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ABSTRACT

QUALITATIVE MODELING OF CHAOTIC LOGICAL CIRCUITS
AND WALKING DROPLETS:

A DYNAMICAL SYSTEMS APPROACH

by
Aminur Rahman

Logical circuits and wave-particle duality have been studied for most of the 20th

century. During the current century scientists have been thinking differently about

these well-studied systems. Specifically, there has been great interest in chaotic logical

circuits and hydrodynamic quantum analogs.

Traditional logical circuits are designed with minimal uncertainty. While

this is straightforward to achieve with electronic logic, other logic families such

as fluidic, chemical, and biological, naturally exhibit uncertainties due to their

inherent nonlinearity. In recent years, engineers have been designing electronic logical

systems via chaotic circuits. While traditional boolean circuits have easily determined

outputs, which renders dynamical models unnecessary, chaotic logical circuits employ

components that behave erratically for certain inputs.

There has been an equally dramatic paradigm shift for studying wave-particle

systems. In recent years, experiments with bouncing droplets (called walkers) on a

vibrating fluid bath have shown that quantum analogs can be studied at the macro

scale. These analogs help us ask questions about quantum mechanics that otherwise

would have been inaccessible. They may eventually reveal some unforeseen properties

of quantum mechanics that would close the gap between philosophical interpretations

and scientific results.

Both chaotic logical circuits and walking droplets have been modeled as

differential equations. While many of these models are very good in reproducing



the behavior observed in experiments, the equations are often too complex to analyze

in detail and sometimes even too complex for tractable numerical solution. These

problems can be simplified if the models are reduced to discrete dynamical systems.

Fortunately, both systems are very naturally time-discrete. For the circuits, the states

change very rapidly and therefore the information during the process of change is

not of importance. And for the walkers, the position when a wave is produced is

important, but the dynamics of the droplets in the air are not.

This dissertation is an amalgam of results on chaotic logical circuits and walking

droplets in the form of experimental investigations, mathematical modeling, and

dynamical systems analysis. Furthermore, this thesis makes connections between the

two topics and the various scientific disciplines involved in their studies.
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CHAPTER 1

INTRODUCTION

If Poincaré is the father of Dynamical Systems, Newton, Leibniz, and the Bernoullis,

are its great grandfathers. The foundations were laid in the late 1600s and early

1700s, through intimate connections to real world problems with works like “Nova

Methodus” [85], “Principia” [115], “Methodus Fluxionum” [116], “Explicationes” [5],

and many others. Two centuries later, Poincaré applied new mathematical techniques

to the study of celestial mechanics [130, 131], which came to be known as Dynamical

Systems. He showed that information about a system can be extracted through

its qualitative properties (phase space); i.e., without having to solve the system

of equations. Meanwhile, Lyapunov developed ideas on the stability of dynamical

systems [93], many of which are used in the linear stability analysis conducted in this

thesis. In fact, the general theme of this thesis is nonlinear dynamics and chaos; i.e.,

unstable systems, which incidentally also interested Poincaré.

A story that comes to mind is of Poincaré and the King of Sweden. In 1887,

Oscar II of Sweden posed a question with a prize. Roughly, he asked, if there are

three masses in space what will the motion of this system be? This has been dubbed

“the three-body problem”. Poincaré used asymptotic techniques to solve a restricted -

perturbed three-body problem; that is let two of the bodies have much greater mass

than the third. While he won the prize, there was a mistake in his analysis. He later

realized that the method he had used would not accurately describe the motion due

to the system depending on initial conditions with great sensitivity [129]. This, along

with Hadamard’s billiards [54], essentially initiated the study of chaotic systems.
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Figure 1.1 An illustration of the three-body problem. (Reproduced with permission
Springer Publishing Company).

Source: D. Vallado. Fundamentals of astrodynamics and applications. Springer-Verlag, New

York, NY, 2007

Figure 1.2 An illustration of a pseudosphere used to create the surface for
Hadamard’s billiards.
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For many years, these types of systems were generally avoided. In the 1950s

and 1960s, Lorenz studied nonlinear weather forecasting models through numerical

simulations. He discovered that inputting two close initial conditions created very

different simulation results [89] (Figure 1.3). Lorenz continued his work [90, 91] and

others followed in his footsteps, which led to the properties (sensitive dependence,

aperiodicity, and transitivity [102]) of “Chaos” finally being investigated en masse

and delineated.

Figure 1.3 Simulation of the Lorenz equations resulting in the Lorenz strange.
(Reproduced and modified under CC0 License).

Source: Wikimol. https://en.wikipedia.org/wiki/File:Lorenz_system_r28_

s10_b2-6666.png. Date accessed: April 13, 2017. Date added: May 2005.

While all of the dynamical systems studied in its early days were continuous

(differential equations), later mathematicians started studying a close cousin of

differential equations – difference equations or iterations of maps. These difference

equations are dubbed Discrete Dynamical Systems and have strong connections with
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their continuous counterparts. An important feature of discrete dynamical systems

is the relative ease, compared to continuous dynamical systems, in their analysis and

simulations. One major drawback is in the approximate nature of discrete dynamical

models – most things in nature are perceived as evolving continuously. However, as

we have learned from Poincaré, we may not always need to be completely precise

when making qualitative conclusions.

Figure 1.4 An example of a Poincaré map. (Reproduced under Creative Commons
Attribution-Share Alike 3.0 )

Source: Gato ocioso. https://en.wikipedia.org/wiki/File:Poincare_map.svg.

Date accessed: April 25, 2017. Date added: February 2008.

It is often difficult to develop a discrete analog of a continuous system, however

one way to derive, or in most cases approximate, this analog is through a first return

map. If we have a continuous dynamical system that intersects a manifold of the

phase space at recurring time intervals, we can define a first return map; also called a

Poincaré map (Figure 1.4). One of the most studied first return map is the Hénon map

(Figure 1.5), which is a simplified Poincaré map of Lorenz’s equations [63]. While this

is a popular technique, it should be noted that not all maps are derived/approximated
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Figure 1.5 The Hénon attractor. (Reproduced under Free Art License).

Source: XaosBits. https://nl.wikipedia.org/wiki/File:HenonMapImage.png.

Date accessed: April 13, 2017. Date added: February 2005.

Figure 1.6 Two and three dimensional scatter plots of iterates of the logistic map.
(Reproduced under Creative Commons Attribution-Share Alike 3.0 ).

Source: Maksim. https://en.wikipedia.org/wiki/File:Logistic_map_

scatterplots_large.png. Date accessed: April 13, 2017. Date added: March

2006.
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in this manner. Some of the most important maps such as the logistic map [100]

(Figure 1.6), a model of population dynamics, and Duffing map, which is a discrete

version of the Duffing equation [39], are not first return maps.

Figure 1.7 Illustration of one iteration of the Smale Horseshoe. (Creative Commons
Attribution-Share Alike 3.0)

Source: SyntaxError55. https://en.wikipedia.org/wiki/File:Smale_Horseshoe_Map.

svg. Date accessed: April 13, 2017. Date added: December 2007

The map that has had perhaps the most influence on the study of chaotic systems

is the horseshoe map [150, 151, 152], developed by Smale in 1967, and appropriately

called the Smale horseshoe. He developed the concepts of the horseshoe by studying

a continuous system, the van der Pol oscillator [158, 159]. The idea was to search for

stretching and folding of iterate space, like a horseshoe, which Smale showed would

be sufficient to satisfy the properties of a chaotic system. A nice illustration of a

similarly chaotic map is the Baker’s map [153]. The idea is to consider a piece of

square dough and cut it in half vertically. Then stack the halves on top of each other

while compressing/stretching it back into the square. This continues ad infinitum.

One can imagine placing two dots on the dough, and then once the process has started

the two dots separate from each other at an exponential rate. An example of the

Baker’s map using a picture of my advisor and me is shown in Figure 1.8. We shall

directly use concepts from Smale’s horseshoe map to analyze some of the dynamics

investigated in this thesis.
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Figure 1.8 An example of a Baker’s map applied to a photograph of my advisor
and me. The top row shows iterates zero to three from left to right, and the bottom
row shows iterates four to seven from left to right.

From its infancy, Dynamical Systems Theory has had an intimate connection

to real world phenomena. It was first developed to study celestial mechanics, and

eventually grew to become its own major field with an abundance of both theoretical

and physical problems. In this thesis I present my contributions to both the theoretical

and physical aspects of Dynamical Systems – the theory motivated by the physics.

The motivations come from two rich physical phenomena: chaotic logical circuits and

walking droplets.

1.1 Dynamical Systems Theory

Before we begin the more technical discussions, let us introduce some necessary

definitions and notations. For simplicity we often denote the discrete dynamical

system (difference equation) xn+1 = f(xn) as x = f(x). We also denote a complex

conjugate with a bar over the variable (e.g., z → z̄). First we define some terms

related to topology,
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Definition 1.1.1. A map h : M → M , where M is a manifold, is said to be a

homeomorphism if it is a bijective bicontinuous map.

Definition 1.1.2. Two dynamical systems x = f(x) and y = g(y) on M are

topologically equivalent if there is a homeomorphism h of M such that h maps oriented

(by increasing time) orbits of the first system onto oriented orbits of the second system.

Such an h is called a topological equivalence between the systems (or sometimes a

conjugacy - especially for the case of discrete dynamical systems).

Definition 1.1.3. The dynamical system x = f(x) is said to be structurally stable if

for every ε > 0 sufficiently small, all g ∈ Bε(f) are topologically equivalent to f .

Definition 1.1.4. Suppose a dynamical system x = fµ(x) has one (or many)

parameter(s) denoted by µ, and assume that in a small neighborhood of some critical

value µ∗, µ1 < µ∗ < µ2 and x = fµ2(x) is not topologically equivalent to x = fµ1(x),

the dynamical system is said to undergo a bifurcation at µ = µ∗.

Next we define chaos. Though there are a few different formal definitions of

chaos, the one used in this dissertation is from Robinson [140] due to the book’s explicit

use of discrete dynamical systems. The definition is given (with minor modifications)

in three parts,

Definition 1.1.5. A map f : X → X is topologically transitive on an invariant set

Y provided the forward orbit of some point p is dense in Y .

Definition 1.1.6. A map f : X → X is said to have sensitive dependence on initial

conditions if there is an r > 0 such that for each point x ∈ X and ε > 0 there is a

point y ∈ X with d(x, y) < ε and a k ≥ 0 such that d(fk(x), fk(y)) ≥ r.

Definition 1.1.7. A map f : X → X is said to be chaotic on an invariant set Y if
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(i) f is transitive on Y ,

(ii) f has sensitive dependence on initial conditions on Y .

Finally, we define a term that has already been used, but now we have the

machinery to formally define it.

Definition 1.1.8. If the invariant set Y is an attracting set, we call it a chaotic

attractor, and if it has fractal structure we say it is a strange attractor.

While there have been many great leaps in Dynamical Systems Theory, in this

section we discuss the works that have been directly applied to the phenomena of

interest. The focus of this dissertation is nonlinear dynamics, and more precisely

chaos. The main property we are interested in for these models are the paths to

chaos, which arise through a succession of bifurcations. Two bifurcations that appear

often in this dissertation are the Neimark–Sacker [114, 144, 81] and period doubling

(also known as a flip [81]) bifurcation. Furthermore, we can prove the existence of

chaotic orbits without or in addition to analyzing the bifurcation. Some of the ways

in which we prove chaos in this dissertation are through 3-cycles [87] and horseshoes

[148, 150, 151, 152, 72]. Finally, we also consider the idea of invariant measures

in order to connect the dynamics of a map to the statistics of the orbits. In this

section we briefly discuss these results and present the original theorems, with some

modifications, without proof, which the reader may refer to in the cited literature.

The bifurcation that appears the most in this thesis is the Neimark–Sacker (N–S)

bifurcation, which is essentially a discrete analog of the Hopf bifurcation. This can

also be thought of as a Poincaré-like map of Hopf bifurcations on a torus (S1 × S1;

i.e., if we let S1 be the circle the torus is the cartesian product of two circles). In

a continuous two-dimensional dynamical system, a Hopf bifurcation occurs when a
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spiral source/sink changes stability and produces a limit cycle as a parameter is varied.

The bifurcation is supercritical if a stable limit cycle arises as the parameter increases.

Conversely, the bifurcation is subcritical if an unstable limit cycle is created as the

parameter decreases. For a discrete two-dimensional map a N–S bifurcation occurs in

the same manner. Due to the discrete nature of the dynamical system, an invariant

closed Jordan curve (a topological circle) is born instead of a limit cycle.

The existence of a N–S bifurcation at a specific fixed point for a single parameter

can be shown by verifying the relevant genericity conditions and showing that the

eigenvalues are complex conjugates of modulus one as the parameter passes through

the critical value. A genericity condition is usually pivotal in proving a bifurcation (a

topological change in the set of iterates) exists. Furthermore, the complex conjugate

eigenvalues prove that the fixed point is a focus before and after the bifurcation,

thereby allowing the creation of an invariant circle. This is shown formally in Theorem

1.1.1, modified from [81] to match the language in this thesis. We first define the

normal form of the N–S bifurcation and the first Lyapunov coefficient, then we present

the theorem. It should be noted that these two definitions are actually derived

quantities, however for the sake of brevity we shall simply define them here.

Definition 1.1.9. For the dynamical system (difference equation)

x =

 w

x

 = fµ(x) (1.1)

through the change of variables x 7→ z the normal form is given by

H(z, z̄) := λz +
∑

2≤j+k≤3

1

j!k!
gjkz

j z̄k +O(|z|4) (1.2)

where λ is the multiplier of the system and z is a complex variable.
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Definition 1.1.10. From the normal form above we define the first Lyapunov

coefficient as

d(0) := Re

(
λ̄g21

2

)
− Re

(
(1− 2λ)λ̄2

2(1− λ)
g20g11

)
− 1

2
|g11|2 −

1

4
|g02|2.

Theorem 1.1.1 (Sacker 1964). Given a two-dimensional one-parameter dynamical

system, x = fµ(x), having at µ = µ∗ the fixed point x∗ with complex multipliers

λ1,2 = exp(±iθ∗) there is a neighborhood of x∗ in which a unique closed invariant

curve bifurcates from x∗ as µ passes through µ∗ if the following genericity conditions

are satisfied,

(C.1) r′(µ∗) 6= 0, where r = |λ|,

(C.2) exp(±ikθ∗) for k = 1, 2, 3, 4.,

(C.3) The first Lyapunov coefficient d(0) 6= 0.

Furthermore, d(0) < 0 is known as the supercritical case and d(0) > 0 is known as

the subcritical case.

Another bifurcation that appears in abundance in the study of walking droplets

is the period doubling bifurcation. This bifurcation does precisely as the name suggests.

As the relevant parameter is varied a fixed point bifurcates into a 2-cycle. This can

also have a cascading effect where the 2-cycle then bifurcates into a 4-cycle with the

process continuing ad inordinatum. The conditions for a flip bifurcation is stated in

Theorem 1.1.2 [81], again with modifications.

Theorem 1.1.2 (Flip Bifurcation). Suppose that a one-dimensional one-parameter

dynamical system

x = fµ(x) ∈ C∞(R); x, µ ∈ R, (1.3)
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has the fixed point x∗ = 0 at µ∗ = 0, and let λ = f ′0(0) = −1. If the nondegeneracy

conditions

(C.1)
1

2
f ′′0 (0)2 +

1

3
f ′′′0 (0) 6= 0; (C.2) ∂µf

′
0(0) 6= 0,

hold, then there exists a C∞-diffeomorphism transforming the system into

ξ 7→ −(1 + |g(λ)|λ)ξ ± ξ3 +O(ξ4); g ∈ C∞(R). (1.4)

One consequence of a cascading period doubling bifurcation is the existence of

3-cycles, and as shown in [87] a 3-cycle implies chaos. The full theorem of Li and

Yorke, with modifications, is given below.

Theorem 1.1.3 (Li-Yorke 1975). Let I be an interval and (F : I → I) ∈ C(I).

Consider points a, b, c, d ∈ I such that b = F (a), c = F 2(a), d = F 3(a), and d ≤ a <

b < c (or d ≥ a > b > c). Then ∀k ∈ N, there exists a periodic point in I with period

k. Furthermore, there is an uncountable set S ⊂ I containing no periodic points,

which satisfies the conditions:

(A) ∀p, q ∈ S such that p 6= q, lim sup
n→∞

|F n(p)− F n(q)| > 0

and lim inf
n→∞

|F n(p)− F n(q)| = 0

(B) ∀p ∈ S and periodic point q ∈ I, lim sup
n→∞

|F n(p)− F n(q)| > 0

Perhaps the most influential development in modern dynamical systems theory

is Smale’s horseshoe [150]. Applying the horseshoe map to a pill shaped region (as

shown in Figure 1.7) and its inverse ad infinitum, then intersecting these two sets

give us a Cantor dust (the product of two interval Cantor sets). Smale first presented

Theorem 1.1.4 in a 1963 symposium honoring Marston Morse at the Institute for

Advance Study in Princeton, NJ [148]. For the sake of preserving a piece of history
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we state Smale’s theorem in its original form so the reader may see it in its full glory.

Notice that not only do we have seemingly random behavior through the arbitrarily

long periods, but we also have structural stability; i.e., horseshoe chaos is structurally

stable.

Theorem 1.1.4 (Smale 1963). The horseshoe map f has a closed invariant set Λ that

contains a countable set of periodic orbits of arbitrarily long period, and an uncountable

set of nonperiodic orbits, among which there are orbits passing arbitrarily close to any

point of Λ.

1.2 Logical Circuits

Inventions and innovations of the latter part of the 20th century have been dominated

by electronics and computation. While computing devices have been around since

before the 1900s, perhaps the first major paradigm shift in computation was Alan

Turing and his team cracking the Enigma code via their computer, Bombe. Since then,

many Nobel prizes have been awarded for advances in computing technology, such

as with the transistor, quantum electronics, Josephson junctions, integrated circuits,

opto-electronics, the charge-coupled device sensor, and optical communication. In

addition, computers have even beaten humans at games that humans seemed to have

an advantage in, such as chess, jeopardy, and go.

When we think of computation, we generally think of silicon based devices, and

these devices are designed to be as stable as possible. We owe much of our modern

comforts due to this endeavor, which has been a triumph for electrical engineering

and physics. However, not all logical systems are electronic nor man-made, and as we

observe, nature is seldom stable.
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For example, the New Caledonian crow can solve complex problems involving

tools and some nontrivial arithmetic [145, 156]. How can an animal with such a small

brain perform tasks that dogs and human toddlers would find impossible? What type

of computation could it be unconsciously doing? One thing we know for certain is

that it is very different from the type of computation that computers do.

Since it is often easier to physically study electrical systems than logic families

arising in nature, studying chaotic logical circuits can help us better understand

naturally occurring logical systems. Before we can study chaotic logical circuits, we

must first understand nonlinear circuits. Perhaps the first nonlinear circuit was the

van der Pol oscillator [158] (Figure 1.9), first studied by van der Pol in the late 1920s.

In this circuit he observed complex periodic curves, called limit cycles. He then studied

the circuit with forcing [159] from an alternating current source Es, which produced

seemingly random trajectories. This was the first time chaos had been observed in an

electronic circuit.

In 1983, Chua developed a simple chaotic circuit using an inductor, two

capacitors, a resistor, and a nonlinear resistor [21, 22, 30, 23, 77] (Figure 1.10).

When he measured the voltages across the two capacitors and the current through the

inductor, he noticed projections of what appeared to be a strange attractor, similar to

the Lorenz strange attractor, dubbed the double scroll attractor due to the scroll-like

shape (Figure 1.11). The chaos in the system is produced by perturbations from the

nonlinear resistor. In a standard resistor, the ratio between the current through it and

the voltage drop across it is proportional with the constant of proportionality being

the conductance (the reciprocal of resistance). In a nonlinear resistor, this relationship

is as the name suggests: nonlinear. Specifically, in Chua’s nonlinear resistor (called

Chua’s diode), the relationship is piecewise linear.
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Figure 1.9 A physical realization of the van der Pol oscillator and limit cycles
arising from the unforced van der Pol oscillator. (Reproduced under Creative
Commons Attribution-Share Alike 3.0 ).

Source(Left): Kraaiennest. https://en.wikipedia.org/wiki/File:Van_der_pol_

triode.svg. Date accessed: April 13, 2017. Date added: June 2009

Source(Right): Widdma. https://en.wikipedia.org/wiki/File:VanderPol-lc.

svg. Date accessed: April 13, 2017. Date added: September 2009
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Figure 1.10 Schematic of Chua’s circuit realized using an inductor, two capacitors,
a resistor, and a nonlinear resistor. (Reproduced under CC0 License).

Source: Chetvorno. https://en.wikipedia.org/wiki/File:Chua27s_circuit_

with_Chua_diode.svg. Date accessed: April 13, 2017. Date added: February 2014.

Figure 1.11 “Double scroll” attractor produced from our experiments on the
oscilloscope by plotting the two capacitors in Chua circuit on each axis.
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A year later Matsumoto modeled Chua’s circuit as a system of three ordinary

differential equations [99, 24, 23]. He derived them via Kirchoff’s laws using the

voltage law for the first loop and current law for the nodes on both sides of the

standard resistor (1.5). This gives a system of equations that governs the voltages

VC1 , VC2 across the capacitors C1, C2 and the current χL through the inductor L. He

uses a function g(VC1) for current coming into the right node of the standard resistor

from the nonlinear resistor and conductance G of the standard resistor.

C1
dVC1

dt
= G(VC2 − VC1)− g(VC1)

C2
dVC2

dt
= G(VC1 − VC2) + χL

L
dχL
dt

= −VC2

(1.5)

Since the 1990s there has been growing interest in controlling chaotic circuits

starting from synchronization [123, 31], and leading to logical operations [118]. Early

constructions of chaotic logical circuits used Chua’s diode to manipulate the voltage to

achieve logical outputs. For more complex logical circuits, components called threshold

control units (TCUs) [109] have been employed [111, 110, 16].

The two logical circuits that we refer to most are the NOR gate and set/reset

flip-flop (RSFF). The “black-box” schematics and truth tables of the classical NOR

gate and RSFF are shown in Figures 1.12 and 1.13.

While there has been an abundance of Simulation Program with Integrated

Circuit Emphasis (SPICE ) simulations and some experimental investigations in the

literature, such as [118, 111, 110], there is a dearth of models for the more complex

chaotic logical circuits. This is understandable since the usual modeling techniques

become ever more difficult to implement as the number of components increase.

Traditionally, logical circuits have been modeled as systems of ordinary differential
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x

y
F(x,y)

x y F (x, y) = x ∨ y

0 0 1

0 1 0

1 0 0

1 1 0

Figure 1.12 A “black-box” schematic and truth table for the classical NOR gate,
where ∨ denotes conjunction and bar denotes negation.

R

S

Q

Q'
Inputs Outputs

R S Q Q′

0 1 1 0

1 0 0 1

0 0 keep keep

1 1 undefined undefined

Figure 1.13 A “black-box” schematic and truth table for the classical RSFF.
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equations (see [73, 118]) because resistors, capacitors, and inductors are related via

different rates of change. Furthermore, SPICE simulations are often employed as a

means of studying circuit designs, but the computational costs become unreasonable

as circuits become more complex. However, more recently, there has been some

effort in modeling logical circuits as simple discrete dynamical systems [56, 142, 9]

and developing a mathematical framework for studying chaos in boolean networks

[143, 136, 137].

1.3 Hydrodynamic Quantum Analogs

It has been known for decades that a fluid drop can be made to bounce on a

vibrating fluid bath for long time scales. In recent years, bouncing droplets have

been observed to bifurcate from the bouncing state (no horizontal motion) to the

walking state (horizontal motion). Experiments with walking droplets (called walkers)

exhibit analogs of wave-particle duality and more specifically quantum-like phenomena.

Studying walkers can enhance our understanding of quantum mechanics and suggest

viable alternatives to the Copenhagen interpretation, the idea that quantum particle

dynamics depend on their probability wave, in the form of pilot wave theory.

Pilot wave theory is based upon the idea that particle trajectories drive the

statistics seen in quantum mechanics. In the early days of quantum mechanics it was

seen as a promising explanation of the statistics arising in experiments. Specifically

the works of de Broglie [35] and later Bohm [10], while very different, showed potential

as alternate formulations to that of the Copenhagen interpretation. As J.S. Bell said

in [4],

De Broglie showed in detail how the motion of a particle, passing through
just one of two holes in screen, could be influenced by waves propagating
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through both holes. And so influenced that the particle does not go where
the waves cancel out, but is attracted to where they cooperate. This idea
seems to me so natural and simple, to resolve the wave-particle dilemma
in such a clear and ordinary way, that it is a great mystery to me that it
was so generally ignored.

In recent years, fluid dynamic experiments with droplets bouncing on a vibrating

bath were observed to exhibit quantum-like behavior. This effectively revived the

theory in the form of hydrodynamic quantum analogs and catalyzed the current very

active state of walking droplet research. In 2005 Couder and collaborators observed

droplets moving across a vibrating fluid bath [28]. The droplets accomplish this by

exciting an eigenmode at each bounce, which generates a wave field, and in turn

are propelled by interacting with this field [28, 133]. Later, Couder et al. [27] and

Eddi et al. [40, 41] observed quantum-like behavior such as single particle diffraction,

tunneling, and the Zeeman effect. Furthermore, there were extensive experiments

conducted on the quantization of orbits by Fort et al. [48], Harris et al. [59, 58], and

Perrard et al. [128, 127].

The experimental work led to many mathematical models. Discrete path

memory models (accompanied by experimental results) for quantized circular orbits

and walking in free space were developed by Fort et al. [48] and Eddi et al. [42],

respectively. A detailed hydrodynamic model derived from free space experiments

was developed by Molacek et al. [106]. Oza et al. took this further and developed

integro-differential equation models for walkers in free space [120] and a circular

rotating frame [119, 121]. Then more accurate models for the waves were developed

by Milewski et al. [103] and coupled with the equations of motion of the droplet.

