76 research outputs found

    Urban mobility data analysis in Montevideo, Uruguay

    Get PDF
    Transportation systems play a major role in modern urban contexts, where citizens are expected to travel in order to engage in social and economic activities. Understanding the interaction between citizens and transportation systems is crucial for policy-makers that aim to improve mobility in a city. Within the novel paradigm of smart cities, modern urban transportation systems incorporate technologies that generate huge volumes of data in real time, which can be processed to extract valuable information about the mobility of citizens. This thesis studies the public transportation system of Montevideo, Uruguay, following an urban data analysis approach. A thorough analysis of the transportation system and its usage is outlined, which combines several sources of urban data. The analyzed data includes the location of each bus of the transportation system as well as every ticket sold using smart cards during 2015, accounting for over 150 GB of raw data. Furthermore, origin-destination matrices, which describe mobility patterns in the city, are generated by processing geolocalized bus ticket sales data. For this purpose, a destination estimation algorithm is implemented following methodologies from the related literature. The computed results are compared to the ndings of a recent mobility survey, where the proposed approach arises as a viable alternative to obtain up-to-date mobility information. Finally, a visualization web application is presented, which allows conveying the aggregated information in an intuitive way to stakeholders

    Decomposing journey time variance on urban rail transit systems

    Get PDF
    In this thesis, automated fare collection (AFC) data are used to analyse and quantify transit journey time service quality on the London Underground metro system. The thesis comprises of three main research areas. The first part focuses on characterising passenger journey time variance through the generation of empirical probability distributions of journey times under regular and incident-affected operating conditions. The distributions are parametrically defined, and practical passenger-oriented performance metrics are proposed based on the moments of the distributions. The second area of research involves decomposing total passenger journey times recorded by the AFC data into sub-components that distinguish between the walking and in-vehicle phases of a passenger journey. To achieve this, a Bayesian assignment algorithm is proposed to allocate individual passengers to individual trains. Total journey times are then decomposed into the constituent components of access, on-train, and egress times. In the third area of research, the degree to which different service supply and demand factors influence journey times is analysed. Semiparametric regression methods are applied to quantify the effect of physical station and route characteristics, operational service supply factors, and passenger demand levels for each journey time component. To quantify the effect of individual passenger characteristics on journey times, passenger-level heterogeneity within each journey time component is analysed. As an extension to the access time model, the influence of train headways on passenger wait times at the origin station is also derived. The main outputs of the thesis are the quantification of journey time performance, and the identification of the key service supply and demand factors that impact journey times. The results can be directly applied by operators to guide where potential interventions should be made in order to improve the reliability of journey times for urban rail transit networks.Open Acces

    Disruption analytics in urban metro systems with large-scale automated data

    Get PDF
    Urban metro systems are frequently affected by disruptions such as infrastructure malfunctions, rolling stock breakdowns and accidents. Such disruptions give rise to delays, congestion and inconvenience for public transport users, which in turn, lead to a wider range of negative impacts on the social economy and wellbeing. This PhD thesis aims to improve our understanding of disruption impacts and improve the ability of metro operators to detect and manage disruptions by using large-scale automated data. The crucial precondition of any disruption analytics is to have accurate information about the location, occurrence time, duration and propagation of disruptions. In pursuit of this goal, the thesis develops statistical models to detect disruptions via deviations in trains’ headways relative to their regular services. Our method is a unique contribution in the sense that it is based on automated vehicle location data (data-driven) and the probabilistic framework is effective to detect any type of service interruptions, including minor delays that last just a few minutes. As an important research outcome, the thesis delivers novel analyses of the propagation progress of disruptions along metro lines, thus enabling us to distinguish primary and secondary disruptions as well as recovery interventions performed by operators. The other part of the thesis provides new insights for quantifying disruption impacts and measuring metro vulnerability. One of our key messages is that in metro systems there are factors influencing both the occurrence of disruptions and their outcomes. With such confounding factors, we show that causal inference is a powerful tool to estimate unbiased impacts on passenger demand and journey time, which is also capable of quantifying the spatial-temporal propagation of disruption impacts within metro networks. The causal inference approaches are applied to empirical studies based on the Hong Kong Mass Transit Railway (MTR). Our conclusions can assist researchers and practitioners in two applications: (i) the evaluation of metro performance such as service reliability, system vulnerability and resilience, and (ii) the management of future disruptions.Open Acces

