185 research outputs found

    A Survey on Aerial Swarm Robotics

    Get PDF
    The use of aerial swarms to solve real-world problems has been increasing steadily, accompanied by falling prices and improving performance of communication, sensing, and processing hardware. The commoditization of hardware has reduced unit costs, thereby lowering the barriers to entry to the field of aerial swarm robotics. A key enabling technology for swarms is the family of algorithms that allow the individual members of the swarm to communicate and allocate tasks amongst themselves, plan their trajectories, and coordinate their flight in such a way that the overall objectives of the swarm are achieved efficiently. These algorithms, often organized in a hierarchical fashion, endow the swarm with autonomy at every level, and the role of a human operator can be reduced, in principle, to interactions at a higher level without direct intervention. This technology depends on the clever and innovative application of theoretical tools from control and estimation. This paper reviews the state of the art of these theoretical tools, specifically focusing on how they have been developed for, and applied to, aerial swarms. Aerial swarms differ from swarms of ground-based vehicles in two respects: they operate in a three-dimensional space and the dynamics of individual vehicles adds an extra layer of complexity. We review dynamic modeling and conditions for stability and controllability that are essential in order to achieve cooperative flight and distributed sensing. The main sections of this paper focus on major results covering trajectory generation, task allocation, adversarial control, distributed sensing, monitoring, and mapping. Wherever possible, we indicate how the physics and subsystem technologies of aerial robots are brought to bear on these individual areas

    Formation Control of Nonholonomic Multi-Agent Systems

    Get PDF
    This dissertation is concerned with the formation control problem of multiple agents modeled as nonholonomic wheeled mobile robots. Both kinematic and dynamic robot models are considered. Solutions are presented for a class of formation problems that include formation, maneuvering, and flocking. Graph theory and nonlinear systems theory are the key tools used in the design and stability analysis of the proposed control schemes. Simulation and/or experimental results are presented to illustrate the performance of the controllers. In the first part, we present a leader-follower type solution to the formation maneuvering problem. The solution is based on the graph that models the coordination among the robots being a spanning tree. Our control law incorporates two types of position errors: individual tracking errors and coordination errors for leader-follower pairs in the spanning tree. The control ensures that the robots globally acquire a given planar formation while the formation as a whole globally tracks a desired trajectory, both with uniformly ultimately bounded errors. The control law is first designed at the kinematic level and then extended to the dynamic level. In the latter, we consider that parametric uncertainty exists in the equations of motion. These uncertainties are accounted for by employing an adaptive control scheme. In the second part, we design a distance-based control scheme for the flocking of the nonholonomic agents under the assumption that the desired flocking velocity is known to all agents. The control law is designed at the kinematic level and is based on the rigidity properties of the graph modeling the sensing/control interactions among the robots. A simple input transformation is used to facilitate the control design by converting the nonholonomic model into the single-integrator equation. The resulting control ensures exponential convergence to the desired formation while the formation maneuvers according to a desired, time-varying translational velocity. In the third part, we extend the previous flocking control framework to the case where only a subset of the agents know the desired flocking velocity. The resulting controllers include distributed observers to estimate the unknown quantities. The theory of interconnected systems is used to analyze the stability of the observer-controller system

    Design of an UAV swarm

    Get PDF
    This master thesis tries to give an overview on the general aspects involved in the design of an UAV swarm. UAV swarms are continuoulsy gaining popularity amongst researchers and UAV manufacturers, since they allow greater success rates in task accomplishing with reduced times. Appart from this, multiple UAVs cooperating between them opens a new field of missions that can only be carried in this way. All the topics explained within this master thesis will explain all the agents involved in the design of an UAV swarm, from the communication protocols between them, navigation and trajectory analysis and task allocation

