11,704 research outputs found

    Crowdsourcing Swarm Manipulation Experiments: A Massive Online User Study with Large Swarms of Simple Robots

    Full text link
    Micro- and nanorobotics have the potential to revolutionize many applications including targeted material delivery, assembly, and surgery. The same properties that promise breakthrough solutions---small size and large populations---present unique challenges to generating controlled motion. We want to use large swarms of robots to perform manipulation tasks; unfortunately, human-swarm interaction studies as conducted today are limited in sample size, are difficult to reproduce, and are prone to hardware failures. We present an alternative. This paper examines the perils, pitfalls, and possibilities we discovered by launching SwarmControl.net, an online game where players steer swarms of up to 500 robots to complete manipulation challenges. We record statistics from thousands of players, and use the game to explore aspects of large-population robot control. We present the game framework as a new, open-source tool for large-scale user experiments. Our results have potential applications in human control of micro- and nanorobots, supply insight for automatic controllers, and provide a template for large online robotic research experiments.Comment: 8 pages, 13 figures, to appear at 2014 IEEE International Conference on Robotics and Automation (ICRA 2014

    Multi-robot team formation control in the GUARDIANS project

    Get PDF
    Purpose The GUARDIANS multi-robot team is to be deployed in a large warehouse in smoke. The team is to assist firefighters search the warehouse in the event or danger of a fire. The large dimensions of the environment together with development of smoke which drastically reduces visibility, represent major challenges for search and rescue operations. The GUARDIANS robots guide and accompany the firefighters on site whilst indicating possible obstacles and the locations of danger and maintaining communications links. Design/methodology/approach In order to fulfill the aforementioned tasks the robots need to exhibit certain behaviours. Among the basic behaviours are capabilities to stay together as a group, that is, generate a formation and navigate while keeping this formation. The control model used to generate these behaviours is based on the so-called social potential field framework, which we adapt to the specific tasks required for the GUARDIANS scenario. All tasks can be achieved without central control, and some of the behaviours can be performed without explicit communication between the robots. Findings The GUARDIANS environment requires flexible formations of the robot team: the formation has to adapt itself to the circumstances. Thus the application has forced us to redefine the concept of a formation. Using the graph-theoretic terminology, we can say that a formation may be stretched out as a path or be compact as a star or wheel. We have implemented the developed behaviours in simulation environments as well as on real ERA-MOBI robots commonly referred to as Erratics. We discuss advantages and shortcomings of our model, based on the simulations as well as on the implementation with a team of Erratics.</p

    Human Swarm Interaction: An Experimental Study of Two Types of Interaction with Foraging Swarms

    Get PDF
    In this paper we present the first study of human-swarm interaction comparing two fundamental types of interaction, coined intermittent and environmental. These types are exemplified by two control methods, selection and beacon control, made available to a human operator to control a foraging swarm of robots. Selection and beacon control differ with respect to their temporal and spatial influence on the swarm and enable an operator to generate different strategies from the basic behaviors of the swarm. Selection control requires an active selection of groups of robots while beacon control exerts an influence on nearby robots within a set range. Both control methods are implemented in a testbed in which operators solve an information foraging problem by utilizing a set of swarm behaviors. The robotic swarm has only local communication and sensing capabilities. The number of robots in the swarm range from 50 to 200. Operator performance for each control method is compared in a series of missions in different environments with no obstacles up to cluttered and structured obstacles. In addition, performance is compared to simple and advanced autonomous swarms. Thirty-two participants were recruited for participation in the study. Autonomous swarm algorithms were tested in repeated simulations. Our results showed that selection control scales better to larger swarms and generally outperforms beacon control. Operators utilized different swarm behaviors with different frequency across control methods, suggesting an adaptation to different strategies induced by choice of control method. Simple autonomous swarms outperformed human operators in open environments, but operators adapted better to complex environments with obstacles. Human controlled swarms fell short of task-specific benchmarks under all conditions. Our results reinforce the importance of understanding and choosing appropriate types of human-swarm interaction when designing swarm systems, in addition to choosing appropriate swarm behaviors

    Constructing living buildings: a review of relevant technologies for a novel application of biohybrid robotics