While many of these models agree very well with experiments, the equations are

quite difficult to study analytically. The complexity of the equations naturally created

interest in developing realistic simplified mathematical models exhibiting important
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dynamical features of the original ones, while being easier to analyze. The first models

to exploit the discrete nature of the bouncing/walking were developed by Fort et al.

[48] and later Eddi et al. [42]. Several other such reduced models were developed and

two of them, devised by Shirokoff [146] and Gilet [49], are planar discrete dynamical

system models. Shirokoff [146] developed a model in which he derived a map for the

motion of a particle in a square cavity. In this model, using numerics, he discovered

the cascading period doubling bifurcations indicative of chaos. Gilet [49] included the

amplitude of subsequent modes in his model for the straight line motion of a particle.

He observed what appeared to be a Neimark– Sacker (N-S) bifurcation in numerous

simulations, and so conjectured its existence and type. We prove these conjectures

and other results in [135].

A summary of quantum-like behavior in experiments of walking droplets and

recent theoretical developments for hydrodynamic pilot wave theory can be found in

[12, 14, 13].

1.4 Summary and Overview

This dissertation discusses the role of dynamical systems theory in studying chaotic

logical circuits and walking droplets. It encompasses the entire spectrum of applied

mathematics from experimentation, to modeling, to detailed theoretical analysis, and

even some computation and coding. This effectively separates the thesis into two

main parts, logical circuits and walking droplets, and three subparts, experiments,

modeling, and analysis, which are intended to give the reader a complete scientific

account of recent developments in the fields of chaotic logical circuits and walking

droplets.
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We begin with circuit experiments in Chapter 2 where we first give brief

overviews of previous chaotic logical circuit experiments and their SPICE simulations,

and then discuss our experiments [137] on the dual NOR gate and RS flip-flop in

detail. Chapter 3 outlines a differential equation model developed for the autonomous

flip-flop [118]. We derive the model in a slightly different manner from the original

study. Then using standard dynamical systems techniques, different from those used

by Okazaki et al. in [118], we arrive at the same results as that study.

Discussion of our modeling framework begins in earnest from Chapter 4. We

delineate both our näıve (Section 4.1) [136] and mechanistic (Section 4.2) [137]

modeling techniques and also provide analysis of the basic properties. The detailed

dynamical systems analysis of the relevant models are in Chapters 5 and 6. In Chapter

5 we prove the existence of a variety of paths to chaos by embedding topological objects

designed to replicate the effects of different combinations of op-amps. This chapter

is a mathematical exploration of the possibilities through a näıve unphysical model

rather than creating a predictive modeling framework. Predictive circuit models are

discussed in Chapter 6. Here the analysis is simpler, but the models behave according

to physical properties observed in experiments, which rectifies the gap between the

mathematics and the physics from the previous chapter.

Then the story transitions to walking droplets; first with experiments in Chapter

7. Here we discuss four hydrodynamic quantum analog experiments: single particle

diffraction [27], circular corral [59], rotating frame [58], and annular region [44].

Then in Chapter 8, Oza’s integro-differential models for the trajectory of walkers

are described and the linear stability analysis is reproduced from [120, 119, 121].

Our discussion of discrete dynamical walker models begin in Chapter 9. We

present Shirokoff’s model briefly (Section 9.1) [146] and Gilet’s model (Section 9.2)

[49], providing our analysis of their basic dynamical properties [135]. We then show
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our detailed analysis of Gilet’s model for walkers in Chapter 10. This includes a new

global bifurcation that we are currently investigating.

Finally, we conclude with a summary and outline of future work in chapter 11.

For logical circuits we are currently investigating the possibility of constructing a

circuit analog of neuronal networks and we have a method for chaotic encryption via

the chaotic RS flip-flop. We show a “proof of concept” example of chaotic encryption

implemented in a MATLAB code (relegated to Appendix A) using our mechanistic

model for the RS flip-flop. For walking droplets the role of dynamical systems is to

connect the analysis with physical experiments. By studying dynamical properties,

especially the paths to chaos, of effective models one can tune the experiments to

give the desired statistics, namely the statistics observed in quantum mechanics. In

essence we would reverse engineer the experiments, which may then reveal unforeseen

consequences of the pilot wave interpretation of quantum mechanics.
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CHAPTER 2

CHAOTIC LOGICAL CIRCUITS EXPERIMENTS

In this Chapter, experiments and SPICE simulations of the autonomous flip-flop

(Section 2.1), a chaotic NOR gate (Section 2.2), and a chaotic set/reset (RS) flip-flop

(Section 2.3) are summarized. In addition we give a detailed description of our dual

NOR gate/RS flip-flop experiment (Section 2.3.2) [137] are discussed. We choose

these logical circuits due to their sophisticated logical behavior and inherent chaos.

2.1 Autonomous Flip-flop

A particularly interesting autonomous flip-flop was designed and studied by Okazaki

et al. [118]. They use six main components: a linear resistor, an inductor, two

capacitors, and two nonlinear resistors. The construction is similar to Chua’s circuit

with an additional nonlinear resistor, and both nonlinear resistors are looped with

both capacitors. The schematic is shown in Figure 2.1.

The voltage difference for the main circuit is produced by a battery. Then the

voltages of the two capacitors are measured and plotted (shown in Figure 2.2 (left)).

This is effectively a two dimensional projection of the associated ODE phase-space.

From this phase-plane diagram, Okazaki et al. approximate the iterates of a Poincaré

map as shown in Figure 2.2 (right). Since this is the only chaotic logical circuit in the

literature for which a Poincaré map is provided, we shall refer back to it to compare

the qualitative behavior of threshold control units in later sections.
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Figure 2.1 Left: Schematic of autonomous flip-flop with nonlinear resistor
implicitly shown. Right: Explicit schematic of nonlinear resistor. (Reproduced under
IEEE thesis permissions).

Source: H. Okazaki, H. Nakano, and T. Kawase. Chaotic and bifurcation behavior

in an autonomous flip-flop circuit using piecewise linear tunnel diodes. Circ. Syst., 3:

291-297, 1998.
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Figure 2.2 Plots of experimental data for the autonomous flip-flop circuit. Left:
Projection of chaotic attractor onto the plane. Right: Approximate Poincareé Map
resulting from the Poincareé section on the attractor. (Reproduced under IEEE
thesis permissions).

Source: H. Okazaki, H. Nakano, and T. Kawase. Chaotic and bifurcation behavior

in an autonomous flip-flop circuit using piecewise linear tunnel diodes. Circ. Syst., 3:

291-297, 1998.
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2.2 NOR Gate

As the methods for controlling chaotic circuits became more sophisticated [123, 31],

electrical engineers started designing more complex logical circuits. One such circuit

is the NOR gate, which can be combined with other NOR gates to make all other

gates. The first implementation of the NOR gate was developed by Murali et al.

in [111, 110]. They use Chua’s circuit as the foundation and construct a threshold

control unit (TCU) in order to produce the NOR outputs. A “black-box” and full

schematics are shown in Figure 2.3.

From the schematic, this circuit and its inputs are far more complex than the

autonomous flip-flop of Okazaki et al. . In order to cycle through all of the acceptable

inputs to test the NOR gate, the authors choose to use two clocked signals, produced

using alternating current, for which one has twice the frequency of the other. Both

of these inputs are connected to the TCU. Depending on the inputs and output

voltage, the TCU produces a voltage difference in the Chua circuit and simultaneously

attempts to synchronize the threshold voltage with the first capacitor. The output is

then measured at the node, V0. This is shown in Figure 2.4.

We observe that the threshold voltage is seemingly random, when both inputs

are set to unity, in addition to the low incident noise. This indicates that the system

may be chaotic. We also observe that the threshold voltage tries to synchronize

with the capacitor voltage, which leads to competition, the result of which produces

damped oscillations in the output voltage during transitions in the clock cycle.

This NOR gate construction motivates the set/reset flip-flop construction in the

next section.
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Figure 2.3 Schematics of a chaotic NOR gate. Top: “Black-box” schematic.
Bottom: Full schematic. (Reproduced with permission from World Scientific
Publishing Co., Inc.).

Source: K. Murali, S. Sinha, and W. Ditto. Implementation of a NOR gate by a

chaotic Chua circuit. Int. J. Bifurcat. Chaos, 13: 2669-2672, 2003.
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Figure 2.4 SPICE simulation plots of the two input voltages, threshold voltage,
output voltage, and expected output voltage. (Reproduced with permission from
World Scientific Publishing Co., Inc.).

Source: K. Murali, S. Sinha, and W. Ditto. Implementation of a NOR gate by a

chaotic Chua circuit. Int. J. Bifurcat. Chaos, 13: 2669-2672, 2003.
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2.3 Set/Reset Flip-flop

In this section, we discuss previous PSPICE (a SPICE based software) simulations

for a chaotic set/reset flip-flop (RSFF) construction and present our own experimental

results to demonstrate the robustness of the circuit design even in the midst of chaos.

2.3.1 Cafagna-Grassi Simulations

Murali et al. developed and tested a chaotic NOR gate construction in [111] and

with more detail in [110]. Then Cafagna and Grassi designed an RSFF [16] using

similar principles to the NOR gate of Murali et al., which is the inspiration for our

own RSFF.

The RSFF is designed with Chua’s circuit at its core and two TCUs to realize

each NOR gate. Two switches are used to convert the circuit from operating as two

separate NOR gates to operating as an RSFF and vice versa. Cafagna and Grassi

plot the PSPICE simulations of the inputs, outputs, and threshold voltages for both

NOR gates, the inputs and outputs of the RSFF, and finally the voltages across the

two capacitors [16]. In the next section we present our design and experiments of the

RSFF showing similar plots and making comparisons with the previous investigation.

2.3.2 Rahman – Jordan – Blackmore

Since the circuit of Cafagna and Grassi [16] uses components that have become

unavailable, we needed to design a modern chaotic RSFF/dual NOR gate. The

schematic of our circuit design is shown in Figure 2.5. For the MultiSIM simulations

we use the components shown in Table 2.1. The chaotic backbone of the circuit comes

from Chua’s circuit, and we employ threshold control units to produce the logical

outputs. The MultiSIM plots for the dual NOR gate are shown in Figure 2.6. We

then made a physical realization of the circuit with mostly the same components
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(Table 2.1) as the MultiSIM (a SPICE based software) simulations. The experimental

setup is shown in Figure 2.7. In order to power the circuit and get readings we used

a DC power supply, wave form generator, Arduino Due®, and an oscilloscope. From

the physical realization we reproduced the MultiSIM plots. To activate the dual

NOR gate we keep switches 1 and 2 in Figure 2.5 closed and switches 3 and 4 open.

The experimental results for the dual NOR gate setup are shown in Figure 2.8. In

Figures 2.8c and 2.8d we notice windows of what looks like chaotic dynamics. This

is also observed in the MultiSIM simulations. It should be noted that the threshold

behavior of the MultiSIM circuit and the physical realization are slightly different

due to a change in the operational amplifiers (op-amps). We take a detailed look at

the dynamics in Section 6.2.

To deactivate the dual NOR gate we open switches 1 and 2 in Figure 2.5.

To properly activate the RSFF we need to close switches 3 and 4, however we get

the RSFF outputs even with the switches open. When we close the switches we

notice the race conditions (the tendency of the two signals to have slightly different

frequencies) for the “1-1” input causing wild oscillations, which is completely missed

in the simulations. This shows that the design has implicit feedbacks, through the

op-amps, which result in RSFF operations. However, when the two NOR gates are

explicitly connected with one another (i.e., the output of one NOR gate feeds back

to the input of the other NOR gate) the race condition exacerbates the oscillations.

The experimental results for the RSFF setup are shown in Figure 2.9. While the

experiments of the RSFF mainly work as expected, the MultiSIM simulations are not

able to properly capture this behavior.
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Figure 2.5 Full schematic of the RSFF/dual NOR design.

Source: A. Rahman, I. Jordan, and D. Blackmore. Qualitative models and experimental

investigation of chaotic NOR gates and set/reset flip-flops. arXiv: 1702:04838, 2017.
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Figure 2.6 MultiSIM plots of the two input voltages, threshold voltage, and output
voltages for the two separate NOR gates.

Source: A. Rahman, I. Jordan, and D. Blackmore. Qualitative models and experimental

investigation of chaotic NOR gates and set/reset flip-flops. arXiv: 1702:04838, 2017.

Figure 2.7 Experimental setup of dual NOR gate and RS flip-flop.

Source: A. Rahman, I. Jordan, and D. Blackmore. Qualitative models and experimental

investigation of chaotic NOR gates and set/reset flip-flops. arXiv: 1702:04838, 2017.
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Table 2.1 List of Components for Dual NOR Gate and RS Flip-flop

Type Quantity Code Comments

1kΩ Resistor 9

100kΩ Resistor 14

1.6kΩ Resistor 2

22kΩ Resistor 2

220kΩ Resistor 2

2.2kΩ Resistor 1

3.3kΩ Resistor 1

100nF Capacitor 1

10nF Capacitor 1

18mH Inductor 1

Op-Amp 6 AD713JN Used in MultiSIM

Op-Amp 1 LM759CP Used in MultiSIM

Op-Amp 7 NTE858m Used in physical realization

Source: A. Rahman, I. Jordan, and D. Blackmore. Qualitative models and experimental
investigation of chaotic NOR gates and set/reset flip-flops. arXiv: 1702:04838, 2017.
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(a) Inputs (b) Capacitor voltages

(c) Threshold 1 and NOR output 1 (d) Threshold 2 and NOR output 2

Figure 2.8 Experimental results for the dual NOR gate setup. For (a), (c), and
(d) the abscissa represents time and the ordinate represents voltage. In (b) the plot
shows the phase space produced by the two capacitors. In (a) the plot shows the two
input voltages. In (c) and (d) the plot shows the respective threshold voltage and
NOR outputs.

Source: A. Rahman, I. Jordan, and D. Blackmore. Qualitative models and experimental

investigation of chaotic NOR gates and set/reset flip-flops. arXiv: 1702:04838, 2017.
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(a) Inputs

(b) Output without explicit feedback

(c) Output with explicit feedback

Figure 2.9 Experimental results for the RSFF setup. For (a), (b), and (c) the
abscissa represents time and the ordinate represents voltage. In (a) the plot shows
the two input voltages. In (b) the voltage was measured when switches 3 and 4 in
Figure 2.5 are open. In (c) the voltage was measured when switches 3 and 4 in Figure
2.5 are closed.

Source: A. Rahman, I. Jordan, and D. Blackmore. Qualitative models and experimental

investigation of chaotic NOR gates and set/reset flip-flops. arXiv: 1702:04838, 2017.
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CHAPTER 3

TRADITIONAL MODELING TECHNIQUES:

AUTONOMOUS FLIP-FLOP

The autonomous flip-flop in [118] was designed to reproduce behavior of a specific

family of ODEs in an electrical system. Essentially, they had the model before

designing the circuit, however the concepts one would use to go from the physical

circuit to the model are commonly used for other circuits and are easy to delineate.

In this section, we perform the useful exercise of deriving the model from the circuit

elements. We also analyze the model through predominantly algebraic techniques,

whereas Okazaki et al. used mainly qualitative geometric arguments.

3.1 Description

In order to model most electronic circuits, we must apply Kirchhoff’s laws. Kirchhoff’s

current law states that the sum of all currents entering (exiting is entering with a

minus sign) a node is zero. Furthermore, Kirchhoff’s voltage law states that the

voltages in a closed loop sum to zero. Now, we refer to Figure 2.1. First we study the

large loop, which consists of the voltage source, an inductor, two capacitors, and a

resistor. Let the voltage across the capacitors be denoted as v1 and v2, the resistance

of the resistor as R, the voltage generated by the voltage source as E, the inductance

as L, and the current through the inductor as Z. This gives us the equation,

L
dZ

dt
= E −RZ − v1 + v2.
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Next, we derive the equations for the top and bottom nodes (notice that the middle

node is grounded, i.e., zero voltage), which is done simultaneously. The only difference

between the two nodes is the direction of the current, Z. First, let the current of the

nonlinear resistors, represented by f , be a function of voltage, namely the voltages

across the capacitors. Then, let the capacitances of the capacitors be C1 and C2. This

gives us the equations,

C
dv1

dt
= Z − f(v1)

C
dv2

dt
= −Z − f(v2)

Then the full system is

C
dv1

dt
= Z − f(v1),

C
dv2

dt
= −Z − f(v2),

L
dZ

dt
= E −RZ − v1 + v2;

(3.1)

which is precisely the equations that were studied by Okazaki et al. [118]. As

in [118] this can be nondimensionalized using x = v1/Vmax, y = −v2/Vmax, z =

Z/Zmax, ρ = R/Rmax (Rmax = Vmax/Zmax), and η = E/Vmax. Some of the less

intuitive nondimensional quantities are the natural frequency, ω =
√

1/C1L+ 1/C2L,

the time constant, T = ωt, the nondimensionalized function for the nonlinear

resistors, F ({·}) = f({·}Vmax)/Zmax, and the derived nondimensional parameters,

B1 = 1/(RmaxωC1) and B2 = 1/(RmaxωC2). Finally, (3.1) takes the nondimensional

matrix form, 
ẋ

ẏ

ż

 = Φ(x, y, z) =


B1(z − F (x)),

B2(z − F (y)),

η−ρz−x−y
B1+B2

.

 (3.2)
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This is the model we analyze below.

3.2 Basic Properties

While Okazaki et al. gave a graphical representation of the fixed points [118], it is

not difficult to explicitly derive the equations, the roots of which are the fixed points,

z∗ − F (x∗) = 0, z∗ − F (y∗) = 0; η − ρz∗ − x∗ − y∗ = 0.

The first two equations give us, x∗ = F−1(z∗) and y∗ = F−1(z∗), which implies x∗ = y∗.

Using these three conditions we get

η − ρF (x∗)− 2x∗ = 0, (3.3)

η − ρF (y∗)− 2y∗ = 0, (3.4)

η − ρz∗ − 2F−1(z∗) = 0. (3.5)

Using these equations we can solve for F and F−1 in terms of their arguments,

F (x∗) = −2x∗/ρ+ η/ρ (3.6)

F (y∗) = −2y∗/ρ+ η/ρ (3.7)

F−1(z∗) = −ρz∗/2 + η/2 (3.8)

From [118] we know that F is increasing and piece-wise-linear, hence so is f−1.

Furthermore, since F (0) = 0, F and F−1 will have the same signs as their respective

arguments. Also recall, η and ρ are positive parameters. From (3.8), since the the

lines intersect the ordinate in the positive half and the slopes are negative, all the

fixed points must lie in the first octant, and by symmetry, the seventh octant.
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Next, we find the Jacobian of Φ,

DΦ(x, y, z) =


−B1F

′(x) 0 B1

0 −B2F
′(y) B2

−1/(B1 +B2) −1/(B1 +B2) −ρ/(B1 +B2)

 (3.9)

Evaluating at the fixed points and taking the determinant gives,

|DΦ(x∗, x∗, z∗)− λI| =


−B1F

′(x∗)− λ 0 B1

0 −B2F
′(x∗)− λ B2

−1/(B1 +B2) −1/(B1 +B2) −ρ/(B1 +B2)− λ


=− λ3 − [(B1 +B2)F ′(x∗) + ρ/(B1 +B2)]λ2

− [B1B2F
′(x∗)

2 + ρF ′(x∗) + 1]λ− B1B2F
′(x∗)(ρF

′(x∗) + 2)

B1 +B2

Finding the roots of the cubic polynomial through numerical means yields a

convoluted result. One may attempt to compute the determinant to extract more

information about the fixed points, and can employ the RouthHurwitz stability

criterion [141, 70] to aid the stability analysis. However, doing this would require

lengthy calculations for very little information, which is why Okazaki et al. chose to

use mainly numerical simulations to compare their model to the experiments.

3.3 Simulations

Okazaki et al. integrated (3.2) and projected the phase space onto the voltage-voltage

plane just as in Section 2.1. Furthermore, they also approximated the Poincaré map

using the same ordinate value as in Section 2.1. While these techniques are useful,

they only work with simple circuits. As the circuits become more complex so do the
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usual dynamical systems techniques. The difficulty in analyzing certain 3-dimensional

systems motivates a search for simpler models in Chapter 4.

Figure 3.1 Plots of simulation data for the autonomous flip-flop circuit. Left:
Projection of the chaotic attractor onto the plane. Right: Approximate Poincareé
map resulting from the Poincareé section on the attractor. (Reproduced under IEEE
thesis permissions).

Source: H. Okazaki, H. Nakano, and T. Kawase. Chaotic and bifurcation behavior

in an autonomous flip-flop circuit using piecewise linear tunnel diodes. Circ. Syst., 3:

291-297, 1998.
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CHAPTER 4

DISCRETE DYNAMICAL MODELS: CHAOTIC LOGICAL CIRCUITS

There are several connections between the solutions of the model ODEs and iterates of

maps that can be used for dynamical comparisons, among which are the following: As

observed by Hamill et al. [56], the autonomous nature of the logical circuit equations

allows dynamical analysis via the iterates (snapshots) of a fixed time map, which

can be reduced to a planar map in special cases as shown in Kacprzak and Albicki

[74] and Kacprzak [73]. In addition, the application of a standard explicit one-step

integration method is tantamount to the iteration of the map describing the scheme,

thus enabling the (approximate) reduction from a continuous to a discrete dynamical

system as shown, e.g. by Danca [34]. Of course, there is the well-known method

of employing Poincaré sections to analyze three-dimensional continuous dynamical

systems using two-dimensional discrete dynamical systems, which has been employed

in numerous investigations of chaotic logical circuit realizations such as Murali et al.

[111, 110], Okazaki et al. [118] and Ruzbehani et al. [142]. As it turns out, chaotic

logical circuits can be realized using the circuit of Chua and its generalizations [23, 25].

There is also another interesting connection between realization of chaotic logical

circuits and nonlinear maps that might afford an opportunity for comparisons with

the results obtained from our two-dimensional discrete dynamical system models.

This nonlinear map approach has been established in the work of Ditto et al. [38],

which features the notion of reconfigurable logic gates comprising connected NOR

and NAND gates constructed using one-dimensional discrete dynamical systems and

associated thresholds.
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In this chapter, we derive discrete dynamical models of logical circuits, such as

the NOR gate and RSFF. First we derive models using näıve simplifying assumptions

(Section 4.1) [136], then we derive a mechanistic model (Section 4.2) [137]. The

simplicity in our models is due to the use of continuous extensions of logical operations.

In electronics nothing is quite discrete and logical operations are carried out in some

continuous manner that is different for each device. Consider the NOR gate (the

negation of conjunction), F (x, y) = x ∨ y, x, y ∈ {0, 1}, for which F (0, 0) = 1 and all

other combinations are zero (Figure 1.12). We can continuously extend it, in the most

natural manner, as f(x, y) = (1− x)(1− y), x, y ∈ [0, 1]. Then for x, y ∈ {0, 1} we

achieve the same outcome. We then ask what happens if a signal traverses through

the same devices as for the logical circuit inputs and outputs, but in a different order?

Perhaps carefully inserted perturbations of the continuous extensions is sufficient to

reproduce certain observed dynamical behavior.

4.1 Näıve Threshold Control Unit Models

To obtain the minimal discrete dynamical system model for the classical RSFF circuit

(Figure 1.13), we start with the simplest continuous extension of the input/output

map of the NOR gate to the unit square in the plane, which is clearly given by the

function N : I2 (⊂ R2)→ I (⊂ R) defined as

N (x, y) := (1− x) (1− y) , (4.1)

where I2 := I × I := [0, 1]× [0, 1] ⊂ R2 is the unit square and x and y are the inputs.

Observe that this quadratic function is bilinear in the variables (1− x) and (1− y),

and behaves precisely like the pure logical NOR gate when x, y ∈ {0, 1}. Using the

functional representation (4.1) for each of the (NOR gate) components of the RSFF
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circuit, we let Q = (1 − R)(1 − Q′) and Q′ = (1 − S)(1 − Q) and solve the two

equations for Q and Q′ obtaining the continuous extension for the RSFF (away from

the origin),

Q :=
S(1−R)

R + S −RS
, Q′ :=

R(1− S)

R + S −RS
. (4.2)

Recall in Figure 1.13 we show the classical “black-box” schematic of the RSFF and

the above equation matches the truth table exactly except at R = S = 0.

4.1.1 Derivation

Since the threshold outputs are fed back in a similar manner to the RSFF outputs,

and because they both have the same edge trigger (cock cycle transition) effects

neglecting the chaotic regions, we make the näıve assumption that the underlying

logical behavior is preserved and we readily obtain its minimal extension to the unit

square in the form of a map F : I2 → I2 defined as

F = (ξ, η) : I2
(
⊂ R2

)
→ I2

(
⊂ R2

)
, (4.3)

where the coordinate functions are

ξ(x, y) :=
y(1− x)

x+ y − xy
, η(x, y) :=

x(1− y)

x+ y − xy
, (4.4)

with the x-y-coordinates playing the roles of the previous threshold output, and ξ-η

coordinates playing the roles of the current threshold output.

One might well ask what the map (4.3), which is the natural continuous extension

of the exact logical circuit map defined on {0, 1}, has to do with the mathematical

models of physical realizations of flip-flop circuits. Typical models are in terms of

systems of three nonlinear, piecewise smooth ordinary differential equations and should
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have the minimal (exact logical circuit) maps approximately embedded within them

– most likely as part of certain Poincaré sections. Hence, it is reasonable to assume

that small C0 perturbations of (4.3) should reflect the dynamics of possible physical

realizations of flip-flop circuits to a rather significant extent.

