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Abstract

The cooperative control of large-scale multi-agent systems has gained a significant interest in
recent years from the robotics and control communities for multi-vehicle control. One
motivator for the growing interest is the application of spatially and temporally distributed
multiple unmanned aerial vehicle (UAV) systems for distributed sensing and collaborative
operations. In this research, the multi-vehicle control problem is addressed using a
decentralised control system. The work aims to provide a decentralised control framework
that synthesises the self-organised and coordinated behaviour of natural swarming systems
into cooperative UAV systems. The control system design framework is generalised for
application into various other multi-agent systems including cellular robotics, ad-hoc
communication networks, and modular smart-structures. The approach involves identifying
suitable relationships that describe the behaviour of the UAVs within the swarm and the
interactions of these behaviours to produce purposeful high-level actions for system
operators. A major focus concerning the research involves the development of suitable
analytical tools that decomposes the general swarm behaviours to the local vehicle level. The
control problem is approached using two-levels of abstraction; the supervisory level, and the
local vehicle level. Geometric control techniques based on differential geometry are used at
the supervisory level to reduce the control problem to a small set of permutation and size
invariant abstract descriptors. The abstract descriptors provide an open-loop optimal state and
control trajectory for the collective swarm and are used to describe the intentions of the
vehicles. Decentralised optimal control is implemented at the local vehicle level to synthesise
self-organised and cooperative behaviour. A deliberative control scheme is implemented at
the local vehicle level that demonstrates autonomous, cooperative and optimal behaviour

whilst the preserving precision and reliability at the local vehicle level.
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Chapter 1. Introduction and Related Works

The advancements of sensor technologies and small-scale robotics have helped generate a
growing interest in the development of Unmanned Vehicles (UVs) for hazardous and
repetitive missions [1]. In interplanetary exploratory missions, UVs can be used in lieu of
manned vehicles to venture into unknown environments unsustainable for human activity. In
military applications, UVs such as Unmanned Air Vehicles (UAVs) and Unmanned Ground
Vehicles (UGVs) can be used in operations to reduce the risk of life and extend force
capabilities into hostile environments. UVs can also be used in many civilian applications
including crop dusting, search and rescue, and weather reconnaissance.

As a consequence to this growing interest, significant gains have been achieved at
developing complex and more capable unmanned systems. Contrastingly, equivalent progress
has not been made in the area of control. Current methods of control rely on human-in-the-
loop to ensure successful operation of the vehicle. This is often achieved via teleoperation;
where a human operator controls the vehicle through remote control. In highly complex and
capable systems, such as the Global Hawk UAV, a team of 2-3 skilled operators is often
required to control the vehicle and deconflict the information from the various onboard
Sensors.

In recent years, groups of UVs have been proposed for a variety of cooperative tasks,
including distributed sensing, multimodal imaging, object manipulation, and cooperative
attack. Observing the current trend in UV control systems, the number of operators required
to control of a large group of vehicles would increase exponentially. One method to reverse
this system-to-operator ratio is through swarming. Swarming involves the simultaneous
operation of multiple vehicles using simple interaction rules to achieve a purposeful
behaviour. This requires that the individual vehicles possess sufficient autonomy to sense and
react to their environment and cooperate with neighbouring swarm members. By increasing
the autonomy of the individual vehicles, the ability of the supervisory agent to observe and

control each individual in the group reduces. However, predicting the response of the group



and guaranteeing completion of the task becomes difficult as individuals become less reliant
on the supervisory controller.

In this thesis, the problem of controlling a group of vehicles in a leaderless and
decentralised way is addressed. The research aims to develop a systematic approach to
synthesising autonomous cooperative control in a group of vehicles tasked with a group
objective. The problem is addressed from two levels of control. The first level looks at the
individual vehicles and their interactions. The control architecture at the local vehicle level is
treated as decentralised, and group behaviours emerge from the local interactions of the
vehicles in the group. At the second level (the supervisory level) the group of vehicles is
treated as a unified structure. Control at this level is hierarchical, and commands are issued
from a high-level supervisory agent to the group of vehicles. A key enabler to this
implementation strategy is the identification of group abstractions that reduce the control at
the supervisory level to a lower-dimensional manifold preserving the essential features of the
swarm. To ensure that the vehicles’ emergent behaviour is coordinated towards the desired
group objectives, this research aims to investigate the resolution of group objectives into local
vehicle objectives using decentralised optimisation techniques. Based on this discussion, an
extensive review of the literature on multi-agent systems is presented to motivate the
developments presented in this thesis. In Section 1.6, an overview of the thesis is then

provided which introduces the specific problems studied in this research.

1.1. BIOLOGICAL MOTIVATION

The collective behaviour observed in many social insects and animals provides the inspiration
for the development of multi-agent and multi-vehicle systems [2, 3]. Cooperative behaviours
arise in many biological networks; and range from the inter-molecular and inter-cellular
interactions of bacterial swarms [4], to the coordinated motions of complex socially-aware
animal groups [5]. Sociability in these biological species provides benefits to the group
unattainable by individual endeavours. These include anti-predator vigilance, maximal-
foraging, and collective migration. In schools of fish and flocks of birds, individuals
coordinate their motions to travel in large cohesive groups to maximise food reward and
defend against predation [6, 7]. Migratory birds, such as geese, swans, and pelicans, fly in
regular V-shaped formations to maximise drag reduction and range [8-11]. Swarms of
Japanese honeybees (Apis cerana japonica) [12, 13], communities of wild chimpanzees (Pan
troglodytes) [14, 15], and packs of African wild dogs (Lycaon pictus) [16], all exhibit



cooperative and coordinated behaviours that include nest-consensus, group foraging, and
cooperative hunting. These complex cooperative behaviours are achieved through the local
interactions of the individuals and without direction of a group leader. The emergence of
these complex macroscopic behaviours is the result of many simple microscopic behaviours
interacting together towards a common goal [17].

Artificial models for biological swarms have consequently been recognised as a potential
analogy for scientific and engineering applications. These include population-based
optimisation techniques [18, 19], distributed computing, agent-based software, and multi-
vehicle systems. Much work has been invested in the field of mathematical and theoretical
biology to understand the relationship between the individual and the group behaviours of
these biological swarms. The interactions of individuals in a school of fish, was first
investigated by Breder in [20]. Breder promoted the view that individuals in a school of fish
demonstrated a long-range attraction and a short-range repulsion that decayed over increasing
distance. This attractive-repulsive potential model caused individuals to cluster and form
cohesive groups. The swarm behaviour of the flock was the result of the dense interactions of
the relatively simple attraction-repulsion forces of the individuals. Following from Breder’s
model, much work has been done by mathematical biologists to model the emergent
behaviour of swarms using local rules of attraction and repulsion [5, 21-24].

In 1987, Reynolds [25] formalised the concepts of Breder into a set of distributed
behavioural rules describing the observed flock motion of natural systems. Reynolds’
behavioural model (also known as Reynolds’ boids) is summarised by the following three
heuristics:

1. flock centring: attempt to stay close to nearby flockmates;

2. obstacle: avoidance: avoid collisions with neighbouring flockmates; and

3. velocity matching: attempt to match the velocity of neighbouring flockmates.
These have been commonly referred to as cohesion, separation, and alignment respectively.
A mathematical justification for flocking and swarming in social biological systems is
presented in Grinbaum [26]. In [26], evidence is presented suggesting the influence of
cohesion and alignment in flocks of aquatic species for improved foraging in asocial
individuals. In foraging species, individuals randomly sample the environment to search for a
favourable gradient. Based on this hypothesis, an individual would spend more time moving
in the wrong directions than towards the region of a favourable gradient. Schooling and
flocking encourages the migration of individuals towards a favourable gradient through the



cohesion and alignment of neighbours in the flock. Alignment and cohesion in social flocks
and swarms serves to dampen the stochastic effects of individual sampling errors and directs
the migration of individuals to a common direction [26]. This observed behaviour is the
motivation for population-based optimisation techniques such as Particle Swarm
Optimisation (PSO) [19, 27], Simulated Annealing (SA) [28], and Ant Colony Optimisation
(ACO) [18, 29].

Parrish et al. [6] extended the behavioural model introduced in [25] to identify three
parameter groups that quantitatively characterise the individual and group behaviours of the
flock. These include 1) behavioural matching; 2) positional preference; and 3) numerical
preference. Behavioural matching refers to the tendency of individuals to match their
behaviour with neighbouring flockmates. In schools of fish, behavioural matching is
demonstrated by the explicit alignment of individuals in the group [30, 31], whilst positional
preference is used to describe the individuals’ affinity to distribute themselves relative to
each other [6]. The equilibrium of Breder’s attractive-repulsive model is an example of the
preferred position between neighbouring flockmates. Positional preference together with
behavioural matching, quantitatively describe Reynolds’ boids. The distributed and leaderless
nature of the flock’s cooperative task is further influenced by the numerical preference
parameter. The numerical preference describes the subset of flockmates that an individual
interacts with. The cardinality of this subset defines the number of interactions an individual
has and is often referred to as the rule size [6].

The concept of a finite interaction range has received considerable attention in the literature
[32]. In Couzin et al. [33], the limited spatial sensory capabilities of schools of fish and flocks
of birds was simulated using bounded zones of attraction and repulsion. As the parameters of
each zone was varied (including the radius of attraction and repulsion), transitions in the
global behaviour were observed. Patterns included swarms, torus, and parallel group
formations. The results obtained in [33] supported the behaviours demonstrated by schools of
fish. The relationship between the interaction range of the individuals and the expressed
global behaviours, further reinforced the notion of emergence in cooperative systems, and
demonstrated the first evidence of ‘collective memory’ in animal groups. Furthermore, the
relationship between the sensory and communication range of individuals in the group to the
observed behaviour was established.

Recent studies using direct empirical observations by Ballerini et al. [34], suggest that the
finite interactions of natural flocks and swarms is significantly less than the number of



observable neighbours as originally predicted by Couzin et al. [33]. Ballerini et al. concluded
that the interactions of individuals in natural flocks and swarms are bounded by a topological
distance influenced by the cortical elaboration of the visual input rather than a metric distance
bounded by the sensory observation of an individual [34]. Grinbaum et al. [35] further
elaborated on the anomalies observed in schools of fish to produce more accurate empirical
models. Using motion analysis hardware, Grinbaum et al. investigated the aggregate
behaviour of schools of fish (Danio aequipinnatus). Griinbaum et al. identified a behavioural
switch responsible for the expressed collective behaviours in a school of fish. Grinbaum et
al.’s findings further supported Couzin et al.’s flock model. Griinbaum et al.’s strategy
assumes that individuals in the swarm perform a biased random walk in a periodic domain
with dynamics influenced by the behaviours and positions of its neighbours. This behavioural
matching and positional preference improves the ability of individuals to taxi adverse
gradients in noisy environments, and further support the causal relationship between the local
interactions of the neighbouring flockmates and the complex global behaviours of the group.

Understanding the mechanisms of self-organised motions in natural flocks and swarms
provides innovative ideas for developing distributed cooperative control systems. In reality,
the study of individual interactions in natural flocks and swarms is inherently difficult to
approach experimentally. For example, in a plague of African migratory locusts (Locusta
migratoria migratorioides), individuals demonstrate an ostensibly random and chaotic
motion. The precise motion of these individuals is not completely understood. Studies have
shown that these highly non-linear motions transpire through the multiple simultaneous
interactions of the individuals [36]. Despite these seemingly chaotic motions, the collective
group demonstrates a cohesive ‘rolling” migratory pattern [37].

The large-scale and ‘chaotic’ behaviour of these individuals makes it difficult to create
accurate models for biological swarms using purely local effects. Traditional approaches rely
on Partial Differential Equations (PDE) to approximate the local density of individuals and
preserve the group’s collective behaviour. In [37], Edelstein-Keshet et al. model the
migration of African locusts using a travelling wave solution. Many attempts have been made
to model phenomena such as invasions using travelling wave solutions [38-40]; however, few
have provided a realistic representation of biological groups with a finite population. The
results of [37], suggests that cohesive and compact swarms such as locusts, cannot be
modelled using traditional travelling wave solutions. More recently, Mogilner and Edelstein-
Keshet [41], and Topaz and Bertozzi [42] consider non-local interactions on the swarm using



integro-differential advection-diffusion equations. The resulting continuum models produce
coherent band-like structures. However, these models remain an approximation to the exact
behaviour of individuals at best.

A recent body of work considers general particle-based models for self-propelled organisms
as an alternative to understanding the construction and movement of coherent swarm
structures using finite continuum models [43-45]. Viscek et al. [43] propose a simple swarm
model based on particle dynamics that simulate Reynolds’ boids. In Viscek et al.’s model,
each particle is bounded by a unit circle representative of the interaction range. The particles
are driven by discrete-time dynamics with absolute velocities. At each time step, each particle
updates its direction based on the average direction of motion of its neighbouring particles.
Viscek et al. showed that by using this nearest neighbour rule, the particle demonstrated
Reynolds’ rules and reached consensus on a common orientation. Jadbabaie et al. [46]
extended the work of Viscek et al. to provide a formal treatment on the alignment problem of
the particles. Similar to the work of Viscek et al., Gazi and Passino [47, 48] proposed a
simple isotropic swarm model using the attraction-repulsion rules of Breder [20]. Stability
analysis of these swarms was given in [49-51]. Using these attraction-repulsion rules, Gazi
and Passino showed that the isotropic model demonstrated the basic features of aggregation,
cohesion, and separation as identified by Reynolds. Similar studies were conducted using
anisotropic swarms in [22, 52, 53] to demonstrate Reynolds’ boids.

The literature on natural flocks and swarms provides the inspiration for the development of
distributed artificial systems. The modelling issues and the behavioural synthesis for these
systems, provides an insight into the developmental considerations for synthetic multi-agent
systems. In the following section, a review of some of the design engineering motivations for
multi-agent systems is discussed before a formal treatment on the technical aspects of the

design considerations is given.

1.2. ENGINEERING MOTIVATION

Motivation for multi-agent cooperative control systems comes from a variety of applications;
ranging from Distributed Artificial Intelligence (DAI) [54], to formation flying [55-59], and
cooperative spacecraft operations [60-67]. Advancements in small-scale technologies such as
compact and efficient processors, cameras, and wireless technologies, have also made it
possible to develop smaller, inexpensive unmanned technologies for cooperative applications.

The cooperative control of unmanned technologies, such as Unmanned Aerial Vehicles



(UAVs) [68, 69] is of great interest and utility to military [1, 70] and civilian applications
[71]. These include cooperative target tracking [72-79], coordinated and synchronised attacks
[80-87], distributed intelligence, surveillance, and reconnaissance [88-99], synchronous
payload delivery and manipulation [100-104], urban tomography [105], and chemical cloud
detection [106].

Advantages of using groups of autonomous vehicles to perform coordinated activities have
been discussed extensively in the literature [107-109]. These include enhanced task
performance, reduced cost, increased system reliability and robustness, inherent distribution
of resources, and system re-configurability. Applications such as surveillance and
reconnaissance benefit from the distribution of tasks. Using multiple coordinated sensory
assets distributed over a large area drastically reduces the time to survey a region of interest.
In applications such as the Separated Spacecraft Interferometry (SSI) program [110], imaging
and astrometry is distributed over a network of space interferometers to enhance the
resolution of the imaging task and permit the reconfiguration of the imaging topology.
Multiple vehicle systems naturally admit the distribution of tasks and resources over multiple
platforms, making the cooperative control strategy ideal for distributed or complex problems.

As a consequence to this growing interest, research on cooperative control has increased
over the past decade. Major areas of research for multi-vehicle applications include pattern
formation [55, 57, 59, 64, 111-124], flocking and self-assembly [32, 125-130], deployment
and task allocation [131-135], and vehicle routing [136]. The planning and control of multi-
vehicle systems consist of many sub-problems related to network control design. These
include convergence and consensus protocols [137, 138], asynchronous distributed control
algorithms [139-141], collective behaviour of flocks and swarms [142, 143], algebraic
connectivity of complex networks [144, 145], dynamic graphs [146-148], and optimisation-
based cooperative control [144, 145]. The design of multi-vehicle systems poses significant
theoretical and practical challenges. In the remainder of this chapter, several of the sub-

problems associated with multi-vehicle control systems are discussed.

1.3. INFORMATION FLOW

Vehicles in a shared environment depend on information to accomplish goals, avoid conflicts,
and share resources [149]. Individuals in a group can collect information about their
environment, and neighbouring vehicles either through direct sensory observations, or

through direct and indirect communication strategies. The limited range and resolution of the



physical sensors bounds the information available to an individual through direct sensory
observation [150]. In non-omnidirectional sensors, additional limitations arise from the
directivity patterns of the physical sensor. These include the conic field of view of a camera,
the radiation patterns of an antenna [151, 152], or the directivity of an optical range finger.

The bounded information flow induced by the sensory observations, restrict the information
accessible by an individual. Thus, no vehicle will have the capacity to observe the entire
group and have access to global information. By facilitating communication between
individuals, vehicles can improve their perspective, and their ability to achieve tasks and
resolve conflicts. Inter-vehicle communication is achieved through explicit and implicit
communication strategies. Explicit communication strategies involve the deliberate act of
transmitting and receiving information, either through dedicated peer-to-peer communication
channels, or through broadcast-type signalling [153]. The decision to use peer-to-peer over
broadcast-type strategies is dependent on several design and implementation factors. Peer-to-
peer communication strategies are generally suited for applications where broadcast over
large distances is limited by power constraints, such as in SSI; or in applications where the
vulnerability of the broadcasted signal can compromise the integrity and security of the
system. These include cooperative UAVs [154, 155], and internet agents. In intelligent
highways and anti-collision systems [156, 157], the precision and directivity of peer-to-peer
communication strategies ensures that information flow is consistent through the network
with minimal degradation and corruption.

In applications where transmission and computational constraints are relaxed, or the
communication network is dynamic and possibly ad-hoc (such as multi-vehicle systems and
wireless internet connections), broadcast provides the most flexible approach to dynamic
connectivity. Broadcast allows vehicles to wirelessly transmit information continuously or
discretely to other vehicles over a wireless medium within a bounded proximity — irrespective
of the number of vehicles in the transmission range. This makes broadcast-type strategies
suitable for scalable decentralised control strategies. Drawbacks of this approach include the
significant power required to transmit information over large distances with minimal
degradation; the vulnerability of the signal to corruption, interference, and hijacking; and the
complexity of the signal processor to filter and deconflict the possible simultaneous arrival of
information from neighbouring communication networks.

Implicit communication, as opposed to explicit communication, involves the indirect

transmission of information through the manipulation of the environment (stigmergy) or



through elaborations of direct sensory observations. Implicit communication strategies based
on elaborations of direct sensory input, requires the maintenance of an internal model to
extrapolate and predict the states of other vehicles in the environment. Examples include
[158, 159] where communication-free cooperation is facilitated through vision-based sensing
and inter-agent modelling. In [160], Otanez and Campbell developed a model by discretizing
the continuous-states of a lead UAV into a set of identifiable behaviours using a hybrid
automaton. The hybrid automaton provided a model to a secondary UAV to predict the
behaviour of the lead vehicle from sensory observations on the continuous-state. By
predicting the behaviour of the lead UAV, the secondary UAV could determine the feasibility
and utility of engaging in a cooperative task (such as interferometric imaging) to improve the
collective strategy of the group. Collective behaviours using this kind of interaction include
flocking and pattern formation.

Approaches based on stigmergy have also been found in the literature for the cooperative
control of UAVs [161, 162]. Parunak and Brueckner propose a model of pheromone-based
coordination for decentralised multi-agent systems in [163]. In [164, 165], the authors
extended the previous work to develop a simulation using multiple synthetic pheromones for
navigation and spatial coordination of multiple swarming vehicles. In this strategy, vehicles
deposit digital pheromones in the environment that signal to neighbouring vehicles the
presence of threats or the direction of goals. This enabled the vehicles to indirectly
communicate with each other through the environment. It should be noted however, in
Parunak and Brueckner’s model, the swarm agents do not physically deposit a chemical
signal or engage in any direct inter-vehicle communication. Instead, the environment in
which they reside and deposit digital pheromones, are maintained on a world map accessible
through a set of place agents. Access to the world map is achieved through direct
communication with the place agents. Therefore, the scheme is not a physical realisation of
the stigmergic process and relies on conventional communication strategies. Despite the
practical shortcomings of their approach, Parunak and Brueckner demonstrated the
emergence of complex behaviour through implicit coordination [2]. In the following section,
the various architectures that facilitate cooperative behaviour are discussed.

1.3.1. ARCHITECTURES

Physical and computational restrictions limit an individual’s ability to use and transmit global

information. The lack of global information means that individuals in a group lack the global



perspective to solve a centralised control problem using complete information. Ideally, some
form of distribution (or decentralisation) should be observed; either through control
delegation, or information flow. The flow of information through the group, and the control
relations that define the interactions of the individuals, provides the notion of a group
architecture [166] (or group organisation [107]). When the information is processed through
a common central facility or decision maker, the group architecture is centralised. In this
cooperative scheme, a centralised node manages the operation of the whole system. It is
responsible for coordinating the information received by the individual vehicles,
deconflicting individual tasks and resources, and distributing tasks and information to each
vehicle in the group. Consequently, the centralised node must be sufficiently capable to
manage the information and control policies of the entire interconnected group of vehicles.
Centralising the information and control through a common facility, maximises the
perspective of a supervisory agent. This enables the definition of precise and optimal
behaviours for each agent in the group. As a result, centralised architectures have been
applied to many planning problems, such as formation control [57, 131, 167-170],
cooperative conflict-free navigation [77, 170-173], air traffic control [174], task allocation
[131, 175], and vehicle deployment problems [94]. Planning in a centralised architecture
often involves the resolution of a performance function. Path planning problem for a group of
vehicles was addressed by Capozzi and Vagners in [77, 170]. In [77, 170], Capozzi and
Vagners developed an evolution-based planning system that uses the states of each vehicle in
the group to coordinate and generate paths through an environment. The high-dimensionality
of the centralised optimisation problem was handled by a metaheuristic search technique
based on evolutionary programming. A similar approach was used by Doctor et al. in [94]
where a metaheuristic PSO was used to coordinate a group of robots for cooperative search.
In these approaches, the centralised agent used a priori information about the environment to
generate collision-free reference trajectories for the vehicles to track. When the environment
is dynamic or uncertain, feedback to the centralised agent is necessary to re-evaluate plans
and accommodate changes. Environmental uncertainty was addressed by Bellingham et al. in
[172] where the probability of losing a vehicle was considered at the planning stage.
Recently, the centralised path planning problem for a group of vehicles has been
approached by exploiting the symmetric properties of the formation induced by the
configuration of vehicles. In [176], Belta and Kumar propose a centralised trajectory
computation scheme using techniques from differential geometry to ‘shape’ the kinetic

10



energy of the group. Using this approach, the problem was reduced to solving one geodesic

on SE(3) for the centroid of the group, and N orbits in SO(3). By smoothly varying the

kinetic energy metric, the method guaranteed smooth trajectories for the group of vehicles. It
was also shown, that using this formulation, it is also possible to control the spatial adjacency
of vehicles in the group. While this method ensures optimality with respect to the Kinetic
energy of the system, it fails to accommodate for collision avoidance with obstacles in the
environment. Furthermore, the framework proposed in [176] is computationally involved,
and does not scale well with the addition of vehicles in the group.

In an effort to reduce the control effort and improve scalability, Belta and Kumar [167]
introduced a low-dimensional abstract manifold to capture the group’s position, orientation,
and shape with respect to a world frame. Belta and Kumar’s group abstraction is independent
from the number and ordering of vehicles in the group, and is suitable for describing large-
scale swarms. Using this abstraction, controllers can be derived for each vehicle dependent
on the feedback from the centralised agent. This has the practical advantage of reducing the
communication and sensing of the individual vehicles, and reducing the control effort to
trajectory tracking at the local vehicle level. Despite this, the centralised agent still required
the states of each vehicle to evaluate the abstract state and solve the optimisation problem.

An alternative approach to concentrating the load on a single agent is to use intermediate
sets of leaders between the centralised node and the group of vehicles [177, 178]. In this
hybrid control strategy, the centralised problem is decomposed into varying levels of
resolution. At each level, the group of agents control a subset of vehicles in the proceeding
lower level. This approach has been applied to the control of large platoons of UAVs for
cooperative military operations [177], and the search of targets in urban environments [178].
While these hybrid architectures reduce the load on a single agent, they still rely on some
fusion at the intermediate level by a centralised control facility.

Ideally, the distributed nature of the vehicles and information network should be exploited
to localise the information and control to the individual vehicles. In this decentralised
scheme, fusion and control occur locally at each node on the basis of local observations and
communicated information. Distributing the information and control in this way, yields the
following characteristics for a decentralised architecture:

1. no single agent is capable or responsible for the coordination of the group as a whole;

2. there is no global control or common communication facility; and

3. agents do not have access to global information.
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These constraints provide a number of important characteristics for decentralised systems.
By eliminating the dependency on any centralised facility, computational/communication
bottlenecks are removed, and the system as a whole is more tolerant to vehicle faults,
network reconfiguration, and vehicle attrition and extension.

Various decentralised software architectures have been proposed in the literature for
controlling multi-agent and multi-vehicle systems. In [179, 180] a distributed hierarchical
system based on the cellular organisation of biological agents called the CEBOT architecture
was proposed. In the CEBOT architecture, robots are represented by cells in an organisation,
and are capable of dynamically reconfiguring their neighbourhood structure in response to
changes in the environment. The reconfigurability of the CEBOT architecture makes it
suitable for the formation control problem of multi-vehicle networks. A similar architecture
based on cellular robotics is presented in [181]. In [181], the SWARM architecture was
developed for the distributed control of a large number of autonomous robots. Interactions are
strictly nearest-neighbour, and the group behaviour is an emergent property of the
interconnected system. Consequently, the architecture is amenable to complex cooperative
tasks such as assembly, communication, and computing [182]. Heterogeneity in distributed
multi-vehicle systems was addressed using the ACTRESS [183] and ALLIANCE [184, 185]
architectures. The ACTRESS system was used to facilitate cooperation between
heterogenous groups for tasks such as box pushing [186]. In the ALLIANCE system, robots
were able to sense the effects of their own actions and the actions of other robots through
sensory perception and explicit broadcast communications. Unlike ACTRESS, each robot in
the ALLIANCE architecture was designed using a behaviour-based controller that resulted in
a fault tolerant, reliable, and adaptive mechanism for cooperative robot control. These
strategies provided the necessary framework for implementing decentralised control laws for
groups of vehicles, and have been successfully applied in many multi-robotic applications.

In practice, many multi-vehicle systems cannot conform to a strict decentralised dichotomy
[166]. The emergence of behaviour is often poorly understood with context to physical
implementations. It is often unclear on how (or whether it is even possible) to design
decentralised control laws that achieve a desired group objective from simple local control
laws [187]. Many of the proposed decentralised architectures in the literature feature, as part
of their solution, the use of virtual leaders [55, 121, 143, 145, 188-194]. In this approach, a
virtual entity is introduced to the group to provide a stable reference point for group
convergence. This could include a reference trajectory for a formation to track [143, 189,
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191-194], beacons to contain the volumetric space of a spatially distributed group of vehicles
[188], or the shape and formation for a group of vehicles [195-197]. A representative body of
work can be found in [117], where the problem of navigating a group of vehicles is addressed
using virtual agents. In this strategy the path of a virtual leader is calculated and the relative
offset of each vehicle is used to generate its corresponding reference trajectory. Similar to the
approach taken in [117], Fang and Antsaklis [194] use a virtual leader to define the centroid
for a group of vehicles to track. In this approach, the vehicles distribute themselves relative to
the virtual leader using consensus protocols to align their centroid to the trajectory of the
virtual agent. These approaches provide a suitable means to map the vehicle’s configuration
space to the group’s configuration space, and ensure that the decentralised behaviour is
directed towards a common goal. A recent body of work [66] considers the use of
coordination variables (similar to Belta and Kumar) to unify the leader-follower approach
with the purely decentralised strategy. In this unified framework, a coordination variable
describes the desired group state from the observed states of the vehicles. Local control laws
for each vehicle are then constructed using locally sensed information to achieve the desired
coordination variable. The work presented in this thesis follows in similar spirit to the
concepts introduced by this unified architecture. In the next section, the inter-vehicle

relationships in a decentralised architecture are discussed.

1.3.2. INFORMATION FLOW IN DECENTRALISED SYSTEMS

An intuitive approach to capturing the local interactions of vehicles in a group, is to model
this aspect of the information flow using graphs [46, 112, 120, 127, 128, 144, 147, 198-201].
In this approach, the group of vehicles is enumerated by a set of vertices, and interactions
between adjacent vehicles denoted by the existence of an edge. Connectivity of the
underlying graph topology is then specified by the adjacency matrix. In multi-vehicle
systems, the connectivity of the underlying information graph is dependent on the states of
the vehicles and evolves with the motion of the individuals. The spatiotemporal nature of the
information graph is described by a switching network. Work on state-dependent graphs and
switching networks is presented in [146, 148, 201, 202].

In [203], the discussion on state-dependent graphs provided in [202] is extended to
demonstrate the relationship between the edges of a graph and the state of its mobile nodes. A
weight is assigned to each edge of the graph that attenuates with the distance between

adjacent nodes to provide the framework for the evolution of the network. A similar notion to

13



the attenuation of the finite interaction range of physical sensors and communication systems
is considered in [200], where the notion of a spatial adjacency matrix is defined for both the
omni-directional and non-omnidirectional case. Using the spatial adjacency matrix to model
the local interactions of the vehicles, the underlying graph topology for the information flow
is directed, and inter-vehicle relationships are non-commutative.

These methods capture the information flow in a straightforward manner. Recently, the
algebraic properties of graphs have been investigated as a topic of interest for the analysis of
interconnected systems. A parameter of significant interest to the study of information flow in
decentralised systems is the graph Laplacian. It was shown in [204], that the topology of the
interconnected graph for a group of vehicles determines the controllability of the group of
agents. For a group of vehicles using nearest-neighbour rules, controllability is determined by
the spectral properties of the graph Laplacian. In [144, 145], Fax and Murray developed a
Nyquist-like criterion to investigate the effect of the information network on formation
stability. Here, the spectral properties of the graph Laplacian played an important role in
determining the desirable structural properties of the underlying graph topology. Following
the work of Fax and Murray, various authors have also investigated the stability of a
formation by using the spectral properties of the graph Laplacian (see [120, 205-207] for

examples).

14. COOPERATION AND COORDINATION

The distributed nature of the cooperative control problem introduces the potential for
disparities and inconsistencies in the vehicle’s goals, plans, and knowledge [107]. To achieve
coherent problem solving and cooperation in the vehicle’s objectives, vehicles must share a
consistent view and reach a consensus in the shared information; either through goals,
knowledge, or a combination of both. Convergence to a common value is called the
consensus or agreement problem in the literature. Information consensus guarantees that
vehicles sharing information over a time-varying network have a consistent view of

information appropriate for the coordination task.

1.4.1. CONSENSUS ALGORITHMS

A consensus algorithm provides a means by which distributed or decentralised systems can
reach an agreement over shared information [208, 209]. Examples of the information state

can include position, orientation, and shape of a formation [167, 210], the rendezvous time
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for object manipulation and interception tasks [83, 211-213], the directivity of a swarm or
multiple vehicles [46, 64, 214], or the cost of an aggregate function for cooperative decision-
making [215-218]. As a result, consensus algorithms have applications in rendezvous [213,
219-224], formation control [121, 145, 198, 207, 225-227], flocking [56, 126-129, 228-230],
attitude alignment [46, 64], decentralised task assignment [133], and sensor networks [90, 95,
99, 231, 232]. A growing body of work focuses on designing and analysing algorithms that
make individual network agents agree upon the value of some function of their initial states.
These include average-consensus [208, 233], and average max-min consensus [234]. In these
works, the state variables associated to the individual agents do not necessarily correspond to
physical variables, such as spatial coordinates or velocities. Rather, the information state
could be partial solutions to a group objective. Based on the distributed nature of the
information flow, consensus algorithms are designed with localised communication strategies
[235].

The theoretical framework for posing and solving consensus problems for networked
dynamic systems was introduced in [233, 236] by Olfati-Saber and Murray. For continuous
information flow, the information state was modelled using a first-order differential equation
[46, 145, 208, 233, 237, 238]. Based on the connectivity of the network, the state information
of each vehicle was shown to converge to the information state of its neighbours. Work on
discrete-time consensus protocols was also presented in [46, 238, 239] where the information
state of each vehicle was updated by a first-order difference equation. It was shown in [238]
that the information state of each vehicle in the discrete-time consensus protocol was updated
as the weighted average of its current state and the current states of its neighbours.

Recently, the consensus problem has been applied to second-order differential equations
[240, 241]. In [240], the consensus algorithm is extended to double integrator dynamics with
information exchange topologies that switch randomly. Unlike the consensus algorithm for
single integrator dynamics, more stringent conditions are required to guarantee consensus
under switching directed topologies using consensus algorithms with double integrator

dynamics.

1.4.2. CONVERGENCE AND STABILITY OF CONSENSUS ALGORITHMS

In [233], the convergence of a consensus algorithm was shown to be related to the graph
Laplacian and its spectral properties. According to GerSgorin’s disc theorem, all eigenvalues

of the graph Laplacian have non-negative real parts, and the information state converges to
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the kernel of the Laplacian. For a connected graph, the second smallest eigenvalue of the
Graph Laplacian (i.e. the Fiedler eigenvalue [242]) provides a measure of the speed of
convergence for a consensus algorithm [233]. Following the spectral properties of the graph
Laplacian obtained using GerSgorin’s disc theorem, it was shown in [211] that under a time-
invariant information exchange topology, that the information state of each vehicle
asymptotically reaches consensus if and only if the information exchange topology has a
spanning tree. Furthermore, it was shown in [233] that for a strongly connected time-
invariant information exchange topology, that consensus is achieved when the information
state of each vehicle converges to the average value of the initial information state of each
vehicle.

In practice, the information exchange topology for a group of vehicles is time-varying due
to the motion of the vehicles. Consensus on time-varying networks has been studied in the
literature where they are commonly referred to as switching networks [46, 128, 208, 230, 233,
235, 239]. Convergence analysis for a consensus protocol over a switching network is
equivalent to stability analysis for a hybrid system [233]. In this formulation, the information
exchange topology is piecewise constant over finite lengths of time, called the dwell times
[46]. This induces a time-varying graph Laplacian that is piecewise constant over the dwell
times. Proving consensus on a switching network is equivalent to proving convergence of an
infinite product series describing the piecewise constant graph Laplacian. Jadbabaie et al.
[46] uses this result to demonstrate the heading angles of a swarm of vehicles achieves
consensus using nearest-neighbour rules based on Viscek et al.’s model in [43]. Nonlinear
analysis has also been used to study consensus algorithms on switching networks [237, 239].
In these approaches, a set-valued Lyapunov approach is used to consider consensus problems

with time-dependent communication links.

1.5. APPROACHES TO COOPERATIVE CONTROL

Various control strategies for cooperative multi-vehicle systems have been proposed in the
literature using methods based on artificial potential fields, decentralised optimisation, and
virtual structures. Many of these approaches impose certain information architectures, such as
leader-follower [117, 143, 188-190, 192, 193, 243], or symmetric neighbour relations [216,
244, 245]. In the following sections, the various types of controllers used for cooperative
control within the framework of decentralised architectures are discussed.
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1.5.1. OPTIMISATION-BASED APPROACHES

Optimisation-based techniques for control are amenable to the multi-vehicle cooperative
control problem. In this approach, a team objective is formulated using a cost objective
function. When the problem is coupled, the control problem is cooperative and the task
performance depends on the joint locations, roles, and inputs of the vehicles [246]. Solving
the coupled objective function can be achieved through a centralised control architecture.
Vehicle states, roles, and inputs are solved by a central computing facility and transmitted to
the appropriate vehicles. For large-scale multi-vehicle systems, this can be computationally
intractable or impossible based on communication constraints.