    The economics of crowding in urban rail transport

    Get PDF
    Crowding is a major source of inconvenience for public transport users in densely populated metropolitan areas globally, while eliminating crowding requires costly investments. Crowding can be considered as a cornerstone phenomenon of public transport theory, as the interaction between demand and supply side policies. This PhD thesis aims to improve our understanding of the mechanics behind crowding, using microeconomic modelling techniques. From a demand perspective, the crucial precondition of any objective economic analysis is to reliably quantify the inconvenience caused by crowding. In pursuit of this goal, the thesis develops a statistical model to infer the user cost of crowding from metro passengers' route choice decisions. As an important intermediate research outcome, the thesis delivers a novel passenger-to-train assignment algorithm that recovers the network-level crowding pattern of a metro system. Our method is a unique contribution in the sense that it is based on large-scale automated datasets: we use smart card and automated vehicle location data only. The theoretical part of the thesis provides new insights into crowding pricing and capacity optimisation. One of the key messages of the thesis is that crowding in certain time periods and network segments is an unavoidable feature of optimal public transport provision, when demand fluctuates by time and space, but capacity cannot be differentiated between jointly served markets. We show that pricing can be an efficient tool to tackle the deficiency caused by this technological constraint. The thesis devotes special attention to two policy relevant applications: (i) the external cost of seat occupancy, an externality inversely proportional to the density of crowding, and (ii) the inefficiency of unlimited-use travel passes. Our conclusions may assist researchers and practitioners in better understanding the true cost of public transport usage and the related aspects of optimal policy design, including pricing, subsidisation and capacity provision.Open Acces

    Enriching public transportation data using Bayesian methods

    Get PDF

    Automatic data for applied railway management : passenger demand, service quality measurement, and tactical planning on the London Overground Network

    Get PDF
    Thesis (S.M. in Transportation)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering; and, (S.M.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2010.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 201-209).The broad goal of this thesis is to demonstrate the potential positive impacts of applying automatic data to the management and tactical planning of a modern urban railway. Tactical planning is taken here to mean the set of transport-specific analysis and decisions required to manage and improve a railway with time horizons measured in weeks, months, or up to a year and little or no capital investment requirements. This thesis develops and tests methods to (i) estimate on-train loads from automatic measurements of train payload weight, (ii) estimate origin-destination matrices by combining multiple types of automatic data, (iii) study passenger incidence (station arrival) behavior relative to the published timetable, (iv) characterize service quality in terms of the difference between automatically measured passenger journey times and journey times implied by the published timetable. It does so using (i) disaggregate journey records from an entry- and exit-controlled automatic fare collection system, (ii) payload weight measurements from "loadweigh" sensors in train suspension systems, and (iii) aggregate passenger volumes from electronic station gatelines. The methods developed to analyze passenger incidence behavior and service quality using these data sources include new methodologies that facilitate such analysis under a wide variety of service conditions and passenger behaviors. The above methods and data are used to characterize passenger demand and service quality on the rapidly growing, largely circumferential London Overground network in London, England. A case study documents how a tactical planning intervention on the Overground network was influenced by the application of these methods, and evaluates the outcomes of this intervention. The proposed analytical methods are judged to be successful in that they estimate the desired quantities with sufficient accuracy and are found to make a positive contribution to the Overground's tactical planning process. It is concluded that relative measures of service quality such as the one developed here can be used in cross-sectional analysis to inform tactical planning activity. However, such measures are of less utility for longitudinal evaluation of tactical planning interventions when the basis against which service quality is judged (in this case the timetable) is changed. Under such circumstances, absolute measures, such as total observed passenger journey times, should be used as well.by Michael S. Frumin.S.M.S.M.in Transportatio