This map generates a discrete (semi-) dynamical system in terms of its forward

iterates determined by n-fold compositions of the map with itself, denoted as F n,

where n ∈ N, the set of natural numbers. We shall employ the usual notation and

definitions for this system; for example, the positive semiorbit of a point p ∈ R2,

which we denote as O+(p), is simply defined as O+(p) := {F n(p) : n ∈ Z, n ≥ 0}, and

all other relevant definitions are standard (cf. [52, 75, 122, 164]). The minimal map

(4.3) is real-analytic (Cω) on I2 except at the origin, where it is not even well-defined.

Consequently, we should really consider F to be defined on I2 r {(0, 0)} and actually

on X := I2 r {(0, 0), (1, 1)} if we wish to avoid the origin for all forward iterates of F .

4.1.2 Basic Properties

First we take note of some of the analytical properties of the map (4.3), which are

listed in what follows. The proofs of all these results are straightforward and hence

left out.

(A1) The map F ∈ Cω (X).

(A2) F is Z2-symmetric, i.e., R ◦ F = F ◦R for the reflection R in the line y = x.

(A3) F (X) = Y := {(ξ, η) ∈ R2 : 0 ≤ ξ, η

and ξ + η < 1} ∪ {(1, 0), (0, 1)}.

(A4) F ((0, 1]× {0}) = (0, 1), F ({0} × (0, 1]) = (1, 0), and if ρ(a) := {(x, ax) : 0 <

x, a} ∩ X is the ray through the origin sans the origin in X, then F (ρ(a)) ⊂
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{(ξ, (a− 1) + aξ) : 0 < ξ} ∩ Y . Moreover, as (x, y)→ (0, 0) along the ray ρ(a),

F (x, y) converges to the point of intersection of the line defined by x + y = 1

with the ray ρ (1/a). This shows just how singular the formulas (4.3) are at the

origin.

(A5) The derivative (matrix) for F on X is

F ′ = (x+ y − xy)−2

 −y x (1− x)

y (1− x) −x

 , (4.5)

with determinant

detF ′ (x, y) = xy (x+ y − xy)−3 , (4.6)

which shows that the implicit function theorem cannot guarantee the existence

of a local smooth inverse along the x- and y-axes.

(A6) In fact, the inverse of F , where it exists, is given as

F−1 (ξ, η) =

(
1− ξ − η

1− η
,
1− ξ − η

1− ξ

)
, (4.7)

which is clearly in Cω (Y r {(1, 0), (0, 1)}).

These properties will be used to prove the results in Chapter 5.

4.2 Mechanistic Models

We first model NOR gates, then we use those models to model the RSFF. This is

accomplished by constructing continuous extensions and approximating the behavior

of the Threshold Control Units (TCUs) and Chua’s circuit. We have also provided

simplified schematics in Figure 4.1 to help illustrate the modeling process. It should

46



be noted, that while in the experiments we use a high voltage of 1.84 volts, in our

models this is normalized to 1.

One may suggest solving Matsumoto’s equation [99] for Chua’s circuit as part

of the model, and use that to model the behavior of the TCUs. While this would be

a legitimate approach, the goal of the Chapter is to formulate the simplest model in

terms of derivation and simulation. Having to solve the ordinary differential equation

at each time step would be reasonable for a two gate circuit, but would not be scalable

to large chaotic logical circuits with many gates. For these reasons, we forgo explicitly

modeling the capacitor voltages, and instead develop models for the threshold voltages

and the outputs, then show that the derived capacitor voltages agree reasonably well

with experiments and MultiSIM simulations in addition to showing the threshold and

outputs agree surprisingly well with the experiments and simulations.

Chua

Threshold 1

Threshold 2

ξ

η

I

I

I

I

1

2

3

4

U

U

1

2

Chua

Threshold 1

Threshold 2

ξ

η

Q

Q'

R

S

Figure 4.1 Simplified schematics of dual NOR gates (left) and RS flip-flop (right)
used to illustrate the building blocks of the models.

Source: A. Rahman, I. Jordan, and D. Blackmore. Qualitative models and experimental

investigation of chaotic NOR gates and set/reset flip-flops. arXiv: 1702:04838, 2017.
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4.2.1 Derivation of the NOR Gate Model

Here we derive and analyze the NOR gate models. The schematic for the gates given

in Figure 2.5 may be simplified to Figure 4.1 in order to get a general picture of the

circuit. It should be noted that the blocks are not absolutely accurate as the block

labeled “Chua” has additional op-amps compared to that of the traditional Chua

circuit and feedback from the “Chua” block to the threshold blocks are not explicitly

shown.

We begin by formulating the simplest continuous extension of the NOR operator:

x ∨ y = (1− x)(1− y); x, y ∈ {0, 1}. This gives us the equation,

U1 = (1− I1)(1− I2),

U2 = (1− I3)(1− I4);

(4.8)

where U are the respective outputs and I are the respective inputs as shown in Figure

4.1. This näıve extension is enough to approximate the behavior of the NOR gate

outputs, and we shall also modify them later to simulate certain subtle aspects of the

circuit. However, the more interesting dynamics are observed in the TCUs.

First, let us define the maps, f : [0, 1]2 × [−2, 2] → [−2, 2] and g : [0, 1]2 ×

[−1, 1]→ [−1, 1], where the chosen intervals are the operating domains of the TCUs

by design. We apply these maps to the inputs and current time threshold voltages to

get the next time threshold voltages,

ξn+1 = f(I1, I2, ξn),

ηn+1 = g(I3, I4, ηn);

(4.9)

where ξ and η are the respective threshold voltages as shown in Figure 4.1.

Next, we tabulate our observations from Figure 2.8 and 2.6 in (4.10), and

formulate functions f and g that qualitatively reproduce the observed behavior. It
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should be noted that, henceforth, we shall denote a seemingly random voltage (in the

chaotic regime) by a star (?), where ? is not a number to be measured, but rather

denotes chaotic behavior.

f(0, 0, 0) = 0, f(1, 0, 1) = f(0, 1, 1) = 1, f(1, 1, ?) = ?;

g(0, 0,−1) = −1, g(1, 0, 0) = g(0, 1, 0) = 0, g(1, 1, ?) = ?.
(4.10)

In order to satisfy these criteria, we first define the maps, yf : [−2, 2]→ [−2, 2]

and yg : [−1, 1]→ [−1, 1], then

f(I1, I2, x1) := |I1 − I2|+ I1I2yf (x1),

g(I3, I4, x2) := |I3 − I4| − 1 + I3I4yg(x2);

(4.11)

satisfies each property except chaotic behavior.

Now, we must formulate yf and yg such that (4.11) reproduces the qualitative

behavior of the threshold voltages for (I1, I2) = (1, 1) and (I3, I4) = (1, 1) as shown in

Figure 2.8. We postulate yf and yg will be tent map-like, which is reasonable in the

physical sense since these op-amps influence the signal in an approximately piecewise

linear manner. Furthermore, the NOR gate developed by Murali et al. employed a

TCU originally designed to produce the first few iterates of a logistic map [111], and

a tent map is topologically conjugate to a logistic map. For yf , we write

yf (x) :=



1+µf
1−µf

(x+ νf )− µfνf , x ∈ [−µfνf ,−νf ],

µfx, x ∈ [−νf , νf ],

1+µf
1−µf

(x− νf ) + µfνf , x ∈ [νf , µfνf ];

(4.12)

49



and we write yg as,

yg(x) := νg + µg


1 + x− νg νg − 1 ≤ x ≤ νg − 1/2,

νg − x νg − 1/2 ≤ x ≤ νg.

(4.13)

We illustrate (4.12) and (4.13) in Figure 4.2. In Figure 4.2a and (4.12), µf is the

slope of the middle line segment and it also determines the slope of the other two

line segments, whereas νf mainly affects the domain of the map. In Figure 4.2b and

(4.13), µg is twice the height of the map, and 1− νg is the amount the new interval is

translated from the interval [0, 1]. Moreover, all parameters are positive.

(a) Illustration of yf . (b) Illustration of yg − 1.

Figure 4.2 Plots of yf and yg for fixed values of µf , νf , µg, νg.

Source: A. Rahman, I. Jordan, and D. Blackmore. Qualitative models and experimental

investigation of chaotic NOR gates and set/reset flip-flops. arXiv: 1702:04838, 2017.

This gives us a model of the thresholding in the two NOR gate operation of the

circuit.

Basic Properties. Since the interesting behavior arises for (I1, I2) = (1, 1) and

(I3, I4) = (1, 1), it suffices to analyze f(1, 1, x) and g(1, 1, x). First we search for the
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fixed points. From empirical observations we require g(1, 1, x) and f(1, 1, x) to have

a fixed point at the origin and f(1, 1, x) to have two other nonzero fixed points. By

definition, the latter has a fixed point at the origin and two nonzero fixed points.

However, for the former, we require the right branch to intersect the origin. In order

to achieve this, we set g(1, 1, x) = x = 0 for x ∈ [νg − 1/2, νg] (the right branch),

0 = −1 + νg + µgνg ⇒ νg =
1

1 + µg
.

Furthermore, in order to ensure the inequality, νg − 1
2
≤ x ≤ νg, we require νg ≤ 1

2
,

i.e., µg ≥ 1.

Now let us identify any additional fixed points of g(1, 1, x), which necessarily lie

on the left branch, i.e., x ∈ [νg − 1, νg − 1/2],

x∗ = −1 + νg + µg − νgµg + µgx∗

⇒ (1− µg)x∗ = −1 +
1

1 + µg
+ µg −

µg
1 + µg

= −(1− µg) +
1− µg
1 + µg

⇒ x∗ = −1 +
1

1 + µg
= − µg

1 + µg
= νg − 1.

Next, we identify the two nonzero fixed points of f(1, 1, x). For x ∈ [±νf ,±νfµf ],

x∗ =
1 + µf
1− µf

x∗ ±
(
µfνf − νf

1 + µf
1− µf

)
⇒
(
−2µf
1− µf

)
x∗ = ∓νf

1 + µ2
f

1− µf

⇒ x∗ = ±νf
1 + µ2

f

2µf
.

We summarize the fixed point analysis in Table 4.1.

To analyze the stability of the fixed points of g(1, 1, x), let us take the derivative,

dg(1, 1, x)

dx
=


µg νg − 1 ≤ x ≤ νg − 1/2,

−µg νg − 1/2 ≤ x ≤ νg;

(4.14)
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Both fixed points are sources when µg > 1. For µg = 1, there is a line of fixed points

on the left branch such that constitutes a global attracting set. Clearly, this case is

unphysical, and hence we require µg > 1.

Taking the derivative for f(1, 1, x) gives,

df(1, 1, x)

dx
=



1+µf
1−µf

x ∈ [−µfνf ,−νf ],

µf x ∈ [−νf , νf ],

1+µf
1−µf

x ∈ [νf , µfνf ];

(4.15)

By definition, µf ≥ 1, since otherwise the two outer branches would be undefined.

If µf = 1, there is a line of fixed points on the middle branch, and hence this too

is unphysical. Therefore, we require µf > 1, which shows the origin is a source.

The other two fixed points are sinks if (1 + µf)/(1 − µf) < −1, and sources if

(1 +µf )/(1−µf ) > −1. Notice that (1 +µf )/(1−µf ) = −1 only when µf = 0, which

we showed was not permissible. Now, if (1 + µf)/(1 − µf) < −1, 1 < −1, which is

false. If (1 + µf)/(1− µf) > −1, 1 > −1, which is true. Therefore, each of the fixed

points is always a source.

The fixed points along with the conditions on the parameters required to yield

physical results are summarized in the table below,

These properties will be used to analyze the TCU models in greater depth in

Chapter 6.

4.2.2 Derivation of a Deterministic Set/Reset Flip-flop Model

Now that we have a model for the NOR gates we can derive the model of the RSFF.

Just as with the NOR gate, we sketch a simplified schematic of the RSFF in Figure

4.1. For the traditional RSFF, the output from each NOR gate is fed back into the

other. Therefore, we replace I1 and I3 with R and S and I2 and I4 with Q and Q′ in
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Table 4.1 Summary of Fixed Points and Conditions on Parameters to Cause All
Fixed Points to be Sources

Equation Fixed points Conditions

g(1, 1, x) x∗ = 0, − µg
1 + µg

µg > 1

f(1, 1, x) x∗ = 0, ±νf
1 + µ2

f

2µf
µf > 1 and νf > 0

Source: A. Rahman, I. Jordan, and D. Blackmore. Qualitative models and experimental
investigation of chaotic NOR gates and set/reset flip-flops. arXiv: 1702:04838, 2017.

(4.11) and (4.8),

f(R,Q′, x1) := |R−Q′|+RQ′yf (x1),

g(S,Q, x2) := |S −Q| − 1 + SQyg(x2);

(4.16)

hence,

Qn+1 = (1−R)(1−Q′n),

Q′n+1 = (1− S)(1−Qn).

(4.17)

It should be noted that (4.16) must be used in conjunction with (4.9).

As we shall show in Chapter 6 the deterministic models don’t capture the

decaying oscillatory behavior at the clock edges. This necessitates a model that

incorporates the nontrivial behavior observed at clock edges in the experiments.
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4.2.3 Derivation of a Stochastic Set/Reset Flip-flop Model

As we shall observe in Chapter 6 the deterministic models don’t capture the decaying

oscillatory behavior at the clock edges. Physically, the oscillations observed at certain

clock edges are caused by a non-binary difference in the capacitor voltage and threshold

voltage (recall that the outputs are calculated by subtracting the threshold voltage

from the capacitor voltage). However, we take a different approach, developing a

model for the threshold voltages and output voltages rather than determining the

output voltages via the other two as explained in the preceding section. In order

to accomplish this, we must still rely on the physical intuition of the thresholding

mechanism.

Whenever the inputs are such that they cause a threshold to change its state

drastically (not including the gradual transition to chaos), the TCU attempts to

synchronize the capacitor voltage with the threshold voltage for the proper output.

This causes a competition between the capacitor voltage (under the influence of the

previous input) and the TCU (stimulated by the current input), which the TCU finally

wins. During this process, due to the chaotic nature of both the capacitor voltages

and threshold voltages, each path to synchronization is different. Since we do not

have the explicit model for the capacitor voltages, we will treat this competition as a

stochastic process.

During the transitions that lead to the edge effect, we assume there is a

probability at each time step that the output will either accept the new inputs or

be induced by the weighted average of inputs from previous time steps, where the

weights are also determined randomly (or rather, pseudo-randomly). Here we define

the time step as the reciprocal of the circuit frequency.

Consider the sequences {m}M1 , {n}N0 , and {t}T0 , such that T = N+1 and M = T .

Let N be the number of time steps in the past that affect future outcomes and T be
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the number of time steps after the edge at which the output is affected (usually about

1 millisecond). Further, let
{
w

(t)
j , . . . , w

(t−n+1)
j , w

(t−n)
j , w

(t−n−1)
j , . . . , w

(t−N)
j

}
⊆ {m}M1

be the weights applied, with the same probability, out of {m}M1 , to the respective

inputs, I
(t−n)
j for j = {1, 2, 3, 4}. Let p(t) ∈ {0, 1} be some random variable for each

time t, with not necessarily identical distributions. In addition, let

A
(t)
j =


I

(t)
j if p(t) = 0,(∑N

n=0w
(t−n)
j I

(t−n)
j

)/∑N
n=0w

(t−n)
j if p(t) = 1;

(4.18)

be the perceived input. Then we substitute A
(t)
j into (4.8) for the respective inputs,

U1(t) =
(

1− A(t)
1

)(
1− A(t)

2

)
,

U2(t) =
(

1− A(t)
3

)(
1− A(t)

4

)
;

(4.19)

to model the effects at the transition points. It should be noted that besides the

transition points, which last about a millisecond, the outputs behave as described

by the continuous extensions. Finally, in order to simulate noise produced by the

waveform generator, we add/subtract a small random term, ε ∈ R, to/from the inputs

(i.e., Ij → Ij ± ε).

For the RSFF, we use the same technique, except this time we substitute (4.18)

in only for R and S. Hence, for the transitions, (4.17) becomes,

Qn+1(t) =
(

1− A(t)
1

)
(1−Q′n) ,

Q′n+1(t) =
(

1− A(t)
3

)
(1−Qn) .

(4.20)

The models developed in this section will be analyzed and compared against

experiments in Chapter 6.
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CHAPTER 5

ANALYSIS AND SIMULATIONS:

NAÏVE THRESHOLD CONTROL UNIT MODELS

In this chapter, we analyze the näıve RSFF model in detail. First, some of the

more basic properties and fixed/periodic points of the minimal model are delineated

(Section 5.1). Then we explore the effects of various perturbations of the minimal

model (Section 5.2). Theorems on various paths to chaos are proved in order to

demonstrate the richness of the problem and possible electrical design options (Section

5.3). While the types of perturbations mentioned are not necessarily physical, they

are consistent perturbations occurring naturally in mathematical models and serves as

a good mathematical exercise that may lead to more physically relevant ideas. Much

of this work is presented in [136].

5.1 Dynamics of the Minimal Model

We shall analyze the deeper dynamical aspects of the model map (4.3) and (4.4)

for various parameter ranges in the sequel, but first we dispose of some of the more

elementary properties that follow directly from the definition and (A1)-(A6) shown

in Section 4.1.2.

(D1) If we restrict F to X̂ := {(x, y) : 0 < x, y and x + y < 1}, and denote this

restriction by F̂ , it determines a full dynamical system defined as

{
F̂ n : n ∈ Z

}
,
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which, for example, allows the definition of the full orbit of a point p ∈ Y̊ as

O(p) :=
{
F̂ n(p) : n ∈ Z

}
.

(D2) The line y = x is F -invariant, while the x- and y-axes are F 2-invariant.

(D3) Both of the points (1, 0) and (0, 1) are fixed points of F 2.

5.1.1 Analysis of the Fixed and Periodic Points

The properties of the fixed and periodic points of the model map [136] shall be

delineated in a series of lemmas, which follow directly from the results in the preceding

sections and fundamental dynamical systems theory (as in [52, 75, 122, 164]). Our

first result is the following,

Lemma 5.1.1. The only fixed point of F in X is

p∗ = (x∗, y∗) =

(
3−
√

5

2

)
(1, 1) ∼= 0.38197 (1, 1) ,

which is a saddle point with eigenvalues

λs = −

(
3−
√

5

2

)
, λu = −

(
1 +
√

5

2

)
.

This fixed point has linear stable and stable manifolds given as

W s
lin (p∗) = {(x, x) : x ∈ R} and W s (p∗) = {(x, x) : 0 < x < 1},

and the linear unstable manifold

W u
lin (p∗) = {(x,−x+ 2x∗) : x ∈ R}.
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Next, we analyze the unstable manifold of p∗ in some detail. For this purpose, it

is convenient to introduce a change of variables linked to the symmetry of F expressed

in (A2); namely,

T (x, y) = (u, v) :=

(
x+ y − 2x∗√

2
,
−x+ y√

2

)
,

with inverse

T−1(u, v) = (x, y) :=

(
x∗ +

u− v√
2
, x∗ +

u+ v√
2

)
.

Clearly, T is a translation of the origin to the fixed point p∗ followed by a

counterclockwise rotation of π/4. The defining map for the dynamics in the new

coordinates can be readily computed to be

F̃ (u, v) := T◦F◦T−1(u, v) =
(√

2/R(u, v)
)(√

2(1 + 2x2
∗)u+ (1− x2

∗)(v
2 − u2),−

√
2v
)
,

(5.1)

where

R(u, v) := 2x∗(2− x∗) + 2
√

2(1− x∗)u+ v2 − u2.

The properties of the unstable manifold of the fixed point may now be described as

in the following result, which can be proved directly from Lemma 5.1.1 and (5.1).

Lemma 5.1.2. The unstable manifold of the fixed point p∗, which corresponds to

0 = (0, 0) in the new u− v-coordinates, has the form

W u (p∗) = W u (0) = {(ϕ(v), v) : |v| < 1/
√

2},

where ϕ is a smooth (C∞) function satisfying the following properties:

(i) ϕ(0) = ϕ′(0) = 0 and ϕ(v) ↑ −2+
√

5√
2

as v ↑ 1/
√

2.
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(ii) ϕ is an even function.

(iii) ϕ satisfies the functional equation

ϕ(v) = κ

{
(1− x2

∗)
(
ϕ(v)2 − v2

)
+
S(ϕ(v), v)√

2
ϕ

(
−2v

S(ϕ(v), v)

)}
, (5.2)

where κ := 1/
[√

2 (1 + 2x2
∗)
]

and

S(ϕ(v), v) := 2x∗(2− x∗) + 2
√

2(1− x∗)ϕ(v) + v2 − ϕ(v)2.

We note here that (5.2) can be used to obtain Picard iterate (local) approximations

of the unique solution via the recursive formula (cf. [62])

ϕn+1(v) = κ

{
(1− x2

∗)
(
ϕn(v)2 − v2

)
+
S(ϕn(v), v)√

2
ϕn

(
−2v

S(ϕn(v), v)

)}
. (5.3)

A good starting point for these iterates is

ϕ1(v) :=
√

2
(√

5− 2
)
v2,

which satisfies the first two properties of Lemma 5.1.2, and turns out to be a fairly

good approximation for the unstable manifold. Using (5.3), we obtain an improved

approximation in the form

ϕ2(u) = κ

{
(1− x2

∗)
(

2(
√

5− 2)v2 − 1
)
v2 +

(√
5− 2

)
S(ϕ1(v), v)

(
−2v

S(ϕ1(v), v)

)2
}
,

(5.4)

where

S (ϕ1(v), v) = 2
{
x∗ (1− x∗) + v2

[(
2(1− x∗)(

√
5− 2) + 1

)
− (
√

5− 2)2v2
]}

.

which is illustrated in Figure 5.1. As a matter of fact, it can be proved that these

iterates actually converge locally to the smooth solution of (5.2), but the details,
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which follow the argument in [62], although straightforward, are a bit too involved to

include here. We remark here that it is not difficult to prove that a global solution of

the unstable manifold equation can be obtained as follows:

W u (p∗) = lim n→∞ F n (∆′) ,

where ∆′ := {(x, 1− x) : 0 ≤ x ≤ 1.

Let us now investigate periodic orbits of the discrete dynamical system (4.3). It

is easy to see from the definition that ζ := {(1, 0), (0, 1)} is a 2-cycle in which each

point has (least) period two. As for any other cyclic behavior, we have the following

comprehensive result that follows directly from the definition of the dynamical system

and properties (A1)-(A6) (Section 4.1.2) and (D1)-(D3).

Lemma 5.1.3. The 2-cycle ζ := {(1, 0), (0, 1)} is the only cycle of F ; it is superstable

and has basin of attraction

B(ζ) := I2 r {(x, x) : x ∈ R}.

5.1.2 Summary of the Dynamics

We see from our analysis that the dynamical system (generated by) F defined by

(4.3)-(4.4) has highly oscillatory, but quite regular behavior. There is one fixed point

(on the line y = x), which attracts everything on the diagonal in X. In addition,

there are only two other special points; namely, (1, 0) and (0, 1), both of which are

superstable periodic points of period two that comprise the 2-cycle ζ := {(1, 0), (0, 1)}.

Moreover, ζ attracts everything in X except the points along the diagonal. Thus we

see that our minimal model replicates the highly oscillatory “race” behavior found in

physical realizations of RSFF circuits, but none of the chaotic dynamics. In fact, the
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Figure 5.1 Picard iteration approximation (ϕ6) in u, v-coordinates (left) and
x, y-coordinates (right).

Source: A. Rahman and D. Blackmore. Threshold voltage dynamics of chaotic RS

flip-flop circuits. arXiv:1507.03065, 2017.

nonwandering set of the minimal dynamical system, which actually coincides with the

periodic set, has the simple form

Ω (F ) = Per (F ) = {p∗} ∪ ζ, (5.5)

and F is C1-structurally stable so that the dynamics maintains its regularity for all

perturbations that, along with their derivatives, are sufficiently small. A proof of the

structural stability for our map, which does not quite satisfy the usual hypotheses,

can be fashioned from a straightforward modification of the methods employed in

[36, 122, 125, 139]. Thus, it would seem that perturbations capable of generating

chaos can be very small, but their derivatives need to be quite large or even fail to

exist. We shall verify this in the sequel.
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5.2 Perturbed Minimal Model with One-dimensional Chaos

In this section, we shall show how small perturbations that do not break the reflectional

symmetry of the minimal model can produce chaos along the diagonal. More precisely,

we shall give a constructive proof of the following result.

Theorem 5.2.1. There exist continuous arbitrarily small C0 perturbations of the

minimal model map F for the RSFF circuit that are symmetric with respect to

reflections in the invariant line y = x and exhibit one-dimensional chaos in their

restrictions to the diagonal.

Proof. The idea of our argument is to embed an arbitrarily small C0 perturbation

into F that implants known chaotic dynamics along the dynamics without breaking

the symmetry. This chaotic insert is defined along the diagonal for any σ > 0 using

the continuous piecewise-linear function

ψσ(x) :=

 −x, −2σ ≤ x ≤ 0

−2 (σ − |x− σ|) , 0 ≤ x ≤ 2σ
, (5.6)

which is illustrated in Figure 5.2. Observe that the composition τσ := ψ2
σ : [0, 2σ]→

[0, 2σ] is just the 2σ-scaled tent map given by

τσ(x) = 2 (σ − |x− σ|) ,

which is known to have chaotic dynamics, including periodic orbits of all periods, a

dense orbit and a Lyapunov exponent of log 2 for almost all initial points (see, e.g.,

[75]). Now we note from the definitions, (4.3) and (4.4), (A2), and Lemma 5.1.1 that

the restriction f of F to the diagonal is

f(x) =
1− x
2− x

, (5.7)
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Figure 5.2 Illustration of a kink perturbation.