Ideally, the problem should be distributed to exploit the distributed nature of the vehicles.
When the cost objective can be decoupled, the problem is distributed. Note, this form must
preserve the original cost objective and some couplings will remain. The distributed control
problem becomes a decomposition of the centralised cost objective to a set of sub-problems
that are then distributed to each vehicle. If the goals are fixed and known at design-time, local
control laws can be designed for each vehicle to solve the sub-problems [187]. In [247], the
problem of generating optimal trajectories for a set of cooperative aircraft is addressed using
a dual decomposition approach to decompose a large computationally intractable problem to
a series of smaller tractable problems. Using this method, various numerical and analytical
techniques can be used to solve the underlying optimisation problem. These include (but not
limited to) mathematical programming techniques such as Mixed-Integer Linear
Programming (MILP) and Nonlinear Mixed-Integer Linear Programming (NMILP) [68, 118,
131, 136, 248-250], intelligent-based metaheuristics such as genetic algorithms and neural
networks [251-253], and geometric control techniques [114, 254, 255].

In some cases, it may be difficult to decompose a centralised global objective to a group of
vehicles. One approach to formulating the problem is to use strictly local goals [187]. Local
goals react to the vehicle’s immediate environment, and solutions to the vehicle sub-problem
are locally optimal. No cooperation is observed since there is no coupling or relationship
between the individual goals. Strictly local control laws are an example of a decentralised
optimisation problem where global functionality is an emergent property of the locally
interacting vehicles. Using the notion of decomposition variables and overlapping constraints,
[216], Inhalhan et al. developde the framework for a decentralised cooperative control of a
group of vehicle. The centralised optimisation problem presented in [216] was described

using the set of local performance function representing the goals of each vehicle. Optimality

17



(from a centralised perspective) for the decentralised system in [216] was shown to be Pareto
optimal.

An intuitive approach to designing control laws for the decentralised strategy is through
Model Predictive Control (MPC) (see [68, 136, 256-259] for applications to multi-aircraft
systems). Distributed model predictive control has been proposed recently as a method for the
coordination of multi-vehicle systems. Previous work on distributed model predictive control
include Jia and Krogh [260], Motee, Jadbabaie, and Sayaar-Rodsaru [261, 262], Keviczky,
Borelli and Balas [263-266], Dunbar and Murray [267-270], Kuwata, Richards,
Schouwenaars and How [256, 271], and B. Johansson, Speranzon, M. Johansson, and K.
Johansson [218]. In Camponogara, Jia and Krogh [272], the subsystems are coupled via
states. Adjacent subsystems are coupled via dynamics and neighbouring subsystem states are
treated as bounded contracting disturbances. An example of such a situation is a group of
vehicles cooperatively converging to a desired formation. In contrast, Dunbar and Murray
[267-270] considered the control of initially dynamically decoupled subsystems and
introduced a coupling between adjacent systems using non-separable cost functions. In
Dunbar and Murray approach, each vehicle communicates their most recent optimal control
policy to neighbouring vehicles to cooperatively stabilize the formation to an equilibrium
state. Stability of the interconnected system is guaranteed through the use of a compatibility
constraint. The compatibility constraint restricts the deviation of transmitted plans from the
executed plans. This introduces a significant degree of conservatism to the centralised
problem and reduces the ability of MPC to recompute new optimal actions based on current
conditions. Relaxing the compatibility constraint allows for greater deviations between
successive plans at the risk of propagated instabilities. This restriction limits the application
of distributed MPC to applications where the environmental conditions do not deviate
significantly between successive sampling periods or where replanning does not interfere
with previous plans.

A decentralised approach to MPC has been proposed in Camponogara, Jia and Krogh [256,
271] where the subsystem dynamics and cost functions are independent and only the states
and inputs variables of neighbouring systems are coupled. The strategy was applied to a
multi-vehicle scenario of linear dynamically decoupled subsystems with coupling constraints.
In this application, vehicles update sequentially (in order), and are subject to linear collision
avoidance constraints. The distributed MPC problem is solved using a mixed integer linear
programming (MILP) approach and neighbours whose update has not occurred in the
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sequence, are viewed as bounded, contracting disturbances (as in Jia and Krogh). Although
this approach is effective for simple problems and aircraft models, this formulation is limited
to linear constraints and objective functions. Recently, Keviczky et al. [263-266], have
formulated a distributed model predictive control where each subsystem optimizes locally for
itself and every neighbour at each update. The stability conditions for the interconnected
system was established in [273] where it was shown that for sufficiency, the rate of
information exchange needed to be increased as the system approached equilibrium. It was
also shown that the performance deteriorates after a critical horizon length and system
instabilities would be observed. While this approach has been shown to demonstrate
appreciable convergence towards a global objective, each subsystem requires a model of
neighbouring subsystems to solve the local optimisation problem at each sampling period.
From a practical perspective, this approach may be limited by the available onboard
computational resources, bandwidth, and knowledge of neighbouring subsystem plants. In
addition, the solutions for neighbouring subsystems are often discarded and provide a
prediction for the behaviour of neighbouring subsystems. It is still possible for neighbouring
vehicles to deviate from this assumed behaviour without the addition of a compatibility
constraint as suggested in [267-270].

152. BEHAVIOUR-BASED AND ARTIFICIAL POTENTIAL  FIELD
TECHNIQUES

In behaviour-based approaches [195], each vehicle has a set of basic motor schemas. Each
schema represents a desired behavioural response to sensory input. Possible motor schemas
include collision avoidance, obstacle avoidance, group migration, and formation seeking
[274, 275]. Often these behaviour-based control techniques are combined with artificial
potential field methods to create simplistic control laws [276, 277].

Potential field techniques for robotic applications were first described by Khatib [278] and
have since been widely used in the mobile robotics community for tasks such as local
navigation and obstacle avoidance [48, 275, 279-281]. In this method, a robot is modelled as
a moving particle inside an artificial potential field generated by superimposing an attractive
potential that pulls the robot to a goal configuration and a repulsive potential that pushes the
robot away from obstacles [275]. Each vector potential represents a schema of the behaviour-
based controller. The negative gradient of the generated global potential field is interpreted as

an artificial force acting on the robot and dictating its motion.
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The direct mapping between the sensory inputs and the actuator outputs provides a highly
reflexive system for mobile path-planning and navigation. Selection of an appropriate
artificial potential field can be difficult due to the emergent nature of the design process. One
method for ensuring that an artificial potential field contains no local extrema is to formulate
it as a harmonic function [282]. Various harmonic functions have been used in the field of
mobile robotics for navigation, including stream functions (from potential flow theory) [282],
Van der Waal forces, Morse functions [125] and Lennard-Jones type potentials [32, 283,
284].

Recently, artificial potential field methods have been extended to group behaviours such as
swarming and flocking [32, 48, 51, 125, 193, 283-286], formation control [123, 287, 288],
and distributed and decentralised sensory networks [95, 231, 289]. In Leonard and Fiorelli
[188, 231], artificial potential fields were constructed in a virtual leader-follower architecture
for formation control. Virtual leaders were used to describe a moving frame of reference that
influenced the behaviour of the neighbouring vehicles (followers). Based on the leader-
follower architecture, a control law using potential functions describing the inter-vehicle
interactions of the followers, and the navigation of leaders was derived.

Each of the vehicles in the swarm move so as to minimise the total artificial potential
energy in the system. By appropriate choice of potential function they are able to show
asymptotic stability of various schooling and flocking behaviours. The framework presented
in [188] allows for a homogenous group invariant to ordering, and size. Using this approach,
Leonard and Fiorelli demonstrated the reactive nature of artificial potential field functions for
flocking and schooling of multiple vehicles.

One of the limitations induced by Leonard and Fiorelli’s control algorithm is the explicit
nature of the communication network. Olfati-Saber [283] extended the work of Leonard and
Fiorelli to include bump functions to truncate the artificial potential field induced by each
agent and localise interactions to adjacent neighbourhoods. The distributed control law
described by Olfati-Saber is used to synthesise flock behaviour. A similar approach using
magnetic fields was proposed by Sigurd and How for collision avoidance in [281]. In [281],
vehicles were modelled using a magnetic dipole to construct an artificial potential field from
the magnetic density decay functions. This allowed the field generated by vehicles to be
measured by neighbouring vehicles using single-axis magnetic sensors placed orthogonal to
the generated field. Based on this measurement, a navigation function could be constructed
from the gradient of the potential field to avoid collisions. [281] provided a novel and
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practical demonstration of artificial potential field theory for the navigation of large groups of
vehicles in a shared environment.

Behaviour-based and artificial potential field approaches are often limited in a fundamental
theoretical understanding of how the complex global behaviour of the interconnected system
emerges from the simple local interactions of the individuals. Often, these approaches rely on
extensive empirical data and experience to design the appropriate control laws that yield the
desired functionality of the system. Problems associated with the use of artificial potential
field methods are attributed to the local minima that arise from the construction of complex
potential environments from the simplistic behaviour-based vector fields. When the scaling
parameters are improperly balanced, unpredictable and sub-optimal results can ensue. For
example, if an attractive potential of a goal location is inadequately scaled with respect to the
repulsive potential of an obstacle, the vehicle may fail to reach the desired destination [275].
The lack of an analytical design guideline limits the practical application of artificial potential

based control systems [275].

1.53. VIRTUAL STRUCTURES AND RIGID BODY FORMULATIONS

Many of multi-vehicle applications have as part of their solution, the ability to collectively
navigate through the environment and maintain geometric compliance to a desired structure.
Using a centralised architecture, the simplest approach involves generating a set of reference
trajectories and control laws for each vehicle in the group [290, 291] to manoeuvre each
vehicle between configurations and avoid collisions [167]. In large-scale systems, the
problem becomes computationally intractable as the size of the group increases.
Communication and computational constraints limit the feedback to a centralised informant
to process and deconflict the information at each sampling period. From a high-level
supervisory perspective, the motion generation/control problem should be reduced to a lower-
dimensional space that captures the behaviour of the group to minimise control effort at the
supervisory level [167]. This is similar in notion to swarming; where the exact behaviours of
the vehicle are of insignificant interest relative to the collective group behaviour.

One approach to reducing the control effort to a lower dimensional space is to model the
group of vehicles as a virtual structure [292]. The concept of virtual structure was introduced
in [292]. In the virtual structures approach, the motion of the group is treated using rigid body
formulations, where each vehicle is represented by a particle in the system. Each particle in

the structure maintains a fixed geometric relationship in the virtual structure [292]. The rigid
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construction of virtual structures is amenable to the modelling of formation graphs [111, 293-
295]. In [296, 297], the rigidity constraints of the virtual structure are relaxed to investigate
the propagation of disturbances on a swarm. The resulting model is based on the concept of
tensegrity structures where the inter-vehicle relationships are modelled using struts and
cables. Using the rigid-body model, the motion-planning problem is reduced to a left-

invariant control system onSE(n), and the individual trajectories are SE(n) orbits [167].
Motion-planning on SE(n) involves the choice of a distance metric (see for example [291,

298]). The necessary conditions for rigid-body motion using distance metrics are derived in

[291]. [113] and [299] extend the generation of optimal trajectories on SE(n) to a formation

of mobile robots using Lyapunov energy-type functions. Examples of such functions include
positive definite convex formation functions [117, 294] and biologically inspired artificial

potential functions [123]. The global minima of such functions exhibit SE(n) symmetry, and

expansion/contraction symmetries. These can be decoupled into group-level motion planning,
and local-vehicle formation-keeping [123].

Virtual structures modelled on formation graphs and tensegrity structures unnecessarily
constrain the problem. Formation graphs require identification and ordering of vehicles,
which makes the overall architecture sensitive to failures, and re-organisation [210]. The
rigidity constraint of the virtual structure approach is relaxed in [167] to control a scalable
group of vehicles. In [167] an abstraction based on Lie groups (position and orientation of the
vehicles) and shape manifolds for the group is presented that reduce the control variable to a
lower dimensional manifold with a product structure. The resulting expression is a
permutation and size invariant state description of the swarm. Decoupled controllers are then
designed for each vehicle using feedback dependent on the current state of each vehicle and
the state of the abstract manifold. [210] extends the work of [167] to address the problem of
controlling a swarm of fully actuated point-like vehicles moving in three dimensions. A nine-
dimensional abstraction for the swarm is used to capture the position and orientation of a
spanning ellipsoid and is invariant to number of vehicles and permutations. The framework
presented in [210] was again dependent on a supervisory agent. Vehicles represented in this
scheme were characterised by simple feedback controllers and were socially incapable of
self-organised or cooperative behaviour. The dependency of vehicles on a supervisory agent
for group feedback limits the use of virtual structures to small-scale vehicle groups, such as

spacecraft and satellite formations [57, 64, 66].
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1.6. CONTRIBUTION AND OUTLINE

The goal of this dissertation is to develop a framework for controlling large groups of
cooperative vehicles using decentralised control strategies. The research builds on the current
body of knowledge to address the deficiency in mapping local interactions to purposeful
group objectives. Traditionally, this problem has been approached either from the bottom-up
or from the top-down. In the bottom-up approach, the local objectives of the vehicles have
been designed using local interaction protocols. Examples of these include the
phenomological models of socio-biological swarms. While these approaches accurately
mimic the local interactions of natural flocks and swarms, there is little understanding of how
or whether these strategies can be applied practically to solve a group objective. Approaching
the control design using a top-down design strategy, involves decomposing a large-scale
global group objective into a series of local subproblems. From a practical perspective, this
approach can provide formal guarantees to the satisfaction of the group objective. Typical
examples of this approach include the distributed and decentralised MPC scheme discussed in
the literature. Despite the recent successes in developing these strategies, it is almost always
implied that the group objective can be decomposed into a set of local objectives (for the
distributed case) or that the local objectives somehow summate to produce the group
objective (for the decentralised case). They also fail to account for the case when the group
objective is intrinsically linked to the network topology. Often, these distributed and
decentralised approaches assume a network topology that describes the interaction of the
subsystems, and a cost function to describe the performance of the interacting subsystems. In
some cases, such as in flocking, the network topology and the cost function are intrinsically
linked together. Performance of the group is affected by their relative network topologies and
the local interaction protocols. In this thesis, the problem of synthesising a group of agents to
self-organise and direct their behaviour towards a common goal is addressed using both local
network protocols and global objective functions. To frame this problem in a familiar and
practical setting, the method is applied to a group of cooperative swarming UAVs. Local
network protocols are represented by the flocking behaviour of neighbouring vehicles, whilst
the group objectives are represented by the state of the collective group. The aim of this work
is to answer the questions of whether and how the global group objectives can be achieved
using purely localised rules of interactions.

This thesis presents the fundamental and theoretical works necessary to consider the

development of a group of cooperative systems. The systematic presentation of these results
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and the developed framework aims to provide practitioners a design approach for cooperative
control systems. The remainder of this thesis is organised as follows. In Chapter 2, the
information flow in a distributed system is investigated. Relevant ideas from the literature on
algebraic graph theory are presented in preparation for the development of distributed control
schemes in later chapters. Problems relating to the distribution of information are addressed,
and a generalised model for the group of vehicles is presented. Consensus algorithms,
consistent with the literature, are derived using properties from algebraic graph theory. The
necessary and sufficient conditions for consensus in a distributed system under fixed and
switching networks are described. A simple closed feedback consensus protocol is presented
that achieves consensus on the coordination variable for a group of cooperative agents. The
results of this chapter provide the theoretical framework for the developments in later
chapters. Numerical simulations are also provided to illustrate the theory.

Chapter 3 presents a flocking protocol based on the generalised information consensus
protocol presented in Chapter 2. The flocking protocol demonstrates consensus in the spatial
distribution vehicles via numerical preference. Potential field functions are constructed to
model the finite interactions of natural flocks and swarms. Using Lennard-Jones type
potentials, stability is proven via Lyapunov arguments. Conditions for the asymptotic
convergence for a group of vehicles to a stable flock configuration are also presented. Group
level abstractions of the converged flock configuration are then discussed. These group level
abstractions provide a low dimensional representation of the group at the supervisory control
level, and permit a scalable approach to representing the shape spanned by the configuration
of vehicles.

Chapter 4 approaches the problem of controlling the large group of vehicles as a unified
structure and defining suitable optimisation problems for group navigation. It follows from
the abstractions demonstrated by the group of vehicles applying the flock protocol and
presents a rigid body construction for the flock configuration. Chapter 4 begins with a brief
introduction of differential geometry. A review of the existence of useful metrics for the
group navigation problem is then presented. The necessary conditions for generating optimal
motions for the collective flock at the supervisory level are then presented. Following the
works of Belta and Kumar in [254], a semi-rigid body model is introduced to consider the
transition of the group of vehicles from an initial configuration to the rigid flock

configuration. A modified metric for the semi-rigid body model of the evolving flock is then
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presented. This provides a path planning method for a subset of vehicles to trace out a shape
spanned by the group to conform to.

The problem of mapping the local interactions of the vehicles described in Chapter 3 to the
group objectives presented in Chapter 4 is addressed in Chapter 5. A cooperative control
scheme based on traditional model predictive control (MPC) is presented. The cooperative
control scheme is implemented by decomposing the group task, to individual optimisation
problems at the individual vehicle level. The decentralised MPC scheme allows the vehicles
to deliberate the influence of their actions on the collective goal at each sampling period.
Using the network exchange topology in Chapter 2, the vehicles exchange their plans at
successive update periods, and negotiate a consensus on the cooperative solution. Sufficient
conditions for convergence to a consensus are presented. The effect of coupling information
is also discussed, and limitations of the implementation scheme are described.

Chapter 6 combines the developments of Chapter 3, Chapter 4, and Chapter 5 to present a
unified framework for controlling a swarm of vehicles. The framework is demonstrated for a
group of vehicles tasked with the cooperative objective of flock convergence in the local
frame, and conformance to the prescribed shape and motions of a supervisory controller. The
experiments validate the proposed framework and its applicability to the cooperative control
problem. A detailed summary of the contributions of this thesis, and extensions for future

research are presented in Chapter 7.
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Chapter 2. Information Exchange and Consensus

In a multi-vehicle system, vehicles depend on information from neighbouring vehicles to
cooperate and avoid conflicts. When the vehicles are coupled by a shared objective, the
coupling naturally suggests what information should be available to each vehicle of the
decentralised controller. Local information can be obtained through direct observation
(sensory perception). Physical sensors, such as GPS and IMU, provide local state information
regarding position, roll rate and bank angles, whilst long-range sensors such as cameras, laser
range finders, and radar can provide non-local information, such as the position of
neighbouring vehicles and obstacles. The accuracy and perspective of the information
available to a vehicle by direct observation or state estimation, is limited by the sensors’
range, resolution, and calibration error. In non-omnidirectional sensors, such as cameras,
antennas, and radar, limitations also arise due to the directivity patterns of the sensor. Peer-to-
peer communication (or communication exchange), can be used to resolve the limitations of
the onboard sensors, and improve the resolution, accuracy and perspective of a vehicle. The
use of communication networks to improve the quality of information is the basis of many
distributed sensory systems and include applications such as Simultaneous Localisation and
Map building (SLAM), and Decentralised Data Fusion (DDF) [300-303].

Central to any discussion on distributed multi-agent and multi-vehicle systems is the nature
of information flow through the communication network. Properties such as the
communication topology, and the propagation of information, impact the performance of the
interconnected system. In a strongly connected and complete network, vehicles exchange
information with every other vehicle in the group, and complete knowledge of the connected
system is propagated to each node. This implies maximal information flow and centralises the
control problem to each node. Whilst this strategy improves the redundancy of the system
and can guarantee optimality, several factors limit the possibility to convey and use global
information for multi-vehicle systems. Firstly, the communication topology of a group of
vehicles is an intrinsic property of the vehicles’ positions. The dynamic nature of the vehicles

implies a dynamic communication topology that switches with accordance to the relative
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position of the vehicles. In a group of vehicles navigating an obstacle field, the information
flow is subject to link failure and creation as neighbouring vehicles negotiate obstacles.
Limitations on hardware capabilities also act to reduce the area that information can be
propagated and shared. These include available bandwidth, corruption of communication
signals over large distances, interference, and transmitting power.

The distributed nature of the information flow naturally implies an inconsistent view of the
entire system. For cooperative control strategies to be effective, neighbouring vehicles must
share a consistent view of the environment. This shared information can take the form of a
cooperative objective, state information, or internal model of the environment. A direct
consequence of this assumption is that the group must reach a consensus on the shared
information.

In this chapter, the consensus problem over spatiotemporal networks is investigated. The
interplay between the communication topology and information consensus is investigated
using methods from algebraic graph theory. For the purposes of generality, the physical
realisation of the communication network is ignored and left for future development. The
main application of these ideas will be the development and analysis of communication
protocols for cooperative control strategies.

The aim of this chapter is to introduce the main concepts of information flow and provide a
cohesive overview of the problems associated to network control design. Similar work can be
found in Jadbabaie et al. [46], Olfati-Saber and Murray [233], Fax and Murray [145], Moreau
[239], and Ren and Beard [208]. The main contribution of this chapter is to unify these
concepts into a single mathematical framework, and highlight some of the important results
from these key research areas that will be instrumental in cooperative control strategies. This
chapter is organised as follows: in Section 2.1, a graph theoretic approach to modelling the
communication network is presented. A consensus protocol based on the sum-of-squares
properties of graphs is then presented in Section 2.2. This is followed by a stability and
performance analysis of the system on a static network. Section 2.3 extends the works to
include spatiotemporal networks (switching networks) before a summary of major results is

presented in Section 2.4.
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2.1. A GRAPH THEORETIC MODEL TO DISTRIBUTED SYSTEMS

In the following section, a brief review of graph theory is presented. Graphs are used to
model the distributed nature of entities and their relations. In a group of vehicles, the
communication network and spatial distribution can be modelled using a graph. The notions
presented in this section provide the theoretical framework for the development and analysis
of distributed systems and control laws used in later chapters. For a thorough analysis of
graphs and their properties, see [304], [305] and [306].

2.1.1. BASIC DEFINITIONS

A graph G is a pair consisting of a set of vertices (or nodes) V ={v,,v,,...,vy}, and a set of
edges E cV xV . In a multi-vehicle system, each vehicle can be modelled as a vertex v, in
the graph G with spatial adjacency and connectivity described by the set of edges
e=(v,,v;) e E. The order V| and size |E| of a graph G physically represents the number of
vertices in the graph and the number of edge connections. Information flow from vehicle v,
to v; is given by the path connecting v; to v; such that (v;,v;) € E. An undirected (or bi-
directional) graph satisfies the following edge relationship V(v;,v;) € E = (v;,v;) € E. Note,
the equivalence relation is not preserved for directed graphs; i.e., the ordering of vertices is

not commutative v(v;,v;) e E=(v;,v;) ¢ E (Figure 2-1 (a)). The spatial distribution of

vehicles in a formation is an example of an undirected graph since the inter-vehicle distances
are commutative. Note, whilst the distribution of vehicles on a Euclidean space is an example
of an undirected graph, the information flow is not necessarily represented by a directed
graph. The directivity patterns of the communication links may restrict the flow of

information in one direction and induce a directed communication graph. Let %, denote the
subset of vertices v; that are neighbours of vertex v; and define the in-degree of a vertex v,
as the total number of edges connecting v; to v; such that (v;,v;)eE and v, e;.
Similarly, define the out-degree of a vertex v; as the total number of edges v; to v; such that
(v;,v;) € E and v; € V;. Then, the degree deg(v;) (or valency) of a vertex v; is the number

of edges incident to v, and corresponds to the total number of its neighbours |9\fi| . Foran
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Figure 2-1. (a) Sample directed graph G on V = {v;, v;} with edge set E = {(v1,v7), (V2,v1), (V2,v7), (V2,V3),...
(V3,Va), (V3,V6), (V6,V5)}. (b) Sample undirected and complete graph G.

2 3 4
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Figure 2-2. A graph with three components {(v1, V, V3), (V3, V4, Vg, Vo), (Vs, Vg)}.

undirected graph, the in-degree and out-degree of a vertex are equal. When every possible
edge exists in a graph, the graph is said to be complete (Figure 2-1 (b)). A graph G is
connected if there is a path in G between any given pair of vertices, and disconnected
otherwise. Every disconnected graph can be split into a number of connected sub-graphs,

called components F (Figure 2-2). The number of components of G is denoted as c(G). A

graph G is strongly connected if there exists a path in G from any given vertex to any other

vertex in G.

2.1.2. ALGEBRAIC GRAPH THEORY

One area of graph theory that is useful for modelling and analysing interconnected systems is
algebraic graph theory. Algebraic graph theory provides a matrix representation to the graph
structures described using set notation in traditional graph theory. In the following section,
the basic concepts of algebraic graph theory are reviewed for the modelling and analysis of
networked systems. For a thorough treatment of algebraic graph theory, see [304-306].
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Figure 2-3. Sample graph G and associated adjacency matrix A.
Let G=(V,E) denote the graph with vertices v, enumerated by i=1...,N. The
connectivity of the graph is described by the square matrix A (known as the adjacency

matrix) with size [\/| , and elements a; describing the connectivity of adjacent vertices v; and

v, such that:

2.1)

a0 - 1 if (vi,vj)eE
" 10, otherwise
An adjacency matrix defined in this way uniquely specifies an enumerated graph. Note that

the adjacency matrix described in Equation (2.1) is discrete. In the proceeding analysis, a
continuous approximation to Equation (2.1) is considered. An example of an adjacency
matrix for a connected graph is given in Figure 2-3.

On a metric space, the adjacency of two vertices can be described using a distance metric.
When the graph is used to describe the spatial distribution of a group of vehicles, the vehicles

reside on a Euclidean space. The Euclidean norm provides a suitable metric to define the
adjacency of neighbouring vehicles on a Euclidean space. Let d; =[x —x;| denote the
Euclidean norm of two vertices, v; and v;, and let r denote a threshold on the interaction
range of vertex v;. Two vertices v; and v; are connected if and only if d; /r<1. Let P
denote the set of continuous locally Lipschitz functions with elements p, : R — R associated
to the edge e; =(v;,v;)e E of graph G. Then a continuous approximation to the step

function in Equation (2.1) is given by the following bump function:

a = p;(d; /1) (2.2)
As an example, the following bump function is considered as a candidate function of the

adjacency matrix:
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1, z€[0,¢)

p;i(2) = CY(2), zele] (2.3)
0, otherwise

where ¢ (0,), and C*(z) is a C* continuous function. A formal definition of the bump
function p;() in Equation (2.3) is given with respect to a vehicle’s sensory and
communication capabilities in Section 3.2.1.

Using Equation (2.1) or Equation (2.2), the neighbours of a vertex v, can be defined using

the following set notation:
N, ={v;eV:q; #0}={v,; eV :(v,v;) e E} (2.4)
Note a,; =0 for all v,, and the graph has no loops, i.e., (i,i)¢ E .

Let A denote the N x N degree matrix defined as A = A(G) ={A;}, where:
deg(v,), i=]
A = g(v;), l J
: 0, i j
The degree provides a measure of the adjacency of vertices in a graph.

(2.5)

Associated with the adjacency and the degree matrices, is the graph Laplacian L. The
Laplacian of a graph is defined as’ [306, 307]:

L=A-A (2.6)
As an example, consider the graph given in Figure 2-3. The Laplacian associated to Figure

2-3 is given by:
(2 -1 -1 0 0 O
0O 1 0 -1 0 0O
L= -1 0 3 -1 -10 27)
0O 0 0 0 0 O
0O 0 0 0 0 O
o 0 -1 -1 0 2

In multi-vehicle systems, this shared information can take the form of an n-dimensional
(n>1) vector. The following n-dimensional graph Laplacian is defined for the generalised
case:

L=L®1, (2.8)
where ® denotes the Kronecker product, and L is a matrix of dimension nN x N .

! In [150] the graph Laplacian was defined as A*(A— A). In general, there is no contention for a proper

definition of the graph Laplacian L. Regardless, the distinction between the various definitions is of little

consequence to the theory.
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By definition, every row sum of the Laplacian matrix is zero. Therefore, the Laplacian

matrix always has a zero eigenvalue 4, =0 corresponding to a right eigenvector:

wo=1=(11...,)" (2.9)
and identical nonzero elements. This means that rank(L) < N —1. Associated with the graph

Laplacian, is the Laplacian potential given by [236]:

Y, = %XT Lx (2.10)

Following the definition of the Laplacian potential, the following lemma summarises some of
the basic properties of graph Laplacians.

Lemma 1. (Undirected Graphs)
Let G = (V, E) with a non-negative adjacency matrix A= A" of order N . Then, the following
properties hold:

1. If Lis a positive semi-definite matrix, then the Laplacian potential is also positive
semi-definite and satisfies the following sum-of-squares (SOS) property:

xTLx:_Zaij(xi -X;)? (2.11)
Note this positive definitenessl’(J)?EL does not necessarily hold for digraphs [233];
2. The graph G has c>1 connected components if and only if rank(L)=N —c.
Particularly, G is connected if and only if rank(L) = N —1;
3. If Gisa connected graph, then:

X" Lx
|2

A, (L) =min
oo X

and ¥, (x)=0 ifand only if x; =x;, Vi,jeN.

(2.12)

Proof.

All three results are well-known in the field of algebraic graph theory and their proofs can be
found in [306] and [304].

Corollary.

If the graph is connected, then the values of all nodes must be equal.

The last remark provides an important result for the definition of a consensus protocol.
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2.2. INFORMATION CONSENSUS IN INFORMATION NETWORKS

In distributed multi-agent systems, cooperating agents must agree on the information that is
exchanged between connected vehicles. Shared information can include state information,
group objectives, and world information. In this section, the agreement or consensus problem
is addressed for an interconnected group of vehicles. For the purposes of generality, the
problem is formalised using a simplified first-order differential model for the information
flow (as in [46, 200, 224]):

X = U, (2.13)
where x, € R, and u, € R is the information state and control of vehicle v, respectively,
Vie N, and N >1. The information state can represent state information such as position,
orientation, velocity, or some other coordination variable representative of the group task. In
Chapter 3, this group coordination variable is described with reference to collective
navigation of a flock of wvehicles. For now, Equation (2.13) is used to represent the

information dynamics for each vehicle v; .

The interaction topology for the network of vehicles is given by the directed graph

G, = (G, x) with concatenated set x = (x,,...,Xy)", xe R", and network topology G . Before

proceeding with the definition of the consensus problem, some definitions introduced in
[233] are re-iterated here:

Definition 1. (agreement)

Two vertices v; and v; connected by an edge (v;,v;)eEv (v;,v;) € E are said to be in
agreement if and only if x; = x; .

Definition 1 provides a formal description of agreement in cooperative agents. In distributed
optimisation problems, the agents share information regarding solution quality to find an
optimal solution to a centralised objective function. Two connected agents are then in

agreement if and only if, the solutions that have been transmitted are identical. The notion of

agreement can then be extended to include the collective graph in the following definition:

Definition 2. (consensus)
The vertices of a network have reached a consensus if and only if x; =x;, Vi,je N, and

i = j;i.e.all vertices are in agreement.
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Following the definition of consensus for the group, Definition 3 describes the common value
for the network.

Definition 3. (group decision variable)

When the vertices of a network have reached a consensus, the common value of all the

vertices is the group decision variable.

The following definition for a subset of vertices in a graph will also provide useful for the
formal definition of the consensus problem.

Definition 4. (cluster)
A cluster is any subset J <V of the vertices of the graph. The proximity graph describing the

neighbourhood %V, of vehicle v; is an example of a cluster. The set of neighbours of a cluster

NV is given by:

Ny=N ={v,eViv,ed,(v,v,) e E} (2.14)

viel

Finally, the consensus problem for a network of cooperative vehicles is now described using
the concepts introduced earlier.

Definition 5. (consensus problem)
Let »:R" — R be a function of N variables. Let x, = x(0) denote the initial state of the
system such that x, = (x,(0),...,%,(0))". The y -consensus problem for a group of N vehicles

is to design a distributed feedback control law:

u; =k (%) (2.15)
dependent on the states of vertex x;, and its neighbours’ current state X., Vj € oV; such that

all vertices asymptotically reach a stable equilibrium x° satisfying x°®= y(x,) and

corresponding to the group decision variable.

The following definition describes the conditions for asymptotic consensus:

Definition 6. (asymptotic consensus)
The set of vertices is said to have reached consensus asymptotically if |, (t) - x;(t)] > 0, as

t—>oo forall je,.
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Table 2-1. Consensus protocols for distributed systems.

() =Ave(x) =+ 3" x average-consensus (2.16)
2(x) = max; (x,) Max-consensus (2.17)
7(X) = min, (x) min-consensus (2.18)

For distributed (and decentralised systems), distributed control laws are of significant utility.
Central to the notion of distributed control laws, is the set of protocols that facilitate their
implementation within the distributed framework. The following definition for a distributed

protocol is provided:

Definition 7. (distributed protocol)

Denote J; ={v; ,...,v; } the cluster of vertices with indices j,,..., j, € N satisfying the

property J; = {i}U %, . Protocol (2.15) is said to be distributed if |J;|<N, VieN.

Following the definition of a distributed protocol, several examples of the y -consensus

problem for distributed problem are presented in Table 2-1.
The average-consensus problem (2.16) is an example of a distributed computational

problem that yields the average group decision variable from a set of initial states x,. In a

group of vehicles or a school of fish, the attitude/velocity alignment problem is an application
of the average-consensus problem [46, 127, 128]. The max-consensus (2.17) and min-
consensus problem (2.18) can be used to describe distributed optimisation problems, where
the group objective is to find the global minimum or maximum of a centralised objective
function respectively [234]. Population based optimisation techniques such as PSO and ACO,
are examples of distributed agents using the max-consensus or min-consensus protocols [18,
19]. Due its relevance and extensive application in the biological and engineering fields, the
remainder of this chapter is dedicated to the analysis of the average-consensus protocol.
While the following analysis and discussion focuses solely on the average-consensus
problem, the concepts introduced in this chapter are sufficiently general to accommodate the
definition of other consensus problems such as the max-consensus and min-consensus

problems.
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2.2.1. THE CONSENSUS PROTOCOL

In multi-vehicle systems, a consensus protocol is necessary to describe the mechanism by
which neighbouring vehicles reach agreement and lead to group consensus. A simple
consensus protocol based on the SOS properties of the interconnected graph G (Equation
(2.11)) and Definition 6, can be defined as follows [233, 308]:

u = j§v.aij (X; — %) (2.19)
Protocol (2.19) provides the closed Iolop dynamics of system (2.13) for time-invariant and
dynamic information using the interconnection topology defined by the adjacency matrix of
the graph G . Note, Protocol (2.19) describes a consensus protocol for a network with zero
communication time-delays. In many real-world multi-vehicle networks, the physical
implementation of communication hardware is plagued with communication lags and limited
bandwidths. This can introduce communication delays and degraded performance. Work on
communication networks with time-delays is currently an area of active research (see [233,
309] for example) and is beyond the scope of this investigation. For the remainder of this
work, it is assumed that the communication is ‘lag-free’. While this assumption limits the
physical realisation of the communication network, the goal of this work is to provide a
generalised theoretical framework for distributed (or decentralised) algorithms, and support
the development of more complex communication systems. In the proceeding section, the

convergence of the consensus protocol is investigated for time-invariant networks.

2.2.2. LYAPUNOV ANALYSIS OF THE CONSENSUS ALGORITHM FOR TIME-
INVARIANT NETWORKS

The consensus protocol described in the previous section defines the mechanism in which a
group of individuals reach a consensus. The convergence of the consensus protocol provides
an insight into the stability of the system, and the nature of the group decision variable. In the
following section, the convergence properties of the consensus protocol are analysed by
treating the graph Laplacian in Equation (2.10) as a candidate Lyapunov function. The
following theorem provides the necessary conditions for asymptotic convergence of the

average-consensus protocol in Equation (2.19):
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Theorem 1. (asymptotic convergence)
Let G be a connected graph. Suppose each vertex v, applies protocol (2.19), then all
vertices of the graph globally asymptotically reach an average-consensus, such that

x® =lim x(t), and x; = x; = Ave(x(0)), Vi, j,i # .

t—>+0

Proof.

