8 research outputs found

    Legume Genetics and Biology

    Get PDF
    Legumes have played an important part as human food and animal feed in cropping systems since the dawn of agriculture. The legume family is arguably one of the most abundantly domesticated crop plant families. Their ability to symbiotically fix nitrogen and improve soil fertility has been rewarded since antiquity and makes them a key protein source. Pea was the original model organism used in Mendel´s discovery of the laws of inheritance, making it the foundation of modern plant genetics. This book based on Special Issue provides up-to-date information on legume biology, genetic advances, and the legacy of Mendel

    UVR8 mediated spatial differences as a prerequisite for UV-B induced inflorescence phototropism

    Get PDF
    In Arabidopsis hypocotyls, phototropins are the dominant photoreceptors for the positive phototropism response towards unilateral ultraviolet-B (UV-B) radiation. We report a stark contrast of response mechanism with inflorescence stems with a central role for UV RESISTANCE LOCUS 8 (UVR8). The perception of UV-B occurs mainly in the epidermis and cortex with a lesser contribution of the endodermis. Unilateral UV-B exposure does not lead to a spatial difference in UVR8 protein levels but does cause differential UVR8 signal throughout the stem with at the irradiated side 1) increase of the transcription factor ELONGATED HYPOCOTYL 5 (HY5), 2) an associated strong activation of flavonoid biosynthesis genes and flavonoid accumulation, 3) increased GA2oxidase expression, diminished gibberellin1 levels and accumulation of DELLA protein REPRESSOR OF GA1 (RGA) and, 4) increased expression of the auxin transport regulator, PINOID, contributing to local diminished auxin signalling. Our molecular findings are in support of the Blaauw theory (1919), suggesting that differential growth occurs trough unilateral photomorphogenic growth inhibition. Together the data indicate phototropin independent inflorescence phototropism through multiple locally UVR8-regulated hormone pathways

    Tree Peony Species Are a Novel Resource for Production of α-Linolenic Acid

    Get PDF
    Tree peony is known worldwide for its excellent ornamental and medical values, but recent reports that their seeds contain over 40% α-linolenic acid (ALA), an essential fatty acid for humans drew additional interest of biochemists. To understand the key factors that contribute to this rich accumulation of ALA, we carried out a comprehensive study of oil accumulation in developing seeds of nine wild tree peony species. The fatty acid content and composition was highly variable among the nine species; however, we selected a high- (P. rockii) and low-oil (P. lutea) accumulating species for a comparative transcriptome analysis. Similar to other oilseed transcriptomic studies, upregulation of select genes involved in plastidial fatty acid synthesis, and acyl editing, desaturation and triacylglycerol assembly in the endoplasmic reticulum was noted in seeds of P. rockii relative to P. lutea. Also, in association with the ALA content, transcript levels for fatty acid desaturases (SAD, FAD2 and FAD3), which encode for enzymes necessary for polyunsaturated fatty acid synthesis were higher in P. rockii compared to P. lutea. We further showed that the overexpression of PrFAD2 and PrFAD3 in Arabidopsis increased linoleic and α-linolenic acid content, respectively and modulated their final ratio in the seed oil. In conclusion, we identified the key steps that contribute to efficient ALA synthesis and validated the necessary desaturases in P. rockii that are responsible for not only increasing oil content but also modulating 18:2/18:3 ratio in seeds. Together, these results will aid to improve essential fatty acid content in seeds of tree peonies and other crops of agronomic interest

    Grapes and Wine

    Get PDF
    Grape and Wine is a collective book composed of 18 chapters that address different issues related to the technological and biotechnological management of vineyards and winemaking. It focuses on recent advances, hot topics and recurrent problems in the wine industry and aims to be helpful for the wine sector. Topics covered include pest control, pesticide management, the use of innovative technologies and biotechnologies such as non-thermal processes, gene editing and use of non-Saccharomyces, the management of instabilities such as protein haze and off-flavors such as light struck or TCAs, the use of big data technologies, and many other key concepts that make this book a powerful reference in grape and wine production. The chapters have been written by experts from universities and research centers of 9 countries, thus representing knowledge, research and know-how of many regions worldwide

    Environmental and developmental regulation of carotenoid metabolism in Arabidopsis leaves

