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Abstract 

The cooperative control of large-scale multi-agent systems has gained a significant interest in 

recent years from the robotics and control communities for multi-vehicle control. One 

motivator for the growing interest is the application of spatially and temporally distributed 

multiple unmanned aerial vehicle (UAV) systems for distributed sensing and collaborative 

operations. In this research, the multi-vehicle control problem is addressed using a 

decentralised control system. The work aims to provide a decentralised control framework 

that synthesises the self-organised and coordinated behaviour of natural swarming systems 

into cooperative UAV systems. The control system design framework is generalised for 

application into various other multi-agent systems including cellular robotics, ad-hoc 

communication networks, and modular smart-structures. The approach involves identifying 

suitable relationships that describe the behaviour of the UAVs within the swarm and the 

interactions of these behaviours to produce purposeful high-level actions for system 

operators. A major focus concerning the research involves the development of suitable 

analytical tools that decomposes the general swarm behaviours to the local vehicle level.  The 

control problem is approached using two-levels of abstraction; the supervisory level, and the 

local vehicle level. Geometric control techniques based on differential geometry are used at 

the supervisory level to reduce the control problem to a small set of permutation and size 

invariant abstract descriptors. The abstract descriptors provide an open-loop optimal state and 

control trajectory for the collective swarm and are used to describe the intentions of the 

vehicles. Decentralised optimal control is implemented at the local vehicle level to synthesise 

self-organised and cooperative behaviour. A deliberative control scheme is implemented at 

the local vehicle level that demonstrates autonomous, cooperative and optimal behaviour 

whilst the preserving precision and reliability at the local vehicle level. 
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Chapter 1. Introduction and Related Works 

The advancements of sensor technologies and small-scale robotics have helped generate a 

growing interest in the development of Unmanned Vehicles (UVs) for hazardous and 

repetitive missions [1]. In interplanetary exploratory missions, UVs can be used in lieu of 

manned vehicles to venture into unknown environments unsustainable for human activity. In 

military applications, UVs such as Unmanned Air Vehicles (UAVs) and Unmanned Ground 

Vehicles (UGVs) can be used in operations to reduce the risk of life and extend force 

capabilities into hostile environments. UVs can also be used in many civilian applications 

including crop dusting, search and rescue, and weather reconnaissance. 

 As a consequence to this growing interest, significant gains have been achieved at 

developing complex and more capable unmanned systems. Contrastingly, equivalent progress 

has not been made in the area of control. Current methods of control rely on human-in-the-

loop to ensure successful operation of the vehicle. This is often achieved via teleoperation; 

where a human operator controls the vehicle through remote control. In highly complex and 

capable systems, such as the Global Hawk UAV, a team of 2-3 skilled operators is often 

required to control the vehicle and deconflict the information from the various onboard 

sensors. 

 In recent years, groups of UVs have been proposed for a variety of cooperative tasks, 

including distributed sensing, multimodal imaging, object manipulation, and cooperative 

attack. Observing the current trend in UV control systems, the number of operators required 

to control of a large group of vehicles would increase exponentially. One method to reverse 

this system-to-operator ratio is through swarming. Swarming involves the simultaneous 

operation of multiple vehicles using simple interaction rules to achieve a purposeful 

behaviour. This requires that the individual vehicles possess sufficient autonomy to sense and 

react to their environment and cooperate with neighbouring swarm members. By increasing 

the autonomy of the individual vehicles, the ability of the supervisory agent to observe and 

control each individual in the group reduces. However, predicting the response of the group 
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and guaranteeing completion of the task becomes difficult as individuals become less reliant 

on the supervisory controller. 

 In this thesis, the problem of controlling a group of vehicles in a leaderless and 

decentralised way is addressed. The research aims to develop a systematic approach to 

synthesising autonomous cooperative control in a group of vehicles tasked with a group 

objective. The problem is addressed from two levels of control. The first level looks at the 

individual vehicles and their interactions. The control architecture at the local vehicle level is 

treated as decentralised, and group behaviours emerge from the local interactions of the 

vehicles in the group. At the second level (the supervisory level) the group of vehicles is 

treated as a unified structure. Control at this level is hierarchical, and commands are issued 

from a high-level supervisory agent to the group of vehicles. A key enabler to this 

implementation strategy is the identification of group abstractions that reduce the control at 

the supervisory level to a lower-dimensional manifold preserving the essential features of the 

swarm. To ensure that the vehicles’ emergent behaviour is coordinated towards the desired 

group objectives, this research aims to investigate the resolution of group objectives into local 

vehicle objectives using decentralised optimisation techniques. Based on this discussion, an 

extensive review of the literature on multi-agent systems is presented to motivate the 

developments presented in this thesis. In Section 1.6, an overview of the thesis is then 

provided which introduces the specific problems studied in this research.  

1.1. BIOLOGICAL MOTIVATION 

The collective behaviour observed in many social insects and animals provides the inspiration 

for the development of multi-agent and multi-vehicle systems [2, 3]. Cooperative behaviours 

arise in many biological networks; and range from the inter-molecular and inter-cellular 

interactions of bacterial swarms [4], to the coordinated motions of complex socially-aware 

animal groups [5]. Sociability in these biological species provides benefits to the group 

unattainable by individual endeavours. These include anti-predator vigilance, maximal-

foraging, and collective migration. In schools of fish and flocks of birds, individuals 

coordinate their motions to travel in large cohesive groups to maximise food reward and 

defend against predation [6, 7]. Migratory birds, such as geese, swans, and pelicans, fly in 

regular V-shaped formations to maximise drag reduction and range [8-11]. Swarms of 

Japanese honeybees (Apis cerana japonica) [12, 13], communities of wild chimpanzees (Pan 

troglodytes) [14, 15], and packs of African wild dogs (Lycaon pictus) [16], all exhibit 
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cooperative and coordinated behaviours that include nest-consensus, group foraging, and 

cooperative hunting. These complex cooperative behaviours are achieved through the local 

interactions of the individuals and without direction of a group leader. The emergence of 

these complex macroscopic behaviours is the result of many simple microscopic behaviours 

interacting together towards a common goal [17]. 