Source: A. Rahman and D. Blackmore. Threshold voltage dynamics of chaotic RS

flip-flop circuits. arXiv:1507.03065, 2017.

which has the unique (stable) fixed point x∗ = (1/2)(3 −
√

5), and this is a global

attractor on the unit interval [0, 1]. It is easy to see that for every ε > 0, we can choose

0 < 8σ < min{1/6, ε} such that there is a continuous map fσ : [0, 1]→ [0, 1/2] with

the following properties: (i) fσ(x) = ψσ(x − x∗) for all x ∈ Jσ := [x∗ − 2σ, x∗ + 2σ];

(ii) fσ(x) = f(x) for all x ∈ [0, 1] r [x∗ − 8σ, x∗ + 4σ]; (iii) fσ is strictly decreasing on

[0, x∗ + σ] ∪ [x∗ + 2σ, 1]; and (iv) |fσ(x)− f(x)| < 4σ for all 0 ≤ x ≤ 1. We observe

that Jσ is a global attractor for fσ, but not strange since it has dimension equal one.

The one-dimensional chaotic implant can be extended to the whole two-dimensional

domain of F . More precisely, it is easy to see (by simply linearly joining the perturbed

diagonal map to F ) that there exists for any 0 < 8σ < min{1/6, ε} a continuous map

Fσ : X → X satisfying the following properties: (a) the diagonal is Fσ- invariant (b)

Fσ restricted to the diagonal is fσ; (c) Fσ is symmetric with respect to the diagonal;

(d) the dynamics of Fσ of the diagonal are qualitatively the same as that of F ; and
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(e) |Fσ(x, y)− F (x, y)| < 8σ for all (x, y) ∈ X. As σ can be made arbitrarily small,

the proof is complete.

Observe that the perturbation Fσ constructed in the above proof is merely continuous

and piecewise smooth inside a small ball centered at the fixed point x∗ and smooth

(i.e., C∞) outside of the ball. The perturbation and its chaotic dynamics are illustrated

in Figure 5.8. By smoothing the corners of the construction, the perturbation can be

made smooth, which leads directly to the following result.

Corollary 5.2.1. The perturbation in Theorem 5.2.1 can be chosen so that it is a

C∞ function having the same qualitative dynamics as the function constructed above.

It is useful to note that the perturbation Fσ producing one-dimensional chaos

along the invariant diagonal is arbitrarily C0 close to the original map F . However,

it cannot be made arbitrarily C1 close to F by virtue of the readily verified fact that

the restriction to the diagonal is C1-structurally stable, so we cannot find arbitrarily

small perturbations in the C1 sense that posses chaotic dynamics. As we shall see in

the next section, there exist arbitrarily small C0 perturbations that are arbitrarily

small C1 perturbations except in regions of small diameter of F that are C∞ and

exhibit (two-dimensional) chaotic dynamical regimes.

5.3 Two-dimensional Chaos Induced by Perturbation

In this section, we shall show how arbitrarily small perturbations of the minimal model

can induce chaotic dynamics of various types that are more substantial and complex

than that described in Theorem 5.2.1. Our first perturbation involves the (geometric)

local embedding of a Smale horseshoe in the minimal model in a neighborhood of the

saddle point p∗.
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5.3.1 Direct Horseshoe Chaos

We begin by defining a map in a neighborhood of p∗ that yields the desired horseshoe.

First, let 0 < δ0 ≤ 0.04 so that

B̄6
√

2δ0
(p∗) :={(x, y) ∈ R2 : (x− x∗)2 + (y − y∗)2 ≤ 72δ2

0}

⊂ [x∗ − 6
√

2δ0, x∗ + 6
√

2δ0]2 ⊂ (0, 1)2 = int
(
I2
)
,

where int(E) denotes the interior of the subset E of the plane. Now, for each 0 < δ ≤

δ0,we introduce a (s, t)-coordinate system with origin at p∗, the s-axis pointing to the

right along the linear unstable manifold of p∗ and the t-axis pointing upward along

the stable manifold of p∗. Let Pδ : {(s, t) : |s| , |t| ≤ 6δ} → R2 be defined in terms of

s, t-coordinates as

Pδ (s, t) := (ϕδ(s), ψδ(s, t)) , (5.8)

where ϕδ is an odd function such that

ϕδ(s) :=


−(3/2)s, 0 ≤ s ≤ 2δ

3(s− 3δ), 2δ ≤ s ≤ 4δ

(1/3) (s+ 5δ) , 4δ ≤ s ≤ 6δ

,

and ψδ is an odd function of t for each s given by

ψδ(s, t) := −δt− µ(s),

where

µ(s) :=


0, |s| ≤ 2δ

sgn(s) (|s| − δ) , δ ≤ s ≤ 2δ

sgn(s)δ, |s| ≥ 2δ

.

65



As p∗ is a fixed point of both Pδ and the minimal model F , for and given ε > 0

we can choose 0 < δ = δ(ε) ≤ δ0 such that in terms of the euclidean norm, we have

‖F (p)− Pδ(p)‖ < ε

for all p ∈ B̄6
√

2δ0
(p∗). Moreover, it is easy to see – as shown in Figure 5.3 – that the

image of the square

Qδ := {(s, t) : −2δ ≤ s, t ≤ 2δ}

under the map (5.6), namely Pδ (Qδ), is a (double) horseshoe. Note that all of the

above functions are continuous and piecewise linear, which means they have smooth

approximations (obtained by smoothly rounding out the corners) that are arbitrarily

C0-close to them. Consequently, we can and will assume that the perturbations chosen

here to prove our next result and in the sequel are smooth.

Theorem 5.3.1. For every ε > 0 there exists a 0 < δ = δ(ε) ≤ 0.04 such that the

(smooth) perturbation of the minimal model map F defined as

Fδ(p) := (1− ρ(r))Pδ(p) + ρ(r)F (p), (5.9)

where Pδ is as in (5.8), r := ‖p− p∗‖ and

ρ(r) :=


0, 0 ≤ r ≤ 4δ

√
2(

1/δ
√

2
) (
r − 4δ

√
2
)
, 4δ

√
2 ≤ r ≤ 5δ

√
2

1, r ≥ 5δ
√

2

,

satisfies ‖Fδ(p)− F (p)‖ < ε for all p ∈ I2 and Fδ (Qδ) is a double horseshoe as shown

in Figure 5.3.

Proof. As noted above, the restriction 0 < δ ≤ 0.04 guarantees that B̄6
√

2δ(p∗) is

contained in the interior of I2 and that by taking δ sufficiently small, we can further
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ensure that ‖F (p)− Pδ(p)‖ < ε on B̄6
√

2δ(p∗). Hence, it follows from the definition

of ρ and (5.9) that ‖Fδ(p)− F (p)‖ < ε on I2. Finally, (5.9) implies that Fδ (Qδ) =

Pδ (Qδ), which is the double horseshoe illustrated in Figure 5.3, and this completes

the proof.

In light of Theorem 5.3.1, the next result on the existence of horseshoe type

chaos follows directly from the results of Birkhoff, Moser, and Smale (cf. [52, 75, 108,

122, 139, 151, 164]).

Corollary 5.3.1. The perturbation Fδ in Theorem 5.3.1 is chaotic on an invariant

subset contained in the double horseshoe image described therein. In particular, Fδ

restricted to this invariant set is conjugate to the shift map on three symbols.

5.3.2 Snap-back Repeller Chaos

There also are arbitrarily small C0 perturbations of F exhibiting snap-back repeller

chaos of the type described, for example, by Marotto [96, 97]. We start by showing

how a small C0 perturbation of F can turn p∗ into a source with at least four snap-back

points and then show that it is possible to create infinitely many snap-back points

circling the fixed point. Once again we employ the s, t-coordinate system and δ0 used

in the preceding subsection to define the perturbation in a neighborhood of p∗. In

particular, we define Rδ : {(s, t) : |s| , |t| ≤ 6δ} → R2 as

Rδ (s, t) := (ϕδ(s), ψδ(t)) , (5.10)

where ϕδ is an odd function of s defined for s ≥ 0 as

ϕδ(s) := −2s,
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Figure 5.3 Embedded double horseshoe in the neighborhood of (x, y) = (0, 1), (1, 0).

Source: A. Rahman and D. Blackmore. Threshold voltage dynamics of chaotic RS

flip-flop circuits. arXiv:1507.03065, 2017.
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and ψδ is an odd function of t defined for t ≥ 0 by

ψδ(t) :=


−2t, 0 ≤ t ≤ δ

2(t− 2δ), δ ≤ t ≤ 3δ

5δ − t, 3δ ≤ t ≤ 6δ

,

and graphed in Figure 5.4.

As p∗ is a fixed point of both Rδ and the minimal model F , for and given ε > 0

we can choose 0 < δ = δ(ε) ≤ δ0 such that in terms of the euclidean norm, we have

‖F (p)−Rδ(p)‖ < ε

for all p ∈ B̄6
√

2δ0
(p∗). As above, we are going to assume with no loss of generality,

that our perturbations are actually smooth, and this leads to our next result, which

is an analog of Theorem 5.3.1.

Theorem 5.3.2. For every ε > 0 there exists a 0 < δ = δ(ε) ≤ 0.04 such that the

(smooth) perturbation of the minimal model map F defined as

Fδ(p) := (1− σ(r))Rδ(p) + σ(r)F (p), (5.11)

where Rδ is as in (5.10), r := ‖p− p∗‖ and

σ(r) :=


0, 0 ≤ r ≤ 5δ

√
2(

1/δ
√

2
) (
r − 5δ

√
2
)
, 5δ

√
2 ≤ r ≤ 6δ

√
2

1, r ≥ 6δ
√

2

,

satisfies ‖Fδ(p)− F (p)‖ < ε for all p ∈ I2 and p∗ is a snap-back repeller for Fδ having

the chaotic dynamics described in [96, 97].

Proof. The restriction 0 < δ ≤ 0.04 ensures that B̄6
√

2δ(p∗) is contained in the

interior of I2 and that by taking δ sufficiently small, we can further ensure that
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‖F (p)−Rδ(p)‖ < ε on B̄6
√

2δ(p∗). Consequently, (5.11) and the definition of the

function σ implies that ‖Fδ(p)− F (p)‖ < ε on I2. It also follows from (5.11) that

Fδ(p) = Rδ(p) for all p ∈ B̄5
√

2δ0
(p∗), so p∗ is a hyperbolic repeller for Fδ having - as is

clear from Figure 5.4 – four snap-back points at (s, t) = (0,±2δ) and (s, t) = (0,±5δ).

The chaotic dynamics then follows from [96, 97] and the proof is complete.

Figure 5.4 Coordinate function for snap-back repeller perturbation.

Source: A. Rahman and D. Blackmore. Threshold voltage dynamics of chaotic RS

flip-flop circuits. arXiv:1507.03065, 2017.

It should be noted that the chaos described in Theorem 5.3.2 is essentially

one-dimensional inasmuch as it is confined to the unstable manifold of p∗ with respect

to the minimal model F . However, it is not difficult to see how the construction in the

above proof can be modified to obtain higher dimensional snap-back repeller chaos.
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One need only consider a perturbation R̃δ given in polar form (with p∗ as the origin

in the s, t- coordinate plane) as

R̃δ := ψδ(r) (cos θ, sin θ) ,

which has two full circles of snap-back points around p∗. If in addition, we modify ψδ

in the annulus 2δ ≤ r ≤ 6δ so that it is negative for certain θ-sectors, the location of

the snap-back points near p∗ can be easily controlled.

5.3.3 Chaos Generated by Embedding Transverse Homoclinic Orbits and

Heteroclinic 2-cycles

Chaos can also be generated by perturbing F so that it has transverse homoclinic

points or transverse heteroclinic 2-cycle points, for then it exhibits chaotic subshift

dynamics (cf.[6, 37, 52, 75, 122, 164]).

To begin, we prove a simple result showing how to create transverse intersections

in a homoclinic or heteroclinic curve on a surface with an arbitrarily small C0

perturbation. It should be noted that it is well known that such transverse intersections

can be produced by arbitrarily small C1 perturbations on general C1 surfaces (cf.

[75, 122, 164] ), but we shall find it useful for our simulations in the sequel to present

a specialized C0 result for the plane that is much easier to prove. In fact, the idea

of the proof is quite transparent, involving just a carefully localized small sinusoidal

perturbation normal to the homoclinic or heteroclinic curve (see Figure 5.5), but the

details are a bit involved. By a homoclinic curve or heteroclinic curve joining a single,

respectively, pair of distinct saddle points of a differentiable map of a differentiable

surface, we mean an (open) curve contained in the stable (unstable) and (stable)

manifolds of the single, respectively, pair of points that contains the saddle points in
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its closure. A heteroclinic 2-cycle is just pair of heteroclinic curves joining a pair of

distinct saddle points.

Lemma 5.3.1. Let f : S → S be a C1 self-map of a connected surface S in R2.

Suppose that p and q are identical or distinct saddle points of f joined, respectively,

by a homoclinic or heteroclinic curve γ that is contained both in W u(p)∩W s(q) and a

subset of S that is compact in R2. If there is a point u−1 ∈ γ such that u0 := f(u−1),

u1 := f 2(u−1), u2 := f 3(u−1) and u3 := f 4(u−1) are contained in a connected open

neighborhood U of the closed subarc κ of γ from u−1 to u3 and f is invertible on U ,

then there is an arbitrarily small C0 perturbation g of f , equal to f except in an open

subset V of U that contains a nontrivial closed subarc σ of κ from u0 to a point v0 ∈ γ

not containing u1, such that W u
g (p) has a transverse intersection with W s

g (q) in f(σ).

Proof. First, we orient the curve γ from p to q so that it follows the direction of

positive iterates. Next, define the (oriented) arclength along γ starting from u0 to be

s, so that s(u0) = 0 < s(u1) < s(u2) owing to the definition of γ and the hypotheses.

It follows from our assumptions that there exists a point ũ ∈ κ with 0 < s(ũ) < s(u1)

such that the closed subarc χ of γ from u0 to ũ satisfies the following property:

(P1) f−1(χ), χ, f(χ) and f 2(χ) are pairwise disjoint closed subarcs of κ.

At each point u ∈ γ there is a unit normal vector that is unique if we specify an

orientation, which we do by defining the positive direction to be consistent with the

right hand rule and the positive direction along the curve. We denote this vector

by n(u), which now allows the definition of a positive and negative distance from γ

points x sufficiently close to γ, which we denote by ν(x). We then combine this with

a coordinate s(x) defined to be s(ϕ(x)), where ϕ(x) := u is the unique (for points

sufficiently near γ) point on the curve such that the distance d(x, γ) from the point
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x to γ is equal to ‖x− u‖, where ‖·‖ is the Euclidean norm. Then basic results on

normal bundles such as in [79] imply that there exists λ0 > 0 such that for every

0 < λ ≤ λ0,

Nλ := {x ∈ S : s(u−1)− λ/2 < s(x) < s(u3) + λ/2; |ν(x)| < λ} (5.12)

is an open set contained in U and is a neighborhood of the closed subarc κ, Nλ

does not contain p or q, and it is well defined in the sense that every x ∈ Nλ

is uniquely determined by its coordinates (s(x), ν(x)). We now have all the tools

necessary to provide a simple description of small C0 perturbations that possess

the desired transverse intersections of unstable and stable manifolds. In virtue of

the differentiability of the map and the homoclinic or heteroclinic curve and the

definition of Nλ, there exists 0 < λ1 < λ0 such that if 0 < λ ≤ λ1 and we define

N̄λ(χ) := {x ∈ S : 0 ≤ s(x) ≤ s(ũ); |ν(x)| ≤ λ}, then the following obtains:

(P2) f−1
(
N̄λ(χ)

)
, N̄λ(χ), f

(
N̄λ(χ)

)
and f 2

(
N̄λ(χ)

)
are pairwise disjoint closed

subsets of Nλ0 .

Now for any 0 < ε < λ1, we define the perturbation increment function ∆ε : S → S

as

∆ε(x) :=

 ε (1− λ−1 |ν(x)|) sin
(

2πs(x)
s(ũ)

)
n(ϕ(x)), x ∈ N̄λ(χ)

0, x /∈ N̄λ(χ)
, (5.13)

which is tantamount to saying that the s-coordinate function of ∆ε is zero and

ν-coordinate function is zero except in N̄λ(σ) where it is defined to be the coefficient

of the unit normal vector in (5.13). Note that this function also vanishes when

s(x) = 0, (1/2)s(ũ) or s(ũ); that is, all along the normals to the curve γ at u0, ũ and

a point w ∈ γ with s(ũ) < s(w) = (1/2)s(ũ) < s(ũ). Moreover, the graph of (5.13)
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in the s, ν-plane has a transverse intersection with the s-axis at s = (1/2)s(ũ). The

desired perturbation of f is

gε = f + ∆ε, (5.14)

which is readily seen to have the desired properties. In particular, ‖gε(x)− f(x)‖ ≤ ε

for all x ∈ S, W u
gε(p) = W u

f (p) and W s
gε(q) = W s

f (q) in a neighborhood of p and q,

respectively, and the differentiability of both f and gε in a neighborhood of w together

with (P1), (P2) and the transversality property of ∆ε at w guarantee that there is a

transverse intersection of W u
gε(p) and W s

gε(q) at f(w). Thus, the proof is complete.

Figure 5.5 An example of a transverse intersection perturbation.

Source: A. Rahman and D. Blackmore. Threshold voltage dynamics of chaotic RS

flip-flop circuits. arXiv:1507.03065, 2017.

As a final remark concerning the above lemma, it is rather easy to see how by

smoothing corners and reducing the scale of the perturbation increment, if necessary,

the perturbation of the function can be chosen to be C1 small. Moreover, it is a

simple matter to extend the result to general C1 surfaces using standard techniques

from differential geometry and topology (cf. [75, 79, 139, 122, 125, 164]).

Next we shall show how to embed C0-small dynamics in a neighborhood of the

fixed point p∗ of the minimal model F that has a homoclinic orbit or a heteroclinic

2-cycle. Once done, we can apply Lemma 5.3.1 to create chaotic dynamics in arbitrarily
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small C0 perturbations of F . We shall use the time-one maps of the following

Hamiltonian differential equations defined for δ > 0 as

ξ̇ = η
(
δ2 + ξ2 + η2

)
,

η̇ = ξ
(
δ2 − ξ2 − η2

)
, (5.15)

which has the Hamiltonian function

Hδ = (1/4)
[(
ξ2 + η2

)2 − 2
(
ξ2 − η2

)]
. (5.16)

Here we have relabeled the s, t-coordinates used in subsections 5.1 and 5.2 as ξ, η-

coordinates to avoid confusion with the time parameter t in (5.15). This equation

yields a pair of homoclinic orbits corresponding to Hδ = 0 that are depicted in Figure

5.6. For the heteroclinic 2-cycle, we choose the system

ξ̇ = η,

η̇ = −ξ +
(
ξ3/δ2

)
, (5.17)

with Hamiltonian function

Kδ = (1/4)
[
2
(
ξ2 + η2

)
−
(
x4/δ2

)]
. (5.18)

This system has a heteroclinic 2-cycle contained in Kδ = δ2/4, which is also shown in

Figure 5.6. Now let the solution of (5.15) and (5.17) be denoted, respectively as

(ξ, η) = ϕδ (t, (ξ0, η0)) (5.19)

and

(ξ, η) = ψδ (t, (ξ0, η0)) . (5.20)
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The desired embeddings are obtained from the time-1 maps of the above; namely,

we define

Φδ(ξ, η) := ϕδ (1, (ξ, η)) (5.21)

and

Ψδ(ξ, η) := ψδ (1, (ξ, η)) . (5.22)

Clearly, these maps have the desired homoclinic and heteroclinic orbits, respectively.

Now, we select δ0 > 0 so small that B̄6δ0(p∗) is contained in the interior of I2 and

then 0 < δ = δ(ε) ≤ δ0 for a given ε > 0 such that

‖F (z)− Φδ(z)‖ < ε (5.23)

and

‖F (z)−Ψδ(z)‖ < ε (5.24)

for all z ∈ B̄6δ0(p∗). Whence, we can define

F̂δ(z) := (1− κ(r)) Φδ(z) + κ(r)F (z) (5.25)

and

F̃δ(z) := (1− κ(r)) Ψδ(z) + κ(r)F (z), (5.26)

where r := ‖z − p∗‖ and

κ(r) :=


0, 0 ≤ r ≤ 3δ

(1/δ) (r − 3δ) , 3δ ≤ r ≤ 4δ

1, r ≥ 4δ

. (5.27)
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Figure 5.6 Sketches of homoclinic and heteroclinic orbits.

Source: A. Rahman and D. Blackmore. Threshold voltage dynamics of chaotic RS

flip-flop circuits. arXiv:1507.03065, 2017.

It follows from (5.17)-(5.26) that
∥∥∥F (z)− F̂δ(z)

∥∥∥ < ε and
∥∥∥F (z)− F̃δ(z)

∥∥∥ < ε

for all z ∈ I2 and that F̂δ has a homoclinic orbit comprised of the stable and unstable

manifolds at p∗ and F̃δ has a heteroclinic 2-cycle centered at p∗ as shown in Figure 5.6.

Whence, we may, after choosing δ smaller if necessary, use Lemma 5.3.1 to further

perturb F̂δ and F̃δ to create a transverse intersection point in the homoclinic orbit

and, respectively, to create a transverse intersection point in one or both components

of the heteroclinic 2-cycle, while still remaining ε-close to the original maps in the

C0 metric. Then λ-Lemma based arguments of the type developed in such sources

as [6, 37, 122, 164] and the smoothing discussed above lead directly to the following

result.

Theorem 5.3.3. For every ε > 0 there exist smooth C0 ε-close perturbations of the

minimal model map F exhibiting transverse homoclinic point or transverse heteroclinic

2-cycle induced chaos.
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5.3.4 Multihorseshoe Strange Attractor Perturbations

The next element of our description and analysis of more pervasive chaotic C0

perturbations of the map F defined by (4.3)-(4.4) involves embedding a symmetric pair

of attracting horseshoes along the lines introduced in [8]. In particular, we shall show

how to C0 perturb F to produce multihorseshoe (more precisely, double-horseshoe)

chaos (cf. [8]), as shown in Figure 5.7.

To begin the construction of the embedding, we note first that the minimal

map F is actually defined and smooth at all points in the x, y-plane above the curve

defined by x+ y− xy = 0. Next, for convenience, we denote the period-2 points (1, 0)

and (0, 1) by p and q, respectively. Let ε > 0 be given. As both p and q are fixed

points of F 2 and of G2, where G is the reflection in the line y = x, we may choose

0 < δ ≤ 1/4 such that

‖F (z)−G(z)‖ < ε/2 (5.28)

whenever z ∈ B̄10
√

2δ(p) ∪ B̄10
√

2δ(q). Define

F̃ε(z) :=


F (z), z /∈ B̄10

√
2δ(p) ∪ B̄10

√
2δ(q)

(1− ω(rp))G(z) + ω(rp)F (z), z ∈ B̄10
√

2δ(p)

(1− ω(rq))G(z) + ω(rq)F (z), z ∈ B̄10
√

2δ(q)

, (5.29)

where rp := ‖z − p‖, rq := ‖z − q‖ and

ω(r) :=


0, 0 ≤ r ≤ 8δ

√
2(

1/δ
√

2
) (
r − 8δ

√
2
)
, 8δ

√
2 ≤ r ≤ 9δ

√
2

1, r ≥ 9δ
√

2

. (5.30)

It is clear from the definition and (5.28) that∥∥∥F (z)− F̃ε(z)
∥∥∥ < ε/2. (5.31)
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It now remains to make a final adjustment of the map F̃ε that has the attracting

horseshoes. To this end, we define the following perturbation of the identity in

B̄10
√

2δ(p) ∩ I2 using the original x, y-coordinates

Θ (x, y) = (ϕ(x), ψ(x, y)) ,

where

ϕ(x) :=


1, x ≤ 1− 7δ or 1− δ ≤ x ≤ 1

2(x+ δ)− 1, 1− 4δ ≤ x ≤ 1− δ

−2(x+ 7δ) + 3, 1− 7δ ≤ x ≤ 1− 4δ

(5.32)

and

ψ(x, y) :=



y/5, x ≤ 1− 9δ or 1− 5δ ≤ x ≤ 1

(y/5) + 6 (1− 5δ − x) , 1− 6δ ≤ x ≤ 1− 5δ

(y/5) + 6δ 1− 7δ ≤ x ≤ 1− 6δ

(y/5) + 3 (x+ 9δ − 1) 1− 9δ ≤ x ≤ 1− 7δ

. (5.33)

Observe that Θ has a sink at p and a saddle point at (1− 2δ, 0) with a horizontal

unstable and vertical stable manifold. Moreover, Θ maps the rectangle [1−4δ, 1−δ]×

[−δ, 9δ] onto a piecewise smooth (and of course smoothable) attracting horseshoe as

defined in [8]. This function can be reflected in the line y = x to obtain the symmetric

map Θ̂ := G ◦Θ ◦G mapping the rectangle [−δ, 9δ]× [1− 4δ, 1− δ] onto the reflection

of the horseshoe image of Θ in y = x.

Now it follows directly from the above definitions that, taking δ smaller if

necessary, we can ensure that

‖G(z)−Θ ◦G(z)‖ < ε/2 (5.34)
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when z ∈ B̄10
√

2δ(q) ∩ I2 and ∥∥∥G(z)− Θ̂ ◦G(z)
∥∥∥ < ε/2 (5.35)

for all z ∈ B̄10
√

2δ(p)∩ I2. Therefore, also taking into account (5.31), the modification

Fε of F̃ε defined as

Fε(z) :=


F (z), z /∈ B̄10

√
2δ(p) ∪ B̄10

√
2δ(q)

(1− ω(rp)) Θ̂ ◦G(z) + ω(rp)F (z), z ∈ B̄10
√

2δ(p)

(1− ω(rq)) Θ ◦G(z) + ω(rq)F (z), z ∈ B̄10
√

2δ(q)

satisfies

‖F (z)− Fε(z)‖ < ε.