    Understanding the costs of urban transportation using causal inference methods

    Get PDF
    With urbanisation on the rise, the need to transport the population within cities in an efficient, safe and sustainable manner has increased tremendously. In serving the growing demand for urban travel, one of the key policy question for decision makers is whether to invest more in road infrastructure or in public transportation. As both of these solutions require substantial spending of public money, understanding their costs continues to be a major area of research. This thesis aims to improve our understanding of the technology underlying costs of operation of public and private modes of urban travel and provide new empirical insights using large-scale datasets and application of causal econometric modelling techniques. The thesis provides empirical and theoretical contributions to three different strands in the transportation literature. Firstly, by assessing the relative costs of a group of twenty-four metro systems across the world over the period 2004 to 2016, this thesis models the cost structure of these metros and quantifies the important external sources of cost-efficiency. The main methodological development is to control for confounding from observed and unobserved characteristics of metro operations by application of dynamic panel data methods. Secondly, the thesis provides a quantification of the travel efficiency arising from increasing the provision of road-based urban travel. A crucial pre-condition of this analysis is a reliable characterisation of the technology describing congestion in a road network. In pursuit of this goal, this study develops novel causal econometric models describing vehicular flow-density relationship, both for a highway section and for an urban network, using large-scale traffic detector data and application of non-parametric instrumental variables estimation. Our model is unique as we control for bias from unobserved confounding, for instance, differences in driving behaviour. As an important intermediate research outcome, this thesis also provides a detailed association of the economic theory underlying the link between the flow-density relationship and the corresponding production function for travel in a highway section and in an urban road network. Finally, the influence of density economies in metros is investigated further using large-scale smart card and train location data from the Mass Transit Railway network in Hong Kong. This thesis delivers novel station-based causal econometric models to understand how passenger congestion delays arise in metro networks at higher passenger densities. The model is aimed at providing metro operators with a tool to predict the likely occurrences of a problem in the network well in advance and materialise appropriate control measures to minimise the impact of delays and improve the overall system reliability. The empirical results from this thesis have important implications for appraisal of transportation investment projects.Open Acces

    Dwell Time Modelling and Optimized Simulations for Crowded Rail Transit Lines Based on Train Capacity

    Get PDF
    Understanding the nature of rail transit dwell time has potential benefits for both the users and the operators. Crowded passenger trains cause longer dwell times and may prevent some passengers from boarding the first available train that arrives. Actual dwell time and the process of passenger alighting and boarding are interdependent through the sequence of train stops and propagated delays. A comprehensive and feasible dwell time simulation model was developed and optimized to address the problems associated with scheduled timetables. The paper introduces the factors that affect dwell time in urban rail transit systems, including train headway, the process and number of passengers alighting and boarding the train, and the inability of train doors to properly close the first time because of overcrowded vehicles. Finally, based on a time-driven micro-simulation system, Shanghai rail transit Line 8 is used as an example to quantify the feasibility of scheduled dwell times for different stations, directions of travel and time periods, and a proposed dwell time during peak hours in several crowded stations is presented according to the simulation results

    Dispatching and Rescheduling Tasks and Their Interactions with Travel Demand and the Energy Domain: Models and Algorithms

    Get PDF
    Abstract The paper aims to provide an overview of the key factors to consider when performing reliable modelling of rail services. Given our underlying belief that to build a robust simulation environment a rail service cannot be considered an isolated system, also the connected systems, which influence and, in turn, are influenced by such services, must be properly modelled. For this purpose, an extensive overview of the rail simulation and optimisation models proposed in the literature is first provided. Rail simulation models are classified according to the level of detail implemented (microscopic, mesoscopic and macroscopic), the variables involved (deterministic and stochastic) and the processing techniques adopted (synchronous and asynchronous). By contrast, within rail optimisation models, both planning (timetabling) and management (rescheduling) phases are discussed. The main issues concerning the interaction of rail services with travel demand flows and the energy domain are also described. Finally, in an attempt to provide a comprehensive framework an overview of the main metaheuristic resolution techniques used in the planning and management phases is shown
    corecore