Artificial models for biological swarms have consequently been recognised as a potential 

analogy for scientific and engineering applications. These include population-based 

optimisation techniques [18, 19], distributed computing, agent-based software, and multi-

vehicle systems. Much work has been invested in the field of mathematical and theoretical 

biology to understand the relationship between the individual and the group behaviours of 

these biological swarms. The interactions of individuals in a school of fish, was first 

investigated by Breder in [20]. Breder promoted the view that individuals in a school of fish 

demonstrated a long-range attraction and a short-range repulsion that decayed over increasing 

distance. This attractive-repulsive potential model caused individuals to cluster and form 

cohesive groups. The swarm behaviour of the flock was the result of the dense interactions of 

the relatively simple attraction-repulsion forces of the individuals. Following from Breder’s 

model, much work has been done by mathematical biologists to model the emergent 

behaviour of swarms using local rules of attraction and repulsion [5, 21-24]. 

In 1987, Reynolds [25] formalised the concepts of Breder into a set of distributed 

behavioural rules describing the observed flock motion of natural systems. Reynolds’ 

behavioural model (also known as Reynolds’ boids) is summarised by the following three 

heuristics: 

1. flock centring: attempt to stay close to nearby flockmates; 

2. obstacle: avoidance: avoid collisions with neighbouring flockmates; and 

3. velocity matching: attempt to match the velocity of neighbouring flockmates. 

These have been commonly referred to as cohesion, separation, and alignment respectively. 

A mathematical justification for flocking and swarming in social biological systems is 

presented in Grünbaum [26]. In [26], evidence is presented suggesting the influence of 

cohesion and alignment in flocks of aquatic species for improved foraging in asocial 

individuals. In foraging species, individuals randomly sample the environment to search for a 

favourable gradient. Based on this hypothesis, an individual would spend more time moving 

in the wrong directions than towards the region of a favourable gradient. Schooling and 

flocking encourages the migration of individuals towards a favourable gradient through the 
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cohesion and alignment of neighbours in the flock. Alignment and cohesion in social flocks 

and swarms serves to dampen the stochastic effects of individual sampling errors and directs 

the migration of individuals to a common direction [26]. This observed behaviour is the 

motivation for population-based optimisation techniques such as Particle Swarm 

Optimisation (PSO) [19, 27], Simulated Annealing (SA) [28], and Ant Colony Optimisation 

(ACO) [18, 29]. 

Parrish et al. [6] extended the behavioural model introduced in [25] to identify three 

parameter groups that quantitatively characterise the individual and group behaviours of the 

flock. These include 1) behavioural matching; 2) positional preference; and 3) numerical 

preference. Behavioural matching refers to the tendency of individuals to match their 

behaviour with neighbouring flockmates. In schools of fish, behavioural matching is 

demonstrated by the explicit alignment of individuals in the group [30, 31], whilst positional 

preference is used to describe the individuals’ affinity to distribute themselves relative to 

each other [6]. The equilibrium of Breder’s attractive-repulsive model is an example of the 

preferred position between neighbouring flockmates. Positional preference together with 

behavioural matching, quantitatively describe Reynolds’ boids. The distributed and leaderless 

nature of the flock’s cooperative task is further influenced by the numerical preference 

parameter. The numerical preference describes the subset of flockmates that an individual 

interacts with. The cardinality of this subset defines the number of interactions an individual 

has and is often referred to as the rule size [6]. 

The concept of a finite interaction range has received considerable attention in the literature 

[32]. In Couzin et al. [33], the limited spatial sensory capabilities of schools of fish and flocks 

of birds was simulated using bounded zones of attraction and repulsion. As the parameters of 

each zone was varied (including the radius of attraction and repulsion), transitions in the 

global behaviour were observed. Patterns included swarms, torus, and parallel group 

formations. The results obtained in [33] supported the behaviours demonstrated by schools of 

fish. The relationship between the interaction range of the individuals and the expressed 

global behaviours, further reinforced the notion of emergence in cooperative systems, and 

demonstrated the first evidence of ‘collective memory’ in animal groups. Furthermore, the 

relationship between the sensory and communication range of individuals in the group to the 

observed behaviour was established. 

Recent studies using direct empirical observations by Ballerini et al. [34], suggest that the 

finite interactions of natural flocks and swarms is significantly less than the number of 
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observable neighbours as originally predicted by Couzin et al. [33]. Ballerini et al. concluded 

that the interactions of individuals in natural flocks and swarms are bounded by a topological 

distance influenced by the cortical elaboration of the visual input rather than a metric distance 

bounded by the sensory observation of an individual [34]. Grünbaum et al. [35] further 

elaborated on the anomalies observed in schools of fish to produce more accurate empirical 

models. Using motion analysis hardware, Grünbaum et al. investigated the aggregate 

behaviour of schools of fish (Danio aequipinnatus). Grünbaum et al. identified a behavioural 

switch responsible for the expressed collective behaviours in a school of fish. Grünbaum et 

al.’s findings further supported Couzin et al.’s flock model. Grünbaum et al.’s strategy 

assumes that individuals in the swarm perform a biased random walk in a periodic domain 

with dynamics influenced by the behaviours and positions of its neighbours. This behavioural 

matching and positional preference improves the ability of individuals to taxi adverse 

gradients in noisy environments, and further support the causal relationship between the local 

interactions of the neighbouring flockmates and the complex global behaviours of the group. 