Moreover, we note that both p and q are attracting fixed points (sinks) of F 2
ε , just as

they are of F 2, while (1− 2δ, 0) and (0, 1− 2δ) comprise a 2-cycle of Fε (consisting

of saddle points of F 2
ε ) but not F . Finally, as constructed, each of the symmetric

horseshoes shown in Figure 5.7 is an attracting horseshoe of F , so that it follows from

the main multihorseshoe theorem in [8] that we have now proved the following result.

Theorem 5.3.4. For every positive ε there is a smooth C0 ε-close perturbation Fε of

the minimal map F having a strange chaotic double-horseshoe attractor with attracting

horseshoes in neighborhoods of the points (1, 0) and (0, 1).

It is interesting to note that the strange attractor for the small perturbation of

F in Theorem 5.3.4 resembles a discrete analog of the “double scroll” attractor for

Chua’s circuit (cf. [23, 25]), also seen in the dynamics of RSFF realization simulations

such as in [16] and could, with some minor modification, produce discrete analogs of

the attractors found in or associated with various physical circuit models such as in

[16, 74, 73, 84, 107, 111, 110, 118].
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Figure 5.7 Embedded double-horseshoe chaotic strange attractor.

Source: A. Rahman and D. Blackmore. Threshold voltage dynamics of chaotic RS

flip-flop circuits. arXiv:1507.03065, 2017.
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5.3.5 Neimark–Sacker Bifurcation Perturbations

Our final result shall show that Neimark–Sacker bifurcations can occur in arbitrarily

small C0 perturbations of the minimal model map F . Once again, we use the ξ, η-

coordinates employed in preceding subsections to define for δ > 0 the following

parameter-dependent map in polar coordinates in the ξ, η - plane with origin at p∗

Nδ (ξ, η;µ, α) := −δ tanh(µr/δ) (cos(θ + α), sin(θ + α)) , (5.36)

where 1/2 < µ < 3/2, α is nonnegative and r := ‖(ξ, η)− p∗‖. It is easy to verify

that the origin is a global attractor of (5.36) for 1/2 < µ < 1 and a local repeller for

1 < µ < 3/2, so µ = 1 is a bifurcation value. Moreover, as µ increases across 1 with a

corresponding transition of the origin from a sink to a source, a stable invariant circle

of radius r = r(µ), where r(µ) is the unique positive solution of

δ tanh(µr/δ) = r. (5.37)

The parameter α just represents the rotation of the map (5.36), so what we have is a

Neimark–Sacker bifurcation at µ = 1.

Now just as in the preceding subsections, we can choose δ0 > 0 so small that

B̄6δ0(p∗) is contained in the interior of I2 and then 0 < δ = δ(ε) ≤ δ0 for a given ε > 0

such that

‖F (z)−Nδ(z)‖ < ε (5.38)

for all µ ∈ (1/2, 3/2) and α ≥ 0 whenever z ∈ B̄6δ0(p∗). Therefore, by defining

F̌δ(z) := (1− κ(r))Nδ(z) + κ(r)F (z),
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where κ is defined just as in (5.27), we obtain a map that is ε-close to F in the C0

norm and has the desired bifurcation properties. In short, we have now proved the

following result.

Theorem 5.3.5. For every positive ε there is a smooth C0 ε-close perturbation F̌ of

the minimal map F having a Niemark–Sacker bifurcation at p∗.

A direct detailed construction was used for the proof of Theorem 5.3.5, but the

same result can be proved, using the main theorem in [17], for any perturbation in

which p∗ changes from an attractor to a local repeller as a parameter is varied. It

should also be noted that one can, by a straightforward modification of the above

procedure, construct arbitrarily small C0 perturbations of F exhibiting doubling

Neimark–Sacker (Hopf) cascades like those in the ad hoc RSFF model analyzed in

[9].

5.4 Simulations, Computations, and Comparisons

Our purpose in this section is to show with just a few examples that our discrete

dynamical model – when properly perturbed – shares many properties with actual

physical realizations (and their associated mathematical models) of the R-S flip-flop

and related circuits such as in [34, 74, 73, 84, 107, 111, 110, 118, 142, 171]. For example,

we have already demonstrated in Section 5.3 that our model can be perturbed so that

it exhibits the chaos found by simulation in a one-dimensional map associated with

the dynamics of the realization of the autonomous flip-flop circuit - which is not an

R-S flip-flop circuit - investigated in [118], and it is this kind of chaos we consider in

the next subsection.
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5.4.1 Perturbed Minimal Model with One-dimensional Chaos

We derive the perturbed map by inserting (5.6) into (4.4) where x → ϕσ(x) and

y → ϕδ(y),

ξ(x, y) :=
ϕδ(y)(1− ϕσ(x))

1− (1− ϕσ(x))(1− ϕδ(y))

η(x, y) :=
ϕσ(x)(1− ϕδ(y))

1− (1− ϕσ(x))(1− ϕδ(y))
.

(5.39)

The iterates of the perturbed map are shown in Figure 5.8.

Figure 5.8 Example of perturbation inducing one-dimensional chaos on the line
y = x.

Source: A. Rahman and D. Blackmore. Threshold voltage dynamics of chaotic RS

flip-flop circuits. arXiv:1507.03065, 2017.

Corollary 5.4.1. The perturbation in the preceding theorem can be chosen so that it

is a C∞ function having the same qualitative dynamics as the function constructed

above.

5.4.2 Evidence of Two-dimensional Chaos

As we have shown above, almost any type of chaotic dynamics - including double

scroll chaos - can be obtained from the ideal map by inserting specific localized
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perturbations. We shall now show that the introduction of a fairly general type

of small C0 perturbation is apt to produce chaotic dynamics. In order to produce

two-dimensional chaos let us use the perturbation,

ϕk,σ(x) = 3.7

[
a0 − .02−

k∑
j=1

aj cos(jπx)

]

a0,σ(x) =
µx + λx

8
+

1
2

+ ε

4

aj,σ(x) =
1

2jπ

{
(1− λx) sin

[
j

(
1

2
− ε
)
π

]
+
µx + λx
jπ

[(−1)j − 1]

}

to get the map,

ξ :=
ϕm,δ(y)(1− ϕn,ε(x))

1− (1− ϕm,δ(y))(1− ϕn,ε(x))

η :=
ϕn,ε(x)(1− ϕm,δ(y))

1− (1− ϕm,δ(y))(1− ϕn,ε(x))

(5.40)

The iterates of this map, with their characteristic splattering indicative of chaos,

are shown in Figure 5.9.

5.4.3 Ring Oscillator Example

Another interesting circuit, which we intend to analyze in detail in a forthcoming

paper, is a modified ring oscillator. This ring oscillator comprises three NOR gates

with feedbacks, in a very similar fashion to that of the RS flip-flop circuit. One may

even choose to think of this as a three-dimensional RS flip-flop circuit.

We note that if the inputs are set to zero, the system is precisely a ring oscillator

because the NOR gates now act as inverters. Applying our algorithm for finding a

discrete dynamical system model for logical circuits yields the following “minimal”
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Figure 5.9 Iterates of a perturbed map seeming to exhibit two-dimensional chaos.

Source: A. Rahman and D. Blackmore. Threshold voltage dynamics of chaotic RS

flip-flop circuits. arXiv:1507.03065, 2017.

Figure 5.10 A “blox-box” schematic of a ring oscillator designed out of three NOR
gates.

Source: A. Rahman and D. Blackmore. Threshold voltage dynamics of chaotic RS

flip-flop circuits. arXiv:1507.03065, 2017.
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(unperturbed) model,

ξ =
(x− 1)(y(z − 1) + 1)

(x− 1(y − 1)(z − 1)− 1)
,

η =
(y − 1)(z(x− 1) + 1)

(x− 1(y − 1)(z − 1)− 1)
, (5.41)

ζ =
(z − 1)(x(y − 1) + 1)

(x− 1(y − 1)(z − 1)− 1)
;

The only valid fixed point is (x∗, y∗, z∗) = ((3−
√

5)/2, (3−
√

5)/2, (3−
√

5)/2).

Since the fixed points are roots of a quartic equation, one may wonder what happens

to the other roots. We find that the other three roots are out of our domain, which

means that they are of no practical consequence. For the ideal model, regardless of

the initial conditions, the orbits decay to the fixed point in a spiral manner shown in

Figure 5.11.

Figure 5.11 Plots of the orbits of (5.41) with initial conditions, (.99, .1, .9),
(.1, .9, .2), and (.1, .1, .9) respectively.

Source: A. Rahman and D. Blackmore. Threshold voltage dynamics of chaotic RS

flip-flop circuits. arXiv:1507.03065, 2017.

In order to produce more interesting dynamics we perturb the ideal model

slightly. Using a perturbation similar to (5.40), we produce the chaotic dynamics

shown in Figure 5.12.
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Figure 5.12 Plots of the orbits of the perturbed ring-oscillator model with initial
conditions (.99, .1, .9).

Source: A. Rahman and D. Blackmore. Threshold voltage dynamics of chaotic RS

flip-flop circuits. arXiv:1507.03065, 2017.
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5.5 Conclusions

We have introduced and analyzed a rather simple discrete (minimal) dynamical model

for the RSFF circuit, which is based upon the iterates of a planar map. Moreover, we

have proved that this model can be modified by arbitrarily small C0 perturbations,

motivated by the behavior of the electronic components used, to produce just about

any dynamical property observed in physical realizations of RSFF and related flip-flop

circuits. We have also shown that rather general small perturbations are apt to change

the structurally stable minimal model to a two-dimensional discrete dynamical system

with chaotic dynamics and related artifacts such as strange chaotic attractors.

Naturally, we are planning to extend this discrete dynamical systems approach

to a much wider class of logical circuits and their perturbations, and verify the

effectiveness of this approach by comparing our dynamic predictions with those of

more standard ODE approaches as well as experimental data extracted from actual

physical circuit measurements. We also plan to address a number of related questions

such as showing that logical circuit realizations represent perturbations of our minimal

models in some sense, and that the perturbations can actually be characterized and

quantified. Such an investigation should provide insight into the relationship that we

believe exists between our discrete dynamical systems approach and the underlying

discrete dynamics of reconfigurable chaotic logic gates [38].
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CHAPTER 6

ANALYSIS AND SIMULATIONS:

QUALITATIVE MODELING OF NOR GATES AND RS FLIP-FLOP

In this chapter we analyze and simulate the mechanistic NOR gate and set/reset

flip-flop models of Section 4.2. We first prove the existence of chaotic orbits in the

models of the TCUs (Section 6.1). The first proof involves a simple translation and

comparison with the tent map. The second proof, while more involved, utilizes the

beautiful result of Li and Yorke [87]: “three cycle implies chaos”. Then we compare

the simulations of both our deterministic (Section 6.2) and stochastic (Section 6.3)

models with experiments (Section 2.3.2) and MultiSIM simulations of the NOR gates,

TCUs, and RSFF. Much of this work is presented in [137].

6.1 Chaos in Threshold Control Units

Here we shall prove the maps g(1, 1, x) and f(1, 1, x) become chaotic for certain

parameters. First we prove this for g(1, 1, x), which employs a simple translation to

the tent map.

Theorem 6.1.1. The map g(1, 1, x) is chaotic for µg ≥ 2. In addition, it has a

nonwandering set in the form of a translated Cantor set on [1 − νg, νg] for µg > 2.

Moreover, for µ = 3, the nonwandering set is the middle-third Cantor set translated

to the interval [1− νg, νg].

Proof. Consider the translation (u, v) = H(x, y) : [1 − νg, νg]2 → [0, 1]2, defined as

(u, v) = (x+ 1− νg, g(1, 1, x) + 1− νg), applied to g(1, 1, x). This produces the map

v = Tµg(u) : [0, 1] → [0, 1], which is exactly the tent map. Since H is a conjugacy,
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it suffices to analyze the tent map. It is well known that when µ ≥ 2, the tent map

is chaotic. Furthermore, for µ > 2, the nonwandering set is a Cantor set, and for

µ = 3, it is precisely the middle-third Cantor set. This shows the map g(1, 1, x) is

also chaotic for µg ≥ 2, and has a nonwandering set in the form of a translated Cantor

set, thereby completing the proof.

Now we prove f(1, 1, x) is chaotic in the physical parameter regime outlined in

Table 4.1. For the sake of brevity, we assume the parameters are in this regime for

our next theorem. The main idea of the proof is to search for 3-cycles and use the

main theorem by Li and Yorke [87]. Since the formula for f 3 becomes overly complex,

we shall use properties of f 3 to show the existence of a 3-cycle rather than finding it

explicitly, and we provide visual aids to illustrate the proof.

Theorem 6.1.2. For every n ∈ N there exists a periodic point pn ∈ [−µfνf , µfνf ]

of the map f(1, 1, x) having period n and [−µfνf , µfνf ] contains chaotic orbits of f .

Furthermore, there exists an uncountable set S ⊂ [−µfνf , µfνf ] containing no periodic

orbits.

Proof. It is shown in [87] that a 3-cycle implies chaos. Now, we show there exists a

3-cycle for all parameter values in the physical regime. This is done by finding the

roots of f 3 not including the fixed points, or rather showing they exist.

First, let Pn be the set of roots of fn, then P3 \ P1 is the set of points having

period 3. We observe f 3 (Figure 6.1) has 17 linear branches. Since these are linear,

each branch may intersect the line y = x at most once. The two outermost branches

will never intersect the line y = x for the parameter regime outlined in Table 4.1.

Then max(card(P3)) = 15 and card(P1) = 3 (i.e., f has three fixed points), hence

max(card(P3 \ P1)) = 12. Notice, a 3-cycle exists only if card(P3 \ P1) ∈ {6, 12} due

to the symmetry.
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We observe (Figure 6.1a) card(P3 \ P1) = 12 for the parameters near that used

in simulations. If µf and νf are varied forward we maintain card(P3 \ P1) = 12. If

we vary them backward, the first instance card(P3 \ P1) 6= 12 occurs when the cusps

of the second and third branches from the left, and respectively from the right, lie on

the line f(1, 1, x) = x. The cusps are located at

x̂ = ±
(
νf + µfνf

µf − 1

µf + 1
− νf
µf

µf − 1

µf + 1

)
, f(1, 1, x̂) = ±µfνf .

Then, solving x̂ = f(1, 1, x̂) for µf , gives µf = 1, which is unphysical. Since card(P3 \

P1) = 12 in the parameter regime of Table 4.1, 3-cycles (in fact, four of them) exist.

Therefore, the hypotheses of [87] is satisfied, thereby completing the proof.
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(a) µf = 1.9, νf = 0.9
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(b) µf = 1.1, νf = 0.1

Figure 6.1 Plots of f 3 for parameters in the physical regime of Table 4.1 with
parameters similar to that of the experiments and simulation and parameters just
within the physical regime. It should be noted that the gaps between certain branches
in Figure 6.1b are due to computational inaccuracy and in reality all branches connect.

Source: A. Rahman, I. Jordan, and D. Blackmore. Qualitative models and experimental

investigation of chaotic NOR gates and set/reset flip-flops. arXiv:1702:04838, 2017.
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6.2 Comparison of Deterministic Model with Experiments

From the models of the circuit we can simulate the NOR gate and RSFF operations.

The codes for the simulations are quite simple with the majority of them dedicated

to iterating (4.9) for both operations. For both the NOR gate and RSFF, we assume

there is a “circuit frequency”, which we define as the amount of time it takes a signal

to traverse the entire circuit, and is on the order of 100 microseconds. We also set

the following parameters: µf = 3.2, νf = 0.5694, µg = 2, and νg = 1/3.

Furthermore, for the NOR gate, while the model is not stochastic (no added

noise), we do make small deterministic perturbations in the inputs to approximate

the effects of noise and demonstrate sensitivity to initial conditions. For I2 and I4,

from the 20 millisecond mark to the 40 millisecond mark we add 10−9, and from the

60 millisecond mark to the 80 millisecond mark we subtract 10−9. This equates to less

than a nano-volt difference (recall the voltage used in the experiments is 1.84 volts).

The simulations are shown in Figure 6.2.

Figure 6.2 Simulations of the two input voltages, threshold voltage, and output
voltages for the respective NOR gate operations.

Source: A. Rahman, I. Jordan, and D. Blackmore. Qualitative models and experimental

investigation of chaotic NOR gates and set/reset flip-flops. arXiv:1702:04838, 2017.
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Notice, we have surprisingly close agreement with Figure 2.8. The model even

replicates the lag observed in the second threshold (in Figure 2.8 the second threshold

voltage seems to remain close to zero for a few milliseconds). The only dynamics that

were missed are the effects on the outputs at the clock edges. This shall be rectified

in the sequel.

For the RSFF, we employ the same circuit frequency and perturbation on the

initial conditions. This is plotted in Figure 6.3. Moreover, in the circuit design, the

outputs are achieved by taking the difference between the voltage across the capacitors

and their respective threshold voltages. However, we approach this from the other

direction where we have a model for the outputs and threshold voltages and take the

sum to predict the voltage across the capacitors. Since our system is discrete and

the phase plane of Chua’s circuit is continuous, we interpolate between the respective

points. While this is not perfectly accurate, it illustrates a more complete picture of

the dynamics than the purely discrete case. This is plotted in Figure 6.4.

Figure 6.3 Plots of two input voltages and simulation of two output voltages for
RSFF operations.

Source: A. Rahman, I. Jordan, and D. Blackmore. Qualitative models and experimental

investigation of chaotic NOR gates and set/reset flip-flops. arXiv:1702:04838, 2017.
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Figure 6.4 Simulation of the capacitor voltages. On the left we plot the individual
points from the model. On the right we interpolate between these plots using 2000
points between each two iterates.

Source: A. Rahman, I. Jordan, and D. Blackmore. Qualitative models and experimental

investigation of chaotic NOR gates and set/reset flip-flops. arXiv:1702:04838, 2017.

Again, as with the NOR gate, we are able to reproduce the behavior for the

RSFF except for the clock edge effects. We also plot the iterate plane for the capacitor

voltages. This can be thought of as iterates of a Poincaré map of the double scroll

attractor. After interpolating between the iterates, we observe a double scroll like

projection in the plane.

6.3 Comparison of Stochastic Model with Experiments

To simulate the models we use the same values for parameters in yf and yg, and

for the circuit frequency, as Section 6.2. For the NOR gate and RSFF we set M =

N + 1 = T = 11 (i.e., approximately 1 millisecond) and ε = ±O (10−8). The choice

of ε describes a physical signal which has less than 1 nano-volt of noise, on average.

The simulations for the NOR gate are plotted in Figure 6.5. We observe that these

are precisely the type of damped oscillations seen in Figure 2.8.
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Figure 6.5 Stochastic simulations of the two input voltages, threshold voltage, and
output voltages for the respective NOR gate operations.

Source: A. Rahman, I. Jordan, and D. Blackmore. Qualitative models and experimental

investigation of chaotic NOR gates and set/reset flip-flops. arXiv:1702:04838, 2017.

Figure 6.6 Plots of two input voltages and simulation of two output voltages for
RSFF operations.

Source: A. Rahman, I. Jordan, and D. Blackmore. Qualitative models and experimental

investigation of chaotic NOR gates and set/reset flip-flops. arXiv:1702:04838, 2017.
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Figure 6.7 Stochastic simulation of the capacitor voltages. On the left we plot the
individual points from the model. On the right we interpolate between these plots
using 2000 points between each two iterates.

Source: A. Rahman, I. Jordan, and D. Blackmore. Qualitative models and experimental

investigation of chaotic NOR gates and set/reset flip-flops. arXiv:1702:04838, 2017.

The RSFF and capacitor voltage simulations are plotted in Figure 6.6 and 6.7

respectively. Observe that the oscillations match the type in Figure 2.9b. Furthermore,

Figure 6.7 is, now, qualitatively more similar to Figure 2.8b.

6.4 Conclusions

In the context of chaotic logical circuits there have been many SPICE simulations,

some experiments, and only a few models. Simpler chaotic logical circuits are modeled

as ordinary differential equations [118, 73]. More complex ones are generally studied

using SPICE simulations [111, 110, 16] and physical realizations [111, 110]. We studied

the RSFF/dual NOR gate through experiments, dynamical modeling, simulations,

and analysis of the models.

By modifying the circuit in [16] we designed an RSFF/dual NOR gate using

modern components. We then simulated the circuit using MultiSIM to confirm the new

97



design produces the proper outputs. Next we put together a physical realization of the

circuit and conducted experiments to show agreement with MultiSIM. By observing

the behavior of the circuit and using properties of TCUs as seen in [111, 110] we are

able to model the dynamics of the circuit as difference equations. The chaotic behavior

of the models is verified by standard dynamical systems analysis for one-dimensional

maps. Finally, we simulate our models to show agreement with both experiments

and MultiSIM. It was expected that the original deterministic models would not

be sufficient to replicate the “race” behavior observed in the outputs. Therefore, we

inserted probabilistic elements to show this edge-trigger phenomenon, thereby deriving

a stochastic model.

While we are able to capture much of the behavior, there is a need for similarly

simple models that replicate the more complex “race” behavior, which is not observed

in any SPICE simulations. Furthermore, as this is a rich problem, and we have a

physical realization, many new phenomena may arise. It shall be useful to study

various physical bifurcations as we make changes in the circuit and make connections

with topological bifurcations. We predict this will lead to local bifurcations such

as transcritical, pitchfork, and Neimark–Sacker as observed in other models [9, 136],

and novel global bifurcations previously unobserved in the literature. We shall also

endeavor to build other more complex circuits to study analogs of other logic families

and exploit the chaotic and logical properties for the purposes of encryption and

secure communication.
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CHAPTER 7

WALKING DROPLET EXPERIMENTS

In this Chapter we discuss the single particle diffraction experiment (Section 7.1),

which initiated the study of hydrodynamic quantum analogs. Then we discuss walking

in a circular corral and rotating frame (Section 7.2), and walking in an annular

cavity (Section 7.3), which have strong connections to the discrete dynamical systems

investigated in this thesis.

7.1 Single Particle Diffraction

In the seminal work of Couder and Fort [27] it is shown that walking droplets can

reproduce quantum-like experiments. In their experiments, a bath of silicon oil is

sinusoidally forced (Figure 7.1) with acceleration γ = γm cos(2πf0t) where γm is the

forcing amplitude and f0 is the frequency of the oscillatory force mechanism. Then

a silicon oil droplet, which is much smaller than the domain of the bath, is dropped

onto the bath. For the experiments the droplet is guided by an initial velocity towards

either a single slit or double slit where the angle of incidence and angle of deflection

are recorded and plotted as a histogram. The experimental setup is shown in Figure

7.2.

They observed surprising agreement between this experiment and single particle

diffraction experiments in quantum mechanics. The histogram of the number of

experiments that yielded the respective angle of deflection is shown in Figure 7.3.

The work of Couder et al. initiated other such quantum analog experiments.
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Figure 7.1 Schematic of sinusoidally forced table producing the vibrating bath.
(Reproduced under APS thesis permissions).

Source: D. Harris, J. Moukhtar, E. Fort, Y. Couder, and J. Bush. Wavelike statistics from

pilot-wave dynamics in a circular corral. Phis. Rev. E, 88:011001, 2013.
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Figure 7.2 Experimental setup of single particle diffraction with walking droplets.
(Reproduced with permission from APS ).

Source: Y. Couder and E. Fort. Single-particle diffraction and interference at a

macroscopic scale. Phys. Rev. Lett., 97:154101, 2006.
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Figure 7.3 Histogram from single particle diffraction experiment, where the
abscissa is the angle of deflection and the ordinate is the number of experiments with
the respective angle of deflection. The solid lines represent an approximate fit of the
histograms. Left: Single slit experiment where the width of the slit is approximately
twice the Faraday wavelength. Center: Single slit experiment where the width of
the slit is approximately three times the Faraday wavelength. Right: Double slit
experiment where the width of the two slits are slightly larger than the Faraday
wavelength and the distance between the two slits is approximately twice the width.
(Reproduced and modified under APS thesis permissions).

Source: Y. Couder and E. Fort. Single-particle diffraction and interference at a

macroscopic scale. Phys. Rev. Lett., 97:154101, 2006.
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7.2 Walker in a Circular Corral and Rotating Frame

More experiments reproducing quantum-like features were conducted, and two such

experiment, by Fort et al. [48], Eddi et al. [41], and Harris et al. [59, 57, 58],

were analogous to an electron trapped in a magnetic field [29] and the Zeeman effect

(the splitting of spectral lines in the presence of a magnetic field) [170, 169]. The

experimental setups are similar to [27]. For the circular corral, the walker is simply

trapped in a small circle. For the rotating frame the walker is trapped in a larger

circle, but the entire frame is now rotating as shown in Figure 7.4.

Since these walking droplets have already been shown to reproduce quantum-like

features, it is reasonable to expect the circular corral to reproduce statistics similar

to the quantum corral (electrons trapped in a bounded domain) in [29]. In the

experiment, the droplet is tracked and a probability distribution of the droplet’s

position is recorded. In Figure 7.5 Harris et al. show statistics very similar to the

quantum corral.

The addition of rotation introduces a Coriolis force, which an effect on the walker

analogous to that of the force from a perpendicular magnetic field on an electron.

In addition to analogs of the quantum corral, they also observe the quantization of

orbital radii shown in Figure 7.6.

The experiments shown in this section may have connections with discrete

dynamical models, but the connections would be tenuous. We would like to have the

ability to refer to an experiment that can be directly modeled as a discrete dynamical

system.
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Figure 7.4 The experimental setup for a sinusoidally forced rotating frame.
(Reproduced with permission from Cambridge University Press).