    Cooperative control for multi-vehicle swarms

    Get PDF
    The cooperative control of large-scale multi-agent systems has gained a significant interest in recent years from the robotics and control communities for multi-vehicle control. One motivator for the growing interest is the application of spatially and temporally distributed multiple unmanned aerial vehicle (UAV) systems for distributed sensing and collaborative operations. In this research, the multi-vehicle control problem is addressed using a decentralised control system. The work aims to provide a decentralised control framework that synthesises the self-organised and coordinated behaviour of natural swarming systems into cooperative UAV systems. The control system design framework is generalised for application into various other multi-agent systems including cellular robotics, ad-hoc communication networks, and modular smart-structures. The approach involves identifying su itable relationships that describe the behaviour of the UAVs within the swarm and the interactions of these behaviours to produce purposeful high-level actions for system operators. A major focus concerning the research involves the development of suitable analytical tools that decomposes the general swarm behaviours to the local vehicle level. The control problem is approached using two-levels of abstraction; the supervisory level, and the local vehicle level. Geometric control techniques based on differential geometry are used at the supervisory level to reduce the control problem to a small set of permutation and size invariant abstract descriptors. The abstract descriptors provide an open-loop optimal state and control trajectory for the collective swarm and are used to describe the intentions of the vehicles. Decentralised optimal control is implemented at the local vehicle level to synthesise self-organised and cooperative behaviour. A deliberative control scheme is implemented at the local vehicle le vel that demonstrates autonomous, cooperative and optimal behaviour whilst the preserving precision and reliability at the local vehicle level

    Safe navigation and motion coordination control strategies for unmanned aerial vehicles

    Full text link
    Unmanned aerial vehicles (UAVs) have become very popular for many military and civilian applications including in agriculture, construction, mining, environmental monitoring, etc. A desirable feature for UAVs is the ability to navigate and perform tasks autonomously with least human interaction. This is a very challenging problem due to several factors such as the high complexity of UAV applications, operation in harsh environments, limited payload and onboard computing power and highly nonlinear dynamics. Therefore, more research is still needed towards developing advanced reliable control strategies for UAVs to enable safe navigation in unknown and dynamic environments. This problem is even more challenging for multi-UAV systems where it is more efficient to utilize information shared among the networked vehicles. Therefore, the work presented in this thesis contributes towards the state-of-the-art in UAV control for safe autonomous navigation and motion coordination of multi-UAV systems. The first part of this thesis deals with single-UAV systems. Initially, a hybrid navigation framework is developed for autonomous mobile robots using a general 2D nonholonomic unicycle model that can be applied to different types of UAVs, ground vehicles and underwater vehicles considering only lateral motion. Then, the more complex problem of three-dimensional (3D) collision-free navigation in unknown/dynamic environments is addressed. To that end, advanced 3D reactive control strategies are developed adopting the sense-and-avoid paradigm to produce quick reactions around obstacles. A special case of navigation in 3D unknown confined environments (i.e. tunnel-like) is also addressed. General 3D kinematic models are considered in the design which makes these methods applicable to different UAV types in addition to underwater vehicles. Moreover, different implementation methods for these strategies with quadrotor-type UAVs are also investigated considering UAV dynamics in the control design. Practical experiments and simulations were carried out to analyze the performance of the developed methods. The second part of this thesis addresses safe navigation for multi-UAV systems. Distributed motion coordination methods of multi-UAV systems for flocking and 3D area coverage are developed. These methods offer good computational cost for large-scale systems. Simulations were performed to verify the performance of these methods considering systems with different sizes