The closed-loop dynamics of system (2.13) applying protocol (2.19) evolve according to the

gradient system of the Laplacian potential given by:

X=—-Lx=-V¥(x), x(0)eR™ (2.20)
From Equation (2.20) the group decision variable for an interconnected graph can be

obtained by explicit calculation of exp(—Lt). The equilibrium points of (2.20) correspond to
stationary points of W, (x) and the region outside of these points, the potential is strictly
decreasing with time [237]; i.e., if x®is an equilibrium of Equation (2.20), then Lg®=0.
From Equation (2.10):

Y, (x°) = %(x‘*)T Lx® =0 (2.21)

Following the connectivity of G, X =x;=c, Vi,jeN,, ie. xX*=(c,....c)", ceR and

Zi”:lui =0. Since the Laplacian potential equals zero at equilibrium, then X = Ave(x) is an

invariant quantity, Given the invariance property of Ave(x), then Ave(x®) = Ave(x(0)), and
Ave(x®) =c. This implies x’ = Ave(x(0)), Vie N [236]. In addition, the eigenvalues of — L
are negative in the complex plane, and any solution of the system asymptotically converges to
a point x° in the eigenspace associated with the average-consensus of the network of
vehicles [236]. The proofs and results are well known in the field of algebraic graph theory
and can be found in [304] and [236] and references therein.

From Theorem 1, the average-consensus protocol (2.19) converges to an equilibrium given
by x’ =Ave(x(0)). This implies that the group decision variable (the equilibrium point)
corresponds to the average value of the network of agents under a connected time-invariant

graph topology. This feature is later exploited in Chapter 5 to define a decentralised

optimisation control law for cooperative agents.
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2.2.3. PERFORMANCE OF NETWORK PROTOCOLS

Of significant interest to the design of distributed control laws, is the transient behaviour of
the consensus protocols. In the previous section, formal guarantees on the convergence of the
consensus protocol to a group decision variable were provided. In this section, the effect of
the graph connectivity on the performance of the consensus protocols is investigated.

Define ¢ as the group disagreement vector for a group of agents:

X=Ccl+6 (2.22)
where ¢ =Ave(x), and 6 € R" satisfying Z.N= .0, =0. The disagreement vector represents

the deviation of the group’s state from the group decision variable. The group disagreement
vector evolves according to the group disagreement dynamics given by:

5=-L6 (2.23)
with solution given by:

[6®)] <[5(0)]exp(-41) (2.24)

Theorem 2. (performance of agreement)
The group disagreement vector ¢, as a solution to (2.23), globally asymptotically vanishes
with a speed equal to S =A,(L+ L"/2), i.e., the Fiedler eigenvalue induced by the graph G

with Laplacian L, i.e.

o] <[5 ©)exp-2) (2.25)
Proof.
Let V(5) =2|s] be a valid Lyapunov function for the disagreement dynamics (2.23). Then
from [310]:

VA

00 ot

and from (2.19), the following inequality holds:

el (2.26)

V<—4,(L+L/2)6f =-28v(5) <0 (2.27)

Therefore, &(t) vanishes globally exponentially fast with a speed of gast — +«.
It was shown in [304] that for dense graphs, the Fiedler eigenvalue A, is relatively large,
and for sparsely connected graphs, A, is relatively small. For this reason, Fiedler [242]

termed this eigenvalue the algebraic connectivity of a graph. From Theorem 2, it can be
shown that a network with dense interconnections solves an agreement problem faster than a
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sparsely connected network [233]. In the following example, the average-consensus protocol
is demonstrated for a group of vehicles.

2.24. NUMERICAL EXAMPLE: THE AVERAGE-CONSENSUS PROTOCOL

In this section, the average-consensus protocol (2.19) is applied to a group of 100 agents. The
performance of the protocol is tested on 3 time-invariant network topologies with varying
interconnection topologies. For the purposes of generality and simplicity, it is assumed that
the information resides on a unitary space and evolves according to the following decoupled
linear dynamics:

X (t) = Ax (t) + Bu;(t),

where A {o |} 3 { 0 } (2.28)
0 0 o

The initial distribution is given by x;(0) =i, for i =1,...,20. The graph topologies with their
corresponding information state evolution are shown in Figure 2-4. From Figure 2-4, the
topology given by the complete graph (in which each node is connected to every other node

in the network) demonstrates the fastest convergence (£ =1.0526 ) of the three networks. In

fact, the complete graph converges to the group decision variable 22 times faster than the
k =1 nearest neighbours. It should be noted that the complete graph topology has 9.5
connections more than the k=1 nearest neighbour topology. In general, the complete
interconnection structure is impractical for physical implementation; and is provided here for
comparative purposes.

2.3. INFORMATION CONSENSUS ON DYNAMIC NETWORKS

The analysis so far has been limited to fixed communication topologies. The stability and
performance of a fixed network topology was investigated in the previous section. It was
shown that for a fixed network topology, the connectivity of the nodes influenced the rate of
convergence of the information consensus. In the case of multi-vehicle systems, the
information flow topologies are dynamic. This dynamic topology is time-varying due to the

motions of vehicles in the group, and the subsequent communication link creation and failure.
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Figure 2-4. Undirected interconnection graph for N = 100 with (a) complete connectivity (k = 100), (c) k = 6
connectivity, and (e) k = 2 connectivity. The corresponding state evolution and Fiedler eigenvalue for the
interconnection graphs in (a), (c), and (e) are shown in (b), (d), and (f) respectively.
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For example, information links across adjacent vehicles can be disrupted as neighbouring
individuals bifurcate around obstacles and dissociate from the group. Similarly,
communication links can be created or re-established as vehicles enter the interaction range
of neighbouring vehicles. In terms of the network topology G, edges are added and removed
from the graph over time. In this case, the communication graph is state-dependent. Network
systems with a dynamic topology are commonly referred to as switching networks in the
literature. In the proceeding section, the role of state-dependent graphs on the connectivity of

switching networks is investigated.

2.3.1. DYNAMICS OF THE ADJACENCY MATRIX

To begin the following analysis, consider a group of N vehicles with dynamics given by the
set of first-order differential equations:

X =u (2.29)

TeQ =R"and u, eU, =R"™ is the configuration and control of vehicle v;.

where x; =,

For simplicity, it is also assumed that n=m and the vehicles are fully actuated. The spatial

distribution of wvehicles in the group is described by the concatenated states
q EHiN:lQi =R™. Denote the spatial adjacency of a vehicle using Equation (2.2). A graph

G=(V,E,A) described in such a way defines a spatial graph, and the adjacency of

neighbouring vehicles in the group. If r in Equation (2.2) is the communication range of a
vehicle, then the spatial graph shares a one-to-one correspondence with the information
network.

Suppose vehiclev, applies the consensus protocol given in Equation (2.19):

= Y0 %) 20
JeN;
Then, the connectivity of the graph evolves according to Equation (2.29) and Equation (2.30).

The average-consensus g obtained from Equation (2.30) physically represents a collision of
the vehicles je ;.

Using the definition of the adjacency matrix A presented in Section 2.1.2, the dynamics of

the adjacency matrix can be calculated [148]. Let V a,(x) denote the nN x1 gradient vector

ij
of a;(x) obtained from Equation (2.2) with respect to X, and denote V,A(x) as the N x nN?
matrix:

Vv, AX) = (V,a,(0") (2.31)
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Then:
A(x) = (8;(x) = (V,a; (x)"x) =V AX)(I, ®X) (2.32)
where 1, denotes the N -dimensional identity matrix and ® denotes the Kronecker product.
By substituting the appropriate values from Equation (2.29) and Equation (2.30) into
Equation (2.32) and using the SOS properties of the connected graph, the closed-loop
dynamics of the spatial graph is obtained:

. . 1
40 = (V,2,00 0= 9.3, (0" -2 7400 = ¥,8,00" ' Lx 239
By explicit calculation, the evolution of the adjacency matrix can be determined given an

initial distribution of nodes. Using the notations provided, a dynamic graph G(t) can be
described by the enumerated set of vertices V , and time-varying set of edges E(t) given by
the adjacency matrix dynamics in Equation (2.32); i.e. G(t) = (V, E(t), A(t)) . Note Equation
(2.33) defines an autonomous system of differential equations. In the proceeding section, the

dynamic graph G(t) is parameterised to define a switching network.

2.3.2. SWITCHING NETWORKS

In many multi-vehicle systems, the information network is characterised by a dynamic
topology. The time-varying nature of the information network is attributed to the motion of
the vehicles in the group, reconfiguration of the formation, or the attrition and extension of
vehicles. The effect of the switching networks on the performance of distributed consensus
protocols is of significant interest for the development of distributed and decentralised control
laws. The remainder of this chapter is dedicated to the definition of switching networks, and
the investigation of switching networks on consensus protocols.

Borrowing from the notation in [233], let G denote the dynamic graph G(t)

s(t)

parameterised by a switching signal s(t): R — K with K ={1,...,m}. The discrete-state G,

belongs to the finite collection of graphs given by:

I ={Gs(t) =(V,E,A)} (2.34)
with continuous state x e R™ . A system described in such a way is an example of a hybrid
system [233]. Given protocol (2.19), the continuous-state of the system evolves according to
the following hybrid system dynamics [233]:

x(t) =-L(G, )x(t), k=s(t), G, el (2.35)
By definition, the communication topology is piecewise constant over finite lengths of time,
called the dwell times [46]; and nodes are constrained to change control laws only at discrete
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intervals; i.e., L(t) is piecewise constant with dwell times given by T, =t , —t,,and t,t,,...
are the switching instants [311]. In the case of the cooperative rendezvous problem, the
switching instants are induced when adjacent vehicles enter a new neighbourhood, and the
graph topology is described by an autonomous switching network. One approach to analysing
the stability of the switching network is to investigate the matrix properties of the graph
topologies [311]. Let ®(t,0) denote the state-transition matrix associated to — L(t) and given
as a function of the adjacency matrix dynamics in (2.32). Since the consensus protocol (2.19)
is linear, its solution can be written as [311]:

x(t) = d(t,0)x(0) (2.36)
It was shown in [46] that a switching network with dwell times T, >0 converges to the
average-consensus c of the connected graph, i.e.:

lim®(t,0) - cl (2.37)
and consensus is achieved if

!Ln; exp(—L(t)T,)-exp(-L(t, )T, ,)-...-exp(-L(t,)T,) =cl (2.38)

Furthermore the group disagreement vector 6 (as described in Section (2.2.3)) vanishes

exponentially fast with the least rate of:

5 :min/l{l'; - j (2.39)

Gel
and the system converges to the average-consensus value c. The proof follows in similar
spirit to the proof of Theorem 2 in Section 2.2.3 and can be found in [233]. The results of
[46] and [233] provide an insight into the performance of a switching network under
consensus protocol (2.19). In the proceeding section, the convergence properties of the
consensus protocol (2.19) are demonstrated on a time-varying communication network for a

group of cooperative vehicles.

2.3.3. NUMERICAL EXAMPLE: SWITCHING NETWORK

In the following example, consensus on a switching network is demonstrated for the N -
vehicle cooperative rendezvous problem. The objective of the cooperative rendezvous
problem is to reach a consensus on the goal location of the group of vehicles. Examples of a
spatial goal location include the intercept point of a moving target, such as a missile or
aircraft [83], the centroid of a formation [312], or the interface of two docking spacecraft
[313].
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For simplicity, consider N =10 vehicles with first-order dynamics given by:

g =u, i=1..,N (2.40)
where ¢, =(x,y,)" €Q =R? is the position of vehicle i on the plane Q =R?,
p. = (X,y,)" €TQ, =R? is the corresponding velocity, and u, = (u*,u’)" eU, =R? is its
acceleration inputs. The initial states g;(0) are randomly initialised in the rectangle bounded
by [-10,10]x[-10,10]. A simple PD controller for the cooperative control problem is

constructed using the average-consensus protocol in Equation (2.19):

U, = Zaij (qj _qi) (2-41)

ieN;
where a; is the vector of adjacency elements describing the connectivity of vehicle i to the

subset of neighbours j in the group given by:

_ L i oy —af<r
% '_{0, othejrwise (2.42)

The time-varying nature of the switching network is induced by the time-varying spatial
distribution of the vehicles and evolves according to Equation (2.40) and Equation (2.41).

Figure 2-8 shows the state trajectory of the group of vehicles in R? and the corresponding

rendezvous point. The convergence of the disagreement vector ||5] is shown in Figure 2-7,

where the switching times of the network are indicated by the point markers. From Figure

2-7, consensus is reached asymptotically. Performance of the network is improved as a
function of ﬂz(L(Gk)+ L(Gk)z/z), where G, eI'". Snapshots of G, eT" are given in Figure

2-6. The time-varying nature of the interconnection graph in Equation (2.40) and Equation
(2.41) describes an autonomous hybrid differential-algebraic system. Solving the precise time
at which the interconnection topology of the group switches using analytical methods is
difficult. In fact, solving hybrid differential-algebraic equations is currently an active area of
research [314]; and is beyond the scope of this thesis. While impractical, current methods of
determining switching times are performed through simulation or explicit calculations [315].
Through simulation, the set of graph topologies " for the switching network is determined
and shown in Figure 2-6. The corresponding switch times are provided above the snapshot.
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Figure 2-5. Initial distribution of vehicles in R? and spatially induced communication graph.

Figure 2-5 shows the initial distribution of the vehicles and the initial communication graph
induced by r =10. From Figure 2-5, the initial graph topology is connected (i.e., has only
one connected component). Since the initial graph is connected, the degree of each node
stabilises to N —1 corresponding to the complete graph k" . This occurs at T =1.3955s in
Figure 2-6 (f) and Figure 2-7. This can be demonstrated by considering the motion of two
vehicles in the group. As two vehicles approach each other and reach a consensus on the
rendezvous point, the neighbourhood of each vehicle collides. Consequently, the k-
neighbourhood graph topology becomes a k +n neighbourhood graph, and the valency of the

vehicles in the group increases as the number of neighbours are increased.
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Figure 2-6. Discrete state-evolution of information network and switching times.
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Figure 2-8. Rendezvous problem for N = 10 vehicles.
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2.4. SUMMARY

In this chapter, the main areas of algebraic graph theory have been identified for the
consensus problems. A consensus protocol was developed using the SOS properties of the
graph. Using results from algebraic graph theory, the convergence of the consensus protocol
was demonstrated. The results were extended to time-variant network topologies. It was
demonstrated through simulation that for a time-varying information network, the vehicles
will converge to the average-value of the average-valued consensus protocol. The chapter
presented the various fields of graph theory and network design, to develop a unified
dynamic information network for multi-vehicle systems. The information network developed
in this chapter provides the basis for further developments in later chapters, particularly in
Chapter 5 where a decentralised implementation scheme is developed. In the next chapter, the
information network is used to develop a set of inter-vehicle behaviours for cooperative

flocking.
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Chapter 3. Dynamic Flocks and the Semi-Rigid Body
Model

For purposeful applications of multi-vehicle systems, the cooperative control problem must
be identifiable by a cooperative objective. To achieve the cooperative objective, the group of
vehicles must reach consensus on a coordination variable. In multi-vehicle systems, this
coordination variable is often specified with respect to the spatial distribution of vehicles in
the group. It can include the precise location of the vehicles in the group, or a generalised
group abstraction representative of the collective state of the vehicles. For example, the
coordination variable for a flock of birds flying in V-formation can be represented using a
state vector of position coordinates. The precise location of individuals in the flock is a
suitable abstraction since the low-density of individuals in the flock, and the relatively
coherent motion of the group make it possible to easily recognise the formation of a flock. In
a plague of locusts however, the high-density of the group makes it difficult to identify the
precise position of the individuals in the swarm at any given time. Consequently, abstractions
based on the individual’s states provide an unsuitable coordination variable for these types of
groups. Instead, abstractions based on the collective states provide a more appropriate
coordination variable for large-scale swarms. This could include the boundary or density of
the swarm, or an abstract descriptor such as entropy and energy.

The distinction between the two levels of abstraction, extricates the notion of a swarm-
based task from a formation-based task. Swarm-based tasks are often identifiable by only a
small set of essential features representative of the group’s collective behaviour (group
abstractions); whilst, formation-based tasks, are described by the precise states of the
individual agents. Using the precise states of the individuals as an abstraction provides a
coherent relationship between the individuals, their interactions, and their influence on the
cooperative objective. This makes it possible to optimise the behaviour of the individuals,
and derive formal guarantees on the stability and performance of the system.

While strategies based on the precise states of the individuals can guarantee precision and
optimality, they quickly become intractable as the number of individuals in the group is
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scaled. In a group subject to attrition and extension, the dynamic nature of the population
makes it difficult to define the precise states of the individuals without a centralised feedback
control architecture. Information must continually be exchanged between the supervisory
agent and the group of vehicles to evaluate the effectiveness of the current solution and re-
evaluate plans according to available assets. Limitations on communication, sensory, and
processing hardware makes it difficult to physically realise centralised control architectures.
For example, in cooperative space interferometers, the position of the satellites are optimised
to enhance the imaging

Swarming tasks on the other hand, naturally admit a distributed or decentralised
architecture. The use of group abstractions trivialises the precise behaviour of the individuals.
This makes swarming more robust to attrition and extension. The lack of a centralised
processing facility however, presupposes the notion of autonomy and self-organisation.
Swarms of self-organising vehicles have limited appeal and application in populated areas;
unless the behaviour of the vehicles is guaranteed and observable. The challenge is now to
design control strategies that preserve the scalability properties of swarming tasks and
preserve the precision of formation tasks.

In this chapter, a theoretical framework for flock behaviour is presented. The flock model is
used to model a cooperative objective and demonstrate swarm-based tasks in cooperative
vehicle systems. The purpose of this model is to unify a group of vehicles as a flock, and
develop group abstractions that identify the group as a singular entity. These group
abstractions are then used in later chapters to develop control strategies at the supervisory
level for precision and optimality. The flock algorithm presented in this chapter extends the
work on consensus protocols introduced in the previous chapter to develop an artificial
potential force model for the group of vehicles. The work is inspired by similar approaches in
the field of mathematical biology to describe the behaviour of natural flocks and swarm, and
the work on artificial flocks and swarms by Olfati-Saber in [32]. It aims to extend the current
body of literature on artificial flock models by identifying controllable abstractions at a
supervisory level that have appeared in similar models. The main contribution of this chapter
is the identification of shape abstractions in Section 3.3 using scalable flock algorithms. It is
shown in Section 3.3 that a stabilised flock exhibits the properties of a rigid-body system and
provides the necessary group abstractions at the supervisory level to treat the group as a

singular entity.
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This chapter is organised as follows. Section 3.1 reviews the concepts of flocking as
identified by Reynolds [25]. Section 3.2 builds on the heuristics of Section 3.1 to develop a
mathematical model of flock behaviour. The transient properties of the flock are investigated
in Section 3.2.3 and Section 3.2.4 to identify group abstractions for shape control. Finally, the
rigidity properties of the flock are then investigated in Section 3.3 to construct a definition for
the (semi)-rigid body model of the flock for motion control. Together with the results
presented in Section 3.2, these are used to define the set of group abstractions suitable for

control at the supervisory level in Chapter 4.
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Figure 3-1. Reynolds' flock heuristic.

3.1 FLOCKING THEORY

One of the first heuristic models for a simulated flock was described by Reynolds in 1987
[25]. In [25], Reynolds identified three primitive behaviours necessary for a flock of agents to
achieve flocking. Stated under Reynolds’ rules, the behaviours that lead to simulated flocking
are:

1. Collision Avoidance: avoid collisions with nearby flockmates;

2. Velocity Matching: attempt to match the velocity of nearby flockmates; and

3. Flock Centring: attempt to stay close to nearby flockmates.
These have also been stated under Reynolds’ boids as separation, alignment, and cohesion.
The first heuristic, collision avoidance, ensures that agents do not collide with static obstacles
and neighbouring flockmates. Collision avoidance forces vehicles to steer away from
neighbouring flockmates and obstacles to avoid collisions. When coupled with velocity
matching, the relative separation distance of neighbouring flockmates remains invariant with
respect to ongoing geometric flight [25]. This observation plays an important role in the

development of a semi-rigid body model of the collective flock.
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To prevent the vehicles from wandering, flock centring is introduced to force vehicles into
the centre of the flock. In a distributed information network, the centre of the flock is the
centre of neighbouring flockmates. The union of these neighbourhoods is the centre of the
entire flock. If a vehicle is already close to the centre of the flock, the population density in
its local neighbourhood is approximately homogenous in all directions; and the influence of
flock centring on the vehicle is minimal. Alternatively, a vehicle located on the boundary of
the flock, will have a greater displacement from the centre of the flock, and the influence of
flock centring is large [25]. Together, these three behaviours ensure that agents aggregate to
form a cohesive bond, and move with a common heading and velocity whilst avoiding

collisions. In the proceeding section, a mathematical model for flocking is introduced.

3.2. A MATHEMATICAL MODEL

Consider N dynamically controlled vehicles with states g, belonging to the manifold Q, and
control u, belonging to the control spaces U,. For fully actuated vehicles in free space, the
states are position x. € R¢ (where d =2 for the planar case, and d =3 in free space) and
orientation & R vectors. The configuration of wvehicle i can be written as
q =(x,6) €Q =R", forall i eV with respect to some fixed inertial reference frame {F},
and controls u, eU, = R"as follows:

{qi =P (3.1)

pi =4
For convenience, the vehicle states and controls are concatenated to form an nN -

dimensional control system describing the collective flock:
q=p
3.2

{p . (3.2)
with q eHiNlei =R™, u el_[iNlei =R™ . Given the vector q=(q,,...,q,)" €Q=R™, the
distribution of vehicles in the group and their connectivity can be described using the graph
pair (G,q). Here, the vector q=(q,...,qy)" €Q=R™ and its induced pair (G,q) are
referred to as the configuration and structure of the group respectively. In the proceeding
section, the connectivity of the graph is constructed using the information flow and relative
interaction range of the vehicles.
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Figure 3-2. Closed-ball neighbourhood.

3.21. SENSING TOPOLOGY AND THE INTERACTION RANGE

In distributed and decentralised systems, the perspective of an individual is limited by the

physical range of its sensors and communication devices. Let r, >0 denote the interaction
range of vehicle v.. r. physically represents the interactivity of a vehicle and is used to

explicitly define the sensor and communication radius of a vehicle’s systems. A spherical

neighbourhood is induced by the region enclosed by the closed ball defined by the radius

and centred at q; :

B(q.r) ={xeR*:[x—q<r} (3.3)
The set of spatial neighbours of vehicle v, is the set of vehicles v; eV bounded by the

region enclosed by the ball B(q;,r;) with radius r, and centred at g;. Any vehicle v; within
the closed ball B(g;,r;) such that |q; — g < is connected to vehicle v,. The set of spatial
neighbours of vehicle v, is given by:

Ny ={ieV:|o;-af<r} (3.4)
Equation (3.4) describes a spherical neighbourhood. Spherical neighbourhoods can be used to
model omni-directional sensors and communication devices, such as radars and antennas.
Various sensory and communication models can be extrapolated from the generalised ball
model to accommodate for the directivity of specific sensors and communication devices. For

example, the conic field-of-view of a camera is considered in [283] using the conic

neighbourhood specified in Equation (3.5):
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(@ (b)
Figure 3-3. Examples of (a) spherical interaction range; and (b) conic interaction range.
C%,8,1,0) ={(x,0) e R’ xR:[x—x| <r,|0-6|< p} (35)
where x. € R® and @< R denote the position and orientation of vehicle v,, and r. and ¢,

denote the range and viewing angles of the camera respectively. For the purposes of
generality, it is assumed hereafter that all sensors and communication devices are omni-
directional.

When information is communicated between adjacent vehicles and/or observed by physical
sensors, the energy of the transmitted signal attenuates with distance from the signal source.

The loss of signal quality over distance is modelled using a falloff function. Denote p,(-) the
sensor and communication falloff for vehicle v, eV with finite interaction range r,. Using

the distributed adjacency matrix of Equation (2.3) in Section (2.12), a simple choice for a
falloff function is derived by mollifying the step function in Equation (2.1) with a bump

function:
1, z€]0,0)
@ =13rsin(r 5] zein) (36)
0, otherwise

where z = |q; —q;[, . is the interaction range of vehicle v; and 5 (0,r;).

A spatially induced neighbourhood %V, with sensory and communication falloff given by

Equation (3.6) defines a spatial adjacency matrix A(q) =[a; (9)]:

1 if0<|a,—q<s, j=i
a;(0)=p;(2) = %[1+sin(7r — +§)l if 5<|a;—q<r, j=i (3.7)
0, otherwise
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Figure 3-4. Sensory and communication falloff function.
The spatial adjacency matrix defines a spatially induced graph G(q) [283]. If r=r;,
Vi,jeV, i# j, then a spatially induced graph G(q) is a digraph. As an example, consider
the case when r,>r;, then jesV, and ie N, since |q;—q<r and |q;—q|%r. Ina

homogenous flock, each vehicle has identical sensory and communication ranges; i.e., f, =r;,

Vi, jeV , i# . Consequently, a spatially induced graph G(q) with homogenous vehicles

induces an undirected graph.

3.22. THEFLOCK LATTICE

In the following section, the flock heuristics of Section 3.1 are investigated to describe the

topology of a spatially induced graph for a flock of vehicles. Let B,(q;,d,) denote the

exclusion zone for vehicle v, with radius 0 < d, <r, and centred at g, (see Figure 3-5). Then:

Definition 1. (collision)

Two vehicles v; and v; are said to have collided if vehicle v; has entered the exclusion zone
of vehicle v, defined by the closed ball B,(q;,d;). The opposite is also true when vehicle v,

enters the exclusion zone of vehicle Vi
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Figure 3-5. Interaction and exclusion zone of vehicle v;.
From Reynolds’ boids, cohesion naturally implies that a group of vehicles will collide to
reach the centre of the flock g, =q; =70, Vi,jeV , i= j;ie.
qu_q|H£d|y \V/JEW“ I;éJ (38)
On the other hand, separation ensures that potential collisions with neighbouring vehicles are

avoided, i.e.:
qu—qu>di, VieN,, i#]j (3.9)
These two observations lead to the following inter-vehicle constraint for flocks of vehicles:

qu—qu:di, \V/jEWi, I;éJ (310)
The set of constraints in Equation (3.10) describe a spatially induced graph for flocking:

Definition 2. (flock lattice)
A flock lattice is a configuration of vehicles q satisfying constraint (3.10) for all v, eV .

In a homogenous flock, where d; =d; =d;, Vi,jeV, i= j, all edges of the spatial graph

G(q) induced by the flock lattice have equal lengths d; (equidistant flock). Consider the

case when the spatial graph G(q) induced by the flock lattice is disconnected; i.e., there

exists ¢(G(q)) components. Let F(q) denote a component of G(q), such that F(q) is a

strongly connected flock lattice, then G(q) contains c(G(q)) flocks.
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Figure 3-6. Examples of (a) a regular flock lattice, and (b) a quasi-flock lattice.

60

Definition 3. (cohesive flock [284])

A flock is cohesive Vt e[t,,t,] if there exists a closed polygon with centre g(t) = Ave(q(t))
that contains all vehicles Vvt [t,,t,]. For example, for a ball of radius R > 0and centred at
7, IR>0:|X(M)|<R, Vtelt,t,].

A closed polygon is used here to describe the permissible convex hull of a group of vehicles

rather than a closed ball to generalise the possible topologies of a flock.

Definition 4. (quasi-flock lattice [284])

A quasi-flock lattice is any configuration G(q) such that the underlying graph structure is

disconnected.

Formally, let |F(q)| denote the order of a component graph F(q), then the density of the
graph G(q) is:

maxk|Fk (Q)|

@) v 3.11
2R .
A density of 1 denotes a strongly connected flock lattice G(q) and 0 <P(G(q)) <1 a quasi-

P(G(a)) =

flock lattice. A similar definition for net density and quasi-flock lattices was provided in

[283]. Figure 3-6 (b) provides an example of a quasi-flock lattice.
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3.23. STRUCTURAL ENERGY OF THE FLOCK LATTICE
The degree in which a configuration G(q) conforms to a flock lattice is measured using the
inter-vehicle constraints in Equation (3.10). A minimum for Equation (3.10) is found at
qu - qu =d;,Vi,jeV, i= ].Anatural choice for a deviation metric is given by:
N
@) =2 Zﬂ\;l/f(ﬂq ,-a-d,) (3.12)
where the locally Lipschitz contilnulous function (), satisfying w:R,,—>R,, and

w(0) =0 has been introduced to define an energy potential field for the graph G(q).

Corollary.
A configuration G(q) is a global minimum of the potential function in Equation (3.12) if and

only if G(q) is a flock lattice satisfying the constraints in Equation (3.10).

To construct the energy potential field y(-) in Equation (3.12), a smooth continuous

function is constructed to define the inter-vehicle constraints of the flock lattice. Consider the

constraints introduced in Equation (3.10) and implemented in Equation (3.12). Using the

norm |z|, the following gradient information is observed for flock convergence:

0 [z=d,
Vlz|=1-1 ||| <d; (3.13)
+1 7] >d;

where z =g, —q;. From Equation (3.13), || is not differentiable at singular configurations

when q; —q, =0, therefore, it is unsuitable for inter-vehicle interactions. Let ¢(z): R™ — R”

denote the attractive-repulsive pair-wise potential for inter-vehicle interactions with
piecewise information given in Equation (3.13). A smooth energy potential recovering the
piecewise information in Equation (3.13) is constructed using the following bounded sigmoid
function:
#2)=——— (3.14)
L+[]
The integral of Equation (3.14) yields a smooth continuous function for inter-vehicle

interactions:

®(2) :=j[¢(z)ds =1+]] -1 (3.15)

58



10k — d(2) || ——dd(z)/dz
~ izl ~— dl|z||/dz

= o
g 4l / b=3
K
ol ,
0 L
10 5 0 5 10
z z
(@ (b)

Figure 3-7. (a) Norm functions ||z|| and ®(z) and their derivatives (b).

Applying Equation (3.15) to the flock constraints in Equation (3.10) the following smooth
inter-vehicle constraints is observed:

CD(qj _qi) :(D(dij) (3-16)

By definition, the attractive-repulsive function in Equation (3.14) is effective Vz € R". This

corresponds to an infinite interaction range r for each vehicle v, eV . A simple approach to

creating a pair-wise potential with finite cut-off, is to multiply the pair-wise potential with a

bump function using a process known as soft-cutting [284]. Using the mollified adjacency

matrix in Equation (3.7) as a finite sensory and communication model, the attractive-

repulsive potential in Equation (3.14) is soft-cut to produce:
Z—-d(d;)

J1- (- o(d,))’

where z=®d(q; —q;). Equation (3.17) provides a model for the finite attractive-repulsive

$,(2) = py(z/r1)-

(3.17)

interactions of neighbouring vehicles. Integration of the attractive-repulsive potential

recovers the potential energy w(z) of the collective system:

w(2)=[4,(s)ds (3.18)

Using the energy potential described above, the conditions for flock convergence using
energy dissipation techniques are presented in the following section. The results presented in
the next section follow the results outlined in [294] and [316] and serve to provide a
background to the main contribution of this Chapter — the development of a unified flock

model at the supervisory level.
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Figure 3-8. (a) The structural potential energy of the flock lattice, and its (b) gradient.

3.24. FLOCKING AND THE DISSIPATION OF THE STRUCTURAL ENERGY
Let {M} denote the body fixed frame of the flock centred at O". Denote the relative position,

velocity, and control of vehicle v, in frame{M}as:

0G=9-9, p=p-P, U=u-0, VieN (3.19)
where the notation (=) is used to denote the average consensus of the position, velocity and
control. Note, the average consensus of the position @ corresponds to the centroid O’ of the
flock.

Let 1=(1...,))" eR" denote the vector of ones and ® the Kronecker product of two
matrices. Then, the concatenated form of the relative position, velocity and control of the

collective flock can be written as:

p=p-1®p (3.20)

From Equation (3.2), the relative dynamics of the flock is given by:

q=0p,
{B:U (3.21)
Denote M as the mass matrix of the flock of vehicles given by:
m 0 O
M=0 . 0 (3.22)
0 0 my
Let 7(q) denote the potential energy of the flock with pair-wise potential ¢p(®(q = qi)):

OBVORES TS 623)

[

and K (p) the relative kinetic energy of the flock:
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. 1&,~
K(P) =22 B (3.24)
i=1
The Hamiltonian for the system of vehicles in the flock is then given by the sum of the

relative kinetic energy and the potential energy of the graph:

H(q, p) =K(p) + V(q) (3.25)
It was shown in [294] and [316] that reduction of #/(q, p) to zero produces a flock lattice

satisfying the constraints in Equation (3.10). Indeed, the derivation of Equation (3.10) in

Section 3.2.3 is based on this presumption. By controlling #/(q, p) it is possible to control

the convergence of the vehicles to a flock lattice construction. This provides a meaningful
flock abstraction to control the group at the supervisory level. In the following section, the
theorems of [294] and [316] are summarised. These will be integral to understanding the

transient behaviour of the flock and rationalise a group abstraction in later chapters.

Theorem 1. (zero structural energy [283])
1. 7(q) =0 if and only if the graph G(q) satisfies the structural constraints in Equation
(3.16);

2. For K(p)=0 Vt=>t,, the distance between any two vehicles remains constant for all
t > t, and the graph topology G(q) remains invariant for all t >t, Furthermore, no

two vehicles collides;

3. The velocity of all vehicles in the flock are equal if K (p)=0,Vt>t,.

Proof.

The Theorem and Proof are similar to Proposition 2 in [283].

1. The zero potential energy follows directly from Equation (3.16); i.e.:

¢p(d>(q,-—qi»zo@«/(q)zézzw(@(qj—qi>)=o, VieN,, VieN  (326)

Therefore, the configuration ¢ satisfying Equation (3.16) is a stable equilibrium of

the energy potential.
2. From Equation (3.24), K(p)=0< p, =0, VieN. This implies that the inter-

vehicle distance qu —qu between any two vehicles v; and v; is constant. The proof

follows from the dynamics of the inter-vehicle distances; i.e.:

%qu ~a| =(p,~ p)"(@;-a) = (P, - B (a, - ) (3.27)
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For p;=0 and p;=0, Vi, jeN, (ﬁj—'ﬁi)T(qj—qi):O, hence concluding the

proof of Part 2.

3. The proof follows from Part 2 and the fact that G(q(t)) remains invariant for all
t>t,. If there exists {0, then X () =0 and |q; — g, = constant for any je ;.
Therefore, p; = p,, Vj#i. Furthermore, by the connectivity induced by the invariant
graph G(q(t)) in Theorem 1 in Section 2.2.2, the information state of neighbouring
vehicles reaches the average consensus for all vehicles; ie. p,=p; = P, Vi jeN
[283].

The following provides a new definition of flocking for a group of vehicles using the
Hamiltonian of the system.

Definition 5. (flocking)
Given a protocol u =k(q, p), a dynamic graph (G(q),q, p,u) is asymptotically stable if and
only if both the following conditions hold [283]:

1. There exists a constant C >0 such that # (q(t), p(t)) <C forall t >0;

2. lim__ H(q(t),p(t))=0,i.e.forall £>0,thereexists T =T (&) >0 such that:

H (), p(t)) < e (3.28)
forall t>T [283].
Using the Hamiltonian for the flock of vehicles, the following centralised cost objective is
defined:
mind(0.5) =3 DBl +5 X Tw (0, ~0)

[EL

Subject to: =5, (3.29)
5i = Gi
Solution to Equation (3.29) defines an implicit control law given by:
ui =k(g;, p;) (3.30)

and can be obtained from the gradient of the Hamiltonian. Denote vV 1/(qg;) the gradient of

the potential energy of the system, with

V. V(@)= Y 4,(2(d; —q))-n; =—u; (3.31)

jed;
and n;; is the unit vector along the edge that connects vehicle v; to vehicle v; and given by:
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_ (qj _qi)

ij = 3.32
'~ o, -a) (3:32)
Similarly, define the gradient of the kinetic energy of the flock as:
VEK(B) =p L@)p= Y a;(a)(F; - B)=-uf (3.33)
jeN;

with n-dimensional graph Laplacian L satisfying the SOS properties in Equation (2.11). A
simple distributed PD controller can be defined for vehicle v, with dynamics given in
Equation (3.1) using Equation (3.31) and Equation (3.33):

u =w -u'+w,- uP (3.34)
where w;, w, are relative weighting terms introduced to adjust the influence of each vehicle
objective. Solving for stationary points in the control law given in Equation (3.34) can yield
the optimal control law of Equation (3.30) and represents the solution space of the flocking
vehicles. In Chapter 5, an optimisation routine based on Model Predictive Control (MPC) is

derived for decentralised implementation into a flock of vehicles.

