2,611 research outputs found

    Satellite observations of mesoscale features in lower Cook Inlet and Shelikof Strait, Gulf of Alaska

    Get PDF
    The Seasat satellite launched in Summer 1978 carried a synthetic aperture radar (SAR). Although Seasat failed after 105 days in orbit, it provided observations that demonstrate the potential to examine and monitor upper oceanic processes. Seasat made five passes over lower Cook Inlet and Shelikof Strait, Alaska, during Summer 1978. SAR images from the passes show oceanographic features, including a meander in a front, a pair of mesoscale eddies, and internal waves. These features are compared with contemporary and representative images from a satellite-borne Advanced Very High Resolution Radiometer (AVHRR) and Coastal Zone Color Scanner (CZCS), with water property data, and with current observations from moored instruments. The results indicate that SAR data can be used to monitor mesoscale oceanographic features

    Hydrodynamics of internal solitons and a comparison of SIR-A and SIR-B data with ocean measurements

    Get PDF
    Large internal solitary waves have been observed by Shuttle SIR-A and SIR-B at locations in the Andaman Sea and the New York Bight. Satellite imagery and oceanographic measurements are used in conjunction with hydrodynamic interaction and electromagnetic scattering models to estimate the expected SAR image intensity modulations associated with the internal waves. There is reasonable agreement between the predicted and observed internal wave signatures

    Numerical study on signatures of atmospheric convective cells in radar images of the ocean

    No full text
    Current and wind variations at the ocean surface can give rise to a modulation of the sea surface roughness and thus become visible in radar images. The discrimination between radar signatures of oceanic and atmospheric phenomena can be quite difficult, since signatures of different origin can have very similar shapes and magnitudes and are often superimposed upon each other. In this work we employ a numerical radar imaging model for an investigation of typical properties of radar signatures of atmospheric convective cells and of theoretical differences between such atmospherically induced radar signatures and those of oceanic phenomena. We show that main characteristics of observed multifrequency/multipolarization radar signatures of atmospheric convective cells over the Gulf Stream are reproduced quite well by the proposed model. This encourages us to vary wind and radar parameters systematically in order to get a general overview of the dependency of atmospherically induced radar signatures on these parameters. Finally, we compare typical characteristics of radar signatures of atmospheric and oceanic phenomena, and we present simulated radar images of a scenario of superimposed atmospheric convective cells and oceanic internal waves. We show that the proposed model supports the experimental finding that radar signatures of oceanic phenomena are stronger at horizontal (HH) than at vertical (VV) polarization, while atmospherically induced radar signatures are better visible at VV polarization

    On the remote sensing of oceanic and atmospheric convection in the Greenland Sea by synthetic aperture radar

    No full text
    In this paper we discuss characteristic properties of radar signatures of oceanic and atmospheric convection features in the Greenland Sea. If the water surface is clean (no surface films or ice coverage), oceanic and atmospheric features can become visible in radar images via a modulation of the surface roughness, and their radar signatures can be very similar. For an unambiguous interpretation and for the retrieval of quantitative information on current and wind variations from radar imagery with such signatures, theoretical models of current and wind phenomena and their radar imaging mechanisms must be utilized. We demonstrate this approach with the analysis of some synthetic aperture radar (SAR) images acquired by the satellites ERS-2 and RADARSAT-1. In once case, an ERS-2 SAR image an a RADARSAT-1 ScanSAR image exhibit pronounced cell-like signatures with length scales on the order of 10-20 km and modulation depths of about 5-6 dB and 9-10 dB, respectively. Simulations with a numerical SAR imagaing model and various input current and wind fields reveal that the signatures in both images can be expained consistently by wind variations on the order of±2.5 ms, but not by surface current variations on realistic orders of magnitude. Accordingly, the observed features must be atmospheric convection cells. This is confirmed by visible typical cloud patterns in a NOAA AVHRR image of the test scenario. In another case, the presence of an oceanic convective chimney is obvious from in situ data, but no signatures of it are visible in an ERS-2 SAR image. We show by numerical simulations with an oceanic convection model and our SAR imaging model that this is consistent with theoretical predictions, since the current gradients associated with the observed chimney are not sufficiently strong to give rise to significant signatures in an ERS-2 SAR image under the given conditions. Further model results indicate that it should be generally difficult to observe oceanic convection features in the Greenland Sea with ERS-2 or RADARSAT-1 SAR, since their signatures resulting from pure wave-current interaction will be too weak to become visible in the noisy SAR images in most cases. This situation will improve with the availability of future high-resolution SARs such as RADARSAT-2 SAR in fine resolution mode (2004) and TerraSAR-X (2005) which will offer significantly reduced speckle noise fluctuations at comparable spatial resolutions and thus a much better visibility of small image variations on spatial scales on the order of a few hundred meters

