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Abstract

Nonlinear systems can have multiple equilibria or limit cycles and bifurcations can change the
qualitative features of a system, which can result in very complex behavior. Some examples are
the global weather, turbulence of fluids or chemical reactions.

The objective of this thesis is to achieve a better understanding of the complicated behavior
of complex chaotic systems including synchronization. To provide this insight one of many possi-
ble complex systems is chosen and analyzed. The system that is considered in this thesis is the
electrical Chua circuit. This seemingly simple circuit, the only nonlinearity is given by a piecewise-
linear characteristic, is however capable of generating bifurcation and chaos phenomena.

The rich dynamic behavior of a Chua circuit has been analyzed by determining the stability
properties of the equilibria and a Poincaré map has been derived to explain the possible bifurca-
tions. With this powerful tool the qualitative behavior of the Chua circuit can be easily visualized.
Further it is shown that the conditions, which are required for chaos, can be fulfilled.

To compare numerical results with experimental results an experimental setup has been designed
and built. The parameters of the setup are estimated using two identification methods. The
first method is based on measurements of the separate components of the circuit, for the second
method a switching nonlinear Kalman filter is designed and implemented. The obtained numerical
results are qualitatively comparable with experiments, however it is impossible to follow a chaotic
trajectory if no information of the experimental trajectory is used.

Furthermore the possibility of experimental synchronization has been studied. Two synchro-
nization methods, master-slave synchronization and mutual synchronization, have been applied.
To be able to specify asymptotic synchronization of non-identical systems a form of practical syn-
chronization is introduced. This is necessary because it is impossible to built identical circuits,
due to tolerances in electrical components.
In experiments master-slave synchronization has been achieved by applying a negative feedback
to the slave system. In the case of mutual synchronization the circuits are diffusively coupled. Be-
sides synchronization of two systems, synchronization in a network of four symmetrically coupled
circuits has been investigated. It is shown that, under certain conditions, it is possible to achieve
a partial synchronized situation, which is also experimentally confirmed.
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Samenvatting

Niet-lineaire systemen kunnen meerdere evenwichtspunten of periodieke oplossingen bevatten en
bifurcaties kunnen het kwalitatieve gedrag van een systeem veranderen. Dit heeft tot gevolg dat
er zeer complex gedrag in een niet-lineair systeem kan optreden. Enkele voorbeelden hiervan zijn
het weer, turbulentie in vloeistoffen en chemische reacties.

De doelstelling van dit onderzoek is het verkrijgen van een beter praktisch inzicht in het com-
plexe gedrag van niet-lineaire chaotische systemen inclusief synchronisatie met andere systemen.
Om dit inzicht te verkrijgen is een representatief systeem gekozen en onderzocht. Het systeem
dat in dit onderzoek wordt beschouwd, is het elektrische Chua circuit. Dit ogenschijnlijk simpele
systeem, de enige niet-lineariteit wordt beschreven door een stuksgewijze lineaire karakteristiek,
vertoont bifurcaties en chaotisch gedrag.

Het variërende gedrag van het Chua circuit is geanalyseerd door het bepalen van de stabiliteits
eigenschappen van de evenwichtspunten en door middel van de afleiding van een Poincaré afbeeld-
ing zijn de mogelijke bifurcaties te verklaren. Met de Poincaré afbeelding kan het kwalitatieve
gedrag van het Chua circuit eenvoudig zichtbaar gemaakt worden. Eveneens is aangetoond dat
aan de condities, die vereist zijn voor chaos, voldaan kan worden.

Om numerieke en experimentele resultaten met elkaar te kunnen vergelijken is er een experimentele
opstelling ontworpen en gebouwd. De parameters van de opstelling zijn geschat door middel van
het toepassen van twee identificatie methoden. De eerste methode is gebaseerd op metingen van
de afzonderlijke componenten van het circuit, voor de twee methode is een schakelend niet-lineair
Kalman filter ontworpen en gëımplementeerd. De verkregen numerieke oplossingen zijn kwalitatief
vergelijkbaar met de experimenten, maar het is onmogelijk een chaotische oplossing te volgen in-
dien er geen gebruik gemaakt wordt van meetdata.

Tevens is de mogelijkheid van synchronisatie experimenteel onderzocht. Twee synchronisatie
methoden zijn toegepast, master-slave synchronisatie en synchronisatie op basis van wederzijdse
koppeling. In het geval van master-slave synchronisatie wordt het gedrag van de slave opgelegd
door de master. Om asymptotische synchronisatie van niet-identieke systemen te kunnen speci-
ficeren is er een vorm van praktische synchronisatie gëıntroduceerd. Dit is noodzakelijk, omdat
het onmogelijk is identieke circuits te fabriceren vanwege toleranties van de elektrische componen-
ten. Master-slave synchronisatie in experimenten is verkregen door toepassing van een negatieve
terugkoppeling op het slave systeem. In het geval van wederzijdse synchronisatie zijn alle circuits
met elkaar gekoppeld. Behalve synchronisatie van twee systemen is ook de mogelijkheid van syn-
chronisatie in een netwerk van vier symmetrisch gekoppelde circuits onderzocht. Er is aangetoond
dat, onder bepaalde voorwaarden, er partiële synchronisatie optreedt, dit is tevens experimenteel
bevestigd.
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Chapter 1

Introduction

1.1 Complex systems

The term complex system refers to a system of parts coupled in a nonlinear fashion. Such a system
may be discrete, e.g. difference equations, or it may be continuous as in a system of differential
equations. Because they are nonlinear, complex systems are more than the sum of their parts
because a linear system is subject to the principle of superposition, and hence is literally the
sum of its parts. A linear system can have only one or an infinite number of equilibrium points.
Nonlinear systems can have multiple equilibria and limit cycles. Bifurcations can change the
qualitative features of a complex system such as the number of equilibrium points or limit cycles
or their stability properties. This is caused by parametric variation in the model.
Complex systems are found in many fields. Some examples include the global weather, turbulence
of fluids, chemical reactions and the well-known nonlinear van der Pol oscillator (van der Pol, 1927).

1.2 Chaotic systems

Complex systems are often referred to as chaotic systems. However this is not correct, a chaotic
system, in contrast to complex systems, has to satisfy specific properties, which are usually very
hard to verify.
The word chaos was introduced by Yorke (Li and Yorke, 1975) several years after the publica-
tion of Lorenz (Lorenz, 1963). Although Lorenz’ model is considered as one of the first chaotic
models, chaos was already noticed by Poincaré. In the year 1887 the king of Sweden sponsored a
mathematical competition for the resolution of the question of how stable is the solar system, a
variation of the three-body problem. Poincaré found that the evolution of such a system is often
’chaotic’ in the sense that a small perturbation in the initial state such as a slight change in one
body’s initial position might lead to a radically different later state (Poincaré, 1890).
However after the work of Lorenz chaos has developed into a new research area. Smale developed
the so-called horseshoe map (Smale, 1967). A new view on the turbulence problem was given by
(Ruelle and Takens, 1971), which led to the so-called ’strange’ attractor in the phase space. A
system inspired by the work of Lorenz is the Rössler system (Rössler, 1976), which has only one
spiral instead of two. Another well-known example from biology is the population map or logistic
equation (May, 1976), which was investigated further by Feigenbaum. Feigenbaum developed the
base of what is now known as the Feigenbaum number. He described that in systems where period
doubling occur, the period doubling follows a constant relation (Feigenbaum, 1978).
To illustrate the very complex behavior of chaotic systems we look at the, at first sight simple,
logistic equation xt+1 = f(xt) with f(x) = αx(1 − x), x ∈ [0, 1] for some values of α, see figure
1.1.



2 1.3. SYNCHRONIZATION

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f(x)=α x(1−x)

(a) α = 2.75.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f(x)=α x(1−x)

(b) α = 3.25.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f(x)=α x(1−x)

(c) α = 3.449.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f(x)=α x(1−x)

(d) α = 3.8.

Figure 1.1: 140 iterations of f(x) = αx(1− x) for four different values of α. If 1 < α < 3 we have
one stable fixed point, i.e., after a number of iterations xt+1 = xt. If the value of α > 3 this fixed
point loses its stability and a period doubling bifurcation occurs, if α is increased further several
period doubling bifurcations occur and for 3.570 < α < 4 the dynamics are very complicated. The
trajectories appear to wander around randomly.

1.3 Synchronization

The Dutch scientist Christiaan Huygens was probably the first who described synchronization. He
discovered that two pendulum clocks hanging from a beam exhibit anti-phase synchronization, i.e.
the two pendulums move in opposite directions (Huygens, 1986). Huygens used the pendulum clock
to solve the problem of finding longitude at sea, but ironically his discovery that the pendulums
influenced each other led the Royal Society to lose faith in pendulum clocks as a solution to the
longitude problem.
Synchronization can be understood as the adjustment of rhythms of oscillating objects due to weak
interaction (Pikovsky et al., 2001). The requirement of (self-sustaining) oscillating objects gives
an indication that complex systems are needed to make synchronization possible. Synchronization
is encountered in several fields e.g. (van der Pol and van der Mark, 1928; Winfree, 1980; Gray,
1994; Pikovsky et al., 2001; Nijmeijer and Rodrigues-Angeles, 2003).
However since the publication of (Pecora and Carroll, 1990), chaotic synchronization has been
receiving much interest in literature. Some examples of applications of chaotic synchronization
can be found in (Dedieu et al., 1993; Terry et al., 1999; Ticos et al., 2000). Synchronization of
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electrical circuits is considered in (Heagy et al., 1994; Wu and Chua, 1995; Chua et al., 1996; Mat́ıas
et al., 1997). A different view on chaotic synchronization, where synchronization is viewed as an
observer problem, is given in (Nijmeijer and Mareels, 1997; Santoboni et al., 2001).

1.4 Objective

The main goal of this thesis is to get more insight in the complicated behavior of complex (chaotic)
systems including synchronization, not only at a theoretical level, but also based on experimental
results. To achieve this we divide the objective into the following aspects

• Analysis of a single complex system.

• Development and comparison of numerical and experimental results.

• Synchronization of multiple complex systems; when are two coupled complex systems syn-
chronized?

First of all we need to choose a complex system to investigate. As already mentioned there are
many possible choices. However we want to include experimental results and that gives some
practical restrictions. Although the drill-string setup in the DCT-lab (Mihajlovic, 2005) is a com-
plex mechanical system, it is not a practical setup to be used for synchronization due to the large
dimensions. Biological cells for instance are much more appealing to be used for synchronization.
But the main disadvantage of biological systems is to keep the systems and environmental condi-
tions at an adequate level. Also the modeling of biological cells seems still an issue. Therefore we
choose an electrical system. This has some great advantages, they are relatively cheap to build
and the dimensions can be kept small. A well-known complex electrical system is the so-called
Chua circuit (Matsumoto, 1984). This electrical circuit is a hybrid system, due to a piecewise-
linear characteristic, and is capable of generating bifurcation and chaos. Although a mechanical
equivalent of the Chua circuit is proposed in (Awrejcewicz and Calvisi, 2002), it is questionable
of the proposed device will be able to reproduce the diverse dynamical behavior of the electrical
circuit, cf. (Verhees, 2004), and therefore the electrical circuit will be used for experiments.

1.5 Outline

The outline of this thesis is as follows. In chapter 2 we start with a numerical analysis of a single
Chua circuit. By varying a bifurcation parameter several trajectories are generated. We analyze
these trajectories by using the equilibrium points of the system and a Poincaré map. This complex
Poincaré map is approximated by a simple 1D Poincaré map. With this map the bifurcations are
visualized and explained. At the end of this chapter a definition of chaos is presented. With this
definition it is possible to show that a Chua system is chaotic in a mathematical context.
In the third chapter the different aspects of building a Chua circuit are explained. Two identifica-
tion methods are used to obtain parameters of the fabricated realization. The first identification
method is based on measurements of the used components and measurements of separate segments
of the total circuit. Secondly a Kalman filter is used to estimate states and parameters for the
complete circuit. Different strategies are compared and the results are discussed. In chapter 4 the
experiments, which validate the numerical results, are described.
Synchronization of Chua circuits is treated in chapter 5. Two synchronization methods are pre-
sented here. First master-slave synchronization is explained and applied both numerically and
experimentally. Secondly mutual synchronization is applied on a network consisting of maximal
four circuits, again both numerically and experimentally.
Finally we end with conclusions and recommendations in chapter 6.
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Chapter 2

Dynamics of the Chua circuit

The Chua circuit, first discovered by computer simulations (Matsumoto, 1984) and experimen-
tally validated by (Zhong and Ayrom, 1985), is a simple autonomous electrical circuit capable of
generating bifurcation and chaos phenomena. The circuit consists of all but one linear elements,
a nonlinear resistor with a piecewise-linear characteristic.
The three equations of motion for the circuit are given by

C1v̇1 = G(v2 − v1)− f(v1)
C2v̇2 = G(v1 − v2) + iL (2.1)
Li̇L = −v2 −R0iL,

with G = 1
R and the function f(v1) is defined as

f(v1) = Gbv1 +
1
2
(Ga −Gb)(|v1 + Bp| − |v1 −Bp|). (2.2)

In these equations the state variables v1 and v2 are the voltages across the capacitors, C1 and C2,
iL is the current flowing through the inductor L, which has an internal resistance R0. Ga and
Gb are the conductances of the piecewise characteristic for |v1| < Bp and |v1| ≥ Bp respectively.
Bp is the voltage of the breakpoint. A schematic representation of a Chua oscillator can be seen
in figure 2.1. After adding the resistor, R0, the circuit has been referred to as a Chua oscillator.
Another common name is the ’double scroll attractor’, which will be explained later. However all
names will be used throughout the text for the circuit as given in (2.1).
An example of a piecewise linear resistor is given in figure 2.2.