Remark.

The first term in Equation (3.34) represents the flock deviation metric in Equation (3.12) that
yields the flock lattice. This corresponds to the cohesion and separation rules of Reynolds’
rules. The second term of Equation (3.34) represents the velocity matching rule of Reynolds’
rules. Combined, the control law in Equation (3.34) provides a unified flocking protocol for
multi-vehicle systems. In the proceeding section, the transient behaviour of Equation (3.34) is
investigated for stability. The analysis follows in similar spirit to the works of [284] using
LaSalle’s Invariance Principle (see Appendix A for a review of LaSalle’s Invariance
Principle).

3.3. RIGID FLOCK CONSTRUCTIONS

The structure (G(q),q) induced by the spatial constraints of Reynolds’ flocking rules
characterises a rigid construction. Rigidity of the flock structure provides an important
abstraction for group motion planning and control. Consider a group of vehicles with
dynamics given in Equation (3.1). Denote the average position and velocity of the flock
lattice as:

q =Ave(q) (3.35)
and

p=Ave(p) (3.36)
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respectively, with average consensus protocol given by Ave(x) ::ﬁZiN: i - Let T =Ave(u)
denote the average control state of the flock and define a “virtual body frame’ {M} fixed to

centroid O with position and velocity given by @ and p respectively. Then the translational

dynamics of the collective flock is given by:

q=p
) 3.37
{ﬁzﬁ (3.37)
whereq, p,0 € R" (n=2 for the planar case, and n =3 for the three dimensional case). Let:
aiz[xi’yi’zi]TzRT(qi_q)1 i=1..,N (3.38)

denote the relative position of vehicle v, in frame {M}, and (R,q)e SE(n) the group
symmetry with rotation group R e SE(n). Then, from the structural constraints of the flock
lattice in Equation (3.10) and Equation (3.38), the following property of the flock lattice is

observed:

|6, - @] =|R(a; ~®) - R(a, - )| =|R(a; — )| =, — i (3.39)
This proves that the structural constraints of the flock lattice are invariant under rotation and
translation of the coordinates.

Finally, the following constraint is introduced to complete this definition on flock rigidity.

Definition 6. (infinitesimal motion [124])
An infinitesimal motion of a structure is given by the following inner-product:

(P, - 9,0,-G)=0, Ve <eE (3.40)
The constraint in Equation (3.40) observes the length-preserving nature of rigid body

systems. The following definition extends the concept of a rigid body system to flocking

systems.

Definition 7. (rigid flock)
Aflock is rigid if it preserves the condition of infinitesimal motion ve; € E.

According to Definition 6 and Definition 7, a flock that has converged to a flock lattice is a
rigid flock and the motions of the flock are length-preserving; i.e., the flock lattice preserves

the constraints in Equation (3.40). Following the definition of 6 and 7, the behaviour of a

group of vehicles applying Protocol (3.34) is analysed in Theorem 2.
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Theorem 2. (stable flock convergence)
Consider a group of vehicles applying Protocol (3.34). Let Q. ={(x, p): H(x, p) <c} be a
level-set of the Hamiltonian # (x, p) for the configuration of vehicles applying Protocol

(3.34) such that for any solution starting in €. forms a cohesive flock t>0. Then, the

configuration of vehicles converges to a flock lattice bounded by R = J27{(q(0), p(0)) .

Proof.

Consider the Hamiltonian #(q, p) of the flock of vehicles in Equation (3.25) applying

protocol (3.34). The time derivative of the Hamiltonian f[(q, p) is given by:

H(d,B)=—p"L()p (341)
This implies that the energy of the system is monotonically decreasing for all t >0. Since the

collective potential and velocity mismatch of the collective group are initially finite, it follows
that the Hamiltonian is bounded by:

H(q(t), p(t)) < H (q(0), p(0)) <o (3.42)
The potential energy 7/(q) and kinetic energy % (p) are also bounded according to

V(q) < #H(q(0), p(0)) (3.43)
and

K (P) < H (q(0), p(0)) (3.44)
respectively. Let Q_ ={(q, p): # (g, p) <c} be a level set of the Hamiltonian # (q, p), then

from LaSalle’s Invariance Principle (Equation A.1), the velocity mismatch is upper bounded
by ¢ [284] since:

1oy~ -
S2IBl <o (@, By <c, vt=0 (3.45)
Suppose the flock is cohesive for all t >0 and bounded by a closed ball with radius R >0

such that |x(t)| <R, Vt>0. By the boundedness of the velocity mismatch in Equation (3.45)

and the boundedness of the relative position of vehicles in the flock, the following triangle
inequality is observed [284]:

la®), BO|* = Ja®)] +[P®) <R*+2c=¢ (3.46)
where ¢ >0 is a constant. From Equation (3.25), Equation (3.46) becomes:

la), PO)[ = 2% (a, B) <R*+2c =¢ (3.47)

65



Since the flock is upper bounded by #(q(0), p(0)), then the position of all vehicles remains

inside the n-sphere with radiusR = JZ}[(q(O), p(0)) centred at T ; i.e.:

S" ={o; e R":|q, - || <R[} (3.48)
Equation (3.48), provides a physically meaningful shape abstraction for a group of vehicles

with a configuration described by the flock lattice.

From LaSalle’s Invariance Principle, all solutions starting in 2. converge to the largest
invariant set in S ={q € Q_ : (x) = 0}. However, the connectedness of the flock t >0 implies
information flow in the local frame {M}. Based on Equation (3.41), and Section 2.2, this

exchange of information state results in velocity consensus in the cohesive flock. From

Theorem 1, the spatial graph G(q) asymptotically converges to the flock lattice in Section

3.2.2 bounded by the ball centred at @ with radius R :JZ}[ (9(0), p(0)) . Therefore, the
flock protocol in Equation (3.34) converges to a configuration g that is an extrema of 9/(q)

such that V4/(q) =0 which yields the flock lattice satisfying Reynolds’ rules [284].

Remark.

From Theorem 2, a group of vehicles applying Protocol (3.34)will converge to the flock
configuration described in Definition 6 and Definition 7. Moreover, the resulting space
occupied by the flock configuration is bounded by Equation (3.48). Equation (3.48) provides
a suitable shape abstraction that describes the group’s state and is exploited in Chapter 5 to

formulate a group objective for the cooperative control problem.

This concludes the analysis of the local-vehicle interactions using simple flock protocols. In
the proceeding chapter, the shape abstractions induced by the flock rigidity constraints are
explored to derive controllable group abstractions and plan the motions of the flock. This
chapter concludes with a brief demonstration of the flocking protocols.

3.4. NUMERICAL EXAMPLE: FLOCKING FOR N-VEHICLES

In this section, the flocking protocol in Equation (3.34) is demonstrated for the N -vehicle
problem on the plane. In the following simulations, each vehicle is assumed to be fully

actuated with dynamics given by:
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Figure 3-9. Flocking for N = 10 vehicles.

{qi =P (3.49)

Pi =U;
and configuration g, = (x;,y;,6)" €Q, =R®. It is assumed that each vehicle interacts with
neighbouring vehicles using a wireless communication device in the closed ball defined by
Equation (3.3). For the following simulations, the flock parameters in Table 3-1 are
arbitrarily selected.

Table 3-1. Simulation parameters for flocking in 2D.

d; 10
L=r=r 12
o 0.5r

The position and velocity of each vehicle is initialised in the rectangles
g;(0) €[-20,20] x[-20,20], and  p,(0) e[-11]x[-11],Vie N using a uniform random
distribution. Consecutive snapshots of the flock evolution are shown in Figure 3-9; the
corresponding interaction topologies are shown by the links in Figure 3-9. Figure 3-10 (a)
and Figure 3-10 (b) show the corresponding potential and kinetic energy dissipation for the
group of vehicles. From Figure 3-10 (a), the flock lattice induced by the flock protocol is a
low-energy state for the optimisation problem given in Equation (3.29). Formulation of a

centralised optimisation problem using the flock protocol is treated separately in Chapter 5.
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Figure 3-10. (a) Hamiltonian of the system, and (b) stabilisation of the rigidity constraint.

Remark.

In the previous simulation, the vehicles were randomly initialised in a rectangle that
preserved strong connectivity of the initial interaction graph. Protocol (3.34) ensured
vehicles converged towards a flock lattice and maintained a strongly connected interaction
graph for all t>0. In the following section, Protocol (3.34) is demonstrated on a group of
vehicles with a disconnected initial graph topology. It will be shown how Protocol (3.34) fails
to demonstrate a cohesive flock lattice i) for a group of initially disconnected vehicles, and ii)
for a group of vehicles with large state variation. Through simulation, the influence of the
interaction graph and the variation of state on the group’s ability to converge and maintain a
cohesive flock lattice are demonstrated.

3.5. NUMERICAL EXAMPLE: DISSOCIATION OF THE FLOCK LATTICE

The ability of a group of vehicles to converge to a cohesive flock lattice is dependent on the
initial distribution of the vehicles. The analysis of the flock protocol so far has concentrated
on the case when the initial interaction graph is strongly connected for all t > 0. Consider the
case when the initial swarm is sufficiently dispersed and the underlying graph topology is
disconnected. Following Example 3.4, the initial position and velocity of the N =50 vehicle

problem is randomly selected from the rectangles q;(0)<[-70,70]x[-70,70], and
p;(0) e[-11] x[-11], Vie N using a uniform random distribution. Vehicle dynamics and

simulation parameters are given in Equation (3.49) and Table 3-1 respectively. Figure 3-11
(@) shows the initial distribution of vehicles in the plane with the links highlighting the
corresponding interaction graph. From Figure 3-11 (a), 14 distinct components in the initial

interaction graph are observed. Snapshots of the flock evolution are shown in Figure 3-11.
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The initial distribution fails to converge to a cohesive flock lattice. Instead, the group
dissociates to form a disconnected graph atypical of a flock lattice.

In the following example, the effect of velocity distribution on the convergence of Protocol
(3.34) is demonstrated. The vehicles are randomly distributed in the rectangle
q; (0) €[-20,20] x[-20,20] with velocities sampled in the range p,(0) € [-10,10]x[-10,10].
In this case, the vehicles preserve strong connectivity in the initial interaction graph, whilst
observing a large variance in the initial velocity distribution. Figure 3-12 shows consecutive
snapshots of the flock’s evolution. The corresponding interaction graphs are shown by the
links in Figure 3-12. From Figure 3-12, the vehicles fail to converge to the desired flock
lattice and the vehicles have dissociated.

The failure to converge towards a flock lattice is attributed to the variation of the initial
velocities of the vehicles. For a strongly-connected interaction graph with Protocol (3.34),
large-scale velocities instigate the propagation of string instabilities in the interconnected
system. These string instabilities have the effect of disconnecting the interaction graph into
smaller components. If the velocities are sufficiently large, then the flock lattice becomes
dissociated and the group cannot sustain a cohesive flock. In fact, the ability of Protocol
(3.34) to converge to and sustain a cohesive flock lattice is observed only for a limited set of
initial conditions. These results are in concert with the findings of Olfati-Saber in [284]. In

the following section, global goals are introduced to produce stable and purposeful flocking.
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Figure 3-11. Dissociation of a flock lattice due to sparse connectivity.
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Figure 3-12. Dissociation of the flock lattice due to string instabilities.
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3.6. INTRODUCTION OF THE NAVIGATION FUNCTION

To attenuate possible fragmentation and promote purposeful application of the flock, a
navigation function is introduced to Protocol (3.34) that facilitates global convergence to a
desired equilibrium:

u =w, -u' +w,-uP+w,-ul (3.50)
where u? = f(q;, p;, 94, Py), and q, €Q, p, €T, Q is the desired equilibrium states of the

centre of the flock. The pair(q,, py) can be explicitly defined by a supervisory controller to

provide a reference trajectory for the flock, or defined with respect to a group objective
function. When the equilibrium states are defined by a supervisory agent, a simple
navigational feedback controller can be developed for asymptotic convergence to the

reference trajectory:

uig = _kl(qd _Gi)_kz(pd - E.) (3.51)
where k;,k, >0. In the following example, the effect of the navigation function is

demonstrated for a group of vehicles.

3.7. NUMERICAL EXAMPLE: NAVIGATION FEEDBACK

Consider the case when the group’s objective is to stabilise to a flock lattice and
cooperatively track a reference trajectory. The equilibrium pair (q,, py) is given by the
dynamics of the following virtual agent:

dg = Py
{pd =-k(q, —qy,) (3.52)

where k is the gain matrix for the feedback controller in Equation (3.52) and q, is the

desired reference trajectory given by:

(10t 0), t €[0,40]
(400 (400-10t) —200), te[40,60] (3.53)
(1000-10t —200), t €[60,100]

For the following example, the initial position and velocity of the N =15 vehicle problem

is randomly selected from the rectangles q;(0) € [-70,70]x[-70,70], and
p;(0) e[-11] x[-11], Vie N using a uniform random distribution and the weighting

parameters are chosento be ¢, =1, ¢, =1, and ¢, = 0.5. Vehicle dynamics and simulation
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Figure 3-13. Flocking with navigational feedback for N = 15 vehicles.

parameters are given in Equation (3.49) and Table 3-1 respectively. These initial conditions
are selected despite the flock dissociation witnessed in Example 3.5.

Applying Protocol (3.50), the motion of the flock is shown in Figure 3-13. Simulation
verifies the convergence of the group to the flock lattice using the navigation function;
despite the unfavourable initial conditions. This concludes the development of a flock
protocol for group cohesion and cooperative behaviour. In the next chapter, the group’s
cooperative behaviour is considered at the supervisory level. It is here that the control of the

group as a whole is considered using the protocols and abstractions introduced in this chapter.

3.8. SUMMARY

The flocking protocols for a group of vehicles were modelled using an artificial potential
field approach. It was shown that the artificial potential field approached produced a
decentralised control law that could be implemented at the local vehicles. When aggregated,
the collective behaviour demonstrated by the vehicles applying the artificial potential field
based control law demonstrated flock behaviour. An energy functional was used to describe
the collective flock and provide a group abstraction identifiable by a supervisory agent. It was
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shown that the minimisation of this energy functional (from a centralised perspective) would
also result in the desired flock behaviour. Furthermore, it was shown that the flock would

converge to a lattice construction bounded by the n-sphere of radius R = JZ}[ (9(0), p(0)) .

This provides a useful shape abstraction for a supervisory agent to control the motion and the
shape of the flock independently. In the proceeding chapter, the motion of the vehicles
adhering to a flock lattice is examined before a suitable cooperative control scheme is
developed. The proceeding chapter serves to introduce the concept of group motion planning

for the group of vehicles with configuration described in this chapter.
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Chapter 4. Group Motion Planning and Shape Control

Moving large groups of vehicles from an initial configuration to a final configuration with
minimal supervision and control is fundamental to developing autonomous and cooperative
multi-vehicle systems. The large-scale nature of flocks and swarms makes it difficult to
develop control strategies at both the local vehicle level, and the group level. Traditional
approaches based on centralised architectures constrain the number of vehicles that can be
controlled and monitored by a supervisory agent. For example, in the common approach to
path-planning for a formation of vehicles, the supervisory agent must calculate and assign
reference trajectories to each vehicle in the group. The tracking problem is then handled by
the individual vehicles. At each sampling period, the supervisory agent measures (via sensors
or communication), the states of each vehicle to minimise the divergence of the group from
the desired trajectory. Many of the path-planning problems represented in this way, are
amenable to optimisation problems involving the minimisation (or maximisation) of a
performance function. However, the dimensionality of large-scale multi-vehicle groups, such
as flocks and swarms, prevent the resolution of the path-planning problem at the supervisory
level using conventional optimal control techniques. Many optimal control techniques cannot
handle systems of very high dimensionality; and so these approaches are generally limited to
small-scale groups. Approaches based on distributed artificial intelligence have shown some
promise in reducing the control efforts of a supervisory controller. These approaches work on
the premise of behaviour-based control; where the individual vehicle controllers are designed
using vehicle-level behaviours rather than group-level behaviours. The group-level
behaviours emerge as a consequence of the local interactions of the vehicles. This makes it
difficult to develop analytical relationships between the vehicle-level behaviours to the
group-level behaviours that are amenable to scaling. The lack of a formal understanding
between these two levels of behaviour, prevent the practical application of these strategies. In
addition, decentralised path-planning strategies make it difficult to provide a meaningful level

of control to a supervisory agent.
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Based on the practical limitations of a fully autonomous distributed path-planning strategy,
this chapter will focus on the development of a path-planning strategy for a centralised
architecture to control a large group of vehicles. This chapter deviates from the traditional
research by addressing the dimensionality of the problem. By reducing the motion generation
and control problem to a lower dimensional manifold, the information that is communicated
and processed by the supervisory agent is amenable to optimisation. Furthermore, by using
tools from differential geometry, optimal control problems for group navigation can be
formulated that are certified open-loop optimal for a given configuration. This eliminates the
need for continual communication between the vehicles and the supervisory agent during
operation. The work in this chapter is inspired by the abstractions of large-scale flocks and
swarms, such as plagues of locusts and schools of fish. The developments of this chapter rely
on the reduction of the flock model introduced in the previous chapter to a subset of essential
features characteristic of the overall group that preserves the properties of scalability. This
chapter effectively extends the work in the previous chapter, to develop a low-dimensional
abstraction of the collective flock at the supervisory level using the high-dimensional
interactions of the vehicles.

This chapter is organised as follows: Section 4.1 begins by introducing the notion of
manifolds and tensor fields to lay the groundwork for further analysis. Section 4.2 continues
by providing a background on matrix Lie groups that will be necessary to understanding the
scalability and invariance of the vehicle control task. A background on Riemannian metrics
and affine connections are then presented in Section 4.3 and Section 4.4 respectively. These
will be necessary to develop the notion of a metric on a manifold for optimal control of a
group of vehicles in Section 4.5 and Section 4.6. Optimality conditions to these metrics are
then provided in Section 4.7. Using the matrix lie groups presented in Section 4.2, and the
model introduced in Chapter 3 for the inter-vehicle relationships of a flock, Section 4.8
presents the main contribution of this chapter to building a rigid body model of a flock. The
rigid body model is then extended in Section 4.10 to a semi-rigid body model more typical of

a dynamic flock.

4.1. INTRODUCTION TO MANIFOLDS AND TENSOR FIELDS

The set of all configurations of a system is called the configuration space and has the

structure of a differentiable manifold [317]. Denote Q an n-dimensional smooth manifold
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with a set of smooth real valued functions C*(Q) . The tangent space T,Q to the manifold Q

at the point q is the set of all derivations on C”(Q) with elements given by the set of all

linear functions on T.Q. If {g',....q',..} denotes the set of all local coordinates on Q, then

the set of associated derivations {aii} forms a basis for T,Q given by:
0 0
quxla—ql+...+xza—qz (41)

The vector field X on Q is a smooth map X :Q — TQ that associates a tangent vector

X, €T,Q to each point q Q. Similarly the set {dqg'} forms the dual basis for a one-form

field on aon Q that associates a co-tangent vector «, to each point qe Q. Let <> denote

the natural pairing between tangent and cotangent spaces, then <dqi, = > describes the action

arf

of a cotangent vector eTq*Q on a tangent vector X, €T ,Q and:

<dq‘,%>:5”, i,j=1..,n 4.2)

o

If Q is a manifold with dimension n, then the tangent bundle TQ and co-tangent bundle

T'Q of the manifold is given by a manifold of dimension 2n with the union described over

all g € Q of the tangent space and cotangent space respectively, i.e.:

TQ={(0,v)[aeQ,veT,Q} (4.3)

and

T'Q={@v)aeQveT,Q} (4.4)
respectively. A manifold that will be useful in the analysis and control of multi-vehicle
systems is the Riemannian manifold. The Riemannian manifold is constructed by assigning a

metric to each tangent space T,Q that varies smoothly as g varies over Q [317]. Before

proceeding with the formal treatment on Riemannian manifolds, a brief introduction into

tensors over vector spaces is presented.

41.1. TENSOR FIELDS

Tensors define geometrical objects with properties independent of coordinates and reference
frames. They can be used to define physical laws with physical meanings and can be
combined to generate higher dimensional tensors [317]. Examples of tensors are scalars,
vectors and co-vectors. The components of a tensor are coordinate-dependent and change
according to a change of basis. Tensors that transform like vectors are called contravariant
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tensors, and those that transform like a co-vector are called covariant tensors. A tensor field

IS a smooth assignment of a tensor over each point g in a manifold Q such that at each point
g the vectors and co-vectors belong to the tangent space and its dual space respectively. A
(covariant) metric tensor g is a symmetric bilinear positive form over a vector space that is
used to measure distance in a space. At a given point q in a manifold Q, the metric tensor
takes two vectors and returns a real number in a bilinear form. In standard tensor notation, a
vector is denoted by v' and a co-vector by u, . Metric tensors are denoted by g; and preserve
Einstein’s summation convention [317]. The smooth assignment of a metric tensor g to each
point q yields a metric tensor field denoted in local coordinates by g; (q)dg'dg’ [317].

Physically, a manifold assigned a metric field recovers the geometric properties of the
manifold, such as distance, angle, parallel lines, and straight lines along a curve [318].

4.1.2. DISTRIBUTIONS AND CO-DISTRIBUTIONS
A distribution A assigns a subspace of the tangent space TQ to each point on qe Q. The

rank of A at point g € Q is the dimension of the subspace A, — Q. Given a (local) family of

vector fields X ={X,,..., X, }, a distribution is given by the linear subspace of the tangent
space TQ [319]:

A, =span{X,,..., X, } (4.5)
Equation (4.5) provides an equivalent characterisation of the constraints on the configuration

manifold and captures the possible directions of motion in a drift free control system [320].
This class of control systems is general enough to include under-actuated, holonomic or
nonholonomic systems.

Similar to the notion of a distribution on a tangent space, is the co-distribution. The co-
distribution is a map that assigns to each qeQ a linear subspace of T;Q. Given a
distribution A, there exists a unique annihilating co-distribution A" given by the following:

A = {0{ € Tq*QKa, X> = 0}, VX eA (4.6)
Provided A is non-singular in some open set U « Q, A" is also non-singular.

A non-singular k-dimensional distribution A is integrable if there exists k functions

#,....4 that map U to Q such that A" =span{dg,...,d¢}. Integrability of the co-

distribution is equivalent to the integrability of its annihilator.
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4.2. MATRIX LIE GROUPS

It was shown in Chapter 3 a flock of vehicles preserves the concepts of symmetry. The
symmetry of an object (such as the flock of vehicles), can be quantified using the concepts of
a Lie group. A Lie group G is a smooth manifold for which the group operations of

multiplication and inversion are smooth functions. Let g,h e G denote the elements of a
group G and e=1d the group identity. A mapping L,:G — G given by L (h)=gh is
called left translation and the vector field X is said to be left invariant if:

X(gh)=T,L,X(h), VheG (4.7)
where T, L, is the tangent map to L, at h. Let &, <TG denote vectors in the tangent

space at identity T.G . A left invariant vector field is given by [321]:

X(9)=T.L,=9-¢ (4.8)
From Equation (4.8), the value of X(g)is uniquely determined by its values at g =e.

Therefore, the tangent space T,G is identified by the set of left invariant vector fields g

describing the finite dimensional Lie algebra of G. The Lie bracket of two left invariant

vector fields remains left invariant [321]. Define a Lie bracket on g by:

9-l6.8]2[0-6.9-&], &.5eT.G (4.9)

Let ad. &, =[&,¢,] and g be the dual space of g that describes the set of co-vectors of «
such that <a,§1> is a linear function of & eg. The dual operator of ad, is a mapping
described by ad, :g"—g" and defined by (ad}, @&, ) = (,[£,5]), Vaeg’.

For a matrix Lie group, the group operation is given by matrix multiplication and the
corresponding Lie algebra g is also a matrix Lie algebra with Lie brackets demonstrating the
following multiplication properties:

1. [&&]=0foreveryéeg:;
2. [a+&6l=l6.6]+15.4] Va6 é 0
3. Gl sll+15 15 all+ 614 & 11=0, v4.4,.4 < g5 and
4. [a.&]=66-84.
Condition 2 is typically referred to as Jacobi’s identity, and implies [£,&,]=-[&,&,] (anti-

symmetry).
Consider the configuration space which represents a dynamic system, and therefore a

differentiable manifold. The notion of symmetry of a dynamical system is captured
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mathematically using the actions of a Lie group on a smooth manifold and its induced action
on the tangent bundle of that manifold [317]. The following definition of a symmetry ensues:

Definition 1. (symmetry)

A symmetry of a differential equation is a transformation that preserves the family of

solutions.

The Euler vector field in the plane R? with coordinates (x,X,) and xla—‘;+ xzaxi2 and
rotated about the origin is an example of a symmetry on a vector field. The set of all
symmetries of a given field form a group [317]. In the case of the Euler field, the generalised

form of the Lie group is GL(2,R).

42.1. KINEMATIC LIE GROUPS
Of particular utility and importance to the analysis of multi-vehicle systems, is the Special

Orthogonal group SO(3) given by:

SO(3) = R e R*IRR" = I, detR = +1] (4.10)
corresponding to the set of rotations for a rigid body in three dimensions. A similar form also

exists for the planar case. Associated to the Special Orthogonal group SO(3), is the matrix
Lie algebra so(3) given by the 3x 3 skew-symmetric matrices:

s0(3) = o e R¥|0" = -6 (4.11)

with bracket structure:

[aA)ll aA)z] = 00, — 0,0, @,0, €50(3) (4.12)
where the notation (%) is used to denote the skew-symmetric form of a vector®. Let x denote

the cross product on R*® and define the operator -* : R® —s0(3) as x"y £ xxy, Vx,yeR>.
Then:

[a)l,(f)z]:(a)lxa)z)A, @, @, €50(3) (4.13)
and w @ is a Lie algebra isomorphism between the Lie algebra so(3) (with matrix

commutator) and R* (with cross product).

2 For a vector x = (X,,X,,X;) € R?, the skew-symmetric form is given by the following matrix X e R>®:

0 -x5 X
X=| x, 0 -x
X, X 0
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For a rigid body system, the group of rigid transformations on R* is defined as the set of

rotations R e SO(3), and translations d € R® belonging to the Special Euclidean group

SE (3) with group element described by the pair g = (R,d) € SO(3)xR?, i.e.:

SEQ3) = _| R ReR*3 RR" =1,,detR=+1,d e R®
= g|g_ 0 1 IRe , =1,,detR=+1d € R (4.14)
1x3

Associated with the Special Euclidean group SE(3) is the matrix Lie algebra se(3) given by:

se(3) ={5 =[0“3 ﬂ

where & is the algebra element given by & = (@,v) € s0(3) x R®. Note the vector space se(3)

E=(d,Vv),deR™ o =-d,Ve Re} (4.15)

is isomorphic to R® via the mapping & > & = (@,v) € R°[319].

422. MOTION PARAMETERISATION

Let {M} denote a body-fixed frame centred at O" of a rigid body, and {F} a fixed inertial
reference frame. Denote a curve on SE(3) as g(t):[-a,a] > SE(3). An element &(t) of the
Lie algebra se(3) can be associated to the tangent vector ¢(t) of the curve at any arbitrary
point t by:

4 |RTRRTd
st)=9 (t)g(t)—{ 0 0}

A curve on SE(3) described by g(t) = (R(t),d(t)) e SE(3) and velocity given by the

(4.16)

tangent vector physically represents the motion of the rigid body with vector pair
£(t) = (w,v) € R® describing the angular and linear velocities respectively. In kinematics,
elements of this form are called twists [319] and the Lie algebra se(3)corresponds to the
space of twists [291]. It can be easily verified that the motion &(t) computed from Equation
(4.16) is a left invariant representation of the tangent vector ¢(t) and is independent of the
choice of frame {F}. Alternatively, the tangent vector ¢(t) can be identified with a right
invariant twist (invariant with respect to the choice of the body-fixed frame {M}) [291].

Any element of the vector space se(3) can be expressed as a 6x1 vector of components

corresponding to a chosen basis [291]. The standard basis for se(3) is:
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00 0 O 0 010
00 -10 0 000
=01 0 o “=_1 00 0
00 0 0 0 000
0 -1 0 0] 0 0 0 1]
11 000 looo0o
L3_0 0 00 L4_0000 (417)
0 0 0 0] 0 0 0 0]
0000 0 0 0 O]
o001 |looo0o0
LS_oooo I“*_0001
0000 0000

The twists L, L,, and L, represent the instantaneou_s rotations a_bout the x, y, and z
axes; L,, L, and L, represent the instantaneous translations along the x, y, and z axes,
respectively [291]. The components of a twist & e se(3) in this basis are given precisely by
the velocity vector pair {w,v}. If {o,v,} and {w,,v,} are vector pairs corresponding to the
twists & and &,, the vector pair corresponding to their Lie bracket [£,&,] is given by [291]:

{0V} ={o, x 0,0, x 0, +V, xV,} (4.18)
The Lie bracket of two elements of a Lie algebra is an element of the Lie algebra and can be

expressed as a linear combination of the basis vectors; i.e.:
k
[Li!Lj]:Zk:Cij L, (4.19)
where Iif are structure constants of the Lie algebra (with respect to the chosen basis) and

determine the bracket operation on the Lie algebra [322].

4.2.3. ADJOINT ACTION OF SE(3) ON se(3) AND FRAME TRANSFORMATION
RULES

In the following section, the actions of a Lie group for rigid body motion are defined. The

following definitions are well established and can be found in [319].

Definition 2. (left action)
Let Q be a smooth manifold and G a Lie group. A left action of G on Q is a smooth map

®,:Q—Q, geG such that:

e ®,(q)=q,forany qeQ;
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e Forevery, g,heG and qeQ, @ (D,(q)) =D, ().

Definition 3. (conjugation map)
Let G be a Lie group. The map I,:G -G, geG given by I (h)= ghg™ is called the
conjugate map.

Consequently, the map I, defines a left action of G onto itself.

Definition 4. (adjoint action)
The tangent map of I, at identity e, Ad, =T.I, is called the adjoint action of Gon g, its

Lie algebra.
For the subgroup SO(3) of SE(3):

Ad,é=9&™" (4.20)
and £eg is written in matrix form [319]. Therefore, the adjoint action of the group

R d
g= {O J e SE(3) onthe Lie algebra & e se(3) is given by:

Ro Rv-Rad
0
where the notation (-) is used to represent the skew-symmetric operator of multiplied

g{i’ ;}ese(B), Adggzggg-l{ }ese(S) (4.21)

matrices. Similarly, the adjoint action Ad of the twist written in vector form is represented

by the 6x6 matrix [Ad,]:

dR R
The adjoint action of SE(3) on se(3) can be used to write transformation rules for

g:[ﬂese(e,), Ad ¢ =[Ad, I ese(3), [Aolg]{R 0} (4.22)

trajectories and twists when the inertial or the body frame is displaced.

For a rigid body moving in free space, let {F} be a fixed inertial reference frame and {M}
be a body-fixed frame at O'. The motion of the body in the inertial frame is uniquely
described by the curve g(t) =gy, (t) € SE(3); where the rotation of {M} and the position of
O’ are defined with respect to {F}.

Proposition 1 gives the transformation rules for displacements of body-fixed frames.
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Figure 4-1. Coordinate frames for specifying rigid body motions.

Proposition 1. (body frame displacements)

Assume the body frame is displaced by (a constant) g,,, to {M} (see Figure 4-1 (b)). Let
g'(t) = gpy- (t) € SE(3) describe the motion of {M} in {F} and &'(t) be the corresponding

twist. Then, the following are true:

e g'(1)=9t)gyw;and
o S()=Ady, &)

Proof.
The first part follows immediately from the composition rule for elements in SE(3) . For the
second part, the result follows from the composition rule gq\. = 9y 9uu-» the definition of

the adjoint map and the definition of twists, i.e.:

EM)=9""1)0'(t) = 9rn9em' = I Iem Trm T

(4.23)
=Ad,, £(0)=Ad,, 5(0)
or, if the twists are written in vector form,
¢'(t)=[Ad,,  I5(t) (4.24)

where the 6 x 6 matrix form of the adjoint action is given by (4.22).

The following proposition describes the transformation rules for changes in the inertial

frame.
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Proposition 2. (inertial frame transformations)

Suppose inertial frame {F} is displaced by a constant g... to a new {F} and the body fixed
frame {M} is left unchanged. Let g'(t) =g, € SE(3) denote the motion of {M} as seen
from {F'}. The following describes the relation between curves and twists when the inertial

frame is displaced:

o g'(t)=0rr0(t);
o J(M)=2(1).

Proof.

For the first part, g'(t) = gey, (t) = 9t Gy () = 9 9(t) . For the second part:

fl(t) = gril(t)g(t) = g;lM gF’M = g;lM glngFF’gFM = g;l%/l gFM = f(t) (4-25)
Corollary.

The twist &£(t) =g '(t)g(t) is invariant to changes in the pose of the inertial frame. The

adjoint of the transformation of the body-fixed frame relates the twists when the body frame

is displaced.

4.2.4. INVARIANT PROPERTIES OF THE LIE GROUP CONSTRUCTION

A differentiable vector field is a smooth assignment of a tangent vector to each element of the
manifold [323]. In the case of SE(3), a differentiable vector field X is obtained by left

translation of an element & ese(3). Let & denote a vector field obtained via left translation
of the Lie algebra element &, then the value of a vector field X at an arbitrary point
g € SE(3) is given by:

X(9)=£(9)=9-¢ (4.26)
and X is a left invariant vector field [324]. Physically, left-invariance corresponds to

independence of the choice of inertial reference frame [291]

Let L,L,,...,L, denote the basis of the Lie algebra se(3), and denote L, (g),L,(9)....
L,(g) the basis of the tangent space at any point g e SE(3). Then, a vector field X can be

expressed as [323]:

X =2 XL (4.27)
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where X' is a real-valued function that varies over the manifold Q [323]. If the coefficients
X' are constant, then X is left invariant. For a rigid body, let g(t) denote the motion of the

of the centroid O" with respect to a fixed inertial reference frame {F}, and V =‘fj—f the vector
field tangent to g(t). Denote {w,v} the vector pair of functions associated to any arbitrary

vector field X , with components

w=[x1x2x3], v=[x*x5x°] (4.28)
then, the vector pair {w,v} associated to V corresponds to the instantaneous twist for the

motion [319]. Motions for which the twist {w,v} is constant are known in kinematics as

screw motions [319]. Screw motions physically correspond to rotation of the rigid body
around the centreline with a constant angular velocity @ and concurrent translation of the

body along the line with constant translational velocity v.

4.3. RIEMANNIAN METRICS ON THE LIE GROUP

Physically, the Riemannian metric provides the notion of length of a vector (or distance
between two points on a manifold) [324]. By understanding the properties of the Riemannian

metric on a Riemannian manifold, the definition of a metric on SE(3) for motion planning

will become intuitive. In the following sections, the properties of the Riemannian metric are

introduced as a preliminary understanding into the development of metrics on SE(3) .

Definition 5. (Riemannian metric)
A smoothly varying, positive definite, bilinear, symmetric form <> assigned to the tangent

space T,Q at each point g on the manifold Q is a Riemannian metric.

Definition 6. (Riemannian manifold)
A manifold endowed with a Riemannian metric defines a Riemannian manifold.

On an n-dimensional manifold, the metric is locally characterised by an nxn matrix of
C” functions g :<Xi,Xj> where X; and X, are basis vector fields. The Riemannian

metric provides the notion of the length of curves on a manifold [291]. In mechanical
problems, the kinetic energy of a system defines a Riemannian metric that induces a
Riemannian manifold. Curves that minimise the energy metric between two points are called

geodesics. Geodesics are a generalisation of straight lines in Euclidean space R" to
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Riemannian manifolds. A formal treatment of geodesics on Riemannian and semi-
Riemannian manifolds is presented in Section 4.4.2. The following proposition formalises the
relationship between Riemannian metrics and Lie groups and provides a physical

interpretation of the Riemannian metric of a Lie group.