    Get PDF
    Biohybrid robotics takes an engineering approach to the expansion and exploitation of biological behaviours for application to automated tasks. Here, we identify the construction of living buildings and infrastructure as a high-potential application domain for biohybrid robotics, and review technological advances relevant to its future development. Construction, civil infrastructure maintenance and building occupancy in the last decades have comprised a major portion of economic production, energy consumption and carbon emissions. Integrating biological organisms into automated construction tasks and permanent building components therefore has high potential for impact. Live materials can provide several advantages over standard synthetic construction materials, including self-repair of damage, increase rather than degradation of structural performance over time, resilience to corrosive environments, support of biodiversity, and mitigation of urban heat islands. Here, we review relevant technologies, which are currently disparate. They span robotics, self-organizing systems, artificial life, construction automation, structural engineering, architecture, bioengineering, biomaterials, and molecular and cellular biology. In these disciplines, developments relevant to biohybrid construction and living buildings are in the early stages, and typically are not exchanged between disciplines. We, therefore, consider this review useful to the future development of biohybrid engineering for this highly interdisciplinary application.publishe

    "So go downtown": simulating pedestrian movement in town centres

    Get PDF
    Pedestrian movement models have been developed since the 1970s. A review of the literature shows that such models have been developed to explain and predict macro, meso, and micro movement patterns. However, recent developments in modelling techniques, and especially advances in agent-based simulation, open up the possibility of developing integrative and complex models which use existing models as 'building blocks'. In this paper we describe such integrative, modular approach to simulating pedestrian movement behaviour. The STREETS model, developed by using Swarm and GIS, is an agent-based model that focuses on the simulation of the behavioural aspects of pedestrian movement. The modular structure of the simulation is described in detail. This is followed by a discussion of the lessons learned from the development of STREETS, especially the advantages of adopting a modular approach and other aspects of using the agent-based paradigm for modelling

    Internet of robotic things : converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT Platforms

    Get PDF
    The Internet of Things (IoT) concept is evolving rapidly and influencing newdevelopments in various application domains, such as the Internet of MobileThings (IoMT), Autonomous Internet of Things (A-IoT), Autonomous Systemof Things (ASoT), Internet of Autonomous Things (IoAT), Internetof Things Clouds (IoT-C) and the Internet of Robotic Things (IoRT) etc.that are progressing/advancing by using IoT technology. The IoT influencerepresents new development and deployment challenges in different areassuch as seamless platform integration, context based cognitive network integration,new mobile sensor/actuator network paradigms, things identification(addressing, naming in IoT) and dynamic things discoverability and manyothers. The IoRT represents new convergence challenges and their need to be addressed, in one side the programmability and the communication ofmultiple heterogeneous mobile/autonomous/robotic things for cooperating,their coordination, configuration, exchange of information, security, safetyand protection. Developments in IoT heterogeneous parallel processing/communication and dynamic systems based on parallelism and concurrencyrequire new ideas for integrating the intelligent “devices”, collaborativerobots (COBOTS), into IoT applications. Dynamic maintainability, selfhealing,self-repair of resources, changing resource state, (re-) configurationand context based IoT systems for service implementation and integrationwith IoT network service composition are of paramount importance whennew “cognitive devices” are becoming active participants in IoT applications.This chapter aims to be an overview of the IoRT concept, technologies,architectures and applications and to provide a comprehensive coverage offuture challenges, developments and applications