L

R0

C2 C1

R

Nr

Figure 2.1: Schematic layout of a Chua circuit.
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Figure 2.2: v − i characteristic of the piecewise linear resistor.

2.1 Parameters

The variable resistor R, see figure 2.1, will be used as a bifurcation parameter, while all other
parameters are considered fixed. In the remainder of this chapter a typical parameter set is chosen
as in table 2.1.
Before we present a rigorous analysis of (2.1) some possible trajectories, with the chosen parame-
ters, are given in the next figures to illustrate the variety of the circuit. In figure 2.3 (a), (b), (c)
and (d) the periodic solutions are given for both negative and positive initial conditions. It is also
possible to choose initial conditions such that the trajectory is unbounded. This is due to the fact
that system (2.1) is not a passive system, see (Willems, 1972; van der Steen and Nijmeijer, 2006).

Table 2.1: Parameter values for the circuit.

Component Value
C1 10 [nF]
C2 100 [nF]
L 22 [mH]
R0 22 [Ω]
Ga -0.75 [mS]
Gb -0.40 [mS]
Bp 1.75 [V]
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(c) R = 1967 [Ω].
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Figure 2.3: Trajectories for different values of R.
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2.2 Equilibrium points

There are three equilibrium points of (2.1), which are given by

eq1 =
[

Bp(−Ga+Gb)(GR0+1)
G+GbGR0+Gb

BpG(−Ga+Gb)R0
G+GbGR0+Gb

−BpG(−Ga+Gb)
G+GbGR0+Gb

]
(2.3)

eq2 =
[

0 0 0
]

(2.4)

eq3 =
[
−Bp(−Ga+Gb)(GR0+1)

G+GbGR0+Gb
−BpG(−Ga+Gb)R0

G+GbGR0+Gb

BpG(−Ga+Gb)
G+GbGR0+Gb

]
(2.5)

The feasibility of these equilibrium points depends on the value of state v1, i.e., eq1 and eq3
are only feasible if v1 ≥ Bp or v1 ≤ −Bp respectively, leading to the following condition for the
feasibility of these equilibrium points

Bp(−Ga + Gb)(GR0 + 1)
G + GbGR0 + Gb

≥ Bp. (2.6)

Rewriting condition (2.6) and substituting the parameters values gives a lower and upper bound
on the variable resistor R ∣∣∣∣ Gb

1 + GbR0

∣∣∣∣ ≤ G ≤ |Ga| (2.7)

1333 [Ω] ≤ R ≤ 2478 [Ω] (2.8)

Using (2.3) and (2.7) the lower bound of v1, which occurs at G = |Ga| = −Ga, is given by

Bp(−Ga + Gb)(−GaR0 + 1)
−Ga −GbGaR0 + Gb

⇒ −BpG
2
aR0

Ga + GaGbR0 −Gb
+ Bp. (2.9)

The nominator and denominator of (2.9) are both negative, since Bp, R0, G2
a > 0, Ga < Gb < 0

and |Ga| >> |GaGbR0|.
The theoretical upper bound of v1 is given by

lim
G→

�
�
�

Gb
1+GbR0

�
�
�

Bp(−Ga + Gb)(GR0 + 1)
G + GbGR0 + Gb

= +∞. (2.10)

Therefore the equilibrium point (2.3) is located at a value v1 > Bp.

2.2.1 Stability of the equilibrium points

The stability of the equilibrium points is determined by the linearization of (2.1) around the
equilibrium points (2.3), (2.4) and (2.5). The stability properties of the third equilibrium point
are equal to the first equilibrium point because the linearization around (2.3) and (2.5) are equal.
The linearization around the first equilibrium point and the origin for varying R are given in figure
2.4 (a) and (b) respectively.
It is immediately clear that the origin is always an unstable equilibrium point, while there is a
region where the real part of all three eigenvalues are negative for the first (and third) equilibrium
point. The crossing of the imaginary axis is numerically determined to find the stable region for
the parameter R.
By means of simulation it is shown that a trajectory of system (2.1) converges to one of those
equilibrium points, if R is chosen between 2007−2478, for a large set of initial conditions. A prove
might be obtained using the work of (Leonov et al., 1996).
Further it follows from figure 2.4 (a) that there are two pure imaginary eigenvalues and one
real eigenvalue at R equal to 2007 [Ω]. At this point a Hopf bifurcation, see (Guckenheimer and
Holmes, 1983), occurs, i.e., the equilibrium point loses its stability and a stable limit cycle appears.
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(a) Eigenvalues of linearization around eq1.
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(b) Eigenvalues of linearization around eq2.

Figure 2.4: Stability diagram for 1333 [Ω] < R < 2478 [Ω]. The arrows indicate the direction
of the eigenvalues for an increasing value of R. The equilibrium point eq1 is stable for 2007 [Ω] <
R < 2478 [Ω].

2.3 Poincaré map

To explain figure 2.3 in more detail we use the strategy described in (Chua et al., 1986). In this
work a one dimensional approximation of a two dimensional Poincaré map is described. With this
tool it is possible to visualize the periodic solutions as well as the ’birth’ and ’death’ of the double
scroll in a rather straightforward manner.

2.3.1 Dimensionless model

The dimensionless model of (2.1) is given by

ẋ = α(y − h(x))
ẏ = x− y + z (2.11)
ż = −βy − γz

where

h(x) = x + f(x) = m1x +
1
2
(m0 −m1)(|x + 1| − |x− 1|),

x =
v1

Bp
, α =

C1

C2
, a = RGa,

y =
v2

Bp
, β =

R2C2

L
, b = RGb,

z = i
R

Bp
, γ =

RR0C2

L
, τ =

t

RC2
.

The breakpoints are located at x = −1 and x = 1, while the slope is equal to m0 = a + 1 < 0 at
the inner segment and m1 = b + 1 > 0 at the outer segment. Therefore h(x) can be rewritten

h(x) = m1x + (m0 −m1), x ≥ 1
= m0x, |x| < 1 (2.12)
= m1x− (m0 −m1), x ≤ 1.
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Now system (2.11) can be described by five parameters α, β, γ,m0 and m1.
The vector field corresponding to (2.11), ξ : R3 → R3, satisfies the following properties, cf. (Chua
et al., 1986):

1. ξ is symmetric with respect to the origin, i.e., ξ(−x,−y,−z) = −ξ(x, y, z).

2. There a two planes U1 and U−1 which are symmetric with respect to the origin and they
partition R3 into three closed regions D1, D0 and D−1, see figure 2.5.

3. In each region Di, (i = −1, 0, 1), the vector field ξ is affine, i.e.,

Dξ(x, y, x) = Mi, for (x, y, z) ∈ Di

where Dξ denotes the Jacobian matrix of ξ(x) and Mi a 3× 3 real constant matrix.

4. ξ has three equilibrium points, one at the origin O, and one in the interior of Di, i = −1, 1
denoted by P±.

5. Each matrix Mi has a pair of complex conjugate eigenvalues σ̃0 ± jω̃0 for M0 and σ̃1 ± jω̃1

for M−1 and M1, where ω̃0 > 0 and ω̃1 > 0 and a real eigenvalue γ̃0 6= 0 for M0 and γ̃1 6= 0
for M−1 and M1.

6. The eigenspace associated with either the real or complex eigenvalues at each equilibrium
point is not parallel to U1 or U−1.

D0

D−1

D1

N∞

B′

P+

A
B

E
F

D

C

L1

L2
L0

W

O

C−

D−

P−

A−B−

E−F−

U−1

U1

Ec(P−) Er(P−)

Ec(P+)
Er(P+)

Ec(O)
Er(O)

A = L0 ∩ L1

F = x ∈ L2 : ξ(x) ‖ L2

E = L0 ∩ L2

D = Er(P+) ∩ U1

C = Er(O) ∩ U1

B = L1 ∩ L2

L0 = Ec(O) ∩ U1

L1 = Ec(P+) ∩ U1

L2 = x ∈ U1 : ξ(x) ‖ U1

N

M

Figure 2.5: Eigenspaces of the equilibria. Ec(0) = 2D eigenspace spanned by the real and imag-
inary part of the complex eigenvalue σ̃0 ± jω̃0, Er(0) = 1D eigenspace corresponding to the real
eigenvalue γ̃0. Ec(P+) = 2D eigenspace spanned by the real and imaginary part of the complex
eigenvalue σ̃1 ± jω̃1, Er(P+) = 1D eigenspace corresponding to the real eigenvalue γ̃1.
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2.3.2 Reference frame

A reference frame is introduced by two coordinate transformations for each of the linear regions
D0 and D1:

Ψ0 : D0 → R3, (2.13)
Ψ1 : D1 → R3. (2.14)

These affine transformations reduce M0 and M1 to the real Jordan form (Chua et al., 1986) and
simultaneously transform the planes U±1 in a simple form. In the new coordinate system we have

Ψ0(0) = 0 (2.15)
Ψ0(U1) = V0 = {(x, y, z) : x + z = 1} (2.16)

Ψ0(U−1) = V −0 = {(x, y, z) : x + z = −1} (2.17)

1
ω̃0

DΨ0(ξ(Ψ−1
0 )) = ξ0(x) =

 σ0 −1 0
1 σ0 0
0 0 γ0

x (2.18)

Ψ1(P ) = 0 (2.19)
Ψ1(U1) = V1 = {(x, y, z) : x + z = 1} (2.20)

1
ω̃1

DΨ1(ξ(Ψ−1
1 )) = ξ1(x) =

 σ1 −1 0
1 σ1 0
0 0 γ1

x (2.21)

where σ0 = σ̃0
ω̃0

, γ0 = γ̃0
ω̃0

, σ1 = σ̃1
ω̃1

, γ1 = γ̃1
ω̃1

, x = [x, y, z]T and P = P+. Although we still use
the notation (x, y, z) it are different coordinate systems for both reference frames. However due
to the subscript 0 and 1 no confusion should arise. The important points A, B, C, D, E and F
from figure 2.5 are also transformed in the new reference frame and denoted by

A0 = Ψ0(A), B0 = Ψ0(B), C0 = Ψ0(C),
D0 = Ψ0(D), E0 = Ψ0(E), F0 = Ψ0(F ), (2.22)
A1 = Ψ1(A), B1 = Ψ1(B), C1 = Ψ1(C),
D1 = Ψ1(D), E1 = Ψ1(E), F1 = Ψ1(F ). (2.23)

The explicit coordinates of (2.22) and (2.23) can be found in appendix A.

2.3.3 Poincaré map

In figure 2.6 we consider again figure 2.5, but now with two typical arbitrary trajectories and their
corresponding trajectories in the two reference frames. The upper trajectory Γ1 originates from
a point on U1, moves downward and turns around, before hitting U−1 and returns to U1 after a
certain amount of time. The trajectory continues upward, turns around and returns again on U1.
This typical trajectory defines a Poincaré map from some subset S ⊂ U1 into S.
The Poincaré map can be decomposed into two components. A half return map, which maps the
initial point on U1 to the first return point on U1, and a second half return map, which maps the
first return point to the second return point on U1.
The other trajectory, Γ2 also starts at U1, but it crosses the plane U−1 before it turns around and
hits U−1 a second time. Due to the odd-symmetry of the vector field each return point x on U−1

can be identified by its reflected image −x in U1. Also the portion below U−1 can be identified
with a corresponding version of Γ1 above U1. This means that both typical trajectories define
the same Poincaré map, which is the composition of the two half return maps. However the half
returns maps cannot be calculated explicitly. Therefore the simplified but equivalent reference
frames are used to compute the half return maps.
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D0

D−1

D1
P+

A
B

E
F

D

C

L1

L2
L0

O

A−B−

E−F−

U−1

U1

F1 B1

A1

D1

V1

π1

x

y

z

D1 Unit

z

x

y

A0

B0

F0

E0

V0

D0 Unit

V −0

π+
0

π−0

Ψ1

Ψ0

Φ

Γ1

Γ2

E1

C0
x = 1

x = 1

L20

L21

Figure 2.6: Original system with two typical trajectories and their images in the D0 and D1 units
of the transformed system.