    Seasat data utilization project

    Get PDF
    During the three months of orbital operations, the satellite returned data from the world's oceans. Dozens of tropical storms, hurricanes and typhoons were observed, and two planned major intensive surface truth experiments were conducted. The utility of the Seasat-A microwave sensors as oceanographic tools was determined. Sensor and geophysical evaluations are discussed, including surface observations, and evaluation summaries of an altimeter, a scatterometer, a scanning multichannel microwave radiometer, a synthetic aperture radar, and a visible and infrared radiometer

    Data Requirements for Oceanic Processes in the Open Ocean, Coastal Zone, and Cryosphere

    Get PDF
    The type of information system that is needed to meet the requirements of ocean, coastal, and polar region users was examined. The requisite qualities of the system are: (1) availability, (2) accessibility, (3) responsiveness, (4) utility, (5) continuity, and (6) NASA participation. The system would not displace existing capabilities, but would have to integrate and expand the capabilities of existing systems and resolve the deficiencies that currently exist in producer-to-user information delivery options

    A theory of the imaging mechanism of underwater bottom topography by real and synthetic aperture radar

    Get PDF
    A simple theoretical model of the imaging mechanism of underwater bottom topography in tidal channels by real and by synthetic aperture radar (SAR) is presented. The imaging is attributed to surface effects induced by current variations over bottom topography. The current modulates the short-scale surface roughness, which in turn gives rise to changes in radar reflectivity. The bottom topography- current interaction is described by the continuity equation, and the current-short surface wave interac- tion is described by weak hydrodynamic interaction theory in the relaxation time approximation. This theory contains only one free parameter, which is the relaxation time. It is shown that in the case of tidal flow over large-scale bottom topographic features, e.g., over sandbanks, the radar cross-section modulation is proportional to the product of the relaxation time and the gradient of the surface current velocity, which is proportional to the slope of the water depth divided by the square of the depth. To first order, tiffs modulation is independent of wind direction. In the case of SAR imaging, in addition to the above mentioned hydrodynamic modulation, phase modulation or velocity bunching also contributes to the imaging. However, in general, the phase modulation is small in comparison to the hydrodynamic modu- lation. The theory is confronted with experimental data which show that to first order our theory is capable of explaining basic features of the radar imaging mechanism of underwater bottom topography in tidal channels. I n order to explain the large observed modulation of radar reflectivity we are compelled to assume a large relaxation time, which for Seasat SAR Bragg waves (wavelength 34 cm) is of the order of 30-40 s, corresponding to 60-80 wave periods

    On the response to ocean surface currents in synthetic aperture radar imagery

    Get PDF
    The balance of wave action spectral density for a fixed wave-number is expressed in terms of a new dimensionless function, the degree of saturation, b, and is applied to an analysis of the variations of this quantity (and local spectral level) at wave-numbers large compared to that of the spectral peak, that are produced by variations in the ocean surface currents in the presence of wind input and wave breaking. Particular care is taken to provide physically based representations of wind input and loss by wave breaking and a relatively convenient equation is derived that specifies the distribution of the degree of saturation in a current field, relative to its ambient (undisturbed) background in the absence of currents. The magnitude of the variations in b depends on two parameters, U(o)/c, where U/(o) is the velocity scale of the current and c the phase speed of the surface waves at the (fixed) wave-number considered or sampled by SAR, and S = (L/lambda) (u*/c)(2), where L is the length scale of the current distribution, lambda the wavelength of the surface waves the length scale of the current distribution, lambda the wavelength of the surface waves and u* the friction velocity of the wind

    SEASAT views oceans and sea ice with synthetic aperture radar

    Get PDF
    Fifty-one SEASAT synthetic aperture radar (SAR) images of the oceans and sea ice are presented. Surface and internal waves, the Gulf Stream system and its rings and eddies, the eastern North Pacific, coastal phenomena, bathymetric features, atmospheric phenomena, and ship wakes are represented. Images of arctic pack and shore-fast ice are presented. The characteristics of the SEASAT SAR system and its image are described. Maps showing the area covered, and tables of key orbital information, and listing digitally processed images are provided
    • …
    corecore