    Distributed Control for Collective Behaviour in Micro-unmanned Aerial Vehicles

    Get PDF
    Full version unavailable due to 3rd party copyright restrictions.The work presented herein focuses on the design of distributed autonomous controllers for collective behaviour of Micro-unmanned Aerial Vehicles (MAVs). Two alternative approaches to this topic are introduced: one based upon the Evolutionary Robotics (ER) paradigm, the other one upon flocking principles. Three computer simulators have been developed in order to carry out the required experiments, all of them having their focus on the modelling of fixed-wing aircraft flight dynamics. The employment of fixed-wing aircraft rather than the omni-directional robots typically employed in collective robotics significantly increases the complexity of the challenges that an autonomous controller has to face. This is mostly due to the strict motion constraints associated with fixed-wing platforms, that require a high degree of accuracy by the controller. Concerning the ER approach, the experimental setups elaborated have resulted in controllers that have been evolved in simulation with the following capabilities: (1) navigation across unknown environments, (2) obstacle avoidance, (3) tracking of a moving target, and (4) execution of cooperative and coordinated behaviours based on implicit communication strategies. The design methodology based upon flocking principles has involved tests on computer simulations and subsequent experimentation on real-world robotic platforms. A customised implementation of Reynolds’ flocking algorithm has been developed and successfully validated through flight tests performed with the swinglet MAV. It has been notably demonstrated how the Evolutionary Robotics approach could be successfully extended to the domain of fixed-wing aerial robotics, which has never received a great deal of attention in the past. The investigations performed have also shown that complex and real physics-based computer simulators are not a compulsory requirement when approaching the domain of aerial robotics, as long as proper autopilot systems (taking care of the ”reality gap” issue) are used on the real robots.EOARD (European Office of Aerospace Research & Development), euCognitio

    Spatial Formation Control

    Get PDF
    In this thesis, we study robust spatial formation control from several aspects. First, we study robust adaptive attitude synchronization for a network of rigid body agents using various attitude error functions defined on SO(3). Our results are particularly useful for networks with large initial attitude difference. We devise an adaptive geometric approach to cope with situations where the inertia matrices are not available for measurement. We use the Frobenius norm as a measure for the difference between the actual values of inertia matrices and their estimated values, to construct the individual adaptive laws of the agents. Compared to the previous methods for synchronization on SO(3) such as those which are based on quaternions, our proposed approach does not contain any attitude representation ambiguity. As the final part of our studies from the attitude synchronization aspect, we analyze robustness to external disturbances and unmodeled dynamics, and propose a method to attenuate such effects. Simulation results illustrate the effectiveness of the proposed approach. In the next part of the thesis, we study the distributed localization of the extremum point of unknown quadratic functions representing various physical or artificial signal potential fields. It is assumed that the value of such functions can be measured at each instant. Using high pass filtering of the measured signals, a linear parametric model is obtained for system identification. For design purposes, we add a consensus term to modify the identification subsystem. Next, we analyze the exponential convergence of the proposed estimation scheme using algebraic graph theory. In addition, we derive a distributed identifiability condition and use it for the construction of distributed extremum seeking control laws. In particular, we show that for a network of connected agents, if each agent contains a portion of the dithering signals, it is still possible to drive the system states to the extremum point provided that the distributed identifiability condition is satisfied. In the final part of this research, several robust control problems for general linear time invariant multi-agent systems are studied. We consider the robust consensus problem in the presence of unknown Lipschitz nonlinearities and polytopic uncertainties in the model of each agent. Next, this problem is solved in the presence of external disturbances. A set of control laws is proposed for the network to attain the consensus task and under the zero initial condition, achieves the desired H-infinity performance. We show that by implementing the modified versions of these control laws, it is possible to perform two-time scales formation control

    Recent Advances in Multi Robot Systems

    Get PDF
    To design a team of robots which is able to perform given tasks is a great concern of many members of robotics community. There are many problems left to be solved in order to have the fully functional robot team. Robotics community is trying hard to solve such problems (navigation, task allocation, communication, adaptation, control, ...). This book represents the contributions of the top researchers in this field and will serve as a valuable tool for professionals in this interdisciplinary field. It is focused on the challenging issues of team architectures, vehicle learning and adaptation, heterogeneous group control and cooperation, task selection, dynamic autonomy, mixed initiative, and human and robot team interaction. The book consists of 16 chapters introducing both basic research and advanced developments. Topics covered include kinematics, dynamic analysis, accuracy, optimization design, modelling, simulation and control of multi robot systems

    Mobile Robots

    Get PDF
    The objective of this book is to cover advances of mobile robotics and related technologies applied for multi robot systems' design and development. Design of control system is a complex issue, requiring the application of information technologies to link the robots into a single network. Human robot interface becomes a demanding task, especially when we try to use sophisticated methods for brain signal processing. Generated electrophysiological signals can be used to command different devices, such as cars, wheelchair or even video games. A number of developments in navigation and path planning, including parallel programming, can be observed. Cooperative path planning, formation control of multi robotic agents, communication and distance measurement between agents are shown. Training of the mobile robot operators is very difficult task also because of several factors related to different task execution. The presented improvement is related to environment model generation based on autonomous mobile robot observations