2.3.4 First half return map

The line L2 in figure 2.6 is mapped into a straight line L20 in the D0 unit through the points B0

and E0. The vector field ξ0(x) penetrates V0 from above for all x to the right of L2, while the
vector field ξ0(x) crosses V0 from below for x to the left of L2. This means that any trajectory
starting inside the triangular region

4A0B0E0 = {x ∈ V0|x is bounded in the triangle A0B0E0} (2.24)

penetrates V0 from above and moves down. But the z-axis = Ψ0(Er(0)) corresponds to the
unstable eigenvector Er(0) and therefore the trajectory moves upwards to V0 again. This can be
defined as one part of the half return map

π+
0 (x) : 4A0B0E0 → V0 (2.25)

via the image
π+

0 (x) = ϕT
0 (x) (2.26)

where

ϕT
0 (x0) =

 eσ0T cos(T ) −eσ0T sin(T ) 0
eσ0T sin(T ) eσ0T cos(T ) 0

0 0 eγ0T

 x0

y0

z0

 (2.27)

the flow from x to the first return point on V0 at a first return time T > 0, where

T = T (x) = inf{t > 0|ϕt
0(x) ∈ V0}. (2.28)
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It is assumed that ϕt
0(x) does not cross V −0 before time T .

If a trajectory starts from a point in the wedge, see figure 2.6,

∠A0B0E0 = {x ∈ V0|x lies within the wedge extension of 4A0B0E0} (2.29)

it must go downward again and the trajectory intersects with V −0 . This corresponds to the first
part of the trajectory Γ2 and the following map can be defined

π−0 (x) : ∠A0B0E0\4A0B0E0 → V −0 (2.30)

via the image
π−0 (x) = ϕT

0 (x) (2.31)

where
T = T (x) = inf{t > 0|ϕt

0(x) ∈ V −0 }. (2.32)

is now the time when the trajectory first hits V −0 . By making use of the reflected image in V0 the
first half return map is defined as

π0(x) =
{

π+
0 (x) x ∈ 4A0B0E0

−π−0 (x) x ∈ ∠A0B0E0\4A0B0E0
(2.33)

In order to calculate (2.33) a local coordinate system is introduced for points inside ∠A0B0E0.
Each point on V0 can be defined by its x and y coordinate since the z-coordinate on V0 is given
by z = 1−x. A coordinate system (u, v) is chosen such that all points x ∈ ∠A0B0E0 are specified
in terms of (u, v). These coordinates are chosen as a weighted sum of the four corner points
A0, B0, E0 and F0

x0(u, v) = u [vA0 + (1− v)E0] + (1− u) [vB0 + (1− v)F0] (2.34)

where 0 ≤ u < ∞ and 0 ≤ v ≤ 1. This is visualized in figure 2.7. Note that all points inside

x

z

y

A0

B0

F0

E0

V0

v = 1
v = 0

u = 1

u = 0

Figure 2.7: Local (u, v) coordinate system.

4A0B0E0 have 0 ≤ u < 1, while points outside this triangle have 1 ≤ u < ∞. We can rewrite
(2.24) and (2.29) in an equivalent form as follows

4A0B0E0 = {x0(u, v)|(u, v) ∈ [0, 1]× [0, 1]} (2.35)
∠A0B0E0 = {x0(u, v)|(u, v) ∈ [0,∞)× [0, 1]}. (2.36)

For a given x0(u, v) the return map π+
0 (x0) is now given by

π+
0 (x0) = eσ0t

[
cos(t) − sin(t)
sin(t) cos(t)

]
x0(u, v) (2.37)
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where t is the first return time and can be calculated by an inverse return time function using the
v coordinate

u+(v, t) =
〈ϕt

0(B0v), h〉 − 1
〈ϕt

0(B0v −A0v), h〉
(2.38)

where h = [1 0 1]T is the normal vector from to origin to V0, 〈, 〉 is the inner product, A0v is the
location of a point along the line E0A0, v units from E0 and B0v is the location of a point along
the line F0B0, v units from F0.
Using the u coordinate the first return time can be calculated by

t = inf{t ≥ 0|u+(v, t) = u}. (2.39)

The return map π−0 (x0) can be calculated in a similar way using the following equations

u−(v, t) =
〈ϕt

0(B0v), h〉+ 1
〈ϕt

0(B0v −A0v), h〉
(2.40)

t = inf{t ≥ 0|u−(v, t) = u}. (2.41)

2.3.5 Second half return map

The second return map is defined in the same way as the first half return map. The only difference
is that the stability properties of the equilibrium point P are opposite of the equilibrium point at
the origin. Therefore we look at the inverse image, such that the stable eigenvector Er(P ) and
the unstable eigenvectors of Ec(P ) become unstable and stable respectively. This means that a
trajectory crossing the V1 plane from above inside the angular region ∠A1B1E1 moves upwards
to hit V1. Hence the second half return map can be defined as

π1(x) : ∠A1B1E1 → V1 (2.42)

via the inverse image
π1(x) = ϕ−T

1 (x) (2.43)

where ϕ−T
1 (x) is the flow from x to the first return point where the trajectory hits V1 at a reverse

time −T < 0 where
T = T (x) = inf{t > 0|ϕ−t

1 (x) ∈ V1}. (2.44)

To link the first and second half return maps together we need a relation between the D0 unit and
the D1 unit. Therefore a connection map is defined as follows

Φ = (Ψ1|U1) ◦ (Ψ0|U1)
−1 (2.45)

where Ψ1|U1 and Ψ0|U1 denote the restrictions on U1. Since the coordinates of points on the V0

and the V1 planes are explicitly known, it is possible to transform the coordinates of one unit into
the other.
The total 2D Poincaré map can now be defined as

π : V ′1 → V ′1 (2.46)

where
V ′1 = {(x, y) ∈ V1|x ≤ 1} (2.47)

and is given by

π(x) =
{

π−1
1 Φπ0Φ−1(x) x ∈ ∠A1B1E1

Φπ0Φ−1π−1
1 (x) x ∈ V ′1\∠A1B1E1

(2.48)
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2.3.6 Approximation of the Poincaré map

Instead of using the complex Poincaré map (2.48) a simpler approximation can be made. For
the parameter values given in table 2.1 it holds that the real eigenvalue |γ1| is relatively large
compared to σ1. This means that all trajectories originating on either side of the eigenspace
Ec(P ) will converge rapidly to this eigenspace and eventually cross the plane U1 at the line L1

in figure 2.5. Therefore we define a 1D approximation of the Poincaré map π by restricting its
domain to a line L′1, which starts at point B, passes through A and extends to infinity. The
domain of the 1D approximation map is chosen as another semi-infinite line segment. This line
is constructed through the points M = Ψ−1

1 [1, 0, 0]T and P+, its extension through N and then
deleting the line segment between M and P+, which defines the following Poincaré map

π∗ : P+N∞ → P+N∞ (2.49)

F1 B1

A1

D1

V1

yz

xE1

A1∞

M10Y (u)

N1∞

W1

N1 X(u) Y (0) X(0) d2

d1

x(u)

A′1∞

Y ′(u)

C1

Φπ+Φ−1(B1A1)

Φπ−Φ−1(A1A1∞)

Figure 2.8: Geometrical interpretation of the one dimensional approximated Poincaré map.

In figure 2.8 the D1 unit is shown where the plane W , which corresponds to the line segments
P+D and ND from figure 2.5, is transformed into the rectangular region

W1 = {x, y, z) ∈ R3|x ≤ 0, y = 0}. (2.50)

In terms of local coordinates (u, v), points on the line B1A1∞ are identified by a single coordinate
u since v = 1 on this line

x(u) = x1(u, 1)
{

0 ≤ u ≤ 1 x(u) ∈ B1A1

1 < u < ∞ x(u) ∈ A1A∞
(2.51)

All trajectories originating from the line B1A1∞ remain in the x − y plane, since this is the
eigenspace Ψ1(Ec(P )), spiraling inwards (in backward time) and hit the line 0N1 a distance X(u)
from 0 after a specific time interval π + arg(x(u)). We can rewrite this as

X(u) = |x(u)|e−σ1(π+arg(x(u))) ≥ 0 (2.52)

where

arg(x) = arctan
(

xy(u)
xx(u)

)
. (2.53)

It is shown in (Chua et al., 1986) that the inverse return time functions u+(1, t) (2.38) and u−(1, t)
(2.40) are both monotone functions and hence have an unique inverse. This means that every point
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X(u) ≥ 0 on the line N1X(0) maps uniquely into a point on B1A1∞ via the flow ϕt
1, where X(0)

is the limiting point which maps into B1. Any point d1 between X(0) and 0 must map into a
point d2 where

d2 = e2πσ1d1 (2.54)

since it does not intersect the line B1A1∞.
Each point on the line B1A1∞ maps into one of the two spirals, defined by (2.33) and transformed
into the D1 unit as shown in figure 2.8 with coordinates y(u). It is also shown in (Chua et al., 1986)
that under the flow ϕt

1 the point y(u) intersects with the plane W1 with two spirales at coordinates

Y ′(u) =
(
−|y(u)|eσ1(π−arg(y(u))), 0, yz(u)eγ1(π−arg(y(u)))

)
(2.55)

where

arg(y) = arctan
(

yy(u)
yx(u)

)
. (2.56)

If γ1 is relatively large, the two spirales are squeezed into a thin line close to the line N∞0 and
the points Y ′(u) can be approximated with points on the line N∞0 by

Y (u) = |y(u)|eσ1(π−arg(y(u))), 0 ≤ u ≤ ∞ (2.57)

To calculate the approximated Poincaré map (2.49) for X(u) > X(0) we use

(X(u), Y (u)) =
{

(X(u+(1, t)), Y (u+(1, t))) , 0 ≤ t < ∞ for 0 ≤ u < 1
(X(u−(1, t)), Y (u−(1, t))) , 0 < t < ∞ for 1 ≤ u < ∞

}
(2.58)

For points between X(0) and 0 we make use of (2.54)

Y (u) = e2πσ1X(u), u < 0. (2.59)

The approximated Poincaré (2.49) map can also be identified in figure 2.5. The point B′ corre-
sponds with X(0). For each point x ∈ P+B′ the poincaré map is a linear map from P+B′ onto
P+π∗(B′). For points x ∈ B′N∞, π∗ is a nonlinear continuous map from B′N∞ into P+N∞.

2.4 1D Poincaré map

With the Poincaré map and a value for the variable resistor R the qualitative behavior of system
(2.1) can be predicted, without explicitly integrating the equations. The approximated Poincaré
map is given by (2.58) and (2.59) for a given parameter set. After the transient of (2.1) the
behavior can be visualized by iterating this map.
An important point of the map is located at X(1) which corresponds to the point A. If a trajectory
starts at the line BA, which is part of the triangular region (2.24), it does not intersect with the
plane U−1, see figure 2.6, and we call this trajectory a single scroll trajectory. If a trajectory
starts at the line AA∞, which is part of the wedge extension (2.29), the trajectory crosses the U−1

plane before it returns and is naturally called a double scroll trajectory. The ’birth’ and ’death’
of double scroll trajectories can therefore be explained using the Poincaré map.
To compare the approximated Poincaré map with the trajectories of (2.1) as in figure 2.3 the same
resistor values are used to compute the maps. In figure 2.9 the map for R = 1985 [Ω] is shown.
The boxed area in the upper left corner is a magnification of the rectangular box in the middle of
the figure. Further the point X(1) is located at X = 1.1223, indicated by a vertical dashed line. It
can be seen that the map has a stable fixed point X(u) = π∗(X(u)) = Y (u) to the left of the point
X(1). This means that a single scroll period one trajectory should occur, which is indeed the case
in figure 2.3 (a). A single scroll period two solution, indicated by X2 = π∗(X1), X1 = π∗(X2)
with X1 and X2 both to the left of X(1) can be seen in figure 2.10. In figures 2.11 and 2.12 the
existence of single scroll periodic solutions with period four and period three are visualized.
The transition from a single scroll to the double scroll, i.e. the ’birth’ of the double scroll, is
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shown in figure 2.13. With R = 1942 [Ω] the maximum value of Y on the interval [0 X(1)] is equal
to X(1). This means that Y maps precisely through the boundary point A1, if R is decreased
further the point Ymax on the interval [0 X(1)] maps to the right of X(1) and a double scroll scroll
trajectory occurs.
Another special case is observed at R = 1778 [Ω], see figure 2.14. A double scroll trajectory occurs
since Ymax on the interval [0 X(1)] is greater than X(1), but the minimum value Ymin on the
interval [X(1) ∞] is equal to zero. This implies that the spiral A′1∞C in figure 2.8 goes through
the point D1, because Y = 0. Recall from figure 2.6 that D1 is the point on V1 corresponding to
the stable eigenvector Ψ1(Er(P )) of P+. Therefore the double scroll trajectory goes through P
and spirales outwards until it hits U1, this is referred to as a hole-filling orbit.
A different periodic two limit cycle is shown in figure 2.15. Again X2 = π∗(X1), X1 = π∗(X2),
but now X1 < X(1) and X2 > X(1). So we have one period of the limit cycle as a single scroll
and the other period as the double scroll. This corresponds to the trajectory of figure 2.3 (g).
Finally in figure 2.16 the ’death’ of the double scroll is visualized. Ymax on the interval [0 X(1)]
maps to a second fixed point which corresponds to an unstable saddle-type closed orbit cycle, cf.
(Chua et al., 1986). When the attractor collides with the unstable closed orbit a boundary crisis
(Grebogi et al., 1982) occurs, resulting in the loss of the attractor (and its basin) and trajectories
diverge to ±∞ for every initial condition.
Since this is physically impossible the model for the nonlinear resistor (2.2) could be extended
with a second breakpoint Bp2 > Bp and a positive slope Gc to introduce passivity if |v1| > Bp2,

f(v1) = Gcv1 +
1
2
(Ga −Gb)(|v1 + Bp| − |v1 −Bp|+

1
2
(Gb −Gc)(|v1 + Bp2| − |v1 −Bp2|). (2.60)

