign. With such a test function a bifurcation point 

is detected between two successive points (x;+l, vi+1) and (x;, v;) on the curve and the test 

function has opposite signs at these points '1/;(xi+b vi+I)'if;(x;, v;) < 0. In such a case, one can 

attempt to locate the bifurcation v* by applying some root finding algorithm (e.g. Newton's 

method) to the extended system: 

( 
:F(x,v)) = O, 
'1/;(x, v) 

with initial point (x;, v;) for example. The simplest test function is for Fold bifurcations. At 

a fold point, the Jacobian has an algebraically simple zero eigenvalue and no other eigenvalue 

on the imaginary axis. Thus the test function is the following 

7/;Jold(x, v) = detJ(x, v) = .\1(x, v) · · · >-n(x, v), 

where .\;(x, v) are the eigenvalues of the Jacobian J. 

The test function for Hopf bifurcation is the following 

'1/JHop/(x, v) =IT (.\;(x, v)- .\;(x, v)), 
i>j 

41 



where, as before, the Aj are the eigenvalues of the Jacobian J. This function vanishes at a 

Hopf bifurcation point, where there is a pair of eigenvalues A1,2 = ±iw. Clearly, '1/JHapf is also 

zero if there is a pair of real eigenvalues A1 = k and A2 = -k, in this case such points have to 

be excluded when searching for Hopf bifurcations. 

To test stability of an attmctor the eigenvalues A;,··· , An of the Jacobian are computed, with 

A; = a + iw and the test is performed by the following test function: 

1/Js = max{ 0<1, • • • , ll<n}· 

There are many more test functions for detecting other bifurcation sets, for review consult for 

example the following books [96, 142]. 

2.4.6 DDE-Biftool 

DDE-Biftool is a Matlab package for numerical continuations for delay differential equations 

with several fixed, discrete delays. The package was initially developed by Engelborghs [51] 

and is freely available for scientific use. The package consists of a collection of Matlab routines 

for analysis of which only fixed point and periodic solutions schemes are presented as these 

were used in this thesis. 

2.4. 7 Continuation of steady state solutions 

Consider the delay equation (2.2) with initial condition rp(t). The linearisation of equa­

tion (2.2) around a solution x*(t) is the variational equation given by the following: 

d~~t) = Ao(t)y(t) + A1(t)y(t- T), 

where, using F = F(x0 ,xl,v), 

fJF 
A;(t) = -

8 
l(x•(t),x'(t-T),v)> i = {0, 1} 

X; 

If x*(t) corresponds to a steady state solution, 

x*(t)-x*ElRn, with F(x*,x*,v)=O, 
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then the matrices A;(t) are constant, A;(t) - A;. Substituting the sample eigensolution 

y(t) = ve->.t into the variational equation (2.31) leads to a characteristic equation which 

results from evaluating the following: 

detJ = 0, (2.33) 

where J is an n x n dimensional matrix defined as: 

Equation (2.33) has an infinite number of roots >. E IC called the characteristic roots, which 

determine the local stability of the steady state solution x•. 

2.4.8 Continuation of periodic solutions 

In studying the existence of periodic solutions of period T for a DDE, a Poincare operator 

is considered, which associates with each initial function <p defined on the interval [-r, 0] the 

function P<p = cpT(<p), i.e. the segment of the solution defined on [T- r, T]. Thus to compute 

a periodic solution of a DDE it is necessary to find the solution of the fixed point problem 

P<p* = tp*, where the fixed point <p* is a point in an infinite dimensional space (i.e. a periodic 

function in C). 

For a periodic solution equation (2.2) the linearised Poincare operator DP(.) - aot>;J'P) is 

defined by the following equality: 

where yT(fltp) is the solution on [T- r, T] of the variational equation (2.31) with initial func­

tion Ll<p. In this case the variational equation (2.31) is obtained by linearising equation (2.2) 

along the solution x*(t) (with initial function <p, i.e. denoting x*(t, <p)). 

The eigenvalues of the operator DP(.) are the Floquet multipliers of the periodic solution 

x*(t,<p). Thus, a periodic solution equation (2.2) is determined by the initial function <p(O), 

-r :::; (} :::; 0, and the period T. These unknowns are found by the following: 

cpT(<p)- <p = 0, 

if>( <p, T) = 0, 
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where equation (2.35) defines the phase condition needed to remove the indeterminacy due to 

the fact that phase shift of any periodic solution is also a periodic solution. For details on the 

actual continuation and bifurcation algorithms refer to [51]. 
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Chapter 3 

Field Theories and Brain dynamics 

3.1 EEG and quantitative states of the brain 

Spontaneous rhythmic activity was first observed in electrical recordings from the scalp of an­

imals by Caton (1875), and later by Berger (1924) in humans. They observed that electrical 

activity of the brain is dominated by oscillations that have frequency and amplitude patterns 

varying widely across different behavioural states such as level of attentiveness, sensation, cog­

nitive effort or vigilance. These oscillations not only occur in spontaneous brain activity but 

also arise in response to a stimulus (e.g. electrical, auditory, visual, etc.) known as evoked re­

sponse potentials (ERP). Such signals are usually below the noise level (spontaneous activity) 

and thus are not readily distinguished. To do so requires the use of a train of stimuli and signal 

averaging to improve the signal-to-noise ratio. In general, high frequency, low amplitude ry­

thyms are associated with alertness and wake or the during rapid-eye-movement (REM) sleep. 

Low frequency, high amplitude oscillations on the other hand are associated with non REM 

(NREM) sleep stages and with pathological states such as strokes or coma. EEG frequencies 

in humans typically vary from 0.5- 80Hz, and the amplitudes typically lie between -100 and 

lOOjtV, however more commonly between 10- 50jtV. In the power spectrum of the EEG these 

oscillations are represented by certain peaks superimposed to a 1/ f continuum where f is the 

frequency. The five dominant frequency bands typically observed in the human EEG are delta 

(0.5- 4Hz), theta (4-7Hz), alpha (8-13Hz), beta (13-30Hz), gamma (30-80Hz) and ripples 
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(l00-600Hz). A brief description of each frequency band is given in section (A.2). Today EEG 

is widely used to diagnose a number of neurological pathological conditions, particularly in 

determining seizures [144] or comas [114]. It is also used for understanding behavioural events 

where EEG is sensitive to changes occurring over milliseconds which is comparable to the 

time scales of cognitive and behavioural brain activity [104]. Some progress has been made 

in understanding the relation between EEG underlying brain dynamics, however associating 

the spatiotemporal patterns observed in EEG with brain events is still poorly understood. In 

the absence of any real theoretical description of cortical function, the most reasonable frame­

work to interpret spatiotemporal patterns of EEG is by using signal processing. The temporal 

patterns can be understood by employing for instance spectral measures and/or alternatively 

using new dimensionality measures proposed for nonlinear and chaotic systems [22, 23]. The 

spatial information is usually studied via measures of coherency (as with spontaneous EEG) or 

correlation measures (as with evoked potentials). However, mapping spatiotemporal patterns 

to brain activity may be much more effective if based, at least partially, on theoretical models 

of brain dynamics, so that the model parameters are fitted from EEG data. In this case, 

several quantitative issues must be addressed before any attempt to connect brain functioning 

with EEG. These include the spatiotemporal scales to be assumed and what are the primary 

sources that contribute to EEG. 

3.1.1 Sources contributing to EEG 

EEG measures spatial averages of neuronal source activity. However these sources occur at 

different scales. These sources are believed to be the electrical potentials that are generated by 

large formations of mostly pyramidal cells. These cells roughly possessess an axial symmetry 

and they are aligned in parallel, perpendicular to the surface of the cortex [38], as illustrated 

in Fig. (3.1). This alignment of pyramidal cells occurs mostly within a gyri (typical length 

is approximately 3-5cm and width is nearly 1cm), however within a sulci the pyramidal cells 

generally have their axis tangent to the surface of the scalp. Pyramidal cells receive excitatory 

input at superficial apical dendrites from sub-cortical neurons (e.g. thalamus) as well as from 

nearby excitatory neurons from either within the same column or from other cortical regions 

and collect inhibitory inputs at the basal dendrites and their soma from local inhibitory inter­

neurons [38]. Excitatory and inhibitory synapses stimulate opening and closing of different 
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ionic channels in the cell membranes leading to either depolarisation or hyperpolarisation, 

respectively. In most excitatory synapses sodium ions flow into the cell, making the extracel­

lular space negatively charged; whereas in most inhibitory synapses potassium ions leave the 

interior of the neuron, leading to a positively charged extracellular space. When both types of 

synapses are simultaneously active, a single pyramidal cell behaves as a microscopic electric 

dipole surrounded by its characteristic electrical field (Local Field Potential) [38, 113]. When 

a mass of pyramidal cells within a cortical column (approximately 104 neurons) synchronise 

they form a dipole layer whose field potentials sum up to an electric field polarizing the outer 

tissues and scalp which act as a low pass filter [38]. Note that the cortical column must lie 

within a gyri as the dipoles formed here sum up according to linear superposition. However, 

within a sucli the dipoles have opposing directions and thus cancel out. It is possible to de­

fine a macroscopic state variable <l>(r, t) which is related to observed potentials measured at 

location r and time t as the space average over a mirco-electrode surface tip in the following 

way: 

<l>(r, t) = ~ r r(r, r'' t)<I>(r'' t)d3r'' J S(r) 
(3.1) 

where S is the surface area of the electrode. The transcortical potential <I>(r, t) is defined over 

even smaller volume which can be denoted the 'descriptive scale' (chosen to match experiments 

performed at that scale). Thus <I>(r, t) measures the electrical potential in the 'descriptive 

scale'. Since brain dynamics may involve interaction at several scales, r(r, r't) is defined to 

represent a probability density function that weights ranges of the integral thus expressing the 

dependence of the measured variables across different spatial and temporal scales. Because the 

cortical macrocolumn of 3mm diameter lies just below the apparent limit of spatial resolution 

of scalp EEG recordings it is convenient to choose this 'descriptive scale' to define scalp EEG 

state variables [113]. At the level of the macrocolumn activity arises from approximately 

105 - 106 neurons and nearly 1010 synapses. The neurons and synapses cause micro-source 

membrane currents im(r, t) that sum up to form the transmembrane current density Im(r, t) 

which can be defined as follows: 

lm = 1 (la i';;tpextdc+ la i:hpinhdc)' (3.2) 

where L represents the depth of the cortical macrocolumn and A the surface area of the 

macrocolumn. de is the cross-section surface of a cable (in this case the dendritic branch) 

and the surface area defined as !::.C = 2rrr L, with r being the radius of a dendrite. The 
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number of dendritic branches per unit surface area associated with excitatory and inhibitory 

cells is defined by pext and pinh respectively. Thus Im sums the sources from both excitatory 

pyramidal cells and inhibitory interneurons resulting in a current distribution per unit volume 

of the 'descriptive scale'. Since pinh « pext (since pyramidal cells outnumber inhibitory 

interneurons by four to one) it is generally assumed that contributions are dominated by 

pyramidal cells. Furthermore the currents generated at these dendritic branches are governed 

by the following cable equation [87]: 

(3.3) 

where n = { ext, ink}, r; and re are the resistance per unit length of the intracellular and 

extracelluar media respectively. Sincere « r1 then only r1 is taken into account and generally 

r; is assumed to be passive (i.e. constant). Finally, the current source density Im is related to 

extracellular potentials <I>(r, t) by the current conservation Poisson equation 

'V· u(r)'V<I>(r, t) = -Im(r, t), (3.4) 

where u is the local tissue conductivity [113]. The above equations ((3.1)-(3.4)) only explain 

how electrical potentials emerge in extracelluar space, they do not allow deduction of how 

different cells or key neuronal ensembles organise themselves to form the complex activity 

observed in EEG. Suppose N electrodes are placed on the scalp where a large fraction of 

the approximately 1012 neurons are recorded, or perhaps more manageable to mathematical 

consideration, a large fraction of nearly 104 macrocolumns are monitored. How is it possible 

to apply the above equations to make sense of this incredible volume of data? Since these 

equations contain many unknowns, for example: the distribution of synapses and conduc­

tivity, distribution of maximal conductance for all different types of ionic currents along a 

dendritic branch makes the problem of characterising EEG unwieldy. Is is therefore difficult 

to understand the following: 1) Localisation of the fine distribution of electrical activation; 

2) Understanding if local synaptic interactions are responsible for the neuronal synchrony 

underlying cortical field potentials that form EEG; 3) Do rhythms in EEG originate from 

neuronal pacemakers; 4) Do the dynamics of population of neurons lead to emergence of novel 

properties not apparent at the neuronal level, but observed in EEG. In the subsequent section 

it is shown that some EEG rhythms can be explained by neuronal pacemakers or ensembles of 

neurons that share the same properties projecting their activity into the cortex. In particular, 
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focus is placed on thalamic neurons which arc able to display int rin ic o. ci llatory behaviour. 

even after synaptic t ransmission i blocked. This characteristic of thalamic neurons play a 

fundamental role in absence sei1mres making it a crucial physiological brain structure to take 

into account and thus emphasis is placed on this topic. In an effort to circumvent the above 

problems of interpreting EEG. models can be employed as an alternative method to under­

stand the spatiotemporal characteristics of EEG. The dynamics observed in these models can 

then be mapped to EEG state equations ((3.1 )-(3.4)) . The last section of this chapter intro­

duces ome of the most influential neural field models that have been developed to understand 

and account for some of the spatia-temporal dynamics observed in EEG. 

b) 
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Figure 3.1: a) Section of the cerebral surface: the orientation of the pyramidal cell are normal 

lo the cortex surface except within a sulci. b) Cellular basi of EEG: Extra-cellular ion current.s 

from inhibitory synapses at the basal parts and excitatory synapses at the apical dendrites 

of cortical pyramidal neurons give rise to .source dipole currents. These are mainly due to 

inflow of N a+ and outflow of J<+ currents due to postsynaptic potentials, which leads to the 

depolarisation of the membrane potenlials. The leading edge of the depolarisation activates 

other nearby N a+ channels and a wave of depolarisation spreads from the point of initiation. 

The EEG is the patial um of these potentials generated by a mass of about 10,000 neurons. 

Figure adapted from {70}. 
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3 .2 Thalamocortical networks and absence seizures 

Investigation of the cellular and network mechanisms for absence seizures studies have impli­

cated an abnormality in cortical and thalamic activity in the generation of absence seizures [9, 

102, 155]. The cortex and the thalamus are particularly prone to the generation of the syn­

chronized bursts of activity underlying absence seizures, owing to the presence of inhibitory 

and excitatory neurons that intrinsically generate burst activity. A loss of balance between ex­

citatory and inhibitory influences can take the form of either tonic depolarisations or repetitive 

rhythmic burst discharges that may give rise to 2.5-3.5Hz spike-wave oscillations. A schematic 

showing the connection loop between the cortex and t halamus is illustrated in Fig. (4.1). The 

thalamus is the main relay station for sensory inputs (audition, vision) and somatosensory 

signals (arriving from the brain stem) and relays to the cerebral cortex (auditory, visual) and 

motor cortex respectively. Addit ionally, sensory and motor signals can be blocked in the tha­

lamus during sleep or absence seizures. The two functional modes (relay and non-relay) of the 

thalamus are associated with two distinct modes of action potential generation by the thala­

mic neurons. The tonic firing mode is associated wit h the relay function of the t halamic cells 

which can occur during wakefulness and during REM sleep. In this stat e, incoming sensory 

information may be transmitted accurately to the cortex. On the contrary, burst firing occurs 

during NREM sleep and is associated with synchronized oscillations in the thalamus during 

which the transmission of incoming sensory signals is depressed. During NREM sleep, thala­

mic relay (T C) neurons burst activity arrives at the cortex in a synchronous manner, creating 

visible patterns in EEG, such as sleep spindles [88, 150]. This "sleep st ate, of the thalamo­

cort ical circuits is in contrast to the normal "wake state, , in which the thalamic relay neurons 

fire tonically and the thalamocort ical projections are transferring sensory input to t he cortex 

in a nonrhythmic manner. During absence seizures, abnormal circuitry causes rhythmic acti­

vation of t he cortex (typical of normal non-REM sleep) during wakefulness, which results in 

the characteristics EEG spike-wave discharges. The precise abnormality of the circuits has yet 

to be determined, but there are mult iple possibilities. The overriding concept however, is that 

absence seizures are generated through alteratation of the normal cellular and thalamcort ical 

network mechanisms underlying the generation of slow-wave sleep EEG rhythms: t he spindle 
/ 

wave [64, 65]. The reader is asked to refer to Fig. (7.3) on page 231 of [43] for illustrations 

of these oscillations occurring in the thalamus and cortex. This concept is reviewed as it has 
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been inve. tigated through detailed computation models [43] which have clarified many of the 

competing hypothesis and also because it directly relates to the macroscopic thalamocortical 

model analyzed in . ubscqucnt chapter . . 

lntctcmcurons (IN) 

Pyramidal cells (PY) 

Thalamic rcticular 
Neuron (RE) 

Thalamocortical 
Neuron (TC) 

affcrcnts 

Figure 3.2: A schematic of the thalamocortical loop proposed for absence . eizures: Thalamic 

system consists of thalamic reticular (RE) which project GABAergic inhibitory connections to 

thalamic relay neurons (TC). TC cells receive prethalamic afferent connections consisting of 

sen OT'IJ or motor input. and relay thalamocortical excitatory fibre inputs to RE and cortical 

cells where these connections are mediated by mainly AMPA receptors. The cortex is organ­

ised mainly by pyramidal cells (PY) which project NMDA and AMPA mediated excitatOT'IJ 

connections to inhibitory inter-neurons (IN) and also send corticothalamic feedback back to 

the thalamus. The IN neurons synap.se onto PY cells which u mediated GABAergic receptors. 

(Figure adapted from (43}}. 

3.2.1 Cellular mechanism of thalamic neurons 

The firing pattern of a cell is controlled by the level of its membrane potential. When a cell is 

relatively depolarized it generates a train of single spikes (action potentials). A hyperpolarized 

state promotes burst firing. However, the electrophysiological properties of a cell can broaden 

or diminish the repertoire of possible firing modes. In T C and RE neuron. , single spikes 

(tonic firing) arc mediated by the voltage-dependent sodium (Na+) and potassium (K +) and 
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this is a similar response in most types of neurons. In particular, TC cells (at depolarized 

resting, membrane potential -50mv) fire action potentials at a frequency proportional to the 

amplitude of the injected currents. In contrast, RE (rest membrane potential-58 mv) cells fire 

20-60Hz. Through in-vitro slice preparations Jahnsen and Llinas [79, 80] demonstrated that 

following a IPSP (inhibitory postsynaptic potential), which provides hyperpolarisation of the 

membrane potential (-80mv) TC cells enter burst mode (300Hz) due to slow calcium currents, 

also known as low-threshold Ca2+ or as T-current (Ir). Due to the burst only occurring upon 

release from sustained inhibition, this phenomena was termed post-inhibitory rebound burst. 

The same phenomena occurs in RE cells (at hyperpolarised membrane potentials of -90mv) 

where Ca2+ spike bursts of 400Hz are initiated by the rising phase of EPSPs ( excitatory post 

synaptic potential). However, the kinetics of Ir currents seem to be slower in RE cells, hence 

termed Ir, [10]. The existence of mixed Na+ and K+ currents termed In was determined by 

McCormick and Pape [108] which is a current that can also be activated at the hyperpolarised 

level. It is found that the interplay of In and Ir currents can generate delta frequencies 

(0.5Hz-4Hz) in TC cells, while the interplay of other currents, namely IK[Ca] (calcium-activated 

potassium current) and the non-specific currents leAN and Ir, are identified in the genesis of 

7-12Hz (alpha oscillations) in RE cells [14]. The TC cells display an extra oscillatory mode 

of 0.5-3.2Hz which is composed of waxing-and-waning (waxing corresponding to growth phase 

and waning to burst firing) envelopes of duration 1-2s and silent phases of 5-25s (the reader is 

asked to refer to Fig (4.1) of [43] on page 90). This firing mode is activated by increasing the 

amplitude of the In current which transforms delta oscillations into waxing-and-waning. The 

electro-physiological properties of TC and RE neurons make it possible for TC-RE network 

to account for spindles waves and slow oscillations(< 1Hz- 4Hz). 

3.2.2 Spindle waves 

Spindles waves are 6-15Hz oscillations in the EEG that wax and wane (dictated mainly by 

the cycle to complete a loop of activity between RE and TC neurons, taking approximately 

70- 150ms) over a period of 1-2s and recur approximately once every 5-10s during early 

stages of sleep. The reader can refer to Fig (7.7) of [43] on page 237 for an illustration of 

spindle waves in thalamic systems. The TC cells excite RE cells with glutamatergic AMPA 

synaptic transmission whereas the activity from RE to TC neurons is an inhibitory action 
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which hyperpolarizes the TC cells by means of GABAergic neuromodulators [95, 156]. This 

hyperpolarisation is mediated mainly by fast GABAA receptors in TC cells, since GABAs 

receptors have a higher threshold for activation. The hyperpolarisation is high when RE 

cells are burst firing which cause temporal summation of IPSPs. The summed IPSP may 

result in (via inactivation of enough low-threshold Ca2+ currents in the recipient TC cell) a 

rebound low-threshold spike (LTS) [79, 80]. This in turn activates a burst of 1 to 4 action 

potentials (due to Na+). Because TC and RE cells are reciprocally connected, the burst of 

action potentials in thalamocortical cells once again excites the RE cells (through IT,), thereby 

initiating the next cycle in the spindle. The generation of spindle waves requires both TC and 

RE cells be relatively hyperpolarized so that low-threshold Ca+ current may be activated. This 

requirement explains the suppression of spindle waves by arousal. The increased activity that 

underlies arousal (i.e. hypothalamus) releases neuro-modulators causing the net depolarisation 

of RE, TC (enhancement of IH current ) and some corticai neurons through the reduction of 

K+ conductances [107, 153]. 

3.2.3 Slow waves 

Importantly, RE cells are linked via mutual inhibitory connections mediated by GABAA, and 

also through longer lasting GABA8 receptor [139, 163]. The role of these connections is to 

control the discharge (amplitude and duration of excitation) of these cells by thalamic and 

cortical activity, which may have important consequences for the generation of slow oscillations 

(< 1Hz- 4Hz) and consequently spike-wave activity [91, 146]. This can be observed by 

application of intrathalamic injection (in-vivo or in-vitro slices) of GAB AA antagonists that 

block GAB AA receptors through which RE-RE inhibition is mediated [88, 100, 150, 154]. This 

results in a pronounced increase in action potentials, presumably from disinhibition of other 

RE cells [13, 15]. Following disinhibition, RE neurons respond to bombardment of EPSPs 

(either from the cortex or TC cells), which generate a prolonged burst of action potentials 

and subsequently activate slow, GABA8 -mediated IPSPs in their post-synaptic TC cells. 

Functionally, the activation of GABA8 receptors result in a slowing of the oscillatory activity 

between RE and TC neurons, owing to slow kinetics and prolonged duration (150-300ms) of 

these IPSPs. This is efficient in the removal of inactivation of the fr current in TC neurons thus 

causing longer bursts in these cells. Following the near complete block of GAB AA receptors, 
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the time to complete a loop of activity between RE and TC neurons lengthens to between 300 

and 400ms, therefore the network generates rhythmic oscillations between 2 and 3Hz. Because 

this frequency is similar to that at which TC cells prefer to endogenously oscillate, owing to 

Ir and the pacemaker IH, the TC neurons discharge several action potentials every cycle of 

the network oscillation. Blocking GABAA receptors in the thalamus may therefore result in 

the transformation of spindle waves to 2-3Hz. 

3.2.4 Spike-waves 

Investigations of spike-wave seizures in cats have emphasized the important role of the cortex in 

conjunction with corticothalamic interaction in generating pathological discharges [36]. While 

intrathalamic injections of high doses of GABAA antagonists results in highly synchronized 

2-3Hz (slow-wave) oscillations without any spike-wave discharge, on the contrary, the same 

drug application to the cortex results in spike-wave seizures as long as the thalamocortical 

network is intact [64]. This is based on experimental evidence, where lesions of the RE nucleus 

causes cessation of spike-wave activity demonstrating the involvement of the thalamus [11, 27]. 

The participation of the thalamus in these pathological discharges is shown to be mediated by 

GABA8 receptors via intrathalmic injection of GABA8 agonists which promote spike-wave 

oscillations, whereas administration of GABAs antagonists suppress them [75]. Furthermore, 

the removal of the cortex causes the underlying thalamus to generate only spindle waves 

without seizures, but the removal of one cortical hemisphere shows seizures occurring in the 

intact hemisphere [154]. These studies indicate that disinhibition of neuronal activities in 

either the cerebral cortex or thalamus may result in abnormal 2-4Hz oscillation in the EEG, in 

particular, with disinhibition of the neocortex resulting in activity that is most similar to spike­

wave oscillations in human epilepsy [64, 152]. One possibility, is that the abnormal discharge 

of corticothalamic neurons, owing to an imbalance of excitation and inhibition in the cerebral 

cortex, results in the strong phasic excitation of RE, TC and local GABAergic neurons. Thus 

the strong activation of the corticothalamic pathway may result in both the direct excitation 

of TC cells and the hyperpolarisation of these cells through disynaptic inhibition via RE 

cells and local GABAergic neurons [42]. Initially, all cells, including the cortical neurons 

discharge only weakly and intermittently in response to each phase of the spindle wave, while 

the development of spike-wave discharges is associated with synchronised strong bursting in 
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these cells during the spike and periods of hyperplorarization and silence during the wave. 

The reader is asked to refer to Fig (8.28 A) of [43] on page 328 demonstrating how these 

oscillations are generated. 

Despite the progress made in developing computational models by Destexhe and Sejnowski (43], 

questions and controversies regarding the underlying epileptogenesis of absence seizures still 

persist. These models have been valuable in clarifying competing hypotheses in the literature 

and showing that the switch to spike-wave occurs as a result of the blocking of GAB AA IPSPs 

and increase in GABA8 IPSPs, and the resulting increase in burst firing in the TC neurons. 

However, the biological evidence for this sequence of events is only from in-vitro work (i.e. 

slices). In-vivo experiments do not find any increased burst firing during slow wave activity, 

indeed the opposite is true. That is, the vast majority of TC neurons are hyperpolarized as 

a result of the strong firing from the reticular neurons [39, 123]. To date there has been no 

models explaining this behaviour and this is mainly because of the difficulty in replicating 

in-vivo dynamics due to high variability of the intrinsic activity of in-vivo neurons and the 

dynamics occurring as a result of the interacting populations of neurons. One plausible way to 

circumvent these shortcoming is to first apply physiologically realistic neuronal macroscopic 

models based on 'order parameter fields'. This is a concept used in statistical mechanics 

where the important variables of the system say GAB AB, Ir and IH are lumped into a single 

parameter say, v = M(GABAB,lr,IH), where M is a function mapping the physical space 

to the parameter space. The key aspect here is to search in the parameter space changes 

in dynamics that correspond to the dynamics we search in the real system. Secondly, once 

suitable parameters are found then mappings from the macroscopic models to realistic com­

putational models (which include the relevant physical variables) may be considered to reveal 

the source of the underlying activity. However, finding suitable 'order parameter fields' and 

suitable models is scientifically challenging and this is the topic of next section which provides 

the most influential ideas used in macroscopic brain dynamics. 
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3.3 Macroscopic brain models and EEG 

Different modelling approaches have been proposed for macroscopic dynamics and they are 

essentially categorised into three main groups: Neural Field, Population Density and Mass 

Action models, however variants and mixes of these approaches exist. These different vari­

ants are an attempt to gain insight into the complexity of brain dynamics by avoiding the 

overwhelming details of individual neurons as predicted by models of action potential gener­

ation, e.g. the Hodgkin and Huxley model [73]. As presented in Chapter 1, neuronal activity 

occurs at different spatiotemporal scales and in general the dynamical range that must be 

modelled extends over several orders of magnitudes. However, existing modelling techniques 

are incapable of dealing with such complexity and as such the general approach is to project 

this huge range to a single scale and concentrate on a particular feature of the activity. These 

models work under the assumption that precise trajectories for all single neuron activity is 

not knowable and need not be known, but averages are sufficient to describe ensemble dynam­

ics. However, this is only true if spatially localized neural populations share nearly identical 

responses to identical stimuli. This would allow to characterization of the population by a 

single state variable. 

3.3.1 Neural Field models 

The first model to be considered was proposed Wilson and Cowan [168]. It suggests that a 

population of neurons can be described by a single state variable representing the proportion 

of neurons becoming active per unit time, which corresponds to the generation of action 

potentials. In the following sections the Wilson and Cowan model is derived in a different 

manner enabling a better understanding of the assumptions of their approach. The subsequent 

derivations consider only temporal dynamics for a single recurrent population. Each individual 

neuron is considered to be one compartment, that is, a neuron is a zero-dimensional process. 

Furthermore the equations are formulated using the idea of separation of time scales (refer to 

section (2.1.7) for details). 

How do we model a neuronal ensemble consisting of N neurons with all to all coupling, that is 

N 2 connections and relate the output to EEG? As a first attempt to model the system a single 
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compartment Hodgkin-Huxley model [73] could be employed, where every neuron possesses 

many synaptic gating variables from different ionic currents and a membrane voltage. Nu­

merically simulating such a system will be computationally demanding because every neuron 

constitutes several dynamic variables (at different time scales) and also because information 

(in this case spikes) has to flow within the network affecting responses of another neurons. 