Understanding the mechanisms of self-organised motions in natural flocks and swarms 

provides innovative ideas for developing distributed cooperative control systems. In reality, 

the study of individual interactions in natural flocks and swarms is inherently difficult to 

approach experimentally. For example, in a plague of African migratory locusts (Locusta 

migratoria migratorioides), individuals demonstrate an ostensibly random and chaotic 

motion. The precise motion of these individuals is not completely understood. Studies have 

shown that these highly non-linear motions transpire through the multiple simultaneous 

interactions of the individuals [36]. Despite these seemingly chaotic motions, the collective 

group demonstrates a cohesive ‘rolling’ migratory pattern [37]. 

The large-scale and ‘chaotic’ behaviour of these individuals makes it difficult to create 

accurate models for biological swarms using purely local effects. Traditional approaches rely 

on Partial Differential Equations (PDE) to approximate the local density of individuals and 

preserve the group’s collective behaviour. In [37], Edelstein-Keshet et al. model the 

migration of African locusts using a travelling wave solution. Many attempts have been made 

to model phenomena such as invasions using travelling wave solutions [38-40]; however, few 

have provided a realistic representation of biological groups with a finite population. The 

results of [37], suggests that cohesive and compact swarms such as locusts, cannot be 

modelled using traditional travelling wave solutions. More recently, Mogilner and Edelstein-

Keshet [41], and Topaz and Bertozzi [42] consider non-local interactions on the swarm using 
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integro-differential advection-diffusion equations. The resulting continuum models produce 

coherent band-like structures. However, these models remain an approximation to the exact 

behaviour of individuals at best. 

A recent body of work considers general particle-based models for self-propelled organisms 

as an alternative to understanding the construction and movement of coherent swarm 

structures using finite continuum models [43-45]. Viscek et al. [43] propose a simple swarm 

model based on particle dynamics that simulate Reynolds’ boids. In Viscek et al.’s model, 

each particle is bounded by a unit circle representative of the interaction range. The particles 

are driven by discrete-time dynamics with absolute velocities. At each time step, each particle 

updates its direction based on the average direction of motion of its neighbouring particles. 

Viscek et al. showed that by using this nearest neighbour rule, the particle demonstrated 

Reynolds’ rules and reached consensus on a common orientation. Jadbabaie et al. [46] 

extended the work of Viscek et al. to provide a formal treatment on the alignment problem of 

the particles. Similar to the work of Viscek et al., Gazi and Passino [47, 48] proposed a 

simple isotropic swarm model using the attraction-repulsion rules of Breder [20]. Stability 

analysis of these swarms was given in [49-51]. Using these attraction-repulsion rules, Gazi 

and Passino showed that the isotropic model demonstrated the basic features of aggregation, 

cohesion, and separation as identified by Reynolds. Similar studies were conducted using 

anisotropic swarms in [22, 52, 53] to demonstrate Reynolds’ boids. 

The literature on natural flocks and swarms provides the inspiration for the development of 

distributed artificial systems. The modelling issues and the behavioural synthesis for these 

systems, provides an insight into the developmental considerations for synthetic multi-agent 

systems.  In the following section, a review of some of the design engineering motivations for 

multi-agent systems is discussed before a formal treatment on the technical aspects of the 

design considerations is given. 

1.2. ENGINEERING MOTIVATION 

Motivation for multi-agent cooperative control systems comes from a variety of applications; 

ranging from Distributed Artificial Intelligence (DAI) [54], to formation flying [55-59], and 

cooperative spacecraft operations [60-67]. Advancements in small-scale technologies such as 

compact and efficient processors, cameras, and wireless technologies, have also made it 

possible to develop smaller, inexpensive unmanned technologies for cooperative applications. 

The cooperative control of unmanned technologies, such as Unmanned Aerial Vehicles 
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(UAVs) [68, 69] is of great interest and utility to military [1, 70] and civilian applications 

[71]. These include cooperative target tracking [72-79], coordinated and synchronised attacks 

[80-87], distributed intelligence, surveillance, and reconnaissance [88-99], synchronous 

payload delivery and manipulation [100-104], urban tomography [105], and chemical cloud 

detection [106]. 

Advantages of using groups of autonomous vehicles to perform coordinated activities have 

been discussed extensively in the literature [107-109]. These include enhanced task 

performance, reduced cost, increased system reliability and robustness, inherent distribution 

of resources, and system re-configurability. Applications such as surveillance and 

reconnaissance benefit from the distribution of tasks. Using multiple coordinated sensory 

assets distributed over a large area drastically reduces the time to survey a region of interest. 

In applications such as the Separated Spacecraft Interferometry (SSI) program [110], imaging 

and astrometry is distributed over a network of space interferometers to enhance the 

resolution of the imaging task and permit the reconfiguration of the imaging topology. 

Multiple vehicle systems naturally admit the distribution of tasks and resources over multiple 

platforms, making the cooperative control strategy ideal for distributed or complex problems. 