A new characteristic, with Bp2 = 13 [V] and Gc = 4.5 [mS], is shown in figure 2.17. This has
no effect on the actual attractor and the unstable closed orbit, because normally |v1| < Bp2.
However if the boundary crisis occurs the resulting trajectory is a large stable limit cycle, see
(Matsumoto, 1984).
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Figure 2.9: Period one limit cycle for R = 1985 [Ω].
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Figure 2.10: Period two limit cycle for R = 1975 [Ω].
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Figure 2.11: Period four limit cycle for R = 1967 [Ω].
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Figure 2.12: Period three limit cycle for R = 1960 [Ω].
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Figure 2.13: Birth of the double scroll for R = 1942 [Ω].
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Figure 2.14: Hole-filling orbit for R = 1778 [Ω].
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Figure 2.15: Double scroll period two limit cycle for R = 1700 [Ω].
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Figure 2.16: Death of the double scroll for R = 1609 [Ω].
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Figure 2.17: v − i characteristic of the extended piecewise linear resistor.
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2.5 Chaos

It is already mentioned that the Chua circuit is also capable of generating chaos. In this section
the approximated Poincaré map is used to explain why chaotic behavior is possible in the circuit.
In figure 2.18 another special case is shown. The point X(1) is now a fixed point, i.e., it holds that
Y (1) = π∗(X(1)) = X(1). This implies that a trajectory which starts at the point A converges to
the origin since it lies in the stable eigenspace of Ec(0) and continues along the unstable eigenspace
Er(0) until it hits the plane U1 in point C, see figure 2.5. Point C corresponds to C1 in figure 2.8
and since Y (1) = X(1), the trajectory continuing from C1 intersects the plane W1 at Y ′(1), whose
projection Y (1) is equal to X(1). This trajectory is a homoclinic orbit of the origin. A homoclinic
orbit is an orbit which tends to a fixed point under backward iteration and lands on the same
fixed point under forward iteration. This orbit plays a crucial role to show that the double scroll
attractor is a chaotic system.
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Figure 2.18: Homoclinic orbit for R = 1635.7 [Ω] and Gb = −0.5 [mS].

First we need to characterize chaos in such a way that it is easy to verify. Therefore we use the
definition of chaos for discrete time dynamics as is given in (Devaney, 1986):
Let V be a set. F : V → V is said to be chaotic on V if

1. f has sensitive dependence on initial conditions.

2. f is topologically transitive.

3. periodic points are dense in V .

If a system has sensitive dependence on initial conditions than initially nearby points can evolve
quickly into very different states. This implies that a chaotic system is unpredictable.
A function f : J → J is said to be topologically transitive if for any pair of open sets U, V ⊂ J
there exists k > 0 such that fk(U) ∩ V 6= ∅, i.e., since the intersection is a non-empty set some
points from U , under iteration, intersect with the set V . So a dynamical system, which is topo-
logically transitive, cannot be decomposed into two disjoint open sets which are invariant under
the map. Therefore it is not possible to decompose a chaotic system into two subsystems.
However there is still regular behavior possible in a chaotic system since the periodic points are
dense in V .

To verify that system (2.1) is chaotic we make use of a theorem posed by Šilnikov, cf. (Guckenheimer
and Holmes, 1983; Silva, 1993).
Šilnikov considered a three dimensional flow, containing a homoclinic trajectory to a saddle point,
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see figure 2.19.
Under the condition that the real eigenvalue (γ) has larger magnitude than the real part of the
complex eigenvalues (σ ± jω), there are horseshoes present in the return maps defined near the
homoclinic orbit. The proof for this can be found in (Guckenheimer and Holmes, 1983).

Figure 2.19: Abstraction of a homoclinic orbit to a saddle point.

The horseshoe is an example of a hyperbolic limit set (Guckenheimer and Holmes, 1983). The
Smale horseshoe map is defined by the map f : S → R2, where S = [0, 1]× [0, 1] is the unit square
in the plane, shown in figure 2.20.
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f(A) f(B) f(C) f(D)

Figure 2.20: Abstraction of the Smale horseshoe map.

If f is iterated most points leave S, however the points that remain in S for all time form a set
Λ = {x|f i(x) ∈ S,−∞ < i < ∞}. This set is a Cantor set, see (Devaney, 1986). The horseshoe
map has the following properties (Guckenheimer and Holmes, 1983):
The map f has an invariant Cantor set Λ such that:

1. Λ contains a countable set of periodic orbits of arbitrarily long periods.

2. Λ contains an uncountable set of bounded nonperiodic motions.

3. Λ contains a dense orbit.

Now we are able to verify that the double scroll is indeed chaotic. There exists a parameter set
such that there is a homoclinic orbit through the origin, (see figure 2.18), further it holds that
|σ0| < γ0 and therefore Šilnikovs conditions hold. The points two and three in the definition of
a chaotic system follow directly from the Cantor set Λ, (since Λ contains a dense orbit it is also
topologically transitive (Devaney, 1986)). It remains to verify that system (2.1) is sensitive to
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initial conditions.
We try to demonstrate this through a simulation. System (2.1) is integrated twice with slightly
different initial conditions. In the first simulation the initial conditions are chosen as [1 1 0]T , for
the second simulation the initial condition is chosen as [1+1 ·10−11 1 0]T . The results for the first
state, v1, are shown in figure 2.21. After t = 0.012 it is visible that the solutions diverge. This
shows that system (2.1) is sensitive to initial conditions.
Another property indicating chaos in system (2.1) is the existence of the period three limit cycle
as shown in figure 2.12, see (Šarkovskii, 1964; Li and Yorke, 1975).
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Figure 2.21: Time signals for v1 of both simulations.
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Chapter 3

Building and identification of a
Chua circuit

In this chapter the electrical realization of model (2.1) is presented. The different aspects of this
realization are explained. After the design the identification of the circuit is described. Different
identification methods are compared and the results are discussed.

3.1 Realization

Consider again the schematic circuit in figure 3.1. The circuit basically consists of two capacitors,
an inductor, a variable resistor and the so-called negative resistor. In the next paragraphes the
actual electronic counterparts of the schematic components are introduced. The main part of the
layout of the circuit is based on the methodology presented in (Kennedy, 1992). The nominal
values of the electronic components are chosen to match with the parameter values in table 2.1.

L

R0

C2 C1

R

Nr

Figure 3.1: Schematic layout of a Chua circuit.

3.1.1 Variable resistor and capacitors

The variable resistor, R, is composed of a precision metal film resistor with a nominal value of
1500 [Ω] and a precision potentiometer with a range from 0 − 500 [Ω]. In this way the variable
resistor is more accurate in the region of interest. The dielectric capacitors C1 and C2 are chosen
with nominal values of 0.01 [µF ] and 0.1 [µF ] respectively.
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3.1.2 Nonlinear resistor

There are several ways to obtain the piecewise linear function, f(v1) (2.2), using electronic com-
ponents, e.g. using transistors (Matsumoto et al., 1986), operational amplifiers (Op Amps)
(Kennedy, 1992) or operational transconductance amplifiers (Cruz and Chua, 1992). In this design
the nonlinear resistor is constructed with operational amplifiers and resistors.
A negative resistance can be synthesized using three normal positive resistances and a voltage-
controlled voltage source (VCVS). A VCVS is an ideal circuit element with two important prop-
erties: The voltage at the output is a linear function of the potential difference at the input and
no current flows in, or out, the input terminals. Since a VCVS is an ideal circuit element an
Op Amp is used as an approximation of a VCVS. The output of an Op amp depends linearly on
the potential difference Vd at the input, however the output Vo of an Op Amp saturates when
the absolute difference of the input crosses a threshold voltage. This can be seen in figure 3.2,
it is assumed that there is no voltage offset (Vd = 0 [V ] 7→ Vo = 0 [V ]). When the resistors are
connected as shown in figure 3.3 the following relations (Kennedy, 1992) hold

Vd

Vo

A

V +
sat

V −
sat

+

- Vo

Vd

Figure 3.2: Operational Amplifier and voltage transfer characteristic.
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B−p
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p

R1

R2

R3

i

Figure 3.3: Negative resistor converter and v − i characteristic.

s0 =
1

R1
(3.1)

B+
p =

R2 + (1 + A)R3

A(R2 + R3)
V +

sat (3.2)

s1 =
(1−A)R2 + R3

R1[R2 + (1 + A)R3]
(3.3)

B−p =
R2 + (1 + A)R3

A(R2 + R3)
V −sat, (3.4)
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where A is the gain of the Op Amp and Vsat the saturation voltage.
When the gain A is large and R2 is equal to R1 these equations can be approximated by

s0 =
1

R1
(3.5)

B+
p ≈ R3

R2 + R3
V +

sat (3.6)

s1 ≈ − 1
R3

(3.7)

B−p ≈ R3

R2 + R3
V −sat. (3.8)

It follows from figure 3.3 that as soon as the voltage exceeds Bp the resistance becomes positive.
This prevents that after the ’death’ of the double scroll the voltage becomes unbounded.
When two negative resistors are connected in parallel the piecewise-linear resistor (2.2) is obtained.

3.1.3 Inductor

The inductor in the circuit is constructed using resistors, an Op Amp and a capacitor. With these
components it is possible to synthesize an inductor. The inductor used in a previous realization
(Hees, 2004) did not give satisfactory results, therefore a different layout is used. This new layout
is shown in figure 3.4 and based on the work of (Pegna et al., 2000). Under the assumption that
the gain A →∞, the value of L can be approximated by

L ≈ C3R0(R−R0) (3.9)

where R0 acts as the internal resistance of the inductor.

+

-

R

R0

C3

L

R0

Figure 3.4: Inductor layout.

3.1.4 Total circuit

With the parts described in the previous sections the complete circuit can be realized. However
some additional components are used to be able to measure the voltage across the two capacitors
C1 and C2. In order to use data acquisition devices, such as Siglab, or other electronic devices
(loudspeakers or other Chua circuits) without influencing the circuit itself so-called voltage follow-
ers are added. A practical addition are two ’jumpers’ that divide the circuit into three separate
subsystems. In this way it is possible to measure only the nonlinear resistor or a resonance circuit
consisting of the inductor L and capacitor C2. Another practical addition are bypass capacitors
connected across the power supplies of the Op Amps to maintain a steady DC voltage. The com-
plete realization can be seen in figure 3.5. The circuit layout with component list can be found in
appendix B.
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Figure 3.5: Realization of Chua circuit.

3.2 Identification using measurements

3.2.1 Variable resistor and capacitors

The variable resistor is measured using a standard multi-meter. A linear characteristic is assumed
and approximated by a least square estimate

R = 49.3(turn + number/100) + 0.8. (3.10)

The turn is the number of rotations of the potentiometer (0-10) and number is the scale division
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Figure 3.6: Characteristic of the variable resistor.

(0-100) in one turn.
The capacitors C1, C2 and C3 are measured with a Fluke RCL meter before assembly and con-
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sidered fixed hereafter.

C1 = 10.90 [nF ] (3.11)
C2 = 97.93 [nF ] (3.12)
C3 = 10.92 [nF ] (3.13)

3.2.2 Nonlinear resistor

By removing one of the jumpers the nonlinear resistor part can be isolated from the total circuit. To
measure the current through the nonlinear resistor a differential amplifier (AD620) in combination
with a resistor Rm is used. With the amplified voltage over the resistor Rm and using Ohm’s law
it is possible to obtain the v − i characteristic. A sinusoidal signal is used as input. Several
experiments are performed and averaged to determine the positive and negative breakpoints as
well as the slopes Ga and Gb. The main observation is that the slopes Gb in the positive and
negative parts are equal. Furthermore there is a little difference between the breakpoints. This
is due to different saturation points for positive and negative voltages of the used operational
amplifiers.
One of the disadvantages of this measuring method is that the slopes are very sensitive to the total
amplification factor, which consists of the differential amplifier itself times the value of Rm. The
values in table 3.1 are determined using a (ideal) total amplification factor of 100. The theoretical
values for Ga and Gb are −0.7591 [mS] and −0.4096 [mS] respectively.
Another interesting phenomenon is illustrated in figure 3.8. It seems that there is some sort of
hysteresis present in the nonlinear resistor, although this is investigated further in (Criens, 2005;
Wouters, 2005) no specific explanation is found.
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Figure 3.7: Measured characteristic of the nonlinear resistor with a 30 [Hz] sinusoidal input.