A first simplification that is often performed in the literature, is to reduce the complexity 

of gating variables by ignoring the detailed dynamics of transmitter concentration in the 

synaptic cleft. Instead, the transmitter-activated ion channels are described by an explicitly 

time-dependent conductivity 9ii ( t) at neuron i that will open whenever a pre-synaptic spike 

from neuron j arrives. In this simplification neuronal activity is governed by perturbations of 

the cells voltage V;, and 9ij(t) which can be seen having invariant dynamics. The temporal 

evolution of the above state variables can be written in the following form: 
N 

Cm d; - -gLi(V;- VL)- 9ii L);i(V;- Vli) + lapp,;, 
j 

9ij - l 9~n(t- s) L 8(s- tij)ds, 
to mEZ 

(3.5) 

(3.6) 

where R = 1/ 9L is the resistance of the membrane of a neuron and Cm is the capacitance. VL 

is the resting potential of the neuron, 9ii is the maximal conductance and an external current 

Iapp can be applied to measure the electrical response of the neurons. Equation (3.5) defines 

the time course of the neuron voltage V; with a response similar to a resistance-capacitance 

(rm = RC) circuit, where Tm defines the constant of leakage. That is, for small current 

amplitudes, the membrane potential increases exponentially to an asymptotic value which 

depends roughly linearly on the applied current and in turn proportional to R. This linear 

response is only valid for small applied currents. If the current exceeds some threshold value 

vthr (which depends on the neuron type), the behavior becomes highly nonlinear. A positive 

pulse in the voltage is generated (i.e. action potential), with an amplitude of up to 100 m V 

and a duration of about 1 ms. The activation of the circuit also depends on the synaptic 

currents, 9ij(V;- V;i) where 9ii corresponds to the synaptic conductance and Vlj a reversal 

potential. If V;; > vthr then the reversal potential tries to pull V towards Vlj which excites 

the neurons, i.e. an excitatory synapse, otherwise it is an inhibitory synapse. Equation (3.6) 

defines the synapse 9;j as a temporal convolution of sequences of spikes LmEZ 8(t- tij) with 

some integral kernel g!tn· t0 is some initial time and t;j is the time during which the action 

potential travelled from the axon of neuron j to the presynaptic terminal of neuron i. The 
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above network formulation results in a system consisting of N 2 + N dynamical variables, 

resulting in demanding processing time and the data produced is hard to compare with the 

important macroscopic EEG dynamics especially in the limit of large N. 

To circumvent this complexity, neural field approaches assume that the firing rate of the 

action potential is the desired measure of neuronal response to a stimulus, although additional 

information may be encoded in other characteristics of the firing patterns. To see under which 

conditions a firing rate description might be valid, first consider the simplest firing rate. We 

choose a time interval T, count the number of spikes within this time period and then define 

the rate as the number of spikes divided by the length of the interval. Suppose that a neuron 

j is firing at a constant rate with period T;, then the postsynaptic input is defined as the 

following firing rate variable 

(3.7) 

where v;(s- t;;) = i,. J{; dt I:mez o(s- tlj). From equation (3.7) we can investigate under 
' 

what conditions a spiking model can be turned into a non-spiking model for macroscopic 

dynamics. Suppose that the response of the post-synaptic conductance g!{n to a single spike 

corresponds to a rapid rise and subsequently an exponential decay with some time constant 

T;;, where the rise represents the opening of ion channels and decay the closing. Furthermore, 

assuming that r;; has a much larger time scale than the interspike interval T; of the pre­

synaptic neuron, then fj;; approaches periodic behaviour. During each interspike interval, f);; 

decays exponentially by the same amount that it is incremented by the next spike, in this case 

we have f);; = v;. However, in reality neurons do not fire with perfect periodicity indefinitely, 

and some care must be taken to define appropriately the firing rate of a neuron. 

Defining the firing rate of a neuron as a function of the membrane potential, that is, v1 = 

c::;(Vj), allows to some extent generalisation of the above discussion for varying firing rate. 

The preceding discussion was for constant pre-synaptic frequency. If the frequency of the 

pre-synaptic neuron v; = <;; (Vj) varies slowly, then the approximation, f);; ~ v; will still 

hold, allowing a definition of a macroscopic firing rate model. For this to be possible it must 

be assumed that the synapses evolve on a much slower time scale than that of the voltage, 

i.e. Tm « TiJ, which implies that voltage reaches its steady state faster than that of the 
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synapses. However, in reality Tm and Tij are of the same order of magnitude and thus the sep­

aration of scales cannot be performed cleanly. Using separation of scales allows the solutions 

of fast dynamics for its asymptotic value V00 and then use this solution in the slow dynamics to 

understand the slow process. A further assumption for this is to assume that all conductances 

are constant in time. In particular, the reversal potentials V; - Vlj in Equation (3.5) should 

be constant to allow the voltage settle to an asymptotic value. However note, this might be 

a reasonable assumption for excitatory neurons, but a very strong assumption for inhibitory 

neurons. For example, consider 9AMPA(t)(V- VAMPA) which is an excitatory synapse, with 

the reversal potential VAM PA = 5mv. Also consider the resting potential of a pyramidal cell 

V..est = -70mv and threshold Vthr = -50mv. In general experimental studies show the fol­

lowing amplitude difference IV- VAMPAI ~ 70mv, however the fluctuations (deviation ov) 

are very small uv « IV- VAMPAI· In this case it is possible to apply the approximation 

g;j(t)(V;- Vli) ~ 9ij(t)(V..est- Vlj) = 9;jDoVlj, where D.V;j is now a constant. On the contrary, 

using the above procedure for the inhibitory synapse 9GABA(t)(V- VaABA) is not a correct 

one, since VaABA = -70mv and because the fluctuations are large O'v ~ !Omv. However, for 

the derivation of nonspiking models to be possible the above assumptions are necessary which 

then allow the determination of the asymptotic voltage by setting ~ = 0. This then yields 

a steady state value for the voltage v;oo = VL + .!&. L< §;;Do Vj, + 1"
9
PP·'. In this case, a given 

• 9Li ~ J J Li 

setting of the post-synaptic conductance cannot produce spiking unless \lj00 > V;thr. Without 

loss of generality further simplification is made by assuming VL = 0, lext,i = 1;:~·' and by 

defining the synaptic weights V;; = .i&.D. V;;. The separation of scales essentially reduces the 
J 9Li , 

system from N 2 + N to the following N 2 equations. 

g;j(t) = t g!{n(t- s)<;j(~""(s- t;j))ds. (3.8) 
}to 

Because all internal neuronal structure has been ignored (such as dendritic tree and the finite 

propagation times along dendrites), the synaptic activity (3.8) in cell i can be linearly summed 

to obtain the following 

9i(t) = L [ g!{n(t- s).;i(~""(s- t;j))ds. 
j to 

(3.9) 

Under additional constraints the network may be simplified. Most of the time course of the 

postsynaptic potential g!{n depends only on the postsynaptic cell i which is captured by the 

following equation (from [83]): 

(3.10) 
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where G;;(t) is related to the time course of the diffusion process of transmitters in the synaptic 

cleft after release at the pre-synaptic terminal and their binding process to the receptors on 

the postsynaptic terminal. "-;; is a constant scaling factor representing the magnitude of the 

this process. Applying equation (3.10) allows us to rewrite equation (3.9) in the following 

form 

j];(t) = 1.t G;;(t- s) L K-;;<;;(L v;;gj(s- t;;) + Iapp,;)ds, 
J J 

(3.11) 

where the inverse G;;(.J-1 of the integral operator G;;(.) will be the sum of differentials with 

constant coefficients Cn· 

G;; ( t - s) can have either exponential or polynomial form, however synaptic activity is best 

represented as either hi-exponential with an exponential finite response rise time representing 

opening of channels and an exponential decay time identifying the closing of channels. For 

example, a simple, but often used, integral kernel is G;;(t- s) = e-<t-s)h; that assumes an 

infinite rapid response time and a finite exponential decay. This then leads to the following 

differential equation for sufficiently small time delay, t;; ~ 0 with cb = 1, ci = T;; and c~ = 0; 

n :0::2: 

T;;§; = -g; + L"-ii<;;(Lv;;§;(t) + lapp,;). (3.12) 
j j 

A further reduction is to assume that all synaptic time constants are the same T;; = T. Then 

all synapses 91;, · · · , 9Ni emanating from a single presynaptic neuron have the same temporal 

behaviour. With this simplification, the model (3.12) reduces from N 2 toN variables defined 

as follows: 

{3.13) 

where w;; = N;v;; defines the synaptic weights and the coefficient>..;; = N;"-ij can for example 

regulate the firing rate. 

The final simplification is to assume that macroscopically, the behaviour of a cell assembly 

can be characterized in terms of the time or ensemble averaged behaviour of a homogenous 

collection of neurons that populate it. For large assemblies, we can consider an individual 
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cell variable g;(t) a sample path from a random process, g(t). The corresponding system 

level parameter of interest is the sample mean, g(t), or expectation < g(t) >. A macroscopic 

average model reduces the system description from a set of N coupled equations to a few 

equations involving expectations and standard deviations of these random variables. The 

Law of large numbers shows that the expectation approaches the sample average as N -+ oo. 

Thus the following averages are defined: 

9(t) ~ ~ 'Lfli ~< rfi(t) >, 
jEN 

and by definition 

dg(t) = .!:._ []._'"' '·( )] = ]._'"' dg;(t) = g;(t) 
dt dt N {e:/' t N ~ dt dt . 

Applying the above average equations to the model (3.13) results in a single recurrent mean 

neural field model equation: 

7!J = -g + A<;(wg(t) + lapp), (3.14) 

where it is assumed that 7, g, >-,w and lapp represent averages. Equation (3.14) equation 

is equivalent to the Wilson and Cowan model [168]. However, Wilson and Cowan defined 

empirically the dynamic variables to represent the proportion of active neurons in a population 

per unit time, whereas in the above derivation the variables show explicit dependence with the 

temporal dynamics of the synapses. Also in their model they also accounted for the refractory 

period and later publications accounted for spatially interacting excitatory and inhibitory 

populations [169]. 

An alternative formulation of neural field equation was proposed by Nunez [113] and further 

generalized by Jirsa and Haken [84]. In this approach, the activity of the neuronal ensemble 

is governed by the time scale of the membrane voltage, that is, the synaptic conductance are 

assumed to have a faster time scale. Consequently, a model of N interacting populations will 

have the following structure 

7V; = -v; + L w;ir;(vi(t)), 
j 

(3.15) 

where 7 defines the intrinsic time scale on which the voltage v; evolves. The model equa­

tions (3.14) and (3.15) are in essence similar and capture essential temporal macroscopic 

dynamics. 
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3.3.2 Spatial propagation of neuronal activity 

The previous section introduced equations for temporal dynamics where the assumption was 

that each neuron is a point process (zero dimensional). However, neuronal activity is also 

spatially distributed and in general this activity is a function of the network topology defined 

with some boundary conditions and synaptic weights. The network connectivity addresses 

how the effective geometry affects dynamics while synaptic weights introduce a quantitative 

measure of these connections. Moreover, there are multiple spatial scales of brain organisation 

traversing single neuron to the level of scalp EEG. Over these scales the connection topologies 

change from perhaps probabilistic to structured and hierarchical as found in the neocortex 

presented in Chapter 1, which shape the spatial dynamics observed at each level. 

At the level of EEG Amari was among the first to study spatially and temporally continuous 

neural fields (4]. The temporal dynamics correspond to equation (3.15), however to account for 

spatial activity it incorporates a continuum physical space: w;i -+ w(r, R)dr, v;(t) -+ if>(r, t) 

and L:i -+ fv where r and R are identified as being two different spatial locations and D 

represents a cortical surface area (of some geometrical form) and thus the equations are defined 

as follows: 

7 °!/>~,t) = -1/>(r,t)+ L w(r,R)c;(if>(R,t))dR. (3.16) 

In this model formulation, time delays caused by propagation times are ignored. This assump­

tion is valid if the delay is small compared to the time scale on which the system is studied. 

The macroscopic EEG connectivity of the system is defined in w(r, R) which in general is 

defined as being excitatory for proximate connections and inhibitory for greater distances as 

observed in macrocolumns. FUrthermore, Amari considered the macrocolumns to be spatially 

symmetric and translationally invariant in which w(r, R) = w([x - R[). This type of model 

does not account for oscillations, but locally excited regimes may exist and self-sustain without 

external inputs. 

Later work by Jirsa and Haken [84] incorporated delays in the above equations to consider 

long range connections between cortical regions that resulted in the well known wave-like 

equation. These equations allow the study of propagation and oscillatory properties of the 

cortical surface. In this section the derivations of the wave-like equations are provided as 

62 



the primary model studied in this thesis incorporates this. Incorporating delays into Amaris 

equations (3.16) results in the following: 

T a<f;~, t) = -<P(r, t) + ( w(r, R)c;(<f;(R, t- r- R))dR, 
t Jv Va 

(3.17) 

where c;(<f;(R, t- r-R)) is the firing rate of action potentials at location R resulting in late 
V a 

synaptic activity at location r, dependent on the separation distance lr - RI and the action 

potential velocity Va. <P(r, t) represents the field activity at the end of axon terminal. The 

number density of fibres connecting locations Rand r with propagation velocity Va is described 

by a connectivity (distribution) function 

_ !r-R! 
e ra 

w(lr- RI)= . 
2ra 

Here the spatial connectivity of the activity is assumed to decay with distance, which is in 

agreement with experimental observations (149]. Ta is the spatial range (i.e mean axonal range) 

which also indirectly defines a hierarchy of time scales over which <P operates. Furthermore, 

an isotropic distribution of axons is assumed. Equation (3.17) can be re-written as 

<P(r, t) = dv w(r, R)c;(R, t- ---)dR. l oo 1 r R 
0 D Va 

(3.18) 

Phenomenologically the spike velocity and spike shape does not change along an axon and 

incorporating this observation reduces (3.18) to: 

<f;(r, t) = w(r, R)c;(R, t- --)dR. 1 r-R 
D V 

(3.19) 

Expressing the time delay via propagation along corticocortical fibers as a delta function 

8(t- T- lr-RI) the solution of equation (3.19) can be written in-terms of a Green's function 
V a 

G of the following form: 

<f;(r, t) = ll: G(r- R, t- T)c;(R, T)dTdR, (3.20) 

with 

I RI -lr-RI/ra 
G(r- R, t- T) = 8(t- T- r- ) e 

2 
. 

Va Ta 

This permits Fourier transformations of the individual terms in (3.20) as follows: 

-'(r t) = ..!.. 2 Joo Joo eikr-iwt-'(k w)dkdw 
'+' ' 21r -oo -oo '+' ' ' 

c;(r t) = ..!.. 2 Joo Joo eikr-iwtc;(k w)dkdw 
' 21r -oo -oo ' ' 

G(r - R t - T) = ..!.. 2 foo foo eik(r-R)-iw(t-T)g(k w)dkdw 
' 21r -oo -oo ' ' 
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Thus in Fourier space the following relations are obtained: 

<f>(k,w) = g(k,w)c;(k,w). (3.21) 

Specifically, applying the inverse Fourier transform of g(k,w) results in the following: 

g(k, w) =loo loo G(r- R, t- T)eik(r-R)+iw(t-T) = 'Y~ .- ~'YaW 2 

-oo -oo ('Ya- 2w) + k Va 
(3.22) 

where the parameter 'Ya = ~- Finally, substituting (3.22) into equation (3.21) and rewriting 

the resulting relation back into the space and time domain yields the following wave-like 

equation: 

( 
8
2 

8 2 2 2) ( 2 8) ( ) 8t2 + 2-ya 8t + 'Ya - V a \l <f>e = 'Ya - 'Ya 8t c; r, t ' (3.23) 

where "i72 is the Laplacian operator. Thus equation (3.23) describes pulse propagation along 

an axon in terms of the generated firing rates c;(r, t). For inhibitory neurons connectivity 

is short range, typically axonal ranges of about 0.1cm. This implies that the connectivity 

function for inhibitory connections reduces to the following r(r, R) = o(r- R) which results 

in a simpler formulation. Alternatively 'Ya -+ oo which implies that equation (3.23) transforms 

to <f>(r, t) = c;. 

Neural field models are nonlinear spatially extended systems and thus support pattern for­

mation. The analysis of such behaviour typically involves linear Thring instability, nonlinear 

perturbation theory and numerical simulations. The pattern formation include global peri­

odic, standing and spiral waves [37] and as well other complex patterns, for example related 

to epilepsy [35]. The nature of these patterns solutions to some degree relate to the wave 

patterns observed in EEG and local field potentials, however the theory is far from being 

complete in that it cannot interpret the observed and simulated global patterns in terms of 

lower scales of activity. This difficulty arises because of the separation of scales assumed in 

neural field models and thus information exchange between levels of activity is lost. 

3.3.3 Population density models 

As an alternative to neural field approaches, population density models can be applied. The 

population density method allows grouping of neurons into populations and tracking the 
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distribution of neurons over the state space of each population. Neural field models also 

group neurons into populations, but on the contrary, the state of each neuron is lumped into 

a single state variable. For this reason neural field models can be seen as a particular case of 

population density models, where the density distribution is uniform or alternatively a delta 

function (i.e. higher statistical moments are not considered). The population density approach 

allows modelling of fast temporal dynamics observed in transient activity [62], and also a more 

accurately representation of refractory activity by incorporating refractory densities. However, 

it is computationally more demanding than the neural field approach. For excellent reference 

papers on this topic see for example [47, 116]. 

The theoretical approach taken is to consider a reduction of the phase space of the dynamics 

governing the activity of single neuron, where it is then possible to define the fraction of neu­

rons per unit volume of the phase space in the mathematical limit of an infinite number of 

neurons. This then allows use of the Kolmogorov-Fokker-Planck equation which describes the 

time evolution of the probability density function. The advantage of this formulation is that 

it allows one to model the variability of neural activity as probability densities over trajecto­

ries through the state space and thus, for example taking, into account stochastic processes. 

However, it assumes that the such processes are smooth, which then allows interpretation of 

the randomness as a diffusive process. To make things clear, suppose that the state of neuron 

x is governed by some dynamical system of the following form 

dx 
dt = F(x) + S(x, g(t)), 

where F is the vector field, which could be that of the Hodgkin-Huxley model [73] and 

S(x, g(t)) denotes incoming synaptic currents that depends on x and conductances g(t) (which 

may represent noise input). The state space for each neuron in the Hodgkin-Huxley model is 

four dimensional x = (V, m, h, n), where V is the membrane potential, m governs the sodium 

activation, h the sodium inactivation, and n the potassium activation. A direct simulation by 

following the trajectories of all neurons in a network of Hodgkin-Huxley like models introduces 

high computational cost and is not amenable to mathematical analysis. Suppose it is possible 

to find the probability density function p(x, t) for a neuron, that is, a function that satisfies 

f:':'oo p(x, t)dx = 1, and in this case fn p(x, t)dx = Pr(the state of a neuron E n). By ignoring 

the trajectories of individual neurons and assuming a population of N similar neurons, p(x, t) 
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can be interpreted as a population density, that can be defined as 

. neurons with x E n 1 
hm ( N ) = p(x, t)dx = Fractions of neurons whose state E n. 

N-oo n 

The evolution of density in the phase space can then be described by the Kolmogorov-Fokker­

Planck equation (KFP): 

8p(x, t) 
at 

8 8 
- -ox . (F(x)p(x, t))- ox . J, 

Po - p(x,O), 

(3.24) 

(3.25) 

where p0 is the initial distribution and J is the flux in terms of probability of neurons crossing 

the boundary n, dependent on the S(x, g(t)) term. The sum of the terms ap~,t) + tx · 
(F(x)p(x, t)) = 0 in equation (3.24) defines the transport or drift equation, while the derivative 

of the flux represent a diffusion term. The KFP equations with p depending on the full 

phase space x is computationally demanding. To reduce computational effort, two different 

approaches have been suggested to reduce the phase space of neural system to one dimension. 

Consider for example a homogenous population of leaky integrate-and fire (LIF) neurons with 

the input to the population dispersed by noise 

{ 
Cm~~ = -gL(V- VL) +I+ aW), 

if (V> vthr) '*V= vreset. 
(3.26) 

A homogenous network implies that all neurons have the same parameters, Cm membrane 

conductance, the same leaky currents, identical threshold vthr and reset values vreset. The 

input current I contains both the external drive and synaptic coupling. The term a corre­

sponds to a noise dispersion and ~(t) is a white noise process, i.e. the average of the process 

~(t) is zero for all time: < ~(t) >= 0 and the autocorrelation function has infinite power: 

< ~(t)~(t') >= TmO(t- t') which implies power spectral density P(~(t)) = Tm, where Tm is the 

membrane time constant). 

The first approach assumes the evolution operator p is fully described by the membrane 

voltage V. This approach is valid only if the voltage is a monotonically increasing function 

in time. However, if at two distinct time moments t and t + !::,.t the voltage have the same 

value, i.e. V(t) = V(t + !::,.t), then the approach fails since it is impossible to distinguish 

between the two voltages in phase space. Thus this solution is only typically employed to 

describe a population of LIF neurons [62] and thus p(V, t) is the membrane potential density 
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of the population. A derivation of p(V, t) into as a KFP is demonstrated in [62] which can be 

expressed in the following form: 

8p(V,t) + [-g (V _ Vi ) + I] 8p(V,t) + u(t)2 a2 p(V,t) = O 
at L L av 2 av2 ' 

p(V, t)lv=Vthr = 0, (3.27) 

p(v, t)lt=O = o(V- VL), 

where the first two terms of the KFP is the transport equation and the third term due to noise 

defines a diffusion term. The second equation defines the boundary condition when neurons 

reach a threshold. The third equation relates to the initial condition. This approach has been 

applied in modelling for example event-related potentials (ERP) [67]. In this work, the noise 

term .;(t) is modeled by measuring and quantifying the averaged firing response of a population 

of neurons to different experimental trials of the same experimental stimulus paradigm. This 

allows one to encode to some degree the variability of ensemble responses. However this is 

valid under the assumption that the averaged firing rate of a neuron constitutes the primary 

variable relating neuronal responses to sensory experience. 

An alternative and more robust method is to use an auxiliary variable usually denoted t•, 

which for a single neuron is the time elapsed since its last spike [47]. Here, p(t, t*) is referred 

to as the refractory density [62]. This approach has the ability to distinguish in phase space 

two spike time moments having the same membrane voltage. In this case the KFP for the 

LIF ensemble (3.26) has the following form: 

ap(V, t•, t) ap(V, t•, t) [- (V_ Vi) I] ap(V, t*, t) u(t) 2 a2p(V, t*, t) = O (3 28) 
at + at• + 9L L + av + 2 av2 • • 

A population model of the form (3.28) has been extensively studied by Chizhov [32] where 

the third and fourth terms of equation (3.28) was substituted into the right hand side and a 

good approximation give the hazard function p(t, t*)H. The final form of the equation is then 

by the following: 

{ 

ap~{) + apb~·:·) = p(t, t*)H(V) 

C(~~ + ~i,) = -gL(V- VL) +I 
(3.29) 

where the first KFP equation is reduced to a drift equation with source term being the hazard 

(firing rate) function, p(t, t*)H, which is dependent on the noise amplitude u and the firing 

threshold vthr. The second equation defines the drift equation of voltage V dynamics V for 

all t*. This approach has been further refined in [32] to take into account averages of fast and 
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slow ionic currents over the cell populations and the variability in intrinsic cell properties and 

in synaptic input. The model has been shown to simulate to a good precision extra-cellular 

stimulated postsynaptic responses and gamma-oscillation of a hippocampal CAl tissue [31]. 

3.3.4 Mass Action models 

Mass action models were first proposed by Freeman [57] as an alternative approach to mod­

elling population dynamics. The crucial difference being they were based on results obtained 

from electrophysiological experiments, measuring local field responses of neural masses to 

known stimuli or induced by electrical pulses. These experiments aimed to relate single cell 

recordings at the microscale and demonstrate that the macroscopic dynamic properties of a 

neural mass are related to, but distinct from those of an individual neuron (i.e. neural masses 

cannot be understood at the level of action potentials). In these experiments neural masses 

are electrically stimulated by extracellular electrodes which activate large numbers of axons 

(termed nerve tracts) that synapse into an ensemble of neurons and cause their activation. The 

ensemble output response field potential, after, suitable averaging to remove the background 

activity is treated as an impulse response of the system. In a series of recordings carried 

out on the olfactory system of both trained rabbits (i.e. to recognise smells and to respond 

with particular behaviours to particular smells) and untrained ones, Freeman developed a set 

of dynam!Ean>nenomellologlcaimooels~calle<r£lieRi.setl:llerarcliY,w1iere :r· ·To,T;n:Jnr· 
These sets are both a model of population dynamics and a description of the connectivity 

architectures to describe interactions made by neural masses. The KO set is the most basic 

and simplest component in the hierarchy consisting of three parts, biologically resembling a 

real neuron. Specifically, KO sets model a neuronal ensemble forming part of a cortical column 

within which all neurons share the same physiological and functional properties. They receive 

spatial inputs (dendrites) that are weighted and summed. Further they include a soma where 

pulse spike densities are produced and the internal dynamics (the transmembrane potential 

of a neuron) follow a linear time invariant system with second order dynamics. The output 

is then shaped by a nonlinear saturating function, that essentially provides a measure of the 

relationship between the transmembrane potential and the pulse density of the neuronal mass. 
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The response of the model to an impulse P(t) function is described as follows: 

{ 

~V(r, t) +(a+ f3)1;V(r, t) + a,BV(r, t) = P(r, t), 

cp(r, t) = c;(V(r, t)), 
(3.30) 

where r varies continuously over some domain and represents the spatial location of the 

process. V(r, t) is the transmembrane potential at the 'neural mass soma'. c;(r, t) is a sigmodal 

function relating the V(r, t) to the firing rate cp(r, t) (pulse density) of the ensemble of neurons 

and a and f3 correspond to the rise and decay of the response signal. Observing the dynamics of 

the first equation it could be argued that they correspond to post synaptic dendritic responses 

of a single neuron, only here representing aggregated synaptic events. However, note that the 

precise relationship between the electrical potentials of single dendrites and the resulting 

summed dendritic potential of an ensemble of neurons is not known. Nevertheless, in the 

literature (e.g. [130]) it is assumed to be related to synaptic dendritic responses where these 

are written alternatively and interpreted in the following way: 

V(r, t) = zl: L(t- t')P(r, t')dt'. (3.31) 

In this version all observables represent local averaged values of some physiological process 

and now this equation relates the averaged induced transmembrane voltage V(r, t) at the soma 

with the incoming averaged post-synaptic potentials P(r, t') after these have been filtered in 

the dendritic tree and summed. The induced transmembrane voltage perturbation propagates 

along the dendrites and reaches the cell body with some attenuation and Jag. Both depend 

on the distance of the synapse from the cell body, with the factor l used to represent the 

average attenuation and convolution of P(r, t) with a unit-area function L(t) representing 

Jag. a and f3 are now constants representing the inverse rise and decay times parameterising 

the dendritic response to an impulse. In effect, diffusion during dendritic propagation smears 

out the temporal response and the dendritic tree acts as a low-pass filter. The kernel of the 

convolution usually assumes the following form: 

L(t) = -a 
{ 

~{3"' (exp(-at)- exp(-,Bt)) 

a 2t exp( -at) 

The final chapter of this thesis will suggest yet another possible interpretation of these equa­

tions, which is shown to be important if mappings between scales are to be considered. 

On the next level of the hierarchy, a KI set is formed by two KO sets and defines the coupling 

relationship between them. However, this structure allows populations to be only either 
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exclusively excitatory or inhibitory and no auto-feedback is allowed. Subsequently, a KII set 

consists of two KI sets (or four KO sets). KII networks can function as an encoder of signals 

or as an auto-associative memory, [57, 128]. Mathematically, KII sets may have several fixed 

points and can also have limit cycle attractors depending on the parameters of the system 

and the initial conditions. At the final level of the hierarchy is the Kill set. These Kill 

networks may have different layers of KII sets representing for example different anatomical 

regions of the mammalian brain. As an example, a computational Kill network designed to 

model the olfactory system has been studied by Heng-Jen et al. [30]. The Kill network may 

have strange attractors and positive Lyapunov exponents, consequently exhibiting chaotic 

oscillations [128, 68]. A complete understanding of the total hierarchy would represent the 

knowledge to mimic and predict EEG signals and thus comprehend brain functioning at the 

macroscopic level [94]. In general, a Nth order system is defined as follows 

N 

- 2::: (v;jc;(Vj(r, t)) + v;ifi[c;(Vj(r, t))]) 
j;'i 

+ cflexternal 

where fi can represent the extracelluar field potential spread affecting nearby neuron ensem­

bles and </!external an external stimuli or impulse. Reductions to Ki sets are also possible by 

considering subsets of connections. In particular, this thesis is concerned with a subset of the 

KII models denoted reduced KII (RKII). In this simplification each column within the RKII 

set consists of a coupled inhibitory and excitatory neural population. Thus a set of N coupled 

columns (or local brain region) may be represented by the following form: 

{ 
~ V.(r, t) +(a+ !3)-ft V.(r, t) + af3V.(r, t) = a/3 (v.;c;[V.(r, t)] + -fJ E:=l vepc;(Vp(r, t))) 

~V;(r, t) +(a+ !3)-ftv;(r, t) + af3V;(r, t) = a{3v;.c;[V.(r, t)], 
(3.32) 

where V. represent the average field potentials of an excitatory population and v; of an in­

hibitory population observed at a macroscopic level. The parameter V;e gives the coupling 

gain or strength from the excitatory (V.) to the inhibitory (Vi) population whereas Ve; is the 

strength of the reciprocal coupling. The coupling strength Vnp is the gain from an exter­

nal excitatory population from columns p (since long range connections are only established 

by excitatory neurons). These parameters can be interpreted as having the following form 

Vab = NabSb where, Nab is anatomical or structural in character representing the mean num­

ber of connections from neural ensemble of type b on a population of type a. The term Sb 
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is physiological or functional in nature representing the size of the impulse response associ­

ated with synapses of type b, i.e the time integral of the perturbation to the transmembrane 

potential, as measured at the synapse. The nonlinear interaction is in general realised by 

some sigmoidal function <;[·]. External inputs or stimuli can be applied to either excitatory or 

inhibitory population. 

The theoretical framework most often applied to neural mass approach is signal processing 

techniques and this context only some understanding is possible. When compared to neural 

field and population density approach, neural mass models are the least studied in the context 

of dynamical systems theory. Thus the understanding of their dynamics is still scarce. Perhaps 

this could be related to the fact that it is not clear how to interpret the equations, specifically, 

those second order in voltage dynamics and the parameters modulating the dynamics of the KO 

set. It is reasonable to think that relating multi-scale recording and multi-scale modelling of 

the observed signals is the key to modelling brain dynamics at different spatiotemporal scales. 