As a consequence to this growing interest, research on cooperative control has increased 

over the past decade. Major areas of research for multi-vehicle applications include pattern 

formation [55, 57, 59, 64, 111-124], flocking and self-assembly [32, 125-130], deployment 

and task allocation [131-135], and vehicle routing [136]. The planning and control of multi-

vehicle systems consist of many sub-problems related to network control design. These 

include convergence and consensus protocols [137, 138], asynchronous distributed control 

algorithms [139-141], collective behaviour of flocks and swarms [142, 143], algebraic 

connectivity of complex networks [144, 145], dynamic graphs [146-148], and optimisation-

based cooperative control  [144, 145]. The design of multi-vehicle systems poses significant 

theoretical and practical challenges. In the remainder of this chapter, several of the sub-

problems associated with multi-vehicle control systems are discussed. 

1.3. INFORMATION FLOW 

Vehicles in a shared environment depend on information to accomplish goals, avoid conflicts, 

and share resources [149]. Individuals in a group can collect information about their 

environment, and neighbouring vehicles either through direct sensory observations, or 

through direct and indirect communication strategies. The limited range and resolution of the 
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physical sensors bounds the information available to an individual through direct sensory 

observation [150]. In non-omnidirectional sensors, additional limitations arise from the 

directivity patterns of the physical sensor. These include the conic field of view of a camera, 

the radiation patterns of an antenna [151, 152], or the directivity of an optical range finger.  

The bounded information flow induced by the sensory observations, restrict the information 

accessible by an individual. Thus, no vehicle will have the capacity to observe the entire 

group and have access to global information. By facilitating communication between 

individuals, vehicles can improve their perspective, and their ability to achieve tasks and 

resolve conflicts. Inter-vehicle communication is achieved through explicit and implicit 

communication strategies. Explicit communication strategies involve the deliberate act of 

transmitting and receiving information, either through dedicated peer-to-peer communication 

channels, or through broadcast-type signalling [153]. The decision to use peer-to-peer over 

broadcast-type strategies is dependent on several design and implementation factors. Peer-to-

peer communication strategies are generally suited for applications where broadcast over 

large distances is limited by power constraints, such as in SSI; or in applications where the 

vulnerability of the broadcasted signal can compromise the integrity and security of the 

system. These include cooperative UAVs [154, 155], and internet agents. In intelligent 

highways and anti-collision systems [156, 157], the precision and directivity of peer-to-peer 

communication strategies ensures that information flow is consistent through the network 

with minimal degradation and corruption. 

In applications where transmission and computational constraints are relaxed, or the 

communication network is dynamic and possibly ad-hoc (such as multi-vehicle systems and 

wireless internet connections), broadcast provides the most flexible approach to dynamic 

connectivity. Broadcast allows vehicles to wirelessly transmit information continuously or 

discretely to other vehicles over a wireless medium within a bounded proximity – irrespective  

of the number of vehicles in the transmission range. This makes broadcast-type strategies 

suitable for scalable decentralised control strategies. Drawbacks of this approach include the 

significant power required to transmit information over large distances with minimal 

degradation; the vulnerability of the signal to corruption, interference, and hijacking; and the 

complexity of the signal processor to filter and deconflict the possible simultaneous arrival of 

information from neighbouring communication networks. 

Implicit communication, as opposed to explicit communication, involves the indirect 

transmission of information through the manipulation of the environment (stigmergy) or 
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through elaborations of direct sensory observations. Implicit communication strategies based 

on elaborations of direct sensory input, requires the maintenance of an internal model to 

extrapolate and predict the states of other vehicles in the environment. Examples include 

[158, 159] where communication-free cooperation is facilitated through vision-based sensing 

and inter-agent modelling. In [160], Otanez and Campbell developed a model by discretizing 

the continuous-states of a lead UAV into a set of identifiable behaviours using a hybrid 

automaton. The hybrid automaton provided a model to a secondary UAV to predict the 

behaviour of the lead vehicle from sensory observations on the continuous-state. By 

predicting the behaviour of the lead UAV, the secondary UAV could determine the feasibility 

and utility of engaging in a cooperative task (such as interferometric imaging) to improve the 

collective strategy of the group. Collective behaviours using this kind of interaction include 

flocking and pattern formation. 

Approaches based on stigmergy have also been found in the literature for the cooperative 

control of UAVs [161, 162]. Parunak and Brueckner propose a model of pheromone-based 

coordination for decentralised multi-agent systems in [163]. In [164, 165], the authors 

extended the previous work to develop a simulation using multiple synthetic pheromones for 

navigation and spatial coordination of multiple swarming vehicles. In this strategy, vehicles 

deposit digital pheromones in the environment that signal to neighbouring vehicles the 

presence of threats or the direction of goals. This enabled the vehicles to indirectly 

communicate with each other through the environment. It should be noted however, in 

Parunak and Brueckner’s model, the swarm agents do not physically deposit a chemical 

signal or engage in any direct inter-vehicle communication. Instead, the environment in 

which they reside and deposit digital pheromones, are maintained on a world map accessible 

through a set of place agents. Access to the world map is achieved through direct 

communication with the place agents. Therefore, the scheme is not a physical realisation of 

the stigmergic process and relies on conventional communication strategies. Despite the 

practical shortcomings of their approach, Parunak and Brueckner demonstrated the 

emergence of complex behaviour through implicit coordination [2]. In the following section, 

the various architectures that facilitate cooperative behaviour are discussed. 