Source: D. Harris and J. Bush. Droplets walking in a rotating frame: from quantized orbits

to multimodal statistics. J. Fluid Mech., 739: 444-464, 2014.
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Figure 7.5 Statistics of the droplet trajectory in a circular corral. (a) Snapshots of
the recorded path of the walker at increasing times: top left, top right, bottom left,
bottom right. (b) Rendering of the final snapshot of the walker’s path with height
(and color) corresponding to the amount of total time the walker spent in that region.
(Reproduced with permission from Annual Reviews).

Source: J. Bush. Pilot-wave hydrodynamics. Ann. Rev. Fluid Mech., 49: 269-292,

2015.
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Figure 7.6 Observations of quantized orbital levels for the high memory regime in
(c) and (d). In (a) and (b) no quantization is observed. (Reproduced with permission
from Cambridge University Press).

Source: D. Harris and J. Bush. Droplets walking in a rotating frame: from quantized orbits

to multimodal statistics. J. Fluid Mech., 739: 444-464, 2014.
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7.3 Walker Trapped in an Annulus

Recently, Filoux et al. developed an experiment for walkers in an annular cavity

[44] and they modeled the dynamics in a similar manner to [42]. They too have

an experimental setup similar to [27], with the major difference being the added

boundaries. The experiment if first performed with only one droplet, which gives

them a typical velocity. Then multiple droplets are added to the experiment. When

two droplets added they bounce asynchronously; that is when one droplet impacts

the bath the other is in the air and vice versa. When there are more than two, each

sequential drop is asynchronous. Figure 7.7 shows an experiment with seven droplets.

As we observe, there are four impacting the surface and three in the air.

Figure 7.7 Multiple walkers traversing an annular cavity. (Reproduced under APS
thesis permissions).

Source: B. Filoux, M. Hubert, and N. Vanderwalle. Strings of droplets propelled

by coherent waves. Phys. Rev. E, 92:041004(R), 2015.

While the model of Filoux et al. [44] is not a discrete dynamical system, their

experiment presents an opportunity to connect discrete dynamical models, such as in

Section 9.2.3 and Chapter 10. This connection between theory and experiments would
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allow us to understand these systems better and perhaps lead us to simplifications of

more complex models.

108



CHAPTER 8

TRADITIONAL MODELING TECHNIQUES:

WALKING DROPLETS

In Chapter 7 we discussed four experiments on walking droplets. In order to better

understand these experiments and the phenomena themselves, it is necessary to derive

hydrodynamic models rooted in first principles and simple enough for numerical

solutions. In this Chapter we discuss the models developed by Oza et al. for walkers

in free space and the rotating frame (Section 8), which were investigated mainly

through simulations.

8.1 Description

Oza et al. developed and studied, via simulations, integro-differential models for

walkers in free space [120] and in a rotating frame [119, 121]. In [120], Oza et al.

developed an integro-differential model for walkers in free space. They assume, for a

single bounce, the droplet is governed by the usual equation of motion including drag

and with forcing proportional to the slope of the surface during contact. For example,

if the surface is flat upon contact, the droplet will not move. On the other hand, if

the surface is deformed, the droplet moves with a velocity of equal magnitude and

and angle supplementary to the angle of incidence.

In experiments it is observed that waves are produced at each bounce when the

fluid bath is sinusoidally forced. Each bounce excites an eigenmode, which decays

with time and contributes to the total wave field in the bath. The wave field contains

“cavities”, the slopes of which cause the droplet to move. Oza et al. make the

simplifying assumption that each eigenmode is a Bessel function centered at the
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position of the bounce immediately after impact. They also approximate the sum of

previous bounces as an integral from negative infinity to the current time, i.e., the

droplet has been bouncing forever, which is a reasonable approximation after many

impacts.

Taking these assumptions into consideration, the model they developed is

κẍ+ ẋ = β

∫ t

−∞

J1(|x(t)− x(s)|)
|x(t)− x(s)|

(x(t)− x(s))es−tds, (8.1)

where x is the position of the droplet, κ = m/(DTFMe) is the nondimensional mass,

β = (FkFTFM
2
e ) /D is the nondimensional memory force coefficient, m is the mass

of the droplet, D is the drag coefficient, g is acceleration due to gravity, TF is the

Faraday period (the period of the surface waves), A is the amplitude of a single surface

wave, kF is the Faraday wavenumber, Td is the decay time in the case of no forcing,

γ is the acceleration of sinusoidal forcing, γF is the Faraday instability threshold (the

acceleration required for the existence of Faraday waves), F = mgAkF is the memory

force coefficient, and Me is the memory (inversely proportional to the damping).

In [119] Oza et al. developed an integro-differential model for walkers in a

rotating frame. The assumptions are the same as walking in free space, however there

is an additional term due to the Coriolis effect: −2mΩ × ẋ. Here Ω is the angular

frequency of the fluid bath, and this addition modifies the model to

κẍ+ ẋ = β

∫ t

−∞

J1(|x(t)− x(s)|)
|x(t)− x(s)|

(x(t)− x(s))es−tds− 2mΩ× ẋ. (8.2)

8.2 Basic Properties

In [120] Oza et al. conducted a linear stability analysis on the position of the droplet

in free space. Further, in [119] they analyze the stability of orbital solutions (i.e.,

paths of fixed radii) in the rotating frame. We shall briefly discuss their findings here.
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Oza et al. first study the transition between bouncing and walking, which they

observe occurs when γ ≥ γw, where

γw := γF

1−

√
FkFT 2

d

2DTF

 . (8.3)

When the bouncing state destabilizes, the droplet transitions to straight-line walking

with constant speed, and remains in this state for γw < γ < γF . The base walking

speed used in [120] is

u =
1

kFTd

(
1− γ

γF

)√√√√√1

4

−1 +

√
1 + 8

(
γF − γw
γF − γ

)2
2

− 1 (8.4)

It is observed that perturbations in the direction of walking decay, and transverse

perturbations neither decay nor grow.

For the rotating frame, Oza et al. first search for orbital solutions by writing

(8.2) as

−κrω2 = β

∫ ∞
0

J1

(
2r sin

ωz

2

)
sin

ωz

2
e−zdz + Ωrω

rω = β

∫ ∞
0

J1

(
2r sin

ωz

2

)
cos

ωz

2
e−zdz

(8.5)

Then low memory, mid memory, and high memory approximations via asymptotic

methods are studied. When the radii are either small (r � 1) or large (r �
√
β), the

orbits are stable. However, between these limits the radii form sets of linearly stable

(when dΩ/dr < 0) and linearly unstable (when dΩ/dr > 0) orbits.

After the linear stability analysis, they begin to focus on simulations and

matching theoretical results with experimental results.
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8.3 Simulations

Perhaps the most compelling results from [120, 119, 121] are the simulations. In

[120], the simulations support the linear stability analysis of the motion of the droplet.

Further, in [119, 121], Oza et al. show surprising agreement between the simulations

and experiments. In one such simulation and experiment the frequency of the rotations

of the fluid bath versus the orbital radius and frequency are plotted. It should be

noted that the plots are scaled or inverted for the sake of clarity.

In Figure 8.1, the blue portions correspond to stable orbits, the green portions

correspond to unstable orbits with dΩ/dr < 0, and the red portions correspond to

unstable orbits with dΩ/dr > 0. Here, Oza et al. illustrate the dependence of orbital

radius and frequency on the rotation frequency of the bath. The first thing we observe

is the discrepancy between simulation and experiment for high orbital frequency. This

may be due to the drag playing a larger part at larger velocities. Other than this,

what is striking is the agreement for the orbital radius of all radii, or more precisely

the radii scaled by the reciprocal of the Faraday wavelength. They strengthen their

case by showing many more comparisons with experiments similar to this.

In [121], Oza et al. show numerical observations of exotic trajectories as

illustrated in Figure 8.2. While many of these orbits have not been observed in

experiments, the agreement that is observed for simpler orbits give us confidence

that these orbits may exist. Furthermore, these trajectory types produce nontrivial

topological structures, especially the quasiperiodic and chaotic trajectories. Discrete

dynamical models similar to those studied in Chapters 9 and 10 may provide

connections to these trajectories via Poincareé sections.
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Figure 8.1 Panels (a) and (c) show the dependence of the orbital radius on bath
rotation frequency, and panels (b) and (d) show the dependence of the orbital
frequency on bath rotation frequency. The fluid bath in (c) and (d) is being forced
harder than in (a) and (b). (Reproduced with permission from Cambridge University
Press).

Source: A. Oza, D. Harris, R. Rosales, and J. Bush. Pilot-wave dynamics in a

rotating frame: on the emergence of orbital quantization. J. Fluid Mech., 744: 404-429,

2014.

Figure 8.2 Various trajectory types observed in simulations of droplets walking in
a rotating frame. (Reproduced with permission of AIP Publishing).

Source: A. Oza, O. Wind-Willassen, D. Harris, R. Rosales, and J. Bush. Pilot-wave

dynamics in a rotating frame: Exotic orbits. Phys. Fluids, 26:082101, 2014.
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CHAPTER 9

DISCRETE DYNAMICAL MODELS: WALKING DROPLETS

While the models in Chapter 8 agree very well with experiments, the equations are

quite difficult to study analytically. The complexity of the equations naturally created

interest in developing realistic simplified mathematical models exhibiting important

dynamical features of the original ones, while being easier to analyze. The first models

to exploit the discrete nature of the bouncing/walking were developed by Fort et al.

[48] and later Eddi et al. [42]. Several other such reduced models were developed with

two of them, devised by Shirokoff [146] and Gilet [49], showing considerable promise

are planar discrete dynamical system models. Shirokoff [146] developed a model in

which he derived a map for the motion of a particle in a square cavity. In this model,

using numerics, he discovered cascading period doubling bifurcations (Theorem 1.1.2),

which is indicative of chaos. Gilet [49] included the amplitude of subsequent modes in

his model (9.7) for the straight line motion of a particle. He observed what appeared to

be a Neimark–Sacker (N–S) bifurcation in numerous simulations, and so conjectured

its existence and type.

In this chapter we describe the two discrete dynamical models. First we give a

brief description of Shirokoff’s model of walkers in a two-dimensional cavity (Section

9.1). Then, we give a more detailed description of Gilet’s model (Section 9.2); first we

discuss the simplifying assumptions and derivation of the model and then a detailed

linear stability analysis follows [135].
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9.1 Shirokoff Model

In [146], Shirokoff derived a discrete dynamical model and analyzed simulations of

a walking droplet in a two-dimensional bounded domain. He made two general

assumptions: the force on the particle is proportional to the slope of the wave field

at the point of impact and the particle produces a crater displacing a volume of fluid

only at the point of impact. Using these assumptions, he derived the map

yn+1 = yn + vn,

vn+1 = (1− γ)vn − F∇h(yn+1),

(9.1)

where y is the position of the droplet, v is the velocity of the droplet, h is the wave

field profile, n denotes the most recent impact, and γ is the dissipation factor.

Shirokoff then modeled the wave field by considering gravity-capillary waves.

He first did so in free space, for which the velocity equation becomes

vn+1 = (1− γ)vn − F
n−1∑
k=0

∇h(yn+1, rn−k), (9.2)

where r is the radial distance from the impact position y. He then made the assumption

that the most recent bounce contributes the most to the walkers position and velocity.

This gives us a simpler velocity equation:

vn+1 = (1− γ)vn − F∇h(yn+1, rn). (9.3)

Using the bath forcing magnitude, with F as the bifurcation parameter, Shirokoff

found evidence of period doubling bifurcations in the velocity through simulations

as shown in Figure 9.1 He then studied bifurcations using the dissipation as a

parameter. Finally, Shirokoff analyzed the requirements for walking in his model

and the movement of the droplet in a square.
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Figure 9.1 Example of period doubling in the Shirokoff model. (Reproduced with
permission of AIP Publishing).

Source: D. Shirokoff, Bouncing droplets on a billiard table. Chaos, 23:013115, 2013.

While the model (9.1) is simpler than the integro-differential models from

Chapter 8, it is still not amenable to dynamical systems analysis.

9.2 Gilet Model

In this section, we first summarize the simplifying assumptions and derivation of the

model from [49]. Then, we revisit the basic properties, while approaching the linear

stability analysis from a purely dynamical systems point of view. This in turn sets

up the theoretical foundation for the bifurcation analysis in Chapter 10.

9.2.1 Derivation

In [49], Gilet began his description of the problem by considering impacts exciting

complex orthonormal eigenmodes Ψk(x), of the Faraday wave field hn(x), that are

pinned at the boundary of domain Ω, with amplitude Wk,n, where n is the current

impact and k ≤ n are past impacts. The wave field can be written as the decomposition

hn(x) =
n∑
k=1

Wk,nΨk(x). (9.4)
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At each impact, a radially symmetric crater, denoted as f(r), is initially formed,

where r is the distance from the center of the crater. Assuming the radius of the crater

is small compared to the characteristic wavelength of the eigenmodes, the function

can be approximated as f(r) = Aδ(r). He then normalized hn(x) by A. It should be

noted, that unlike [146], [49] assumes there are no traveling capillary waves.

After briefly describing the problem and simplifying assumptions, Gilet derived

a discrete model for the amplitude of each mode and the position of the walker. He

introduced a damping factor µk, associated with the memory parameter Mk of mode

k with the equation µMk
k = 1/e. This is defined as the ratio of amplitudes of an

eigenmode in the instance before an impact and that of the instance after the previous

impact; that is

µk =
Wk,n+1

Ψ∗k(xn) +Wk,n

, (9.5)

where Ψ∗k is the complex conjugate of Ψk. Furthermore, it is assumed the droplet

velocity is proportional to the slope of the wave field at the position of impact; that

is the distance between an impact and the next impact is proportional proportional

to the slope of wave field hn(x) at the impact position xn. We write this as

xn+1 − xn = −C
n∑
k=1

Wk,n∇Ψk(xn), (9.6)

where C is associated with the size of the droplet, which determines the strength of

wave-particle coupling.

Now, if we restrict the domain to one-dimensional free space, we have a single

eigenmode Ψ(x) ∈ R, and the associated amplitude wn at an impact n. Then the
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model becomes the discrete dynamical system (difference equation):

wn+1 = µ [wn + Ψ(xn)] ,

xn+1 = xn − CwnΨ′(xn).

(9.7)

We illustrate this system in Figure 9.2. It should be noted that by definition µ, C ∈

[0, 1] and x, w, Ψ ∈ R. When µ = 0, there is only bouncing and the model returns

trivial results, and when µ = 1, the forcing is so strong that Faraday waves exist;

that is there are waves without a droplet being present. For C = 0, the droplet is

nonexistent, and C = 1 represents a droplet so large that the difference in position is

exactly the gradient of the wave field at the nth impact.

The discrete dynamical system (9.7) is analyzed in more detail in below and in

Chapter 10.

9.2.2 Basic Properties of the Map

In this section we find the fixed points as done in [49]. Then we analyze the stability

of the fixed points for two cases: holding C constant and holding µ constant. It should

be noted that a family of fixed points is defined as a set of multiple fixed points, and

all calculations are done without loss of generality.

First, define F : R2 7→ R2 as, wn+1

xn+1

 = F (wn, xn) =

 µ[wn + Ψ(xn)]

xn − CwnΨ′(xn)

 (9.8)

We find the fixed points of (9.7) by solving,

w∗ = µ[w∗ + Ψ(x∗)]

x∗ = x∗ − Cw∗Ψ′(x∗).
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Figure 9.2 Diagram of the discrete dynamical system model (9.7) where the
abscissa corresponds to the position x of the droplet and the ordinate corresponds to
the wave amplitude w.

Source: A. Rahman and D. Blackmore. Neimark–Sacker bifurcations and evidence

of chaos in a discrete dynamical model of walkers. Chaos, Solitons & Fractals, 91: 339-349,

2016.
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Notice that this gives us two families of fixed points:

(0, x∗) such that Ψ(x∗) = 0; µ 6= 0 and (9.9)

(ŵ∗, x̂∗) such that ŵ∗ =
µ

1− µ
Ψ(x̂∗),Ψ

′(x̂∗) = 0; C 6= 0, µ 6= 1. (9.10)

The derivative matrix of F is,

DF (w, x) =

 µ µΨ′(x)

−CΨ′(x) 1− CwΨ′′(x)

 . (9.11)

Properties of F in Neighborhoods of the Second Family. We first notice that

for fixed points (9.10), µ ∈ [0, 1) and C ∈ (0, 1] because if µ = 1 or C = 0 this fixed

point does not exist. Substituting the fixed points (9.10) into the derivative matrix

(9.11), we obtain

DF (ŵ∗, x̂∗) =

 µ 0

0 1− µC
1−µΨ(x̂∗)Ψ

′′(x̂∗)

 .

Therefore, the eigenvalues are

λ1 = µ, λ2 = 1− µC

1− µ
Ψ(x̂∗)Ψ

′′(x̂∗)

Observe that since µ ∈ [0, 1), if Ψ(x̂∗)Ψ
′′(x̂∗) < 0 the fixed point is a saddle. However,

if Ψ(x̂∗)Ψ
′′(x̂∗) > 0, we always have λ2 < 1, so we must find a condition for which

λ2 = −1.

If we hold C constant we derive the condition:

µ̂ =
1

1 + CΨ(x̂∗)Ψ′′(x̂∗)/2
.

Then, for µ < µ̂ the fixed points (9.10) are sinks and for µ > µ̂ they are saddles. If

µ = µ̂, the fixed point is not hyperbolic.
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If we hold µ constant we derive the condition Ĉ,

Ĉ =
2(1− µ)

µΨ(x̂∗)Ψ′′(x̂∗)
. (9.12)

If C < Ĉ the fixed points (9.10) are stable, but if C > Ĉ the fixed points are saddles.

When C = Ĉ, λ2 = −1, which indicates the possibility of a flip bifurcation.

When the fixed point is a saddle, it is easy to see that the linear stable and

unstable manifolds are,

W s
lin = {(w, x) : x = x̂∗}, (9.13)

W u
lin =

{
(w, x) : w = ŵ∗

µ

1− µ
Ψ(x̂∗)

}
. (9.14)

Properties of F in Neighborhoods of the First Family. Since we can translate

any fixed point (9.9) to the origin, without loss of generality, we assume the fixed

point is (w∗, x∗) = (0, 0) with the relevant conditions on Ψ′. Substituting the fixed

point (9.9) into the derivative matrix (9.11), we obtain

DF (0, 0) =

 µ µΨ′(0)

−CΨ′(0) 1

 . (9.15)

The characteristic polynomial is

(µ− λ)(1− λ) + CµΨ′(0)2 = 0⇒ λ2 − (1 + µ)λ+ µ(1 + CΨ′(0)2) = 0,

and the eigenvalues are

λ =
1

2
(1 + µ)± i

2

√
4µ(1 + CΨ′(0)2)− (1 + µ)2. (9.16)

Notice that λ ∈ C \ R if 4µ(1 + CΨ′(0)2)− (1 + µ)2 > 0.
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Holding C constant gives us the condition,

2CΨ′(0)2 − 2
√
CΨ′(0)2(CΨ′(0)2 + 1) + 1

< µ < 2CΨ′(0)2 + 2
√
CΨ′(0)2(CΨ′(0)2 + 1) + 1. (9.17)

Now, if |λ| < 1, we get a stable focus, and when |λ| > 1 we get an unstable focus. This

indicates that there may be a Neimark–Sacker bifurcation at the fixed point when |λ|

passes through unity, which occurs when µ goes from µ ≤ µ∗ := 1/(1 + CΨ′(0)2) to

µ > µ∗.

If we hold µ constant we have,

C >
1

Ψ′(0)2

[
(1 + µ)2

4µ
− 1

]
, (9.18)

and substituting this inequality into the eigenvalue (9.16) shows that the fixed points

are always stable when the eigenvalues are real. When the eigenvalues are purely

complex conjugates, the fixed points undergo Neimark–Sacker bifurcations, similar to

the constant C case. The eigenvalue passes through unity when C∗ = (1/µ−1)/Ψ′(0)2.

These properties will be used to prove the results in Chapter 10.

9.2.3 Modified Gilet Model in an Annulus

In this section we modify Gilet’s model to replicate behavior in an annulus in order

to compare with experiments in Section 7.3. As we shall see in Chapter 10, Gilet’s

model becomes does not stay bounded in the chaotic regime. We endeavor to rectify

this here and in Section 10.4.1.

Gilet’s model was developed for a confined geometry, however when the system

becomes chaotic the droplet has enough energy to escape this confinement since the

confinement used is not physical. One way to rectify this would be to use a physically

relevant confinement. Another way, which gives us a comparison with the experiments
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in Section 7.3, is to glue the boundaries together. We accomplish this by transforming

the model to the domain [0, 2π] and identifying x = 0 and x = 2π. We also modify the

eignemodes to be identified at the end points, where the function and its derivatives

are equivalent. This modified model is

wn+1 =µ[wn + Ψ(xn)], xn+1 = [xn − CwnΨ′(xn)] mod 2π; (9.19)

Ψ(x, β) =
cos β√
π

sin 3(x− π/2) +
sin β√
π

sin 5(x− π/2),

where β is the shape parameter of the eigenmode test function.

The basic properties of the Gilet model seems to indicate that it is amenable to

dynamical systems analysis. Furthermore, not only is it simple, it can be modified to

compare with physical experiments.
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CHAPTER 10

ANALYSIS AND SIMULATIONS:

DISCRETE WALKING DROPLET MODELS

In this chapter we analyze Gilet’s walking droplet model map via dynamical systems

and bifurcation theory and formulate the conditions for it to have Neimark–Sacker

(N–S) bifurcations (Section 10.1). In our analysis, we first vary µ while treating C as

a constant, then vice versa, and find the values of µ and C for which the eigenvalues

(9.16) have a modulus of unity and become complex conjugates. Then, we apply the

genericity conditions for a N–S bifurcation to determine conditions on Ψ that make

the system a generic 2-D map. Next, we apply our theorems for the conditions on the

single eigenmode Ψ to the test functions that Gilet proposed (Section 10.2). While

we use the same form of test functions, we also study test function shapes different

from those studied in [49]. We end by noting a new global bifurcation that appears

in our simulations (Section 10.3). Much of this work is presented in [135].

10.1 Neimark–Sacker Bifurcations

We consider the genericity conditions outlined in [81]. That is, the map must be locally

conjugate near the fixed point to a specific normal form, there are no strong resonances,

and the first Lyapunov coefficient must be nonzero. The Lyapunov coefficient also

determines if the bifurcation is supercritical (if negative) or subcritical (if positive).

While the N–S bifurcation is a local phenomenon about a single fixed point, it should

be noted that all calculations apply to any fixed points, some of which will yield N–S

bifurcations.
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10.1.1 Neimark–Sacker Bifurcations with Respect to the Parameter µ

In [49], Gilet conjectured that a supercritical N–S bifurcation occurs at the fixed points

(9.9). He also observed evidence of this in the iterates of the map for the chosen test

functions. Here we prove that the map (9.8) is generic and a N–S bifurcation occurs

at the fixed point as the parameter µ is varied by verifying the conditions of 1.1.1 (c.f.

[81, 114, 144]). We also show the map allows for both supercritical and subcritical

N–S bifurcations.

Theorem 10.1.1. The map (9.8) is generic about some fixed point (w∗, x∗) if the

eigenmode satisfies the following property,

d̂ =Ψ′′′(x∗)Ψ
′(x∗)(1 + CΨ′(x∗)

2)(1 + 2CΨ′(x∗)
2)(4 + 3CΨ′(x∗)

2)

+ 2Ψ′′(x∗)
2
{

5 + CΨ′(x∗)
2
[
1− CΨ′(x∗)

2
(
31 + 21CΨ′(x∗)

2
)]}
6= 0. (10.1)

and a Neimark–Sacker bifurcation occurs at the fixed points (9.9) when

µ = µ∗ =
1

1 + CΨ′(x∗)2
. (10.2)

Furthermore, if d̂ < 0, the map undergoes a supercritical Neimark–Sacker bifurcation,

whereas if d̂ > 0, the map undergoes a subcritical Neimark–Sacker bifurcation in a

neighborhood of the fixed point.

Proof. As done in Section 9.2.2, without loss of generality we translate the fixed point

to (w∗, x∗) = (0, 0). We showed in Section 9.2.2 that the pair of eigenvalues λ are

complex conjugates if

2CΨ′(0)2 − 2
√
CΨ′(0)2(CΨ′(0)2 + 1) + 1

< µ < 2CΨ′(0)2 + 2
√
CΨ′(0)2(CΨ′(0)2 + 1) + 1 (10.3)
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and |λ| = 1 when

µ = µ∗ =
1

1 + CΨ′(0)2
.

This shows that a Neimark–Sacker bifurcation occurs at the fixed point if the map is

generic.

Next we show the map is generic (c.f. [81, 114, 144]) via three conditions from

Theorem 1.1.1; (C.1), (C.2), and (C.3):

(C.1) We show that r′(µ∗) 6= 0, where r = |λ| =
√
µ (1 + CΨ′(0)2).

Notice, since r(µ∗) = 1,

d

dµ

(
r(µ)2

) ∣∣∣∣
µ=µ∗

= 2r(µ∗)r
′(µ∗) = 2r′(µ∗),

so if d
dµ

(r(µ)2)

∣∣∣∣
µ=µ∗

6= 0, r′(µ∗) 6= 0. Then, since C > 0 and Ψ′(0) ∈ R,

d

dµ

(
r(µ)2

) ∣∣∣∣
µ=µ∗

= (1 + CΨ′(0)2) 6= 0. (10.4)

This shows that the transversality condition is satisfied.

(C.2) We show the arguments of the eigenvalues satisfy the first set of nondegeneracy

conditions for a Neimark–Sacker bifurcation.