Hence, with this in mind, the mass action approach deserves further research to understand 

how macroscopic dynamics and Ki sets could be mapped to lower scales of activity, which 

could then lead to interesting results. 
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Chapter 4 

Analysis of the neural mass 

corticothalamic model 

The aim of this chapter is to explain the critical features of human generalized seizures by 

investigating the dynamical bifurcations of a global (spatially invariant) corticothalamic brain 

mean-field model. The model belongs to the class of mass action models. However, it also 

incorporates further refinements to take into account key physiological processes such as prop­

agation delays, corticothalamic feedback, and as well as treating the cortex as a medium for 

propagation of waves of electrical activity. Previous analyses have demonstrated descriptive 

validity in a wide range of healthy states, such as the alpha and gamma rhythms. Further 

it is here shown that mapping the structure of the nonlinear bifurcation set predicts a num­

ber of crucial dynamic processes, including the onset of periodic dynamics which explains 

the transitions observed in generalized seizures. A quantitative study of electrophysiological 

data supports the validity of these predictions. Hence we argue that absence seizures are pre­

dicted by the bifurcation diagram of the model's dynamics. Finally a reduction of the model 

is considered, which allows for analytical treatment and interpretation of these pathological 

rhythms. 
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4.1 Corticothalamic Brain Model 

The model described and analysed herein stems from [131]. This system can be viewed as 

a merge of three theoretical viewpoints: Freeman's mass action to describe the population 

dynamics within a macrocolumn [57]; The thalamocortical feedback loop as a physiologically 

motivated feature to allow interpretation of generalized seizures at the macroscopic level (refer 

to section (3.2)); and the wave-like equation formalism to model the EEG wave propagation 

phenomena on the cortical surface [84]. Given that the model is formulated within these three 

theoretical standpoints it inherits the assumptions made by each and because it merges these 

it is denoted as the neural mass corticothalamic model. However, in this thesis it is simply 

called the corticothalamic model. The model also incorporates a further refinement to account 

for signal propagation delays in the thalamocortical and corticothalamic projections. 

The thalamocortical loop hypothesizes that four main types of neurons are involved in gener­

alized seizures and these consist of excitatory and inhibitory neurons in both the cortex and 

the thalamus. The hyper-synchronized state of local neurons observed in generalized seizures 

makes it reasonable to group and average over the ensemble of neurons. Thus, each brain 

region can be modelled by an RKII set (introduced in section (3.3.4)) which describes the in­

teraction of a population of excitatory and inhibitory neurons. Hence, coupling two RKII sets 

forms the corticothalamic feed back loop. The dynamical variables within each population 

are the local mean potential, V., the mean firing rate, '" and the propagating axonal fields, 

1>a· Consequently, each neural mass is governed the following three equations 

[ 
1 82 1 1 8 ] 

oJ3 8t2 +(a:+~) 8t + 1 Va(r, t) = P.(r, t), (4.1) 

<;a(r, t) = ( a ) , 
1 + exp _ " (V.(r,t)-9.) 

73 q. 

(4.2) 

1 [82 
8 2 2 2] ( ) ( ) 'Y~ 8t2 + 2-ya 8t + 'Ya - va \1 1> r, t = (a r, t , (4.3) 

where a refers here and in subsequent equations in this chapter to the neural population 

( e=excitatory pyramidal cells, i=inhibitory inter-neurons, s=specific relay nuclei, r=reticular 

nucleus, and n=nonspecific sub-cortical inputs). The first equation ( 4.1) corresponds to voltage 

response V.(r, t) of a KO set to incoming averaged post-synaptic potentials Pa(r, t) after these 

have been filtered in the dendritic tree and summed. The second state equation ( 4.2) refers 
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to the generation of action potentials, <;.(r, t), (mean firing rate or pulse density) whenever 

the membrane potential V.(r, t) reaches a threshold e.. In other words Va(r, t) determines 

the output firing rate of the neuronal population and the level of activity is modulated by 

a response probability sigmoidal function .;[V.(r, t)]. The response is a a smooth transition 

from 0 to Q';"'x, with a standard deviation, cr., that reflects the variation of threshold levels 

encountered in real populations. Note that the maximum of~~: is 0~£"' at v. =e. and the 

constant C = )J was chosen so that the~~: approximates a Gaussian. The last equation (4.3) 

uses the wave-like equation developed by Jirsa and Haken [84] to model the propagation of 

the firing rates'" as fields <Pa (for details refer to section 3.3.2). However, Robinson et al. [131] 

find that the term ('y~ -'Ya%t) on the right hand side of the wave-like equation can be dropped 

as this does not influence the numerical simulations. A characteristic axonal propagation 

velocity, Va = 6 - 10 ms-1 , is assumed as well as an isotropic distribution of axons. 

Coupling of the cortex and thalamus by directly incorporating the above equations gives rise 

to a high dimensional system of equations, thus reductions should be considered. Reducing a 

system of equations should be carefully considered and any reduction must lie within the limits 

of physiological constraints. There are significant differences in the mechanisms underlying 

the spread of activity in cortical and thalamic slices. Computational models and experimental 

animal models of spindle waves and epilepsy, indicate that thalamic slices waves propagate at 

velocities of less than 1 cm/ s whereas cortical neurons discharges propagate with a velocity 

range 6 - 10 ms-1 [43]. The differences in velocities are due to axonal range within each 

brain area. Within the thalamus the axons of both excitatory and inhibitory neurons project 

closely to nearby neurons. This observation allows a reduction of the wave-like equation to 

<Pa = <;.(r, t), because 'Ya --> oo. Within a column of the cortex the same holds true. However, 

only pyramidal cells project their axons to other cortical regions (long range connections) 

where these fields are readily measured in EEG. Thus, the wave equation is considered for 

the pyramidal cells. An observation worth pointing out is the fact that the wave equation 

indirectly introduces delays to these connections. For the connectivity between the cortex 

and the thalamus these are considered to be long range connections as the cortex and the 

thalamus are far apart. Since corticothalamic and thalamocortical projection activity are not 

measured at the EEG (i.e. as these are closed fields) the wave equation is dropped. However, 

the activation of one brain region due to another brain region depends on the rise times 

of post-synaptic potentials and delays due to finite velocity of action potential propagation, 
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thus delays are considered. A final assumption is that incoming fields from different neural 

population are linearly summed at dendrites of a neural mass. This allows to define the 

coupling between the different neural populations as follows: 

DaV.(r, t) = VeeifJe(r, t) + v.;if;;(r, t) + Ves1Ys(r, t- r), (4.4) 

Da V;(r, t) = 1/;eifJe(r, t) + 1/;;if;i(r, t) + 1/isifJs(r, t- r), (4.5) 

DaV..(r, t) = Vrecf>e(r, t- T) + VrsifJs(r, t), (4.6) 

(4.7) 

where Da = [;11~ +(i; + ~l%t + 1], T = t0/2, with t0 considered to be the total propagation 

time for signals to project to the cortex and return back to the thalamus. Only the specific 

relay nuclei (TC neurons) receive sensory inputs cf>n which may be either a time invariant sig­

nal or noise. The model is further reduced by dropping equation (4.5), because the existence 

of spatial symmetry between populations of pyramidal cells and inhibitory inter-neurons is 

assumed as in [131]. The argument presented is that intracortical connectivities are propor­

tional to the numbers of synapses involved, which implies V;= V. and Qi = Q •. However, we 

assume that the author meant that EEG is mostly contributed by pyramidal cells and thus 

fields produced by inter-neurons are negligible. Finally, during generalized seizures, brain 

activity may be dominated by very large scale, or even whole brain processes. In this case 

the dynamical variables may not depend greatly on the spatial position r. Hence we drop 

the spatial variable r and consequently the Laplacian term v;'i12 , along with the boundary 

conditions dependent on r, are ignored. In this case only global invariant solutions can be 

considered. However, note this is only an approximation and spatially varying behaviour can 

be recovered by coupling N discrete nodes (i = 1, · · · , N), each governed by a corticothalamic 

model. The coupling would consist of cortico-cortical excitatory projections defined as follows 

where re is the characteristic axonal range, D is the wave-like equation (without the Laplacian) 

and the connectivity matrix C;; is a suitable numeric approximation of the Laplacian operator 

'i72 (e.g. first order approximation to 'i72 [2]). 
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A complete derivation of the spatially invariant ystem is hown in cction 13.1 and a. chematic 

of the model is illustrated in Fig. (4 .1 a) and the firing rate shown in Fig. (4.1 b). The 

parameters of the model were fit ted from data using an algorithm developed in [132. 13 ]. 

The relevant parameters can be found in section 13.1.1 in Table 13.1. 

a) 

Cortex 

Reticular 
Nucleus 

Specific 
Relay 
Nuclei 

b) 

Figure 4.1: a)Thalamocortical model, , chema of principal neural fields and loops within the 

corticothalamic model. Fields include e=excitatory cortical; i=inhibitoT'l) cortical; s=specific 

thalamic nucleus; r=thalamic reticular m1.cleus; n =nonspecific subcortical noise. Connec­

tivity and loops include intracortical (ee,ei), corticothalamic (er,se .es),intrathalamic (sr,rs) 

and ascending noise sn. b) The neuron. (inhibitoT'l) and excitatoT'l)) are coupled by a unipo­

Lar . igmoidal function, which transforms the neurons transmembrane potential Va (generally 

expressed as wave amplitude) into the firing rate ~(Va) (termed pulse density), i.e voltage­

frequency relation. Note the scale of the x-axes and y-axes (-0.03, 0) to (0.01, 250) . This i. 

related to the averaging performed over a mm3 of neural tissue. which is a highly nonlinear 

operation. 

For purpose of di. cussion and complelene s, resul ts from [131] are provided in section B.2. 

These arc linear stabili ty analysis in the frequency domain, describing healthy EEG instability 

boundaries parameteri. ed by x. y and z variables: which measure the level of activity in the 

cortex, reticular-specific and specific-reticular connccbons respectively. 

Clinical research . ugge ts that everal pathological proce cs, such as seizure. [5] and abnormal 

rhythm in pathological state [14 ] have a strong nonl inear component. In (131] it was 

proposed that the transition from resting- tate EEG to seizure activi ty may be viewed as a 

bifurcation from linear to nonlinear oscillations, whereas dHferent types of seiwrcs may be 
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viewed as bifurcations between distinct types of nonlinear dynamics [133]. In particular, this 

chapter focuses on 3Hz instability associated with the frequency at which absence seizures 

initiate. The behaviour of the model at and beyond such instabilities is compared with EEG 

data sets. Beyond the 3Hz instability an extra structure in the bifurcation diagram is found 

whose origin remains unresolved. In an attempt to understand this phenomena a piecewise 

approximation of an RKII set is considered to explain the genesis of absence seizures. 

4.2 Method for the analysis of the EEG data 

The absence seizure data sets were drawn from a database of 13 adolescent epileptic patients 

from the Department of Neurology, Westmead Hospital, Sydney where the ethics approval 

was obtained prior to data collection. The scalp EEG electrode placement followed the inter­

national 10-20 system (refer to section A.3 for details) with linked earlobe reference and the 

data were collected at a rate 200Hz and filtered with 70Hz low-pass filter. The Analysis of 

the data was also performed as a collaboration work with M. Breakspear. 

4.2.1 Methodology for Nonlinear data analysis 

In order to test whether seizure activity is associated with nonlinearity (implicit in the hy­

pothesis that a seizure occurs after a nonlinear bifurcation) a nonlinear prediction algorithm 

from [29] was employed. Briefly, the data is divided into discrete time windows. In each 

window a "nonlinear prediction error" is calculated. This error reflects the ability of a local 

nonlinear model to predict the data. Low errors indicate a good fit and hence a nonlinear 

structure. Using a resampling scheme (applied to the original data), an ensemble prediction 

error is then calculated to represent the null hypothesis that the values of the errors are due to 

purely linear correlation within the data [162]. The data are said to contain nonlinear struc­

ture if the observed (experimentally derived) prediction error lies outside the distribution of 

these "surrogate" errors [161]. Nineteen surrogates were constructed to allow for nonpara­

metric statistical inference at 95% confidence within each window. For graphical clarity, the 

inverse of the prediction errors, which we term the "nonlinear prediction indices" is plotted. A 
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modification to this algorithm allows multichannel EEG data to be tested for evidence of non­

linearties [161]. A multivariate surrogate algorithm in [127] is then employed to exclude the 

contributions of purely linear correlations. This can be used in conjunction with the general 

version of the thalamocortical model to estimate the predicted nonlinear interdependencies. 

4.2.2 Methodology for Numerical Data 

The numerical data is constructed by performing the numerical integration of the systems 

equations (B.2) according to the scheme described in section 2.3. To analyse the asymptotic 

systems behaviour, bifurcation diagrams across a varying range of the parameter Vse (the 

excitatory influence of cortical pyramidal cells in the specific thalamic nuclei) are produced. 

This parameter is chosen because of its simple physical meaning and the role of excitatory 

corticothalamic feedback in the pathophysiology of absence seizures [43] (for details refer 

also to section 3.2). The resulting time series of the bifurcation data is plotted for each 

parameter value. For the time series comparison of the model and EEG data, the macroscopic 

excitatory field <Pe is plotted as these best represent the cortical correlate of scalp potentials 

up to a linear transformation of the amplitudes [114]. Specifically, the scalp potential is 

proportional to the cortical potential, which is proportional to the mean cellular membrane 

current, which in turn proportional to the firing rate. Hence, apart from a (dimensional) 

constant of proportionality and the effects of volume conduction, scalp EEG signals correspond 

closely to <Pe [114]. To better simulate a real physiological system, small amplitude (signal 

noise ratio=0.90) autocorrelated stochastic terms were added to the parameters (system noise) 

to produce numerical time series plot. Such noise was generated according to 

where r(t) is drawn from of a set of zero mean independent random numbers, s(t0 ) = r(t0), 

and the desired autocorrelation factor tc between adjacent time series steps is related to the 

fixed parameter p by 
-t:.t 

tc = ln(p). 

Such a model of parameter noise represents the simplest method for the simulation of an 

autocorrelated stochastic process. It should be noted that such noise is only used in the time 

series plots and has no impact on the calculation of the bifurcation diagram. 
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4.3 Understanding of absence seizures 

4.3.1 Results from the corticothalamic model 

The nonlinear instability occurring at approximately 3Hz is studied by first choosing physio­

logically plausible parameters that place the system in the vicinity of a weak 3Hz instability as 

given in Table 8.1 in section 8.1.1. As stated above, Vse is then varied to study the geometry 

of the bifurcation set. 

Some results are presented in Fig. (4.2). The bifurcation diagram Fig (4.2 a) exhibits a Hopf 

bifurcation to periodic dynamics with an initial (supercritical) instability at V se :::J 1.8 x 10-3V s 

and beyond the instability an extra structure appears at V8e :::J 3.4 x 10-3V s and V se :::J 

4.2 x 10-3Vs whose origin remains unclear, but for the sake of this discussion the term 'spike­

bifurcation' is adopted. These are noise-free plots and it can be seen that only periodic 

oscillations occur. Complementary numerical results are provided in section 8.3 with the 

analysis performed using DDE-8iftool and XPPAuto. However, the origin of the 'spike­

bifurcation' remains unresolved as DDE-8iftool is unable to flag the corresponding conditions 

for this bifurcation. These could correspond to a global bifurcation which is a feature that goes 

undetected in DDE-biftool and so a more detailed numerical treatment should be considered 

in the near future. An interesting feature of the 'spike-bifurcation' is that by varying the 

time delay ( T) parameter this structure is observed to appear at different parameters of V se 

and disappear if the delay T is removed. This is illustrated in Fig. (8.4) in section 8.3 (a 

discussion of this instability is also presented). An exemplar model simulation, with added 

system and measurement noise, is given in Fig. ( 4.2 b). This was created by dynamically 

ramping Vse from the linearly stable (weakly damped region) upward into the region of linear 

instability illustrated in Fig. (4.2 d). The dashed lines in Fig. (4.2 a) show the extreme values 

of the ramp function. Close up images of the onset Fig. ( 4.2 c) and offset Fig. ( 4.2 e) of the 

seizure exhibit a number of key phenomena: 1) Shortly after the onset of ramp-up of V se at 

t = 5s periodic oscillations of growing amplitude appears in the field potential. These occur 

as the system passes through the periodic regime in the bifurcation plot. 2) After 2-3 cycles, 

spike and slow-wave oscillations appear. These continue throughout the seizure, although 

their amplitudes are modulated by the combined effects of system and measurement noise. 3) 
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Figure 4.2: Results for 3Hz bifurcation analysis in the corticothalamic model. a) Bifurcation 

diagram. Time series of: b) the cortical rPe· Period-doubling oscillations evident at the seizure 
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During the ramping down of Vse at t = 19.5s the amplitude of the spike and wave oscillations 

diminish. The spikes disappear at approximately t = 20.5s as the system passes through 

the simple period 1 regime. 4) Finally, the remaining oscillations are damped away, and the 

system returns directly to the same pre-ictal EEG state, governed by stable damped stochastic 

fluctuations. This is reflected in the spectrum of the seizure given in Fig. (4.3 a), showing 

similar pre-and post-ictal spectra. The seizure spectrum is dominated by the 3Hz spike and 

wave oscillation and its harmonics. 

A 3-dimensional time-delay-embedded phase portrait of a simulated (noise-free) seizure is 

shown in Fig. (4.3 b). Gray arrows indicate the flow of orbits away from the unstable fixed 

point subsequent to the bifurcation and onto the limit-cycle attractor. The growth in ampli­

tude of the spike (at the far side of the attractor) can be seen as the orbits spiral outward. The 

orbits follow the same unstable manifold (but spiraling downward) at the conclusion of the 

seizure (not shown). Fig. ( 4.3 d) depicts the morphology of the seizure in the space spanned 

corticocortical, corticothalamic, and intrathalamic "stability" variables x, y, and z (as given 

in section B.2). As expected, the seizure is located outside the tent-shaped stability zone. 

Because the seizure corresponds to limit-cycle dynamics, it can be embedded in this 3 dimen­

sional space without crossing the orbits (i.e., with uniqueness of the solution curves). This 

indicates that, during such seizures, a dynamical system of reduced dimensionality should 

be able to sufficiently describe the macroscopic neural dynamics, or equivalently, a relatively 

small number of physiological processes may be responsible for the onset and maintenance of 

the seizure activity. 

Fig. (4.3 c) shows the 3 principal fields <Pa (a={e,r,s}) during the model seizure, normalized 

by their own means, to illustrate the underlying mechanism from which the waveform is 

generated. For convenience the peak of <Ps is chosen for the starting point, which corresponds 

to t ~ 10.0s. It must be stressed that this is an arbitrary choice because the periodic nature 

of the dynamics imply that the waveforms have no particular beginning or end but are an 

emergent feature of the entire corticothalamic system. When <Ps (dashed line) is at its highest 

value, <Pe (solid) is at an intermediate value and <Pr (dotted) is low. The thalamus is in its 

positive-feedback, excitatory state. The reticular nucleus responds immediately to the high 

activity in the specific nuclei and in addition to the incoming signal leaving the cortex at to/2 

earlier. This sudden increase in <Pr acts to suppress <Ps rapidly, and the thalamus switches to 
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Figure 4.3: a) Contour repre. entation of the dynamic spectrogram of <Pe · b) Time-delayed 

phase portrait of the seizure onset transient and seizure altractor. Arrows indicate the direction 

of the flow. c) Dynamics of the excitatonJ cortical <Pe (. olid), specific thalamic <P~ {dotted), 

and reticular thalamic d>r (dashed) activities rescaled against their mean val'ues. c) Seizure 

plotted within the phase space spanned by the stability parameters x, y and z . 

its negative feedback, inhibitory state (t"' 10.05s). AL Lime to/ 2 later. the peak in activity in 

the specific nuclei reaches Lhe cortex and <Pe rises accordingly, with the peak slighlly broadened 

by synaptic rise and decay time. Another t0 j2s laLer, Lhe spike activity in the corlcx reaches 

the thalamu . exciting the rcticular nucleus and hence further suppressing the specific nuclei 

(t "' 10.05s). Thi, repre. ent negative cort icothalamic feedback, and the reJ ponse of <Pr re ults 

further broadening of t he ignal . With near-silence in the pacific nuclei, the cortical neurons 

relax. At t0 j2s. there arc no inputs to the rcticular nucleus and hence it too relaxes, leading 

to a period of near- ilence in all 3 field. (t rv 10.05s). In the meantime, the specific nuclei 

have been receiving the external input stimulu <Pn, whirh is . ufficient to cause the speci fic 

nuclei Lo reactivaLe once the reticular nucleu has heen suppres ed , and so <Ps ri es. This 
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corresponds to the thalamus switching back to its positive feedback state. Immediately, cf>r 

responds slightly, enough to subdue the growth of 4>s but not before the increased activity 

is substantial enough to excite cf>e a time t0/2s later than the original intermediate value. 

Meanwhile, the specific nuclei have been receiving external stimuli continuously, and so while 

cf>r is still low, they are able to fire, completing a full cycle (t ~ 10.05s). The delicate balance of 

this process highlights the sensitivity of the shape of the waveform to changes in the various 

parameters. Indeed, a variety of spike and wave and polyspike morphologies are possible 

under modest changes in parameters. This may explain the varied morphologies observed 

in clinical absence seizure EEG recordings. It is also consistent with a previous study of 

absence seizures employing autoregressive nonlinear signal analysis methods, which showed 

that similar combinations of time-delayed nonlinear (quadratic) terms could explain a variety 

of spike-wave morphologies [141]. 

4.3.2 Results from the data 

The first step of the experimental EEG data analysis was to test if seizures correspond to 

bifurcations from linearly stable to nonlinear oscillations. As discussed above, this is achieved 

by using a measure of nonlinear predictability and comparing EEG with phase-randomized 

surrogated data. An exemplar absence seizure (Fz electrode) is shown Fig. ( 4.4 a). In Fig. ( 4.4 

c), the normalized nonlinear predictability index is given as the solid line. Plots obtained from 

occurrence of the seizure 19 surrogate sets are dashed lines. It can be seen that the occurrence 

of the seizure is coincident with a sudden and large increase in this index of nonlinear structure, 

consistent with the appearance of nonlinear oscillation. Also noteworthy is that the pre­

and postictal EEG are associated with intermittent and weak nonlinearity, evident as an 

occasional increase in the nonlinear predictability of the real compared with surrogate data 

(arrows). This is consistent with noisy perturbations of a weakly damped nonlinear system. 

In other words, pre- and postictal states represent a system close to a bifurcation. Comparable 

results were observed for absence seizures studied. Fig. (4.4 b,d) illustrates an example of a 

numerically simulated absence seizure, integrated over a time frame comparable to the real 

seizure. Because the seizure was generated by pushing the system through a nonlinear 'spike­

bifurcation', it is not surprising that a coincident increase in nonlinear structure is seen. Prior 

to and following the seizure, the system has been set just below the Hopf bifurcation (see 
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Fig. (4.2 a)). Hence, occasional slight increases in nonlinear structure in the model over the 

surrogate data time series (arrows) during these times are to be expected, when fluctuations 

toward the bifurcation occur. 

The nature of the nonlinear oscillations in the absence seizure is studied in Fig. ( 4.5 a-f). 

Fig. ( 4.5 a) shows a complete seizure, revealing an approximately symmetrical appearance. 

The spectrum of this seizure (Fig. (4.5 c) is dominated by the 3Hz spike and wave morphology. 

Notably, the postictal spectrum returns rapidly to its relatively featureless preictal form. In 

diagrams Fig. ( 4.5 b) and Fig. ( 4.5 e), the onset and offset of simple periodic, then spike and 

wave oscillations are clearly visible. A time-delay-embedded reconstruction of this seizure is 

given in Fig. (4.5 e). The seizure onset (t=3-5.8s) is given in blue and the remainder of the 

seizure (t=5.8-19.5s) in black. This plot directly illustrates the outward periodic spiral (blue) 

of the system onto a large-amplitude oscillatory "attractor", comparable with Fig. (4.3 b). 

It finally remains to determine the nature of the oscillations during the clinical seizure. Calcu­

lating dynamic "invariants" such as Lyapunov exponents are avoided as these are notoriously 

unreliable in short, noisy time series data [40]. Rather, the Poincare first-return map is used, 

which is an assumption-free method of visualizing the nature of oscillatory dynamics [164]. 

Briefly, level crossings of a dynamical variable are noted. Denoting the temporal period be­

tween successive crossings as Tn; the graph of Tn against Tn-1 gives a truncated representation 

of the full dynamics. A plot of the Poincare first-return map is given is given in panel Fig. ( 4.5 

f). For ease of interpretation, we plot fn = 1/Tn (the pointwise frequency of the system). The 

first feature to be noted is that the points fall close to the line fn = fn- 1• That is, the system 

is nearly periodic (the level crossings was chosen below the spike so that in effect we produce 

a second-return plot (i.e. a true full period of the oscillation). As indicated, the frequency 

starts above 3Hz and quickly falls to approximately 2.6Hz. It then varies around 2.6Hz in 

a manner without any obvious geometrical structure, that is, not confined to any obvious 

low-dimensional invariant. We interpret this as noisy modulation of a fixed point (i.e a noisy 

limit cycle of the full dynamics). This is consistent with the findings of a purely empirical 

study using a different methodology [54]. 

In summary, the evolution of this seizure quantitatively matches that of the numerical seizure 

generated by the corticothalamic model in a number of crucial aspects, namely, the "spike 
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Figure 4.4: Nonlinear time series analysis of the EEG absence seizure {left) and corticotha­

lamic 3-Hz seizure {right). a) EEG seizure (F. electrode) and b) evolution of the nonlinear 

predictability index {NPI). The solid line is the real data and dotted lines are derived from the 

19 surrogate data sets. c) Excitatory cortical field cf>e and {d) corresponding NPI evolution of 

the corticothalamic model. Arrows show instances of weak nonlinear structure {slight increases 

in the real compared with the surrogate nonlinear indices) before and after the seizure. 
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bifurcation" onset and offset, the similar pre and postictal spectra, and the periodic nature of 

the full seizure. The bifurcation plot of Fig. (4.2 a) explains these phenomena. 

4.4 Two-bump solution in a piecewise linear reduction 

The second stage of this study is to investigate the conditions for the appearance of 'spike­

bifurcation' and provide some explanation of the genesis of spike wave activity. Motivated 

by key observations from the results presented in the first part of this chapter the model is 

reduced to a piecewise linear thalamic RKII set driven by an 'external signal'. This signal 

should be considered as an excitatory cortical drive. There are several motivating factors for 

this. Firstly, in clinical EEG recordings of the onset of absence seizures, the transition from 

pre-ictal to ictal dynamics is typically heralded by oscillatory behaviour, prior to spike-wave 

activity being observed, as illustrated in Fig. (4.6). Furthermore, in the absence of a cortical 

signal, the thalamic subsystem is quiescent and spike-wave activity (a periodic signal with an 

extra spike per period) was generated via periodic dynamics from the cortex fed into both 

specific relay nuclei and the reticular nuclei populations. Also motivating this reduction is that 

observations from the full model suggests that there is a phase shift in the dynamics of the 

specific neuronal populations when compared to both cortical and reticular populations, this 

is depicted in Fig. (4.3 c). This feature is supported by both in-vivo and in-vitro experiments 

[10, 41, 42, 43] that demonstrate spike-wave activity is first initiated in the specific relay nuclei, 

which then propagates to the cortex and is finally induced in the reticular nuclei. 

Thus, as an approximation to the full model after the first nonlinear bifurcation has occurred, 

a driven thalamic circuitry is considered: 

{ 
"~ [~V,.(t) +(a+ /3)-ftV,.(t) + aj3V,.(t)] = Vrs\[V.(t)j + Vrecf>oortical> 

;/3 [~V.(t) +(a+ /3)-ftV.(t) + af3V.(t)] = Vsr<;[V,.(t)j + V8 e</Joo,tical + Vsn</Jn· 
(4.8) 

where <;[V,.(t)] corresponds to the same equation (4.2) and all the parameters have the same 

interpretation as for the full model. This model is illustrated schematically in Fig. (4.7). A 

similar model for the study of olfaction has been considered in [170] where linear stability 

analysis was performed and stability curves in the parameters space were derived. 
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Figure 4.6: Illustrating a comparison between the bifurcation diagram for the full model con­

sidered in the previous section (panel a)) and a clinical EEG recording during the onset of an 

absence seizure (panel b)). Upon varying the parameter llse there is a transition from steady­

state to oscillatory dynamics, via a Hopf bif1trcation, before a further transition gives rise 

to spike-wave like behaviour. This sequence of events replicates that observed in the clinical 

recording. The aim of the present section is to characterise the transition between stage 2 

(oscillatory behaviour) and stage 3 (spike-wave) . Consequently, we assume the cortex is gen­

erating a periodic oscillation and thus we drive the thalamic subsystem with a periodic signal 

of a type that is amenable to analysis. 
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Figure 4. 7: Schematic of the RKII set with cortical drive. All interaction illustrated by arrows 

are assumed to be excitatory. The one between reticular and pecific nuclei illustrated by a 

circle is inhibitor'y. 

4. 5 Analysis of the periodically forced model 

As mentioned previously, in-vivo and in-vit ro experiments from animal models [43] as well 

extensive numerical simnlations of the full model suggests that the abnormal rhythms as-

ociated with ab once seizures initially appear in the . pecific relay nuclei. Sub equently. if 

the excitation between pecific to reticular , or specific to cortex. is strong enough then these 

abnormal rhythms ma.y also be ob crved there. Simulation (Fig. 4. ) al o indicate that the 

subthalamic input plays no part in the generation of abnormal rhy thms. We furth er obsE-rve 

that the , olutions to Vr( l ) are always periodic and that only the ampli tude of the. e oscillation 

change when the parameter. are varied. 

Thus, for the purposes of understand ing the genesis of abnormal activity in this reduced case, 

the following assumptions are made. First, assume that there are no interactions between the 

specific relay nuclei and t.he reticular nuclei population , i.e. Vrs = 0. Second. assume that 

the subthalamic input is also zero, i.e. llsn = 0. 

Under these assumpbons, the homogeneous solution v1~ for the individual modules , a = r s , 

is a combination of decaying exponcnLials. This can be seen by studying the roots of the 

characteristic polynomial derived from either of the di fferential operators in (4. ). 

r2 + (et , /3)r + cr./3 = 0, 
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Figure 4.8: In thi. plot, it is shown that Lhe subthalamic interactions have no effect on the 

occ11.Tence of spike-wave like activity. The two graphics aTe numeTical simulalions of system 

(4.8) using XPPA uto. The top graphic shows Vs(t) with Vsr non-zem. The bottom graphic 

shows the same system with Vsr = 0. In both case, the abnoTmal rhythm persi ts. with the 

ubthalamic input acting effectively a a7l amplifier. 

the elution for which i. given by 

(4.9) 

A further important point to note i that the dynamics of each individual y tern is over­

damped; with the clamping factor given by ( = ~ > 1. This demonstrates t hat spike-
2 (Ot{j) 

wave activity can not occur due to any intrin ic dynamics within the individual thalamic 

modules. 