1.3.1. ARCHITECTURES 

Physical and computational restrictions limit an individual’s ability to use and transmit global 

information. The lack of global information means that individuals in a group lack the global 
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perspective to solve a centralised control problem using complete information. Ideally, some 

form of distribution (or decentralisation) should be observed; either through control 

delegation, or information flow. The flow of information through the group, and the control 

relations that define the interactions of the individuals, provides the notion of a group 

architecture [166] (or group organisation [107]). When the information is processed through 

a common central facility or decision maker, the group architecture is centralised. In this 

cooperative scheme, a centralised node manages the operation of the whole system. It is 

responsible for coordinating the information received by the individual vehicles, 

deconflicting individual tasks and resources, and distributing tasks and information to each 

vehicle in the group. Consequently, the centralised node must be sufficiently capable to 

manage the information and control policies of the entire interconnected group of vehicles.  

Centralising the information and control through a common facility, maximises the 

perspective of a supervisory agent. This enables the definition of precise and optimal 

behaviours for each agent in the group. As a result, centralised architectures have been 

applied to many planning problems, such as formation control [57, 131, 167-170], 

cooperative conflict-free navigation [77, 170-173], air traffic control [174], task allocation 

[131, 175], and vehicle deployment problems [94]. Planning in a centralised architecture 

often involves the resolution of a performance function. Path planning problem for a group of 

vehicles was addressed by Capozzi and Vagners in [77, 170]. In [77, 170], Capozzi and 

Vagners developed an evolution-based planning system that uses the states of each vehicle in 

the group to coordinate and generate paths through an environment. The high-dimensionality 

of the centralised optimisation problem was handled by a metaheuristic search technique 

based on evolutionary programming. A similar approach was used by Doctor et al. in [94] 

where a metaheuristic PSO was used to coordinate a group of robots for cooperative search. 

In these approaches, the centralised agent used a priori information about the environment to 

generate collision-free reference trajectories for the vehicles to track. When the environment 

is dynamic or uncertain, feedback to the centralised agent is necessary to re-evaluate plans 

and accommodate changes. Environmental uncertainty was addressed by Bellingham et al. in 

[172] where the probability of losing a vehicle was considered at the planning stage. 

Recently, the centralised path planning problem for a group of vehicles has been 

approached by exploiting the symmetric properties of the formation induced by the 

configuration of vehicles. In [176], Belta and Kumar propose a centralised trajectory 

computation scheme using techniques from differential geometry to ‘shape’ the kinetic 
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energy of the group. Using this approach, the problem was reduced to solving one geodesic 

on  for the centroid of the group, and orbits in . By smoothly varying the 

kinetic energy metric, the method guaranteed smooth trajectories for the group of vehicles. It 

was also shown, that using this formulation, it is also possible to control the spatial adjacency 

of vehicles in the group. While this method ensures optimality with respect to the kinetic 

energy of the system, it fails to accommodate for collision avoidance with obstacles in the 

environment. Furthermore, the framework proposed in [176] is computationally involved, 

and does not scale well with the addition of vehicles in the group. 

)3(SE N )3(SO

In an effort to reduce the control effort and improve scalability, Belta and Kumar [167] 

introduced a low-dimensional abstract manifold to capture the group’s position, orientation, 

and shape with respect to a world frame. Belta and Kumar’s group abstraction is independent 

from the number and ordering of vehicles in the group, and is suitable for describing large-

scale swarms. Using this abstraction, controllers can be derived for each vehicle dependent 

on the feedback from the centralised agent. This has the practical advantage of reducing the 

communication and sensing of the individual vehicles, and reducing the control effort to 

trajectory tracking at the local vehicle level. Despite this, the centralised agent still required 

the states of each vehicle to evaluate the abstract state and solve the optimisation problem. 

An alternative approach to concentrating the load on a single agent is to use intermediate 

sets of leaders between the centralised node and the group of vehicles [177, 178]. In this 

hybrid control strategy, the centralised problem is decomposed into varying levels of 

resolution. At each level, the group of agents control a subset of vehicles in the proceeding 

lower level. This approach has been applied to the control of large platoons of UAVs for 

cooperative military operations [177], and the search of targets in urban environments [178]. 

While these hybrid architectures reduce the load on a single agent, they still rely on some 

fusion at the intermediate level by a centralised control facility. 

Ideally, the distributed nature of the vehicles and information network should be exploited 

to localise the information and control to the individual vehicles. In this decentralised 

scheme, fusion and control occur locally at each node on the basis of local observations and 

communicated information. Distributing the information and control in this way, yields the 

following characteristics for a decentralised architecture: 

1. no single agent is capable or responsible for the coordination of the group as a whole; 

2. there is no global control or common communication facility; and 

3. agents do not have access to global information.  
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These constraints provide a number of important characteristics for decentralised systems. 

By eliminating the dependency on any centralised facility, computational/communication 

bottlenecks are removed, and the system as a whole is more tolerant to vehicle faults, 

network reconfiguration, and vehicle attrition and extension. 