    Space is the machine, part four: theoretical syntheses

    Get PDF
    Part IV of the book, ‘Theoretical Syntheses’, begins to draw together some of the questions raised in Part I, the regularities shown in Part II and the laws proposed in Part III, to suggest how the two central problems in architectural theory, namely the form-function problem and the form-meaning problem, can be reconceptualised. Chapter 10, ‘Space is the machine’, reviews the form-function theory in architecture and attempts to establish a pathology of its formulation: how it came to be set up in such a way that it could not be solved. It then proposes how the configuration paradigm permits a reformulation, through which we can not only make sense of the relation between form and function in buildings, but also we can make sense of how and why buildings, in a powerful sense are ‘social objects’ and in fact play a powerful role in the realisation and sustaining of human society. Finally, in Chapter 11, ‘The reasoning art’, the notion of configuration is applied to the study of what architects do, that is, design. Previous models of the design process are reviewed, and it is shown that without knowledge of configuration and the concept of the non-discursive, we cannot understand the internalities of the design process. A new knowledge-based model of design is proposed, with configuration at its centre. It is argued from this that because design is a configurational process, and because it is the characteristic of configuration that local changes make global differences, design is necessarily a top down process. This does not mean that it cannot be analysed, or supported by research. It shows however that only configurationally biased knowledge can really support the design Introduction Space is the machine | Bill Hillier Space Syntax Introduction process, and this, essentially, is theoretical knowledge. It follows from this that attempts to support designers by building methods and systems for bottom up construction of designs must eventually fail as explanatory systems. They can serve to create specific architectural identities, but not to advance general architectural understanding. In pursuing an analytic rather than a normative theory of architecture, the book might be thought by some to have pretensions to make the art of architecture into a science. This is not what is intended. One effect of a better scientific understanding of architecture is to show that although architecture as a phenomenon is capable of considerable scientific understanding, this does not mean that as a practice architecture is not an art. On the contrary, it shows quite clearly why it is an art and what the nature and limits of that art are. Architecture is an art because, although in key respects its forms can be analysed and understood by scientific means, its forms can only be prescribed by scientific means in a very restricted sense. Architecture is law governed but it is not determinate. What is governed by the laws is not the form of individual buildings but the field of possibility within which the choice of form is made. This means that the impact of these laws on the passage from problem statement to solution is not direct but indirect. It lies deep in the spatial and physical forms of buildings, in their genotypes, not their phenotypes. Architecture is therefore not part art, and part science, in the sense that it has both technical and aesthetic aspects, but is both art and science in the sense that it requires both the processes of abstraction by which we know science and the processes of concretion by which we know art. The architect as scientist and as theorist seeks to establish the laws of the spatial and formal materials with which the architect as artist then composes. The greater scientific content of architecture over art is simply a function of the far greater complexity of the raw materials of space and form, and their far greater reverberations for other aspects of life, than any materials that an artist uses. It is the fact that the architect designs with the spatial stuff of living that builds the science of architecture into the art of architecture. It may seem curious to argue that the quest for a scientific understanding of architecture does not lead to the conclusion that architecture is a science, but nevertheless it is the case. In the last analysis, architectural theory is a matter of understanding architecture as a system of possibilities, and how these are restricted by laws which link this system of possibilities to the spatial potentialities of human life. At this level, and perhaps only at this level, architecture is analogous to language. Language is often naïvely conceptualised as a set of words and meanings, set out in a dictionary, and syntactic rules by which they may be combined into meaningful sentences, set out in grammars. This is not what language is, and the laws that govern language are not of this kind. This can be seen from the simple fact that if we take the words of the dictionary and combine them in grammatically correct sentences, virtually all are utterly meaningless and do not count as legitimate sentences. The structures of language are the laws which restrict the combinatorial possibilities of words, and through these restrictions construct the sayable and the meaningful. The laws of language do not therefore tell us what to say, but prescribe the structure and limits of the sayable. It is within these limits that we use language as the prime means to our individuality and creativity. In this sense architecture does resemble language. The laws of the field of architecture do not tell designers what to do. By restricting and structuring the field of combinatorial possibility, they prescribe the limits within which architecture is possible. As with language, what is left from this restrictive structuring is rich beyond imagination. Even so, without these laws buildings would not be human products, any more than meaningless but syntactically correct concatenations of words are human sentences. The case for a theoretical understanding of architecture then rests eventually not on aspiration to philosophical or scientific status, but on the nature of architecture itself. The foundational proposition of the book is that architecture is an inherently theoretical subject. The very act of building raises issues about the relations of the form of the material world and the way in which we live in it which (as any archaeologist knows who has tried to puzzle out a culture from material remains) are unavoidably both philosophical and scientific. Architecture is the most everyday, the most enveloping, the largest and the most culturally determined human artefact. The act of building implies the transmission of cultural conventions answering these questions through custom and habit. Architecture is their rendering explicit, and their transmutation into a realm of innovation and, at its best, of art. In a sense, architecture is abstract thought applied to building, even therefore in a sense theory applied to building. This is why, in the end, architecture must have analytic theories
    • 

    corecore