Proposition 3. (Riemannian metrics on Lie groups)
On any Lie group, and thus SE(3), an inner product on the Lie algebra se(3) can be

extended to a Riemannian metric over the manifold using left (or right) translation [321].

Proof.
Consider the inner product of two arbitrary elements &,¢&, €se(3) on the Lie group SE(3)

given by:

<§11§2>, = é/1TW42 (4.29)

where £, and &, are the 6x1 vectors of components & and &, with respect to some basis
and W is a positive definite matrix. Let V, and V, denote two arbitrary tangent vectors at the
group element g € SE(3) . The inner product <V1,V2>g on the tangent space T ,SE(3) is given
by:

VV,), =(g7™V, 07V, (4.30)

A metric obtained in this way describes a left invariant metric [291].

Proposition 4. (left invariance of the Riemannian metric)

Physically, a left invariant metric is independent of the choice of the inertial frame.

Proof.

Let g,(t) and g,(t) represent two motions of a rigid body passing through a point g at
t =t,. Denote V, = (dg,(t)/dt) and V, = (dg,(t)/dt) the corresponding velocity vector fields
such that V,,V, e T,SE(3). Let C describe a displacement of the inertial reference frame. In
the new reference frame, the motions become g, (t)=Cg,(t) and g,(t)=Cg,(t), and the

velocity vector fields \71 =CV, and \72 =CV,. Then from Equation (4.30):

<\71’\72>Cg = <gl_]\72’ gl_]\7z> = <g‘1C‘J\71, g_lc_1\72>| = <V1’V2>g (4.31)
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Hence, the metric <> is invariant to change in inertial reference frame. A right invariant

metric is similarly defined.

A detailed description of invariant metrics on SE(3)is presented in Section 4.5. In the

proceeding section, the Riemannian connection is used to define a measure of length for a

curve on a manifold.

4.4, THE AFFINE CONNECTION AND ITS KINEMATIC CONNECTION TO
RIGID BODY MOTION

In the previous section, the motion of a rigid body was established using the smooth

curve g(t) € SE(3). The velocity of each point along g(t) € SE(3) was shown to correspond

to a value in the vector field V belonging to the tangent space T, SE(3). In the following

section, higher-order tangent spaces are analysed to develop kinematic control laws for the
group of vehicles. Specifically, the acceleration and jerk of the rigid body are investigated.
Differentiation of vector fields along a curve involves the subtraction of vectors at different
points. In the tangent space, these points are not related. In this section, the problem of
differentiating a vector field along a curve is addressed using the theory of affine
connections. Affine connections are used to provide a means of transporting vectors along a
curve from one tangent space to another. Before proceeding with the definition of affine
connections, it is first useful to describe the notion of a covariant derivative of a vector field.

441. THE AFFINE CONNECTION

Definition 6. (covariant derivative)
Let X eT,SE(3) be an arbitrary vector field defined along the curve g(t) e SE(3). The

covariant derivative of X along g(t) is:

to _
dt b [ t

i.e., for the covariant derivative of X to be defined at a point g, only the value of X at g

(4.32)

and the rate of change of X along g(t) is required.

Proposition 6. (covariant derivative of a vector field)

The covariant derivative of a vector field is another vector field.
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Proof.

Taking the covariant derivative of a vector field Y along its integral curve, yields a covariant
derivative of X with respect to the vector field Y , i.e.:

y x| = DX
90 dt ‘.
where DX/dt is taken along the integral curve of Y passing through g,at t =t, [291].

(4.33)

Definition 7. (affine connection)
Let X, Y denote smooth vector fields. An affine connection on SE(3) is a smooth map
V: X (SE(3)) x X (SE(3)) &> X (SE(3)) denoted by V:X,Y > V,Y that assigns to each pair
X, Y asmooth vector field V,Y such that for all smooth functions f, g on SE(3) and
for all vector field X , Y, Z the following properties are observed:

L Vy.wZ=1V,Z+9V,Z;

2. Vi(Y+Z)=V,Y+V,Z;and

3. V, (fY) =1V, Y + X(T)Y.
where V,Y is the covariant derivative of Y with respect to X and represents the

differentiation of vectors (and tensors).
Note, the affine connection and covariant derivative are often used interchangeably in the
literature.
Definition 8. (Christoffel symbols)
Given the local coordinates (q',...,q',...,q") of an arbitrary manifold Q and a metric g,

denote g, and g™ as coordinate representations of the metric g and its inverse g™*. The

Christoffel symbols I“i}‘ on Q are given by:

=i B, B
Els REle [ ele
Following Proposition 6 and Definitions 6-8, the affine connection, or covariant derivative,

(4.34)

can be expressed as a linear combination of vector fields. Given the local coordinates

(q,...,9',...,q") of an arbitrary manifold Q and metric g, the affine connection can be
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applied to a pair of coordinate vector fields ; via association with the Christoffel symbols

k.
b
0 v O
w[aq’J ' og (4.35)
where the summation convention is used to denote the summation of repeated indices.
On SE(3), the Christoffel symbols Fi}‘ of the connection at a point g € SE(3) are given by:
Ve L =L (4.36)
where L,..., L is the basis in T,SE(3).
Associated to the affine connection V on an arbitrary manifold Q is the torsion tensor T
and curvature tensor R given by Equation (4.37) and Equation (4.38) respectively:
T(X,Y)=V,Y -V, X -[X,Y] (4.37)
R(X,Y)Z=V,V,Z-V,V,Z -V, Z (4.38)
On a Riemannian manifold, there exists a unique affine connection V which is torsion-free
and compatible with the metric [325]:
X(Y,Z)=(VyY,Z)+(Y,V,Z) (4.39)
and symmetric, i.e.:

V,Y -V, X =[X,Y] (4.40)
This connection is known as the Riemannian or Levi-Civita connection and induces a

compatible Riemannian metric on the manifold Q. In Section 4.6.2, the Riemannian
connections corresponding to left invariant metrics on the SE(3) manifold are investigated.

In the proceeding section, the notion of length on a manifold is investigated with respect to
the Riemannian metric induced by the Riemannian connection. Together, these concepts will

be used to construct length-minimal curves for motion planning of a rigid body system.

4.42. GEODESICS AND THEIR RELATIONSHIP TO LENGTH
Given a Riemannian metric <> on SE(3), the length L(g) of a smooth curve

g :[a,b] — SE(3) is given by [325]:

b 1
L(g) = L(v,v>2dt (4.41)
A curve that minimises the functional L(g) also minimises the energy functional E(g) [325]:

E(g) = [ (v.V)at (4.42)
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If a curve minimises a functional, it must also be a critical point. Critical points of the energy

functional E(g) satisfy the following equation [325]:

dg
vdg - = 0 443
w dt (4.43)
and are known as geodesics.
For a rigid body with motion g(t) e SE(3), velocity V(t)=dg(t)/dt and Riemannian
connection V, the acceleration A4(t) (and higher derivatives) of the rigid body, is given by

the covariant derivative of the velocity V (t) (and acceleration A(t) etc); i.e.:

dt
From Equation (4.43) and Equation (4.44), the acceleration of a rigid body moving along a

At) = %(d—gj =V\V (4.44)

geodesic is zero.

The minimum acceleration curves for the terminal conditions g:[a,b]— SE(3) and
V :[v,,v,] > SE(3) can be obtained by minimising the square of the L* norm of the
acceleration:

L, = [(V,V, 9,V et (4.45)
Here V is the Riemannian connection and <> is the Riemannian metric over the manifold.
Suppose q(t) € Q is the configuration of the system and ¢(t) e T,Q its velocity, then a

geodesic in the local coordinates is given by the solution of the following second-order

differential equation:

' +T54'¢ =0 (4.46)
where F}k are the Christoffel symbols. This vector field is known as the geodesic spray or
geodesic flow and is a local representation of a vector field on T,Q [326]. In Section 4.7,
solutions to Equation (4.46) are used to define optimal motion control plans for a group of

vehicles.

443. THE EXPONENTIAL MAP

Let Q denote a manifold with a connection V, and let ¢, : R — G denote the left invariant
vector field X, passing through e at t=0, such that ¢.(0)=e and §d.(t) = X.(4.(1)).
Then ¢.(t) is the unique one-parameter subgroup of G whose tangent vector at the identity

e is equal to &. The function exp:T.G — G defined by exp($)=4.(1) is called the
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exponential map of the Lie algebra g into G. Furthermore, exp:g—>G is a local
diffeomorphism from a neighbourhood of zero in g onto a neighbourhood of e in G. This
gives a local chart for Q called the normal coordinates and are instrumental in the
parameterisation of a Lie group. For a matrix Lie group, the exponential map exp:g —»> G is

given by the ordinary series expansion:

expé = Zé— (4.47)
o Nt
Given a twist & e se(3) with vector pair {w,v} that induces a screw motion g(t) about the
screw axis {w,V}, the exponential map exp :se(3) — se(3) is defined as:

exp(ts) = g(t) (4.48)
Using Equation (4.16), it can be shown that the exponential map given in Equation (4.48)

agrees with the exponentiation of matrices in Equation (4.47). The exponential map for the

special orthogonal group SO(3) can be computed explicitly, and is given by Rodrigue’s

formula:

exp(w) = ” ”sm(“a)”) (1 COS(“w”)) (4.49)

where||| is the Euclidean norm of a vector.

Similarly, the exponential map for the special Euclidean group SE(3) with Lie algebra

described by the following 4 x 4 matrix:

@ v
{O O] o,veR® (4.50)

and[¢,,&,]= &, — &, , can be described by:

expé = [(I) ﬂ ©w=0 and exp& = [exp:)(a)) AI\V} w#0 (4.51)
where:
Aslor s 2 f1-cos(jof)+ 2 o 2o -sin(jo]) (452)
Now, consider the motion of a rigid body given by:
dg(t
Y _gz0) (453)

Since £(t) belongs to the Lie algebra se(3), Vt, then it can be expressed as a linear

combination of the basis vectors in Equation (4.17) [324]. The solution of this differential

equation can be written as the product of exponentials:
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6 .
g(®) =] Jexp(s'()L)) (4.54)
i=1
where S'(t) are analytic functions dependent on g and are taken as the set of local

coordinates.

4.5. THE METRIC PROPERTIES OF SE(3)
In Section 4.3, the invariant properties of the Riemannian metric on SE(3) were briefly

described as a measure of length of a curve on a manifold. The length of a curve is one
example of a metric for optimal trajectory generation. In this section, the metric properties on

SE(3) are investigated to develop other invariant metrics for optimal trajectory generation for
groups of vehicles. The results in this section can be found in a similar form in [319].

Consider the motion of a group of vehicles. Let q,, be a vector in the body-fixed frame
{M} corresponding to the position of a vehicle in the flock, and let g denote the same

vector in the fixed inertial frame {F}. These vectors can be related by the lifted action of
SE(3) on R®:

dr = RevOw (4.55)
where g, = (Rqy,dey) € SE(3) is the position and orientation of the frame {M} relative to

frame {F} [319]. Let W € R™" denote the symmetric matrix representation of the left
invariant quadratic form <> By Proposition 4, a metric is invariant under change of

coordinate frames if:

WR=RW, ReSO(3) (4.56)
A final property for the development of motion plans for a group of vehicles, is the

definition of a bi-invariant metric on SE(3) . The following theorem presents the conditions

for which a metric on SE(3) is bi-invariant and follows from [319].

Lemma 1. (bi-invariance of the quadratic form {:,-))
Let <> be a quadratic form (bilinear and symmetric) defined at the identity of SE(3) and

extended by left invariance throughout the manifold. Then, <> is bi-invariant if and only if:

(£.5), =(Ad&,AdE,) . VgeSEQ), VE.& ese(d) (4.57)
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Proof.
By Proposition 4, <> is both left and right invariant for any ¢&,&, ese(3) and any
g € SE(3) . From Equation (4.20) and Equation (4.57):

(6.8),=(95.95),=(9597.06,97) . =(94079597), (4.58)
Left invariance of the quadratic form <> was given in Proposition 3 and Proposition 4. To

prove bi-invariance of <> it is sufficient to prove right invariance of the quadratic form. Let

V,(h) and V,(h) be two vectors from T,SE(3) and h an arbitrary element of SE(3). For

any g € SE(3), the following is observed:

(V.(h)g.V,(h)g),, =((hg)Vi(h)g. (hg) 'V, (h)g)

(g7 V(g g7h ™V, (h)g),

=(99 " V;(Mag " 99 *h ™V, (Mgg "), (4.59)
=(h ’V(h)h]\/(h)>

=(Vi(h).V,(h)),

hence, (-) is both left and right invariant (bi-invariant).

(hg) " hg

Lemma 2. (commutation of invariant metrics)
Let W e R™" denote the symmetric matrix representation of the quadratic form <> on

SE (3) that satisfies Equation (4.56). Then,

W= (4.60)
for some y e R.
Proof.
Let v be an eigenvector of W corresponding to an eigenvalue A. Then, from Equation
(4.56):

WRv = RWv = ARv (4.61)
Therefore, Rv is an eigenvector of W for any R € SO(3) and Ww = Aw for any unit vector

we R3. By taking w as the standard Euclidean basis in R?®, it follows that W = /1 .
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Theorem 1. (bi-invariance of the metric on SE(3))
The quadratic form <> on SE(3) with matrix representation W is bi-invariant if and only if

W has the form:

=
I

| A
{ZI ’; } (4.62)

Proof.
By Lemma 1, () is bi-invariant if and only if for all &,&, ese(3) and g e SE(3) Equation
(4.57) is valid. Let:
W =[ MT N} (4.63)
N P

denote the generalised form of W with M,N,PeR*® and M, P are symmetric.
Expanding the quadratic form <> in Equation (4.57), and using the matrix representation in
Equation (4.63):

RIAT E} :[Ad;]m/lT E}[Adg], Vg e SE(3) (4.64)
Using the definition of the adjoint mapping on R® in Equation (4.22), the conditions for bi-

invariance becomes:

M N RT _Rd[M NJR O
[NT P}{o R” }{NT PLR R} (4.69)

which is equivalent to:

M =R"MR—-R"dN"R + R"NdR — R"dPdR (4.66)
N =R"NR-R"dPR (4.67)
P=R"PR (4.68)

By Lemma 2, P in Equation (4.68) must be of the form:

P=nx (4.69)
Letting d =0 in Equation (4.66) and Equation (4.67), then:

N=pl, M=al (4.70)
Using P=#, N=/l,and M =al in Equation (4.66), it follows that »(d)?> =0, vd e R?,

and y =0, hence proving the theorem.

The following proposition is used to prove the lack of bi-invariant metrics on SE(3)
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Proposition 5. (lack of bi-invariant metrics on SE(3))

There does not exist a bi-invariant (positive-definite) metric on SE(3) .

Proof.

Following Theorem 1, the matrix W in Equation (4.62) has two distinct eigenvalues [323]:

L=a+ya’+4p%), A =i(a-a’+4p%) (4.71)

both of multiplicity 3 and product 4,4, =-4%. If #=0, then 1, =0. On the other hand, if

£ #0,then 4, <0. Therefore, the matrix cannot be positive definite.

4.6. CHOICE OF METRICS ON SE(3)
The definition of minimal-distance curves on the manifold SE(3) is integral to the problem of

motion planning. In Section 4.4.2, the notion of length on a manifold was defined using a

Riemannian metric. The non-existence of a bi-invariant metric on SE(3) was proven in
Section 4.5. However, non-existence of a bi-invariant metric on SE(3) does not necessarily
translate to the non-existence of the notion of length on SE(3). Rather, it implies that the
definition of a metric is not intrinsic. The notion of length on SE(3) is restricted to a choice

of metrics defined at an identity that is extended to the group by translation [319]. In this
section, several metrics suitable for motion planning between a given set of initial and final
conditions for a group of vehicles are presented that minimise a given cost function.

The family of left invariant metrics on se(3) parameterised by 3 scalars «, £, and y, can

be expressed in matrix form as [114]:

ad Al
W =
{ P ;J (4.72)

Different values of «,f, and y yield unique left invariant metrics. For example, when

S =y =0, the metric known as the Killing form is obtained and is used to provide a measure

of the angular velocities (a®' @) within the space of twists [114]. The metric known as the
Klein form is obtained when o = » =0 and provides a measure of (2" y ). A popular metric,

known as the Park metric [298], is obtained when g =0 and is used to derive a weighted

quadratic sum of the linear and angular velocities a(o' @)+ y(v'v).
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4.6.1. THE KINETIC ENERGY METRIC

A metric of particular interest to trajectory planning is the kinetic energy of the system. The
kinetic energy of the rigid body shares the familiar structure and characterisations of the Park
metric. By construction, the kinetic energy (and generalised Park metric) is a scalar metric
independent of the choice of inertial reference frame. Therefore, it is a left invariant metric.

When restricted to the group of rotations SO(3) , the metric is bi-invariant [298].

In the following, the kinetic energy metric is derived when the body fixed frame and the

fixed inertial reference frame are initially aligned. Let {M} denote the body fixed frame
centred at centroid O’ of the rigid body, and let {F} denote a fixed inertial reference frame.
Moreover, let the body fixed frame {M} be aligned with the principal axis of the rigid body.

Then, W assumes the diagonal structure of Equation (4.73):

wo|H o
=10 m (4.73)

where m is the mass of vehicle v,, Vie N, and H is the diagonal inertia matrix of the body

about the body frame {M} given by:

H, 0 0
H=0 H, 0 (4.74)
0 0 H,
whereH,,, H , H, denote the moments of inertia about the x, y and z axes, respectively.

Let {w,v} e se(3) represent the instantaneous twist of the motion and associated with the

vector V . Then, the norm of the vector V assumes the familiar expression for the kinetic

energy:

(V.V)=o"Ho+mv'v (4.75)
Assume that the body fixed frame is displaced from frame {M} to {M '} by:

_|Rd 4.76
Ium = 0 1 (4.76)
The kinetic energy does not change if the body fixed frame is changed. This implies that the

matrix W, defining the energy metric of the new description of the motion is dependent on

the body fixed frame {M}. The following proposition describes this dependence.
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Proposition 6. (frame dependence of the energy metric)
Assume the rigid body is displaced from frame {M} to {M} according to Equation (4.76).

Then the matrix of the kinetic energy metric is given by:

W

9

(4.77)

_|RTHR-mR"(d)’R —mR"dR
mRTdR ml

Proof.

From Proposition 1, the twist induced by the change of body frame {M} to {M '} is given by:

. , R O
S :AdgMM S S :AdgMM o [AdgMM]=|:d‘R R:| (4.78)
and the metrics at identity are given by:
(&.4), =(Ady,, &.Ad,, &) =¢] A, TWIAD,, 16, (4.79)
The matrix of the metric becomes:
W, =[Ad, TW[Ad, ]= R -R'd[H 0JR 0 4.80
g Imm Oum 4 0 RT O ml aR R ( ' )

and is the same as the form in Equation (4.77).

46.2. THE RIEMANNIAN CONNECTION ON SE(3)

In this section, the Riemannian connections corresponding to the left invariant metrics in
Equation (4.72) and Equation (4.73) are investigated.
Let V denote the Riemannian connection compatible with the left invariant metric

W =[w;] in Equation (4.73). Then, for any three vector fields X , Y , and Z the following is

observed [325]:
(Z,V, ) =Y (X,Z)+ X(Z,Y) = Z(X,Y ) +--

(4.81)
+([ZY],X)+([Z,X1,Y)+([X,Y],Z)}
with Christoffel symbols given by (with respect to the chosen basis L, ):
ijl = %Zwk_n:: (CGWsm + CrSansi + CrSniWsj) (482)

where c; are the structure constants defined in Equation (4.19) and w, is the element at km

of W', If Vis the Riemannian connection associated to the Riemannian metric in Equation
(4.73) with vector fields given by X = X‘I:i and Y :Y‘I:i , then the covariant derivative is
given by [324]:
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do, 1 dv,
V.Y = " +Ea)xxa)y,ﬁ+a)xxvy (4.83)

where d/dt is the derivative along the integral curve of X . Following Equation (4.38) and
the covariant derivative in Equation (4.83), the Riemannian curvature R(X,Y)Z for any
three vector fields X , Y ,and Z is:

R(X,Y)Z ={; (o, x »,) x ®,,0} (4.84)
Having defined the necessary tools from differential geometry, the optimal motion generation

problems for a rigid body can now be developed.

4.7. NECESSARY CONDITIONS FOR OPTIMAL MOTIONS

In this section, the conditions for which a trajectory minimises an integral cost function are
presented. Example cost functions include the kinetic energy, velocity, acceleration, and jerk
of the group of vehicles. The results presented follow the works of [324] and the concepts of
calculus of variations. For brevity, only the main results of [324] are presented without proof.
For a detailed discussion on optimal motion generation using the calculus of variations, and
the relevant proofs, see Appendix B in [324].

Let g:[a,b] » SE(3) denote a curve between the points a and b. Then an optimal motion

planning problem is given by the following integral cost function:

_ /[ 99) o 99
J= I<h( o jh[ . J>dt (4.85)

In the following, specific examples of cost functions for optimal motion planning for a group
of vehicles are presented. Furthermore, it is assumed that the group of vehicles obeys the
constraints induced by the flock lattice in Equation (3.40) and behaves like a rigid body

system.

47.1. MINIMUM-DISTANCE CURVES - GEODESICS
Given a Riemannian metric, the length of a curve g(t) defined between the points g(a) and

g(b) following Equation (4.85) is given by [291]:

»/dg dg )\’
J=L(g)=|(—,—) dt 4.86
@=[2.8) (486)
Moreover, a curve that minimises the functional in Equation (4.86) also minimises the energy
functional given by [291]:

E(g) = [ (v.V )t (4.87)
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where V = (dg(t)/dt) , and the critical points are given by geodesics [291].
A geodesic g(t) on SE(3) equipped with the metric in Equation (4.73) is given by [324]:

do a
oo H o (ex(He) (4.88)
d=0
In the case when H = al , an analytical expression for the geodesic passing through:
0) d(0 R@) d(
9(0) = [ © ()] 9(1) = { W ﬂ (4.89)
is given by [324]:
o(t) = {R() d(t)} SEQ) (4.90)

where:
R(t) = R(0) exp(a,t)
d(t) =(d(@)—d(0))t +d(0) (4.91)

@, =log(R(0)" R(1))
In the case when H = al , no closed form solution exists and numerical methods must be

employed [254].

472. MINIMUM-ACCELERATION AND MINIMUM-JERK CURVES

Following the definition of the cost function for the minimum distance curves, expressions
for higher-derivative curves can similarly be obtained. The first and second time derivatives
of the velocity yield the acceleration and jerk of the group of vehicles. The corresponding
minimum-acceleration functional and minimum-jerk functional is given by Equation (4.92)
and Equation (4.93) respectively:

b
3a=[(V\V,V,V)dt (4.92)
Jiew = [ [V, VIV, W, V,V it (4.93)
where V =(dg(t)/dt) and g(t):[a,b] > SE(3). In [324], the necessary conditions for

optimality for the minimum-acceleration functional and minimume-jerk functional is given in
Equation (4.94) and Equation (4.95) respectively:

o® +oxi=0

d® o (4.94)
0 +20x 0™ +Sox (@x )+ S x -
et rox(ox(oxd)+2ox(oxd) - (Oxd)xa (4.95)

=t oxd)xd-2ox(0xd)x0)-L(ox(@xd)xw=0
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d® =0
where ()™ denotes the nth derivative of ().

In general, analytical solutions to the minimum acceleration and minimum jerk curves do
not exist for arbitrary boundary conditions. It was shown in [324], for the special case when
the initial velocities and accelerations are collinear with the initial velocity of the geodesic
between the two endpoints, and the final velocities and accelerations are collinear with the
final velocity of the geodesic, the minimum acceleration curves are re-parameterised
geodesics; and analytical solutions to the minimum-acceleration functional and minimum-
jerk functional can be obtained. This is only true for SE(3) with the metric in Equation (4.73)
and H =al [322]. For H #al in Equation (4.73), the differential equations to be satisfied
can become difficult to derive and solve. In this case, numerical methods such as shooting,

relaxation, or projection methods should be employed [327, 328].

4.8. THE RIGID-BODY CONSTRUCTION

In the previous sections, the necessary conditions for optimal motion generation for a group
of vehicles were discussed. In this section, the group of vehicles is considered by using a
rigid body model and applying the optimal motions to the navigation of the group. Applying
the flock protocol in Equation (3.34), a flock of vehicles will converge to the rigid body
construction induced by the flock lattice with edge constraints:
((D(qj _Qi))T ((D(qj' - qi)): d(d), veij ek (4.96)
i.e. from Equation (3.40):
<5j_5ilaj_ai>:0’ veijEE (4.97)
In the configuration manifold Q, the coordinates of the corresponding differential one-form

@ can be written as:

w;=[- ®(@;-q) -] (4.98)
where the non-zero elements in the above matrix appearing in the ith and jth positions

respectively correspond to the edge e;. The rigidity constraint in Equation (4.98) is not
unique and depends on the ordering given to the edges of the structural graph.

The set of constraints define a co-distribution capturing the feasible velocities along the
geodesic [329] given by:

o=span{w;}, 1,j=1...,N (4.99)
and annihilating distribution A, [254]:
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Agiq = Range(D(q)) (4.100)
where
_ql In
D@=| : : (4.101)
_QN In
and (%) is the skew-symmetric matrix. Using the annihilating distribution, the rigidity
constraint induced by the flock lattice on the configuration manifold Q can then be expressed

as [254]:

q € Arigid (q) (4102)
It was shown in [254], that the rigidity constraint in Equation (4.102) is satisfied for all t>0
if and only if:
g ) =d(®)+R®)q(0), i=1...,N (4.103)
where (R(t),d(t)) is a trajectory for the left invariant control system in Equation (4.16); i.e.:
a(t) =g®s(t) (4.104)

with initial conditions R(0) =1,, d(0) =0. Here, the Lie algebra &(t) corresponds to the left

invariant twist of the rigid structure induced by the flock lattice constraints. Furthermore,
motion planning for the N wvehicle rigid body motion problem can be reduced to a left
invariant control system on SE(n) by [254]:

6 =R[-60) 1]-£0) (4.105)
The annihilating distribution A, (q) locally describes the set of all rigid body motion
directions that conforms to a flock lattice. Following the rigid body model of the flock lattice,
optimal motion generation for the group of N -vehicles is reduced to generating one geodesic

on the SE(3) of the group structure, and N -geodesics on the SO(3) of each vehicle. While

this formulation accounts for the converged state of the flock lattice in the local frame, it fails
to consider the flexing during the transitional phase of the flock. In Section 4.10, the rigid
body model is extended to include the transitional phase of the flock lattice by introducing
the notion of a semi-rigid body model of the group of vehicles using the Hamiltonian of the
system. For now, optimal motion generation for a group of vehicles using the current rigid

body model is demonstrated for the converged flock of vehicles.
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Figure 4-2. Configuration of the rigid flock structure in local frame for 6 vehicles in SE(3).

4.9. NUMERICAL EXAMPLE: MOTION OF THE RIGID FLOCK LATTICE
Consider a group of vehicles with dynamics given in Equation (3.49). Suppose the vehicles

have converged to a coherent flock lattice with motions satisfying <q -q,p— p) =0. Then,

the flock of vehicles can be treated as a rigid body system with inter-vehicle distribution

given by d; . In the local frame {M}, the distribution of vehicles is given by the following

flock lattice (Figure 4-2):

Jad; 2d;
= J% -
= 0|, q=|7"| G=| 0
0 0 0
(4.106)
0 0 0
V2d;
A =|—3"| G=| 0| ¢g=| O
Jad; d;
0 = -

and the inertial frame {F} is assumed to be coincident with the local frame {M} at t =0.

Assuming compliance to a rigid body model, the objective is to navigate the group of
vehicles with configuration given in Equation (4.106) from one configuration
g(0) = (R(0),d(0)) to some desired final configuration g(1) = (R(2),d(2)). For the remainder

of this section, the following conditions are considered:
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(4.107)

-1 00 200
These correspond to a translation of the centre of the virtual structure induced by the flock

lattice from the coordinates g =(0,0,0) to q=(200,0,200), and a rotation of Rot(y,—%

about the local frame. It is assumed that the group of vehicles is homogenous with vehicle

mass given by m, =m, i=1,...,6. Optimal motion with respect to energy and acceleration

are now considered.

49.1. MINIMUM ENERGY CURVES
For a group of vehicles with configuration (4.106) and masses m, =m, i=1,...,6, the mass

moment of inertia H is given by:

2a’ 0 0
H =% 0 a’+ih? 0 (4.108)
0 0 a’+4hn?
From Equation (4.73), the kinetic energy metric is given by:
H 0
W = , (4.109)
0 Fl

and assumes the diagonal form of the Park metric.

Metric (4.109) induces the following cost function associated with the kinetic energy:

J= j(v,v>dt (4.110)

It was shown in Section 4.7.1 that the minimum of Equation (4.110) is given by the geodesics

on SE(3), and can be found by solving the following differential equations:

99 _ _H Y (wx(Ho))
dt (4.111)
d=0
Solutions are given in Equation (4.91), and correspond to uniform rectilinear translation of

the centroid of the virtual structure, and uniform rotation between 0 and —% about y. The

interpolating motions for the rigid body in Figure 4-2 is shown in Figure 4-3 (a).
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49.2. MINIMUM ACCELERATION CURVES

As discussed in Section 4.7.2, analytical solutions to minimum acceleration curves generally
do not exist for arbitrary boundary conditions. However, it is still possible to obtain
trajectories satisfying the necessary conditions for minimum-acceleration in Equation (4.92)
(and Equation (4.93) for minimum-jerk) by solving the associated boundary-value problem
numerically. For the following example, the interpolating motion satisfying the differential
equations in Equation (4.92) were solved using a finite-difference method with 100 grid
points [330] in MATLAB. Figure 4-3 (b) shows the corresponding interpolating motions for

the minimum-acceleration curves for the configuration in Figure 4-2.

410. THE SEMI-RIGID BODY CONSTRUCTION

In Section 4.8, a rigid body model was constructed for a group of vehicles with fixed inter-
vehicle distances. This assumption, while sufficiently general to accommodate time-invariant
vehicle distributions, fails to capture the transient behaviour of the group of vehicles moving
from one configuration to the next. Consider the case for a group of vehicles with random
initial distribution applying the flock protocol in Equation (3.34). A group of vehicles
applying the flock protocol will converge to a flock lattice (as described in Chapter 3) and
maintain a fixed connectivity satisfying the rigidity constraints in Equation (3.40) and behave
as a rigid body. The transition from the initial configuration to the flock lattice however, will
induce a flexing of the graph topology that violates the rigidity constraints in Equation (3.40).
In this phase, the flock is characterised by a semi-rigid body model with vehicle motions
violating the paths defined by the geodesics in Section 4.7. To effectively plan the motions
for a group of vehicles, the effect of these geodesically-conflicting motions must be
considered.

From Equation (4.5), the rigid body constraints induce the following co-distribution on the

tangent space T°Q [331]:

Wrigia = SPa{@y i, J,..., N} (4.112)
The annihilating distribution of @,;, (i.e., @, (A,)=0) provides the set of rigidity
constraints A, of the virtual structure on T'Q. For g; €Q,, and g e H.N Q,i1=1...,N,
the annihilating distribution of @, is given by [254]:

Ayqq = Range(C(q)) (4.113)
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(b)

Figure 4-3. Optimal trajectories for a rigid flock lattice with respect to (a) minimum energy, and (b)
minimum acceleration.
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where Range(C(q)) is the column space of matrix C(q), and C(q) is the matrix whose

columns are the basis for A, given by:

A

=G
C(@)=| : : (4.114)
- @1 |3
On the tangent manifold, the rigidity constraints are then given by:
4 € Ay (4.115)

The set of motions violating the rigid body constraints, are then given by the orthogonal

complement to the rigid distribution A, (q) . Given a Riemannian metric W with product
structure in Equation (4.29), the orthogonal complement of A, (q) yields the non-rigid
distribution [254]:

Anon—rigid (q) = NU“(D(Q)TW) (4116)
where D(q) is the matrix whose columns are the basis of A Denote V, =4 T,Q an

non-rigid *

arbitrary tangent vector to the point g € Q, and proj Arigidvq , proj, V, the projection of V,

non-rigid q

onto the distribution A, and A § respectively®. Then, for a semi-rigid body induced by

rigi non-rigi

the flocking protocol in Equation (3.34), the tangent vector V, can be recovered using the
sum of the projection onto the rigid and non-rigid distributions, i.e. [333]:

V, =proj,, Vg + proj, (4.117)
This provides the velocity at a point g as a function of the rigid and non-rigid contributions.

non-rigid q

In the following section, the semi-rigid body model constructed in this section, is used to

construct a shape abstraction based on the energy metric of the system of equations.

4.11. SHAPE ABSTRACTIONS OF THE SEMI-RIGID CONSTRUCTION

In Chapter 2, it was shown for a group of vehicles, that the flock lattice configuration is a
minimum of the structural potential in Equation (3.12). By controlling the dissipation of the
energy functional in Equation (3.12), the convergence of the group of vehicles from an
arbitrary configuration to a desired flock lattice configuration can be controlled at a

supervisory level. For a configuration of vehicles g € Q = R" in the local frame {M} and

® In [176, 332], the notation Ver, and Hor, is used to denote the tangent space and orthogonal complement to

the point g respectively.
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Figure 4-4. The n — sphere shape abstraction for a group of vehicles with controllable antipodal points.

centred at @, the position of a vehicle in the local frame applying Protocol (3.34) is located

in the closed n-sphere centred at @ with radius R = \/2}[ (9(0), p(0)) .

Based on these observations, the energy of the system becomes a parameter of significant
interest for identifying and controlling the group of vehicles at a supervisory level. In fact, the
energy of the system provides a one-dimensional abstraction for the region occupied by the
configuration of vehicles. Minimising the energy of the system, effectively controls the
evolution of the sphere (or circle in the planar case) bounding the region occupied by the
vehicles in the group.

Following the notation introduced in Section 4.10 for the semi-rigid body model of the
flock, the quadratic form of the energy metric in Equation (4.73) can be re-written in terms of

the rigid and non-rigid contributions [254]:

<Vq1,Vq2> :VqlTWVq2 = <proj r. Vg, Proj rsV 2> + <proj « V2, proj,

ig q non—rigid 9’

V) (4.118)
The problem of interest is to control the convergence of the group of vehicles at the
supervisory level to the desired flock lattice; irrespective of the number of vehicles in the
group. To adjust the expansion and contraction of the shape bounding the group of vehicles

along the rigid and non-rigid projection, the following form of Equation (4.118):

<vql,vq2> = a,<projAr_giqu1, projArigiqu2> +(1- ar)<projAn V! proj, V 2> (4.119)

i on-rigid q non-rigid q

where the term o, € (0,1) has been introduced as a shape control parameter (see also [254,

332, 333] for a similar treatment). For o, =1, the virtual structure is described by the rigid

body model in Section 4.8. The vehicles move along geodesics corresponding to the optimal
rigid body motions for the collective group. In this case, the behaviour of the vehicles is
strictly defined by the performance of the collective group. In the extreme case, when

o, =0, the rigidity constraints of the virtual structure are relaxed, and motions are strictly

non-rigid. This corresponds to motions orthogonal to the optimal rigid body motions of the
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group. Setting o, =.5, the Christoffel symbols in Equation (4.46) become zero, and the

motion of the group of vehicles becomes the optimal uncoordinated interpolating motions of
the individual vehicles; straight lines uniformly parameterised in time [254].