4 .5.1 Forcing function cPcortlcat = sin(wt) 

For the purposes of analy ing the model. the following forcing function i employed. <Pcorliat = 

sin(wt). In the absence of the excitatory input from the specific relay nuclei, the solution for 
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the reticular nuclei can then be derived explicitly and is given by the particular sol uti on: 

V,!'(t) = K sin(wt + o), (4.10) 

where Ka = ,j( C~ + D~) and o. = arcsin(Da/ Ka) with 

Ca = ( a(J - w2
) 11reaf3 

((a+ f3)2w2 + (a(J- w2)2)(af3- w2) 

and 

(a + (3)2w2 + ( a(J - w2)2 
Da= 

Wllaeaf3( a+ (3) 

Note that this particular solution is also valid for the cortical forcing part of the specific 

module, i.e. a= {r, s}. 

Consequently the long-time behaviour of the specific module, V.(t), is governed by the solution 

of the differential equation: 

:(3 [~2 V.(t) +(a+ (3) :t V.(t) + a(JV.(t)] = llsrc;[V,.(t)J + llse<l>oortioal 

where V,.(t) is given by the sum of equations ( 4.9) and ( 4.10). 

(4.11) 

Since c;(x) is a unipolar sigmoidal function, the resulting equation is transcendental and con­

sequently an explicit solution to this equation is not possible. However, a result from [85] 

shows that it is possible to relate the stability of the full system to that of a related piecewise 

linearized system. Essentially, a piecewise linearization of the unforced system is performed 

and then the forcing term is reapplied in each case. 

In order to do this, XPPAuto is used to determine the steady-states (V,.*, V.*) of the system. 

Linearizing about these steady-states gives the following: 

dx 
dt = Lx+Bu, 

where the vector B comes from the cortical drive, 

B= 

0 

a{3v8e sin(wt) 

0 

af3vre sin(wt) 
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and L is the piecewise linear vector field of the system, 

L= 

0 

-a/3 

0 

1 

0 

0 

0 

0 

-a/3 

0 

0 

1 

-(a+ {3) 

Essentially L is the Jacobian matrix of the unforced system for each of the piecewise linear 

segments of the function <;-(x). The first order Taylor approximation of this function at a point 

Xo, is given by 

Q ma< ( • (•o-6)) 
Qmax 11" e - v'3 (7 

y(v)lxo = _..1!..(~) + (v- Xo) -;TJ(-. (~)) + H.O.T. 
1 + e v'3 • [1 + e V'3 • J2 

Hence, the specific piecewise approximation we consider is 

{ 
y(v)lv: -oo:::; v < b, 

Yu(v) = 
y(v)lv: b:::; v < oo, 

(4.13) 

( 4.14) 

where b > 0 is the intersection point of the lines (at this point the derivative loses continuity). 

Note that we could have considered more line segments in the whole domain of the function 

<;-(x). However, this would not change the conclusions, as the solution V,.(t) is bounded and 

evolves around a steady state and consequently the solution for V.(t) will also be bounded. 

Considering more approximations will only smooth out the solutions obtained. 

The composition of this piecewise linear approximation Yu(v) in (4.14) with the explicit solu­

tion for V,.(t) given in (4.10) results in two regions of interest: 

Regwn, = t E JR, E Z : :::; t :::; 4.15 
. { N arcsin(f?)- 8 + 2Nn 1r- arcsin(~)- 8 + 2Nn} (. ) 

w w 

R 
. { 1n> - arcsin(~)- 1r- 8 + 2Nn arcsin(~)- 8 + 2Nn} ) 

egwnn = t E "'"'NE Z: < t < 4.16 
w w 

It is now possible to explicitly solve this piecewise linear appoximation to ( 4.11) using the 

method of variation of parameters, taking care to ensure that the boundary conditions for 
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each interval are satisfied (details of the calculation are shown in section B.4). The resulting 

asymptotic solution for V.(t) has the following form 

{ 

K. sin (wt + 8) +AV,';' sin ( wt + 8) + f(e-Kt, c), tin Region,, 
V.(t) = ( ~) 

Ks sin (wt + 8) + BV,.';' sin wt + 8 + g(e-Kt, c), tin Regionu, 
( 4.17) 

where V,.';' and V,';' are the amplitudes of the piecewise linear approximation to the steady 

state of V,. and V. respectively. The parameters A and B incorporate the inhibitory effect of 

the reticular on the specific Vsn as well as a and /3. There is also a different phase shift 8 
of the composite function compared to the cortical forcing. The functions f and g involve 

exponentially decaying and constant terms, which do not affect the asymptotic form of the 

solution. 

4.5.2 Description of the spike-wave solution 

The key aspects of the solution ( 4.17) are illustrated in Fig. ( 4.9). Essentially, the spike-wave 

oscillation arises as a result of the interaction of the sinusoid due to the excitatory cortical 

input and the opposite facing sinusoid-like function resulting from the composition of the 

piecewise linear approximation to <; with V,.(t). This composite function has the same total 

period as the cortical signal, however, it consists of two sinusoids of different amplitudes and 

phases acting on each of the Regions I and II. The peaks of each bump in the combined 

solution correspond to the transition between regions. Noting that the area of Region, is less 

than that of Region," this can be classed technically as a spike-wave oscillation, since the area 

of the spike part of the solution is less than that of the wave. A comparison between the 

explicit solution and that numerically generated for the same case using XPPAuto is given in 

Fig. (4.10). The fact that the solution of the two parts are opposite facing in each region is 

also crucial for the generation of the abnormal rhythm. Were both to point the same way, 

then only a one-bump solution would be observed. These opposite facing solutions are due 

to the inhibitory effect of the reticular nuclei on the specific relay nuclei and explains why no 

such solutions are ever observed in the reticular nuclei in the absence of activity in the specific 

relay, since the synaptic interactions between them are excitatory in nature. Finally, note 

that the gradient of the sigmoidal function c; varies dramatically between the two regions and 

it is this marked difference in gradient that leads to the different amplitudes on each Region, 
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Figure 4.9: In the top graphic. the upper solution {in red) is the solution of the system when 

driven by the periodic forc ing term V.sesin(wt) and the lower solution, is that of the system 

when driven by the composition of the piccewise linear approximation Ya ( v) 1 and Vr ( t) . The 

difference in amplitudes of the second solution on each of the regions1 combined with Region 

I being less than half the period gives rise to the spike-wave activity; illustrated in the lower 

graphic. The length of these regions can be adjusted by varying the parameters b = arcsin (;) 

and 8 as indicated on the circle. 

which in turn gives the spike-wave solution. This illustrates the need for at least a piecewise 

linear approximation to <; and explains why previous attempt using linear stability analysis 

and Heaviside approximations to explain this phenomena were unsuccessful. 

A final point concerns time-delays in the sys tem. The mechanisms responsible for generation 

of the abnormal rhythms elucidated in this section do not require any time-delays, which is 

consistent wi th the work of [43]. However , t he full model [130, 131, 132, 133], from which this 

reduced model was obtained, has delays between cortex and thalamus. Thus, it is imperative 

to determine the precise role that the e time-delays play in the full system. 
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Figure 4.10: The top graphic shows the solution oflfs(t ) from the numerical package XPPA uto 

for the piecewise linear system in the absence of Vsn · The bottom graphic shows the explicit 

solution obtained. demonstrating precise agreement between the numeric::; and our analysis. 

4 .6 Summary 

In summary. the first part of thi chapter performed a bifurcation analysis of a model of large-

cale brain activ ity. A Hopf bifurcation to periodic dynamics with an initial (supercri tical) 

instabili ty commence the t ransition from healt hy resting EEG to absence (3Hz) and beyond 

the (supcrcritical) Ilopf an extra structure (' spike-wave') appears who c origin remains unre­

solved. Thi yielded a time series reali ation wit h periodic . pik<' and wave morphology that 

clo ely resemble scalp EEG data taken from an absence seizure da ta b ru e. Moreover 1 the 

nature of Lhe bifurcation set yields a symmetrical on-ofF character t hat is also observed in 

the EEG data. The results presented extend the predictions concerning the onseL of epilep­

tic activity [131] that seizure phenomena arises when corticothalamic dynamic. lose linear 

tahi li ty in specific regions of parameter space. The model employed was in itially prop osed 
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to explain EEG temporal and spatial spectra in healthy resting and sleep states, when the 

activity is weakly damped and the nonlinearities can be neglected. However, surprisingly ex­

tending the analysis by studying nonlinear instabilities demonstrates that the model explains 

key features of absence seizures. Further results carried out in [21] also demonstrate that the 

model predicts tonic-clonic seizures showing that the model unifies in a unique framework the 

explanation of generalized seizures. The behaviour of the model's dynamical variables during 

nonlinear dynamics permits predictions to be made regarding real physiological processes. In 

this chapter, such prior predictions [131] were further elaborated and compared to physiolog­

ical data. Finally a nonlinear prediction algorithm was employed in order to verify that the 

onset of generalized seizures corresponds to a bifurcation from damped to strongly nonlinear 

behaviour. The present study thus represents a predictive application of an existing model in 

a novel direction. 

The second part of this chapter attempts to understand the nature of 'spike-wave' bifurcation 

to explain the genesis of these pathological oscillations. In this attempt, key observations 

of a time series resulting from thalamocortical model allows us to consider a reduced RKII 

set. In particular, by considering a piecewise linear approximation to the sigmoidal activation 

function we can write down a mathematical solution explaining the transition from oscillatory 

to spike-wave like dynamics, demonstrating that the phenomena is due to properties of the 

thalamic pathways, rather than intrinsic properties of the individual thalamic modules. These 

solution approximations are termed two-bump solutions which map to the spike and wave 

regions of the time series of the full system. The spike-wave activity arises first in the specific 

population as a combination of excitation from the cortical source and inhibition from the 

reticular nuclei. This finding demonstrates why spike-wave behaviour is not observed first 

in the cortex or reticular nuclei in this mean-field model, where only excitatory processes 

occur. Through feedback from the thalamus to the cortex (in the full system), such a two­

bump solution would, given suitable conditions, be expected to iteratively reshape cortical 

output. In fact, this may explain why full spike-wave activity can only be maintained in the 

presence of cortical excitations [43]. Such a process of iterative reshaping would be expected to 

have a strong influence on the eventual spike-wave character of the observed Absence seizure 

waveform. 
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Chapter 5 

Numerical continuation and Local 

stability of reduced model (RKII set) 

The previous chapter demonstrates that the thalamocortical model exhibits limit cycles that 

emerge only if the connection strength from the cortex to the thalamus is "strong enough". 

For this reason we focus only on the thalamic system and in particular understanding the 

oscillations arising in RKII sets. By first investigating a single RKII set and then extending the 

theoretical results to the dynamics of coupled RKII sets an understanding of the interactions 

of the thalamocortical loop will be provided. Interestingly, results for RKII networks with 

three hierarchical levels would offer insight in studies related to connections of three areas of 

the brain, for example interactions of cortical, thalamic and basal ganglia (striatum). This 

could shed light on understanding complex partial seizures [60]. Furthermore, extending these 

results to higher dimensional systems could provide a theoretical basis for exploring the genesis 

of other oscillatory patterns observed in EEG [57]. In this chapter we develop linear stability 

theory and contrast this with numerical continuation results obtained using XPPAuto. 

5.1 Stability analysis 

In this section an overview of results concerning linear stability analysis is provided, which we 

outline here for completeness. Bifurcation analysis of the model is performed, examining the 
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possible types of dynamics of the RKII set. Necessary conditions on the parameters of the 

model for stability of a limit cycle oscillation are shown. 

Using the appropriate substitutions, system (4.8) (without cortical drive) is re-written as four 

coupled first order ODEs: 

1t V.(t) 

1;w(t) 

1;Vr(t) 

1;v( t) 

= w(t), 

= -a,BV.(t)- (a+ ,B)w(t) + a,B(llsr([Vr(t)] + llsnrPn) 

= v(t), 

= -a,BVr(t)- (a+ ,B)v(t) + a,Bllrs([V.(t)]. 

(5.1) 

The stability of the equilibrium points of this first order system may be be analysed by ensuring 

that the linearised version of (5.1) satisfies the Hartman-Grof3man theorem (Theorem 2.1.1). 

Thus, the Jacobian matrix of (5.1) is the following: 

J= 

0 

-a,B 

0 

a,Bllrs(' [V;] 

1 0 

-(a+ ,B) a,Bll,r('[V,.*] 

0 

0 

0 

-a,B 

0 

0 

1 

-(a+ ,B) 

(5.2) 

where V.* and V,.* are the values of V. and V,. at some equilibrium point and dV.J = d~. '(V.) 

(i.e. the derivative of .;(V.) with respect to the transmembrane potential). The equilibrium 

state being determined by setting the RHS of system (5.1) equal to 0, thus giving: 

{ 
V. = 118r\[Vr] + llsnrPn, 

V,. = Vrs\[V.]. 
(5.3) 

The eigenvalues of which are given by the roots of the characteristic equation (for completeness 

the derivations can be found in section §C .1) resulting in: 

-(a+ ,B)± .j(a- (3)2 ± 4ia.Bvhrllrsi,'[V,.*k[V;] 
>. = ------"-----:2:----'------

Defining the square root of a complex number as 
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(5.4) 

1 y>O 

0 y=O 

-1 y < 0. 



Setting x = (a- /3? and y = 4a/3JivsrVrsi,'[V,.*],'[V.*] it is apparent that there exist two 

complex conjugate pairs of eigenvalues, with one pair trailing the other (by which it is meant 

the real part is smaller). Furthermore, the real parts of the eigenvalues are defined as 

A Hop£ bifurcation will occur when Re(>.) = 0. The form of this expression makes verification 

difficult and a more convenient treatment is to use the Lienard-Chipart criterion (derived 

from the more familiar Routh-Hurwitz Theorem) [59]. Using this criterion the same result 

obtained by Xu and Principe [170] is derived (refer to section §C.3.1), obtaining the following 

hyperbolic curve in the lvsrVrsl parameter space: 

(5.5) 

A graphical representation of this is shown in Fig. 5.1(a). It is important to note that the right 

hand side of (5.5) is also a function of V8r and Vr81 implying a nonlinear dependence on lvsrVrsl· 

If condition (5.5) is satisfied then the equilibrium has a transition from a stable to unstable 

equilibrium state, via a supercritical Hop£ bifurcation. This may be proven analytically by 

considering the normal form of (5.1) which is developed in Chapter 6, or by evaluating the 

coefficients of curvature (refer to equation (2.13)). 

In the following discussion, analysis of system (5.1) is carried out in the autonomous case and 

when driven by a time invariant signal. The latter case may be considered as a transformation 

of the coordinate system, describing the transition to instability in each scenario. The null­

dines of the system may be calculated from (5.3) and an illustrative example is presented in 

Fig. 5.1(b). Observe that the system has a unique equilibrium state since ,(V) is a monotone 

increasing function. Furthermore, the equilibrium state can be either in the first or the fourth 

quadrant of the state space (V,., Vs), depending on the strength of the external input Vsn· A 

result of this is the following proposition: 

Proposition 5.1.1 Since Vrs > 0 and ,(x) :2:; 0, V x E IR, then V,.* > 0. Further, since 

Vsr < 0, then if Vsn = 0 we have V.* < 0; else V.* :2:: 0. Further, V.* will be in the first quadrant 

of the state space (V,., V.) if V8 n</!n > Vsr,(V,.*). 
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Figure 5.1: a) Illustrating the stability condition (5.5} in the parameter space lvsrVrsl· In this 

case, the values of the fixed point are given by V.* = -0.01222 and V,.* = 0.005962. The 

curve is hyperbolic, giving a stable and an unstable region. This transition from stable to 

unstable defines the branch in parameter space where a supercritical Hopf bifurcation occurs. 

b) Illustrative example of the nullclines of system (5.1} in the state space (Vs, V,.}. Since 

the sigmoidal curve is monotonic, there exists a unique equilibrium point for a fixed set of 

parameters. The equilibrium can either be in the first or fourth quadrant of the state space 

(Vs, V,.) depending on the level of the strength of external input Vsn· 

5.1.1 Autonomous case 

As previously discussed, in the autonomous case, the equilibrium is in the fourth quadrant of 

the state space (V,., V,). Further, from Xu and Principe [170] the following properties of the 

equilibrium state are given: 

i) V,* is a decreasing function with respect to both Urs and lusr I, that is, ::::: ::; 0 and 

av; < 0 
dju,rJ -

ii) V,.* is an increasing function with respect toUrs but decreasing with respect to iusrl, i.e, 

dVr' > 0 and dVr' < 0 
dUra - djusr! -

A derivation of these properties is presented in the section-§C.2 for completeness. 

From these properties, a local region is derived (since finding a global region is analytically 

intractable) for which the stability condition (5.5) is satisfied and hence gives rise to a tran­

sition between a stable equilibria and a stable limit cycle. For condition (5.5) to hold true 
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it is necessary that if lvsrVrsl increases then 1/(c;'[V,.*Jc;'[V;J) should decrease to a minimum 

in order to satisfy the inequality. In other words, c;' [V,.*]c;' [V;] should be maximized. Since 

c;'[V,.*] is a Gaussian-like curve, depicted in Figs. (5.2:a) and (5.2:b), then the product of these 

two derivatives will also be Gaussian-like. Thus, the idea is then to maximize the area of the 

resulting function. 

Ideally, one approach would be to apply the convolution operator to these two functions 

(g(V) =<;'[V,.*] 0 <;'[V.*]), and then search for a V such that g(V) > fv.r1v.,[ (a!ffl'. Thus giving 

the resulting area of the Gaussian that is unstable. However the problem here is reobtaining 

the individual components V. and v;.. Another way to define the region is by noticing that 

the equilibrium is in the fourth quadrant and by tuning the parameters Vrs and Vsr according 

to Properties (i) and (ii) (see Fig. 5.2). From this, we can find a lower and upper bound for 

V.* and V,.*. Again, from Figs. (5.2:a) and (5.2:b), we have that if both V. < Band v;. < B 

then the only form that maximises c;' [V,.*]<;' [V.*] is to first fix Vsr = v;r and then increase Vrs 

until condition (5.5) is satisfied. Note that increasing Vrs decreases V.*· 

o) 
2., ... 

lk;(V,) •.• 
dV, u .. 

~ 

•• 

v; 

• 
~ 

~ 

.s.lo;. ~ .... ;-:"""o:;;--;;o"':::;-;:.c;;:;.-o:; 

Figure 5.2: Both plots a) and b) represent the derivative of the sigmoidal c;(V,) (with a = 

{ r, s} ), where the maximum is ~::,;" at Va = B. The figures try to demonstrate how to 

use the control parameters Vrs and lvsrl in order to satisfy condition (5.5}. The right hand 

side of (5.5} depends on the product of the derivatives, i.e c;' (V.*)<;' (V,.*). To satisfy (5.5} the 

quantity lvsrVrsl has to be increased whilst minimising ,'(V;)~' (V;), i. e maximising c;' (V.*)c;' (V,.*). 

Thus the shaded area "represents" the area where c;' (V.*)c;' (V,.*) is minimum and condition (5.5} 

is not satisfied. a) If lvsrl increases then the equilibrium V.* decreases, equally if Vrs increases 

then V.* decreases. b) If lvsrl increases then the equilibrium V,.* decreases, conversely if Vrs 

increases then V,.* increases. The change in parameters will allow the equilibrium to fall in or 

out of the stable region. 
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The following sections further investigate the behaviour of the RKII model numerically using 

the software package XPPAuto, both to examine the many interesting dynamical features 

of the model and also to verify the analytical findings. Consequently, the first investigation 

was to examine the (vsn llrs) parameter space and compare these results with condition (5.5). 

Here, an unexpected result was that the stability curve in (vsn llrs) parameter space was 

more far reaching than that expressed by condition (5.5). In addition to the hyperbolic curve 

described by condition (5.5), there was also a fold point on the same branch in parameter 

space. To obtain this branch numerically, first a Hop£ bifurcation point was found and then 

two parameter continuation was carried out, depicted in Fig. 5.3. 

The notation used is the same as the software package XPP to denote special points, i.e Su­

percritical Hopf (HB), Fold or Limit point (LP) and Branch point (BP). Starting at any point 

on the (llsn llrs) curve, for example HB1, and then by varying only llr., it can be observed 

in the bifurcation diagram (Va, llrs) that the system will have periodic orbits with increasing 

amplitude. This amplitude however decreases when the parameter llrs increases. An example 

of such a scenario is depicted in Fig. 5.4(a). Conversely, starting at HB1 and varying the 

parameter llsr by increasing it, an upper branch of the (vr., llsr) curve is found which em­

anates from the fold LPl. Thus, the resulting diagram will have periodic orbits that have an 

increasing and subsequently decreasing amplitude until convergence at a second Hop£ point. 

This latter idea is illustrated in Fig. 5.4(b). 

The existence of a fold point in the (llsr. llrs) parameter space suggests that the parametric 

curve depicted in Fig. 5.3 is globally parabolic with the vertex given by the fold point (LP1) 

and locally hyperbolic as described by condition (5.5). The difference between these two curves 

(Fig. 5.1 and Fig. 5.3) is to plot condition (5.5) V.* and V,.* must be fixed, so it is only a local 

representation. Another way of seeing this is by examining how Properties i) and ii) affect the 

stability condition (5.5). For convenience, we construct a table of all possible combinations of 

the direction of increase/decrease of the parameters llsr and llrs and observe how this changes 

the value of the equilibrium point (V.*, V,.*) and consequently the change of condition (5.5). 

From Table (5.1) and following Fig. 5.3, notice that the first entry of the Table corresponds 

to the direction taken by the curve from LP1 to HB1, i.e. In the direction LP1 -> HB1 both 

parameters increase in size. For example, starting from LP1, an increase of lvsrl decreases 
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Figure 5.3: Illustrated is a two parameter branch of Hopf bifurcations in the {vsn Vrs) pa­

rameter space. A numerical continuation finds extra structure in this parameter space. The 

lower part of the curve confirms the hyperbolic nature of the {vsn Vrs) parameter space given 

by Eqn (5.5), however there is additionally a fold point (LP1). Prom this fold point, two Hopf 

bifurcations are born, both supercritical (HB1) and (HB2). All values of the special points 

depicted are given in Table (C.2) in section § C.4). 

both V. and V,.. The same direction implies increments on Vrs and consequently causing a 

decrease in V.. However V,. compensates by changing the growth direction and consequently 

the system would still be placed on Hopf point. The second entry corresponds to the opposite 

direction, HBl to LPL Equally, by applying the same arguments to the third and fourth 

entry it is verified that these relate to the upper branch of the (vsro Vrs) curve. Furthermore, 

taking the latter arguments and following the curve depicted in Fig. 5.1(a), a change in Vsr will 

change the equilibrium locally as follows: V.* "" V8r V. and V,.* = Vrs,(V.*), i.e. the equilibrium 

will mainly follow the V,. = Vrs,(V.) equation. Conversely, a change in Vrs will locally affect 

the equilibrium according to: V,.*"" Vrs V,. and V.* = Vsr,(V,.*). 
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Figure 5.4: a) Plotted is a bifurcation diagram (V.,vrs) for the autonomous case. Commencing 

from HBJ and varying 11r81 the amplitude of the periodic orbits appearing from HB1 gradually 

augment to a maximum but never decays. This characteristic can be verified by examining 

the previous Fig. 5. 3, since it is a parabolic curve. If the system starts from HBJ with llsr 

fixed and simultaneously varying llrs then the system never intersects a section of the (vsr, 

llrs) curve. The labelled points of interest have their actual values in Table (C.2} in section 

§C.4). b) Illustrating the bifurcation diagram {V.,v,r)· Starting from HB1 and varying llsr the 

amplitude of the Hopf grows to a maximum and then decays until it finds HB2. Note the extra 

unstable fixed points starting from HB1 and moving up diagonally until it gains stability. The 

point where it gains stability is very close to the fold point LP2. This point was numerically 

unstable and XP P found it difficult to follow the H opf bifurcation close to LP2. The special 

points marked in the figures have their corresponding values in Table (C.2} in section §C.4). 

llrs lvsrl V,(vrs) V,(lv,rl) V,.(vrs) V,. (ivsr I) 

I I ! ! I ! 
! ! I I ! I 
I ! ! I I I 

! I I ! ! ! 

Table 5.1: Summarising how a change in parameters lvsrl and llrs affect the V. and V,.. The 

arrows indicate respectively increase and decrease in value. For example the first entry indi­

cates that if there is an increase {in modulus) in both of the parameters, then V. will decrease, 

however V,. will vary respectively according to a specific parameter. 
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5.1.2 Analysis of RKII set driven by a constant signal 

In the following sections a time invariant signal, <fin= 1 with Vsn > 0, applied to system (5.1) 

is considered and then a region of phase space where an instability occurs is determined. 

Since this driving force is constant, the resulting system is equivalent to the autonomous 

case with an applied coordinate transformation, thus the type of bifurcations that occur are 

essentially the same. However, the signal essentially adds extra dimensionality to the problem 

and consequently the manner in which the system is driven to instability may be different to 

the autonomous case. From [170] the following additional property is required: 

iii) The fixed points V.* and V,.* are both monotonically increasing functions with respect to 

the strength of the external signal V8n, that is, ddv; > 0 and ddv; > 0. 
Vsn Vsn 

Setting all parameters of the model to the physiologically realistic values shown in Table B.1 

and only varying the amplitude of the external signal the bifurcation diagram in Fig. 5.5(a) 

is obtained. As the strength of the external signal is increased, a Hopf bifurcation occurs at 

the point HB3. Further increasing the strength of the external signal causes the amplitude of 

periodic oscillations arising subsequently to HB3 to increase for a time, but then subsequently 

a turning point occurs after which the amplitude of oscillations decreases until another su­

percritical Hopf bifurcation occurs at HB4 and the oscillatory behaviour ceases. The actual 

values for HB3 and HB4 are shown in Table C.2. The following proceeds in the same manner 

as per the autonomous case to investigate the (v,., Vrs) parameter space and see if there is any 

change in the structure of the curve in parameter space when the amplitude of the external 

signal Vsn is increased. XPPAuto allows one to plot bifurcation diagrams of a system, whilst 

varying an additional parameter value on the same plot. We choose to use this facility for 

better comparison of the dynamics of the model during various regions, whilst varying the 

external forcing strength. Starting from HB3 (when Vsn = 0.01707) and numerically continu­

ing this branch of Hopf bifurcations in (vsr, Vrs) space a similar parabolic curve is obtained to 

that determined in the autonomous case with an additional fold point, LP2. However, if there 

is an increase in the amplitude of the external signal until V8 n = 0.2073, i.e. where the second 

Hopf, HB4 occurs, a widening of the parabolic curve is observed and this is geometrically very 

different to what would be expected from the study performed for the autonomous case. Both 
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of these curves are shown in Fig. 5.6. For the case where Vsn = 0.2073, the curve suggests that 

there were extra fold points in the (vsr> Vrs) space, i.e. one very close to the point we denote 

HB6 and the other perhaps close to but lower than LP3. However, numerically XPPAuto 

did not identify these as being fold points and only the fold point LP3 was found, which is 

consistent with the autonomous case. The values for the special points HB3, HB4, LP2 and 

LP3 can be found in Table C.2 (in section §C.4). The precise nature of the points HB5 and 

HB6 will be elucidated later. 

a) b) 
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Figure 5.5: a) Bifurcation diagram in (v,, V 8n) space. An increase in the strength of the 

external signal will cause a Hopf Bifurcation HB3 and further increasing the strength will 

cause periodic oscillations to initially increase in amplitude before a decrease until another 

supercritical Hopf bifurcation, HB4, is found. The respective values for HB3 and HB4 can be 

found in Table C.2. Part b) complements pari a}, showing the configuration of the nullclines 

and the supercritical Hopf points HB3 and HB4 in the state space {If,., V.) for two different 

strengths of the external forcing. Note that the intersection points of the nullclines are both in 

the first quadrant. We further notice that the values assumed by V, and Vr at the bifurcation 

points HB3 and HB4 are very close to the () - u and () + u. The values for V. and V,. can be 

verified in Table C. 2. 

Consider now the bifurcation diagrams generated for different amplitudes of the external 

forcing Vsn· Note that although V8n increases the dimension of the parameter space by one, 

new forms of bifurcations are not observed. The following bifurcation diagrams only help to 

isolate the regions of the parameter space where a certain supercritical Hopf is generated or 

destroyed in the (vr.,Vr81V8 n) parameter space. Choosing initially the points HB3 and HB4, 

the parameters of interest Vsr and Vrs are then varied resulting in Figs. (5.7- 5.11). From 
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Figure 5.6: a) and b) represent the continuation of supercritical Hopf points in the (vsn Vrs) 

parameter space, where the diagram b) is a zoom in of a). Note, we use the numerical software 

package XPP feature to superimpose two continuation diagrams in the same plot, allowing a 

better comparison for different external strength case. Two cases are shown, for Vsn = 0.01707 

we observe the curve consisting of points HB3, LP2 and HB5 and for the case Vsn = 0.2073 the 

curve is composed of points from HB4, HB6 to LP3. For the latter case, the curve (vsn Vrs) is 

much opened and geometrically very different to the former. This poses questions to whether 

extra fold points are born as the external strength V8n is increased. For the external inputs 

considered in this plot we observe fold points on both curves, thus, indicating that the curves 

are locally parabolic. The values of the special points in the Figures are given in Table C.2. 

diagrams (5.7:a) and (5.7:b) observe that starting at HB3, where here Vsn = 0.01707, varying 

Vrs results in oscillations of increasing amplitude as we move away from HB3. No fold occurs 

in this case, and further increasing Vrs does not bring about a decrease in the amplitude of 

oscillations. However, upon increasing the amplitude of the external signal (vsn = 0.2073), the 

structure changes dramatically. Here from the Hopf point at HB4, decreasing Vrso observe that 

the amplitude of oscillations increases initially as we move away from HB4, until what appears 

to be a fold occurs and the amplitude decreases, until we arrive at HB6 where oscillations 

cease. Considering the bifurcation curve in (vr.,Vsr) parameter space (Fig. 5.6) does not result 

in a fold. This change is of particular interest, as it demonstrates that an external signal may 

be used to destroy oscillatory behaviour. If such oscillatory behaviour corresponded to seizure­

like activity, the application of such external forcing would be highly significant. This change 

in amplitude from HB4 to HB6 can be explained by the Fold LP7 in the (vr.,Vsn) parameter 

107 



space, see Fig. 5.8. Note also that in the same diagram, it is shown a second fold point exists, 

denoted LP6. The existence of LP6 justifies the alteration of the amplitude of the periodic 

orbits seen in Fig 5.5(a). 

a) 

0 G.ll002 O.o:l04 O.«q 0.0001 0.001 0.0012 0.001• 0.001' 

v, v, 

Figure 5. 7: a) The plot shows the bifurcation diagram (Vs, Vrs) at two different levels of the 

external signal strength, at Vsn = 0.01707 and V8n = 0.2073. XPP allows one to automati­

cally superimpose the two bifurcation allowing easy comparison. The supercritical Hopf HB3 

corresponds to the lower level of external signal strength while HB4 and HB5 corresponds to 

a stronger input. The difference in external strength causes a change in the bifurcation dia­

gram. The labeled points shown in the figures have their related values in Table C.2. b)The 

illustration shows the bifurcation diagram (v,., Vrs) at two different levels of the external sig­

nal strength, at Vsn = 0.01707 and V8n = 0.2073 thus very similar to figure a) where here 

the objective is to observe the variable V,. and so only complements the previous plot. The 

turning point in the amplitudes of the periodic orbits emanating from either HB4 or HB6 is 

explained by the two parameter continuation diagram {5.8). The special marked points have 

their corresponding values laid up on Table C.2. 