Let θ∗ = tan−1A, where

A =

√
4µ∗(1 + CΨ′(0)2)− (1 + µ∗)2

1 + µ∗
=

√
4− (1 + µ∗)2

1 + µ∗
(10.5)

Observe that θ∗ = 0 if A = 0, θ∗ = ±π if A = 0, θ∗ = ±2π/3 if A = ±
√

3, and

θ∗ → ±π/2 as A→ ±∞. Since A is clearly positive and bounded, this rules out

each case except A =
√

3. In order to get
√

3 we need 1 + µ = 1; however, since

µ is positive, as shown in Section 9.2.2, this is not possible.
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Thus the first nondegeneracy condition is satisfied.

(C.3) We compute the normal form for the Neimark–Sacker bifurcation and derive

the conditions for which the second nondegeneracy condition is satisfied.

First, we compute the eigenvectors: (DF )q = λq and (DF )Tp = λ̄p,

q =

 µ∗Ψ
′(0)

λ− µ∗

 and p =

 λ̄− 1

µ∗Ψ
′(0)

 (10.6)

For the normalization, we take

〈p, q〉 = p̄ · q = iµ∗Ψ
′(0)
√

4− (1 + µ∗)2. (10.7)

Now we change the variables to w

x

 = zq + z̄q̄ =

 (z + z̄)µ∗Ψ
′(0)

(λ− µ∗)z + (λ̄− µ∗)z̄

 (10.8)

Substituting this into F yields

F =

 F1

F2

 ; where (10.9)

F1 =(z + z̄)µ2
∗Ψ
′(0) + µ∗Ψ((λ− µ∗)z + (λ̄− µ∗)z̄),

F2 =(λ− µ∗)z + (λ̄− µ∗)z̄ − C(z + z̄)µ∗Ψ
′(0)Ψ′((λ− µ∗)z + (λ̄− µ∗)z̄).

Now we take the inner product

〈p, F 〉 =(z + z̄)µ2
∗(λ− 1)Ψ′(0) + µ∗(λ− 1)Ψ((λ− µ∗)z + (λ̄− µ∗)z̄)

+ (λ− µ∗)µ∗Ψ′(0)z + (λ̄− µ∗)µ∗Ψ′(0)z̄

− Cµ2
∗Ψ
′(0)2(z + z̄)Ψ′((λ− µ∗)z + (λ̄− µ∗)z̄). (10.10)
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Finally, to get the normal form we divide this through by 〈p, q〉 and take the

Taylor series in (z, z̄),

H =

[
(z + z̄)µ2

∗(λ− 1)Ψ′(0) + µ∗(λ− 1)
∑
j+k≥1

1

j!k!
∂zj z̄kΨ(0)zj z̄k

+ (λ− µ∗)µ∗Ψ′(0)z + (λ̄− µ∗)µ∗Ψ′(0)z̄

−Cµ2
∗Ψ
′(0)2(z + z̄)

(
Ψ′(0) +

∑
j+k≥1

1

j!k!
∂zj z̄kΨ′(0)zj z̄k

)]
/(

iµ∗Ψ
′(0)
√

4− (1 + µ∗)2
)
, (10.11)

where ∂zj z̄kΨ(0) := ∂zj z̄kΨ((λ − µ∗)z + (λ̄ − µ∗)z̄)|(z,z̄)=(0,0), and similarly for

∂zj z̄kΨ′(0).

By matching the linear terms in (10.11), it is easy to show the normal form can

be written as,

H = λz+

[
(λ− 1)

∑
j+k≥2

1

j!k!
∂zj z̄kΨ(0)zj z̄k

−Cµ∗Ψ′(0)2(z + z̄)
∑
j+k≥1

1

j!k!
∂zj z̄kΨ′(0)zj z̄k

]
/(

iΨ′(0)
√

4− (1 + µ∗)2
)
. (10.12)

We are ready now to compute the nondegeneracy condition required to satisfy

the final genericity condition. From [81, 144], we have the formula,

d(0) = Re

(
λ̄g21

2

)
+ Re

(
λ̄(λ̄− 2)

2(λ− 1)
g20g11

)
− 1

2
|g11|2 −

1

4
|g02|2. (10.13)
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where gjk/(j!k!) is the coefficient of the zj z̄k term. We compute the relevant

terms

g20 =
(λ− 1)(λ− µ∗)2Ψ′′(0)− 2Cµ∗Ψ

′(0)2(λ− µ∗)Ψ′(0)

i
√

4− (1 + µ∗)2Ψ′(0)

g02 =
(λ− 1)(λ̄− µ∗)2Ψ′′(0)− 2Cµ∗Ψ

′(0)2(λ̄− µ∗)Ψ′(0)

i
√

4− (1 + µ∗)2Ψ′(0)

g11 =
(λ− 1)(λ− µ∗)(λ̄− µ∗)Ψ′′(0)

i
√

4− (1 + µ∗)2Ψ′(0)
− Cµ∗Ψ

′(0)2(λ− µ∗ + λ̄− µ∗)Ψ′(0)

i
√

4− (1 + µ∗)2Ψ′(0)

g21 =
(λ− 1)(λ− µ∗)2(λ̄− µ∗)Ψ′′′(0)

i
√

4− (1 + µ∗)2Ψ′(0)

− Cµ∗Ψ
′(0)2((λ− µ∗)2 + 2(λ− µ∗)(λ̄− µ∗))Ψ′′′(0)

i
√

4− (1 + µ∗)2Ψ′(0)

If we factor out certain terms this formula greatly simplifies to

d(0) =
Ψ′′′(0)

2Ψ′(0)

Re(−iλ̄ĝ21)√
4− (1 + µ∗)2

− Ψ′′(0)2

Ψ′(0)2

Re
(
λ̄(λ̄−2)
2(λ−1)

ĝ20ĝ11

)
(4− (1 + µ∗)2)

− Ψ′′(0)2

Ψ′(0)2

1
2
|ĝ11|2 + 1

4
|ĝ02|2

(4− (1 + µ∗)2)
, (10.14)

where

ĝ20 = (λ− µ∗)
[
λ2 + µ∗ − 2CΨ′(0)2µ∗ − λ(1 + µ∗)

]
(10.15)

ĝ02 = (λ̄− µ∗)
[
1 + µ∗ − 2CΨ′(0)2µ∗ − λµ∗ − λ̄

]
(10.16)

ĝ11 = −1 + λ+λµ∗ − CΨ′(0)2λµ∗ − λ2µ∗ + λµ∗ − CΨ′(0)2λ̄µ∗

− µ∗ − µ2
∗ + 2CΨ′(0)2µ2

∗ + λµ2
∗ (10.17)

ĝ21 = (µ∗ − λ)
[
1− λ− λµ∗ + CΨ′(0)2λµ∗ + λ2µ∗ − λ̄µ∗

+2CΨ′(0)2λ̄µ∗ + µ∗ + µ2
∗ − 3CΨ′(0)2µ2

∗ − λµ2
∗
]
. (10.18)
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Then, substituting in for λ and µ∗ gives

d(0) = C2Ψ′(0)2

[
Ψ′′′(0)Ψ′(0)(1 + CΨ′(0)2)(1 + 2CΨ′(0)2)(4 + 3CΨ′(0)2)

+ 2Ψ′′(0)2
{

5 + CΨ′(0)2
[
1CΨ′(0)2

(
31 + 21CΨ′(0)2

)]} ]
/[

4(1 + CΨ′(0)2)4(4 + 3CΨ′(0)2)
]
. (10.19)

Since

C2Ψ′(0)2

4(1 + CΨ′(0)2)4(4 + 3CΨ′(0)2)
> 0,

we need only be concerned with

d̂ :=Ψ′′′(x∗)Ψ
′(x∗)(1 + CΨ′(x∗)

2)(1 + 2CΨ′(x∗)
2)(4 + 3CΨ′(x∗)

2)

+ 2Ψ′′(x∗)
2
{

5 + CΨ′(x∗)
2
[
1− CΨ′(x∗)

2
(
31 + 21CΨ′(x∗)

2
)]}

(10.20)

Consequently, the Neimark–Sacker criteria imply that the bifurcation occurs if

d̂ 6= 0, and it is supercritical for d̂ < 0 and subcritical for d̂ > 0.

This shows that if Ψ has certain properties then the second nondegeneracy

condition is satisfied, thereby completing the proof.

10.1.2 Neimark–Sacker Bifurcations with Respect to the Parameter C

In this section we prove the map (9.8) is generic and a Neimark–Sacker bifurcation

occurs as we vary the parameter C at the fixed point.

Corollary 10.1.1. The map (9.8) is generic about some fixed point (w∗, x∗) if the

eigenmode satisfies the following property,
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d̂ = Ψ′(x∗)Ψ
′′′(x∗)

(
6− µ− µ2

)
+ 2Ψ′′(x∗)

2
(
32µ− 6µ3 − 21

)
6= 0. (10.21)

and a Neimark–Sacker bifurcation occurs at the fixed points (9.9) when

C = C∗ =
1

Ψ′(x∗)2

(
1

µ
− 1

)
. (10.22)

Furthermore, if d̂ < 0, the map undergoes a supercritical Neimark–Sacker

bifurcation, and if d̂ > 0, the map undergoes a subcritical Neimark–Sacker bifurcation

in a neighborhood of the fixed point.

Proof. As done in Section 9.2.2, without loss of generality we translate the fixed point

to (w∗, x∗) = (0, 0). We showed in Section 9.2.2 that the pair of eigenvalues λ are

complex conjugates if

C >
1

Ψ′(0)2

[
(1 + µ)2

4µ
− 1

]
, (10.23)

and |λ| = 1 when

C = C∗ =
1

Ψ′(0)2

(
1

µ
− 1

)
.

This shows that a Neimark–Sacker bifurcation occurs at the fixed point if the map is

generic.

Most of the arguments for genericity follow directly from the proof of Theorem

10.1.1. For the first condition we use the same r and study r(C). Just as with r(µ),

it suffices to study r(C)2. Then,

d

dC

(
r(C)2

) ∣∣∣∣
C=C∗

= µΨ′(0)2 6= 0 if Ψ′(0) 6= 0. (10.24)

Hence, if Ψ′(0) 6= 0, the map satisfies the transversality condition.
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The argument to show no strong resonances is the same as that of Theorem

10.1.1.

For the first Lyapunov coefficient, the calculations are the same up to (10.18),

by replacing C with C∗ and µ∗ with µ. Then, substituting in for λ and C∗ gives

d(0) =
(µ− 1)2

4Ψ′(0)2(3 + µ)

[
Ψ′(x∗)Ψ

′′′(x∗)
(
6− µ− µ2

)
+ 2Ψ′′(x∗)

2
(
32µ− 6µ3 − 21

) ]
. (10.25)

Since

(µ− 1)2

4Ψ′(0)2(3 + µ)
> 0

we need only be concerned with

d̂ := Ψ′(x∗)Ψ
′′′(x∗)

(
6− µ− µ2

)
+ 2Ψ′′(x∗)

2
(
32µ− 6µ3 − 21

)
(10.26)

Consequently, the Neimark–Sacker criteria imply that the bifurcation occurs if d̂ 6= 0,

and it is supercritical for d̂ < 0 and subcritical for d̂ > 0.

This shows that for certain properties of Ψ the genericity conditions are satisfied,

thereby completing the proof.

10.2 Application of the Mathematical Results to Sample Test Functions

In [49], Gilet uses the test functions,

Ψ(x, β) =
1√
π

cos β sin 3x+
1√
π

sin β sin 5x (10.27)

where β ∈ [0, π] is a fixed parameter that can be changed in order to tweak the shape

of the eigenmode. He shows numerical constructions of the iterate-space for β = π/3
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and β = π/6, and studies the statistics of the iterates for other values of β, all the

while holding C = 0.05. We first follow in a similar manner and hold C = 0.05 and

vary µ, then we hold µ = 0.5 and vary C.

To illustrate how small the parameter regime for a subcritical Neimark–Sacker

bifurcation is, let us consider d̂ for the origin, since it is always a fixed point. We plot

over β ∈ [0, π], first for µ∗ (i.e., holding C = 0.05), then for C∗ (i.e., holding µ = 0.5).

This is shown in Figure 10.1.
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(a) µ = µ∗, C = 0.05, (x∗, w∗) = (0, 0)

0.5 1.0 1.5 2.0 2.5 3.0
β
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-800
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-400
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d


(b) µ = 0.5, C = C∗, (x∗, w∗) = (0, 0)

Figure 10.1 Plots of first Lyapunov exponent for Neimark–Sacker bifurcations in
µ and C.

Source: A. Rahman and D. Blackmore. Neimark–Sacker bifurcations and evidence

of chaos in a discrete dynamical model of walkers. Chaos, Solitons & Fractals, 91: 339-349,

2016.

10.2.1 Simulations of Neimark–Sacker Bifurcations in µ

As in [49], we first study the eigenmode for β = π/3, for which the map exhibits

supercritical Neimark–Sacker bifurcations at various fixed points, but we also study

β = 5π/6, for which the map exhibits a subcritical Neimark–Sacker bifurcation at

the origin. We hold C = 0.05, which corresponds to a droplet much smaller than the
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cavity being created by an impact, and we vary µ, which corresponds to the system

approaching high memory.

It should be noted that for the sake of plotting, we consider the map (9.8) to

be written as  xn+1

wn+1

 = F (xn, wn) =

 xn − CwnΨ′(xn)

µ[wn + Ψ(xn)]

 (10.28)

Supercritical Neimark–Sacker Bifurcations for β = π/3. For β = π/3, we

now consider the map (10.28) on the domain x ∈ [0, π/2]. On this domain the map

has three fixed points (x∗, 0), which occur at roots of Ψ, that undergo Neimark–Sacker

bifurcations; one is at the origin. The other two are:

x∗ = tan−1


√√√√√15 +

√
3−

√
6(8−

√
3)

9−
√

3 +
√

6(8−
√

3)

 ≈ 0.7269

x∗ = tan−1


√√√√√15 +

√
3 +

√
6(8−

√
3)

9−
√

3−
√

6(8−
√

3)

 ≈ 1.3515

At the fixed points a supercritical Neimark–Sacker bifurcation occurs for

µ∗ = 0.64894, 0.742027, 0.879451, respectively, for which d̂ = −4076.61, −1747.52,

−410.779. The map (10.28) has three other fixed points: (≈ 0.3490,≈ µ
1−µΨ(0.3490)),

(≈ 1.0128,≈ µ
1−µΨ(1.0128)), (π/2, µ

1−µΨ(π/2)), which are saddles (the w position

varying with µ) and therefore not subject to Neimark–Sacker bifurcations. Let us

vary the parameter µ from µ = 0.5 to µ = 0.89. We illustrate the progression of the

bifurcations in Figure 10.2. In Figure 10.2a, the relevant fixed points are all stable

foci. Next, in Figure 10.2b, we have passed the critical value for the origin and a

stable invariant circle is now visible. Finally, in Figure 10.2c and 10.2d, the critical

values for the next two fixed points, respectively, are passed. We notice in Figure 10.2c
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(a) Stable foci: µ = .5
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(d) Third invariant circle: µ = .89

Figure 10.2 For each plot the green lines represent the linear stable manifold and
the red lines represent the linear unstable manifold at the respective saddle fixed
points. The black markers represent iterates originating from a neighborhood of
the origin, the cyan markers represent iterates originating from a neighborhood
of (≈ .7269, 0), and the magenta markers represent the iterates originating from a
neighborhood of (≈ 1.3515, 0).

Source: A. Rahman and D. Blackmore. Neimark–Sacker bifurcations and evidence

of chaos in a discrete dynamical model of walkers. Chaos, Solitons & Fractals, 91: 339-349,

2016.
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and 10.2d that the preceding fixed point(s), respectively, are now unstable focus(foci).

This shows that each fixed point undergoes a supercritical Neimark–Sacker bifurcation

in accordance with Theorem 10.1.1. It should be noted that since the test functions

are periodic, on the entire domain of x ∈ R, Neimark–Sacker bifurcations occur at

(countably) infinitely many fixed points with the final bifurcation occurring for fixed

points corresponding to x∗ ≈ 1.3515.

Physically, the droplet about any fixed point is initially (Figure 10.2a) oscillating

with decaying radius. Then, due to the nature of the single eigenmode used by Gilet,

the droplet corresponding to a position near the origin will undergo a N–S bifurcation

(Figure 10.2b). This corresponds to the droplet oscillating about the origin with

a fixed radius. Then as µ is varied further, the invariant circle about the origin

disintegrates and it becomes unstable, which corresponds to the orbit of the droplet

increasing radially until it reaches the neighborhood of one of the neighboring fixed

points. Now, since a N–S bifurcation has already occurred at the next fixed point

(Figure 10.2c), the iterates will bypass this region and converge to the following fixed

point, which corresponds to the droplet jumping to an orbit around a different center.

Similar behavior occurs at every other N–S fixed point.

In addition to Neimark–Sacker bifurcations, we notice a curious phenomenon.

As the saddle fixed points move away from the Neimark–Sacker fixed points the

trajectories from the neighborhood of one Neimark–Sacker fixed point crosses into

that of another. Furthermore, as the invariant circle increases in radius it seems to

collide (more precisely, gets arbitrarily close) with a stable manifold of one of its

neighboring saddles just before the onset of chaos. We shall analyze this further in

Section 10.3.
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Subrcritical Neimark–Sacker Bifurcations for β = 5π/6. For β = 5π/6 let

us once again consider the map (10.28), however let us simplify matters and restrict

our domain to a neighborhood of the origin. Here lies a subcritical Neimark-Sacker

bifurcation at µ∗ = 0.999847 where d̂ = 4.88756. Since this is subcritical, let us vary

our parameter µ backwards from µ = 0.9999 to µ = .999. This is illustrated in Figure

10.3. First the origin is an unstable focus, then as µ passes µ∗ backwards the origin

becomes a stable focus, however if an initial point is taken further out the iterates

diverge, which indicates an unstable invariant circle. In Figure 10.3b, we represent

this unstable invariant circle by the black dashed curve.

(a) Unstable focus: µ = 0.9999 (b) Unstable invariant circle: µ = 0.999

Figure 10.3 A star denotes the initial point. In the second plot the blue iterates
have an initial point inside the invariant circle, and the red iterates have an initial
point outside the invariant circle. Finally, the black dashed curve represents the
unstable invariant circle.

Source: A. Rahman and D. Blackmore. Neimark–Sacker bifurcations and evidence

of chaos in a discrete dynamical model of walkers. Chaos, Solitons & Fractals, 91: 339-349,

2016.

While from a dynamical systems perspective, we vary the parameter backward

for a subcritical bifurcation, this would be cumbersome in a physical experiment.
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Rather let us begin at Figure 10.3b, where a droplet close enough to the origin would

oscillate with a decaying radius, however if the droplet were exactly on the unstable

invariant circle it would remain at that constant radius, and if the droplet were slightly

further out it would oscillate with a growing radius and escape the neighborhood of

the origin. Now as we increase the memory the invariant circle shrinks until the

critical parameter value µ∗ = 0.999847, when it ceases to exist and the origin becomes

unstable, which corresponds to the droplet anywhere near the origin oscillating with

increasing radius. It should be noted that the growth of the radius is not indefinite,

and at some point it may be drawn to another fixed point or invariant circle, which

is usually the case.

10.2.2 Simulations of Neimark–Sacker Bifurcations in C

Varying C produces exotic trajectories, of which we present one such example in this

section, holding µ = 0.5 and β = π/3. Consider two fixed points, (x∗, 0) such that

x∗ = − tan−1


√√√√√15 +

√
3 +

√
6(8−

√
3)

9−
√

3−
√

6(8−
√

3)

 ≈ −1.3515,

x∗ = −π + tan−1


√√√√√15 +

√
3−

√
6(8−

√
3)

9−
√

3 +
√

6(8−
√

3)

 ≈ −1.7901.

At these fixed points a supercritical Neimark–Sacker bifurcations occurs simultane-

ously due to the symmetry for C∗ = 0.36477, where d̂ = −578.487. The other fixed

point is (−π/2,Ψ(−π/2)), which is a saddle.

For this case, increasing C corresponds to the drop size increasing, which leads

to greater inertia. With increased inertia, the distance the droplet travels due to an

impact is greater, and hence sensitive dependence may come into play. First, the

N–S bifurcation is illustrated in Figure 10.4. Here the physical interpretation of the
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(a) Stable foci: C = 0.35 (b) Stable invariant circle: C = 0.4

Figure 10.4 The red trajectories start on the left of the saddle blue trajectories
start on the right of the saddle (not shown).

Source: A. Rahman and D. Blackmore. Neimark–Sacker bifurcations and evidence

of chaos in a discrete dynamical model of walkers. Chaos, Solitons & Fractals, 91: 339-349,

2016.

(a) Deformed invariant circles: C = 0.5 (b) Evidence of global bifurcation: C = 0.6

Figure 10.5 The red trajectories start on the left of the saddle blue trajectories
start on the right of the saddle (not shown).

Source: A. Rahman and D. Blackmore. Neimark–Sacker bifurcations and evidence

of chaos in a discrete dynamical model of walkers. Chaos, Solitons & Fractals, 91: 339-349,

2016.
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bifurcation is the same as in Section 10.2.1, the only difference being the change in

the size of the droplet as opposed to changes in memory.

Now, as we increase C, we obtain the exotic trajectories as illustrated in Figure

10.5. We observe the characteristic stretching and folding of chaotic dynamics, which

may lead to fractal structures. The way in which the invariant circles approach the

stable manifold that separates them shows evidence of what appears to be an unusual

and possibly new type of global bifurcation, which is briefly discussed in the next

section.

10.3 Global Bifurcations Leading to Chaos

In Figure 10.2d we observe evidence of nontrivial topological structures. If we continue

to vary µ, we find more complex, chaotic-like, dynamics. We illustrate this in Figure

10.6, where we see a scatter of iterates in a manner indicative of chaos. Moreover, we

observe that µ is varied, the iterates remain within a compact set. Here the iterates

seem to satisfy the transitivity and sensitivity conditions for chaos. So far, all we

have are simulations and informed intuition: further investigation is clearly required

in order to obtain a more precise characterization these dynamical properties.

Now let us vary µ near the onset of chaos to study the bifurcation. This is

illustrated in Figure 10.7. First (Figure 10.7a) we observe the invariant circles for

µ = 0.913 as before, then at µ = 0.914 the invariant circles start to disintegrate

(Figure 10.7b). Finally, in Figure 10.7c, for µ = 0.915 we see the iterates bouncing

between the neighborhoods of their respective Neimark–Sacker fixed point and perhaps

nested invariant circles (both stable and unstable). This provides evidence of a new

bifurcation as the invariant circle approaches the stable manifold of the saddle and

perhaps even a cascading Neimark–Sacker doubling bifurcations, which is an infinite
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(a) Evidence of chaos: µ = 0.94
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(b) Evidence of chaos: µ = 0.96

Figure 10.6 Seemingly chaotic trajectories. For each plot the green lines represent
the linear stable manifold and the red lines represent the linear unstable manifold at
the respective saddle fixed points. The black markers represent iterates originating
from a neighborhood of the origin, the cyan markers represent iterates originating
from a neighborhood of (≈ .7269, 0), and the magenta markers represent the iterates
originating from a neighborhood of (≈ 1.3515, 0).

Source: A. Rahman and D. Blackmore. Neimark–Sacker bifurcations and evidence

of chaos in a discrete dynamical model of walkers. Chaos, Solitons & Fractals, 91: 339-349,

2016.
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(a) Invariant circle: µ = 0.913 (b) Invariant circle disintegrating: µ = 0.914

(c) Iterates after collision: µ = 0.915

Figure 10.7 The green lines represent the linear stable manifold and the magenta
lines represent the linear unstable manifold at the respective saddle fixed points. The
blue markers represent iterates originating from the left of the saddle and the red
markers represent iterates originating from the right of the saddle.

Source: A. Rahman and D. Blackmore. Neimark–Sacker bifurcations and evidence

of chaos in a discrete dynamical model of walkers. Chaos, Solitons & Fractals, 91: 339-349,

2016.
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succession of stability changes of invariant circles that create new pairs of invariant

circles (see, e.g., [9], where they are called cascading Hopf doubling bifurcations).

Furthermore, we notice in our figures that iterates tend to intersect the linear

stable manifolds. If we do not restrict the region of the plot, we observe that the

iterates seem to prefer certain positions as shown in Figure 10.8. In [49], Gilet gives

a detailed study of the statistics associated with the positions of the iterates and

in the simulations he observes a probability density function inversely proportional

to |Ψ′(x)|. While we do not study the statistics, we observe that the linear stable

manifolds pass through the roots of Ψ′(x), which hints at connections between the

dynamical systems aspects and statistical analysis of this model.

Figure 10.8 Iterates of the map (10.28) generated from four initial points chosen
near the origin.

Source: A. Rahman and D. Blackmore. Neimark–Sacker bifurcations and evidence

of chaos in a discrete dynamical model of walkers. Chaos, Solitons & Fractals, 91: 339-349,

2016.
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10.4 Other Interesting Results

In this section we briefly discuss dynamics that have not yet been studied rigorously,

but may reveal insight about the behavior of walkers and drawbacks of current discrete

dynamical models.

10.4.1 Dynamics in an Annulus

In Section 9.2.3 we derived a model, based on Gilet’s model, of a walker in an annulus.

This leads to more physically relevant statistics than the walker in free space. While

the statistics are different, the analysis in the previous sections are robust enough to

be applied to this model as well, which shall be useful for future investigations. The

iterate space and histogram are shown in Figure 10.9.

(a) Iterates of (9.19). (b) Histogram of (9.19).

Figure 10.9 Plot of the iterates and statistics of a walker in an annular geometry.

10.4.2 Crisis Bifurcations after Chaos

Crisis bifurcations, also called crises, occur when a chaotic strange attractor

experiences a sudden topological change as a parameter is varied [50]. While this is

difficult to characterize in most systems, we can visualize these topological changes
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through numerical studies. We return to Gilet’s original model and discover these

bifurcations well after the onset of chaos, but below the Faraday threshold. In Figure

10.10 we show such an evolution of the chaotic attractor.

