6,942 research outputs found

    Simultaneous denoising and enhancement of signals by a fractal conservation law

    Full text link
    In this paper, a new filtering method is presented for simultaneous noise reduction and enhancement of signals using a fractal scalar conservation law which is simply the forward heat equation modified by a fractional anti-diffusive term of lower order. This kind of equation has been first introduced by physicists to describe morphodynamics of sand dunes. To evaluate the performance of this new filter, we perform a number of numerical tests on various signals. Numerical simulations are based on finite difference schemes or Fast and Fourier Transform. We used two well-known measuring metrics in signal processing for the comparison. The results indicate that the proposed method outperforms the well-known Savitzky-Golay filter in signal denoising. Interesting multi-scale properties w.r.t. signal frequencies are exhibited allowing to control both denoising and contrast enhancement

    Classification of Arrhythmia by Using Deep Learning with 2-D ECG Spectral Image Representation

    Full text link
    The electrocardiogram (ECG) is one of the most extensively employed signals used in the diagnosis and prediction of cardiovascular diseases (CVDs). The ECG signals can capture the heart's rhythmic irregularities, commonly known as arrhythmias. A careful study of ECG signals is crucial for precise diagnoses of patients' acute and chronic heart conditions. In this study, we propose a two-dimensional (2-D) convolutional neural network (CNN) model for the classification of ECG signals into eight classes; namely, normal beat, premature ventricular contraction beat, paced beat, right bundle branch block beat, left bundle branch block beat, atrial premature contraction beat, ventricular flutter wave beat, and ventricular escape beat. The one-dimensional ECG time series signals are transformed into 2-D spectrograms through short-time Fourier transform. The 2-D CNN model consisting of four convolutional layers and four pooling layers is designed for extracting robust features from the input spectrograms. Our proposed methodology is evaluated on a publicly available MIT-BIH arrhythmia dataset. We achieved a state-of-the-art average classification accuracy of 99.11\%, which is better than those of recently reported results in classifying similar types of arrhythmias. The performance is significant in other indices as well, including sensitivity and specificity, which indicates the success of the proposed method.Comment: 14 pages, 5 figures, accepted for future publication in Remote Sensing MDPI Journa

    Development of method of matched morphological filtering of biomedical signals and images

    Get PDF
    Formalized approach to the analysis of biomedical signals and images with locally concentrated features is developed on the basis of matched morphological filtering taking into account the useful signal models that allowed generalizing the existing methods of digital processing and analysis of biomedical signals and images with locally concentrated features. The proposed matched morphological filter has been adapted to solve such problems as localization of the searched structural elements on biomedical signals with locally concentrated features, estimation of the irregular background aimed at the visualization quality improving of biological objects on X-ray biomedical images, pathologic structures selection on mammogram. The efficiency of the proposed methods of matched morphological filtration of biomedical signals and images with locally concentrated features is proved by experiments

    An Analogue Front-End System with a Low-Power On-Chip Filter and ADC for Portable ECG Detection Devices

    Get PDF
    Medical diagnostic instruments can be made into portable devices for the purpose of home care, such as the diagnosis of heart disease. These assisting devices are not only used to monitor patients but are also beneficial as handy and convenient medical instruments. Hence, for reasons of both portability and durability, designers should reduce the power consumption of assistant devices as much as possible to extend their battery lifetime. However, achieving the low power requirement of the ECG sensing and the processing board for the ECG with commercial discrete components (A21-0003) is difficult because the low power consumer electronics for ECG acquisition systems are not yet available. With the help of the integrated circuit technology, the power-saving requirement of portable and durable equipment gives circuit designers the impetus to reduce the power consumption of analogue front-end circuits in ECG acquisition systems. In addition, the analogue front-end circuits, which are the interface between physical signals and the digital processor, must be operated at a low-supply voltage to be integrated into the low-voltage system-on-a-chip (SOC) system (Eshraghian, 2006). Therefore, the chapter will present two design examples of low-voltage (1 V) and low-power (<1 W) on-chip circuits including a low-pass filter (LPF) and an analogue-to-digital converter (ADC) to demonstrate the possibility of developing the low-voltage low-power ECG acquisition SO
    corecore