Table 3.1: Parameters for the nonlinear resistor.

Parameter Value Parameter Value
Ga -0.7665 [mS] Bp+ 1.81 [V]
G+

b -0.4119 [mS] Bp− -1.75 [V]
G−b -0.4119 [mS]
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Figure 3.8: Measured characteristic of the nonlinear resistor with a 3500 [Hz] sinusoidal input.

3.2.3 Inductor

The theoretical values, based on the used components and (3.9), are 0.0245 [H] for the inductor
and 22.40 [Ω] for the internal resistance R0.
By removing the other jumper a resonance circuit is created, which makes it possible to perform
a frequency response measurement.
The resonance circuit is shown in figure 3.9, where Vin and Vout are measured. Vout is used as
measurement for the current through the circuit. We assume again that the total amplification
factor is equal to 100, which gives the following relation for the total impedance of the resonance
circuit

Z =
Vin

Iin
≈ 100

Vin

Vout
. (3.14)

The theoretical impedance is given by

Z =
(R0 + jωL) 1

jωC2

R0 + jωL + 1
jωC2

+ Rm (3.15)

Z =
C2LRms2 + (L + RmC2R0) s + R0 + Rm

C2Ls2 + C2R0s + 1
. (3.16)

Under the assumption that C2 is known, we can fit a frequency response function and use the
denominator of (3.16) to calculate L and R0. In this way the effect of the amplification factor
is canceled since a gain only affects the nominator. The frequency response function is shown in
figure 3.10 and the values for L and R0 are given in table 3.2.

Table 3.2: Parameters for the inductor.

Parameter Value
L 0.0243 [H]
R0 37.29 [Ω]
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Figure 3.9: Resonance circuit.
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Figure 3.10: Frequency response function.

3.3 Identification using filtering

A popular technique to estimate states (and parameters) in the presence of measurement (and
system) noise is Kalman filtering. Kalman filters for linear systems produce optimal - i.e., the
filter minimizes the variance of the difference between actual and estimated state - unbiased and
consistent estimations of the systems states. Kalman filters can also be applied to nonlinear
systems and are known as Extended Kalman filters. The main drawback of an extended filter is
however that the filter is not anymore optimal in the above sense.

3.3.1 Augmented Continuous-Discrete filter

To identify the state of the double scroll circuit some remarks must be made. The differential
equations are continuous in time, while measurements can only be taken at discrete times. This
means that a continuous model is needed to estimate the states between measurements and a
discrete update law should be used whenever a new measurement is available. This can be done
by using a so-called continuous-discrete Kalman filter.
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3.3.2 Parameters

Besides the states also some parameters are not accurately known, e.g. the slopes of the nonlinear
resistor and the internal resistance R0 of the inductor. The value of the variable resistor R can be
measured, however internal resistances of the print board itself are unknown. Since R is used as
bifurcation parameter we want to know its value as accurate as possible. Therefore this parameter
should be estimated as well.
The nonlinear resistor is characterized by the slopes, Ga, G+

b and G−b and the breakpoints B+
p and

B−p . We assume that the breakpoints are fixed, while the slopes cannot be measured accurately
enough due to uncertainties in the measurement device. Therefore the state x is augmented to
[v1 v2 i G R0 −G−a −G+

b −G−b ]T where G = 1
R .

3.3.3 Algorithm

In this section the filter algorithm, based on (Gelb, 2001), is summarized. We start with a system
and measurement model given by

ẋ(t) = f(x(t), t) + w(t) w(t) ∼ N(0, Q(t)), (3.17)
zk = hk(x(tk)) + vk k = 1, 2, . . . vk ∼ N(0, Rk), (3.18)
tk = k∆t (3.19)

where ∆t is the time between sample k and k + 1. w(t) and vk represents the process and
measurement noise respectively. In absence of information about this noise, it is assumed to be
white noise with zero mean and a normal distribution. The covariance matrices of the process and
measurement noise are Q(t) and Rk. In the ideal case, having a perfect model and no measurement
noise, w(t) and vk are absent.
The state estimation and error covariance propagation are as follows

˙̂x(t) = f(x̂(t), t), (3.20)
Ṗ (t) = F (x̂(t), t)P (t) + P (t)FT (x̂(t), t) + Q(t), (3.21)

where x̂ is the filtered estimate of x and F (x̂(t), t) is the Jacobian matrix defined as

F (x̂(t), t) =
∂f(x(t), t)

∂x(t)

∣∣∣∣
x(t)=x̂(t)

. (3.22)

The covariance matrix P (t) is a symmetric matrix representing an approximation of the true
covariance.
When a new measurement is available the state estimation and error covariance matrix are updated
using the following update laws

x̂k(+) = x̂k(−) + Kk[zk − hk(x̂k(−))], (3.23)
Pk(+) = [I −KkHk(x̂k(−))]Pk(−), (3.24)

Kk = Pk(−)HT
k (x̂k(−))[Hk(x̂k(−))Pk(−)HT

k (x̂k(−)) + Rk]−1, (3.25)

where x̂k(−) is the estimate of x(t) at time tk before measurement zk is taken into account and
x̂k(+) is the estimation at time tk after this measurement. Kk is the gain matrix and I is the
identity matrix. Pk(−) and Pk(+) are the discrete error covariance before and after the update.
Hk(x̂k(−)) is the Jacobian matrix defined as

Hk(x̂k(−)) =
∂hk(x(tk))

∂x(tk)

∣∣∣∣
x(tk)=x̂k(−)

. (3.26)

The following model for the electric circuit is used (see chapter 2)

C1v̇1 = G(v2 − v1)− f(v1)
C2v̇2 = G(v1 − v2) + iL (3.27)
Li̇L = −v2 −R0iL,
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which can be divided into three linear parts by writing out f(v1):

v1 ≥ B+
p (3.28)

C1v̇1 = G(v2 − v1)− (G+
b v1 + (Ga −G+

b )B+
p )

B−p < v1 < B+
p (3.29)

C1v̇1 = G(v2 − v1)−Gav1

v1 ≤ B−p (3.30)

C1v̇1 = G(v2 − v1)− (G−b v1 + (Ga −G−b )B−p )

The advantage of this model, compared to the dimensionless model (2.11), is that a measurement
sample can be used directly, whereas the dimensionless time τ depends on the parameter R, which
is to be estimated.
Since the piecewise linear model consists of three different linear systems the Jacobian of f(x(t), t)
(3.22) is not continuous and a modification is required. There are multiple ways to solve the
Ricatti equation (3.21).
In the next section we introduce an extension of a ’switching’ Kalman filter as presented in (Cruz
and Nijmeijer, 2000; Cruz et al., 2001). Although this filter switches between linear parts it is not
an optimal filter. Three different methods will be used and compared.

3.3.4 Methods

The first method consists of one Ricatti equation. Although the linearization of f(x̂(t), t), see
(3.27), is evaluated at the current state of the system, it gives three different Jacobian matrices
depending on the state v1. This gives a ’jump’ in the Ricatti equation.
Instead of one Ricatti equation, three Ricatti equations can be used to prevent the jump. There
are two ways to solve these equations. One way, method 2, is to solve all three equations at the
same time and chose the right update gain vector, which depends on the state v1, to update the
state. The Ricatti equations are updated using the three different gain vectors. The problem here
is however that the linearization of f(x̂(t), t) is not a good approximation for two of the three
regions. Therefore the update for two Ricatti equations is not correct.
The other way, method 3, is to integrate the system and just one Ricatti equation between two
samples. Then update this Ricatti equation and holding the other two at their previous values.
Now the linearization of f(x̂(t), t) is correct, but the Ricatti equations are not continuous in time
anymore.

3.3.5 Results

To compare the three methods one data set is used and the settings for Q and Rk are kept
constant. The results can be seen in figure 3.11. In this figure a part of a measured time signal of
v1 together with the errors between measurement and estimation for the three methods is shown.
In the unstable area, the area between the two horizontal lines in the measured time signal, the
error remains large compared to the stable regions. In table 3.3 the RMS value of the error is
given. It can be seen that the three Ricatti equations perform a little bit better. For the filter,
where one Ricatti equation is solved between two samples, the obtained parameters are presented
in table 3.4.
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3.4 Comparison filters for measurement and process noise

3.4.1 Measurement noise

To compare the two filters with the three Ricatti equations we investigate the influence of different
levels of measurement and process noise. For the measurement noise a diagonal matrix Rk =
diag([R1 R2]) is used. To compare the influence different values for Rk are evaluated ranging
from 1−8 till 1−4. The comparison is made by using the 2 and infinity norm of the error between
measurement and prediction of v1. It can be seen in the figure 3.12 that if Rk is too small the
measurements are not considered reliable, also the filter is not stable anymore.
When Rk is too big, the filter tries to follow all measurement samples and the model information
is ignored. There seems to be an optimum around Rk = 1−6. For all simulations the process noise
is chosen as Q = diag([1−5 1−5 1−5 0 0 0 0 0]).

3.4.2 Process noise

To see the influence of process noise on the differential equations Q is varied, while the process
noise for the parameter equations is set to zero. Rk is chosen as Rk = diag([1−6 1−6]) in this case.
It follows that if there is too much process noise the model is not considered reliable and again
the filter tries to follow every measurement sample.

3.5 Discussion

The described identification methods can be used to obtain values for the parameters. Several
simple experiments are used to determine parameters of different parts of the circuit. Further
three Kalman filters are used to estimate parameters based on measurements of the whole circuit.
However if the obtained parameters from measurements or the Kalman filter are used in a nu-
merical simulation, the solution always differs from experimental data. There are several reasons
why this happens. We know that system (2.1) is a chaotic system and is therefore sensitive to
parameter values. The initial condition of the current is unknown, which also plays an important
role in the final trajectory and the tolerances of the used solver cause unwanted rounding errors.
An illustrative example is visualized in figure 3.14. To give an explanation of the radical difference
in figure 3.14 we take a closer look at the experiment and the Kalman filter. If we look at one
period of the periodic solution, see figure 3.15, it can be seen that the error in the two outer
regions is relatively small compared to the error in middle region, especially when the trajectory
goes from left to right or visa versa.
However there is always a nonzero error and this means that trajectories will always diverge from
a measured trajectory if we do not use measurement data to correct the computed numerical
trajectory.
The closed orbit shown in figure 3.14 is not robust to parameter variations and therefore it is
practically impossible to obtain this periodic solution by numerical integration of system (2.1).
The result is the trajectory as shown in figure 3.14 (c).
So we need measurement information to follow experimental trajectories and therefore we end
this chapter with some remarks about the Kalman filter. It is already mentioned that the error
in the two outer regions is smaller than the error in middle region. This indicates that results
obtained by the Kalman filter might improve if the model for the region B−p < v1 < B+

p is
changed. There is a very small current offset at zero volt in the measured nonlinear resistor, see
figure 3.7, which is not modeled. Further we approximated the location of the breakpoints by
averaging several experiments and used this as the switching between the three regions. A filter
that is capable of estimating the breakpoints (see (Santoboni and Nijmeijer, 2001)) could improve
the results as well.
Finally, and probably the most important, the dynamic behavior of the electric components is
neglected in the used model (3.27). The influence of the operational amplifiers is already pointed
out in (Kennedy, 1992). This can be investigated further by performing circuit simulations, such
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as SPICE (Quarles et al., 1993).
In the next chapters we will focus more on the qualitative behavior instead of the quantitative
behavior.

Table 3.3: Root mean square values of the error signals.

Method 1 Method 2 Method 3
0.0464 [V] 0.0320 [V] 0.0262 [V]
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Figure 3.11: Experimental data and error between measurement and estimation of v1 for the three
methods. The first error is for one Ricatti equation. The second error is obtained by solving all
three Ricatti equations at once. The last error plot is obtained by solving one Ricatti equation
between two samples.
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Table 3.4: Parameters obtained by Kalman filter, std stands for the standard deviation.

Parameter Mean value std
R0 25.70 [Ω] 0.20 [Ω]
Ga -0.7385 [mS] 0.0049 [mS]
G+

b -0.4018 [mS] 0.0013 [mS]
G−b -0.4020 [mS] 0.0024 [mS]
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Figure 3.12: Influence of measurement noise levels.
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(c) Simulation.

Figure 3.14: Difference between experiment, Kalman filter and simulation.
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Figure 3.15: ♦ indicate measured data points and ∗ indicate filtered data.
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Chapter 4

Experiments

With the electronic realization as described in the previous chapter several experiments are con-
ducted. In this chapter the qualitative numerical results obtained in chapter 2 are validated
experimentally. For the experiments the same approach as in chapter 2 is followed. This means
we start at R ≈ 2000 [Ω] and then decrease the resistor value. The value of R is obtained by the
number of rotations of the potentiometer and using (3.10).