Conversely, in Fig. 5.9, a different scenario to the one just outlined is observed. Here both 

bifurcation diagrams, at different strengths of the external input, eventually have the same 

dynamical transitions. That is, an increase followed by a decrease in amplitude. This is 

because at each level ofthe external input there exists a fold living in (vr., vsr) parameter space. 

This is illustrated in Fig. 5.6. Fig. 5.9 is slightly misleading for the case where Vsn = 0.2073 

for the following reason: Commencing at HB3 where V8n = 0.01707 and varying Vrs increases 

the amplitude of the limit cycle oscillations, further increasing Vm a fold point LP2 occurs in 

the (vr., Vsr) parameter space which causes a decrease in the amplitudes until HB5. Equally, 
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for the level of input V8n = 0.2073 the scenario repeats, however crossing at the fold point LP3 

depicted in Figure 5.6. It should be pointed out that the bifurcation diagram (Va ,v.r) for this 

level of external input is also misleading because for this input the effect of the turning point 

does not appear noticeable. This is because the scales of the two bifurcations are such that it 

would not be possible to represent both effectively on the scale of the fold point. Furthermore, 

examining closer the bifurcation diagram (V.,vsr) with gradual transitions of the strength of 

external input reveals the existence of a limit point LP4 as shown in Fig. 5.10. From this 

diagram it is observed that as Vsn is increased, the supercritical Hopf HB5 is shifted to the 

right and the parameter range of V8r, where the periodic orbits exists, increases. From the 

limit point LP4 a further increase of Vsn will have the opposite effect of dragging the Hopf to 

the left, hence the previous Fig. 5.9. Additionally, the limit point marks the region where the 

second supercritical Hopf, for example HB7, ceases to exist in the (v8"' Vsn) parameter space. 

This fact is also confirmed by the continuation of the two dimensional curve of supercritical 

Hopfs in the (v8r, V8n) parameter space illustrated in Fig. (5.8). Increasing Vsn will only destroy 

the second Hopf in this parameter space, however it will persist in the projection onto (vr., 

Vsr) space, as may be seen in Fig. (5.6). Here, for example fixing all parameters and starting 

at some supercritical Hopf on the top branch of the two dimensional (vr., Vsr) curve and then 

smoothly decreasing Vsr will only have the effect of meeting the bottom branch of the same 

curve. Furthemore, tracking the second Hopf through one parameter space and into the other, 

following V8r, for example, shows only an extension of the range of the parameter Vsr, where 

the periodic orbits exist. 
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Figure 5.8: Depicting a continuation of supercritical Hopf points in the (vr., llsn) parameter 

space. The existence of two fold points {LP6 and LP7) indicate a change in the oscillations 

of the model when llsn or llrs is varied and the two dimensional curve is only locally parabolic 

near these two fold points. 

•> 

·············· ..... 
................... ... 

-~~----~~~~ 
_______ ... _.....,......,........, 

v. 

b) 

Figure 5.9: a) Bifurcation diagram {Y., llsr) at two different levels of the external signal 

strength, one at V8n = 0.01707 and the other for llsn = 0.2073. XPP allows one to automati­

cally superimpose the two bifurcation allowing easy comparison. The bifurcation consisting of 

points HB3 and HB5 corresponds to the case when llsn = 0.01707 and the other corresponding 

to the higher level of external input. An important point in this figure is to note that all oscil­

lations emanating from HB4 will have an increase in amplitude but as llsr is further decreased 

the amplitudes will shrink to zero. For this point the reader is asked to refer to figure {5. 6}, 

showing the existence of the fold LP3. b) The illustration shows superimposed bifurcation di­

agrams (v,., llsr) at two different levels of the external signal strength, at llsn = 0.01707 and 

V 8n = 0.2073 thus very similar to figure a). Here the aim is to observe the variable V,., which 

only complements the previous plot. The turning point in the amplitudes of the periodic orbits 

emanating from either HB3 or HB5 is explained by the existence of a fold point LP2 in the 

two parameter continuation diagram {5.6}. The values corresponding to the labelled points is 

revealed in Table C.2). 
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"' 
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•' •' •' 0!104 •• 

•' ·' 

Figure 5.10: The plot shows the bifurcation diagram {Vs, Vsr) at two different levels of the 

external signal strength, showing the gradual transition from vsn = 0.01707 to a limit point 

LP4 {here Vsn = 0.01955). XPP allows one to automatically superimpose the two bifurcation 

allowing easy comparison. The figure on the right is a zoom in of the diagram on the left. As 

Vsn increases there is a shift of the Hopf point HB5 to the right and a shift to the left of the 

Hopf point HB3, thus the domain of Vsr where the periodic orbits exist augments. A further 

increase of V8 r will destroy the HB7 {which is a branch point). A complement for the analysis 

of this figure is the next illustration (5.11 ). The actual values for the marked points can be 

obtained from table C.2. 

b) 

•• 

"" 
HB4 

"" 
HB3 LP5 LP4 

"" r----____ __.-.-JHBS 
LP5 

~.oocn -4.00011 ~- -41.~ -4.11003 .o.ooo:z .0.0001 

v, 

Figure 5.11: Both illustrations show a two parameter continuation of supercritical Hopf bifur­

cations in the (v,"' Vsn) parameter space. The figure on the right is a zoom in of the diagram 

on the left. Surprisingly XPP detects at least two fold points in the {vsr, Van) parameter space 

indicating that the curve is not parabolic, perhaps being only locally parabolic at the limit points 

LP4 and LP5. The concrete values for the indicated points can be obtained from Table C.2. 
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5.2 Summary 

In this chapter, the dynamics of a RKII set are considered, with particular emphasis on the 

existence and local stability of limit cycle oscillations. Analytical stability conditions on the 

parameter space for the loss of stability of the RKII set is determined. Further, numerical 

analysis is carried out by employing the software package XPPAuto to numerically find the 

bifurcation set for both an autonomous and non-autonomous RKII set. The analysis performed 

in this chapter determined the appropriate parameter sets where the system is stable and where 

control of stimulus (in the non autonomous case) can be applied to control these oscillations. 

The results of this chapter are important in that in provides a foundation to understanding 

the coupled RKII set. A rigourous understanding of the dynamics and transitions is crucial 

to understanding patterns observed in RKII sets and coupled RKII models. The following 

chapter is a further step in this direction is taken by considering normal forms and using a 

recent formalism, Global Analysis of Piecewise Linear Systems (28]. 
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Chapter 6 

Normal forms and Global stability 

analysis _of reduced model (RKII set) 

The purpose of this chapter is to consider analytically the unfolding of bifurcations in a RKII 

set using normal forms to give sufficient conditions for the existence of limit cycles and to 

subsequently study global stability of these oscillations. To understand global properties of 

the limit cycles in a RKII set, a piece-wise linear reduction of the system is considered and 

global stability is proved for a restricted region of the parameter space. To achieve this a recent 

formalism termed, Global Analysis of Piecewise Linear Systems [28] is used. The formalism is 

applicable to piecewise linear systems (PLS) which are characterised by a finite set of linear 

dynamical models together with a set of rules determining switching between each model. The 

main idea consists of inferring global properties of a PLS solely by studying its behaviour at 

the switching surfaces which are determined by these rules. This is made possible by the study 

of impact maps, i.e. functions that map one switching surface to another. It is then possible to 

prove global stability by constructing quadratic Lyapunov functions on the switching surfaces. 

In general, impact maps are highly nonlinear, multi-valued, and discontinuous which makes it 

difficult to obtain analytical results. However, impact maps induced by Linear Time Invariant 

(LT!) systems between two switching surfaces can be represented as a linear transformation 

analytically parameterised by a scalar function of the present state. This representation 

permits the analysis of quadratic surface Lyapunov functions (SuLF) to be achieved by solving 

a set of Linear Matrix Inequalities (LMI) [122]. From this, global properties of the dynamical 
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system such as existence and stability of limit cycles can be inferred. 

6.1 Normal form calculation for an RKII set 

In Chapter 5, the linearised flow of the RKII model was investigated and necessary conditions 

for local stability were identified. In this situation varying the control parameters of the model 

will not change the structural stability of the system. However, from numerical simulations it 

is found that for some parameter regimes the RKII set produce limit cycles, i.e. a structural 

change in the flow. In this case the implicit function Theorem (2.1.4) shows that a solution 

cannot be continued smoothly because the Jacobian of the system becomes singular. In par­

ticular, according to the Hopf bifurcation Theorem (2.1.6) the instability emerges because 

two conjugate eigenvalues cross the imaginary axis which gives rise to dynamics in the centre 

space. To unfold the dynamics in the centre space the centre manifold Theorem (2.1.2) and 

the centre manifold reduction is used. The results of the previous chapter are extended by 

calculating the centre manifold of this system. Furthermore, through linear stability analysis 

only necessary conditions for the appearance of a supercritical Hopf bifurcation were made 

possible. However, according to the Hopf bifurcation Theorem (2.1.6), it is also necessary to 

demonstrate that the curvature coefficient is nonzero, which provides a sufficient condition 

for the Hopf bifurcation to occur. The sign of this coefficient determines the local stability 

and if positive (negative) indicates it is a supercritical (subcritical) bifurcation. In general, 

the expansion of the curvature coefficient becomes complicated for high dimensional systems. 

Alternatively, calculation of normal forms allows one to study the vector field locally in some 

neighbourhood. This is achieved through an iterative procedure, either simplifying or identi­

fying the nonlinear terms from the Taylor approximation of the vector field that corresponds 

to the observed dynamics. From this method the minimal set of equations describing the 

flow is determined and indirectly provides the specific coefficients for the Hopf bifurcation. 

Once this set of equations has been determined then, for example, an option is to consider 

the coupling of the reduced nonlinear equations and look for dynamical features observed in 

the full system of coupled RKII sets (i.e. without normal forms). The calculations follow the 

methodology of Iooss and Adelemyer which is detailed in section (2.1.6). 
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6.1.1 Notation 

The kth order multivariate Taylor series expansion for P E Ck(JR.n x JR. m; JR.n) may be repre­

sented concisely using the following formula: 

P(z,v) = L P1~i[z"', vX] + 0(/zJI>PI + JvJIXI), 
.pan 
XEAm 

(6.1) 

where z E JR.n, and v E JR.m is the set of parameters. The multi-index sets are defined by 

rn - {(1/;I.1/J2,··· ,1/Jn)/1/J; E {0,1,2,··· }}, 

An- {(xl,X2,···,xn)/X;E{0,1,2,···}}, 

(6.2) 

where the order of the polynomial is defined by the order of the multi-index /1/J/ = 1/;1 + 1/;2 + 
· • ·1/Jn and /x/ = X1 + X2 + · · · Xn = k. Pr>PI [z>P, vX] is a /1/JJ-!inear map on z and /xJ-!inear map 

on the parameters, where z>P = zf' · · · z~n and v"' = v~1 
• • • v~m . In coordinates, the i-th 

component is defined as follows 

Ui~11 (z"', vX)); = L (p~z>Pvx); 
I>PI+Ixl=k 

where ~ represents the polynomial coefficients expressed by 

1 [( a )"'' ( a )"'n ( a )x' ( a )xm] ~ = (1/;1!···1/Jnl)(Xll···xm!) az1 ... azn av1 ... avm 

(6.3) 

l(x,v)=(O,O) 

The above representations give a clearer illustration of the k-linear map property of the Taylor 

expansion, which provides a more abstract means for using the Taylor expansion to derive the 

normal forms. 

6.1.2 Setup and Statement 

Consider the RKII model (5.1) which has the following form: 

:i; = F(x,v) x E JR\v E JR2, (6.4) 

where x = (V., w, V,., v). v = (v,r, Vrs) are the only parameters allowed to vary and the vector 

field FE Ck(JR4 ,JR2 ) for sufficiently large k. To simplify the complexity of the calculation, 
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we may rewrite system (5.1) by first considering a linear change of variables that shifts the 

Hopf bifurcation, say (x*, v*), to zero and then expand the vector field around (x, v) = (0, 0). 

Setting the linear change of variables to x = x - x* and v = v - v* and substituting these 

appropriately into equations (5.1) we obtain the following: 

1" = F(x, v), (6.5) 

where F(O, 0) = 0. Further expanding the vector field with respect to x gives: 

1" = J(x) + N(x), N = O(lxl(x, v) ), (6.6) 

where J is the Jacobian (5.2) and N denotes the nonlinear terms. Specifically for a Hopf bifur­

cation the Taylor expansion should have terms that depend both linearly on the coordinates 

and also on the control parameters, resulting in the following: 

0 

0 

0 

0 

o<IY.tl ~ 0 a(J av, V,v;. 

The subscript (1) indicates derivative with respect to x and the superscript (1, 0) and (0, 1) 

denotes derivative with respect to v;r and v;. respectively. Equally, the expansion of N should 

have terms that are cubic in the coordinate space, but independent of the parameters. Thus 

we have the subsequent expansions 

0 

(3 • 83<[1'j=*I~V. V. 
0! Vsr -- rl r2V,.3 

8Vr 1 
' ' 

0 0 

where Nf is the third order expansion with respect to x and the superscript zero indicates no 

dependence on the parameters v. The computation of the coefficients of the cubic terms NJ 
depends indirectly on the quadratic coefficients N6 shown above. The eigenvalues of J and 

the stability curves in the parameters space are as presented Chapter 5. At a Hopf bifurcation 

the stability curve given by equation (5.5) becomes an equality and substituting this into 

equation (5.4) we can determine the following four eigenvalues: 

{ 

.X1,2 = ±i..fCi13 

A3,4 =-(a+ (3) ± i..fCi13 
(6.7) 
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and the associated eigenvectors can be evaluated for one of the conjugate pairs, giving: 

"' 8<;[;11 
-Vsr OV. ..-... 

(a+tl) V 

• B<IVf I . ..;ap 
-llsr av. t a -

E;..;ap = (a+,B) V : vE IC = Span 
-i@~ 

<>{3 V 

v 

• 8<fV[l (1- "( +{3) = Vsr 8Vr t Q: yO.pJ....._ 

(a+f3)((<>+f3F+af3) V 

. ~. 8d;11 
tv O.iJVBr av. ...... 

(a+f3) V : vE IC =Span 
- ( <>+f3) -i..;arJ ~ 

(a+f3) 2+af3 V 

• 8<~} /3 -vsr OVr a 

-v• 8'~li.j(i71af3 
sr 8Vr 

-iy'Ci71( a+ /3) 

(a+ !3)a/3 

v;/'8~)(1- i(a + f3)y'Ci71) 
Vr 

i.j(i71v;r 8~~*} ( (a+ /3) 2 + 0</3) 

-((a+ /3) + iy'Ci71)(a + /3) 

(a+ !3)((a + !3)2 + a/3) 

(6.8) 

(6.9) 

The linearly invariant centre space is spanned by E;..;ap and its corresponding conjugate 

eigenvector (i.e a two dimensional manifold), which is denoted by E0 = span{ eo, ea} and 

the linearly invariant hyperbolic space spanned by the remaining two eigenvectors, we denote 

by Eh= span{ eh, e-h}· Note also that R4 =Eh E& E0 • According to the centre manifold and 

normal form arguments [78] (section (2.1.6)), there exists a neighbourhood I E R2 around 0 

and a neighbourhood U E R4 around 0 and a smooth map h E Ck(Eo x R2; Eh) with the 

following properties: 

1. h(O, 0) = 0 and D.h(O, 0) = 0, for z E Eo. 

2. For v E I, the manifolds M0(v) = {(z, h(z, v))/z E Eo} are locally invariant to sys­

tem (6.5) and contain all solutions of the RKII set near to x = 0, V t E R and the map 

satisfies D.h(z, v)z =if, where z E Eo and y E Eh· 

3. According to the normal form theory [78](section (2.1.6)) it is possible to determine a 

polynomial G E Ck(Eo x R2 ; Eh), with G(O, 0) = 0, D.G(O, 0) = 0 such that by a near 

identity coordinate transformation x = z + h(z, v), z E E0 the system (6.6) may be 

normalized to: 

z = Jz + G(z,v), G = 0(/z//(z, D)/). (6.10) 
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In this particular instance, using the assumption that the flow on the centre manifold is locally 

periodic, the presence of the Hopf bifurcation implies that equation (6.10) has a known form. 

In particular the Jacobian of system (5.1) on the centre manifold has simple eigenvalues 

±ifol]. Using complex notation the centre manifold can be expressed in the following way: 

Eo= {z = Zeo + Ze0 /Z E IC}. (6.11) 

Here Z and Z are the coordinates on the manifold and it follows that the normalized flow is 

given by: 

{ 

: = ifol]Z ~ Z~~Z/ 2 , v~r, v;.) + CJ(/Z/ 2k+3) , 

Z = -ifol]Z + ZQ(/Z/ 2
, v~, v;.) + CJ(/Z/2k+3) 

(6.12) 

where Q(/Z/ 2 , v~"' v;.) is a complex polynomial of degree k in /Z/ 2 with Q(O, 0) = 0 that de-

pends smoothly on the control parameters (v~r, v;8 ). In particular, expanding ZQ(/ Z/2 , V.n v;.) 

using (6.1) gives: 

ZQ(,z/2 • • ) 1,0 • z + o,1 • z + o z2z- + 1,0 • n22-, Vsr, Vrs = 91,01/sr 91,01/rs + · · · 92,1 + · · · 92,1 Vsr.c,- + .. · > (6.13) 

where the coefficients 9i;g i 0, 9~;~ i 0 and 98,1 i 0 are to be determined. Polar coordinates 

are used to simplify the equations: 

Substitution into equation (6.12) results in the following 

(6.14) 

Proving persistence of periodic solutions is beyond the scope of this work and hence higher 

order terms are ignored. Solving the above equations (6.14) with respect for ~~ and 1J we get: 

{ 

1,0+91,0 0,1+90,1 0 + 0 
dr =_Bto otv""' r+ Bt.o o,t 1l. r+ B2,1 D1,2r3 
dt 2 sr 2 rs 2 

1,0 _
9

1,0 0,1_ 0,1 o _ o 
1!P. = r,:;;a + 91,o o,1 v· r + 91,o 9o,1 v· r + 92,1 Y1,2 r2 
dt yup 2i sr 2i rs 2i 

(6.15) 

9
1

'
0 +l'0 

0 1 · 9
1
'
0 -l'0 

1 0 Introduce the following constants er = 1 0 0 1 <* Re(9 ' ) d, = 1 0 0 1 <* I m(9 ' ) er = 10 2 1,0 ' 10 2i 1,0 ' 01 

Re(9~;~), e&1 = Im(9~;~), e12 = Re(9?,2 ) and c12 = lm(9?,2 ). Since the above equations (6.15) 

are now decoupled we can first solve for r and by quadrature solve for cp. Furthermore, in 

equation (6.15), ~~ defines the normal form for either the supercritical (subcritical) pitchfork 
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bifurcation dependent on whether the sign of cj2 is positive (negative) respectively and the 

equilibrium points are given by: 

r* = ± r* = 0 (6.16) 

Of particular interest are the non-trivial, stable states. These are satisfied for small (!1~"' ZJ;,) 

parameters, provided v;rcra;v~.c;;, > 0 which implies that the vector field admits in a small 
c12 

neighbourhood about 0 E JR2 a unique periodic orbit with radius r*. Substituting r* into !!c£ 

a stable solution c/J* is obtained which describes the phase of the orbit and consequently the 

solution is locally a periodic limit cycle defined by Z = r•ei<f>'t with period T = ~· 

The next section provides the computation of the normal forms obtained by applying the 

methodology of Iooss and Adelmeyer (78](section (2.1.6)). The main idea of the method 

is the so called the homological equation which incorporates the nonlinear term N(x, v) of 

equation (6.6) and assumes that the higher order terms G(z, v) of (6.10) and the centre 

manifold reduction function h(z, v) have a known structure. These assumptions reduce the 

number of steps to compute the normal form coefficients. 

6.1.3 Computation of the normal form 

The derivation of the homological equation is given in section (D .1). From the operator, 

we can determine the coefficients of the Taylor expansion of the reduction function h E 

Ck(E0 xlR2
; Eh) and the coefficients of the polynomial G E Ck(E0 xlR2; Eh) can be determined. 

Define the operator as follows: 

Jh(z, v) - D.[h(z, v)](J z) = G(z, v) - N(z + h(z, v), v) + D.[h(z, v)J(G(z, v)), (6.17) 

where the Ansatz is given by 

h(z,v) = L:.PErn h~[z.P,vx] = h~1=2z.Pi)X+h~l=3 z.Pi)x + ... ,with h = O(fzff(z,v)f), 
I.PI>2 
XEAm 

G(z, v) = I: 1/JErn G~[z"') i)Xj = gl~i:iz"'i)X + g~l=3z.Pi)X + ... ) with G = O(fzf (fzf2, v) f), 
I.PI=2n+l (6.18) nEN 

XEAm 
(I .PI, lxi),O(I,O) 

N(x, D)= L:.PErn NJ[x*, vx] = N1~ 1=2x.Pllx + ~~l=3x*vx + ... , with N = O(fxff(x, v)f). 
I.PI>2 
XEAm 
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First identifying terms in equation ( 6.18) of the same order in both coordinates and control 

parameters are identified, i.e. (z,v), and replaced in the homological equation (6.17). For 

terms that are linear in z and linear in the control parameters, that is, O(zv) the following 

first order homological operator is obtained: 

Jh~(z, v)- D.[hUz, v)](Jz) = GUz, v)- Nf(zv). (6.19) 

Expanding and evaluating the individual terms in equation (6.19) and then grouping those of 

the same order (details in section D.2) gives rise to the following four equations: 

(J . r::71J)h1,0 1,0 N1,0 ( ) - zyap 1,0 = 91,0eo- 1 eo, 

(J- i..;api)h~;~ = 9~;~eo- JVil•1
(eo), 

1,0 "1,0 
9o,1 = 91,o• 

9
0,1- 90,1 
1,0- 0,1· 

(6.20) 

In equation (6.20) the constants 9;•g and 9~·~ must be obtained. These are the first order 
' ' 

coefficients of the normal form. However, the operator ( J - i..;ap) is not invertible. Hence, 

for a solution hi;g or h~;~ to exist, the right-hand side must belong to Ran9e(J- i.,f(i!JI). 

However, Ran9e(J- i..;apJ) = Ker(J* + i.,f(i!JJ).i, where J• is the adjoint operator of J. 

Hence, equation (6.20) has a solution if the inner product of the right hand side with fo is 

zero, where fo is the adjoint dual base of eo and with the following form 

fo = 

-aiJv;, ~ ( ( a+/3)2 +a/3) 
ojJ( o+iJ)+i,,(i)3"( o+iJ)2 

v;, ~(oiJ-i,,(i)3"(a+iJ)) 
8V3 

-ifoiJ 

1 

(6.21) 

Thus to obtain the coefficients 9;;g and 9~;~ project every term of equation (6.20) onto the 

space K er( J* + i.,f(i!JI).l, which corresponds to applying the following procedure: 

(6.22) 

where < · , · > denotes the inner product of two vectors. Given that for any any vectors 

a, bE IC then < Ja, b >=< a, J*b > and< .\a, b >=< a, 5.b > (where J is the linear operator, 

J* the adjoint operator and,\ an eigenvalue), then the left hand side of equation (6.22) equates 
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to < hi:g, (J* + i~I)fo >= 0 and < h~:5, (J* + i~l)fo >= 0. Hence: 

g
!,O -
1,0 -

. I 0 -
< N1' (eo),Jo > 

< eo,lo > 
(af3)2 v* B<lY!"l B<(l):"l 

rs 8V8 8Vr "' 

4a(3( Ci + (3) + i~( Ci + (3)21/sr, 
(6.23) 

and for the other coefficient: 

gO,! -
1,0 

< Ni'1 (eo),fo > 
< eoJo > 

( af3)2v• B<f:Vg"l 8<fl2'1 
sr 8Va &Vr v." 

4a(3( Ci + (3) + i~( Ci + (3)2 rs· 
(6.24) 

Only the real parts need to be considered, which corresponds to a negative value in both 

cases. To evaluate higher order terms of the normal form, in this case the cubic terms, first 

it is necessary to resolve terms that are quadratic in the coordinates of the centre space and 

that have no dependence on the parameters v, (i.e. O(Z2)). The reasoning becomes clearer 

as the calculations progress. 

By reducing the homological operator to quadratic terms the following is obtained: 

(6.25) 

From equation (6.25) the following coefficients are determined (for details of this calculation 

refer to section (D.3)): 

thus, 

where 

H= 

(6.26) 

(6.27) 

( -3a(3 + 2i~(a + (3))[-(a + (3)2a:~~f"l] + (a(3)2(v;r)2v;. a:,~? (a1tt"l )3 

(af3)(a + f3) 282'!Vfl [4(a + (3) + 6iya;6) + 2iVcifJ(af3)2(v;r) 2v;. a
2

<r~·] ca1if1)3 

8Vr &Va r 

-a(3(a + (3) 2v;. a1~·1 a:~~·] + af3v;.v;r a:~? (81tt"l)2)[-3a(3 + 2iVcifJ(a + (3)] 

-2iVcifJ(af3)(a + (3)2v;. ~~·]a:~? - 2(af3)2v;.v:r a:~? ca1tt"1)2 (2(a + (3) + 3iya;6) 
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and det(J- 2i.J(i/3) = 3a,B(((a2 + ,82) + a,B) + 4iy'a,ij(a + /3)). For the other coefficient: 

(a+ ,B)282<[Vfl + (a,B) 82<[~·] (8<1;'z:"'l)3v• (v* )2 
8Vr 8V., 8Vr r s sr 

0 

v* [(a + r<)2 8<(.!'!1 82<[V;!l + (a r<) v• 82<[~·] ( 8<~1 )2] 
rs fJ &V, aV,: fJ sr aV, 8Vr 

(6.28) 

0 

Having evaluated the quadratic coefficients, terms that are cubic in the coordinates of the 

centre space and that have no dependence on the control parameters are now determined. 

These are precisely the coefficients for the unfolding of a Hopf bifurcation. Reducing the 

homological operator to cubic terms gives the following: 

(6.29) 

Expanding the individual terms in the homological operator and grouping terms of the fol­

lowing orders Z 2 z' z Z2 ,Z3 and Z3 four equations are obtained (details of the calculations 

can be found in Section D.3.1). However, for the Hopf bifurcation only those equations that 

depend on ZZ2
, Z2Z need to be considered: 

From equation (6.30) gg and gg;~ must be evaluated. Similarly to before, the operator (J­

i.J(i/31) is not invertible and the same procedure as performed for the first order terms is used, 

that is, to apply the inner product to all the terms of equation (6.30) with the adjoint dual 

base of e0 , denoted then by fo. This gives: 

0 -3 < 1V3 (eo,eo,eo),fo >. (6.31) 

The left hand side of equation (6.31) equates to < (L- i~l)hg,1 ,Jo >{=>< hg,1 , (J* + 

iva;i1I)J0 >= 0, thus resulting in the following cubic coefficient for the Hopf bifurcation 

g
o,o- 2 < JVf(eo, hg;g), To> +2 < JVf(eo, h~;~). To> +3 < JVg(eo, eo, eo),To > 
12-
' < eo,fo > 

(6.32) 

Once again, only consider the real parts, giVing: 

r R ( 0,0) C12 = e gr2 = 
' 2!3[(a2 + a,B + ,82)2 + 16a,B(a + !3)2][(a + !3)2 + a,B][(a + !3)2 + a,B](a +,B)' 
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where cl corresponds to 

and the constant c2 is given by: 

c2 = 12a/3v* ((a2 + a/3 + {32)2 + 16af3(a + f3) 2] (v• 82
c;(Vr*l ac;(~.*] [(a+ /3)2ac;(~*] &c;[V,.*] 

sr rs ~2 av. av. ~2 av,. • • av,. 

/3 
• 82c;[V.*] (8c;(V,.*] )2] 82c;[V.*J 8c;[V,.*] [( /3)2 8

2c;[V,.*] + a vsr ~ 2 ~ + ~ 2 ~ a + ~ 2 av. avr av. av,. av,. 

+ /3( • )2 • 8
2

c;[V.*l (8c;[V,.*] )3]) 
a vsr 1/rs -2 - . av. av;. 

Finally the constant c3 has the following form: 

c3 = 12[(a2 + a/3 + /32)2 + 16af3(a + f3) 2]((a + {3)2 + a/3) ((a+ /3)2
83

'!:;*1 ac;[~*] 
av,. av. 

+ /3( • )283c;[V.*l (8c;[V,.*] )3) 
a 1/sr -3 ......... 0 

av. av,. 
Numerically cb is observed to be a negative coefficient, however some analytical considerations 

can be made to determine that this is indeed the case, by first noticing that all parameters are 

positive except v;r and then comparing term by term. This implies that the system exhibits 

a supercritical Hopf bifurcation, confirming the numerical results of Chapter 5 Furthermore, 

the reduction function h(z) is composed of the quadratic coefficients hg,0 , h~,l and h8,2 • 

6.2 Global analysis of limit cycles in the piecewise linear 

model 

Having used the normal forms to determine analytically local stability results, global stability 

of limit cycles is now considered. The approach chosen to study global properties of the limit 
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cycle is developed from Constructive Global Analysis of Hybrid Systems [28] (section (2.2)). 