    Get PDF
    The regulation of carotenogenesis during the leaf maturation, before the onset of senescence, remains poorly explored. In this thesis, I demonstrated that young leaves of Arabidopsis, which have a high chloroplast density because of the high density of actively dividing and expanding mesophyll cells, can accumulate nearly 60 % higher amounts of both carotenoids and chlorophylls compared to the older leaves. Analysis of a range of mutants and gene overexpression genotypes revealed that age-related decline in carotenoids in older leaves was not associated with biosynthesis or degradation pathways of carotenoids neither with the developmental phase identities of leaves. I also discovered younger leaves were highly plastic in decreasing the level of both carotenoids and chlorophylls rapidly in response to short-term (24-hours) exposure to darkness, low temperature (7 oC), and norflurazon (a bleaching herbicide) treatment while the elevated level of atmospheric CO2 increased the level of both pigments in younger leaves. The level of carotenoids and chlorophylls was unaffected in older leaves regardless of the perpetual increase in atmospheric CO2 and short-term environmental and norflurazon treatments. Pigment accumulation in younger leaves demonstrated rapid responsiveness to environmental conditions and norflurazon, arguably, due to the higher rate of plastid biogenesis and division in the rapidly dividing and expanding cells. Collectively, the state of chloroplast development and chloroplast density can be the primary determinants of the photosynthetic pigment content in leaves. Young leaves, thus, can provide better in-planta model systems to decipher how developmental and environmental signals affect plastid development, signalling, and carotenoid biosynthesis during Arabidopsis leaf development

    Variation of Soil Structure in the Foot and Toe Slopes of Mt. Vukan, East-central Serbia

    Get PDF
    This paper presents the variation of soil structure along the foot and toe slopes of Mt. Vukan, East-Central Serbia. The analysis of aggregate size distribution and structure indices were conducted by means of soil units, characteristic soil horizons and elevation differences along the study area. Soils of Great Field located at different elevations were found to have significant variation in ASD and soil structure indices. Topsoil horizon of Eutric Cambisols have higher MWD after dry sieving, but at the same time it has the highest variation in MWD after wet sieving, indicating low water stability, which is opposite to the coefficient of aggregability. We share an opinion that change in MWD better depicts soils structure stability to water. The results of correlation analysis indicated that clay content is correlated more to structure indices compared with SOM content. SOM is significantly correlated with ASD and soil structure indices only in Calcomelansols, whereas the significant correlation of clay content and soil structure is more evident in Eutric Cambisols and Non-calcaric Chernozems, compared with other soil units. Soil structure variation along the lowest chain of Catena might be strong, and that it has to be analyzed from the point of view of soil unit and their corresponding soil horizons

    IMPACT OF GRAZING ON SOIL ORGANIC MATTER AND PHYSICAL PROPERTIES OF A FLUVISOL IN NORTWEST SERBIA

    Get PDF
    The effects of long-term (>20 yr) grazing on the selected physical properties of a non carbonated silty-clay Fluvisols were studied in the region of the Kolubara Valley, Northwest Serbia. Two adjacent land-use types (native deciduous forest and natural pasture soils converted from forests for more than 20 years) were chosen for the study. Disturbed and undisturbed soil samples were collected from three sites at each of the two different land-use types from the depths of 0–15, 15–30 and 30–45 cm. In relation to the soil under native forest, soil organic matter content, total porosity and air-filled porosity were significantly reduced after long-term of grazing. The bulk density (0.99–1.48 g cm–3) and the saturated hydraulic conductivity (6.9.10–2–3.2.10–4 cm s–1) were significantly lower in forest compared to the adjacent pasture (ex-forest) soil (1.49–1.55 g cm–3 and 3.4.10–4–5.5.10–4 cm s–1, respectively). In addition, forest had significantly lower dry mean weight diameter (7.0–9.2 mm) and greater wet mean weight diameter (2.0–2.6 mm) for 0–45 cm depth compared with the pasture (8.8–9.4 mm and 1.8–2.3 mm, respectively). The decrease of soil organic matter content and reduction in aggregate stability under long-term grazing rendered the soil more susceptible to compaction. In conclusion, the results of this study indicate that removal of permanent vegetation in the conversion process from forest areas to pasture land may lead to loss of soil productivity and serious soil degradation. Obviously, there is a need for greater attention to developing sustainable land use practices in management of these ecosystems to prevent further degradation of pasture soils in the region
    corecore