4.1 Single scroll trajectories

One of the disadvantages of the setup is that is not possible to choose initial conditions. The
setup is initialized when the voltage supply of the operational amplifiers is turned on. Although
the initial conditions are random, often the voltage across capacitor C1 is negative. Therefore
we present the single scroll solutions only for negative voltages v1. However all solutions are also
observed for positive v1.
The bifurcation point at which the stable equilibrium point loses its stability occurs at R ≈ 1902 [Ω].
In figure 4.1 projections of v2 versus v1 can be seen. In these figures the trajectories intersect with
each other due to the projection of the three dimensional state space on the v1 − v2 plane. The
projection of the period three limit cycle is probably the most interesting, since this is a strong
indication that the experimental setup is capable of generating chaos.
The ’birth’ of the double scroll occurs at R ≈ 1823 [Ω]. This is visualized in figure 4.1 (e). In this
experiment only one of over two hundred oscillations takes place in the positive part of the v1−v2

plane.

4.2 Double scroll trajectories

When we further decrease the resistor value, the double scroll is observed. In figure 4.2 several
periodic solutions are shown. The so-called hole filling trajectory is also experimentally observed
for R ≈ 1772 [Ω].
Another special trajectory occurs at R ≈ 1542 [Ω]. To make that more clear the measured data
for this experiment is used in the described Kalman filter to obtain parameter values. With the
identified parameters the 1D Poincaré map can be calculated.
This is done by using four different time series in the Kalman filter. For the second iteration the
final parameter estimates of the first time series are used as initial conditions. After the fourth
iteration the parameter estimates, see table 4.1, are used to compute the 1D Poincaré map. It
follows from this map that the trajectory is related to the homoclinic orbit. This homoclinic orbit
is another confirmation that the experimental setup is a chaotic system.
It can also be seen in figure 4.4 that this happens just before the double scroll collides with the
unstable closed orbit. If the resistor value is decreased further, the trajectory is not bounded
by the attractor anymore and v1 exceeds the saturation level of the operational amplifiers. The
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negative resistance becomes positive (passive) and the resulting trajectory is a large stable limit
cycle, see chapter 2.
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(d) R ≈ 1843 [Ω].
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(e) ’Birth’ of the double scroll for R ≈ 1823 [Ω].

Figure 4.1: Projections of v2 versus v1 for different values of R.
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(b) R ≈ 1608 [Ω].
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(c) R ≈ 1588 [Ω].
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(d) R ≈ 1581 [Ω].
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(e) R ≈ 1564 [Ω].
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(f) R ≈ 1558 [Ω].

Figure 4.2: Projections of v2 versus v1 for different values of R.
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Table 4.1: Parameters used to compute the 1D Poincaré map.

Parameter Value Parameter Value
C1 10.90 [nF] C2 97.93 [nF]
Ga -0.7333 [mS] G+

b -0.4005 [mS]
R 1593 [Ω] R0 25.64 [Ω]
L 24.39 [mH] B+

p 1.8191 [V]
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Figure 4.3: Hole filling orbit for R ≈ 1772 [Ω].

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

v
1
 [V]

v 2 [V
]

(a) Homoclinic orbit for R ≈ 1542 [Ω].
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Figure 4.4: Homoclinic orbit and estimation of the Poincaré map.



Chapter 5

Synchronization

As last part of this thesis synchronization of multiple Chua circuits is investigated.
With synchronization we mean that two or more circuits follow the same trajectory. This might
seem strange for chaotic systems, since trajectories of two identical systems with nearly identical
initial conditions diverge exponentially. However it is possible for chaotic systems to synchronize
with each other under certain conditions.
In this chapter two different methods are used, master-slave synchronization and mutual syn-
chronization. In the case of mutual synchronization an article, which has been written during this
graduation project, is included. This article is accompanied with additional numerical simulations.

5.1 Master-slave synchronization

Synchronization of chaotic systems can be found in (Pecora and Carroll, 1990; Carroll and Pecora,
1991). The general scheme for synchronization here is to take a driving system, create a subsystem
and drive this and a duplicate of this subsystem, called a response system, with signals from the
drive system. A related method is master-slave synchronization. This method consists of a master
and a slave system, which follows the master. This can be obtained if we take two identical systems

ẋ1 = F(x1)
ẋ2 = F(x2)

(5.1)

and apply an unidirectional coupling to the second system

ẋ1 = F(x1)
ẋ2 = F(x2) + f(x1,x2).

(5.2)

Asymptotic synchronization occurs when limt→∞ |x1(t) − x2(t)| = 0. This can be achieved by
using continuous feedback (Ott et al., 1990; Pyragas, 1992). A schematic overview can be seen in
figure 5.1. Consider (5.2) where some of the state variables can be measured. The chaotic systems
are unidirectionally coupled in such a way that the difference between the signals x1i and x2i is
used as a linear control signal, i.e.

f(x1,x2) = K(x1i − x2i), (5.3)

which is applied to the second system as a negative feedback. The parameter K > 0 is an
adjustable gain. An important feature of (5.3) is that it does not change the solution of (5.1).

5.1.1 Numerical results

We use the same parameters as in table 2.1 and choose R equal to 1775 [Ω] such that the circuit
operates at the double scroll attractor. The following master-slave configuration, as described in
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Figure 5.1: Schematic overview of master-slave synchronization using feedback.

(Kapitaniak, 2000), is used:

C1v̇11 = G(v12 − v11)− f(v11)
C2v̇12 = G(v11 − v12) + iL1

Li̇L1 = −v12 −R0iL1

C1v̇21 = G(v22 − v21)− f(v21) + K1(v11 − v21) (5.4)
C2v̇22 = G(v21 − v22) + iL2 + K2(v12 − v22)
Li̇L2 = −v22 −R0iL2

with Ki = 1
Rci

the coupling strength and Rci are variable resistors, see figure 5.2.
The asymptotic synchronized situation is defined as

lim
t→∞

|x1(t)− x2(t)| = 0, (5.5)

with xi = [v1i v2i iLi].

First synchronization between identical systems is considered. We consider coupling through
K1 or K2 respectively. It can be seen in figure 5.3 that synchronization occurs if Rc1 does not
exceed 4100 [Ω]. The upper bound for synchronization using K2 is approximately Rc2 = 2500 [Ω].
If Ki is increased the circuits synchronize in a shorter time period.
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Figure 5.2: Master-slave synchronization for Chua circuits with unidirectional coupling.
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Figure 5.3: Rc1 = 4100 Ω. Synchronization error for identical systems.
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Figure 5.4: Rc2 = 2500 Ω. Synchronization error for identical systems.

5.1.2 Non-identical systems

In practice the circuits are build using standard components and due to tolerances of these com-
ponents every circuit is slightly different. Therefore perfect synchronization is not possible and we
introduce a form of practical asymptotic synchronization as

lim
t→∞

|x1(t)− x2(t)| ≤ δ, (5.6)

for some fixed, preferably small, δ > 0.
To simulate the effect of component tolerances some of the parameters are changed, see table 5.1.
The results are shown in the figures 5.5 and 5.6.
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Table 5.1: Changed parameters for system 1 and 2.

System 1 Value System 2 Value
C1 10.90 [nF] C1 10.80 [nF]
C2 97.93 [nF] C2 99.60 [nF]
R 1775 [Ω] R 1778 [Ω]
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Figure 5.5: Rc1 = 10 Ω. Synchronization error for different systems.
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5.1.3 Experimental results

For the experiments the value of the variable resistor is fixed for both systems at 1775 [Ω]. In the
first experiment both circuits operate as free systems. Although the projections seems similar, see
figure 5.7, there is no synchronization. This is shown in figure 5.8. If there is synchronization, it
can be seen as a diagonal line in the phase portrait.
In the second experiment the upper bound for Rc1 is determined, while for the third experiment
Rc1 is chosen as low as possible to create the strongest coupling factor. The same procedure is
followed for Rc2.
It can be seen that synchronization occurs for a larger range of Rc1 than Rc2 and the synchro-
nization error is also smaller. Despite the different values for the resistors again the results are
qualitative comparable with the obtained simulation results.
Another interesting phenomenon can be seen in figure 5.12. It seems that there occurs intermit-
tency. Although most of the time the slave is synchronized, it bursts out of synchronization for
very short time intervals. This occurs also in numerical simulations if the coupling factor Rc2

exceeds 2500 [Ω]. Finally we remark that if the coupling strength is decreased the systems start to
desynchronize and above a certain threshold value the slave is no longer bounded by the attractor.
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Figure 5.7: Projections of both systems without coupling.
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Figure 5.8: Synchronization phase portrait and error without coupling.
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Figure 5.9: Synchronization phase portrait and error for Rc1 ≈ 3288 [Ω].
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Figure 5.10: Synchronization phase portrait and error for Rc1 ≈ 2 [Ω].
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Figure 5.11: Synchronization phase portrait and error for Rc2 ≈ 200 [Ω].
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Figure 5.12: Synchronization phase portrait and error for Rc2 ≈ 2 [Ω].

5.2 Mutual synchronization

In this section a different synchronization scheme is applied, instead of a unidirectional coupling
(5.2) we use a bidirectional coupling

ẋ1 = F(x1) + f(x1,x2)
ẋ2 = F(x2) + f(x1,x2).

(5.7)

A schematic overview can be seen in figure 5.13. Besides synchronization of two circuits we
also investigate synchronization of multiple circuits. When a network of systems is considered it is
possible to achieve so-called partial synchronization in the network. Under partial synchronization
some systems in the network synchronize, while other do not. Recently partial synchronization in
networks of identical systems is receiving particular interest in literature (Hasler et al., 1998; Zhang
et al., 2001; Pogromsky et al., 2002). In the following article we present obtained experimental
synchronization results for different topologies, with a maximum of four Chua circuits.

K
+

Chaotic system 1

Chaotic system 2

x1

x2

-

x1i

x2i

−1

Figure 5.13: Schematic overview of mutual synchronization using diffusive coupling.
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1. INTRODUCTION

Synchronization of coupled dynamical systems re-
ceives much attention in literature. One of the
reasons for this is that synchronization can be
found in several fields such as nature (Strogatz
and Stewart, 1993), brain dynamics (Gray, 1994)
and robotics (Nijmeijer and Rodrigues-Angeles,
2003). Also, the potential use of synchronization
in communication and coordination forms a ma-
jor reason for this interest. Recently partial syn-
chronization in networks of identical systems is
receiving particular interest. Some examples of
partial synchronization can be found in (Hasler
et al., 1998; Zhang et al., 2001; Pogromsky et
al., 2002).
Although there are many papers describing global
synchronization of a network of coupled Chua
circuits (Wu and Chua, 1995; Mat́ıas et al., 1997;
Sánchez et al., 2000), less attention sofar has been
devoted to experimental results for bidirectional
coupled systems. In this paper attention will be
drawn to partial synchronization of Chua circuits.
Partial synchronization is defined as the situation

where some circuits synchronize with each other,
while others do not. It is shown that under certain
conditions it is possible to obtain partial syn-
chronization of diffusively coupled Chua circuits.
An experimental setup consisting of four coupled
Chua circuits is build to show the possibility of
partial synchronization. The experimental results
obtained qualitatively confirm simulation results.
The remainder of this paper is organized as fol-
lows. In section 2 some preliminaries about the
used notation are given. Further passive and con-
vergent systems are described and the conditions
for partial synchronization are stated. Section 3
deals with the experimental setup that is used.
In section 4 and 5 synchronization of two and
three diffusively coupled systems is shown, while
in section 6 global and partial synchronization of
four diffusively coupled systems is presented and
discussed. Finally conclusions are drawn in section
7.
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2. PRELEMINARIES

First a mathematical description for a network of
coupled systems is introduced by adopting the
notation used in (Pogromsky et al., 2002). A
general system description for k identical systems
is given by

ẋi = f(xi) + Bui, yi = Cxi (1)

where f is a vector field, i = 1, . . . , k, xi(t) ∈ Rn

is the state of the ith system, ui(t) ∈ Rm and
yi(t) ∈ Rm are the input and output of the ith
system, while B, C are matrices of appropriate
dimension.
The k systems are coupled through linear outputs

ui = −γi1(yi−y1)−γi2(yi−y2)−· · ·−γik(yi−yk).
(2)

By defining the symmetric k × k matrix Γ as

Γ =




k∑

i=2

γ1i −γ12 · · · −γ1k

−γ21

k∑

i=1,i 6=2

γ2i · · · −γ2k

...
...

. . .
...

−γk1 −γ2k · · ·
k−1∑

i=1

γ1i




, (3)

the collection of k systems, with the matrix Γ and
feedback ui, can be rewritten as

ẋ = F(x) + (Ik ⊗B)u, y = (Ik ⊗C)x (4)

with the feedback

u = −(Γ⊗ Im)y (5)

where x = col(x1, . . . ,xk), F(x) = col(f(x1),
. . . , f(xk)) ∈ Rkn, y = col(y1, . . . ,yk) and
u = col(u1, . . . ,uk) ∈ Rkm. The notation
col(x1, . . . ,xk) stands for the column vector com-
posed of the vectors x1, . . . ,xk. The notation ⊗
stands for the Kronecker product.