(a) µ = 0.99. (b) µ = 0.999. (c) µ = 0.9999.

Figure 10.10 Evolution of a chaotic attractor undergoing a series of crisis
bifurcations.

10.5 Conclusions

Previous investigations of the walking phenomena have shown evidence of exotic

dynamics, such as Hopf bifurcations and chaos, mainly through experiments and

numerical simulations. However, the equations have generally been too complex to

prove the existence of certain bifurcations, chaos, and other topological properties. In

recent years, discrete models have been studied by Fort et al. [48], Eddi et al. [42],

Shirokoff [146], and Gilet [49]. The models of Shirokoff [146] and Gilet [49] are discrete

dynamical systems, which are often more accessible to rigorous analysis. In this thesis

we proved some of the properties observed and conjectured for Gilet’s model; namely,

the existence of N–S bifurcations. Similar dynamical systems analysis is likely in

future to prove additional results concerning bifurcations, chaos, structural stability,

and other properties. Proving these properties is not only important mathematically,
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but may also provide insight into the phenomena observed for walkers and for their

continuous models.

We proved Gilet’s conjecture [49] about the existence of supercritical N–S

bifurcations when varying the parameter µ. In doing so, we are also able to prove the

existence of subcritical N–S bifurcations in the parameter µ, which had been missed

by the original simulations. We then varied the parameter C, which had not been

studied before, and proved the existence of N–S bifurcations there as well.

In order to verify the validity of our theory, the model was simulated using test

functions for Ψ. For the sake of consistency the test functions used were of the same

form as [49], but the shapes were changed by varying β. By doing so we were able to

analyze the transition between supercritical and subcritical N–S bifurcations (Figure

10.1) for both µ and C. We reproduced one of the simulations from [49] in order to

show consistency between the two studies. Then we ran additional simulations of the

various cases in our theorems, all of which demonstrate complete agreement between

our mathematical results and the numerics.

Finally, we observed evidence of more exotic dynamics, which seem to lead to

chaos. One such curious phenomenon is a new global bifurcation when the invariant

circles get ever closer to the stable manifold of a neighboring saddle fixed point. We

originally believed the path to chaos was through cascading N–S bifurcations wherein

the invariant circles change stability and give birth to twin stable invariant circles.

However, it now seems as though the actual route is far more complex.
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CHAPTER 11

CONCLUDING DISCUSSIONS

In this chapter we summarize the discussions in the previous chapters. We first

encapsulate the contents for chaotic logical circuits and walking droplets. Finally we

outline future work and the current direction of the fields.

11.1 Chaotic Logical Circuits

The main mathematical motivation for this work was to study the dynamics of logical

circuits implemented using nonlinear elements. These nonlinear elements can either

serve as analogs of nonlinearities in natural logical systems or can be exploited for

the purposes of communication. As the circuits get more complicated the number of

experiments and mathematical models drops precipitously. This work endeavored to

create a modeling framework for nonlinear gates and flip-flops. First we presented

previous work on simple gates and flip-flops creating an intuition about the common

dynamics of such circuits. Then this thesis outlined our experimental investigations on

a dual NOR gate/RSFF circuit. This system was chosen due to the dual gate–flip-flop

functionality, which can then be used to construct an entire logic family. Finally we

arrived at the main results of this work: modeling and analyzing the circuits.

With respect to modeling, we first presented a näıve approach that does not

incorporate the physics of the circuits, but rather relies on previous investigations

of similar circuits and reproduces behavior observed in Poincaré maps of continuous

models from these investigations. This was done by noticing that both threshold

control units have precisely the same edge-trigger mechanism of the final output;

in-fact for one threshold this is a negation and for the other it is a flip of the sign in
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the voltage. However, this does not explain the occurrence of chaos. We employed C0

perturbations that mimic the type of perturbations observed in physical realizations,

which then produced behavior qualitatively similar to that of approximate Poincaré

maps of similar circuits. Doing so creates interesting mathematical results, but the

physical connections were unsatisfactory, which necessitated mechanistic models.

Next we presented a mechanistic modeling framework capable of modeling any

system using similar thresholding mechanisms. We modeled the circuits with the

intention of matching our experiments quantitatively for non-chaotic regimes and

qualitatively for chaotic regimes. This was accomplished by making continuous

extensions of the binary behavior and inserting chaotic drivers represented as tent-like

maps. Tent-like maps were used since the threshold control units replicate tent-like

behavior for non-chaotic inputs. This model was shown to be chaotic through modern

dynamical systems techniques. Finally, we compared the theoretical results to our

experimental investigation. In addition, we developed stochastic models to rectify

small discrepancies during the edge trigger, which qualitatively matches the behavior

observed in physical realizations.

11.2 Walking Droplets

As in the previous section, the main mathematical motivation was to study the

dynamical behavior of walking droplets near the onset of chaos. From a physical point

of view, chaos is important because it leads to seemingly random behavior, which can

then be used to show analogies between the fluidic system and traditional wave-particle

systems. This work endeavored to illustrate the paths to chaos and the connections

between the dynamics and the statistical behavior observed in experiments. First, the

seminal experiments on walking droplets were presented to develop an intuition for the
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physical problem. Then we discussed traditional hydrodynamic modeling techniques

leading to integro-differential models. While these models match the experiments

extremely well, they can be quite difficult to analyze. In order to facilitate dynamical

systems analysis simpler models were necessary. These came in the form of discrete

dynamical systems.

This work analyzed one discrete dynamical model in depth. The model is derived

for a walker in a straight line for which the droplet moves a distance proportional to

the gradient of the wave-field. Furthermore, since the droplet is moving in a straight

line, it is assumed that only one eigenmode is excited at each bounce. For this model

we proved the existence of Neimark–Sacker bifurcations when varying the damping

factor and wave-particle coupling strength. In addition, we introduced a new global

bifurcation that leads to the chaotic behavior of the system. Although the model is

slightly removed from the physics of hydrodynamic quantum analogs, understanding

the dynamics of this simple model may help us discover statistical properties, such as

invariant measures, to guide experiments and numerics for the more complex models.

11.3 Future Work

In this section we propose future investigations and comment on the direction of

current research in chaotic logical circuits and walking droplets.

11.3.1 Chaotic Logical Circuits

After a decade – long drought, in recent years there has been a resurgence in the

studies of chaotic logical circuits. These circuits are mainly studied as analogs of

logical systems appearing in nature and for the purposes of communication. The

other logical systems of interest are mainly biological and often times neuronal. Since
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neurons are traditionally modeled as electrical circuits [64, 45, 46, 47] and physical

electrical circuit realizations have been developed to replicate the behavior in neuron

models [113], it is natural to ask whether chaotic logical circuits can be used to

replicate the behavior observed in more complex models of neuronal networks. Recent

work by Leiser and Rotstein [86] has inspired us to develop such analogs. In addition,

there are several groups from both a biological background and a physical one working

on understanding the connections between these electrical systems and those found

in nature.

Figure 11.1 Example of chaotic encryption implemented on MATLAB.

There has also been renewed interest in chaotic communication [138]. The

communications aspect is what initially attracted us to the topic, which has led us

to develop a MATLAB code (See Appendix A) using our modeling framework from

Section 4.2 to replicate chaotic encryption. An example of the encryption is shown

in Figure 11.1. Here Encryptor 1 and Decryptor 1 uses the first threshold, and is

employed by “Person 1”. Similarly, Encryptor 2 and Decryptor 2 uses the second

threshold, and is employed by “Person 2”. At each chaotic cycle of the thresholds the

Encryptor/Decryptor pairs integrates over their respective voltages, which provides
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the new encryption code. Since users only have access to one threshold they will not

be able to decrypt their own message as shown in the last line of Figure 11.1. The

next goal would be to use our circuits and develop this encryption system, and our

simple code serves as a proof of concept example that this may work.

11.3.2 Walking Droplets

Due to the nascency of the field and complexity of the phenomena of interest, there is

an abundance of novel problems to pursue. By using dynamical systems theory this

phenomena can be attacked on two fronts: developing new dynamical models amenable

to analysis while also having strong connections with experiments and pushing the

boundary of the theory for existing models. From the analysis perspective the most

important problem currently is the derivation invariant measures for the dynamical

models, which would create a direct link between the theory and experiments. If

invariant measures can be found, even through numerical approximations, we may

be able to identify physical properties that would lead to desired statistics. Due to

the difficulty of the problem, this would be a more long term endeavor. The more

immediately accessible problem would be the detailed characterization of the new

bifurcation observed in Section 10.3 and crises bifurcations, is currently underway.

From the modeling side there are two polar categories: “accurate but

mathematically complex” and “mathematically tractable but lacking in physical

connection”, which represents a rather wide gap. We are currently developing discrete

dynamical and hybrid models to bridge this gap. The goal is to develop models that

take advantage of the simplicity in [49] and incorporate more detailed physics from

[119, 120, 121]. Furthermore, there are many aspects of the system that have not

been explored in detail, such as boundary effects. Recently there has been some

experimental work [134] on these effects and some models have incorporated simple
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assumptions to treat boundaries, however new mechanistic models are necessary to

achieve better agreement with experiments.

Finally, we can use chaotic circuits to study walking droplets and use walking

droplets to develop a logic family. Recently a logic family using droplets (but

no bouncing) was developed [76] and this shows promise that the same can be

accomplished for walking droplets. Furthermore, our circuits can be used to chaotically

vary the amplitude of the fluid bath potentially revealing new phenomena.
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APPENDIX A

MATLAB CODES FOR TOY CHAOTIC

ENCRYPTION DEMONSTRATION

Code used by “Person 1” to encrypt message.

1 func t i on Encryptor1 ( f i l e , CryptFi le )
2
3 %Input : f i l e name
4 %Output : Encrypted f i l e
5
6 %%% Read f i l e %%%
7 f i l e ID = fopen ( f i l e , ' r ' ) ;
8 M = textscan ( f i l e ID , '%c ' , 'whitespace ' , ' ' ) ; % M − message
9 M = ce l l2mat (M) ;

10 f c l o s e ( f i l e ID ) ;
11 %%%
12
13 %%% For now th i s only encrypts / decrypts c a p i t a l l e t t e r s
14 %%% and no punctuation . . . cus we gangsta l i k e that .
15 Alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ ' ; %i n i t i a l i z e a lphabet with space
16
17 %%% Convert message M into numerical va lues %%%
18 NumM = zero s (1 , l ength (M) ) ;
19 f o r n = 1 : l ength (M)
20 f o r i = 1 : l ength ( Alphabet )
21 i f M(n) == Alphabet ( i )
22 NumM(n) = i ;
23 end
24 end
25 end
26 %%%
27
28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Encryption 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29 %%%External Parameters%%%
30 T1 = 20 ; %per iod o f I1 and I4
31 T2 = 40 ; %per iod o f I2 and I3
32 Total = T2* l ength (M) ; %Total time o f c l o ck
33 f r e q = 1/9 ; %i n t e r n a l f requency
34 %%%%%%%%%%%%%%%%%%%%%%%%%
35 N = Total / f r e q ;
36
37 %%%In t e rna l Parameters%%%
38 mu = 3 . 2 ;
39 nu = 2*mu/(1+muˆ2) ;
40 %%%%%%%%%%%%%%%%%%%%%%%%%
41
42 %%%I n i t i a l i z a t i o n%%%
43 f = ze ro s (1 ,N+1) ; %VT1
44 %%%%%%%%%%%%%%%%%%%%
45
46 %%%Inputs%%%
47 I1 = f ;
48 I2 = f ;
49 f o r n = 1 : 2 * l ength (M)
50 I1 ( ( 2 *n−1)*T1/(2* f r e q )+1:n*T1/ f r e q+1) = 1 ;
51 end
52 f o r n = 1 : l ength (M)
53 I2 ( ( 2 *n−1)*T2/(2* f r e q )+2:n*T2/ f r eq+1) = 1 − n*1 e−9;
54 end
55 %%%%%%%%%%%%
56
57 f o r n = 1 :N
58
59 %%%VT1 c a l c u l a t i o n s%%%
60
61 i f f (n) >= −nu*mu && f (n) < −nu
62
63 yf = (1+mu) * f (n) /(1−mu) + nu*(1+mu)/(1−mu) − mu*nu ;
64
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65 e l s e i f f (n) >= −nu && f (n) <= nu
66
67 yf = mu* f (n) ;
68
69 e l s e
70
71 yf = (1+mu) * f (n) /(1−mu) − nu*(1+mu)/(1−mu) + mu*nu ;
72
73 end
74
75 end
76
77 f (n+1) = abs ( I1 (n+1) − I2 (n+1) ) + I1 (n+1)* I2 (n+1) * yf ;
78 %%%%
79
80 %%% Int eg r a t i ng the chaot i c t ime s e r i e s %%%
81 i f mod( ( n+1) * f r eq ,T2) == 0
82 SumF = sum( f ( ( ( ( n+1) * f r e q − 10) / f r e q ) : ( n+1) ) ) ;
83 SumF = round (SumF) ;
84 NumM(( n+1) * f r e q /T2) = NumM(( n+1) * f r e q /T2) + SumF;
85 NumM(( n+1) * f r e q /T2) = mod(NumM(( n+1) * f r e q /T2) ,27) ;
86 i f NumM(( n+1) * f r e q /T2) == 0
87 NumM(( n+1) * f r e q /T2) = 27 ;
88 end
89 M(( n+1) * f r e q /T2) = Alphabet (NumM(( n+1) * f r e q /T2) ) ;
90 end
91 %%%%
92
93 end
94 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
95
96 %%% Writes encrypted f i l e
97 f i l e ID = fopen ( CryptFile , 'w' ) ;
98 f p r i n t f ( f i l e ID , '%c ' ,M) ;
99 f c l o s e ( f i l e ID ) ;

Code used by “Person 2” to decrypt message from “Person 1”

1 func t i on Decryptor2 ( CryptFile , f i l e )
2
3 %Input : Encrypted f i l e name
4 %Output : Decrypted f i l e
5
6 %%% Read f i l e %%%
7 f i l e ID = fopen ( CryptFile , ' r ' ) ;
8 M = textscan ( f i l e ID , '%c ' , 'whitespace ' , ' ' ) ; % M − message
9 M = ce l l2mat (M) ;

10 f c l o s e ( f i l e ID ) ;
11 %%%
12
13 %%% For now th i s only encrypts / decrypts c a p i t a l l e t t e r s
14 %%% and no punctuation . . . cus we gangsta l i k e that .
15 Alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ ' ; %i n i t i a l i z e a lphabet with space
16
17 %%% Convert message M into numerical va lues %%%
18 NumM = zero s (1 , l ength (M) ) ;
19 f o r n = 1 : l ength (M)
20 f o r i = 1 : l ength ( Alphabet )
21 i f M(n) == Alphabet ( i )
22 NumM(n) = i ;
23 end
24 end
25 end
26 %%%
27
28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Decryption 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29 %%%External Parameters%%%
30 T1 = 20 ; %per iod o f I1 and I4
31 T2 = 40 ; %per iod o f I2 and I3
32 Total = T2* l ength (M) ; %Total time o f c l o ck
33 f r e q = 1/9 ; %i n t e r n a l f requency
34 %%%%%%%%%%%%%%%%%%%%%%%%%
35 N = Total / f r e q ;
36
37 %%%In t e rna l Parameters%%%
38 mu = 3 . 2 ;
39 nu = 2*mu/(1+muˆ2) ;
40 %%%%%%%%%%%%%%%%%%%%%%%%%
41

154



42 %%%I n i t i a l i z a t i o n%%%
43 f = ze ro s (1 ,N+1) ; %VT1
44 %%%%%%%%%%%%%%%%%%%%
45
46 %%%Inputs%%%
47 I1 = f ;
48 I2 = f ;
49 f o r n = 1 : 2 * l ength (M)
50 I1 ( ( 2 *n−1)*T1/(2* f r e q )+1:n*T1/ f r e q+1) = 1 ;
51 end
52 f o r n = 1 : l ength (M)
53 I2 ( ( 2 *n−1)*T2/(2* f r e q )+2:n*T2/ f r eq+1) = 1 − n*1 e−9;
54 end
55 %%%%%%%%%%%%
56
57 f o r n = 1 :N
58
59 %%%VT1 c a l c u l a t i o n s%%%
60
61 i f f (n) >= −nu*mu && f (n) < −nu
62
63 yf = (1+mu) * f (n) /(1−mu) + nu*(1+mu)/(1−mu) − mu*nu ;
64
65 e l s e i f f (n) >= −nu && f (n) <= nu
66
67 yf = mu* f (n) ;
68
69 e l s e
70
71 yf = (1+mu) * f (n) /(1−mu) − nu*(1+mu)/(1−mu) + mu*nu ;
72
73 end
74
75 end
76
77 f (n+1) = abs ( I1 (n+1) − I2 (n+1) ) + I1 (n+1)* I2 (n+1) * yf ;
78 %%%%
79
80 %%% Int eg r a t i ng the chaot i c t ime s e r i e s %%%
81 i f mod( ( n+1) * f r eq ,T2) == 0
82 SumF = sum( f ( ( ( ( n+1) * f r e q − 10) / f r e q ) : ( n+1) ) ) ;
83 SumF = round (SumF) ;
84 NumM(( n+1) * f r e q /T2) = NumM(( n+1) * f r e q /T2) − SumF;
85 NumM(( n+1) * f r e q /T2) = mod(NumM(( n+1) * f r e q /T2) ,27) ;
86 i f NumM(( n+1) * f r e q /T2) == 0
87 NumM(( n+1) * f r e q /T2) = 27 ;
88 end
89 M(( n+1) * f r e q /T2) = Alphabet (NumM(( n+1) * f r e q /T2) ) ;
90 end
91 %%%%
92
93 end
94 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
95
96 %%% Writes decrypted f i l e
97 f i l e ID = fopen ( f i l e , 'w' ) ;
98 f p r i n t f ( f i l e ID , '%c ' ,M) ;
99 f c l o s e ( f i l e ID ) ;

Code used by “Person 2” to encrypt message.

1 func t i on Encryptor2 ( f i l e , CryptFi le )
2
3 %Input : f i l e name
4 %Output : Encrypted f i l e
5
6 %%% Read f i l e %%%
7 f i l e ID = fopen ( f i l e , ' r ' ) ;
8 M = textscan ( f i l e ID , '%c ' , 'whitespace ' , ' ' ) ; % M − message
9 M = ce l l2mat (M) ;

10 f c l o s e ( f i l e ID ) ;
11 %%%
12
13 %%% For now th i s only encrypts / decrypts c a p i t a l l e t t e r s
14 %%% and no punctuation . . . cus we gangsta l i k e that .
15 Alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ ' ; %i n i t i a l i z e a lphabet with space
16
17 %%% Convert message M into numerical va lues %%%
18 NumM = zero s (1 , l ength (M) ) ;
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19 f o r n = 1 : l ength (M)
20 f o r i = 1 : l ength ( Alphabet )
21 i f M(n) == Alphabet ( i )
22 NumM(n) = i ;
23 end
24 end
25 end
26 %%%
27
28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Encryption 2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29 %%%External Parameters%%%
30 T1 = 20 ; %per iod o f I1 and I4
31 T2 = 40 ; %per iod o f I2 and I3
32 Total = T2* l ength (M) ; %Total time o f c l o ck
33 f r e q = 1/9 ; %i n t e r n a l f requency
34 %%%%%%%%%%%%%%%%%%%%%%%%%
35 N = Total / f r e q ;
36
37 %%%I n i t i a l i z a t i o n%%%
38 g = ze ro s (1 ,N+1) ; %VT2
39 %%%%%%%%%%%%%%%%%%%%
40
41 %%%Inputs%%%
42 I1 = g ;
43 I2 = g ;
44 f o r n = 1 : 2 * l ength (M)
45 I1 ( ( 2 *n−1)*T1/(2* f r e q )+1:n*T1/ f r e q+1) = 1 ;
46 end
47 f o r n = 1 : l ength (M)
48 I2 ( ( 2 *n−1)*T2/(2* f r e q )+2:n*T2/ f r eq+1) = 1 − n*1 e−9;
49 end
50 g (1) = −1;
51 %%%%%%%%%%%%
52
53 f o r n = 1 :N
54
55 %%%VT2 c a l c u l a t i o n s%%%
56
57 i f abs ( g (n)−1/3) <= 1/2
58
59 yg = 1/3 + 2* abs ( g (n)−1/3) ;
60
61 e l s e
62
63 yg = 1/3 + 2*(1−abs ( g (n)−1/3) ) ;
64
65 end
66
67 g (n+1) = abs ( I2 (n+1) − I1 (n+1) ) − 1 + I2 (n+1) * I1 (n+1)*yg ;
68 %%%%
69
70 %%% Int eg r a t i ng the chaot i c t ime s e r i e s %%%
71 i f mod( ( n+1) * f r eq ,T2) == 0
72 SumG = sum(g ( ( ( ( n+1) * f r e q − 10) / f r e q ) : ( n+1) ) ) ;
73 SumG = round (SumG) ;
74 NumM(( n+1) * f r e q /T2) = NumM(( n+1) * f r e q /T2) + SumG;
75 NumM(( n+1) * f r e q /T2) = mod(NumM(( n+1) * f r e q /T2) ,27) ;
76 i f NumM(( n+1) * f r e q /T2) == 0
77 NumM(( n+1) * f r e q /T2) = 27 ;
78 end
79 M(( n+1) * f r e q /T2) = Alphabet (NumM(( n+1) * f r e q /T2) ) ;
80 end
81 %%%%
82
83 end
84 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
85
86 %%% Writes encrypted f i l e
87 f i l e ID = fopen ( CryptFile , 'w' ) ;
88 f p r i n t f ( f i l e ID , '%c ' ,M) ;
89 f c l o s e ( f i l e ID ) ;

Code used by “Person 1” to decrypt message from “Person 2”

1 func t i on Decryptor1 ( CryptFile , f i l e )
2
3 %Input : f i l e name
4 %Output : Encrypted f i l e
5
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6 %%% Read f i l e %%%
7 f i l e ID = fopen ( CryptFile , ' r ' ) ;
8 M = textscan ( f i l e ID , '%c ' , 'whitespace ' , ' ' ) ; % M − message
9 M = ce l l2mat (M) ;

10 f c l o s e ( f i l e ID ) ;
11 %%%
12
13 %%% For now th i s only encrypts / decrypts c a p i t a l l e t t e r s
14 %%% and no punctuation . . . cus we gangsta l i k e that .
15 Alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ ' ; %i n i t i a l i z e a lphabet with space
16
17 %%% Convert message M into numerical va lues %%%
18 NumM = zero s (1 , l ength (M) ) ;
19 f o r n = 1 : l ength (M)
20 f o r i = 1 : l ength ( Alphabet )
21 i f M(n) == Alphabet ( i )
22 NumM(n) = i ;
23 end
24 end
25 end
26 %%%
27
28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Decryption 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
29 %%%External Parameters%%%
30 T1 = 20 ; %per iod o f I1 and I4
31 T2 = 40 ; %per iod o f I2 and I3
32 Total = T2* l ength (M) ; %Total time o f c l o ck
33 f r e q = 1/9 ; %i n t e r n a l f requency
34 %%%%%%%%%%%%%%%%%%%%%%%%%
35 N = Total / f r e q ;
36
37 %%%I n i t i a l i z a t i o n%%%
38 g = ze ro s (1 ,N+1) ; %VT2
39 %%%%%%%%%%%%%%%%%%%%
40
41 %%%Inputs%%%
42 I1 = g ;
43 I2 = g ;
44 f o r n = 1 : 2 * l ength (M)
45 I1 ( ( 2 *n−1)*T1/(2* f r e q )+1:n*T1/ f r e q+1) = 1 ;
46 end
47 f o r n = 1 : l ength (M)
48 I2 ( ( 2 *n−1)*T2/(2* f r e q )+2:n*T2/ f r eq+1) = 1 − n*1 e−9;
49 end
50 g (1) = −1;
51 %%%%%%%%%%%%
52
53 f o r n = 1 :N
54
55 %%%VT2 c a l c u l a t i o n s%%%
56
57 i f abs ( g (n)−1/3) <= 1/2
58
59 yg = 1/3 + 2* abs ( g (n)−1/3) ;
60
61 e l s e
62
63 yg = 1/3 + 2*(1−abs ( g (n)−1/3) ) ;
64
65 end
66
67 g (n+1) = abs ( I2 (n+1) − I1 (n+1) ) − 1 + I2 (n+1) * I1 (n+1)*yg ;
68 %%%%
69
70 %%% Int eg r a t i ng the chaot i c t ime s e r i e s %%%
71 i f mod( ( n+1) * f r eq ,T2) == 0
72 SumG = sum(g ( ( ( ( n+1) * f r e q − 10) / f r e q ) : ( n+1) ) ) ;
73 SumG = round (SumG) ;
74 NumM(( n+1) * f r e q /T2) = NumM(( n+1) * f r e q /T2) − SumG;
75 NumM(( n+1) * f r e q /T2) = mod(NumM(( n+1) * f r e q /T2) ,27) ;
76 i f NumM(( n+1) * f r e q /T2) == 0
77 NumM(( n+1) * f r e q /T2) = 27 ;
78 end
79 M(( n+1) * f r e q /T2) = Alphabet (NumM(( n+1) * f r e q /T2) ) ;
80 end
81 %%%%
82
83 end
84 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
85
86 %%% Writes decrypted f i l e
87 f i l e ID = fopen ( f i l e , 'w' ) ;
88 f p r i n t f ( f i l e ID , '%c ' ,M) ;
89 f c l o s e ( f i l e ID ) ;
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divergence des séries de m. lindstedt. Acta Mathematica, 13:1–270, 1890.
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