Various decentralised software architectures have been proposed in the literature for 

controlling multi-agent and multi-vehicle systems. In [179, 180] a distributed hierarchical 

system based on the cellular organisation of biological agents called the CEBOT architecture 

was proposed. In the CEBOT architecture, robots are represented by cells in an organisation, 

and are capable of dynamically reconfiguring their neighbourhood structure in response to 

changes in the environment. The reconfigurability of the CEBOT architecture makes it 

suitable for the formation control problem of multi-vehicle networks. A similar architecture 

based on cellular robotics is presented in [181]. In [181], the SWARM architecture was 

developed for the distributed control of a large number of autonomous robots. Interactions are 

strictly nearest-neighbour, and the group behaviour is an emergent property of the 

interconnected system. Consequently, the architecture is amenable to complex cooperative 

tasks such as assembly, communication, and computing [182]. Heterogeneity in distributed 

multi-vehicle systems was addressed using the ACTRESS [183] and ALLIANCE [184, 185] 

architectures. The ACTRESS system was used to facilitate cooperation between 

heterogenous groups for tasks such as box pushing [186]. In the ALLIANCE system, robots 

were able to sense the effects of their own actions and the actions of other robots through 

sensory perception and explicit broadcast communications. Unlike ACTRESS, each robot in 

the ALLIANCE architecture was designed using a behaviour-based controller that resulted in 

a fault tolerant, reliable, and adaptive mechanism for cooperative robot control. These 

strategies provided the necessary framework for implementing decentralised control laws for 

groups of vehicles, and have been successfully applied in many multi-robotic applications. 

In practice, many multi-vehicle systems cannot conform to a strict decentralised dichotomy 

[166]. The emergence of behaviour is often poorly understood with context to physical 

implementations. It is often unclear on how (or whether it is even possible) to design 

decentralised control laws that achieve a desired group objective from simple local control 

laws [187]. Many of the proposed decentralised architectures in the literature feature, as part 

of their solution, the use of virtual leaders [55, 121, 143, 145, 188-194]. In this approach, a 

virtual entity is introduced to the group to provide a stable reference point for group 

convergence. This could include a reference trajectory for a formation to track [143, 189, 
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191-194], beacons to contain the volumetric space of a spatially distributed group of vehicles 

[188], or the shape and formation for a group of vehicles [195-197]. A representative body of 

work can be found in [117], where the problem of navigating a group of vehicles is addressed 

using virtual agents. In this strategy the path of a virtual leader is calculated and the relative 

offset of each vehicle is used to generate its corresponding reference trajectory. Similar to the 

approach taken in [117], Fang and Antsaklis [194] use a virtual leader to define the centroid 

for a group of vehicles to track. In this approach, the vehicles distribute themselves relative to 

the virtual leader using consensus protocols to align their centroid to the trajectory of the 

virtual agent. These approaches provide a suitable means to map the vehicle’s configuration 

space to the group’s configuration space, and ensure that the decentralised behaviour is 

directed towards a common goal. A recent body of work [66] considers the use of 

coordination variables (similar to Belta and Kumar) to unify the leader-follower approach 

with the purely decentralised strategy. In this unified framework, a coordination variable 

describes the desired group state from the observed states of the vehicles. Local control laws 

for each vehicle are then constructed using locally sensed information to achieve the desired 

coordination variable. The work presented in this thesis follows in similar spirit to the 

concepts introduced by this unified architecture.  In the next section, the inter-vehicle 

relationships in a decentralised architecture are discussed. 

1.3.2. INFORMATION FLOW IN DECENTRALISED SYSTEMS 

An intuitive approach to capturing the local interactions of vehicles in a group, is to model 

this aspect of the information flow using graphs [46, 112, 120, 127, 128, 144, 147, 198-201]. 

In this approach, the group of vehicles is enumerated by a set of vertices, and interactions 

between adjacent vehicles denoted by the existence of an edge. Connectivity of the 

underlying graph topology is then specified by the adjacency matrix. In multi-vehicle 

systems, the connectivity of the underlying information graph is dependent on the states of 

the vehicles and evolves with the motion of the individuals. The spatiotemporal nature of the 

information graph is described by a switching network. Work on state-dependent graphs and 

switching networks is presented in [146, 148, 201, 202]. 

In [203], the discussion on state-dependent graphs provided in [202] is extended to 

demonstrate the relationship between the edges of a graph and the state of its mobile nodes. A 

weight is assigned to each edge of the graph that attenuates with the distance between 

adjacent nodes to provide the framework for the evolution of the network. A similar notion to 
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the attenuation of the finite interaction range of physical sensors and communication systems 

is considered in [200], where the notion of a spatial adjacency matrix is defined for both the 

omni-directional and non-omnidirectional case. Using the spatial adjacency matrix to model 

the local interactions of the vehicles, the underlying graph topology for the information flow 

is directed, and inter-vehicle relationships are non-commutative. 

These methods capture the information flow in a straightforward manner. Recently, the 

algebraic properties of graphs have been investigated as a topic of interest for the analysis of 

interconnected systems. A parameter of significant interest to the study of information flow in 

decentralised systems is the graph Laplacian. It was shown in [204], that the topology of the 

interconnected graph for a group of vehicles determines the controllability of the group of 

agents. For a group of vehicles using nearest-neighbour rules, controllability is determined by 

the spectral properties of the graph Laplacian. In [144, 145], Fax and Murray developed a 

Nyquist-like criterion to investigate the effect of the information network on formation 

stability. Here, the spectral properties of the graph Laplacian played an important role in 

determining the desirable structural properties of the underlying graph topology. Following 

the work of Fax and Murray, various authors have also investigated the stability of a 

formation by using the spectral properties of the graph Laplacian (see [120, 205-207] for 

examples). 