This theory allows the construction of a piecewise linear approximation of a system and to 

study analytically both the local and global properties of the dynamics. In particular global 

stability analysis of limit cycles of PLS can be proven using quadratic stability of Poincare 

maps. The procedure consists of first finding suitable switching surfaces and to then express 

Poincare maps induced by an LTI (Linear time invariant) flow between two switching surfaces 

as linear transformations analytically parameterised by a scalar function of the state. The 

central idea here is to compute quadratic Lyapunov functions for the Poincare maps where 

these functions are obtained by solving a set of LMI (linear matrix inequalities). In the 

following sections results are presented for the model (5.1) under consideration. The model 

can be reformulated in the form of a LTI system where it is essentially separated into linear 

and nonlinear terms and re-written in the following form: 

{ 
± = Ax + Bu, 

y=Cx+Du, 

where x = (V., w, V,., v). The matrix A contains only linear terms, while B contains the 

coefficients of the nonlinear and the forcing terms, in the case of model (5.1), u corresponds 

to the sigmoidal functions. y = Cx + Du denotes the output equation where for this case 

D = 0 (the feed matrix). The matrix A is defined as follows: 

Note that A is invertible and all the eigenvalues lie in the left half plane. The definition of the 

matrix B and the vector u, and consequently the switching surfaces will depend on the specific 

form of the piecewise approximation of the nonlinear functions. The first approximation of 

the saturating function c;[V.(t)] considered is a Heaviside function. The original saturating 

function is unipolar (i.e. it assumes only positive values), but for the purpose ofthis discussion 

and generality we will neglect this limitation and will assume that it may also attain negative 

values: 

u = G(y - B) = { : 
y :::; B, 

otherwise 

where we assume that (a, b, B) E JR. Since the saturating functions are dependent on the 

dynamic variables V8 and V,. an approximation for each function is defined independently, 
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allowing for more general results. Further, two switching surfaces are obtained (one for each 

function), by allowing the LTI flow from the lower asymptote (a) to the upper asymptote (b) 

of the Heaviside function. Hence, the complete formulation is as follows: 

x = Ax + Boiio + B1iii + B2u2 {o} Ax + Bu, 

y = C0x, 

y= C1x, 

where Go = [0, 0, 1, OjT, C1 = [1, 0, 0, Of and 

{ 

a; 
ii; = 8;(y- 11;) = 

b; otherwise 

y :::; 11;, 

with i = {0, 1} and the vector u = [iio,iii,u2Y· Noteu2 is due to the <Pn term in system (5.1) 

and here it assumes the form, <Pn = 1. The matrix B is then defined as: 

B= 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Since A is invertible, the equilibrium of :i; = Ax+ Bu can be readily evaluated as x* = -A -I Bu 

and has the following form: 

x* = 
0 

0 

where 

( 
A O ) ~ ( -(o+J3) =! ) A-1 = A= a(3 a(3 

~ ' . 
0 A 1 0 

A schematic of the reformulated model is depicted in Fig. 6.1. 

Furthermore the two switching surfaces (hyperplanes in IR3 ) are defined as follows: 

Since there exists two switching surfaces it means that the projection onto the (V., V,.) state 

space is divided into four regions, where the dynamics of each region is governed by a separate 
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Figure 6.1: The diagram shows the piecewise approximations applied to the original model. 

The nonlinear terms are approximated and are seen as driving terms to the LT! system and 

since the system also includes a time invariant signal thus three vectors representing inputs 

to the system are defined (uo)th, u2). The two most relevant hyper-planes are defined as Cox 

and C1 X for which the systems solutions intersect. 

system of the form :i:; = Ax + Bu; with i E {1, 2, 3,4}. Denote each of these by System;. 

Fig. (6.2) schematically depicts this, from which the conditions for the existence of a globally 

stable limit cycle are derived. 

The existence of a limit cycle depends on several different factors, for example whether or not 

the matrix A for each system is stable, and in which region the equilibrium of each system 

lies. Depending on the location of the equilibrium points, the model may give rise to rich and 

complicated dynamics and even chaotic behavior. Finally the initial conditions also play an 

important role. If the matrix A of each system is stable then a limit cycle can occur if each 

system has an equilibrium point in a different region. That is, for example, System1 (in the 

third quadrant) must not have its equilibrium in the third quadrant. If System1 contains its 

equilibrium elsewhere (except region 3), then the LTI flow will intersect a hyperplane S0 or 

S1 at some finite time moment t* when the governing equations of some other system will 

take over (in this case either system 2 or 4) and the same scenario could repeat until a closed 

trajectory is formed. However, it is important to note that this scenario does not guarantee 
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Figure 6.2: The figure shows the state space CV., V,.) and how the hyperplanes situate in this 

projection space. The hyperplanes are defined as Cox and C1x which are orthogonal to one 

another and which are denoted as the switching surfaces S0 and S1 respectively. Each subspace 

is defined by an independent LT! flow of the form x = Ax + Bu, where all the four systems 

differ in how the vector u is defined. The vectors are defined as u; = [u0 , 1h, u2 jT, with 

i E {1,2,3,4}. The values assumed by u0 and u1 are related to where System; situates with 

respect to the Heaviside function thresholds 00 and 01 respectively and here u2 = tf>n = 1. 

a limit cycle since the system can be chaotic. On the other hand, if matrix A was unstable 

it could be that all systems have equilibrium points in their own region, however the overall 

model posseses a limit cycle, since the equilibrium would be unstable and so depend on the 

initial conditions. 

In general, solving the existence conditions for limit cycles is non-trivial (as it involves expo­

nential matrices), however using results given in ((28], pp. 43-46) allows one for example, to 

simulate the system and obtain switching times and intersection points when the trajectory 

traverses a switching surface. This information then permits verification of the stability of a 

limit cycle. For system ( 5.1) the matrix A is stable (having all its eigenvalues on the left half 

plane), and so four systems are stable. However, the equilibrium state of each system lies in 

a different region, due to the different vectors u;, with i E {1, 2, 3, 4}. 

For ease of derivation of the limit cycle conditions, denote Bu; as simply B;, then the following 

are necessary conditions for the appearance of limit cycles: 
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Proposition 6.2.1 The switching surfaces S0 and S1 (governed respectively by the equations 

of the hyperplanes Cox and C1x) divide the state space (v., V,.) into four regions, each of 

which has an independent LT! flow x; = Ax + B; with i E {1, 2, 3, 4}. Since A is a stable 

matrix, then the existence of a globally stable limit cycle is only true if the following necessary 

conditions are satisfied: 

3. System 3: -CoA -I Ba < eo or -CIA -I Ba < el = { Vrsbl < eo or Vsrbo + </>nVsn < el } . 

4. System 4: -CoA -I B4 < eo or -CIA -I B4 > el = { Vrsal < eo or Vsrbo + </>nVsn > el } . 

To study the local and global stability of a limit cycle, a region of interest in parameter space 

is selected from the numerical results of Chapter 5. Without loss of generality, a band is 

chosen centred around HB1 (refer to Table C.2) with small variations in the parameter V8r 

and the parameter Vrs is allowed to vary freely. In this parameter window it is verified that 

the dynamic variable V,. is always positive and gradually goes from sub-threshold to supra­

threshold as Vrs is increased (where the threshold in the nonlinear function is e). There are 

numerous ways for determining a reasonable approximation to the nonlinear function. For 

example, one easy way is to generate the time series of the dynamic variables and use these 

as an input to the nonlinear functions. This method allows investigation of the region of 

nonlinear function space being visited. The approximation chosen for V,. in this parameter 

regime is a Heaviside function with parameters (ao,b0 ,e0 ) = (0,250,0.015). In this case e0 

coincides with the threshold of the sigmoidal function. Conversely V. has only sub-threshold 

dynamics occupying mostly the lower asymptote of the nonlinear function. The sigmoidal 

function considered is very steep indeed and a small variation in the input has dramatic 

changes in the output, so the approximation must be chosen carefully. Since V. lies mostly on 

the lower asymptote, a function of the form u(t) = max{O, Cx + e1}, where C is some vector 

could be used. However, for the purpose of demonstrating global stability a simpler function 

will suffice. In this case, a reasonable choice is a Heaviside function with the parameters 

(ab b1, e1) = (0, 250, -0.015). As an example, we present a simulation using a MATLAB code 

we developed using the symbolic math toolbox (see Fig 6.3). 
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The code uses the ideas discussed where a limit cycle is generated and the switching times 

and the Poincare surface coordinates are determined. Here the code is run with the initial 

conditions x0 = [0, 0, 0, Of and with the control parameters fixed to (vsr. Vr.,Vsn) =(-0.008, 

0.006, 0). We observe a limit cycle in the clockwise direction where we can easily interpret 

the results using the derived conditions from Proposition 1. In this simulation System2 in the 

second quadrant, starts running and its trajectory tends towards its equilibrium point which 

lies in the first quadrant. As it evolves, a switch occurs at S0 where then System1 takes over 

and the same scenario for the other systems repeats as the limit cycle develops. The code is 

run long enough until the switching times reaches a tolerance (iti- ti < TOL, where TOL 

is some time parameter). The switching times and Poincare surface coordinates are stored in 

Table D.l. 

6.2.1 Limit Cycle 1' with period t* 

Here use is made of the proof of existence of limit cycles given in ([28) pp. 43-46) which 

provides an algorithm to derive the analytical solution of the trajectory of a limit cycle. From 

the numerical simulation it is observed that the trajectory cp(t) of the limit cycle 'Y traverses 

each switching surface Sk with k E {0, 1} twice, in a sequential manner. Denote Sk as the 

subsection of a switching surface Sk where the trajectory first intersects it and tj as the 

time moment of the intersection, where i = j(mod4), with j E Nt. For example, sg is the 

subsection of the switching surface S0 where the trajectory traverses it at time instant t0 (since 

it is a limit cycle we consider t0 = t4 since t; = tj mod 4 ). Hence the limit cycle 'Y starting at 

the some initial condition x; E Sk has period t* = tj + t; + tj + t4 and satisfies: 

1. cp(ti) = xi E st 

2. cp(tj + t2) = x2 E S5 

3. cp(tj +t2 +tj) = xj E Sf 

Each System; has a solution of the following form 
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Figure 6.3: Simulation of the four systems of each partition of the state space and with the 

initial condition x0 = [0, 0, 0, O]T. The control parameters are set to V8r = -0.008, Vrs = 0.006 

and V8n = 0 which corresponds to the Hopf bifurction point HB1 {Table 0.2. Syste'm]. starts 

running and its trajectory is towards its equilibrium point which lies in the first quadrant and 

a switch occurs at So. In the first quadrant System3 takes over and moves towards its own 

equilibrium on the fourth quadrant and a second switch occurs at 81. For the other two final 

systems (4 and 1) identical scenarios occur, where System1 has its equilibrium on the second 

quadrant and System4 on the third quadrant. Note that if S1 was shifted slightly upwards then 

the limit cycle condition would no longer be satisfied and the limit cycle would vanish. Thus 

this also explains the generation of the Hopf bifurcation HBJ. 

From Proposition (2.2.1) the piecewise trajectory l/J(t) is governed by the following switching 

conditions 
go(ti,t;i,tj,t4) = Cox0- Bo = 0 

9I(ti,t;j,tj,t4) = C1xi- B1 = 0 

92(ti, t;j, tj, t4) = Cox2- Bo = 0 

9J(ti, t2, tj, t4) = C1x3- B1 = 0 

where 00 and C1 are the output matrices (describing the hyperplanes) defined in the previous 

section and the periodic solution of the piecewise linear approximation is obtained with any 
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of the initial conditions: 

x(j = (! _ eA(t4+tj+t2+til)-l [eA(t4+tj+t2l(eAti _ I)A-1B1 + eA(t4+t3l(eAt; _ I)A-1B2 

eAt4(eAt3- l)A-1B3 + (eAt4- l)A-1B4], 

xr _ (! _ eA(ti+t4+t3+t2l)-1 [eA(ti+t4+t3l(eAt; _ I)A-1B2 + eA(ti+t4l(eAtj _ I)A-1B3 

eAti(eAt4- I)A-1B4 + (eAti- I)A-1Bl], 

x:j _ (I_ eA(t2+ti+t4+t3l)-1 [eA(ti+ti+t4l(eAt; _ I)A -1 B 3 + eA(ti+til(eAt4 _ I)A-1 B4 

eAt; ( eAti - !)A -1 B1 + (eAt; - !)A -1 B2] , 

x' 3 
(I _ eA(t;+t;+ti+t4l)-l [ eA(tj+t;+ti) (eAt( _ I) A -1 B4 + eA(t3+t;) (eAt; _ I)A -1 B 1 

eAt3(eAti- l)A-1B2 +(eAt;- I)A-1B3]. 

6.2.2 Local stability of Limit cycle 'Y 

The local stability of the limit cycle can be verified by considering a Poincare map, P, from 

some point x; E S1, to the point when the trajectory returns to S1. i.e P : Si, --> Si, and 

then verifying that the Jacobian of the map has all its eigenvalues inside the unit disc. The 

Jacobian defined in Proposition (2.19) is derived by considering small perturbations in time 

and space in each intermediate switching surface and then neglecting higher order terms. The 

J acobian, W, of a piecewise linear system is then determined as being the composition of all 

the intermediate perturbations and defined as W = W3W2W1Wo where, 

W; = (I- v;Ck) eAt;, 
Ckvi 

and v; = Ax; + B; and k = i(mod2). Substituting the values from Table D.1 gives 

5.47e-4 2.71e-6 9.58e-03 4.79e-5 

-2.73e-2 -1.36e-4 -4.79e-1 -2.39e-3 
W= 

0 0 0 0 

2.64e-05 1.31e-7 4.62e-4 2.31e-06 
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W does have all its eigenvalues inside a unit disc, therefore the limit cycle is locally stable. 

6.2.3 Global stability of limit cycle 'Y 

The fundamentally new concept introduced in Constructive Global Analysis of Hybrid Sys­

tems [28] is to infer global dynamical properties of a system through finding quadratic Lya­

punov functions on the switching surface. Earlier studies [122, 69] had proposed continuity of 

the Lyapunov functions along the switching surfaces and this result lead to the idea that the 

intersection of two Lyapunov functions at a switching surfaces (one from each side) defined a 

unique quadratic Lyapunov function on the switching surface. It is then demonstrated in [28] 

that a quadratic Lyapunov function on the switching surface in a PLS denoted Quadratic 

Surface Lyapunov FUnction (SuLF) exists and that SuLF (as opposed to searching for Lya­

punov functions in the state space) is sufficient to efficiently analyse global stability of limit 

cycles. This follows since a PLS behaves linearly inside a region (partitioned state space). 

In order to analyse the PLS using SuLF it is first necessary to define impact maps from one 

switching surface to the next and by combining all the impact maps associated with the PLS 

it is possible to infer global stability. An impact map associated to the LTI flow in each of the 

four regions is defined following Theorem (2.2.1): 

and for each region i the following 

Since an impact map is nonlinear, multi-valued and discontinuous then for every impact map 

i define for a given initial condition in Si a set of all expected switching times t1 E T;. This 

allows each impact to be represented as a linear transformation analytically parameterised by 

the switching time. Then for any t..1 E Si- xi there exists a set of expected switching times 

t; E 7i such that the impact maps are given by 
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where each t; is the switching time associated to each perturbation Ll;. Furthermore, pa­

rameterising the impact map with t; defines the set of initial conditions st E S1 in a given 

switching surface that have the same switching time. This set of initial conditions S~ is found 

in [28] to be a convex subset of a linear manifold of dimension n - 2 (in this case an IR2 

surface). To show that these four impact maps are contracting in some sense, define a SuLF 

on each Sk given by 

Global asymptotically stability of the limit cycle follows if there exists P; > 0 (positive defi­

nite), g;, a;, such that 

The above inequality is computationally hard, however using the fact that maps from one 

switching surface to the next are linear in S~ and that as t; ranges overT;, S~ covers every point 

in Sk, it is possible to define approximations with a set of LMI. Conservative conditions given 

by Theorem 4.1 and Corollary 4.2 (refer to [28] pp. 62) are used, which is computationally 

very efficient. Equivalently, the limit cycle is globally asymptotically stable if there exist 

P; > 0 and g;, (3; = a; - a;+l such that 

{ 
.R;(ti+1) = P;- Ht(ti+l)P;+lHi(t;+l)- 2(g;- H[(ti+1)g;+l)w;(tH1) + wf(t;+l)(J;w;(ti+1) 

R;(ti+1) > 0 on st -xi for all expected switching times t; E T;. 

Furthermore, parameterising the impact map by a switching time corresponds to defining a 

linear operator H : JRn-1 -+ JRn-1. In view of this, while Ll; are vectors in IRn, the impact 

maps have solutions restricted to hyperplanes in JRn-1 . Consequently, this allows the definition 

a basis for the switching surfaces where each vector Ll; E Sk can be expressed as linear 

combination of the basis Ll; = II;O; (with II; being the basis and 0; E JRn-1 ). An easy choice 

for the basis is the orthogonal complements to C;, i.e IT; E Cf. It then follows that the last 

LMI condition can be rewritten as 

{ 
.R;(ti+l) = Q;- Ff(ti+1)Qi+1Fi(t;+l)- 2(p;- Ff(t;+l)Pi+1)w;(ti+1) + wf(tH1)'1/J;w;(ti+1){

6
.
33

) 

R;(ti+1) > 0 on S~ -xi for all expected switching times t; E T;, 

where Q; = IIfnP;II;, F;(t) = II[+lH;(t)II;, p; = II[+lg;Il;, '1/J; = Il[+1(3;Il; and w;(t) = 
II[+1w;(t)II;. Since the systems within a single region are linear, then simple candidates for 
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the quadratic surface coefficients are Pi = 0 and 7/Ji = 0. The final aspect to note about 

condition (6.33) is that it defines an infinite set of LMI for all ti E T;. Computationally, to 

overcome this difficulty it is necessary to grid this set in order to obtain a finite subset of 

expected switching times tj = t? < t} < · · · < t{ = tt, for some j E N. To compute the 

above conditions a set of MATLAB routines using the IQC.B toolbox was developed (82]. The 

objective being to find Qi > 0 and to confirm that (6.33) is satisfied for all switching times 

[ti, ttJ by plotting the minimum eigenvalue of (6.33) on [ti, ttJ, and thus showing that this 

is indeed positive definite. The largest switching time sets for which (6.33) are satisfied were 

7i=(5. 71e-2, 7e-2], 12=(1e-2, 2.5e-2], 13=(2.2e-3, 8.85e-3] and 74=(1.5e-2, 6.4e-2] which can 

be confirmed in Fig. 6.4. In particular, for the switching times presented in Table C.2 the 

following positive definite matrices exist: 

3.63 1.38e-2 0 2.33e-01 0 0 

Ql= 1.38-2 8.97e-1 0 , Q2= 0 4.88 -2e-01 

0 0 2.39e-1 0 -2e-01 9.17e-01 

1.61 -1.61e-02 0 2.37e-03 0 0 

Q3= -1.61e-02 3.16e-01 0 , Q4= 0 2.49 4.22e-03 

0 0 2.54e-02 0 4.22e-03 7.75e-02 

Thus satisfying Theorem (2.2.1) the proof that the piecewise linear approximation is globally 

asymptotically stable is complete. Other piecewise approximations could have been used 

but the approximation considered is sufficient to prove global stability. Note that global 

stability can equally be proven for this PLS system with time invariant inputs by applying 

the same procedure. For this case in particular, a more straightforward approach could be 

used by first applying a coordinate transformation. Having proven global stability of the limit 

cycle for a subset of the control parameters, it leaves the question of how to obtain a suitable 

approximation for the nonlinear functions that permits analysis of the system for the complete 

parameter range. Clearly, consideration of higher order piecewise approximations will increase 

the accuracy of the system, whilst also increasing the computational complexity of the LMis, 

which seems to be unnecessary. Naturally an interesting extension of this work would be to 

determine the simplest partition of the state space (V., v;.) that permits the global analysis 

of the limit cycle for the whole parameter domain. 
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Figure 6.4: SuLF for all the four impact maps are stable. Each plot shows the minimum 

eigenvalue of (6.33) on the respective sets of switching times 7i for each impact map. The 

eigenvalues of (6.33) are always positive for 7i (feasible) meaning that a positive definite matrix 

always exists and thus a SuLF for each impact map exists and is stable. In this way it is shown 

that the limit cycle is globally asymptotically stable. 

6.3 Summary 

This chapter provided theoretical and computational insights into the dynamics of an RKII 

set. Using normal forms and the theory of centre manifolds the coefficients of the Hopf 

bifurcations of the RKII set were determined. The coefficients confirmed the supercritical 

nature of these bifurcations as observed numerically in Chapter 5. The second part of this 

chapter then considered a piecewise linear reduction of the RKII set and global stability the 

of limit cycle arising in this approximation is shown for a narrow region in parameter space. 

This was achieved by employing a Constructive Global Analysis of Hybrid Systems [28]. The 

strength of this methodology suggests the potential for understanding coupled RKII sets and 

possibly the Ki set hierarchy. 

135 



Chapter 7 

General discussion and con cl us ions 

7.1 Discussion 

The main purpose of this thesis was to investigate the mechanisms underlying the develop­

ment of abnormal oscillations in a neural mass model and to provide insight into spike-wave 

oscillations arising from thalamocortical circuits. The model incorporates key anatomical 

structures and physiological features, however it assumes that some level of understanding 

of a neuronal system is possible without consideration of all the detailed features of the un­

derlying thalamocortical components. Thus, the model groups neuronal structures governed 

by plausible physiological dynamics and indirectly combines some of the important system 

variables into parameters where then different system solutions are identified by varying the 

relevant parameters. These neural mass model cannot be proven to be sound or correct, how­

ever to increase confidence in a model, model predictions should be confirmed experimentally. 

Indeed, previous analysis of the model have demonstrated its descriptive validity in a wide 

range of healthy states and yielded specific predictions with regards to seizure activity [131] 

(Fig. B.1 of section (B.2) illustrates the main EEG oscillations perdicted by the model within 

a restricted parameter space). This work further extends these results by specifically looking 

into absence seizures and encouragingly, further analysis reveals that the model also accounts 

for tonic-clonic seizures [21]. In particular, by performing bifurcation analysis of the full 

corticothalamic model a supercritical Hopf bifurcation is found commencing the transition 
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from healthy resting EEG to periodic pathological oscillations and discover a further 'spike­

bifurcation' which initiates (3Hz) absence seizures. This yielded time series realizations with 

periodic spike and wave morphology that closely resembled scalp EEG data taken from an 

absence seizure data-base. Furthermore, the nature of the bifurcation set yields a symmetri­

cal on-off character that is also found in the EEG data and the power spectrum of pre- and 

postictal EEG is comparable to the data. Interestingly, although there are some differences 

in comparison to the Destexhe and Sejnowski model [43], both models emphasize increased 

excitatory loops between the cortex and the specific and reticular nuclei, of the thalamus un­

derlying the generalized seizures. Furthermore, the onset of seizures is demarcated in Destexhe 

and Sejnowski model [43] by a phase shift of the voltage trace of the TC neurons when com­

pared to the oscillations of the RE neurons and the cortical neurons which suggests that spike 

activity is initiated in the specific neurons. Similarly, the phenomena is also observed in field 

activity of the full corticothalamic model. Destexhe and Sejnowski treated axonal propagation 

times as negligible, and hence, there was no time delay. However, the activation of seizures is 

mediated by GABAB receptors between the reticular and the specific nuclei which is a slow 

or delayed process that is activated once the corticothalamic feedback is strong enough. In 

contrast, the presence of time-delay in the corticothalamic model is a crucial parameter in the 

generation of absence seizures waveform. In fact, qualitatively similar spike-wave oscillations 

can be generated by our model with a variety of time-delayed feedback loops that differ in 

some detail from those presented in this thesis. This is interesting because it is known ex­

perimentally that absence seizures can arise as a result of changes in a number of different 

neuronal pathways. However, the present model incorporates the important components of 

the corticothalamic system together with time delays that, due to finite axonal conduction 

speeds. Finally, the corticothalamic model employed here does not explicitly include ionic 

currents such as Ir and IH or receptors such as GABAB within the thalamus. Although the 

present model is not inconsistent with such channels, future research would benefit by con­

sidering mappings of the full corticothalamic model to more detailed physiological approaches 

which then would bridge the gap in our understanding. In fact, one challenging objective of 

neural mass models is to identify relevant parameters of the observed activity and then try 

to decompose the parameters into the state variables or parameters of the real physical sys­

tem [77]. Specifically for the delay incorporated in the corticothalamic model, future studies 

would benefit by numerically continuing the bifurcations arising due to the delay as these may 
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be global bifurcations. 

The second part of this thesis addresses oscillations arising from the thalamic system, as mo­

tivated by a number of key observations. Firstly, in clinical recordings of the onset of absence 

seizures, the transition from pre-ictal to ictal dynamics is typically heralded by oscillatory 

behaviour, prior to spike-wave activity being observed. Furthermore, in the absence of a cor­

tical signal, the thalamic system is quiescent and spike-wave activity generated via periodic 

dynamics from the cortex fed both into both the specific and reticular nuclei populations. Also 

motivating this reduction is a phase shift of oscillations arising in the specific nuclei when com­

pared both with the cortex and reticular populations, which suggests that absence seizures 

originate in the thalamus. Thus, the cortex was decoupled from the thalamus and this gives 

rise to a reduced system of equations that Freeman termed RKII sets. An unexpected finding 

was to observe through simulations that an RKII set driven by sinusoidal signals generated 

'two-bump' solutions resembling spike-wave morphology. Moreover, through simulations it 

was observed that varying the coupling strength between the specific and reticular neurons 

does not influence the wave form of the oscillations, only the amplitudes of the signals arising 

in the reticular neurons varies. Thus, a functional composition of the incoming signal from the 

cortex with the sigmoidal activation functions of the reticular neurons can be considered as an 

appropriate approximation of the wave form. Consequently as a first approach to understand 

these solutions, a reduction of the RKII set with a piecewise linear saturation function was 

considered which determined two regions of interest for the solution. The two regions were 

then compared with the spike-wave activity, where one region is associated with 'spike' and 

the second region with the 'wave' explaining the two-bump 'solutions observed in RKII set 

and potentially offering insights to spike-wave oscillations. However, these solutions should be 

regarded as approximations and as such future studies would benefit by further investigation. 

To further understand RKII sets, existence and local stability of limit cycles by developing 

linear stability theory and contrasting with numerical continuations results obtained using 

XPPAuto was considered. Stability curves in parameter space were found explaining the 

transitions to limit cycle oscillations in the thalamic system. A further contribution of this 

thesis was to calculate normal forms to determine the unfolding coefficients of the Hopf bifur­

cations arising in the thalamic system thus determining sufficient conditions for the observed 

limit cycles. An interesting option of study would be to consider the coupling of the unfolded 
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equations and investigate local behaviour of these oscillations, in particular the normal form 

equations driven by sinusoidal inputs. However, the motivation here was to first understand 

the global properties of oscillations arising in RKII set as these properties could lead to inter­

esting theoretical results which would benefit the understanding of the activity arising from 

coupled RKII sets. To acheive this a new methodology termed constructive global analysis of 

hybrid systems [28) which allows one to consider piecewise linear approximations of a system 

and to study both the local and global flows of the non-smooth vector field. In particular 

global stability is proven for the RKII set within a subset of the parameter space and for 

a particular piece wise approximation. However, several interesting questions remain to be 

answered in all the above research avenues followed in this thesis. Therefore, the discussion 

is concluded with possible future continuation of the present study. 

7.2 Future directions 

7.2.1 Mapping between Neural mass and conductance models 

An interesting future study is to consider the mapping between different scales of neuronal 

activity. As mentioned above, one aim of neural mass models is to decompose a set of param­

eters into a set of meaningful variables and parameters of the real underlying system. This 

mapping could for instance be applied between the corticothalamic model considered in this 

thesis and the Destexhe and Sejnowski models (43]. This would enable consideration of ionic 

currents and synaptic receptors believed to be significant in the genesis of absence seizures. In 

particular, mapping between the Freeman Neural Mass model and conductance based models 

is proposed and conditions are given for the mathematical mapping to hold true. However, 

this is only one possible mapping and other strategies should be also considered. 

Assume a population of inhibitory and excitatory neurons where these could either be cortical 

or thalamic neurons. FUrthermore, these neurons can either be treated as a pointwise system 

or a system in a homogenous 2-D medium. Considering the activity at a microscale the post 
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synaptic potential (PSP) V(t, f) is calculated using a conductance based model: 

(7.1) 

where VL is the neurons voltage steady state, 9L is the specific neurone membrane conductance, 

C is the specific membrane capacity (the membrane time constant Tm = Q) and Is is the sum 
9L 

of inhibitory synaptic currents mediated by GABA receptors, here denoted with the subscript 

I, excitatory synaptic currents mediated by AMPA, NMDA receptors, denoted E and by some 

external current 1ext. The synaptic conductances depend on incoming spike pulse frequency 

q;1 (with j={I, E}) from pre-synaptic cells and obey a second order differential equation which 

describes the response to these impulses. 

d2g. (t) dg. (t) 
TrTd J + (70 + Td)-1 - + g·(t) = g-·f-'·(t) 

J J dt2 J J dt J J 'I'J ' 
(7.2) 

where Tj and Tj (j={I, E}) are the rise and decay times respectively of the response, fh is the 

maximal conductance and f is only a scale parameter. For a mapping between the Freeman 

model (which is second order in voltage) and a conductance model to hold true a reduction of 

equation (7.2) is necessary. A possible simplification is assuming the rise time of the response 

Tj is zero and the decay time is finite, that is, the rise is infinitely rapid response and only a 

decay is observed. Dropping this parameter can be justified for small times scales and intense 

inputs to a neuron, giving rise to a first order response of the conductances in the following 

way: 

(7.3) 

A simplification of the synaptic currents I, in the conductance model (7.2) should also be 

considered. Here it is assumed that the V - VE and V - Vr terms are constants which is 

a strong assumption, but nevertheless necessary for the derivations to be possible and thus 

I,= -gE(V- VE)- 9I(V- Vr) + 1ext ~ CE9E + CI9I + J•xt, where CE and CJ are constants. 