Using the metric in Equation (4.119) and the geodesic flow in Equation (4.46), the motion
of a vehicle can be obtained by solving a two-point boundary value problem. For example, if
the state of each vehicle is known at initialisation and at some future time, then solving the
boundary value problem can be achieved using any number of numerical techniques. While
this is possible when state information for each vehicle is available to a supervisory agent, it
is highly impractical from a computational and hardware point-of-view. Ideally, the motion
generation and control for the group of vehicles at the supervisory level should be reduced to
lower-dimensional manifold. Since the position of a vehicle in the flock is always located in
the n-sphere given by:

S" ={g, eR" o, - <R} (4.120)
then controlling the group of vehicles can be reduced to controlling the expansion and

contraction of two antipodal points q;,g, € Q =R" along the surface of the n-sphere (see

Figure 4-4). The points (g, ,q,) can be considered as virtual agents with dynamics given by:

{q “P s (4.121)
P =y
The virtual agents define a virtual structure bounded by:

S" =\ eR":(q-7,9-0)<3(af -~ a5~ )] (4.122)

The virtual structure is used constraint the N to the closed n-sphere in Equation (4.122). In
the proceeding chapter, a cooperative control scheme using distributed optimisation
techniques is presented to provide the final relationship between the individual vehicle

positions and the shape abstraction described by the virtual agents (q,,q,). The result is a

cooperative control scheme based on the virtual structure approach. Before proceeding with
the development of the individual vehicle control laws, the optimal shape control problem for
the supervisory level is demonstrated using the semi-rigid body model of the flock. The
motion defined by this strategy, provides a constraint on the group objective that couples the
vehicles and promotes group cooperation.
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412. NUMERICAL EXAMPLE: SEMI-RIGID FLOCK CONTROL

In this section, the shape abstraction described in the previous section is demonstrated for a
group of N =5 vehicles with dynamics given in Equation (3.49) initial distribution, and

velocity given by:

0 5 5 o -
ql(o)_[o] qz(O)—[s}, %(0)—{_5] q4(0)—{_5}, q5(0)—{5} (4.123)

6,(0) = 4, (0) = 45(0) = ¢, (0) = g5 (0) =[0 O]
where ¢(0) is the concatenated set of velocities for the group of vehicles. Suppose that the

vehicles apply the flock protocol in Equation (3.34), then, from Theorem 2 in Chapter 3 the
group of vehicles will converge to a flock lattice spanning the disk:

$? ={q, e R" :|q; - q] < Y27 (q(0),4(0))} (4.124)
The objective is to navigate the group of vehicles from the initial disk configuration spanned

by the distribution in Equation (4.123), to the desired final disk configuration in Equation
(4.124) along a predefined trajectory. Controlling the shape spanned by the flock is achieved

by generating the motions of the N_ antipodal points along the surface of the disk between

the initial shape and the final shape. The motion of the antipodal points is governed by the
dynamics in Equation (3.49), and is obtained by smoothly varying the kinetic energy metric
in Equation (4.73). The metric in Equation (4.73), assumes that any two points in the local
frame observes the rigidity constraints in Equation (3.40). However, since the flock evolves
according to the flock protocol in Equation (3.34) and is described by the semi-rigid body
model in Section 4.10, then the metric is no longer constant.

Following the definition of a semi-rigid body model, and Equation (4.119), the metric

induced by the semi-rigid body construction W, , can be obtained by considering the

projections of the motion along the rigidity preserving and rigidity violating directions.
Expanding Equation (4.119) for the rigid body model:

<Vq1,Vq2> = ar<projA”giqul, proj, V 2>+ 1-o, )<projA V.,proj, Vv 2>

) rigid  d ] non—rigid 4 non-rigid ~ d (4125)
=o' C(q)"WC(q)v* +(1-o,)w' D(q)"WD(q)w’
where v, and w are the components of the projections on the basis:
proj, Ve = C(Q)v
(4.126)

prOjAnon—rigiqu = D(q)W
and from Equation (4.125) the following is observed:
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v =(C(q)"WC(a)) "C(a)" WV,
w = (D(q)' WD(q)) " D(a) WV,
Following Equation (4.125), the new semi-rigid body metric with shape control parameter o,

(4.127)

is defined as:
(Vo Vy ), =V, W,V
= o, V" C(q)'WC(q)V* + (-, )w" D(a)" WD(a)w”
- o, [(c@ We@) e @ Wy, | (@) We@)(E(@) We@) e @ W, |+

+ -0, |(D(@) WD (@) D)WV, | D(@) WD(g)(D(a) WD(@)* D(@) WV, |
Solving Equation (4.128) for W, , yields the new matrix of the energy metric for the semi-

(4.128)

rigid body model [254]:
W, (9) = o,WC(a)(C(a) WC()) ' C(@)"W +---

+++ (1=, )WD(q)(D(a) WD(q)) " D(q)'W
Using the semi-rigid body energy metric in Equation (4.129), the optimal trajectories for the

(4.129)

antipodal points can now be determined.

From Equation (4.114) and Equation (4.116), the column spaces C(q) and D(q) for two

points in a plane is given by the following:

-y; 10 e

. X; 0 1 . 1
C@’)=| °, . D@) =] . . (4.130)

Y2 10

X; 01 1

Using the column spaces in Equation (4.130), the semi-rigid energy metric in Equation
(4.129), and Equation (4.34), the 64 Christoffel Symbols for the geodesic flow equations in
(4.46) can be obtained. For the general case of n=2, N_ =2, the Christoffel symbols are
provided in Appendix B.

For the following example, assume m, =m, =m=1, and the boundary conditions for the

two antipodal points is given by:

max{”qo —G; (0)|[}

. 0 o [RED) AT
0

110



where max{jd, — q; (O)[} = V107, d(@)=[100 -50] , and R(-Z) is the rotational subgroup
SO(2) parameterised by @ and corresponding to a rotation about the body fixed frame {M}
by 6 =-%.

Figure 4-5 shows the corresponding trajectories of the antipodal points solved using the
semi-rigid body energy metric in Equation (4.129) for o, =0.1, o, =0.5, and o, =0.75.
From Figure 4-5, as the shape control parameter o, — 0, the antipodal points are only
permitted to move along the antipodal line connecting them. This causes the disk spanned by
the flock to expand and contract. As o, — 0.5, the Christoffel symbols become zero and the
trajectories are the optimal motions described in Section 4.7.1; i.e. straight lines. On the other
hand, as o, — 1.0, the non-rigid motions are penalised, and the corresponding geodesics are
optimal rigid motions. This corresponds to the case when the antipodal points remain a fixed
during the group’s motion. In this example, the rigid body case o, =1 is not available since

the initial and final configurations specified are not consistent with the rigid body model.

413. SUMMARY

In this chapter, the concepts of differential geometry were introduced and applied to the
motion generation problem for a group of vehicles. By treating the converged flock
configuration as a rigid body, optimal control techniques familiar to rigid body motion were
applied. This provided a useful abstraction for the group of vehicles. The rigid body model
was then extended to include the motions induced by the flock protocols that would violate
the rigid body paths. The resulting model was a semi-rigid body construction. To map the
individual vehicles to this rigid body model, and preserve scaling, virtual agents were used to
represent the shape spanned by the group. Using the convergence results in Chapter 3, the
shape abstraction was defined using the n-sphere. The group motion and shape abstraction
both provide a method for controlling the group at the supervisory level. Convergence of the
individuals to the desired shape and pose as prescribed by the supervisory controller
represents the cooperative control problem for the individual vehicles. In the next chapter, the
relationship between this desired group level behaviour, and the local vehicle level is
considered by designing a cooperative control scheme based on traditional model predictive
control. This provides the last piece of the decentralised cooperative control framework to

realise the cooperative objective.
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Figure 4-5. Motions induced by the semi-rigid body metric for various shape control parameters o,.



Chapter 5. Cooperation Through Decentralised Model

Predictive Control

In this chapter, the problem of cooperative control for a group of vehicles is addressed. A
decentralised cooperative control scheme based on traditional Model Predictive Control
(MPC) is proposed. The cooperative control scheme uses shared information to reach a
consensus on the coordination variable representative of the group task. The shared
information refers to optimal plans generated by each vehicle at the sampling periods. The
plans correspond to solutions to a finite-time optimisation problem. The finite-time
optimisation problem represents arbitration between the local goals of the vehicles and the
global goals of the group. Solutions to the finite-time optimal control problem correspond to
the open-loop state trajectory that takes the vehicle’s current state to a final optimal state in
the desired abstract manifold. This provides the necessary (and final) relationship between
the local interactions of the vehicles and the group-level behaviours. Coordination follows
from the exchange of these plans with neighbouring vehicles to negotiate a consensus on the
final group state matching the commanded group states of the supervisory agent.

The main objective of this chapter is to develop a decentralised coordination scheme for the
cooperative vehicles using a traditional MPC scheme to develop plans and exchange
information at each sampling period. The chapter is organised as follows. In Section 5.1, the
original centralised MPC scheme is introduced and a numerical demonstration is presented in
Section 5.2 for the flock of vehicles described in Chapter 3. In Section 5.3, the main
contribution of this chapter, the decentralised cooperative control scheme, is presented. The
closed-loop stability of the system is then presented in Section 5.4 followed by a discussion
in Section 5.5 on the limitations of the distributed implementation. The proposed cooperative
control scheme will then be demonstrated for a group of vehicles in Chapter 6 for search and

rescue.
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5.1. PROBLEM FORMULATION

Consider N dynamically decoupled vehicles with time-invariant state equations given by:

qi (t) = fi(qi (t), U; (t)) (5-1)

with state vector g;(t) e R™ belonging to the set of feasible states Q, < R" , and input vector
u(t) e R™ belonging to the set of feasible inputs U, < R™ for vehicle v,. The state of each
vehicle is updated according to the continuous function f:R" xR™ — R™ and is assumed
stabilisable at the equilibrium pair (g’,u’) of vehicle v,. For fully actuated vehicles in free

space, the states are described by position and orientation vectors; i.e. g, = (x,,6,)".
Let q(t) EH.N: Q =R™, and u(t) EH.N: U, =R™ denote the concatenated form of the

state and input vectors of the collective flock, and let (g°,u®) denote the corresponding

equilibrium pair of the collective system. Then,

q(t) = f(q(t),u()) (5.2)

is the nN -dimensional control system for the collective flock with concatenated state vector

q(t) =[q,(t),...,qy (t)], and input vector u(t) =[u,(t),...,u, (t)] stabilisable by the state update

functions f (q(t),u(t)) =[f,(q,(t),u,(t)),..., fy(Qy (t),uy (t))] to the equilibrium pair (q7,u’) .

5.1.1. COUPLING CONSTRAINTS

The above discussion implies that the vehicles in Equation (5.2) are completely decoupled in
the collective system. If the vehicles are truly autonomous and act independently from any
centralised control, then the system is decentralised and the behaviour is an emergent
property of the (possibly competing) interactions of the vehicles. For purposeful group
behaviour, the vehicles must cooperate to achieve a global group goal. This could include
objectives such as formation stabilisation, multi-point rendezvous, and synchronised
interception. The group objective induces a coupling constraint on the vehicle’s behaviour,
and describes a distributed information architecture. Whilst this contrasts the decoupled
nature of the decentralised control architecture, it turns out that the distributed control
architecture is only used to describe the information flow in the system, and not the control of
the vehicles. Decentralisation is achieved by using the group abstractions in Chapter 3, and
endowing the vehicles with sufficient autonomy, to plan and coordinate their actions with
neighbouring vehicles and avoid collisions. In this section, the coupling constraints of

vehicles are modelled using the graph structures introduced in Chapter 3.
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To remain consistent with the finite interactions of the vehicles in the flock, and the
physical limitations of the sensors and communication devices, the interaction graphs
depicted in Section 3.2.1 are used to model the coupling constraints in the flock. Associate

the ith vehicle to node v; of the interaction graph G =(V,E), and an edge e=(v,,v;) e E
connecting vehicle v; to v;, i # j. If there exists an edge e = (v;,v;) € E between vehicle v,
and v;, then vehicle v, and v; are coupled either through the cost function or constraints. In
Section 3.2.1, the sensory and communication radius r, for vehicle v, induced a spatial

interconnection graph G = (V,E), with adjacency matrix:

1, ifOstj—xiH<5, j#i
3;(x) = p;(2) = %[“ COS(((Z;) )] It o < ij —X% H <r, J#I (5.3)
0, otherwise

and spatial neighbourhood of vehicle v, defined by:
Ny ={ieV:]x, -x]<r} (5.4)
For the purposes of generality, it is assumed that the flock is homogenous, and the vehicles

share identical sensory and communication capabilities; i.e., r=r=r; and p=p =p,,

Vi,jeN,i#]j.

Remark.

In Section 2.3, for a group of mobile vehicles with finite interaction range r, the induced
spatial information network is time-varying. In the proceeding sections, a time-invariant
information network is assumed. Stability becomes more difficult to prove when the
interaction graph is a switching network. It was shown in Section 2.3, that the switching
network of the information exchange topology is an example of an autonomous hybrid
differential-algebraic system. Analytical methods to analyse the stability of these types of
systems is currently an area of active research in the mathematics and control fields.
Therefore, the proof of stability for the time-varying case can only be shown using a

numerical example. This is provided in Section 5.5.

5.12. THE CENTRALISED OPTIMISATION PROBLEM

In the following, a centralised optimisation problem is formulated for a group of vehicles

with some shared objective. Let X. denote the states of all neighbouring vehicles v; of vehicle
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v, such that X ={x;eR" [(ji)eE}, X eR™ with i =) n,, and let 0 eR™

jlGiiee 7
denote the set of corresponding inputs Vj e ;. Denote the corresponding equilibrium pair
for the group of  neighbours  with (x5,0°) < (x°,u®) and  define

l:R™xR™xR™xR™ — R as the distributed integrated cost function associated to vehicle

Vi, VieN satisfying |(x,u,%,0)>c(x,u, %X, 0G)* and | (¢,uf,X°,07)=0. The

centralised cost function for the interconnected system is then given by:

N
I(x,u) =z|i(xi1ui’iila-i) (5.5)
i=1
where the sum of 1.(x;,u;,X;,U;) recovers the cost of I(x,u). The information network induces

the following coupling constraints:

9;,;(%,%;) <0 (5.6)
between neighbouring vehicles v, and v;, where g;:R" «R" —»R™ is a continuous
(possibly non-convex) function. Using X, Equation (5.6) can be rewritten as:

g,(x,%) <0 (5.7)
Note the undirected nature of the information flow induces redundant constraints on the cost
function.

Having defined the cumulative cost of the interconnected system, and the constraints
induced by the information flow, consider the following infinite time optimal control

problem:

PRTI

Jo(x(¥) = {umin }]:I(x,u)dt

SUbjeCt to: Xi (t) = fi(Xi (t)!ui(t))
i=1...,N, t>0 (5.8)
X(t)e X,, ul(t)eU,
gi,j(xi(t)iii(t))so’ VjieN,
X, = X(0)
Given Problem (5.8), the control objective is to stabilise the collective system to the

equilibrium pair (x%,u®). When the variable x. is the dynamic states of vehicle v,, the
optimisation problem in Equation (5.8) the equilibrium pair (x°,u®) corresponds to a

distribution of vehicles. For a given initial state of the collective system x(0)eR"™,
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Problem (5.8) is feasible if the set of optimal inputs {u”(0),u”(1),...} drives the N systems to

their equilibrium points x; while satisfying state, input and coupling constraints.

Output Trajectory x(t)

Centrol Input u(t)

Figure 5-1. Traditional MPC scheme.

5.1.3. FINITE HORIZON CONTROL
In many cases, solving an infinite horizon control problem is computationally intractable. An
infinite horizon controller can be designed by repeatedly solving a finite time optimal control
problem over a receding horizon. At each sampling period, an open-loop optimal control
problem is solved over a finite horizon, and the optimal input is applied in the proceeding
sampling period. A new finite time optimal control problem is then solved at the next
sampling period over the shifted horizon using the new state measurements obtained by
applying the optimal control input from the previous horizon. The resultant controller is
referred to as a Receding Horizon Controller (RHC) or Model Predictive Controller (MPC)
[334].

To decompose the optimisation problem in Equation (5.8) into a set of finite time sub-

problems, let 7, [t ,t. +T] denote the prediction horizon interval with update time t,,
ke N ={1.2,...}, and prediction length T . For any prediction horizon z, , the predicted states
X () =% (tey 18 )se s X (b [8)s-- 0 % (87 | £)} are obtained by applying the predicted set
of control inputs U, (t,) ={u, (t, |t.),-.- U, (te, e [£)s- - Ui (br s 1 1)} to System (5.1) using the

current set of state measurements x,(t,) at time t, . The concatenated set of predicted states
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and predicted control inputs for the collective flock at time t, is similarly denoted by
X(t)eR™ and (G(t)eR"", respectively. Let X, = R""denote the terminal region
associated to the prediction horizon (i.e., x(t,,; |t,) € X,). Then, the terminal cost function
I"(x(t,.; |t,)) takes the state x(t,) from time t, to the terminal state x(t ) attime t,..
Using the finite time horizon 7, €[t,,t, +T], and the predicted states X(t,)e R“, and

control trajectories G(t,) € RN, Problem (5.8) can be expressed as the following constrained

finite time optimal control problem:

et
306 = gnin, 10 6 G IO BT+ (xC 7 180)
Subject to: X (7, |t) = f.(X (7 |t).u (7, 1))
i=1..,N, 7 e[t.t +T]
%z [t) e Xi, Uz [t) eV, (5.9)
7 €[t .t +T]
gi,j(xi(Tk [t). X (7 1t)) <0, VjedN,

X(t, 1) = x(t,)
X(t.r 1) € X

Denote the optimal solution to Equation (5.9) at time t, with a°(t.)={u"(t, |t),...
LUt |8} At the next sampling period, each vehicle applies the first sample of

u*(t,), such that:

u(t,,)=u "t It) (5.10)
and the remainder of the predicted input is discarded. The optimisation problem (5.9) is
repeated at the next sampling period t,,, over the next shifted horizon 7, ,, €[t ..t .7 .,] (see
Figure 5-1). This process of re-sampling and recomputing over each horizon closes the open-

loop solution of Equation (5.9).

5.2. NUMERICAL EXAMPLE: RECEDING HORIZON CONTROL FOR
FLOCKING

In the following example, the concepts of model predictive control are applied to a group of
vehicles using a centralised architecture. Consider a group of 6 vehicles with position

initialised along the line:
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0—0 O—2 O—4 0—6
ql()—o, qz()—o, qs()—O: q4()—0
8 10
Q5(0):{0] q6(0)=|:0:|

and velocity randomly selected in the range p;(0) e[-11]x[-11], Vie N. Each vehicle is

(5.11)

assumed to have dynamics decoupled from the other vehicles, and described by
X (1) = (a; (), 6, (1) € X; =R™, y;(t) eU; =R":

X (t)=Ax ({t)+Bu(t), t=0 (5.12)

fo] o _fo
A‘{o o] = (5.13)

and I, is the n-dimensional identity matrix. Concatenating the vehicle dynamics to produce

where:

the group dynamics:
X(t) = Ax(t) + Bu(t), t>0 (5.14)
with xe [T, X, =R™, ue[]" U =R™, A=diag(A,...,A,), B=diag(B,,...,B,).

The control objective is to asymptotically stabilise the group of vehicles to the equilibrium

e

x® =(x,...,Xy) of a common objective. In this example, the objective is to stabilise the

group of vehicles to the flock lattice in Chapter 3. Using the Hamiltonian of the system from
Section 3.2.4:

HW =5 20 5% Yvioe-a) 5.15)

i ji, e
the centralised integrated cost function for flocking is given by:

=3 D Jaf + 25 Sy, -a) .16

i i, jeN;
where the minimum of Equation (5.16) yields the position values q°=(q;,...,qy) at x°

corresponding to the flock lattice of Chapter 3. Note the term |u[* has been introduced to

penalise the control input. While the £,-norm used to penalise the control input here is non-

linear, the scale of the optimisation problem is assumed to be solvable. A more conservative
approach to formulating the optimisation problem in Equation (5.16) would be to linearise the
penalty on the control input through the introduction of an appropriate penalty function such

as the L£_-norm or to soften the constraints. Assuming that the optimisation problem in

Equation (5.16) is solvable with the penalty function and the constraint definitions, solutions

119



to the centralised objective function in Equation (5.16) at each sampling period t,, can be
obtained by repeatedly solving Equation (5.9) over successive horizons z, €[t,,t, +T].

For the following simulation, the horizon length is varied between T =2.4s, T =3.6s,

T =4.8s and the control input for each vehicle v, is bounded by Equation (5.17):

U, ={u, = (u,.uy) e R*|-1<uy,u, <I} (5.17)
The MPC scheme is implemented in a centralised architecture with full state-feedback to a
supervisory agent. Information from each vehicle is transmitted to the supervisory agent at

each sampling period t, =0.6 seconds and is used to solve the corresponding finite-time
optimal control problem in Equation (5.9) over the horizon 7, €[t ;,t,.7.,]. Optimal

control trajectories for proceeding horizons are then transmitted to each vehicle. It is assumed
that an inner-loop controller for each vehicle is then used to track the control trajectories
provided by the supervisory agent with zero error at each sampling period. For the following
simulation, it is also assumed that the computational time of the supervisory agent, and the
information exchanged times between the supervisory agent and the vehicles are negligible.
In practice, the computational and information exchange times are non-negligible since
delays will affect the stability and performance of the system.

To solve the finite-time horizon control problem at each sampling period, a global
optimisation search procedure based on the dual-primal gradient-based recurrent neural
network is used [335-340]. The dual-primal gradient-based recurrent neural network
presented in [337] is based on the reduction of the duality gap induced by the Dual-Quadratic
Programming (DQP) representation of Problem (5.9) and Equation (5.16). The dual-primal
gradient-based recurrent neural network has the advantage of guaranteeing convergence to
the global minimum without the explicit expression of the gradient information of the
objective. This means that the dual-primal gradient-based recurrent neural network is
sufficiently robust to be applied naively to many DQP problems. A detailed description of the
dual-primal gradient-based recurrent neural network and its functioning is given in [337, 339,
340] with applications presented in [335, 336, 338].

The dissipation of the structural potential for the flock lattice for T =2.4s, T =3.6s, and
T =4.8s is shown in Figure 5-2. Increasing the horizon length, in general, improves the
response of the system and leads to a faster convergence. The state trajectories of the
group of vehicles converging to the flock lattice for T =2.4s T =3.6s, and T =4.8s are

shown in Figure 5-3, Figure 5-4, and Figure 5-5. Triangles are used to represent the direction
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of the corresponding velocity vector. The corresponding model predictive control law for
each vehicle is shown in Figure 5-6 and Figure 5-7.

From Figure 5-6 and Figure 5-7, the effect of the hard constraint has minimal effect on the
solution quality for specified scenario. In each of the cases, vehicles most further from the
centre of the flock ride the control limit at the initial stage of the simulation. This suggests
that based on the distance of the vehicles and the connectivity of the network, the vehicles
will be initially forced to move towards the centre of the group. This is in concert with the
flock protocol introduced in Section 3.2.4. Despite this initial saturation, however, the penalty
function successfully minimises the control input over successive periods. This is shown by
the gradual decay of the control input for each vehicle in Figure 5-6 and Figure 5-7 that
follows the sharp initial control input. This highlights an area of further study involving the
investigation of the relationship between the hard constraints of the vehicle’s actuators and
the communication radius of the network’s connectivity.

As in many linear quadratic optimisation problems, the hard constraints and the £,-norm

penalty functions can be made complementary by simply representing the hard constraints as
linear inequalities and softening the constraints. This would have the added benefit of
linearising the problem space and reducing the complexity of the optimisation problem.
Another approach to specifying the penalty function of the control input and controlling the
degradation on the response of Equation (5.16) is to minimise the deviation between
successive control inputs. This would have the effect of smoothing out any overshoot or

oscillatory behaviour in the control response.
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Figure 5-4. Convergence of the flock lattice for T = 3.6s using the centralised model predictive control

law.
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Figure 5-5. Convergence of the flock lattice for T

law.
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5.3. COOPERATIVE DECENTRALISED MODEL PREDICTIVE CONTROL
STRATEGY

In this section, the centralised optimal control problem is decoupled into N finite time
optimal control problems for implementation into N vehicles. The coupling induced by the
information flow is used to reach a consensus and solve the optimal control problem of
Equation (5.9). Two types of information are available to each vehicle in the flock; i) the
states and controls of the interconnected vehicles, and ii) the partial solutions of the
optimisation problem. Partial solutions are defined as those intrinsically coupled to the
perspective of the individual vehicles. Due to the bounded sensory and communication limits
of each vehicle, the information available to each vehicle is localised to a finite range.

Each vehicle has information about its current states and its neighbours’ current states
through sensory and communication means. Based on the information provided, each vehicle
computes its own open-loop optimal trajectories. At each sampling period, vehicles exchange
the set of predicted state trajectories for the next shifted horizon with neighbouring vehicles
and receive their predicted plans over the next shifted horizon. The received plans for the
proceeding shifted horizon act to constrain the optimal control problem in Equation (5.9) and
are used by the vehicles to estimate the effect of the neighbours’ plans on their own plans for
the proceeding prediction horizon. A more formal description is presented in Definition 1. In
the case of flocking, the predicted trajectories of neighbouring vehicles are used to define a

time-invariant network over the prediction horizon. For t, €[0,), the dynamic flock

topology is approximated by a switching network with a fixed topology over predicted dwell
times. In later sections, the decentralised model predictive controller is implemented with

respect to other multi-vehicle objectives.

Definition 1. (notation)
Over the prediction horizon 7, €[t,,t,;], in the optimal control problem for each system
i=1...,N, and associated with the initial state x(t,), the following notation is defined for

the decentralised model predictive control strategy:
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Table 5-1. Notation for decentralised model predictive control.

current state x.(t,)) e R™ | the current state of vehicle v; at time t,

neighbours’ | the current state of neighbours j of i (i.e. jeN;) at
X (t) e R"

current state time t,

planned control o the control being optimised and applied to the system
u(t)eR™

trajectory (%) over the interval [t,,t, .. ] using state x(t,) attime t,

planned state .| the state trajectories obtained over the interval
X(t)eR™

trajectory (&) [t .t .- ] by applying the set G, (t,) to system (5.1)

assumed state - the set of neighbours’ plans transmitted at time t to
X(t)eR™

trajectory (&) vehicle v; and derived using states x;(t, ), Vj e %V,

where the state x(t,) € X, and input u,(t,) €U, constraint for each vehicle contain the
origin in their interior.

By definition, the assumed state trajectories of the neighbours for the ith vehicle at time t,
over the interval 7, €[t ,t..;], Vj e N, is the concatenated set of planned state trajectories
for neighbours Vje NV, over the interval obtained using state Xx,(t, ,) at time t,_, by
neighbour Vje %, (i.e. {)‘(i(tkfl),...,i‘Ni‘(tkfl)}, Vj e N;). Vehicle v, assumes that vehicle
v; does not deviate from its transmitted plans. An important point is that the initial condition
of every assumed state trajectory is equal to the actual initial state value of the

corresponding system, i.e.:

ii (t) =%t [t,) (5.18)
for every i=1,...,N . To be consistent with the notation X;, let x; ; be the vector of assumed

state trajectories of neighbour v, for vehicle v;, i.e.:

%t [t) = x;(t) (5.19)
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Using the definitions provided, the finite time optimal control problem for vehicle v, at time
t. is given by:

tk+T

‘]iTT (% (t ), % (t)) = {E,n(!kr}} {[li()A(i (7, |tk)!l:ii (7 [t ), X (7, |tk))jz-k

106 (ber 16005 (b (1)
Subject to: % (7 [t) = fi(x% (7 [) Ui (7 [ 1))
i=1..,N, 7 elt.t +T]
X (T |t) e Xi, Uz |t) eV (5.20)
7 €[t .t +T]
(i) e
gi,j(xi(Tk [t).x(z, [t)) <0, VjedN,
x(t [t) = x(t,)
X(t.r [t) e X ()
where

xf(ai):z{xGR": 230{“0420} (5.21)

and «, €[0,) is a constant, and P=P" >0 is a terminal weighting matrix. The control

X=X

objective is to cooperatively and asymptotically stabilise all the vehicles to the equilibrium
pair (x°,u®) of the collective flock. Cooperation is achieved by the minimisation of the cost

function in Equation (5.20). The optimal solution to the optimal control problem in Equation
(5.20) is then given by:

l]i*(tk) = (ﬁi*(tk |tk)""!ai*(tk+T |tk)) (5-22)
Consider a linearization of system (5.1) about the origin (x;,u,) = (x7,0) as:
X; (tk) = AX (tk) +Buy (tk) (5.23)

with A =of, /ox (x°,0)and B, = of, /ou, (x°,0) . If Equation (5.23) is stabilisable, then a linear
feedback control law:

u; (1) = K (%" () = x7) (5.24)
is defined such that A + B,K, has eigenvalues in the open left-half complex plane and is

asymptotically stable [341]. Application of the first component of the ith sub-problem

defines an implicit control law in Equation (5.24) that stabilises vehicle v, in X, (¢,) to the
equilibrium (x7,u;’) with closed-loop dynamics:

X (1) = £, (1), K, (6 (0) ~ X)) (5.25)
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for all t>0, and the collective equilibrium is a function of the assumed state trajectories
X (t.) . The generalised form of Equation (5.25) is then given by:

X (1) = f.(x (1), K, (% (t), X (1)) (5.26)
Lemma 1. (region of attraction)
There exists a constant «, €[0,) specifying a neighbourhood X, (¢;) of the origin in the

form of [341]:

s <oy, 0} (5.27)

Xf(ai):z{XeR”:

X=X

Proof.

The proof follows from the works of [342]. Define the function V : R" — R for some positive

definite, symmetric matrix P by:

tk+T
Vi) = [ a1l + el e =[x (5.28)
Computing the time derivative of Equation (5.28) along a solution of Equation (5.26) yields:

S0 = e @l

=X (t)((A + BK)'R +R(A + BK)X (1) +2X (t)P(x (t)
where @(x (t,)) = f(x(t.), Kix (t))— (A +BK,)x(t). The last term in Equation (5.29) is

(5.29)

bounded by the inequality theorem in [341]:

X (G )P0 () < X @ )P|- [0 )] <[P L, - [ )]

Ly g, (530
<ty O
where L, = sup{g(x (& )]/ (]| (t) € X, (&), % (8,) % 0. For @ €[0,20):
L, < %TP) (5.31)
in the region of X, (¢;) and x €[0,), and Inequality (5.30) becomes:
XiT (t)Pa(x (L)) <x- XiT tIP(x (L)) (5.32)
Substituting Equation (5.32) into Inequality (5.29) yields:
%”Xi (tk)nzp <X (t)((A +BK;+«) P+P(A +BK, +))x(t,) (5.33)

Introducing the following Lyapunov candidate function as in [341]:
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(A+BK,+d) ' P+P(A+BK, +x)=-Q+K'RK, e R™" (5.34)
and substituting Equation (5.34) into Inequality (5.34):

L)@l <X Q-+ KT RK ) (t,) (5.35)
It follows that for sufficiently large constants «;, >0, Inequality (5.35) is satisfied such that

%HXiK (tk)Hi = —HXiK (t)—x , and the region defined by:

Q+K{ RK;

Xf(ai):z{XeR”: iﬁai,aiZO} (5.36)
IS an invariant region of attraction for the system (5.1) controlled by (5.24) [342]. Any

‘x—xie

trajectory of system (5.26) beginning in X, (¢;) staysin X, («;) and converges to the origin
[341].

Various methods can be used to define the equilibrium pair for a collective multi-agent
system. In the virtual leader architecture [188, 231, 295] equilibrium of the collective flock is
described by the relative inter-vehicle distance of neighbouring vehicle to the leader agent. In
many decentralised and cooperative systems, the equilibrium is not known a priori. Instead,
equilibrium emerges from the locally interacting and cooperating agents. Examples include
flocking [25, 46, 127, 128, 236] and the network consensus problem [218, 233]. Central to
the stability analysis of the decentralised model predictive control strategy for cooperative
vehicles, is the definition of an equilibrium pair. The equilibrium for a group of vehicles
provides a coordination variable for group consensus. In a cooperative decentralised multi-
vehicle system, consensus on the coordination variable (or equilibrium pair) yields the
cooperative behaviour of the group. In Section 2.2.1, it was shown that for a group of
vehicles exchanging information using the consensus protocol in Equation (2.19) will
converge to the average-value of the information state; i.e.:

20 =Ave(x) =+ >" x (5.37)
where the information state of vehicle v, is denoted by x,. When the communicated
information is the positional states of the vehicles, the average-consensus is given by the
centroid of the formation of vehicles. In Chapter 3, an inter-vehicle distance offset d was
introduced to induce spatial flocking in a group of vehicles. The consensus protocol was then
used to prove the convergence of a group of connected vehicles to the flock lattice with

distribution centred on the average position g of the initial distribution q,, and velocity

equalling the average velocity p of the connected group. Following these observations, the
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following definition for the decentralised optimisation problem in Equation (5.20) with
information exchange prescribed by Equation (2.19) is made:

Definition 2. (group equilibrium state)

The equilibrium state for a group of interconnected vehicles x* € R" is given by the average

valued consensus of the communication network; i.e.:

x° = Ave(x) (5.38)
and by the invariance property, is a constant such that x* =c, Vie N.

Following Problem (5.20) and Definition 2, the terminal region induced by the consensus

protocol with is given by:

X" =R =/29£(x(0), x(0)) (5.39)
where H'(x(0),x(0)) is equivalently defined as # (q(0), p(0)) Section 3.2.4. Based on the

neighbouring plans x;(t, )of vehiclev,, it is possible to define an error state using the
consensus protocol in Equation (2.19). From Definition 1, at time t , x(t)e X,, and
X () ={X" (@ [t),.... X (t..r |t,)} (where X'(t |t,)=x(t)) for the ith wvehicle, and
% () ={X s [ty X (G e |tH),...,>2"‘Wi‘(tkfl|tkfl),...,>A<‘*Wi‘(tkfl+T [t )}, VieN, over
the prediction interval 7, , €[t ,,t_;.;]. The trajectories X'(t,) and X (t/) overlap for
JeN;, except for the first sampling interval of the jth vehicle and the last sampling
interval of the ith vehicle. The first sampling interval of the jth vehicle is the previous state
of the vehicle; i.e. x;(t_,)and can be excluded from the error state. For purposeful
consensus, only the prediction interval of the jth vehicle over z; ; €[t,,;.t, 7] is considered.
The predicted state of the jth vehicle is truncated for the ith vehicle over the interval
T, i €[te.1,t.+], such that the predicted states of the jth vehicle at time t,_, transmitted to
the ith vehicle produces the set of assumed states X ;=X ;(t)={x ;(t, [t_)....
X (o [6)} attime t for the ith vehicle.