1.4. COOPERATION AND COORDINATION 

The distributed nature of the cooperative control problem introduces the potential for 

disparities and inconsistencies in the vehicle’s goals, plans, and knowledge [107]. To achieve 

coherent problem solving and cooperation in the vehicle’s objectives, vehicles must share a 

consistent view and reach a consensus in the shared information; either through goals, 

knowledge, or a combination of both. Convergence to a common value is called the 

consensus or agreement problem in the literature. Information consensus guarantees that 

vehicles sharing information over a time-varying network have a consistent view of 

information appropriate for the coordination task. 

1.4.1. CONSENSUS ALGORITHMS 

A consensus algorithm provides a means by which distributed or decentralised systems can 

reach an agreement over shared information [208, 209]. Examples of the information state 

can include position, orientation, and shape of a formation [167, 210], the rendezvous time 
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for object manipulation and interception tasks [83, 211-213], the directivity of a swarm or 

multiple vehicles [46, 64, 214], or the cost of an aggregate function for cooperative decision-

making [215-218]. As a result, consensus algorithms have applications in rendezvous [213, 

219-224], formation control [121, 145, 198, 207, 225-227], flocking [56, 126-129, 228-230], 

attitude alignment [46, 64], decentralised task assignment [133], and sensor networks [90, 95, 

99, 231, 232]. A growing body of work focuses on designing and analysing algorithms that 

make individual network agents agree upon the value of some function of their initial states. 

These include average-consensus [208, 233], and average max-min consensus [234]. In these 

works, the state variables associated to the individual agents do not necessarily correspond to 

physical variables, such as spatial coordinates or velocities. Rather, the information state 

could be partial solutions to a group objective. Based on the distributed nature of the 

information flow, consensus algorithms are designed with localised communication strategies 

[235]. 

The theoretical framework for posing and solving consensus problems for networked 

dynamic systems was introduced in [233, 236] by Olfati-Saber and Murray. For continuous 

information flow, the information state was modelled using a first-order differential equation 

[46, 145, 208, 233, 237, 238]. Based on the connectivity of the network, the state information 

of each vehicle was shown to converge to the information state of its neighbours. Work on 

discrete-time consensus protocols was also presented in [46, 238, 239] where the information 

state of each vehicle was updated by a first-order difference equation. It was shown in [238] 

that the information state of each vehicle in the discrete-time consensus protocol was updated 

as the weighted average of its current state and the current states of its neighbours. 

Recently, the consensus problem has been applied to second-order differential equations 

[240, 241]. In [240], the consensus algorithm is extended to double integrator dynamics with 

information exchange topologies that switch randomly. Unlike the consensus algorithm for 

single integrator dynamics, more stringent conditions are required to guarantee consensus 

under switching directed topologies using consensus algorithms with double integrator 

dynamics. 

1.4.2. CONVERGENCE AND STABILITY OF CONSENSUS ALGORITHMS 

In [233], the convergence of a consensus algorithm was shown to be related to the graph 

Laplacian and its spectral properties. According to Geršgorin’s disc theorem, all eigenvalues 

of the graph Laplacian have non-negative real parts, and the information state converges to 
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the kernel of the Laplacian. For a connected graph, the second smallest eigenvalue of the 

Graph Laplacian (i.e. the Fiedler eigenvalue [242]) provides a measure of the speed of 

convergence for a consensus algorithm [233]. Following the spectral properties of the graph 

Laplacian obtained using Geršgorin’s disc theorem, it was shown in [211] that under a time-

invariant information exchange topology, that the information state of each vehicle 

asymptotically reaches consensus if and only if the information exchange topology has a 

spanning tree. Furthermore, it was shown in [233] that for a strongly connected time-

invariant information exchange topology, that consensus is achieved when the information 

state of each vehicle converges to the average value of the initial information state of each 

vehicle.  

In practice, the information exchange topology for a group of vehicles is time-varying due 

to the motion of the vehicles. Consensus on time-varying networks has been studied in the 

literature where they are commonly referred to as switching networks [46, 128, 208, 230, 233, 

235, 239]. Convergence analysis for a consensus protocol over a switching network is 

equivalent to stability analysis for a hybrid system [233]. In this formulation, the information 

exchange topology is piecewise constant over finite lengths of time, called the dwell times 

[46]. This induces a time-varying graph Laplacian that is piecewise constant over the dwell 

times. Proving consensus on a switching network is equivalent to proving convergence of an 

infinite product series describing the piecewise constant graph Laplacian. Jadbabaie et al. 

[46] uses this result to demonstrate the heading angles of a swarm of vehicles achieves 

consensus using nearest-neighbour rules based on Viscek et al.’s model in [43]. Nonlinear 

analysis has also been used to study consensus algorithms on switching networks [237, 239]. 

In these approaches, a set-valued Lyapunov approach is used to consider consensus problems 

with time-dependent communication links.  

1.5. APPROACHES TO COOPERATIVE CONTROL 

Various control strategies for cooperative multi-vehicle systems have been proposed in the 

literature using methods based on artificial potential fields, decentralised optimisation, and 

virtual structures. Many of these approaches impose certain information architectures, such as 

leader-follower [117, 143, 188-190, 192, 193, 243], or symmetric neighbour relations [216, 

244, 245]. In the following sections, the various types of controllers used for cooperative 

control within the framework of decentralised architectures are discussed. 
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1.5.1. OPTIMISATION-BASED APPROACHES 

Optimisation-based techniques for control are amenable to the multi-vehicle cooperative 

control problem. In this approach, a team objective is formulated using a cost objective 

function. When the problem is coupled, the control problem is cooperative and the task 

performance depends on the joint locations, roles, and inputs of the vehicles [246]. Solving 

the coupled objective function can be achieved through a centralised control architecture. 