However, it is worth bearing in mind that the current amplitudes 9E(V- VE) and gi(V- Vr) 

are approximately of the same order, but Vr « VE and 9I » 9E where 9I generally has 

large fluctuations. Multiplying both sides of equation (7.3) with the constant cE and another 

instance by CJ gives two equations with the following form: 

[Tf! + 1]cJgj(t) = CJ!iJf<f;1(t). 
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summing the two instances of equation (7.4) and some external current J<xt gives 

[T~! + 1]cEgE(t) + [Tf :t + 1]CE9I(t) + [T!t:t + 1]f"Xt -

f(cE9EcPE(t) + CJ§"IcPI(t) + Cext9~tcPext(t)). 

A further assumption is setting Tf = T~ = T:xt = Ts to obtain 

(7.5) 

[Ts! + 1] (cEgE(t) + CE9I(t) + Jext) - f(CE9EcPE(t) + CJ9IrPI(t) + Cext9;xtcPext(t) 

d 
<* h dt + 1]!, - f(CE9EcPE(t) + CJ§"IcPI(t) + Cext9;xtcPext(t). (7.6) 

Using equation (7.2) to obtain [8 and substituting in the above equation (7.6) results in a 

formulation which is second order in voltage: 

f(CE9EcPE(t) + CJ§"IcPI(t) + Cext9;xtcPext(t)) 

f(cE9EcPE(t) + CJ§"IcPI(t) + Cext9~tcPext(t)) _ Vz.(7.
7

) 

9L 

On the other hand, for the macroscopic dynamics consider the following thalamic Freeman 

model, with two neuronal populations (inhibitory population - Reticular nucleus denoted by 

r and excitatory neurons - Specific nucleus denoted by 8). 

{ 
[H + 1] [U + 1] V,(r, t) = af3(vsr</>r(r, t) + VsecPext(t)), 

[~,ft + 1] [U + 1] V.(r, t) = af3vrscPs(r, t) + VrecPext(t)), 
(7.8) 

where the variables Va (a = { r, 8}) generally represent averaged post-synaptic dendritic po­

tentials evaluated by extracellular measurements of EEGs. Each thalamic submodule (specific 

and reticular neuron) is governed by a second order ordinary differential equation which cap­

tures a population's characteristic responses when stimulated with incoming dendritic pulses 

cPa· The parameters a and f3 are constants representing the inverse rise and decay times pa­

rameterising the dendritic response to these impulses. The conversion from pulse density <l>a 

to wave amplitude is implicit in the synaptic weights Vsr E JR- and Vrs E JR+. VsecPext(t) and 

VrecPext(t) represents external inputs to the thalamic specific and reticular neurons respectively. 

Note that synaptic weights are not directly measured experimentally and can only be inferred 

through modelling, i.e. an indirect measure of the synaptic transmission. In other words these 

synaptic weights may be thought of as of the form Vab = N;jSj, representing the coupling 

strength between neuronal populations i and j. N;j is anatomical or structural in character 

representing the mean number of connections from neurons of type j on a neuron of type 
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i. The term S; is physiological or functional in nature representing the size of the impulse 

response associated with synapses of type j. 

For the mapping between the microscopic and macroscopic level to be possible it is necessary 

further to assume that the intracelluar activity is in some sense proportional to the extracelluar 

activity (in this case EEG). Finally, comparing the left hand side of equations (7. 7) and 

(7.8) we obtain a possible interpretation for the macroscopic parameters written as ~ = T, 

representing the synaptic time constant and ~ = Tm corresponding to the membrane time 

constant. 

The advantage of coupled systems consisting of equation (7.7) is that GABA8 receptors, Ir 

and ! 8 ionic currents which are believed to play an important role in absence seizures can 

be directly incorporated. Also a direct comparison between the neural mass corticothalamic 

model and Destexhe and Sejnowski model [43] can be achieved to investigate the nature and 

importance of delays in abnormal oscillations. Thus the proposed method will be considered 

in the near future to further improve understanding, in particular of the thalamic system 

underlying the epileptogenesis of absence seizures. 

7.2.2 Bifurcation and synchronization of piecewise RKII sets 

RKII sets appear to be the important functional unit of neural mass models and their inter­

pretation is crucial if progress is to be made towards understanding EEG in the framework 

proposed by Freeman. Global stability for a particular case of a piecewise linear RKII sys­

tem and for a narrow region in the parameter space has been shown. Extensions of these 

results are possible by defining finer piecewise linear approximations, thus 'smoothing' the 

nonsmooth RKII system to enable the study of a wider region of parameter space. However, 

it is important to note that a direct comparison between a piecewise linear approximation 

and a smooth dynamical system is not trivial and perhaps in some cases not possible. For 

the case of RKII models and in general neuroscience this question is very important indeed. 

It is believed in general that these approximations and in particular for firing rate functions 

are justified. Recall that the firing rate is not necessarily a smooth function. In particular, 

for the mircoscale models such as Hodgkin and Huxley type models [73], these will typically 
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have a non-smooth firing rate. Only by considering a population of neurons with dispersion 

of voltages are these functions smoothed out, for example by, a Gaussian. Thus, approxi­

mations to the "true" firing rate function (which is generally not accessible) are implicitly 

determined at what ever scale and detail a neuronal system is modelled. Hence, from this 

perspective approximations seem plausible. Moreover, an emerging theory called "regulariza­

tion" (the name has not yet been formalized) has as its objective to understand and compare 

the dynamical behaviour between a smooth dynamical system and a nonsmooth version of 

the same system. However, this theory has only just begun to take shape and will take some 

time before any concrete answers to this question can be given. Other research avenues is to 

develop techniques for studying coupled RKII sets and synchronization between them as well 

determining the bifurcation sets for the nonsmooth RKII systems. Again these questions are 

very complex as the theories for non smooth systems are again only emerging and fundamental 

results do not exist. The main reason for this is that mathematical perturbation tools were 

designed for smooth dynamical systems and are theories for local analysis. For example the 

Taylor series expansion considers local derivatives however, it assumes continuum systems in 

a local neighbourhood where then analysis, such as bifurcations is possible. In contrast, it 

is not possible to consider a local neighbourhood in a nonsmooth dynamical system and by 

this argument piecewise linear systems are therefore global problems. Global theories, such 

as global bifurcations and global analysis are in general non trivial problems. 

7.2.3 Seizure prediction 

An interesting question, which can be addressed, is whether the identification of mechanisms 

in a model that explains the transition to seizure, can contribute to improvement of epilepsy 

treatment in clinical practice. For example, to simulate complex pharmacological effects, 

seizure suppression or even predict seizures. The answer to this question is a crucial one as 

it is the ultimate predictability test for a modeL The corticothalamic model employed in 

this thesis shows that particular changes in a single parameter, governing the rate of synaptic 

interactions between cortex and specific relay nuclei (v •• ), provides an explanation of the 

transitions to absence seizures, as well as demonstrating a good agreement to clinical data. 

Consequently, an interesting step forward with the corticothalamic model would be to test the 

predictability of the model by implementing a seizure prediction method based on parameter 
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fitting of the model parameters from clinical data. This could be achieved by the development 

of a parameter-fitting code which tracks changes in parameters of interest in the model when 

fitted to different segments (epochs) of EEG. Most of the parameters would be constrained 

to a close interval of the initial inter-ictal state and the parameter( s) of interest fitted using 

subsequent epochs of data. Therefore a potentially useful algorithm would be to issue a 

warning if parameters came within some distance € of determined bifurcation points o. The 

precise value of € would need to be statistically determined so as to maximise the anticipation 

rate, and minimise the false positive detection rate. This would need to be determined on a 

subject-to-subject basis. o will also be determined on a subject-to-subject basis, as numerics 

have illustrated that changes in the other parameters of the model result in slightly different 

values of the bifurcation point. The parameter fitting algorithm will also have to ensure the 

underestimation of the parameter by taking into account system noise, measurement errors as 

well as the nonlinear nature of the clinical data. If this methodology proves to be successful 

then it could also be extended to other forms of seizure, for instance complex partial seizures. 

However, this extension is not trivial as this depends on the type of the bifurcation associated 

with the transition from normal to pathological state. The difficulty, lies in the fact that the 

nature of bifurcation associated with a particular transition is hardly accessible from signals 

generated by a system. This work is our current focus and is funded by the EPSRC. 
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Appendix A 

This appendix provides some very basic terminology used to describe neuronal activity. For a 

more detailed review on the biophysics of neuronal activity the reader is asked to refer to [143]. 

A.l Elements of a neuronal system 

This section provides very basic terminology used to describe neuron activity. For a more 

detailed review on the biophysics of neuronal activity the reader is asked to refer to [143]. 

The elementary processing unit in the brain are neurons which are connected to each other 

forming very complex networks. A schematic illustrating the relevant concepts are shown in 

Fig. (A.1). In real brains, neurons and their connections are packed into a dense network with 

more than 104 somas and several kilometers of axons per cubic millimeter. In all areas of the 

brain there exists different neurons of different sizes and shapes. 

A typical neuron can be divided into three functional parts: 1) dendrites; 2) soma; 3) axon. 

The dendrites play a role of input devices that collects signals from other neurons and transmits 

them to the soma. The soma is the central processing unit that activates nonlinearly if 

the total input exceeds a certain threshold, then an output signal is (action potential or 

spike) is generated. The output signal is propagated along the axon which delivers signal to 

other neurons. The junction between two neurons is called synapse. The sending neuron is 

commonly referred as the presynaptic neuron and to the receiving as the postsynaptic neuron. 

Generally the axon of a presynaptic neuron makes contact with either a soma or a synapse of 
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a postsynaptic cell. The most common type of synapse is a chemical synapse. At a chemical 

synapse, the axon terminal comes very close to the postsynaptic neuron, leaving only a tiny 

gap between pre- and postsynaptic cell membranes, called the synaptic cleft. When an action 

potential arrives at a synapse, it triggers a complex chain of biochemical processing steps that 

lead to the release of neurotransmitter from the presynaptic terminal into the synaptic cleft. 

As soon as the transmitter molecules have reached the synaptic side, they will be detected 

by specialized receptors in the postsynaptic cell membrane and open (either directly or via 

a biochemical signaling chain) specific channels so that ions from the extracellular fluid flow 

into the cell. Examples of receptors mentioned in this thesis are excitatory receptors: AMPA 

and NMDA and inhibitory receptors: GABAA and GABAB. The ion flux, in turn, leads to 

a change of the membrane potential at the postsynaptic site so that, in the end, the chemical 

signal is translated into an electrical response. The voltage response of the postsynaptic 

neuron to a presynaptic action potential is called the postsynaptic potential. 

j 
axon-+ '--'-=f-./ \ ___ _ 
~...-----:;tioo .. _~ 

/ 40m.v potential 

( depolariza on-+ ~ repolarization 

- threshold (-55 mv) 
,-----resting state (-70 mv) 

Figure A.l: Figure showing the relevant components in neuronal systems: Dendrite, soma and 

axon. The inset shows and example of a neuronal action potential (schematic). The action 

potential is a short voltage pulse of 1-2ms duration and an amplitude of about 100mv. This 

signal is transmitted from a presynaptic neuron j to a postsynaptic neuron i. The synapse is 

marked as a small dashed circle. 
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A.2 EEG frequency bands 

The most common EEG frequencies are shown in Fig. (A.2) and are described as follows: 

1. Delta (5) activity (0.5-4Hz) is not normally recorded in the awake adult but it is a 

prominent feature of sleep and becomes increasingly dominant during the progress from 

stage 2 to stage 4 sleep. Delta waves have the largest amplitudes, normally between 

20-200pV. 

2. Theta (B) patterns (4-7Hz) are seen in normal drowsiness and sleep, and during wake­

fulness in young children. Theta is also present in normal waking adults. It is generally 

noted that lower theta is associated with drowsiness and higher theta activity with 

cognitive effort. 

3. Alpha (a) rhythms tend to be the most dominant brain oscillations in the human EEG. 

However it does tend to increase in amplitude during rest and relaxation (e.g. awake and 

eyes closed) and desynchronizes or becomes suppressed during intellectual functioning. 

Alpha rhythms often have a mean frequency centering around 10Hz with the maximum 

voltage over the parietal and occipital lobes, where amplitudes vary in the range 15 to 

50p,V. Evidence provided by Klimesch (92] indicates that within 8-13Hz alpha range, 

different frequency bands should be differentiated. These studies were able to show 

that desynchronization in the range of about 6-10Hz (lower alpha) reflects attentional 

processes whereas upper alpha desynchronization (in the range of about 10-12Hz) is 

selectively associated with processing of sensory-semantic information. The a-rhythm 

is thought to be generated in thalamocortical feedback loops. 

4. Beta ({3) waves (> 14 Hz) occur in all individualls, are usually of low amplitude and are 

normally distributed ma.ximally over the frontal and central regions. Generally speaking 

beta rhythms signal an activated cortex. 

5. Gamma (30-80Hz) and Ripples (l00-600Hz) these fast and ultra fast activities frequently 

coexist and may be present at various states of vigilance. Spontaneous brain rhythms 

during different states of vigilance may lead to increased responsiveness and plastic 

changes in the strength of connections among neurons, thus affecting information flow 

in the thalamocortical system. 
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Figure A.2: Example of various EEG rhythms. The delta, alpha and beta are Scalp EEG 

electrodes. The theta and gamma oscillations are depth electrodes. The X axis is seconds, Y 

axis: ~tV (o, a and /3}, m V (B and "f). Figure adapted from [157}. 
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A.3 EEG electrode placement 

According to the internationall0-20 system 20 electrodes are placed on the scalp for recording 

EEG. In this system each electrode is placed in terms of its proximity to particular brain 

regions - Frontal, Central, Temporal, Parietal and Occipital (in general the interlectrode 

distance is 60mm). Sites are given an odd number when on the left side of the head and an 

even number on the right, and midline electrodes are labeled 'z'. A schematic of the system 

is illustrated in Fig.( A.3). 

top 

Figure A.3: F-Prontallobe, T-Temporallobe, C-Centrallobe, P-Parietallobe and 0-0ccipital 

lobe. "Z" refers to an electrode placed on the mid-line. {Figure obtained from the intemet: 

http:/ jwww.dcc.uchile.cl/ peortegajabi) 
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Appendix B 

This appendix provides the derivation of the continuum mean field model describing the 

temporal dynamics of a corticothalamic network and the parameter values used to simulate 

absence seizures activity. A brief description of the linear stability variables x, y and z for low 

frequencies is presented and results of the nonlinear analysis performed by software packages 

XPPAuto and DDE-Biftool is presented. The final section derives an analytical solution for 

two-bump wave form to provide an approximation of spike-wave oscillations. 

B.l First order delay differential equations for the global 

invariant model 

Starting with the propagation of fields in the cortex and only considering spatial invariant 

solutions allows one to drop the Laplacian term, v~'\72 in equation 4.3, which results in the 

following: 
llf! 2d 

2 dt2 1/>e(t) +-dt 1/>e(t) + 1/>e(t) = Qe(t). 
'Ye 'Ye 

Equation (B.l) is equivalent to the following first order system: 

{ 
-ft_l/>e(t) = y(t), 

-fty(t) = 'Y; ( -1/>e(t) + ,[V.(t)])- 2"feY(t), 

by the following transformation: 

{ 
ftl/>.(t) = y(t), 

-fty(t) = £,4>e(t), 
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where the the equality Q. = <;[V.,(t)J has been applied. The same transformations are also 

applied for the synaptic coupling between the different brain regions. Consider first the cortical 

synaptic activity: 

Applying the following transformation: 

{ 

ftV.(t) = z(t), 

ftz(t) = ~ V.(t), 

and further using the model assumptions from Chapter 4, the following equalities are em­

ployed: spatial symmetry considered in [131] between pyramidal cells and interneurons al­

lows the following -v.;cp;(t) ~ v •• c/>.(t). Furthermore, considering local approximations, 

Ueicf>e(t) ~ Ue;<;[V.,(t)], and Vescl>s(t- r) ~ v.,<;[V.(t- r)], allows us to derive the following: 

{ 
ftV.(t) = z(t), 

ftz(t) = a{J (-V.(t) + Veicf>e(t) + v •• ,[V.(t)] + Ve8<;[V.(t- r)]) - (a+ {J)z(t). 

The same procedure is applied for the following couplings: 

Vrecf>e(r, t- r) + Vrscf>s(r, t), 

V8ec/>e(r, t- r) + V8rc/>r(r, t) + V8nc/>n(r, t), 

with the following transformations respectively: 

{ 
ftvr(t) = v(t), 

ftv(t) = ~V,.(t), 
and 

{ 
ft V.(t) = w(t), 

ftw(t) = ~V.(t), 

which finally results in the global invariant averaged brain-corticothalamic field model 

-9tcf>e(t) = y(t), 

-9iy(t) = .,; [-c/>.(t) + <;(ll,(t))]- 2"/'eY(t), 

~ V.(t) = z(t), 

ftz(t) = af3[-V.(t) + Veecf>e(t) + v.;<;(V.,(t)) + Ve8<;(V.(t- r))]- (a+ {J)z(t), 

ft V.(t) = w(t), 

ftw(t) = a{J [-v,(t) + Vsncf>n + V8 ec/>e(t- r) + Vsr<;("V,.(t))]- (a+ {J)w(t), 

ft V,.(t) = v(t), 

~v(t) = a{J [-V,.(t) + Vrecf>e(t- r) + Vr8<;(v,(t))J - (a+ {J)v(t). 
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B.l.l Parameters values employed in the model 

The parameters values used to simulate absence seizures are given in the following table: 

Quantity Description Petit Mal 

"'e Average ratio between pulse velocity and axon range. 100 s-1 

(} Threshold of membrane potential before a cell fires. 0.015 V 

(J Standard deviation (versus voltage) of an ensembles firing rate. 0.006 V 

Qmax Average maximum firing rate of a cell. 250 s-1 

a Receptor inverse of decay time of potential produced at synapse. 50 s-1 

{J Receptor inverse rise time of potential produced at synapse. 200 s-1 

to Corticothalamic return time (complete return loop). 80ms 

Vei Inhibitory corticocortical coupling strength. -18e-4 Vs 

Vee Excitatory corticocortical coupling strength. 10e-4 Vs 

Ves Specific thalamic nuclei to cortical coupling. 32e-4 Vs 

V se Cortical to specific thalamic nuclei connection strength. 0.0044 Vs 

Vsr Thalamic reticular to specific thalamic nucleus coupling strength. -Se-4 Vs 

Vsn Nonspecific subthalamic input strength into specific neurons. 20e-4 Vs 

V re Excitatory cortical to thalamic reticular nucleus parameter. 16e- 4 Vs 

Vrs Specific to reticular thalamic nuclei coupling strength. 6e-4 Vs 

Table B.1: Parameter values for absence seizures (Petit mal or spike-wave activity). 

B.2 Frequency domain linear stability analysis and re­

duced parameter space 

Studying the linear stability criteria for the above system (B.2) permits mapping of the bound­

ary that marks the transition between steady-state behaviour and nonlinear oscillations. Pre­

vious studies of the model for realistic parameter ranges revealed a small number of key 

instabilities that constrain the way nonlinear oscillations may arise [131]. In these earlier 

studies, the model reveals the following instabilities: 3-Hz (which is further analysed in this 
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thesis) , alpha, slow-wave ( < 1Hz) and spindle (approximately 12Hz). The occurrence of only 

a small number of instabilities suggests that it may also be possible to study the dynamics 

and stability of the brain in a phase space of low dimensionality. Indeed formal analysis of 

low-frequency instabilities suggest thaL 3 variables x, y and z (paramcterising corticocortical, 

corticothalamic, and inLrathalamic instability) capture the parameter combinations at which 

the brain model loses instability. Figure B.l illustrates the boundaries and t he variables are 

defined as follows 
X=~ 

1- G,., ' 

Y 
_ Gese+Gurc 
- (1 - Gsrs)(l-G,,)) 

(B.3) 
Z __ Gsr• 0:{3 

- (o:+ (3)2 

where the gain G ab= PaVab is the response in neurons a to unit input from neurons b, sigmoid 

slope Pa = dc;(Va )/dVa., with Gese = GesGse, Gesre = GesGsrGre and Gsrs = GsrGrs· In [131], 

these parameters have only been used in the steady state where they were derived. In this 

thesis these are redefined to define a coordinate transformation of the dynamical variables 

Va (t). The parameters x,y and z give a measure of the level of activity in the brain structures 

comprising the model. Specifically x describes purely cortical activity, y describes activity in 

the 2 corticothalamic loops (i.e between the reticular and specific nuclei). Thus, x,y and z 

relate to cortical , corticothalamic, and intrathalamic stabilities respectively. 

Figure B.l: The linear stability zone for the corticothalamic model within the truncated space 

spanned by the B stability variables x, y and z . The shaded surface represents the values at 

which the system loses stability at theta (red), spindle {blue), and alpha (green) frequencies. 

Within the tent are shown representative values for eyes closed, eyes open, and sleep stages 1, 

2 and 4. The present study concerns the onset of nonlinear oscillations as the system passes 

outside of the stability zone. Figure from (131}. 
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B.3 DDE-Biftool results for corticothalamic model 

This section provides complementary results obtained by DDE-Biftool and XPP auto. In 

DDE-Biftool, solution branches are computed and stability analysis are performed in each 

branch point. To numerically follow solutions branches, initial data (preferably stable) ob­

tained from simulations have to be entered into the software package. Thus, a natural starting 

point for the continuation process is by entering stable fixed points data obtained from nu­

merical simulations of the delay equations (B.2). Focusing on the cortical field (</>.) and the 

parameter of interest v8e allows one to follow the stable branch solution shown in Fig. (B.2 a). 

Note that DDE-Biftool does not distinguish graphically between unstable and stable points. 

Instead it is necessary to iterate along a solution branch and determine for each branch point 

the corresponding eigenvalues. At V se ~ 1.8 x w-3v s a supercirtical Hopf bifurcation is found 

and this highlighted by the first dashed box in Fig. (B.2. The corresponding eigenvalues are 

plotted in Fig. (B.2 c) which shows two conjugate pairs (in red stars) crossing the imaginary 

axis. Note on the left hand side of the complex plane an infinite number of eigenvalues, this is 

due the characteristic quasi polynomial obtained from the delay equation (see section 2.4.6). 

Continuing varying v,. the stable fixed point becomes unstable (however this is not graphi­

cally differentiated by DDE-Biftool) and further along the branch a saddle node bifurcation 

are found at V se ~ 1.5 X w-2v s (shown in the following red dashed box). The eigenvalues 

corresponding to the saddle node bifurcation is shown in Fig. (B.2 d) which illustrates a single 

eigenval ue crossing the imaginary axis. Coexistence of stable and unstable solutions lie in 

the region 1.8 x w-3v s :::: u,. :::: 1.5 x w-2v s, where the stable steady state corresponds to 

<Pe = Qmax (maximum firing rate of a neuronal population). Subsequently, following the Hopf 

solution branch shown in Fig. (B.2 b) illustrate the amplitude of the limit cycles gradually 

increasing. Towards the end of the continuation branch of the periodic solutions, a curve 

( </>., V se) folds back towards itself is found. Its precise nature and stability is yet to be deter­

mined. A close up of this curve is illustrated in Fig. (B.3). Further analysis of this solution 

path was not possible as DDE-Biftool becomes rather unstable. However, interesting future 

work would be to determine precisely the behaviour of the solution path by determining the 

Floquet-multipliers to verify if these are in fact unstable solutions. 

Recall from section 4.3.1 that the 'spike-bifurcation' related to the spike-wave form of absence 
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Figure B.2: a) Continuation of steady state solutions. The first red dashed box indicates 

a Hopf bifurcation at llse ~ 1.8 x 10-3 Vs. Subsequently varying the parameter results in a 

saddle node bifurcation which is highlighted by the second red dashed box at llse ~ 1.5 x 10- 2 Vs. 

Coexistence of stable and unstable solutions lie in the region 1.8 x 10- 3 Vs ~ Use ~ 1.5 x 10- 2 

Vs 1 where the stable steady state corresponds to <Pe = Qmax (maximum firing rate of a neuronal 

population). b) Continuation of periodic solutions (Hopf branch). At Use > 6 X w-3 Vsl the 

branch turns back on itself and its precise nature and stability is yet to be found. Future work 

will further investigate this solution path by determining the Floquet-multipliers. c) A plot of 

the eigenvalues (for V se ~ 1.8 x 10- 3 Vs) demonstrating a conjugate pair crossing the imaginary 

axis (red stars) Hopf bifurcation. d) A plot of the eigenvalues corresponding to the saddle node 

bifurcation at (vse ~ 1.5 x 10- 2 Vs). The saddle occurs when a zero eigenvalue crosses the 

imaginary axis as the parameter Use varies through the following values: Use = 1.499 X w-2 
I 

Use = 1.497 X 10- 2
1 Use = 1.492 X 10- 2 . 
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Figure B.3: A close up of Fig. (B.2) highlighting that via numerical continuation the branch 

of periodic solutions folds back on itself at Use > 6 x 10- 3 Vs. The precise nature nature of 

the solution path will be investigated by determining the Floquet-multipliers. 

seizures remained unresolved. This difficulty was because DDE-Biftool was unable to flag the 

conditions for this bifurcation as these could correspond to global bifurcations. However, a 

time series realization of the spike-bifurcation' shows an extra period per oscillation. This 

almost seems like a period-doubling, however the bifurcation branch takes the same minimum 

as the previous period oscillation but a different maxima when compared to the first period 

oscillation. Furthermore, numerically varying the delay parameter T the "spike-bifurcation" 

initiates at different parameter sets of 118e, where an increase in T give rise to ''spike-bifurcation" 

appearing in the solution branch of previous Hopf solutions. That is, the periodic solutions 

seem to bifurcate in a similar way as it would occur in a period doubling. This is illustrated in 

Fig. (B.4 a). Further, by removing the delay term in the corticothalamic model it is verified 

that the "spike-bifurcation" disappears and this is shown in Fig. (B.4 b). Unfortunately 

running DDE-Biftool with the 'period-doubling' point obtained from numerical simulation 

results in a non-convergence of the solution branch, therefore the software package fails to 

follow it. Future work remains to determine the nature of these solutions which could be 

important to reveal the genesis of absence seizure observed at macroscopic levels. 
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Figure B.4: A comparison of the bifurcations to determine the nature of 'spike bifurcation'. 

An increase in the parameter r has the effect of increasing the parameter range window of V8e 

where the 'spike-bifurcation' is observed. A further increase seem to give rise to a bifurcation 

similar to a period-doubling. Here the 'period-doubling' results in a periodic solution with 

the same minima of the previous period solutions but with a different maxima. However, the 

origin of this bifurcation remains unresolved. a) System with increased delay r = 0.2. b) 

System without delay. 
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B.3.1 XPPAuto results for corticothalamic model without delay 

Results from DDE-Biftool are here complemented with those obtained by XPPAuto. The 

corticothalamic model is reduced by removing the time delays and a complete bifurcation 

is carried out. The removal of delays is justified when trying to find steady solutions of 

the corticothalamic delayed model. The precise formalization of the steady state of a delay 

equation is given in section (2.4.6) by equation (2.32). Carrying out the continuation of the 

solution branch ( </>e,Vse) the steady state solutions of the delay equations are observed and 

these results can be compared to those obtained by DDE-biftool. Starting from a branch of 

fixed point solutions and varying v,e a Hopf bifurcation is born at Vse = 0.0022 Vs. Further 

varying v,e, the branch of steady solutions becomes unstable and subsequently the unstable 

fixed point bifurcates to an unstable saddle node bifurcation appearing at Use = 0.0149. The 

unstable saddle node then leads to a stable branch giving rise to multi-stability. Coexistence 

of stable and unstable solutions lie in the region 0.0022 Vs ::::; Use ::::; 0.0149 Vs, where the stable 

steady state corresponds to </>e = Qmax (maximum firing rate of a neuronal population). 
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Figure B.5: XPPAuto solution branch continuation for the corticalthalamic model without 

delay for the absence seizure case. A Hopf bifurcation is born at Use = 0.0022 and an unstable 

saddle node bifurcation appears at u,e = 0.0149 Vs. Multistablity exists for parameter regimes 

0.0022 Vs ::::; Use ::::; 0.0149 Vs. 
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B.4 Two-bump solution of a reduced piecewise linear 

RKII set 

This section presents the calculation of the piecewise approximation equations for a 'two­

bump' wave form arising in specific relay nuclei. This equation of motion for the specific relay 

nuclei is given as follows: 

V, + (a + /3) Vs + D</3V. = v,ra/3<; [V,. ( t)] + v,.</J,.,, •• ,. (B.4) 

As indicated in section 4.5, the homogeneous solution for the specific neurons are identical to 

that for the reticular neurons hence, 

Equation (B.4) can be solved for each part of the RHS separately, thus the solution for the 

external forcing is equivalent to that in system (4.10) (section 4.5), replacing the parameter 

Vre by v •• in the appropriate coefficients. For the remaining part, the is aim to find a solution 

of equation (B.4) using the method of variation of parameters. Specifically, we seek to find 

functions c1 ( t) and c2 ( t) satisfying, 

such that, 

where 

cl(t)e(-<>t) + c2(t)e(-{Jt) - 0, 

-ac1(t)eC-ett)- f3c2(t)e(-!lt) - F(t), 

F(t) = af3vsr<; [V,.(t)]. 

(B.5) 

(B.6) 

(B.7) 

Finding an analytical solution in the present form is not possible due to the sigmoidal nature 

of the function <;(x). In order to obtain a closed form solution an approximation solution to<; 

must be taken. From numerical simulations of the system, it was observed that the solution of 

V. ( t) was bounded in a region determined by oscillations about steady-state solutions for V,. ( t) 

and V.(t). Interestingly, for all parameter regimes considered, these steady-states occupied 

the lower part of the sigmoidal curve where the transition from a shallow to a steep gradient 
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occurred. This nonlinear phenomena could not be captured either by linearizing about one 

of these steady-states nor by taking a Heaviside approximation, hence a piecewise linear 

approximation was chosen for <;. This was chosen by linearizing about each of the steady­

state solutions for V,.{t) and V.(t) {which was determined by XPPAuto) and the linearised 

equations is given in section 4.5 equation (4.14). 