A system

ẋ = f(x,u), y = h(x) (6)

is called passive, see (Willems, 1972), if the fol-
lowing inequality holds

d

dt
V (x) =

∂V (x)
∂x

f(x,u) ≤ yT u (7)

where V (x) is a nonnegative function (storage
function) defined on Rn, for which V (0) = 0. If
the dissipation inequality (7) is satisfied only for
x lying outside some ball

V̇ (x,u) ≤ yT u−H(x) (8)

where the function H : Rn → R is nonnegative
outside some ball

∃ρ > 0, |x| ≥ ρ ⇒ H(x) ≥ 0, (9)

then the system is semipassive, see (Pogromsky et
al., 2002).

Consider a system

ż = q(z, w(t)), (10)

with z ∈ Rl, driven by an external signal w(t)
taking values from a compact set. The system (10)
is called convergent if for any bounded input w(t)
the solution of (10) converges to a solution zw(t),
in other words, the solution of (10) will forget their
specific initial condition. If there exists a positive
definite symmetric l × l matrix P such that all
eigenvalues λi(Q) of the symmetric matrix

Q(z, w) =
1
2

[
P

(
∂q
∂z

(z, w)
)

+
(

∂q
∂z

(z, w)
)T

P

]

(11)
are negative and separated from zero, such that

λi(Q(z, w)) ≤ ε < 0, (12)

with ε > 0 and i = 1 . . . l for all z, w ∈ Rl, then
system (10) is convergent, cf (Pavlov et al., 2004).

If the network contains repeating patterns, the
permutation of some elements of Γ leave the
network invariant. Such a permutation matrix Π
is a symmetry for the network if Π commutes
with Γ, i.e. ΠΓ−ΓΠ = 0. A permutation matrix
Π commuting with Γ defines a linear invariant
manifold of the closed loop system (4) and (5) as

ker(Ikn −Π⊗ In). (13)

The stability of such manifolds depends on the
asymptotic stability of sets. Due to converse Lya-
punov theorem, e.g. (Lin et al., 1996), the asymp-
totic stability of a set is equivalent to the existence
of a scalar storage function V , which is zero only
on the set and decays along the trajectories other-
wise. In the context of the coupled systems (1, 2)
a Lyapunov function should be found as a sum of
two functions. The first function depends on the
input-output relations of the systems (1), while
the second function depends on the interacting
due to the coupling of systems.
Under the assumption that the matrix CB is non-
singular (and positive definite) a linear coordinate
transformation xi → (yi, zi) exists such that

żi = q(zi,yi), ẏi = g(zi,yi) + CBui, (14)

where zi ∈ Rn−m and q and g are vector func-
tions. Then the stability of the manifolds given
by (13) is determined by the following theorem.

Theorem 1 (Pogromsky et al., 2002). Let λ′

be the minimal eigenvalue of Γ under restriction
that the eigenvectors of Γ are taken from the set
range(Ik −Π). Suppose that:

1. Each individual system (1) is strictly semi-
passive with respect to the input ui and output
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yi with a radially unbounded storage function
V (xi,ui).
2. There exists a positive definite matrix P such
that inequality (12) holds for some ε > 0 for the
matrix Q defined as in (11) for q as in (14).
Then all solutions of the diffusive cellular network
(4) and (5) are ultimately bounded and there
exists a positive λ̄ such that if λ′ > λ̄ the set
ker(Ikn −Π ⊗ In) contains a globally asymptoti-
cally stable compact subset.

3. SETUP

An experimental setup consisting of a network of 4
Chua circuits is used, shown in figure 1. Consider

Rc0

Rc0 Rc1Rc1

1

L

R0

C2 C1

R

Nr

2

L

R0

C2 C1

R

Nr

3

L

R0

C2 C1

R

Nr

4

L

R0

C2 C1

R

Nr

Fig. 1. Schematic layout of four symmetrically
coupled Chua circuits.

the well known system description of a single Chua
circuit (Matsumoto, 1984)

C1ẋi1 = G(xi2 − xi1)− f(xi1)

C2ẋi2 = G(xi1 − xi2) + xi3 (15)

Lẋi3 =−xi2 −R0xi3

with G = 1
R and the function f(xi1) defined as

Gbxi1 + 1
2 (Ga−Gb)(|xi1 +Bp|− |xi1−Bp|). (16)

In these equations the variables xi1 and xi2 are the
voltages across the capacitors, C1 and C2, xi3 is
the current flowing through the inductor L, which
has an internal resistance R0. Ga and Gb are the
conductances of the piecewise characteristic for
|xi1| < Bp and |xi1| ≥ Bp respectively. Bp is
voltage of the breakpoint. Measurements of xi1

and xi2 are available. For the coupling between
systems the matrices B and C are as follows

B = [1 0 0]T C = [1 0 0]. (17)

The coupling strength between systems is con-
trolled by four variable resistors. The nonlin-
ear resistor, Nr, in the circuits is build with

operational amplifiers (AD712JN) as described
in (Kennedy, 1992). The nominal values of the
components can be found in table 1, however
due to tolerances of the components each circuit
is slightly different. Therefore synchronization in
the sense that |xi(t) − xj(t)| = 0 is not pos-
sible and practical synchronization is defined as
|xi(t)− xj(t)| ≤ δ, for some fixed δ > 0.

Table 1. Nominal values for each circuit.

Component Value

C1 10 [nF]
C2 100 [nF]
L 22 [mH]
R0 22 [Ω]
R 1.5-2.0 [kΩ]
Ga -0.758 [mS]
Gb -0.409 [mS]
Bp 1.75 [V]

4. TWO SYSTEMS

Before synchronization of four systems is consid-
ered, the threshold value for synchronization of
two circuits is determined, i.e., the minimal value
K such that practical synchronization occurs. The
two circuits are diffusely coupled with a variable
resistor, Rc, which gives the coupling constant K
as 1

Rc
and a coupling matrix

Γ1 =
[

K −K
−K K

]
. (18)

The variable resistor R is set to 1775 [Ω] on both
circuits, so the circuits operate on the double
scroll attractor. Synchronization is visualized by
the phase portrait of x11 and x21, shown in figure
2(b). The value of Rc for the synchronization
threshold is around 3400 [Ω] with δ = 0.15 [V ].

Remark: If the value Rc is increased, desynchro-
nization occurs and at about Rc = 10 [kΩ] the
trajectories are no longer bounded. A possible
explanation for this phenomena is the following.
A single circuit (15), with u = 0, can have un-
bounded trajectories. No storage function V (x)
can be found such that inequality (8) is satisfied
to prove semipassivity for system (15). Therefore
it is not guaranteed that the solutions are ul-
timately bounded. This may cause the bursting
phenomenon above 10 [kΩ]. For Rc = 30 [kΩ] and
above the current through the coupling resistor
becomes negligible such that both circuits operate
as free systems and the trajectories of both are
bounded by their attractors again.

5. THREE SYSTEMS

When the network is expanded by adding a cir-
cuit, see figure 3, the following coupling matrix Γ
is obtained
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Fig. 2. Experimental synchronization for Rc =
3430 [Ω].

Γ2 =




2K −K −K
−K 2K −K
−K −K 2K


 . (19)

The coupling constant needed to globally syn-

K
1 2

K

3

K

Fig. 3. Layout of three coupled systems.

chronize this structure can be estimated using the
conjecture stated in (Wu and Chua, 1996):

µ1α1 = µ2α2 (20)

where µi, i = 1, 2 is the smallest nonzero eigen-
value of the coupling matrix Γi and αi the cou-
pling coefficient. Although it has been pointed out
in (Pecora, 1998) that this conjecture is in general
wrong, it holds in this particular case.
The synchronization threshold for three systems,
using (20), requires a resistor value of 5100 [Ω].
The threshold value in experiments is found to be
4950 [Ω], confirming that three systems, coupled
in a ring structure, synchronize with a lower cou-
pling constant K.

6. FOUR SYSTEMS

Four systems are symmetrically coupled in a ring
structure with two coupling constants K0 and K1.
With the proposed coupling, as shown in figure 4,

K0

1 2

K0

K1 K1

4 3

Fig. 4. Layout of four coupled systems.

the coupling matrix Γ can be written as follows

Γ3 =




K0 + K1 −K0 0 −K1

−K0 K0 + K1 −K1 0
0 −K1 K0 + K1 −K0

−K1 0 −K0 K0 + K1




(21)
If K0 = K1 = K the smallest nonzero eigenvalue
of Γ3, µ3, is equal to the smallest eigenvalue of Γ1,
and the ring structure should synchronize with Rc

around 3400 [Ω]. In figure 5 global synchronization
is shown for Rc = 3200 [Ω] again with δ =
0.15 [V ].

With the symmetric coupling matrix (21) there
are four permutation matrices Π commuting with
Γ3

Π1 =
[
A O
O A

]
, Π2 =

[
O I2

I2 O

]

Π3 =
[
O A
A O

]
, Π4 = I4 (22)

where

A =
[

0 1
1 0

]
, O =

[
0 0
0 0

]
. (23)

Three linear invariant manifolds associated with
(22) exist independently of systems (1) and are
given by

A1 = x ∈ R4n : x1 = x2,x3 = x4 (24)

A2 = x ∈ R4n : x1 = x3,x2 = x4 (25)

A3 = x ∈ R4n : x1 = x4,x2 = x3. (26)

The intersection of any two of these mani-
folds describes the full synchronization manifold
(x1 = x2 = x3 = x4). There are two possible ways
to global synchronization depending on the ratio
K0 and K1

A1 →A1 ∩ A2 (27)

A3 →A3 ∩ A2. (28)

Theorem 1, to prove stability of these manifolds,
depends on two conditions. It is already pointed
out that the first condition is not satisfied, since
system (15) is not semipassive. However on an
experimental setup the solutions are normally
bounded by the attractor.
With x1 chosen as the external signal in (14) and
z = [x2 x3]T and the parameter values in table
1, it is possible to find a matrix P such that (12)
is satisfied and therefore system (15) is conver-
gent. Hence it is expected that these manifolds
are locally stable on the Chua circuits as long as
the solutions remain bounded by the attractor.
This is confirmed as shown in figures 6 and 7.
In figure 6 it can be seen that the circuits one
and two and also three and four are synchronized
with a coupling constant K0 = 1

Rc0
. Circuits two
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and three, coupled with K1 = 1
Rc1

, are, as well as
one and four, not synchronized. This corresponds
to manifold A1 (24). In figure 7 the situation
corresponding to manifold A3 (26) is depicted.
These manifolds are robust to parameter variation
of the variable resistors R of the circuits. However
if the coupling resistances are increased the same
phenomena with two coupled systems occurs, i.e.,
the trajectories are no longer bounded. And again
above a second threshold the four circuits operate
as free systems. All these phenomena are summa-
rized in a stability diagram shown in figure 8.

−10 −5 0 5 10
−10

−5

0

5

10

x
11

x 21

−10 −5 0 5 10
−10

−5

0

5

10

x
21

x 31

−10 −5 0 5 10
−10

−5

0

5

10

x
31

x 41

−10 −5 0 5 10
−10

−5

0

5

10

x
41

x 11

Fig. 5. Phase portraits for global synchronization
with Rc0 = Rc1 = 3200 [Ω].
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Fig. 6. Phase portraits for partial synchronization
with Rc0 = 3200 and Rc1 = 9300.

This stability diagram can also be obtained by nu-
merically integrating four Chua systems (15), tak-
ing the tolerances of the components into account.
The presented experimental results are qualitative
comparable with numerical simulations. As an il-
lustrative numerical example partial synchroniza-
tion is considered. For the individual systems the
capacitors and variable resistor are chosen as in
table 2, while the other parameters of system (15)
are the same as in table 1. The coupling constants
K0 and K1 are 1

8500 and 1
3200 respectively. In figure

9 the error signals xi1 − xj1, i, j = 1, 2, 3, 4 are
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Fig. 7. Phase portraits for partial synchronization
with Rc0 = 9300 and Rc1 = 3200.
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Fig. 8. Stability diagram.

shown. After the transients are vanished systems
two and three synchronize as well as one and four.
This simulation result matches with the experi-
mental partial synchronization as shown in figure
7.

Table 2. Parameter values for individual
circuits.

System Component Value

1 C1 10.90 [nF]
C2 97.93 [nF]
R 1775 [Ω]

2 C1 10.80 [nF]
C2 99.60 [nF]
R 1778 [Ω]

3 C1 10.98 [nF]
C2 101.90 [nF]
R 1770 [Ω]

4 C1 10.65 [nF]
C2 100.50 [nF]
R 1780 [Ω]
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7. CONCLUSIONS

In this paper experimental partial synchronization
of diffusively coupled Chua circuits is presented.
With the experimental setup it is impossible to
achieve a zero synchronization error due to tol-
erances of the electrical components. Therefore a
form of practical synchronization is introduced to
be able to specify synchronization of two systems.
Besides global synchronization of two circuits, a
bursting phenomena is observed if the diffusive
coupling between two systems is above a certain
threshold value. At this point the trajectories are
no longer bounded by the double scroll attractor.
In the case where four circuits are symmetrically
coupled it shown that partial synchronization is
possible. The stability of the linear invariant man-
ifolds, describing this partial synchronization, can
not be proven globally. However the manifolds are
locally stable if the solutions remain bounded by
the double scroll attractors.