    Outdoor operations of multiple quadrotors in windy environment

    Get PDF
    Coordinated multiple small unmanned aerial vehicles (sUAVs) offer several advantages over a single sUAV platform. These advantages include improved task efficiency, reduced task completion time, improved fault tolerance, and higher task flexibility. However, their deployment in an outdoor environment is challenging due to the presence of wind gusts. The coordinated motion of a multi-sUAV system in the presence of wind disturbances is a challenging problem when considering collision avoidance (safety), scalability, and communication connectivity. Performing wind-agnostic motion planning for sUAVs may produce a sizeable cross-track error if the wind on the planned route leads to actuator saturation. In a multi-sUAV system, each sUAV has to locally counter the wind disturbance while maintaining the safety of the system. Such continuous manipulation of the control effort for multiple sUAVs under uncertain environmental conditions is computationally taxing and can lead to reduced efficiency and safety concerns. Additionally, modern day sUAV systems are susceptible to cyberattacks due to their use of commercial wireless communication infrastructure. This dissertation aims to address these multi-faceted challenges related to the operation of outdoor rotor-based multi-sUAV systems. A comprehensive review of four representative techniques to measure and estimate wind speed and direction using rotor-based sUAVs is discussed. After developing a clear understanding of the role wind gusts play in quadrotor motion, two decentralized motion planners for a multi-quadrotor system are implemented and experimentally evaluated in the presence of wind disturbances. The first planner is rooted in the reinforcement learning (RL) technique of state-action-reward-state-action (SARSA) to provide generalized path plans in the presence of wind disturbances. While this planner provides feasible trajectories for the quadrotors, it does not provide guarantees of collision avoidance. The second planner implements a receding horizon (RH) mixed-integer nonlinear programming (MINLP) model that is integrated with control barrier functions (CBFs) to guarantee collision-free transit of the multiple quadrotors in the presence of wind disturbances. Finally, a novel communication protocol using Ethereum blockchain-based smart contracts is presented to address the challenge of secure wireless communication. The U.S. sUAV market is expected to be worth $92 Billion by 2030. The Association for Unmanned Vehicle Systems International (AUVSI) noted in its seminal economic report that UAVs would be responsible for creating 100,000 jobs by 2025 in the U.S. The rapid proliferation of drone technology in various applications has led to an increasing need for professionals skilled in sUAV piloting, designing, fabricating, repairing, and programming. Engineering educators have recognized this demand for certified sUAV professionals. This dissertation aims to address this growing sUAV-market need by evaluating two active learning-based instructional approaches designed for undergraduate sUAV education. The two approaches leverages the interactive-constructive-active-passive (ICAP) framework of engagement and explores the use of Competition based Learning (CBL) and Project based Learning (PBL). The CBL approach is implemented through a drone building and piloting competition that featured 97 students from undergraduate and graduate programs at NJIT. The competition focused on 1) drone assembly, testing, and validation using commercial off-the-shelf (COTS) parts, 2) simulation of drone flight missions, and 3) manual and semi-autonomous drone piloting were implemented. The effective student learning experience from this competition served as the basis of a new undergraduate course on drone science fundamentals at NJIT. This undergraduate course focused on the three foundational pillars of drone careers: 1) drone programming using Python, 2) designing and fabricating drones using Computer-Aided Design (CAD) and rapid prototyping, and 3) the US Federal Aviation Administration (FAA) Part 107 Commercial small Unmanned Aerial Vehicles (sUAVs) pilot test. Multiple assessment methods are applied to examine the students’ gains in sUAV skills and knowledge and student attitudes towards an active learning-based approach for sUAV education. The use of active learning techniques to address these challenges lead to meaningful student engagement and positive gains in the learning outcomes as indicated by quantitative and qualitative assessments
    • …
    corecore