This resulted in the following form: 

<;[V,.(t)] = 

V:,'J' sin ( wt + o) + v:., 
V,.'J' sin ( wt + o) + v;.b., 
V:,Tsin{wt + o) +V.~, 

2N7r < t < ZN1r+b-li 
w - w , 

ZN1r+b-li < t < (2N+l)7r-(b+li) 
w - w ' 

{B.8) 

(2N+l)7r-(b+li) < t < (2N+l)7r 
w - w ' 

where V4':' and Vd'. are the gradient and intercept respectively of the linearization for the steady­

state solution of Va(t) and b = arcsin (;) is the intersection point of the two linearizations 

{i.e. the point at which the derivative loses continuity). Rearranging (B.6) and {B.7) results 

in 

where 

((3- a) e-<>t(W) - F(t), 

(a- (3) e-!3tcz(t) - F(t), 

{B.9) 

{B.10) 

The aim is now to solve (B.9) and {B.10) for each of the intervals fort in (B.8). Without loss 

of generality, solutions for the first period only. are presented, assuming the initial conditions 

to be zero. Thus, solutions of c1 (t) and c2{t) are given by 

-:-::((3-~ --,-a) (i ~~:: dT) , {B.ll) 

-;--(a-~ -=(3) ( i ~~;: dT) , (B.12) 

on each of the appropriate intervals. 
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B.4.1 Interval I: 0 < t < b-& - - w 

From equation (B.ll) we obtain 

c1 (t) = V.';' it e"T sin (wr + 8) dr + V.~ it e"T dr, 
((3-a) (/3-a) 

where 

and 

0 0 

- (a2 + :~~/3- a) (e"t (sin (wt + 8)- ~cos (wt + 8))- sino + ~ coso) 
vb 

+ •• (e"t -1) 
a(/3-a) ' 

- (a2 +:~~-a) (e"t (A:.sin(wt+~)) -A,sin~) 
+ V.b, (e"t-1) (B.13) 

a(/3-a) ' 

zy = o +arcsin (~). 
Note from comparison of (B.ll) and (B.12) that solutions for c2(t) are similar to those for 

c1(t), the coefficients a and (3 being transposed in (B.13) resulting in the following form for 

C2(t): 

(B.14) 

Substituting (B.13) and (B.14) into (B.5) the solution to the particular function F(t) on the 

first interval is obtained: 

a V.':' An ( · ( t 2) -at · 2) V.~ ( 1 -<>t) 
- (a2 +w2)(f3-a) sm w +u, -e smu., + a(/3-a) -e 

/3V.':' Ap ( . ( t -;..::) -Pt · -;..:) 
+ (f32 +w2)(a-(3) sm w +up -e smup 

V.b, (1 -Pt) 
+(J(a-(3) -e . (B.15) 

It is important to note that this solution consists of decaying terms and a periodic term, with 

phase shift &, which is different to that for the external forcing, which has phase shift o. 
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B.4.2 Interval II: b-o < t < rr-b-o 
w - w 

To solve for c1 (t) and c2(t) on this second region, note that the solutions will be dependent on 

the behaviour of the functions on the previous interval. Denoting fp(t) = V:,~ sin(wt+J) + v;., 

the solution to c1 ( t) will behave as 

(B.16) 

Calculating the integrals in (B.16) results in 

( ) aAa (v.m at · ( <) 
CJ t - (,B-a)(a2+w2) r•e Sill wt+u;; 

+ (V:- V,.';') e o(:-6

) sin (b + ~- 0) - V.':' sin~) 

1 ( b at ( b b ) o(b-
6) b) + a(,B-a) V,..e + v..- vr. e w - v. . . (B.17) 

In a similar fashion to the previous subsection, the solution for c2(t) is found by transposing 

the coefficients a and ,8 in (B.17) to give 

c2(t) - (a-~t;+w2) (v,:>e"tsin(wt+6i) 

+ (V.':' - V,.';') /<',.:- 62 
sin ( b + 5i - o) - V.':' sin 5i) 

1 ( b j3t ( b b ) p(!-
6

) b) + /3 (a _ /3) V,..e + V.. - V'* e w - V.. . (B.18) 

Finally substituting (B.17) and (B.18) into (B.S) the solution to the particular function F(t) 

on the second interval is determined: 

aAa ( . ( -::) m m o(!-6-wt) • (A -:: ) 
(,B-a)(a2+w2) v,:'sm wt+Oa +(V.. -V,..)e w Sill b+oa -0 

m -at • -::) 1 ( b ( b b ) o(!-6
-wt) b -at) 

V..e SlllOa + a(/3-a) V,..+ v..- v,.. e w - V..e 

,BAp ( ( ~) P(b-6-wt) (A ~ ) + (a _ ,8)(,82 + w2) V,.:' sin wt + a; + (V.:' - Vr':') e w sin b+ 0;3 - o 

m -j3t • -::) 1 ( b ( b b) P(b-
6
-wt) b -j3t) 

V..e SlllOp + f3(a-,B) V,..+ V..-V,.. e w -V..e . (B.19) 

For this period of time, the periodic component has the same phase shift, 8;:, but a different 

amplitude, V,.';'. 
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B.4.3 Interval Ill: 1r-b-J < t < 2" 
w - w 

Once again the solutions for c1(t) and c2(t) on this final region, will be dependent on their 

behaviour in both of the previous regions. Proceeding in a similar manner to subsection B.4.2, 

the solution for c1(t) will be given by: 

1 ( t F(T) d ) 
c!(t) = (!3- a) I e-"'r T , 

- (P~•) ( r-J.(r)dd TrJ,(r)dr+J ,-J.(r)dr). (B.20) 

The solution of (B.20) is given by 

c1(t) - (;3 _a~~+ w2) ( V.'!'e"1 sin ( wt + ;s:;:) + (V,.':- V.':) e a{•-:_•-•l sin (b + 8J- o) 
+ (V.':- V,.:') e a(:•) sin (b + ;s:;:- 0) - v;;; sin~) 

1 ( b O<t ( b b) a{ •-b-6) ( b b ) a(b-6) b ) 
+ a (!3 _a) V..e + V,.. -V.. e w + V.. - V,.. e w -V.. (B.21) 

From (B.21) the solution for c2(t) is obtained by transposing a's and f]'s to give 

C2(t) - (a-~1;2 +w2 ) (v,r:e,6tsin (wt+8i") + (Vr':'- V,';')/(•:;-•) sin (b+st -o) 
+ (V.': - V,.:') /<';'l sin ( b + 8i" - o) - V.': sin 5i) 

1 ( b ,6t ( b b) P(•-&-•) ( b b) P(&-•) b) 
+ /3 (a- /3) V..e + V,..- V.. e w + V..- V,.. e w -V.. (B.22) 

Finally substituting (B.21) and (B.22) into (B.5) the solution to the particular function F(t) 

on this third region is found: 

v:(t) - (/3-a~~+w2) (v.':'sin(wt+~) +(V,.';'- V.':)e aH;:•-wt) sin (b+8J -o) 
a(&-6-wt) (' ~ ) t ~) + (V.:'- V,.':) e w sin b+ o;;- o - V.':'e-" sino;; 

1 ( b ( b b) •(•-&-6-wt) ( b b) a(&-6-wt) b -at) + a (/3- a) v .. + vr.- v •• e w + v •• - vr. e w - V..e 

+ (a- ~1; + w2) (V.': sin ( wt + 8i") + (V,.:'- V.:') e*-';:'-wt) sin (b + 8%- o) 
+ (V.':- v,.r;:)/<•-;-wt) sin (b+8i -o)- v,r;:e-.61 sin8i) 

+ 
1 ( b ( b b) P(•-b-6-wt) ( b b) P(b-6-wt) b -,6!) /3 (a _ /3) V.. + V,.. - V.. e w + V.. - V,.. e w - V..e (B.23) 
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These solutions may then be continued for all time intervals of (B.8) by matching bound­

ary conditions for each interval. For reasons of conciseness these are not presented, as to 

understand the origin of the 'two-bump' solution a single period is sufficient. Observe that 

the three regions highlighted in (B.8) may be reduced to only two which is finally given by 

equations (4.15) and (4.16) (see section 4.5). 
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Appendix C 

This appendix provides all the necessary calculations made for the RKII set. The first section 

presents the computation of the eigenvalues of RKII model, the following section evaluates in 

a small neighbourhood of parameter space how the equilibriums of RKII change. Subsequent 

sections then evaluate through the Lienard-Chipart criterion the region in parameter space 

where the RKII set loses stability. The Lienard-Chipart theorem is provided on the next 

subsection. Finally, all the critical points evaluated by XPPAuto (see 2.4.1)) are shown in 

Table C.2. For notation, here the apostrophe is used denote the derivative. For example J' (x) 

is the derivative of f. 

C.l Eigenvalues of the RKII model 

Applying the determinant rule to the jacobian (5.2) gives: 

i>.I-JI= 

>. 

a{3 

0 

-af3ursdV.*] 

-1 

0 

0 

0 

>. 

a{3 

0 

0 

-1 

>.+(a+ {3) 

k +' Since det(>.I- A) = Ei=I a;3C;3, where C;j is the cofactor of a;3 defined by C;j = ( -1)' 3 M;j 

and M;i is the minor of entry a;;. This operation results in 
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Simplifying the above equation (C.l) results in the following: 

(.A( .A+ (a+ (3)) + a(3] 2
- (a.B) 2UsrUrsdV,.*]c;'(V;J = 0 <* 

.A(.A +(a+ (3)) + a(3 = ±(a.B)VUsrUrsc;'[V,.*]c;' (V.*]<* 

.>-2 +.A( a+ (3) = -a.B ± (a.B))u,rur,c;'[V,.•]c;'[V.*] <* 

4.>-2 + 4-A(a + (3) = -4a(3 ± 4(a.B))u,rur,c;'[V,.*]c;'[V.*] <* 

4.>-2 + 4-A(a + (3) +(a+ (3) 2
- (a+ (3) 2 = -4a(3 ± 4(af3))u,rUrsc;'[V,.*]c;'[V.*] <* 

(2-A +(a+ .8))2 =(a+ (3) 2
- 4a.B ± 4(a.B))u,rur,c;'[V,.•]c;'[V.•] <* 

-(a+ ,B)± J(a- ,8) 2 ± 4(a.B))usrUr5 c;'[V,.*]c;'[V.*] 
>-= 2 

Since Usr is negative the following implicit formula can be equated: 

-(a+ (3) ± J(a- .8)2 ± i4(a.B)JiusrUrsi<;'[V,.*]c;'[V.*] 
.A=-----'-------,----------

2 

C.2 Rate of change of Equilibria with respect to param-

eters 

This section provides only the derivation of the derivative of V.* with respect to the control 
dV* dV.* dV.* dV.* av.• parameter Vrs· The derivations for =--d , =---dv , =.z:..d , =.z:..d and =.z:...d follow the same steps as the 

Vsr an Vsr Vra Vsn 

one here demonstrated. 

From the nullclines equations ( 5.3) the following holds: 

(C.l) 

Applying the derivative with respect to Vrs equates to: 

dV* _s 

dvrs 

= f(g(x))=g(x)' f(g(x))' 

=use eq (5.3) 

=(f(x)g(x))' =f(x)' +g(x)' (C.2) 
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From the above equation (C.2) results in the following: 

Vsr\' [V,.*]c;[V.*J {o} 

Vsrc;'[V,.*] c;[V.*J 
~~~~~~~~{o} 
1- V8rVrs\'[V.*]c:;'[V/] 

-IVsr lc;'[V,.*Jc;[V.*J 
(C.3) 

Since all terms of the right hand side of equation (C.3) are ::=: 0 it can be concluded that 

dV,' < O. 
dvr• -

C.3 Calculation of the stability curve 

C.3.1 Stability curve in parameter space 

Applying the Lienard-Chipart criterion (given in the next section C.3.2 for completness) en­

ables one to calculate the stability region of the system, based on the coefficients of the 

characteristic polynomial, which it is here denoted by the vector Q = (a0 , a 1, ... , an)- This 

criterion requires that any one of four equivalent conditions be satisfied in order for the roots 

of the characteristic polynomial to lie in the left half-plane and hence the system be stable. 

These conditions involve the nth element and in addition all of the odd or all of the even ele­

ments of the vector Q, denoted Coe~ and Coe~ven, and the determinants of specific matrices 

defined in terms of the elements of the vector g: 

ao a2 a4 a2i-2 

.6.; = 0 a1 a3 a2i-3 

0 0 0 a; 

Again, we are concerned with either all of the odd determinants, det~dd or all of the even ones, 
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det~·'". In particular, we the following condition {Coef~dd !\ det~dd > 0} for stability is used. 

The characteristic polynomial of system (5.1) gives 

Hence, the following is obtained: 

Coe~ - (a4 > 0) !\ (aa > 0) !\ (a1 > 0) 

det~dd - (t!..1 > 0) !\ (l!..a > 0) 

a1 a3 0 

<* a1 > 0 !\ a0 a2 a4 > 0 

0 a1 aa 

<* 2(a: + (3) > 0 !\ a1a2a3- a~a4- aoa5 > 0 

Knowing that V8r < 0, then the last condition can be rewritten as the following implicit 

expression: 

detodd 
a 

This defines a stability curve in /v8 rVr8 / parameter space. 

C.3.2 The Lienard-Chipart stability criterion 

The Lienard-Chipart criteria is a set of conditions on the coefficients of a polynomial that is 

both necessary and sufficient for the roots of the polynomial to belong to the complex open 

left-half plane IC_ ={rE IC;Re(r) < 0} where rare the roots of a polynomial of degree n 

with real coefficients. 
n 

P(r) = L:an-jri (C.4) 
i=O 
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The Lienard-Chipart is simpler than the Routh-Hurwitz criterion [59] in that involves odd or 

even coefficients of the polynomial and Hurwitz determinants defined by the logical statements: 

Where 

Coejgdd - an > 0 1\ an-! > 0 1\ an-3 > 0 1\ · · · 1\ a1 > 0, 

Coef:ven - an > 0 1\ an-2 > 0 1\ an-4 > 0 1\ · · · 1\ a1 > 0, 

Detodd - A1 > 0 1\ A3 > 0 · · · , 

Deteven = A2 > 0 1\ A4 > 0 · • · 

a! a3 as a2i-l 

ao a2 a4 a2i-2 

0 a! a3 a2i-3 A;= 
0 ao a2 a2;-4 

The indices in each row increases by two, whereas the indices in each column decrease by one. 

The term a; is set to zero if i < 0 or i > n. 

Theorem (Lienard-Chipart Criterion): The Polynomial C.4 with a0 is Hurwitz stable if and 

only if any one of the four conditions 

is true. This means that the simplest of the four formulas is sufficient to imply the polynomial 

is Hurwitz, and the polynomial being Hurwitz implies all four conditions are true. 

Polynomial Property Definition 

Huwirtz Stable Vr E C{P(r) = 0 =? Re{r) < 0} 

Unstable :Jr E C{P(r) = 0 =? Re{r) > 0} 

Neutrally Stable Vr E C{P(r) = 0 =? Re{r)::; 0} 

Skew Vr E C {P(r) = 0 =? Re{r) = 0} 

Table C.l: Left-plane stability properties of polynomial P(r). 
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C.4 Numerical Bifurcations in RKII set 

The following table contains the relevant bifurcation points found by numerically continuing 

the solution paths in the RKII model using the numerical package XPPAuto. 

Label Type v. Vr 1/sn Vsr Vrs 

LPl Fold point from which two Hopf -0.008262 0.01026 0 -0.0001714 0.04654 

are born. 

HB1 Supercritical Hopf. -0.01222 0.005962 0 -0.0008 0.0894 

HB2 Supercritical Hopf. -0.009158 0.01504 0 -7.28e-5 0.0894 

HB3 Supercritical Hopf. 0.00452 0.006057 0.01707 -0.0008 0.0006 

HB4 Supercritical Hopf. 0.01026 0.02887 0.2073 -0.0008 0.0006 

LP2 Fold point from which two Hopf 0.007693 0.009741 0.01707 -0.0002215 0.0003938 

are born. 

LP3 Fold point from which two Hopf 0.01488 0.0007072 0.2073 -0.05868 5.765e-6 

are born. 

LP4 Fold point from which two Hopf 0.008016 0.0162 0.01955 -7.824e-5 0.0006 

are born. 

LP5 Fold point from which two Hopf 0.006247 0.009935 0.1521 -0.0002017 0.0006 

are born. 

LP6 Fold point from which two Hopf 0.01858 0.009692 0.05205 -0.0008 5.191e-5 

are born. 

LP7 Fold point from which two Hopf 0.01522 0.02685 0.2098 -0.0008 0.0002079 

are born. 

HB5 Supercritical Hopf. 0.00752 0.01425 0.01707 -8.595e-5 0.0006 

HB6 Supercritical Hopf. 0.01831 0.0244 0.2073 -0.0008 0.0001335 

HB7 Supercritical Hopf. 0.003583 0000 0.01955 -0.001541 0.0006 

Table C.2: The relevant critical points for the numerical unfolding of the RKII model. 
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Appendix D 

For completeness this section provides additional material relating to the calculation of the 

normal forms for the RKII model. 

D.l Derivation of the Homological Equation 

The normal form and centre manifold methodology introduced by Iooss and Adelmeyer (see 

section 2.1.6) is based on the homological operator. The theory states that the transformation 

of some vector field to a normal form is possible by the following near identity coordinate 

transformation x = z + h(z, v), where x = (z, y) E !Rn with z a vector on the centre manifold 

(i.e. from equation (6.11) z = Ze0 + Ze0), y a vector on the hyperbolic space and z/ E !Rn the 

control parameters. To illustrate this, consider the following vector field 

±=Jx+N(x,v), (D.l) 

where J is the linear operator (note that Iooss and Adelmeyer consider the Jacobian) and 

NE Ck(JRn x !Rm;!Rn) contain the nonlinear terms. The objective is to transform (D.l) to a 

normal form on the centre space having the following structure: 

z= Jz+G(z,v), (D.2) 

where G E Ck(!Rn x !Rm;!Rn). First, apply the derivative operator to the near identity trans­

formation which gives rise to: 

J: = z + Dz[h(z, v)](z). (D.3) 
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Applying (D.l) to the above equation (D.3) results in 

z + D1[h(z, v)J(z) = Jx + N(x, D). (D.4) 

Again, introducing the identity transformation into the above equation (D.3) generates 

z + D1[h(z, D)](z) = Jz + Jh(z, D)+ N(z + h(z, D), D). (D.5) 

Finally applying (D.2) to the previous derivation (D.5) and rearranging terms results in the 

homological operator: 

Jh(z, v)- Dz[h(z, v)J(Jz) = G(z, v)- N(z + h(z, v), v) + D.[h(z, v)](G(z, D)). 

D.2 Derivation of the 0(1) normal form coefficients 

The terms that depend linearly on the parameters and coordinates give rise to a homological 

operator with the following form: 

Jhl(z,v)- D.[hl(z,v)](Jz) = Gl(z,v)- Ni(zv). 

Since z = Ze0 + Zeo and control parameters are v = (v~"' v~.) then the expansion for h) have 

the following form: 

hi h1
'
0 Z + h0

'
1 Z + h1

•
0 z- + h0

•
1 z-1 = I oVsr eo I oVrs eo 0 IVsr eo 0 IVrs ea. , ' ' ' 

Applying the linear operator J to the above equation (D.6) results in 

Jhl Jh1'0 ' Z + Jh0•1 ' Z + Jh1•0 • z- + Jh0'1 • z-1 = !OVsr eo I oVrs eo 0 IVsr eo 0 IVrs eo. . ' ' ' 

Also apply the multivariate derivative operator D. to equation (D.6) to obtain 

{ 
Dz[hg(z, ;)] = h~;gv~reo + h~;~v;8eo 
n[hO( ')] hi,O • - + hO,I • -.J...rZ 2 z, V = 0,1 Vsreo 0,1 Vrseo 

The term J z in the homological equation equates to: 

Jz - J(Zeo + Zeo) 

<=> ZJ(eo) + ZJ(eo) 

<=> i~Zeo- iraifZeo. 
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(D.6) 

(D.7) 

(D.8) 

(D.9) 



The expansion of the polynomial Gl has the following form: 

G! 1,0 • z + o,1 • z + 1,0 • '7"o:- + o,1 • z-
1 = 9t,OVsr eo 9t,OVrs eo 9o,tl/srueo 9o,tVrs eo 

and the nonlinear term Nf is the following 

(D.lO) 

(D.ll) 

Finally substituting equations (D.7),(D.8),(D.9),(D.l0) and (D.ll) into the homological op­

erator and then equating terms of the same order gives rise to the following four equations: 

(J . =J)h!,O 1,0 Nl,O( ) - 2y a~ 1 o = 9t oeo - 1 eo , 
' ' 

(J . =J)hO,! 0,1 NO,! ( ) - zv aJJ 1 o = 9t oeo - 1 eo , 
' ' 

1,0 --r,o 
9o,t = 9t,O• 

0,1 ---o;r 
9t,o = 9o,t· 

(D.12) 

Only the following terms are considered 9i;g and 95;~. To evaluate these coefficients the inner 

product with the adjoint dual basis of e0 and here we denote it as fo must be applied to all 

terms of the first two equations of (D.12). This results in the following: 

{ 

10 - 10 -
9t;o < eo,fo >=< Nt' (eo),fo >, 

01 - 01 -
9t'o < eo,/o >=< N1 ' (eo),/o >, 

' 

(D.13) 

where the operator < ., . > denotes the inner product of two vectors and < a, b >= a*b. 

a, bE C and a* is the complex conjugate transpose of vector a and / 0 is given by equation (6.21) 

(refer back to chapter 6), thus: 

and 

<eo, fo >= a,B[2(a +,B)- (a,B)] + i(a + ,B)[#(a +,B)+ a,B] (D.14) 

0 

-a,B
81tP i.foiJ( a+ ,B)v;r 

0 

0 

0 

0 

0 

_ (a,B)2v• 8<[K!*l 8<[5fl z/ 
sr 8Vs 8Vr rs· 

D.3 Derivation of the 0(2) normal form coefficients 

From the order 2 homological equation the coefficients h~ can be determined. The equation 

is written in following form: 
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Using the same steps as applied to the order one coefficients and by first performing the Taylor 

expansion for h( z) of order 2 in z and no dependence on parameters results in 

(D.l5) 

Applying the linear operator J to equation (D.15) gives 

(D.16) 

Applying the multivariate derivative operator Dz to equation (D.l5) results in 

(D.17) 

Since Jz = [iy"a/1Z, -ivat1)T and then by combining with (D.17) results in the following: 

(D.18) 

For the nonlinear term N~, we use the bilinear property of the Taylor expansion for second 

order terms, which then N~ equates to: 

Ng(z, z) = Ng(Zeo + Ze0 , Zeo + Zeo) # Z2 N(eo, eo)+ 2ZZN(eo, eo)+ Z2 N(eo, eo).(D.19) 

Substituting (D.9), (0.15), (D.18) and (D.19) back into the homological equation and grouping 

terms of the same order gives: 

Jh~ 1 = -N2(eo,eo) 
' 

(D.20) 

( J + 2iy"a/1I)hg 0 = - N2( eo, eo) 
' 

Note that the eigenvalues of J include ±iy"a/1, so the operator (J- ryl) is invertible for 

T) ~ ±iy"a/1, thus allowing to determine the coefficients hg,o ,hg,o and h~,1 . Where the inverse 

of the linear operator J at the bifurcation point is given by 

~ 8<1V{! 
<>+ll 1 v,.(a+.B) 8Vt V.sr 8Vz: 

((a+.B)2+a.B) ((a+.BJ2+a.B) ( ( <>+.BJ'+a.B) ((<>+.B)'+a.B) 

J-1 = 1 0 0 0 
(D.21) 

~ 8<1V/! Vn(<>+.B) 8 , l-lrs av~ <>+ll 1 
((a+.B)'+a.B) ((<>+.B)'+a.B) ((<>+.B)2+a.B) - ((a+ll)2+all) 

0 0 1 0 
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and also at the Hopf bifurcation point the following holds true: 

1 
(J- 2iM)c~Iumn 1 = det(J- 2iva/J) 

-7 a/3( a+ /3) + 2iva/J( (a+ 13)2 - 3a/3) 

a/3( -2iva/J(a + /3)- (a+ {3)2 + 3a/3) 

et/3Vrs a,a[~*J ( Ci + /3 + 2i../a1J) 
V, 

et/3Vrs a,a~*l ( -4a{3 + 2iva/J( a + /3)) 
V, 

-3a{3 + 2iva/J( a+ /3)) 

-a/3( 4( a+ /3) + 6iva/J) 

/3 a<[~*] 
a Vrs &V, 

1 
(J- 2iM)c~Iumn 2 = det(J- 2iva/J) 

2 . r= a,[~*l iyupVrs a 
V, 

et/3V8r a,a[~*l (a + /3 + 2i../a1J) 
V, 

co.22) 

(D.23) 

1 
(J- 2iM)c~Iumn 3 = det(J- 2iva/J) 

af3vsr a,a[~*l ( -4a/3 + 2iva/J( a + /3)) 
V,. (0.24) 

-7af3(a + /3) + 2iva/J((a2 + {32)- a/3) 

a{3(3a/3 - (a + /3)2 - 2iva/J( a + /3)) 

a/3v a<l;tl 
sr 8Vr 

et/3V
8
r a<a[}i*J2iva/J 

V, 

-3a{3 + 2iva/J( a + /3) 

1 
(J- 2iM)c~Iumn 4 = det(J- 2iVa/3) 

-2a/3(2(a + /3) + 3iva/J) 

where det(J- 2iva/J) = 3a/3(((a2 + {32) + a/3) + 4i../a1J(a + /3)). 

Furthemore, the bilinear terms have the following form: 

0 

-(a!3)Z(a + f3)v;r a:~? 
0 

(a/3)3v• (v* )2a2<!Vll (a<l!;1)2 
rs sr 8\i; &Vr 

0 

(a/3)2(a + f3)2v;r a:~? 

0 

(af3)3v• (v* )2 a2<[VP (a<IYil )2 
rs sr av, &Vr 
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(D.26) 
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D.3.1 Derivation of the 0(3) normal form coefficients 

From the order 3 homological equation, it is possible to extract the coefficients that are cubic 

in the coordinates of the centre space and independent of the control parameters, that is, 

ZO(IZI2). The operator takes the following form: 

(D.28) 

The third order Taylor expansion of h(z) gives the following: 

(D.29) 

In same way as for order one and two coefficients, the linear operator J to equation (D.29) is 

applied. Also, applying the differential operator D. to (D.29) gives: 

Then by combining (D.30) and (D.9) this gives rise to: 

In this case the nonlinear term Ng and its derivation is as follows: 

Equally for the third order of the same nonlinearity results in: 

~(z, z, z) - . N~(eo, eo, eo)Z3 + 3N~(eo, eo, eo)Z2 Z 

+ 3N~(eo, eo, eo)ZZ
2 + N~(eo, eo, e0)Z

3
• 

The expansion for the cubic terms of the normal form G has the following structure: 

G'g - g~;~ZIZI 2 eo + g~;~ZIZi 2 eo 
002- oo-2 

{o} g2'1Z Zeo + g1'2ZZ e0 . , , 
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(D.30) 

(D.31) 

(D.32) 

(D.33) 

(D.34) 

(D.35) 



Substituting (D.9), (D.29), (D.31), (D.32), (D.33) and (D.35) back into the homological equa­

tion of order 3 and grouping terms of the same order results in: 

(L + i3..jii{jl)h8,3 = -21Vg(eo, h8,2)- Ng(eo, eo, eo), 

(L- i..jii{jl)h~;~ = 9~;~eo- 2Ng(e0 , hg;g)- 2Ng(eo, h~;~)- 3Nf(eo, eo, eo), 

(L + i..jii{jl)h~ 2 = 9~·~eo- 2Ng(eo, hg•g)- 2Ng(eo, h~·~)- 3Nf(eo, eo, eo). 
I I > I 

(D.36) 

Here, only the following coefficients are evaluated 9~·g and 9~·~. To solve them apply to the 
• • 

last two equations of (D.36) the inner product with the adjoint dual basis of eo which we 

denote as fo, which gives: 

92,1 <eo, fo >= 2 < N2 (eo, h2,0 ), fo > +2 < N2 (eo, h1,1 ), fo > +3 < N3 (eo, eo, eo), fo {n_
37

) 
{ 

0,0 - 0 - 0,0 - 0 0,0 - 0 - -

0,0--0,0 
91,2- 92,1 

where< eo, fo > is given by equation (D.14) in section §D.2, and 

(D.38) 

0 

Nu= 
i..jii{j(a +,B) a'<IVfl [(a+ ,B)28<1Yt1 a'<IV,*l + a,Bv;r a'<l~*l (8<1Yi1 )2)] 

&Vr &V, 8Vr 8Vs 8Vr 

0 

a,B 82<[~*] 8<1Yf1 [ (a + ,8)2 82
<1V,*l + a,Bv;. (v;r )2 a'<I~*J ( 8<1Yi1 )3] 

8Va 8Vr &Vr &V, 8Vr 

Furthermore, 

The next term equates to the following: 

(D.40) 
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where M2o is the subsequent matrix 

0 

iVcilJ( a +,B) a'<!Vfl [ _ (a+ ,8)2 a<]l:!'l a'<l'j;'l + v;r a'<l~'l (a'[~' I )2) ( -3a,B + 2iVcilJ( a +,B))] 
8Vr 8Vs 8Vr 8Vs 8Vr 

0 

- a:~/'1 a~ttl ( -3a,B + 2i#(a + ,B))[-(a + ,B)2a:~? + (a,B)2(v;r)2v;. a:~~jl (a~rfl)3] 

which then applying the inner product with ]0 results in 

The third order nonlinearities are given by the following: 

and 

0 

iVcilJ( af3)2 (a + ,B)3v;r a:'0'1 

0 

( aW ( v:r )3v;. a:~? ( a1~'1 )3 
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D.4 Poincare surface coordinates of the piecewise linear 

RKII set 

The following table contains the Poincare surface of coordinates determined for the piecewise 

linear RKII set. Each entry corresponds to the coordinates and the switching times for the 

hyperplanes Si, 8'5, s: and sg (refer to chapter 6 for discussion). 

Switching times Poincare surface coordinates 

tj = 5.8e-02 xj = [-1.48e-02, 7.4le-01, 8.39e-04, -4.19e-02JT 

t; = 1.6e-02 x; = [-1.38e-02, 6.88e-01, 1.57e-02, 1.87e+Ol)T 

t3 = 3.0e-03 x3 = [-1.58e-02, -2.5e+00, 7.0le-02, 3.42e+01JT 

t4 = 6.3e-02 x4 = [-1.90e-01, -5.15e-Ol, 1.45e-02, -7.25e-01JT 

Table D.l: Switching times and coordinates intersecting the hyperplanes: Si, 85, S~ and sg. 
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