REFERENCES

Gray, C.M. (1994). Synchronous oscillations in
neuronal systems: mechanisms and functions.
J. Comput. Neurosci. 1, 11–38.

Hasler, M., Y. Maistrenko and O. Popovych
(1998). Simple example of partial synchro-
nization of chaotic systems. Phys. Rev. E
58(5), 6843–6846.

Kennedy, M.P. (1992). Robust Op Amp realiza-
tion of Chua’s circuit. Frequenz 46(3-4), 66–
80.

Lin, Y., E.D. Sontag and Y. Wang (1996). A
smooth converse lyapunov theorem for robust
stability. SIAM J. Control Opt. 34, 124–160.
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5.2.2 Additional simulations

As an addition to this article some numerical results are included to complement the presented
experimental results. These simulations are carried out for the situation of the four diffusively
coupled systems.
The stability diagram, see fig. 8 in the article, is used as a guideline for the simulations. We
consider the second partial synchronized and the full synchronized situation. Further the different
situations for the unsynchronized state are given.
In figure 5.14 the second partial synchronization is shown. This corresponds to the situation that
x1 = x2 6= x3 = x4. Full synchronization can be seen in figure 5.15.
In the case of weak coupling three situations exist. If the coupling resistances are increased the
circuits first desynchronize, then the trajectories grow unbounded and finally the resistance is so
high that the current is negligible and the circuits operate as it are free systems.
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Figure 5.14: Synchronization error for Rc0 = 3200 [Ω] and Rc1 = 8500 [Ω].
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Figure 5.15: Synchronization error for Rc0 = Rc1 = 3200 [Ω].
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Figure 5.16: Synchronization error for Rc0 = Rc1 = 8500 [Ω].
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Figure 5.17: Synchronization error for Rc0 = Rc1 = 20000 [Ω].
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Figure 5.18: Synchronization error for Rc0 = Rc1 = 70000 [Ω].
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Chapter 6

Conclusions and recommendations

As final part of this thesis conclusions are drawn and recommendations for future research are
presented.

6.1 Conclusions

In this thesis the complex behavior of multiple hybrid chaotic systems has been investigated. This
objective has been achieved by analyzing multiple Chua circuits. The objective has been divided
into three main aspects and conclusions will be drawn accordingly.

6.1.1 Analysis of a single Chua circuit

The Chua circuit is a complex system capable of generating bifurcation and chaos phenomena. The
nonlinearity of the circuit is given by a piece-wise linear characteristic, which consists of three linear
parts. The dynamic behavior is analyzed by looking at the stability properties of the equilibria
and a 2D Poincaré map is derived to explain the bifurcations. This complex Poincaré map is
approximated by a simpler 1D Poincaré map, which can be calculated for any given parameter
set. The qualitative behavior of the Chua circuit can be visualized by iterating this 1D Poincaré
map, without actual integration of the differential equations. With the 1D Poincaré map the single
scroll and ’birth’ and ’death’ of the double scroll trajectories are explained.
To classify a system as chaotic it has to satisfy certain properties. We showed that these conditions
can be fulfilled and therefore we can conclude that a Chua circuit is a chaotic system.

6.1.2 Development and comparison with experimental results

To compare the obtained numerical results with experimental results a new experimental setup
has been designed. This resulted in a small portable setup with some additional advantages to
previous designs. The circuit can be divided into two subsystems to measure the nonlinear resistor
or a resonance circuit, consisting of the inductor, separately. Further data acquisition devices or
other circuits can be easily connected.

To identify the parameters of the experimental setup two identification methods are used. First
the parameters are determined by experiments of the separate subsystems and secondly three
different Kalman filters are developed and compared.
With the obtained parameters numerical simulations are carried out to compare the results with
experiments. However if the obtained parameters from measurement identification or the Kalman
filters are used in a numerical simulation, without using measurement data, the solution always
differs from experimental data. There are two important reasons for this.
Although all the experimental trajectories are qualitatively comparable with numerical results,
there is a quantitative difference. This difference is also present if we compare a measured single
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limit cycle with a filtered result obtained by a Kalman filter, which indicates that the used model
in the Kalman filter is not correct.
This is caused by the assumptions we made on the location of the breakpoints and the fact the
dynamic behavior of the electric components is neglected.
Secondly if we are able to develop an exact model, it is still impossible to obtain the same trajec-
tory when the circuit generates a chaotic time signal. We can only measure with a finite precision
and a numerical solver causes unwanted rounding and truncation errors. Due to the sensitivity of
initial conditions the trajectories will always diverge from each other.

6.1.3 Synchronization of multiple circuits

As last part of this thesis we considered two synchronization methods, master-slave synchroniza-
tion and mutual synchronization.

In the case of master-slave synchronization two Chua circuits, operating at the double scroll
attractor, are unidirectionally coupled. This is achieved by applying a negative feedback to the
slave system. Two different feedback signals are considered. We used either the voltage across the
capacitor in parallel with the nonlinear resistor or the voltage across the capacitor in parallel with
the inductor to create the feedback signal, state one or two respectively.
To be able to specify asymptotic synchronization of non-identical systems we introduced a form
of practical synchronization. This is done because one of the drawbacks of the experimental setup
is that it is impossible to achieve a zero synchronization error due to tolerances in presumably
identical electrical components of the circuits.
It followed from both simulations and experiments that synchronization is possible. A smaller
synchronization error is obtained if the coupling strength is increased and the error is also smaller
if the first state is used to compose the feedback signal.
Besides synchronization we also observed intermittency when the second state is used in the feed-
back signal.

In the case of mutual synchronization the circuits are diffusively coupled using the first state.
First synchronization of two systems is considered. Again by increasing the coupling strength the
synchronization error decreases. However if the coupling strength is decreased the systems starts
to desynchronize and above a certain threshold value a bursting phenomenon is observed and the
trajectories are no longer bounded by the attractor. If a second threshold is crossed, the coupling
is too weak to synchronize the circuits and they operate as free systems.
Secondly we looked at synchronization in a network of four symmetrically coupled Chua circuits.
In this case there are three linear invariant manifolds, corresponding to a partial synchronized
situation. Two of these manifolds can be made locally stable if the trajectories remain bounded
by the double scroll attractors. Global stability is not obtained because a Chua circuit is not
(semi)passive, which can result in unbounded trajectories. However on the experimental setup the
solutions are normally bounded by the attractor. Therefore by altering the coupling strength one
of the manifolds can be made locally stable and as a result partial synchronization is experimen-
tally observed. These experimental observations are confirmed by performing several simulations.

To achieve synchronization of chaotic dynamical systems several aspects play a role. The way
of coupling and the coupling strength are two important factors for experimental synchronization
of non-identical systems. The systems’ input-output relations can be used to prove (semi)passivity
of the system, which guarantees bounded solutions.
If a dynamical system, driven by a bounded external signal, is convergent the solutions will forget
their specific initial conditions. This indicates that if convergent systems are synchronized they
remain synchronized.
For the Chua circuit we proved that the using the first state the system is convergent, while using
the second state we can not prove this. This might explain the intermittency when the second
state is used in the feedback signal.
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6.2 Recommendations

Besides a better understanding of the very complex behavior of a Chua circuit several observations
have been made in this thesis leading to a number of recommendations for further research.

• We concluded that it is impossible to obtain the same numerical trajectory when a dy-
namical system generates a chaotic time signal if no measurement information is used. To
use measurement information a robust observer can be used to correct a numerical solution
from time to time. This can also be viewed as a form of synchronization (Nijmeijer and
Mareels, 1997).

• Experimental setup: At the current setup a fixed voltage supply of ±15 V is used, a variable
voltage supply could be used to place the locations of the breakpoints more symmetrically.
The possible frequency dependency of the nonlinear resistor should be investigated further.
If this effect is caused by the operational amplifiers a different realization of the nonlinear
resistor may be desirable.

• Identification: First of all one should consider if the used numerical model is accurate enough
to fully describe the electrical dynamics.
One of the drawbacks of using a Kalman filter is the initialization (P, R, Q matrices) of the
filter and this needs more attention. One of the problems with the current model is that it
is ill-conditioned and this can lead to instability of the filter. The estimation of the states
and parameters might improve if a dimensionless model can be implemented.
A filter that is also capable of estimating the location of the breakpoints can improve the
current results, e.g. (Santoboni and Nijmeijer, 2001)

• Synchronization: The bursting phenomenon, which occurs if the coupling strength crosses
a certain threshold value, should be investigated further. A possible technique that can be
used is the examination of transverse Lyapunov exponents of the synchronization manifold
(Heagy et al., 1994; Pecora, 1998).
The possibility of real-time synchronization / identification between an experimental setup
and a numerical model may be realized using a TUeDacs in combination with a TUeDAX
Linux Live CD.
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Appendix A

Reference frame

In this appendix the explicit coordinates of the points A, B, C, D, E and F in the D0 and
D1 units, see figure A.1, are given in terms of the real and complex eigenvalues σ0 = σ̃0

ω̃0
, γ0 =

γ̃0
ω̃0

, σ1 = σ̃1
ω̃1

, γ1 = γ̃1
ω̃1

. These coordinates are used to compute the approximated 1D Poincaré
map.
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Figure A.1: Original system and their images in the D0 and D1 units of the transformed system.
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A.1 D0 unit

A0 = [1 p0 0] (A.1)

B0 =
[
γ0(γ0 − σ0 − p0)

Q0

γ0[1− p0(σ0 − γ0)]
Q0

1− γ0(γ0 − σ0 − p0)
Q0

]
(A.2)

C0 = [0 0 1] (A.3)
E0 = [1 σ0 0] (A.4)

F0 =
[
γ0(γ0 − 2σ0)

Q0

γ0[1− σ0(σ0 − γ0)]
Q0

(σ2
0 + 1)
Q0

]
(A.5)

p0 = σ0 +
k0

γ0
(σ2

0 + 1) (A.6)

Q0 = (σ0 − γ0)2 + 1 (A.7)

k0 = − γ̃0

γ̃1
(A.8)

A.2 D1 unit

A1 = [1 p1 0] (A.9)
B1 = [1 σ1 0] (A.10)
D1 = [0 0 1] (A.11)

E1 =
[
γ1(γ1 − σ1 − p1)

Q1

γ1[1− p1(σ1 − γ1)]
Q1

1− γ1(γ1 − σ1 − p1)
Q1

]
(A.12)

F1 =
[
γ1(γ1 − 2σ1)

Q1

γ1[1− σ1(σ1 − γ1)]
Q1

(σ2
1 + 1)
Q1

]
(A.13)

p1 = σ1 +
k1

γ1
(σ2

1 + 1) (A.14)

Q1 = (σ1 − γ1)2 + 1 (A.15)

k1 =
1
k0

(A.16)

A.3 Connection map

The connection map Φ can be used to transform coordinates from the D0 unit into the D1 unit.
Since zi = 1− xi, we only need a relation for the x and y coordinates[

x1

y1

]
= Φ

[
x0

y0

]
, (A.17)

which can be rewritten as, cf. (Chua et al., 1986),[
x1 − 1
y1 − p1

]
= L

[
x0 − 1
y0 − p0

]
(A.18)

where L is given by

L =
(σ2

1 + 1)k1

(σ2
0 + 1)(k0 + 1)Q1γ1


−γ1(k0 + 1)[Q0 + γ0(σ0 − γ0)(k1 + 1)] γ0γ1(k0 + 1)(k1 + 1)

−γ0(k1 + 1)(σ0 − γ0)[σ1(σ1 − γ1) + 1] γ0(k1 + 1)[Q1 + γ1(σ1 − γ1)(k0 + 1)]
−γ1(k0 + 1)(σ1 − γ1)[σ0(σ0 − γ0) + 1]


(A.19)
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Component list and layout

B.1 Component list

Table B.1: Component list.

Component Value Description
R1 220 [Ω] 1

4 W resistor
R2 220 [Ω] 1

4 W resistor
R3 2200 [Ω] 1

4 W resistor
R4 22000 [Ω] 1

4 W resistor
R5 22000 [Ω] 1

4 W resistor
R6 3300 [Ω] 1

4 W resistor
R7 22 [Ω] 1

4 W resistor
R8 100000[Ω] 1

4 W resistor
R9 1500 [Ω] 1

4 W resistor
R10 0-500 [Ω] 1

4 W resistor
C1 10 [nF ] capacitor
C2 100 [nF ] capacitor
C3 10 [nF ] capacitor
C4 1 [µF ] tantalum capacitor
C5 1 [µF ] tantalum capacitor
C6 1 [µF ] tantalum capacitor
C7 1 [µF ] tantalum capacitor
C8 1 [µF ] tantalum capacitor
C9 1 [µF ] tantalum capacitor
C10 1 [µF ] tantalum capacitor
C11 1 [µF ] tantalum capacitor
U1, U2, U3, U4 AD712JN operational amplifier
V 1a, V 2a BNC connector
V 1b, V 2b pin
X2a, X2b pin+jumper
X3a, X3b pin+jumper



72 B.2. LAYOUT

B.2 Layout
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