The objective is to minimise the deviation of the assumed state trajectories of neighbouring

vehicles with the predicted states for the ith vehicle for i =1,...,N to achieve consensus. For

a homogenous group of vehicles, the prediction horizon length of each vehicle is equal. The

mismatch in the last sampling interval of the ith vehicle with the jth vehicle corresponds to
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a prediction made by the jth neighbour at time t, , and a prediction made by the ith vehicle
at time t . For compatibility purposes, the final sampling period of the ith vehicle’s
prediction is truncated such that 7, ; e[t,,t,_,.;]. This assumption is valid since the assumed
state of the jth vehicle has not been made yet. This yields the following optimisation horizon
7, €[t.,t, ,.r] for the overlapping regions of the sampling periods of the jth vehicle, and

consensus is defined over the optimisation horizon.
A well known property of the model predictive control law given in Equation (5.24) is not
guaranteed stabilisable due to the receding horizon [343]. In Section 5.4, an appropriate

terminal cost constraint is introduced to stabilise the system and achieve consensus. For now,

it is immediate to show that the error state x/(z, |t,) between the predicted state of the ith
vehicle at time t, and the assumed state from the j th vehicle using state x;(t,_,) is given by

the following:

R lt)=Y

jeN;

where 7, e[t,,t, ,.;]. Using the error state x°(z, |t,) and the dynamic model in Equation

% (27 1t 1) - Rz 1t )| (5.40)

(5.1), the consensus problem is converted into a regulation problem. Thus, the decentralised

finite time optimal control problem associated with the ith vehicle at time t, can be re-

written as:
tiir
‘]:T (% (4 ), % (t,)) = {Ein(tikr;} tJ.Ii()A(ig (T; |tk)!0i (T: |t,))d 7: +IiT ()A(f ()
Subject to: % (z 1t) = F04 (7 1), U (7 [ 1))
i=1...,N, 7 e[t.t ,.]
X (7, [t)e X,, u(zr|t)eU, (5.41)
(i,)) e,
gi,j(xi(Tk [t), X (7 1t,)) <0, vj eN,
X(tk |tk) = X(tk)
X(ter 1t) € X (o)
Let ||||i =X Px denote the generalised weighted norm of a vector or matrix. Then, the

individual cost function |. associated with the ith vehicle can be rewritten as the following

bounded cost function over the optimisation horizon z, €[t,,t, ,.;]:

L(%°,0.) =

~p
X

Z i (5.42)

132



and

SE $E 2
(R (ter 18) = &5 Cr 1), (5.43)
over the terminal period, where Q e R™, Re R™™, and P € R™" are weighting matrices

associated to the 2-norm. Problem (5.41) can then be rewritten as:

0, (a5 1) doy + (% or 18]

tk+T
% o . - ~e * 2
Jir (% (t), % (t)) = {mm X (7 |tk)HQ +

Gi (t )}
&
Subject to: X (7 1t = Fi (4 (7 16, u; (7 11)
i=1...,N, 7 e[t.t ,.]
X(z, [t)e X,, ul(zr|t)eU, (5.44)
(i,)enN
gi,j(Xi(Tk |tk)’Xj(Tk 1)) <0, VjeN,
X(tk |tk) = X(tk)
X(te.r [t) € X (o)
Definition 3. (compatibility constraint)
Problem (5.44) involves only the state and input variables of the ith vehicle at time t, and its
neighbours’ assumed states from timet ,. To ensure compatibility with the predicted plans
X;(t,) of the jth neighbour at successive intervals and the transmitted plans of proceeding
sampling times (i.e. assumed states of the ith agent x; ;(z, |t,)), the following compatibility
constraint is introduced to Problem (5.44):
gi,j(xi (7 [t X (7 (1)) < 0= gi,j(') = “Xi_j(rk It,) =% (7 |tk)H <K (5.45)
where ||| is the standard Euclidean norm. Constraint (5.45) enforces a degree of consistency

between what a vehicle is actually doing and what neighbours believe that agent is doing

between successive horizons. A similar compatibility constraint was defined in [267].
Having defined the distributed optimal control problem for each vehicle in the flock, the

main implementation algorithm is now introduced.

Definition 4. (implementation algorithm)
0. Initialisation: At time t_,, each vehicle solves Problem (5.20) with initial state x(t ,)
independently from neighbouring assumptions. Hence, AV, (t,)=0, Vi=1,...,N. The

assumed states are given by the empty set X(t ,)=0 over the current horizon
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(i.e.[ty,t,+H,]), Vi=1...,N. By definition, the flock topology is described by a

disconnected graph at initialisation, and the compatibility constraints are relaxed.

The optimal control u;(t,|t,) is then applied Vi=1,...,N over the proceeding

horizon z, €[t,,t,,1;

Following the initialisation stage, over every prediction horizon 7, €[t,,t,.;], each vehicle

i=1...

1.

,N:

Solves Problem (5.44) using measurements of its current state x,(t,) and the assumed
states of its neighbours X.(z, |t ,), Vj € N, to obtain the set of optimal trajectories
X (7,,t,) and control inputs G/ (z, |t,);
Implements the first sample of U (7, |t,), 7, €[t . t..r], i€

Uy (t) =07 (t, [ t) (5.46)
Transmits the associated state trajectories X'(z, |t,), 7, €[t,,t,.+] to neighbouring
vehicles je N, and receives the plans x (7, |t), 7z, €[t..t.;] of neighbouring
vehicles je N;;
Repeats steps 1 to 3 at time t,,,, based on the new state information x(t..,), and

trajectory plans of neighbours x (7, |t.).

By Definition 4, it is possible that at initialisation, the local objectives of a subset of

vehicles in the flockv, €V, <V will be met over the prediction horizon 7, €[t ,,t, ;] and

X (7 ,|t,)=x . Let v, eV, denote the subset of vehicles such that v, ¢ V,, Vie N, | #i,

then by application of G, (t, |t ,), vehicles v, €V, will reach and remain at equilibrium for all

future time. For a flock of vehicles, the distribution of vehicles in the group is bounded by an

ellipsoid with radius R. By the dissipation of the structural energy (see Section 3.2.4), the

distribution of vehicles converges to the flock lattice construction, and the structural graph

topology is described by a connected graph. Therefore, the vehicles v, €V, will become a

neighbour of vehicle ie N at some future time such that v, € ;. By the adjacency of

vehicles and the connectivity of the information network, vehicles v, and v, exchange

predicted plans. If v, has not yet reached equilibrium x.(z ,|t,)= x°, then the predicted
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plans of v, serve to act as an input to the optimisation problem of v,. In proceeding
optimisations, v, accommodates for v,’s predicted plans; it cannot be guaranteed that the
decentralised optimal value function J;;(x(t,) X (t)) decreases with each prediction

horizon update. The mutual exchange of information via the communication network of the
flock of vehicles naturally suggests that a consensus must be reached to achieve a stable
equilibrium. In the following section, the stability of the decentralised model predictive

scheme is investigated using the consensus protocols in more detail.

5.4. STABILITY ANALYSIS

In this section, the conditions that lead to stability of the individual vehicles are presented
using Lyapunov arguments. The objective is to show that through the application of the

decentralised model predictive control law in Equation (5.46), the closed-loop state x(t)

converges to the neighbourhood of objective states x°. Without loss of generality, the value

function J;;() is treated as a candidate Lyapunov function. Before proceeding with the

analysis, the following assumptions are made:

Assumption 1.
1. VieN, the function f :R"xR™—R" in Equation (5.1) is twice continuously
differentiable with f,(x7,0)=0 and f; is stabilisable;
2. X, iscontrol invariant, X,' ¢ X ;

3. There exists a constant p,, €(0,0) such that

X (7 |t) = x°

< P aNd

H)A((Tk It)—x°

< prax s forall z, eft,t, .+ 1;

Following the standard arguments in [342], it is assumed that initial feasibility of the

implementation in Equation (5.44) implies subsequent feasibility. Therefore, it is sufficient to

prove that only J;(x(t,)) decreases. The following lemma provides a bound on the decrease

of Jr(x(t.,)):
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Lemma 2. (bounded candidate function)
Ji7 (% (t.), X (t,.1)) is a valid Lyapunov function and the state of the closed-loop system

converges to the origin; i.e. lim X(t,)=0.

ty >

Proof.
The proof follows from Lyapunov arguments, close in spirit to the arguments of [270, 341,
344].

For any t,, the collective decentralised value function for the flock of vehicles is given by:

G, (zy [t )] dri + (% teor 18], (5.47)

A " 2
X @ It +

by
0 = |
Applying the optimal cotr;tr(_)I in Equation (5.46) to Equation (5.47), takes the system to time
t.., with states x“(t.,). An upper bound is constructed by considering a feasible and
suboptimal solution to Problem (5.47) for vehicle v,, over the proceeding prediction interval

T €[t .t 1.1], VieN. Forvehicle v, , the state update is bounded by:

tk +1+T

Ji*,T (Xi (tk+l)’ Xi (tk+l)) = j

tk+l

2 *
+ Rdfk+1"‘

ljl* (T:+l | tk+l)

o, * 2
X (T 1 te) ‘Q

et ()’z:ﬁé (tk+l+T | tk+1)

" (5.48)

0i (TI:+1 It.)

t k+14+T
S .[

tk+1

ne * 2d *
Xi (Tk+l |tk+l) R Tk+l' “

2
+
Q

2
p

oo 4

()zf (tk+l+T |tk+1)
For all i € N, the upper bound for the collective optimal value function J; (x(t,.,), X(t,,)) is

then given by:

tk+1+T N R 2 R 2
3 () X)) S [ D)% G ], + 0 1) dria -
tk+1 i=1
e 2
"'+H(Xi (teair [T, (5.49)
Ir (X(tea)) = I7 (x(t)) < -
tk+1+T N R 2 R 2
j DI (T |tk+1)‘Q +|Ui (74 |tk+1)‘Rdi+1"'
tk+1 i=1
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s * 2 *
G (zp |t dey -

Ax * 2
X (z |t )HQ +

Lt N

ty i=1

N 2 Ny 2
o DR Qe 1), = DR (e 18]

i=1 i=1

It follows that if inequality (5.49) holds, then J;(x(t.,))<J;(x(t)), and

Ji7 (% (t..). % (t,.,)) is a positive non-decreasing function along the closed-loop trajectories.

Furthermore, since J;(-) is lower bounded by zero and the trajectories initialised at
X;(0) € X; remain in X, for all t, >0, Equation (5.49) is sufficient to ensure that the state of

the closed loop system converges to zero as t, — « [265].

Before proceeding with the main results of this introduction, the following assumptions and

definitions are made.

Assumption 2. (terminal state)

The assumed state X, ;(t,_..; |t,_,) of the jth neighbour of vehicle v; remains invariant over

the terminal period T forall je %V, attime t, .

Following Assumption 2, the terminal constraint of Problem (5.44) is given by:

Definition 5. (terminal cost)

The terminal constraint for Problem (5.44) using the average-valued consensus is given by:

=R 18- X)), (5.50)
where
1
X (t,) =W2xi_,-(tk_m It,s) (5.51)
il j=1

Theorem 1. (convergence to the average consensus)

J; () decreases over successive sampling periods toward a closed neighbourhood of the

objective state by the bound:

bt N

[ 2 2t =% 1t +dy ) =[x @ 18 =8, 16) + d, | dey <

REwET (5.52)
kA ]
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Proof.
By Definition 4, the prediction intervals of successive optimal state and control trajectories
overlap at successive sampling periods. Therefore, the predicted state and control
trajectories at any sampling period t., can be given as X (z; |t..)=X(z;|t,) and
U;(z¢ |t.) = U (7, |t,) respectively over the interval 7, e[t .,,t..;]. Consequently, the
inequality in Equation (5.49) can be simplified and written as:

Iy (X(t,1) = I (x(t,)) <

%3 N

ey

t,., i=1 jeN;

k+1

* * * * 2 * * D * 2 *
X (5 10 =X (5 18 + 4y = (@ 18) =%, (7 1) + dy | do +--
(5.53)

2
oo 4.
P

2 *
P —|[X (tk+T |tk)_xe

‘)z(tk+l+T |tk+1) - Xe

2 +

tk+1+T
et J. H)‘z(flrltkﬂ)_xe 2

ot

where 7 €[t ,t,,.,], and d; =x; —x’. From Definition 2, and the connectivity of the

Q+KTRK

information network G(x), X=X =Ave(x) and d; =0 for Vje®N, i# j. Hence, the

average-valued consensus complies with the invariance properties of the consensus protocol
and the inequality in Equation (5.53). By the properties of Lemma 1, the sum of the last three
terms in the inequality above is non-positive, and the inequality holds after removal of these

terms. Hence:

35 (X(tr) = 35 (X(t,)) <+

T i i i o . 5.54
Y S =% )+ 4w 10 -5 @ 1)+ d far O
te,, 1=1 jeN;
Using the triangle inequality:
e, =141, <l + A, (5.55)
Equation (5.54) becomes:
X (160 =X (2 18+ A0 = (e 180 =%, (w5 18) 4 | <
18 =R 1)+ [+ 556)

42 X (@ 1) =%, (75 1)+

X (77 14) = %;(z¢ [t,) +dy

* * A * 2
e A IR A A

where the inequality has been replaced by a summand of three norms. The first norm

corresponds to the initial point and is trivial for analysis.
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From the compatibility constraint in Equation (5.45) and the bounded constraint in

Assumption 1, the following bounds are introduced H)“(i_j(r;|tk_1)—>2j(r;|tk)ugzc,

X (7 1) =%

< Prmax 1 and H)’z] (T: |tk) - X?

< prax 10 Equation (5.56):

* * * * 2
X (7 18) =X (7 1) +dy |~

* * ~ * 2
X (7 1) =X, (7, |tk)+dij||Q <...

.2

X (7o 180 =%, (2o 16 ) +dy |- 7 180 = % (o 18]+
<2

]/<+ K’
S K[4pmax +K]
Using the bound in Equation (5.57), the integrated expression in Equation (5.54) becomes:

* * D * 2
Xj(Tk |tk)_xj(Tk |tk)|| (5.57)

X (7 [8) =% |+

X (7 1) =X

bt N
[ 2 X)) =X )+ d |, ) 8 =% 18 +d, | day <
te, =1 JeV; (558)

'”S%K[L]'pmax +K]

where « is the compatibility constraint given by Equation (5.45).

Equation (5.58) provides a bounding result on the decrease in J;(-) from one update to the
next. The value p,, and x are new optimisation variables. In the proceeding section, the

transient response of the cooperative control scheme is discussed.

5.5. TRANSIENT RESPONSE OF THE COOPERATIVE CONTROL SCHEME

By considering the centralised cost function in Equation (5.5) as a cooperative control
objective, and the solutions to Problem (5.9) as the coordination variables of the cooperative
task, the decentralised model predictive control strategy presented in Section 5.3, provides
the cooperative control framework to coordinate the actions of a group of vehicles and
resolve the cooperative task. Coordination is achieved by exchanging information between
vehicles in the group, and reaching a consensus on the coordination variable. In this case, the
information is the plans of the vehicles over successive prediction horizons, and represents
partial solutions to the cooperative objective.

Information consensus for a time-invariant and a time-varying network was investigated in
Chapter 1. It was shown for a time-invariant network, that a connected group of vehicles will
asymptotically reach a consensus on the information state at a rate equal to the Fiedler
eigenvalue of the graph Laplacian. A similar discussion was also presented for the time-
varying network topology described by a hybrid autonomous equation. In both cases, the
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information flow was modelled using a first-order differential equation, and assumed
continuous information exchange. Since the information exchange of the decentralised model
predictive control strategy is also assumed continuous, then it would be expected that the
convergence of the coordination variable would reflect the behaviour of the time-invariant or
time-varying network model. For the decentralised model predictive control strategy
however, the information state represents a partial solution to the cooperative objective, and
evolves according to the solution space of the optimisation problem in Equation (5.41).
Nonetheless, assuming a Lyapunov value function for the cost objective, the information state
will demonstrate asymptotic convergence. This presumption is based on the Lyapunov
arguments in Section 5.4. The rate at which the coordination variable reaches consensus, is
then dependent on the convergence of the information state. This is directly related to the
quality of the solution found over each horizon.

In the unconstrained case of the receding horizon problem, the information state (plans over
the proceeding horizon) of each vehicle is permitted to converge to the optimum value at
each sampling period. Since the information is localised to each vehicle, then the plans
generated by each vehicle are optimal only for that vehicle. Conflicts occur when the plans
optimised for one vehicle, do not complement the plans optimised for a neighbouring vehicle.
By considering the plans of neighbouring vehicles at each sampling period, the vehicles can
coordinate their actions to reach a consensus. If the optimal plans generated by neighbouring
vehicles at successive sampling periods are not constrained, and are permitted to deviate
excessively from the previous sampling period, then it would be expected that the
decentralised model predictive controller would demonstrate poor convergence as the
vehicles attempt to compensate for the mismatch between the previous plans and the new
plans of their neighbours. For this reason, the compatibility constraint x« was introduced to
Problem (5.41) to mitigate the information mismatch between previously transmitted plans
and newly developed plans at each horizon.

Whilst the compatibility constraint can be used to minimise oscillations about the
equilibrium and improve the convergence of the coordination variable, it can also reduce the
transient response of decentralised model predictive control strategy. Consider the case when
x is small. Then, the permitted deviation of successive plans will also be small at
consecutive updates. This results in a sluggish transient response. Despite this, the system
will eventually reach a consensus based on the stability properties of the Lyapunov function.

On the other hand, by relaxing the compatibility constraint and permitting large deviations
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between successive updates, the convergence of the system would be characterised by
oscillations about the consensus point as vehicles attempt to reach a consensus on irrelevant

and obsolete information. The effect of the compatibility constraint is now stated formally:

Theorem 2. (bound on optimal state)

The S th iteration deviates at most from the original plan by Sx .

Proof.

The proof can be found by applying the compatibility constraint recursively over successive
updates. From Equation (5.45), the compatibility constraint is given by:

%, s 1) =% )] <« (5.59)
where 7; €[t .t +T1, and 7, ; €[t ;. t,+ +T1. In addition, the following assumption
holds:

Xj_i (Tl:,j 1te) = % (7, 16,) (5.60)
That is, the assumed state trajectories of vehicle v, by the jth neighbour at time k, is the

predicted state of vehicle v, at time k —1. Consider the interval 7, [t,,t, ,.;] for which the

optimisation problem is defined in Equation (5.41). Then for k=1, the following

compatibility constraint is observed for the terminal value t, , ; :

%, @t 1te) = Rty 1)) < & (5.61)
Applying recursively for S consecutive updates, such that k =1,2,...,S :

k=1 [t -G )<«

k=2 H)A( Pt 1) =Xt |t )H<K

k:3 \k. t,|t,) - xanng<K (5.62)
k=S H)A(j_i (ts1r |t5—1) =X (ts_r It )H <K

Summing both sides of the inequalities yields:

SR, b 1)~ %, ar 1] < S5 (569
k=1

and from the triangle inequality:

[%;_i e 1) = %i(ts iy It6)| < S (5.64)
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Hence, after the S th update, the current state deviates from the original optimal state by at

most Sk .

From Theorem 2, the quality of the solution at k >1, is proportionally constrained to the
quality of the original solution obtained at k =1 and is proportional to the sampling rate of
the information exchange between neighbouring vehicles. The effect of this constraint is
similar to a step-size discretisation in a digital controller. By increasing the sampling rate of
the information exchange, the transient response of the system would be expected to
demonstrate poor convergence. In contrast, decreasing the sampling rate would lead to
‘sluggish’ transient behaviour. This is demonstrated by the numerical example in Section 5.6.

The introduction of the compatibility constraint effectively diminishes the model predictive
control scheme’s ability to handle uncertainty and changes to the operating conditions.
Nonetheless, the compatibility constraint is necessary to promote coherence in the shared
information and coordinate the actions of the individuals. By carefully selecting parameter «
at design-time, the compatibility constraint can be tolerated to provide a good balance
between the transient response of the system, and the convergence of the solution. In the
following section, the transient response of the cooperative control scheme is demonstrated

for the consensus problem.

5.6. NUMERICAL EXAMPLE: TRANSIENT RESPONSE OF THE
COOPERATIVE CONTROL SCHEME

Consider the consensus problem for N =4 agents with information state x, € R, control
input u;, € R, and dynamics given by:

% (1) = Ax () +Bu(t),

where A :{0 l} 8 { 0 } (5.65)
0 0 !

nxn

Given the initial distribution of information for the group of agents:
x(0)=[0 3.3 6.6 10]"
x(0)=[0 0 0 0]
where x =[x,,X,,%;, X, 1", X=[X%,X,,%,;,%,]", the objective is to achieve consensus on the

(5.66)

information state x. The consensus protocol given in Equation (2.19) produces the following

cost function for the cooperative control problem from Equation (5.41):

R (@ lt)=Y

jeN;

% (27 1t 1)~ Rz 1t )| (5.67)
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Problem (5.41) is solved by applying the decentralised control scheme in Definition 4. For
the following simulation, T =3.6s, and x={0.001 0.01 10.0 100.0}. Figure 5-8 shows

the transient response for the cooperative decentralised model predictive scheme for each
value of « . For comparison, the consensus protocol with dynamics given in Equation (2.20)

is included in Figure 5-8. This is shown by the broken lines in Figure 5-8 for the

corresponding vehicle. The convergence of the disagreement vector ||5] for the cooperative

decentralised model predictive control scheme is shown in Figure 5-9 and is compared to the
solution obtained from the dynamics of Equation (2.20). From Figure 5-8, the compatibility
constraint influences the transient response and the convergence of the system to the average
value. For x >>0, the information state rapidly converges towards the average value, but
fails to settle on the equilibrium. On the other hand, for x <<0, the compatibility constraint
limits the divergence of S successive plans by Sk, and acts to dampen the oscillations
induced by achieving a consensus with neighbouring agents (shown in Figure 5-10). The

compromise for this asymptotic behaviour is a sluggish transient response.

5.7. SUMMARY

In this chapter, the problem of cooperative control for a group of agents was addressed by
formulating the cooperative control problem as an optimisation problem. Cooperation was
represented by the coupling of objectives and constraints in the centralised objective function.
A cooperative control scheme was then created by decentralising a traditional model
predictive control strategy. This was done to exploit the predictive nature of MPC to develop
plans that could be exchanged. This allowed the vehicles to negotiate on new plans and arrive
at a consensus on the coordination variable. In the proceeding chapter, the concepts of
information consensus, flocking, group tracking, and decentralised model predictive control
are unified into a singular and robust design methodology for cooperative control for a group

of vehicles.
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Figure 5-8. The effect of the compatibility constraint on the transient response of the cooperative decentralised

model predictive control scheme.
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Disagreement Vector ||5]]

Figure 5-9. Effect of the compatibility constraint on the convergence of the disagreement vector for the
consensus problem.
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Figure 5-10. Divergence of predicted trajectories over successive prediction horizons.
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Chapter 6. Application

In this chapter, the cooperative decentralised model predictive control scheme presented in
the previous chapter is applied to a group of autonomous vehicles. The scheme is
implemented locally on each vehicle and is used to coordinate the actions of the vehicles
towards the group objective. A switching network using the finite interaction range in
Chapter 2 is used to describe the underlying communication graph topology for the
coordination scheme. The group cooperative objective is defined using the shape and group
abstractions described in Chapter 4. Controlling the group of vehicles involves two levels of
control. At the supervisory level, the optimal motions of the group, and the desired shape
spanned by the vehicles is evaluated using the strategies described in Chapter 4. These are
then transmitted to the individual vehicles to define a group objective. The cooperative
control problem is then solved dynamically online at the local vehicle level using the
cooperative decentralised model predictive control scheme. Using only local information,
each vehicle develops a set of plans over a prediction horizon and evaluates the effect of
these plans on the cooperative objective. Plans are exchanged between neighbouring vehicles
at successive sampling periods to coordinate the behaviour of the vehicles and achieve a
consensus on the group’s actions. Cohesion of the group at the local vehicle level is
addressed using the flock protocols described in Chapter 3. These represent the local vehicle
objectives and are combined with the group’s cooperative objective to formulate a distributed
optimisation problem for each vehicle. Here, the role of the decentralised model predictive
control strategy is to arbitrate between the local vehicle levels and the group cooperative
objectives, and provide the mapping from the precision of the local flock protocol, to the
generalised group abstractions.

This chapter serves to demonstrate a practical implementation of the strategies developed
thus far and is organised as follows. A description of the system and the centralised
cooperative objective is described in Section 6.1. The desired motion and shape of the group,
as prescribed by the supervisory controller, is described in Section 6.2. Decomposition of the

tasks of the individual vehicles is then presented in Section 6.3 before the decomposition of
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the centralised cooperative objective for each vehicle is presented in Section 6.4. Numerical
experiments are then presented in Section 6.5 to demonstrate the effectiveness of the

proposed cooperative control scheme before Section 6.6 concludes with final remarks.

6.1. SYSTEM IMPLEMENTATION

The advancement of sensor technologies and small-scale robotics has seen a growing interest
in the development of unmanned aerial vehicles for surveillance, reconnaissance, and
intelligence operations. Unmanned sensory platforms can be used in lieu of dedicated
manned vehicles for dangerous or repetitive operations. Recent developments in small-scale
and inexpensive UAVs present an opportunity to develop teams of UAVs for cooperative
sensing and imaging tasks and modalities. Groups of UAVs can be used to produce dynamic
and spatiotemporal sensor networks. Search and rescue operations using spatially distributed
sensory networks can be used to greatly improve the coverage time over a region of interest.
Motivated by the recent interest in mobile sensory platforms, the strategies discussed in the
previous chapters are applied to a group of UAVSs for cooperative sensor coverage.

Consider N vehicles deployed in a search region y of known dimension. The objective is
to cooperatively stabilise the group into a cohesive flock that maximises the sensory footprint
of the collective system. As the flock moves around the search region, sensory information
about the environment is collected; reducing the uncertainty of the environment. Each vehicle

v,, i=1...,N isassumed to have decoupled dynamics given by:

% (t) = Ax (t) + Bu;(t), t=0,

on i} o)

where x, (t) = (q; (t), ¢, (t)) € X, = R*", and u,(t) are the state and control inputs of vehicle

Vi, q;()eQ=R", ¢t)eT,Q =R", u(t)eR" are the configuration and control

manifolds, and I, is the n-dimensional identity matrix. Each vehicle is also subject to the

following input constraints:

u e, (6.2)
Concatenating vehicles states, the following 2nN -dimensional control system is obtained for
the collective group:

%(t) = Ax(t) + Bu(t), t>0,

and A=diag(A,....A,), B=diag(B,....B,) (6.3)
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with geQ=]].,Q =R™, 4eT,Q=]],T.Q =R™, ucU =] U, =R™.
The group of vehicles with dynamics given in Equation (6.3) can be controlled at the
supervisory level by commanding the position and orientation of the centroid O’ of the flock

of vehicles, and the shape spanned by the configuration of vehicles in the frame {M} fixed to

the centroid O’. This leads to the following definitions derived from the concepts introduced
in Chapter 4:

Definition 1. (Pose Abstraction)
If G is a Lie group, then g € G defines the gross position and orientation of the flock of

vehicles in the world frame {F}, and is referred to as the group variable.

Definition 2. (Shape Abstraction)

The shape spanned by the group of vehicles in the flock is identified by the shape variable
sesS.

Definition 3. (Group Abstraction)

The pose abstraction and the shape abstraction together define the group’s abstract variable

a =(g,s) € A on the group manifold A.

The group abstraction « provides a mapping from the configuration space Q to the lower

dimensional manifold A that captures the group’s behaviours. The group abstraction « is
invariant to the number and ordering of vehicles in the flock. For a group of vehicles with

configuration q e Q in the local frame {M}, the motion of the group parameterised by time
t in an arbitrary n-dimensional Special Euclidean space SE(n), is described by the pair

g(t) = (R(t),d(t)) € SE(n), where:
R d .
SE(n)=4g|g = o 1 ,ReR™ RR" =1_,detR=1,d eR" (6.4)
whered is given by the centroid of the flock as described in Section 4.2.1, and given by:

1y n
d:=q7 =WZqi eR (6.5)
and R is the rotational component of the flock. To consider the rotation and shape of the

flock, the concept of the virtual agent from Section 4.11 is re-introduced.
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Definition 4. (virtual agent)
The virtual agents v{, i =1,2, is the pair (v;,v,) of controllable antipodal points located on
the surface of an n-sphere.
Denoting x(t) = (q° (t),G° (1)) € X =R*" the states of the ith virtual agent, i =1,2, then
the n-sphere bounded by the pair (v;,v;) is given by:

s"={geR":(q-d,q-d)<1(gs - 5,05 —of )| 6.6)
where Equation (6.6) is a bounding on the shape spanned by the group of vehicles i =1,...,N
in the local frame {M}. Therefore, the positions of the virtual agents represent the shape
variable s € S used to control the group of vehicles; i.e.:

s=(q’,...,a7)eR™, i=1..,N;, N <N (6.7)

) c!

Following Definition 4., the rotational part R € SO(2) for n=2 is given by:

NC
D xfyr =0, N =12 (6.8)
i=1

where g° = (x?,y?) e R?. Similarly, the rotational part for n=3, R e SO(3) is given by the

following equation:

ixfyf :ixfzf :iyfzf =0, N,=12 (6.9)

where q° = (xf,yf,l;f) € R‘*.I_l N
The rotation R defined by Equation (6.8) or Equation (6.9) can be seen as the rotation
diagonalising the inertia tensor of the system of virtual agents with respect to the centre and
orientation in the frame {F} [210]. The dimension of the abstract space SE(n)xR™:, is
therefore 2n+nN, (assuming N, < N ) independent of the number of vehicles in the flock.
Equation (6.4) and Equation (6.7) define the abstract state « = (g,s) of the group that can be

controlled by the supervisory agent. It is assumed that this information is calculated offline
and transmitted to the vehicles prior to deployment. Figure 6-1 shows the implementation
architecture for navigating the group of vehicles using the abstract state « . In the proceeding

section, calculation of the group abstract state « is presented for coverage control.
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Figure 6-1. Implementation of the cooperative decentralised model predictive control scheme for a group
of vehicles.

6.2. MOTION GENERATION AND SHAPE EVOLUTION
The problem of interest is to reduce the uncertainty of the environment by navigating a flock
of vehicles through the environment. The trajectory used here is inspired by the parallel

sweep trajectory presented in [345] (see Figure 6-2).

a,
Sn
> 9(t) = (R(®),d (1) G
{M} - — |- - - - — = — -
—> \
— )
s=(0;,05) €S
¢ /
d, 2
- -
/
|
\
\ —_—
______________ }
\
J
X /
S

Figure 6-2. Sweep trajectory for coverage control.
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From Figure 6-2, the sweep trajectory is piecewise continuous and consists of 7 trajectory
primitives — 4 straight line and 3 semi-circular segments. Borrowing the notation of [346], a
trajectory primitive is given by 7z, :[0,T;]— (q;(t),q;(t)). Two trajectory primitives
7, :[0, T, (q,(t),q,(t)), and =z, :[0,T,] (q,(t),d,(t)) are compatible z,Cz, if there
exists g,, € G such that x,(T,) = ¥(9,,,X,(0)), where C is a compatibility relation [346]. If
m,Cr,, the concatenation 7z, and 7, is defined as z,z, :[0,T, +T,] - QxT,Q, with:

i {(ql ©.6,0). ift<T,

(V(9:,,9,(t-T,)),q4,(t-T,)), otherwise
where ¥:GxQ —>Q is left action of the group G on the state manifold Q. For

(6.10)

convenience, only the first trajectory primitives shown in Figure 6-2 are considered for the

motion generation problem (see Figure 6-3).

y (pos)
&

w

X (pos)

Figure 6-3. Trajectory segments of the parallel sweep trajectory.
Remark.

While the strategy described above reduces the uncertainty of the environment, constraining
the motion of the vehicles to a flock configuration, inefficiently exploits the distributed nature
of the mobile sensors. Vehicles are constrained to maintain a fixed inter-vehicle distance, and
motion of each vehicle is dictated by the consensus of the flock. By allocating the vehicles to
a region of the search space and relaxing the constraints induced by the flock lattice, the
efficiency of the search can be drastically improved. The problem of optimally distributing

mobile sensors in the environment, is known as the coverage control problem, and has been
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investigated extensively in the literature [67, 90, 95, 98, 347-349]. Various search strategies
have been proposed in the literature that have demonstrated exceptional performance with
respect to a performance criterion, such as minimum energy, minimum completion, minimum
uncertainty etc. In this chapter, the optimality of search strategy is of trivial concern. Rather,
the purpose of this chapter is to demonstrate cooperative control strategies for a group of

vehicles.

6.3. TASK DECOMPOSITION OF THE COOPERATIVE CONTROL
PROBLEM

The cooperative objective for the group of vehicles is represented using the cost function in
Equation (5.5):

N
Lo u) =106, up, X, ;) (6.11)
i=1
where X ={x;eR"|(j,i)eE}, X, e R™, 0; e R™ are the set of state and control inputs for

neighbours v;, Vje N, and | :R™xR™xR™xR™ — R is a positive convex function

describing the objectives of vehicle v,, such that I, (x7,u?,x?,0°) =0 is an equilibrium.

The individual objective functions I.(x;,u;,X;,U;) are constructed using the decomposition

of tasks. Each vehicle in the group is subject to a local vehicle objective, and a group
cooperative objective. At the local vehicle level, the objective of each vehicle is to stabilise to
a position in the local frame corresponding to the flock lattice. Stabilisation of the flock
lattice in the local frame is achieved by minimising the structural energy and velocity
mismatch in Section 3.2.4. Following the derivation in 3.2.4, the energy of a vehicle with
neighbourhood %V, is given by:

E (%, %)= D.4,(®(q;-q))-n; + >.(d; -4)) (6.12)

jeN; jeN;
where n; is the unit vector along the edge connecting vehicle v; to vehicle v;.

Equation (6.12) defines a cost function for local vehicle flocking:

L (%, %) =E (X, %)= D 8, (P(d; —q;))-ny + D (¢, —4d) (6.13)

jeN; jeN;
The convergence of a group of vehicles to the flock lattice describes a semi-rigid body model
(see Section 4.11). The semi-rigid body model provides a means of coupling the vehicles and
defining a group level behaviour using the abstract state « =(g,s) described in the previous

section. The objective of the group, using the abstract state & =(g,s), is to navigate the flock

152



of vehicles through the environment from an arbitrary initial position and orientation
g(0)=(R(0),d(0)) with shape s(0), to a final desired position and orientation
g(®) =(R(@),d(@)) with shape s(l). This corresponds to the set of motion primitives in
Section 6.2 describing the parallel sweep trajectory.

By choosing the motion of the centre of the virtual agents in Equation (6.5) as the reference
trajectory for the flock of vehicles to navigate, the group task is reduced to tracking at the
individual vehicle level. The tracking cost function for the ith vehicle is then defined as
follows:

I; (x;,9) = ¢(aF —d) (6.14)
Equation (6.14) specifies the group cooperative objective, and the navigational feedback in
Equation (3.51) that mitigates flock dissociation.

The last part of the cooperative objective is to stabilise the flock to the virtual structure

defined by the virtual agents in Equation (4.122). Since the virtual structure constrains the

position of vehicles in the flock to remain inside the n-sphere defined by (q;,q;), the

group’s compliance to the virtual structure is given by a constraint on the cooperative

objective; i.e.:

|a; — @ < az —a; (6.15)
Since the positions of the virtual agents are time-varying, then the constraints in Equation

(6.15) are also time-varying, and the shape of the flock is permitted to transform. In the next
section, the optimal control problem for the group of vehicles is formulated for the

centralised and decentralised implementation strategies.

6.4. THE COOPERATIVE CONTROL PROBLEM

Combining Equation (6.13) and Equation (6.14), the following objective function is defined
for the ith vehicle:

Ii(Xilui’ii!Gi) =G z¢p(q)(q1 _qi))'nij +Cy- Z(qj _Qi)"'ca ¢(q|c _d) (6.16)
jeN; jeN;
where the terms c;,c,,c, >0 have been introduced to weight the relative importance of each

behaviour. The centralised cooperative objective for the collective group is then recovered by
summing Equation (6.16) along i =1,...,N :

I(x,u) = ili(xi,ui,ii,ﬁi) (6.17)
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Following the notation introduced in Chapter 5 for the cooperative decentralised model
predictive control strategy, the cooperative control problem for the ith vehicle in the flock is
given by:

tior
Ji*,T (% (), % () = {En(!r;} J.Ii()zi (T: |tk)lai (T: |tk)’)A(i(Tlf |tk)>jz-k
itk t

Subject to: % (7 1t) = Ax (7 |t ) + B (7 L)
i=1...,N, 7z e[t.t ]
X (T t) e X, Uz |t) eV,
(i) eN,

% (@ lt) =% )| <x. Vied,
%z ) —d (e 18] < o5 (v 1) - 65 (=i (1)
X; (tk |tk) =X (tk)

X (te,r [t) € X
At each sampling period t,, vehicle v, solves Problem (6.18) using the group information

(6.18)

a(r, |t) =(9(z, |t,),s(z, |t,)) from the supervisory controller, the predicted states of its
neighbours X (t,) over the proceeding horizon z, €[t,,t,.], its current state x(t,), and the

set of predicted states transmitted to its neighbours at the previous sampling period (assumed

states X, ;(t,)). For the following, the neighbours v; of a vehicle v; are given by the ball
bounded by the sensory and communication range r; :

Ni={v,cN :qu—qiugri} (6.19)
The neighbourhood in Equation (6.19) defines the information exchange topology for vehicle

v; with configuration graph G, (V;, E;), and connectivity E; :={e=(v;,v;):v; e V;}. Given
the cooperative control problem described above, the decentralised implementation scheme
for the ith vehicle is given by Definition 4 in Chapter 5. In the following section, a

simulation of the N -vehicle cooperative problem is presented.

6.5. NUMERICAL EXAMPLE

For the following simulation, a flock size of N =6 is used for the cooperative coverage
control problem. The dimension of the position vector for each vehicle is n=2 and the

group configuration is initialised along the line given by:
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0)=|> 0)=|° 0)=| 0=| * 0)=| 2
ql()—M, Q2()—{O] qs()—m, q4()—[0] qs()_|:0:|7

3 (6.20)
0) =
G (0) { 9 }
Each vehicle is subject to the following control input constraints:
U, ={(u,u,) eR?*:-1<u,; <1, j=12} (6.21)
and neighbourhood region:
N, ={v; = N:|a; —q <1.2 (6.22)

The group objective is to track the parallel sweep trajectory shown in Figure 6-3 (d,d) e R*.

The parallel sweep trajectory is decomposed into 4 trajectory primitives as shown in Figure

6-3. The reference trajectory parameterised by time t for the centroid of the flock
(d,d) e R* is given by

(t, 0), t €[0,20]

1t+20, —3t+10) t €[20,30]
(—3t+40, —-3t+10), te[30,40]
(-t+60, -10), t €[40,)
Note, the motion primitives described by Equation (6.23) correspond to the minimum-energy

d() = (6.23)

geodesics described in Section (4.71). Using the geodesics in Equation (6.23), the desired
shape abstractions for the group are constructed.

Given the initial distribution of vehicles in Equation (6.20), the initial shape is bounded by
the disk:

S?(0) ={q e R?:|q-q] < max{jg — q; [}} (6.24)
In this case, the radius of the initial disk S*(0) , is R, =1.5. From Equation (3.48), the

group of vehicles applying Protocol (3.34), converges to the region bounded by

R= \/2}[(q(0), p(0)) . This provides the final shape of the flock lattice. The shape control

problem for the group involves solving the two-point boundary value problem of two
antipodal points on the initial disk to the final disk:

$?()={q e R*:|q-a< y27(a(0).4(0))} (6.25)
Let g° e R*, 4° e R* denote the concatenated states of the virtual agents. The boundary

conditions for the virtual agents for each trajectory segment are given by:

155



‘0= 1, ¢cey=| X ¢ey=| >
4= - 120 g |25+

0 R
-15 -R -5
20 0 (6.26)
0° (40) = -10+R . 4°(60) = -10+R
20 0
-10-R -10—-R

where R is the shape spanned by the flock lattice described in Table 6-1 and solved using
Equation (3.23), Equation (3.24), and Equation (6.25).

Table 6-1. Flock parameters for shape evolution.

dij 10
L=r=r 12
o 0.5r

The interpolating motions for the virtual agents that yield the shape state s(t) € S, is obtained
by solving the set of geodesic equations in Equation (4.46). To solve the geodesic equations
in Equation (4.46), the set of Christoffel symbols for each trajectory primitive must be
calculated. Assume that the set of virtual agents are identical with masses m; =m, =m, and

that the body-fixed frame of each agent is aligned with the principal axis. The following

metric is considered for the minimum energy case:

1jml, O
M== .
2{ 0 m,l, (6:27)

The projection basis from Equation (4.114) and Equation (4.116) using the virtual agents’

coordinates is given by:

Lo o

3 x; 01 ; -1
Ca)=| ", Lol PEI=| (6.28)

2 vi-vs

Xx; 01 1

Expanding Equation (6.27) along the rigid and semi-rigid projections yields:
M, (@°) =0, -M-C(q°)-(C(a°)" -M -C(q*))" -C(a*)" "M +...

..+(-0,)-M-D(@°)(D(@°)" -M -D(@°))" -D(@°)" -M
To solve the boundary value problem for the shape state, define the following shape control

(6.29)

variables for each segment of the trajectory as shown in Figure 6-4:
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Figure 6-4. Desired shape evolution for the group of vehicles.
0.5 te[0,20]
0.99 te[20,30]
o (t) = (6.30)

0.99 te[30,40]
0.99 te[40,0)
From Equation (4.34), Equation (6.28), and Equation (6.29) the 64 Christoffel symbols for

the motion of the two virtual agents are obtained (see Appendix B). Using Equation (4.46)
and the Christoffel Symbols in Appendix A, the interpolating motions for the shape state for
each motion primitive are calculated using a finite-difference method with 100 grid points
[330] in MATLAB. Figure 6-4 shows the corresponding desired motions of the shape
evolution for the collective flock. The paths traced out by the virtual agents provide the
constraints on the cooperative decentralised model predictive problem in Equation (6.18).

For comparison, the centralised model predictive control scheme described in Section 5.1 is
applied to the group of vehicles. In this scheme, a centralised feedback control architecture is
used to solve the motion planning and shape evolution problem described in Equation (6.16).
Following the implementation scheme in Section 5.1.2 and Section 5.1.3, the centralised
finite horizon control problem for the group of vehicles with cost objective in Equation (6.16)
IS given by:
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tesr
30t ) = i, J1(xCe 1 TR+ 1 (lter 180)
Subject to: X (7 1t) = fi(6 (7 1), Ui (7 [ 1))
i=L...,N, 7 e[t.t+T]

X (@ [t) e X, ulz ) eV (6.31)

7 €[t t +T]

gi,j(Xi(Tk [t), X (7 1t)) <0, VjedN,

X(t [t) = x(t,)

X(t.r [t) e X,
where 1(x(z, |t,),u(z, |t,)) is the recovered cooperative objective in Equation (6.17) and

9i.; (% (7, 11,), X (7, |t,)) <O are the nonlinear constraints associated with the shape spanned
by the flock:

o; —al<]az —ar], Vi=1...N (6.32)
Given the abstract state «(t) = (g(t),s(t)), the centralised and decentralised implementation

schemes described in Chapter 5 are applied to the group of vehicles. For both cases, the
following weighting parameters for each task in Problem (6.16) are arbitrarily selected

c, =C, =C, =1. Unless specified, a prediction horizon length of T =3.6 seconds and an

update period of 0.6 seconds are also used in both the centralised and decentralised strategies.
To solve the optimal control problem, a global search strategy based on Particle Swarm
Optimisation (PSO) [19, 27, 350, 351] is used.

Snapshots of the flock’s evolution applying the centralised control scheme are shown in
Figure 6-5. The desired centroidal motion d € g is also depicted in Figure 6-5 by the dashed
centreline. The centroid of the group @ at each sampling period is also shown by the circular
marker in Figure 6-5. Tracking is achieved when the desired centroidal motion and the
centroid of the flock are coincident. The corresponding tracking error, the evolution of the
structural potential, and the applied control inputs of the flock are shown in Figure 6-6,
Figure 6-7, and Figure 6-8 respectively. From Figure 6-6 and Figure 6-7, stabilisation of the
flock configuration and minimisation of the tracking objective in Equation (6.16) is satisfied
after t =13 seconds. At t =17 seconds, the tracking error increases and reaches a peak at
t ~ 20 seconds. Comparison of Figure 6-6 with the boundary conditions in Equation (6.23)
suggest a discontinuity between the concatenation of the first and the second trajectory
segments shown in Figure 6-3. In addition, examination of the control inputs shown in Figure

6-8, reveal that each vehicle begins to apply a control input 3.6 seconds before intersection
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with the second trajectory segment. This corresponds to the prediction horizon length and
demonstrates the efficacy of model predictive control in plan generation for optimal
performance. A similar phenomenon is also observed at t ~ 40 seconds. Between t =20 and
t =40 seconds, the tracking performance of the group fails to stabilise to the minimum.
During this period, the vehicles negotiate the twist induced by the geodesics connecting the
second and third trajectory segments. The gradient of the curve, and the short period of the
twist forces the vehicles to correct their heading and adjust their control inputs during the
turn. This is shown in Figure 6-8 by the nonzero control inputs between t =20 and t =40
seconds. The group’s failure to stabilise to the minimum during this period suggests that the
response of the system is inadequate for the specified turn. Increasing the frequency of the
sampling period will improve the transient response of the system at the cost of greater

computational demand.

Remark.

From Figure 6-7, the group reaches a minimum structural energy at t = 3.6 seconds before
stabilising to a higher energy level at t>13 seconds. This suggests that the final

configuration does not conform to the ideal flock lattice with d; =10. Rather, the stabilised

flock configuration represents a compromise between the desired tracking objective and the
desired flock configuration. A possible approach to resolve the arbitration between the
possibly conflicting objectives is to separate the tasks in Equation (6.16). Using this
approach, the optimisation problem becomes multi-objective. Multi-objective optimisation is
not treated in this thesis. However, it is anticipated that the proposed framework is

sufficiently general to accommodate the multi-objective formulation.

For the decentralised implementation, the effect of the compatibility constraint x is
investigated. Figure 6-9 shows the trajectory of the flock using the centralised
implementation scheme and the decentralised implementation scheme for varying «. The
corresponding tracking performance and structural energy are shown in Figure 6-11 and
Figure 6-12 respectively. For illustrative purposes, the corresponding control input of the
fourth vehicle v =4 is shown in Figure 6-10. In general, the decentralised implementation
scheme facilitates cooperation and achieves the desired objectives, with comparable (albeit

suboptimal) performance to the centralised case.
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Figure 6-7. Convergence of the structural potential for the flock lattice.
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From Figure 6-11, relaxing the compatibility constraint (x — +o) induces a fast transient
response with a sluggish settling time. This is in concert with the theoretical investigations
posed in Section 5.5. The anticipated overshoot potentially induced by the mismatch between
the assumed and applied states of neighbouring vehicles however; appear to be a conservative
estimate on the convergence of the information consensus. In fact, the very same reason used
to argue the propagation of information mismatch in neighbouring vehicles, i.e. the ability to
generate new plans, is the same reason that allows the vehicles to gracefully reach a
consensus with minimal chattering. This is due to the structure of the objective function.
From Equation (6.18), the optimisation problem involves the plans of neighbours at each
sampling period over the prediction horizon. Since vehicles must plan for future sampling
periods using the previous plans of neighbouring vehicles (and only apply the first step of the
predicted plans), the anticipated mismatch between the shared plans gradually tends to zero.
This results in the appreciable convergence towards the equilibrium.

In contrast, constricting the compatibility constraint (x — 0), the settling time and the
overshoot of the tracking error is further reduced. This is also illustrated by the stabilisation
of the structural energy in Figure 6-12. However, strict compatibility constraints reduce the
efficacy of the model predictive control scheme at developing successive plans significantly
divergent from previous plans. This limits the vehicles’ robustness to tolerate changes in the
operating conditions. This is shown in Figure 6-11 by the large tracking errors at t =20 and
t = 40 seconds corresponding to the interface of adjoining trajectory segments.

One way to minimise these errors is to increase the prediction horizon and accommodate
the sluggish response induced by the strict compatibility constraint. Increasing the prediction
horizon however, incurs a larger computational penalty since the optimisation problem
becomes large-scale. For illustrative purposes, the decentralised implementation scheme is
demonstrated for T =3.6 and T =6.0 seconds using x =0.06. Figure 6-13 and Figure 6-14
shows the corresponding tracking error and evolution of the structural potential for the group
of vehicles. For T =6.0 seconds, the overshoot and settling time of the tracking error is
significantly less than for T =3.6 seconds. While this strategy can be employed to improve
the transient behaviour of the vehicles, increasing the prediction horizon will inevitably lead

to longer computational times and larger computational demands.
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Figure 6-13. Effect of the prediction horizon length on the tracking performance using the decentralised
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6.6. SUMMARY

In this chapter, the proposed cooperative control scheme developed in the previous chapters
was implemented on a group of vehicles. The objective of the group was to maintain a flock
lattice construction whilst adhering to the cooperative objectives specified by the supervisory
controller. Cooperative objectives included the optimal motion of the group and evolution of
the shape spanned by the flock configuration. Numerical experiments were presented to
demonstrate the effectiveness of the proposed cooperative control framework. The
decentralised cooperative control scheme was then compared to the traditional centralised
model predictive control scheme presented in Section 5.1. In general, performance of the
decentralised cooperative control strategy was comparable to the centralised implementation.
Results also indicated that the compatibility constraint discussed in Section 5.3 was a
conservative constraint on the distributed problem. In fact, strict application of the
compatibility constraint reduced the efficacy of the model predictive control scheme to
accommodate for changes in the environment. This was particularly evidenced by the large
errors induced by the sudden change in direction between successive trajectory segments.
Furthermore, implementation of the compatibility constraint was trivial during the trajectory
segments. This was due to the inherent compatibility of the optimal predicted plans at
successive update periods induced by the natural coupling of successive finite horizon
problems. Without disturbances, such as changing objectives, or changing flock patterns, the
vehicle’s plans would naturally converge to a consensus due to the coupling in the
cooperative objective. In fact, relaxing the compatibility constraint (x =) demonstrated
good transient response (despite the investigations in Section 5.5) with comparable
performance to the centralised implementation. It should be noted that this observation is
only valid for applications where vehicle’ plans are not subject to drastic changes or
disturbances. While the strategy developed in the previous chapters has demonstrated
potential in this chapter, the following chapter concludes with a discussion on the
significance of the results and future areas of research.
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Chapter 7. Conclusion and Recommendations

In this thesis the problem of controlling a large group of vehicles for cooperative tasks was
investigated. A theoretical framework was presented that mapped the local vehicle
behaviours to group behaviours. Methods to model the local vehicle behaviours using
principles from natural flocks and swarms were presented, and group abstractions based on
these interactions were derived. A decentralised cooperative control scheme was then
developed to coordinate the actions of the individuals towards a group task represented at the
group manifold. In the following section, a summary of the material presented in this thesis is
provided. Major contributions of the work are highlighted before areas of future research are

discussed.

7.1. CONTRIBUTIONS

For cooperative control of multiple agents, the exchange of information is necessary to
coordinate the actions of individuals towards a common goal. Coordination involves
consensus on the exchanged information. The distributed nature of the information flow, and
the sufficient conditions for consensus on a time-invariant and time-varying communication
network were investigated in Chapter 2. Using tools from algebraic graph theory, a
theoretical framework for modelling and analysing the communication topology for a group
of vehicles was presented. It was shown that the sum-of-squares (SOS) properties of the
graph Laplacian naturally admit a distributed protocol for consensus on an information
network. Application of the consensus protocol based on the SOS properties of the graph
Laplacian was shown to asymptotically converge to the average value of the connected
information network. Furthermore, the rate of convergence for a connected information graph
using the distributed consensus protocol was bounded by the second smallest eigenvalue of
the graph Laplacian. This provided a useful measure and guarantee to the network’s
performance.

The consensus protocol was then extended to the case of a switching network to model the

spatiotemporal nature of the communication exchange topology for a group of vehicles.
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Following the works of [46], it was shown that the switching network was piecewise
continuous. The closed-form of the information flow was then derived by applying the
consensus protocol. The resulting system provided a model for the evolution of information
on a group of vehicles subject to spatially induced communication topologies. It was shown
that the closed-form of the information flow was described by a hybrid differential
autonomous system.

In Chapter 3, the SOS properties of the graph Laplacian that were used in Chapter 2 to
derive a consensus protocol, were then extended to flocking behaviour for a group of
vehicles. It was shown that the flocking behaviour is an example of consensus on a
distributed system; where the information state represents the set of spatial constraints
prescribed by Reynolds’ flock model. Based on this premise, a mathematical model for
flocking was presented using fixed inter-vehicle constraints. The configuration induced by
this model was identified by a flock lattice. A simple distributed flock protocol was then
constructed using Lennard-Jones type potentials. The Lennard-Jones type potentials provided
a smooth energy functional to describe the conformity of the flock’s configuration to the
desired flock lattice. The minimum of the energy functional induced by the flock
configuration was shown to correspond to the desired flock lattice. This provided an
identifiable metric to control the convergence of the flock to the lattice construction. The
flock protocol was then implemented as a simple PD controller to investigate the stability and
performance of the flocking protocol for a group of point-like vehicles. It was shown that the
group of vehicles converge to a configuration with fixed-inter vehicle distances; supporting
the proposed model. The spatial constraints of the flock lattice, represented the first two
behavioural traits of Reynolds’ rules. A second term was introduced to produce flock
alignment. This was known as the velocity alignment term. Together, the structural flock
protocol and the velocity alignment term provided stable flocking. It was shown by
simulation for higher-order systems that a group of vehicles applying the flock protocol, will
only stabilise to the flock lattice given a specific set of initial conditions. A navigational
feedback was introduced to help stabilise the system and provide a tangible representation of
the cooperative group objective. These were further developed in Chapter 4.

Analysis of the interconnected group applying the flock protocol revealed that for a given
initial configuration, the group of vehicles will converge to the largest subset of the
Hamiltonian. This provided a shape abstraction that bounded the distribution spanned by the

vehicles. Using this representation, the group could be treated as a unified virtual-structure
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controllable at a supervisory level. The control problem at the supervisory level was then
reduced to shape control and vehicle path planning for a single rigid body system. Trajectory
generation and tracking for the individual vehicles were then treated at the local vehicle level
by developing optimal cooperative control strategies in Chapter 5.

The problem of controlling the shape and motion of the group of vehicles as a rigid body
was investigated in Chapter 4. The approach presented here exploited the symmetries induced
by the converged flock lattice and the reduction of control to a lower-dimensional manifold.
By using this approach, the notions of scalability and reductionism could be applied.
Techniques from differential geometry were then used to establish the optimal conditions for
navigating the group as a rigid body system. Conditions for optimality were given for the
minimum energy, minimum acceleration, and minimum jerk cases. Analytical expressions
for these were presented given a symmetric bi-invariant metric.

To control the shape, virtual agents were introduced along the surface of the n-sphere
representing the distribution spanned by the N vehicles. Controlling the virtual agents (or
antipodal points of the n-sphere) affected the expansion and contraction of the shape spanned
by the group of vehicles and considered the group as a virtual structure. Using this approach,
complex polygons representative of more elaborate flock configurations could be defined by
specifying more virtual agents along the surface. However, increasing the number of points
along the shape spanned by the vehicles increases the complexity of the path planning
problem for the virtual structure, and alternative abstractions should be investigated.

In the case of a group of vehicles transitioning from a quasi-flock or disconnected
configuration to the flock lattice, the vehicles were shown to violate the rigidity constraints of
the rigid body model. The conditions that were presented for optimal motion generation were
invalid since the group of vehicles was now identified by a semi-rigid body model.
Projections along the rigidity preserving directions and rigidity violating directions were used
to resolve the energy metric for the semi-rigid body model and define ‘suboptimal’ motions
for the virtual agents to trace and map out a shape trajectory. Solving the trajectories for the
virtual agents was approached by interpolating the motions and solving the boundary value
problem associated to the geodesic flow equations. Boundary conditions were provided using
the shape spanned by the initial configuration and the shape spanned by the Hamiltonian of
the flock protocol. Solving the boundary value problem for the planar case of two virtual
agents was demonstrated. It was shown that for this case, a total of 64 Christoffel Symbols

need to be solved. While this strategy is sufficient for small groups of virtual agents, and can

171



even be applied to the motion generation of each vehicle, it is highly intractable to apply to
motion generation of each vehicle or to increase the number of virtual agents.

To resolve the motion generation segment of the vehicles in the local frame, a cooperative
control scheme was designed based on a decentralised model predictive control strategy in
Chapter 5. The work exploited the predictive nature of the control scheme to permit
negotiation and consensus between neighbouring vehicles at successive update periods. Here,
the predicted states were used to represent the plans and intentions of vehicles at future
sampling periods. The plans represented the state trajectories of the individuals that satisfied
the cooperative objective and optimised the local vehicle behaviours. Formulating the
cooperative objective and local objective in this way enabled the coherent resolution of the
group task from the local behaviours. Sufficient conditions for consensus applying this
strategy were also provided. It was shown that if vehicles transmitted information, and then
deviated from their original plans in the proceeding update period, then the system would
demonstrate poor convergence and ultimately poor cooperation. To resolve this issue, it was
necessary to introduce a compatibility constraint that would penalise the behaviour of
vehicles if they deviated too far from their previous plans. This ensured that the vehicles
would be more cohesive. It was shown for small values of the compatibility constraint,
consensus was sluggish. On the other hand, by relaxing the compatibility constraint, and
permitting larger deviations between successive plans, the consensus on the coordination
variable was difficult to achieve since vehicles would be permitted to deviate from their
intentions at successive intervals. Nonetheless, the compatibility constraint was necessary to
ensure cooperative behaviour, despite its limiting effect on the power of model predictive
control. Finally, in Chapter 6, the theoretical framework for controlling the group as a
collective, and the cooperative decentralised model predictive control scheme were
implemented on a group of vehicles tasked with cooperative navigation. The objective of
Chapter 6 was to demonstrate the application of the combined theoretical developments in the
previous chapters to a cooperative control problem. Using the methods presented in Chapter
4, the shape and motion of the group was obtained for the group. These were used to
represent the cooperative objective for the group of vehicles. Applying the cooperative
control scheme in Chapter 5, it was demonstrated that the framework achieves cooperation in
the local frame and satisfies the group objectives. For comparative purposes, a centralised
implementation of the cooperative objective was also presented using traditional model

predictive control. The decentralised cooperative control scheme achieved the desired
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cooperative objective, and demonstrated similar performance to the centralised case when the
compatibility constraint was relaxed. This suggested that the bounds on the compatibility
constraint developed in Chapter 5 were conservative estimates for the case when the
information is coupled in the cooperative objective. Furthermore, enforcing strict
compatibility constraints prevented the vehicles from significantly deviating from previous
plans and accommodating for changes in the operating conditions. In these scenarios, the
performance of the decentralised cooperative control scheme was not optimal. It was shown
that by increasing the sampling period and the frequency of information exchange, the
behaviour of the decentralised cooperative control scheme with strict compatibility
constraints could be recovered.

7.2. APPLICATION AND FUTURE WORK

The results presented in this thesis raise many questions and research possibilities. While the
work has attempted to integrate as many of the relevant approaches and build on them to
develop a unified model, there are still some avenues of research that need to be addressed
for the practical implementation of this framework. In the following sections, several

potential research directions are proposed.

7.2.1. INFORMATION FLOW AND CONSENSUS

In Chapter 2, a simplified model of the information exchange topology for a generalised
distributed system was developed. Based on the SOS properties of the graph Laplacian, a
simple consensus protocol was developed that would achieve consensus on the exchanged
information state. It was assumed, for the purposes of generality, that the information was
synchronised and perfect (lossless). In practice, the exchange of information through wireless
media is subject to noise, uncertainty, interruption and delays; particularly for multi-vehicle
applications. These can be caused by hardware limitations, interferences with the
environment, the directivity of the transmitted information flow, or the ad-hoc nature of the
communication network. The effect of these disturbances can invalidate the convergence
properties of the proposed consensus protocols. Therefore, it is necessary to analyse
asynchronous protocols with time delays to provide a more realistic model of multi-vehicle
systems. Already, several authors [137, 209, 233, 308, 309] have begun investigating the
effects of delays and asynchronicity on the consensus of information networks. These studies

will help to further the understanding of multi-vehicle interactions in a realistic setting.
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The situatedness of the information flow in a multi-vehicle system admits a switching
communication network. It was shown for a group of vehicles with finite interaction range,
that the switching network is piecewise continuous with dynamics governed by a hybrid
differential autonomous equation. Analytical methods to solve these types of problems are
currently an active area of research, with no explicit solutions known to exist. Understanding
the behaviour of the switching network can provide insight into the switching instances of the
network and the length of the dwell times. This can provide invaluable information in
developing optimal coordination control strategies that exploit the dwell periods. For
example, in the proposed cooperative decentralised model predictive control scheme, the
prediction horizon and sampling period were determined based on an empirical investigation.
By understanding the length of the dwell times and the switching instances, the cooperative
decentralised model predictive control scheme can be optimised to exchange information
only at the switching instances. This would reduce the frequency of information exchange
and the power and bandwidth required to maintain continuous communication.

7.2.2. FLOCKING

In Chapter 3, a Lennard-Jones type artificial potential field was used to model the inter-agent
behaviours of the vehicles in the flock. The Lennard-Jones type potential was constructed by
fitting a smooth continuous function to the spatial constraints of Reynolds’ rules. The
resulting potential field was a continuously smooth approximation to the Euclidean norm.
While this is sufficiently general, other Lennard-Jones type potentials could be used to model
the intricate behaviours of natural flocks and swarms. Studies in the fields of particle physics,
electrochemistry, molecular biology, and mathematical biology can provide an insight into
the application of Lennard-Jones type potentials to modelling natural phenomena such as
flocks and swarms.

By introducing secondary behaviours to the original flock model and accommodate for
more realistic motions, the number of controllable parameters will be increased. These are
represented by the weighting terms on each vector field corresponding to each additional
behaviour. Until now, the weighting parameters were arbitrarily selected or deduced from
empirical investigations. This was possible since the behaviour set was minimal and the
influence of each parameter could be easily investigated through simulation. As the number
of vehicles and/or number of behaviours is increased, the resolution of individual behaviours

becomes more difficult using numerical simulation. A thorough investigation should be
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performed to develop analytical expressions for the influence of the weighting parameters on
the behaviours of the vehicles. This will provide a greater insight into the stability of the
system, the influence of the vehicles on the cooperative objective, and ultimately, the
development of an automatic tuning system for the individual vehicle controllers.

An issue pertinent to artificial potential field-based controllers is the emergence of local
minima. In this thesis, the problem of local minima was briefly considered by introducing a
navigational feedback term representative of the group cooperative objective. This provided a
suitable means of coordinating the behaviours of the vehicles and directing the motion
towards a global minimum. When the cooperative objective is not spatially dependent, or
when the group is not coupled by a group cooperative objective, navigational feedback is
unsuitable for avoiding local minima. In some cases, the navigational feedback can introduce
unwanted local minima, such as navigation through an obstacle field. Methods to circumvent
the existence of local minima should be investigated; and contingencies to overcome these
minima should be developed. Possible contingencies could include reversion to a motion
primitive such as loitering.

Other shape abstractions using the internal flock lattice model should also be investigated to
broaden the applications of the flock. In this thesis, only the n-sphere bounding the flock
distribution was considered. The n-sphere bound provides only one type of shape and limits
the possible applications for a flock. Many applications require more complex shapes to be
formed. Recently, authors have investigated the use of Fourier descriptors [352, 353] as a
method of modelling the shape boundary for a group of vehicles. In these methods, two types
of vehicles are distinguished; leaders and followers. The leaders assume positions along the
perimeter of the desired shape, whilst followers “fill’ the internal volume. Using this
approach, the artificial potential field can be modified to accommodate a secondary
behaviour that forces the vehicles to conform to the shape and distribution specified by the
Fourier descriptors. This approach has recently been applied by the authors to a group of
vehicles for radar deception [215]. Using potential fields in this manner, involves a mapping
on the navigational term.

A similar approach to using the shape conforming potential is the use of morphogenesis
gradients. Morphogenesis gradients are inspired by the field of cellular biology. While highly
speculative, it could be possible to define a global potential field that is coded into the
vehicles. This global morphogenesis gradient determines the role or behaviour of the vehicle
within the flock based on their relative distance from a placeholder (such as the desired
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centroid of the flock). In this case, vehicles closer to the centre of the flock, might be required
to have a stricter conformity to the flock lattice, whilst those further away, would assume the
role of the leader agents, and switch to the required behaviour. The morphogenesis gradient
essentially manifests itself in the weighting parameters of the flock behaviours. This
approach is highly advantageous since it would be more amenable to scaling; i.e. virtual
agents do not have to be defined explicitly at design time. Behaviours of the vehicles are

determined based on their position in the gradient field and evolve with the flock.

7.2.3. GROUP MOTION PLANNING

The cooperative task in this thesis was demonstrated by considering the group navigation of
the flock as a cooperative objective. The approach used was based on the assumption that the
group adheres to a rigid body construction. By treating the flock as a rigid body system,
optimal trajectories for the group could be derived using techniques from geometric control
theory. These approaches provide a nice method for solving the motion generation problem
on a left-invariant control system preserving the symmetric properties of the rigid flock. The
transition from an initial configuration to a flock configuration, however, violates the rigidity
constraints of the rigid body model, and the system is considered as a rigid body system. In
this model, the motion of each vehicle in the flock features a rigidity preserving and rigidity
violating component. In this thesis, the transition of the group from one configuration to the
flock lattice was treated using a semi-rigid body system using a semi-rigid metric. The semi-
rigid metric was constructed by introducing a shape control parameter to the rigid body
metric and resolving the motions along the geodesic preserving and geodesic violating
directions. One area of research involves the limits of this shape parameter. The relationship
between the permissible boundary conditions, the stringency of the rigidity constraints, and
the range of allowable shape parameters should be investigated. In this thesis, the boundary
conditions were arbitrarily selected to violate the rigidity constraints; i.e. the initial shape and
final shape were incompatible. By simulation, it was shown that only a small set of shape
parameters exist for this type of navigation objective, and purely rigid body motions could

not be achieved o, =1. Understanding the relationship between the boundary conditions and

the shape parameter provides an insight into the allowable motions of the group at the
supervisory level and can further reinforce the notion of open-loop optimal commands.
Another area of extension (more aligned to practical implementation) is the effect of the

shape boundary on object collisions. In natural flocks and swarms, the individuals can easily
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bifurcate and converge around an obstacle to avoid collisions. Applying the shape boundary
constraints prevents any excursions of the individuals from the desired shape. A potential
conflict arises when the flock comes into contact with a physical object in the environment.
Protocols must be developed to negotiate obstacles. This could be achieved by a finite-state
automaton to switch between modes of behaviour. Possible modes could include flock
loitering, flock bifurcation and convergence, and re-planning the desired centroidal path of
the flock. Practical insights into safe switching modes for collision avoidance would be
provided by a mission specialist and would be dependent on the desired objectives of the
flock. Implementing a finite-state automaton naturally implies a relaxation of the shape
boundary constraints to avoid collisions and prevent conflicts between the desired group’s
objectives and the allowable behaviours of the individuals. Therefore, the introduction of safe
collision avoidance protocols would have to consider the significance of the shape boundary
constraints.

Following the symmetric approach described in thesis, it is also possible to find the optimal
motions of each vehicle rather than just the virtual agents. However, solving the geodesic
flow equations is centralised since the geodesic flow equations are dependent on the
coordinates in the local frame. While for small groups of vehicles (such as the subset of
virtual agents), this is permissible, the approach is not readily scalable. As it was shown,
solving for only two points on a planar manifold resulted in the simultaneous resolution of 8
differential equations with 64 Christoffel symbols relating to the semi-rigid metric. Ideally,
the motions of each vehicle should exploit the nature of the geodesic flow. An avenue of
research is to investigate the possibility of defining a geodesic bundle that represents the flow

field of the flock that can be solved in a decentralised manner.

7.24. COOPERATIVE CONTROL  VIA DECENTRALISED MODEL
PREDICTIVE CONTROL

In this thesis, cooperation was achieved by the mutual exchange of plans and intentions
between neighbouring vehicles to reach a consensus on some coordination variable,
representative of the solution of the cooperative objective. A dependency of the cooperative
decentralised model predictive control strategy is the compatibility constraint. The
compatibility constraint restricts the power of traditional model predictive control to re-
evaluate an optimisation problem under disturbance or changing environmental conditions.

Research possibilities involve finding alternative approaches to reduce the limiting effect of
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the compatibility constraint on finding new solutions. Possibilities include removing the
compatibility constraint, and developing protocols to switch the controller and safeguard the
vehicle.

Other areas that need to be investigated, is the effect of delays and asynchronicity. It was
assumed that the computational time to resolve the optimisation problem at each prediction
horizon was negligible. In practice, the vehicles require time to compute their solutions.
Depending on the hardware processor capabilities, and the amount of information being
received from neighbours, this can be a significant factor that could determine the feasibility
of such an approach in real-world situations. In addition, the foundation of the decentralised
model predictive control strategy was the information exchange. It was assumed that the
information exchange is lossless, and synchronised, with no delays. Any disturbance to the
flow of information will affect the stability and performance of the cooperative control
scheme. Therefore, more realistic models of the information exchange topology need to be
investigated and applied to the cooperative control scheme. Effects such as delays and packet
losses should be investigated with context to the decentralised model predictive control
strategy. To robustify the cooperative control strategy, contingencies should also be
developed information is not received or corrupted due to communication dropouts and
interference.

The effect of the sampling time on the convergence of the cooperative control scheme
should also be investigated. It was shown in Chapter 6 how the transient behaviour with a
strict compatibility constraint can be improved by increasing the frequency of the information
flow. Bounds on the performance error and the compatibility constraint should be established
to properly determine the frequency of the information exchange. This should ideally also
consider the practical issues of the implementation. For example, in this thesis, it was
assumed that the vehicles were able to freely send and receive information as needed. In
practice, constraints on hardware and the vulnerability of information transmitted across a
wireless medium limit the ability of vehicles to convey information over open channels of
communication. An important area of investigation is the minimum amount of information
required that achieves consensus, and the minimum frequency needed to demonstrate
appreciable performance and fault tolerance.

The cooperative control problem in this thesis was formulated using a singular objective
function combining the local behaviours of the vehicles with the desired group objectives of

the flock. Weighting parameters were used to tune the relative importance of the individual
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tasks in the distributed objective functions of each vehicle. While this approach was valid for
tasks represented on the same solution space or in some way coupled, the same approach can
not be effectively applied to applications where the tasks are conflicting and/or reside on
different solution spaces. A more general approach (and one that treats the individual tasks
and objectives independently) is multi-objective optimisation. Multi-objective optimisation
can ensure that the solution is the best compromise between the vehicle’s local objectives and
the desired group’s objectives. Recently, the authors have investigated the application of the

proposed approach using multi-objective formulations with successful results [354].

7.25. IMPLEMENTATION

The main goal of this thesis was to present a unified framework in which a supervisory
controller can control a large group of vehicles using a limited set of abstractions, and make
the behaviour of the vehicles converge to the desired objectives. Due to limited simulation
facilities and resources however, the cooperative control framework was only demonstrated
for small-scale populations with simple integrator dynamics. Simplifying assumptions were
made to construct an idealised setting that demonstrated the efficacy of the proposed
approach. While these assumptions were used to promote the theory, application of the
derived control laws into a realistic setting would provide practical insights into the
limitations of the proposed framework. Possible extensions would include higher-order
vehicle systems exhibiting nonlinear dynamics, large-scale populations with random attrition
and extension, and high-fidelity models. Similarly, practical implementation issues on the
information network should also be modelled to consider the validity of the approach on real-
world multi-vehicle systems. These include the effect of asynchronicity, delays, uncertainty,
and noise on the stability and performance of the cooperative control framework.

The cooperative framework proposed, has also only been demonstrated for applications that
feature the spatial coordinates as a solution to the cooperative problem. The results suggest
that the framework presented is amenable to many other multi-vehicle scenarios admitting a
spatial representation. These include cooperative rendezvous, coverage control, intelligent
traffic control, cooperative object manipulation, and self-assembly. Extensions to other non-
spatial cooperative control problems, such as mathematical optimisation using distributed
processors and distributed internet search agents, are also possible by formulating the
objective as a cooperative control problem. Exploration of these ideas could validate the
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generality of the approach and provide further insight into the practical capacities and
limitations of the developed framework into multi-vehicle and multi-agent systems.
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Appendix A. LaSalle’s Invariance Principle

Let V:R" —> R be a locally positive definite function such that on the compact set

Q. ={xeR":V(x)<c}, V(x)<0. Define:

S={xeQ,:V(x)=0} (A.1)
As t — oo, the trajectory tends to the largest invariant set inside S. Moreover, if S contains

no invariant sets other than x =0, then 0 is asymptotically stable.
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Appendix B. Christoffel Symbols for 2 Rigid Bodies in a

Plane

The 64 Christoffel symbols for two vehicles in a plane derived using MATLAB are listed

below:
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