Vehicle states, roles, and inputs are solved by a central computing facility and transmitted to 

the appropriate vehicles. For large-scale multi-vehicle systems, this can be computationally 

intractable or impossible based on communication constraints. 

Ideally, the problem should be distributed to exploit the distributed nature of the vehicles. 

When the cost objective can be decoupled, the problem is distributed. Note, this form must 

preserve the original cost objective and some couplings will remain. The distributed control 

problem becomes a decomposition of the centralised cost objective to a set of sub-problems 

that are then distributed to each vehicle. If the goals are fixed and known at design-time, local 

control laws can be designed for each vehicle to solve the sub-problems [187]. In [247], the 

problem of generating optimal trajectories for a set of cooperative aircraft is addressed using 

a dual decomposition approach to decompose a large computationally intractable problem to 

a series of smaller tractable problems. Using this method, various numerical and analytical 

techniques can be used to solve the underlying optimisation problem. These include (but not 

limited to) mathematical programming techniques such as Mixed-Integer Linear 

Programming (MILP) and Nonlinear Mixed-Integer Linear Programming (NMILP) [68, 118, 

131, 136, 248-250], intelligent-based metaheuristics such as genetic algorithms and neural 

networks [251-253], and geometric control techniques [114, 254, 255]. 

In some cases, it may be difficult to decompose a centralised global objective to a group of 

vehicles. One approach to formulating the problem is to use strictly local goals [187]. Local 

goals react to the vehicle’s immediate environment, and solutions to the vehicle sub-problem 

are locally optimal. No cooperation is observed since there is no coupling or relationship 

between the individual goals. Strictly local control laws are an example of a decentralised 

optimisation problem where global functionality is an emergent property of the locally 

interacting vehicles. Using the notion of decomposition variables and overlapping constraints, 

[216], Inhalhan et al. developde the framework for a decentralised cooperative control of a 

group of vehicle. The centralised optimisation problem presented in [216] was described 

using the set of local performance function representing the goals of each vehicle. Optimality 
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(from a centralised perspective) for the decentralised system in [216] was shown to be Pareto 

optimal. 

An intuitive approach to designing control laws for the decentralised strategy is through 

Model Predictive Control (MPC) (see [68, 136, 256-259] for applications to multi-aircraft 

systems). Distributed model predictive control has been proposed recently as a method for the 

coordination of multi-vehicle systems. Previous work on distributed model predictive control 

include Jia and Krogh [260], Motee, Jadbabaie, and Sayaar-Rodsaru [261, 262], Keviczky, 

Borelli and Balas [263-266], Dunbar and Murray [267-270], Kuwata, Richards, 

Schouwenaars and How [256, 271], and B. Johansson, Speranzon, M. Johansson, and K. 

Johansson [218]. In Camponogara, Jia and Krogh [272], the subsystems are coupled via 

states. Adjacent subsystems are coupled via dynamics and neighbouring subsystem states are 

treated as bounded contracting disturbances. An example of such a situation is a group of 

vehicles cooperatively converging to a desired formation. In contrast, Dunbar and Murray 

[267-270] considered the control of initially dynamically decoupled subsystems and 

introduced a coupling between adjacent systems using non-separable cost functions. In 

Dunbar and Murray approach, each vehicle communicates their most recent optimal control 

policy to neighbouring vehicles to cooperatively stabilize the formation to an equilibrium 

state. Stability of the interconnected system is guaranteed through the use of a compatibility 

constraint. The compatibility constraint restricts the deviation of transmitted plans from the 

executed plans. This introduces a significant degree of conservatism to the centralised 

problem and reduces the ability of MPC to recompute new optimal actions based on current 

conditions. Relaxing the compatibility constraint allows for greater deviations between 

successive plans at the risk of propagated instabilities. This restriction limits the application 

of distributed MPC to applications where the environmental conditions do not deviate 

significantly between successive sampling periods or where replanning does not interfere 

with previous plans. 

A decentralised approach to MPC has been proposed in Camponogara, Jia and Krogh [256, 

271] where the subsystem dynamics and cost functions are independent and only the states 

and inputs variables of neighbouring systems are coupled. The strategy was applied to a 

multi-vehicle scenario of linear dynamically decoupled subsystems with coupling constraints. 

In this application, vehicles update sequentially (in order), and are subject to linear collision 

avoidance constraints. The distributed MPC problem is solved using a mixed integer linear 

programming (MILP) approach and neighbours whose update has not occurred in the 
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sequence, are viewed as bounded, contracting disturbances (as in Jia and Krogh). Although 

this approach is effective for simple problems and aircraft models, this formulation is limited 

to linear constraints and objective functions. Recently, Keviczky et al. [263-266], have 

formulated a distributed model predictive control where each subsystem optimizes locally for 

itself and every neighbour at each update. The stability conditions for the interconnected 

system was established in [273] where it was shown that for sufficiency, the rate of 

information exchange needed to be increased as the system approached equilibrium. It was 

also shown that the performance deteriorates after a critical horizon length and system 

instabilities would be observed. While this approach has been shown to demonstrate 

appreciable convergence towards a global objective, each subsystem requires a model of 

neighbouring subsystems to solve the local optimisation problem at each sampling period. 

From a practical perspective, this approach may be limited by the available onboard 

computational resources, bandwidth, and knowledge of neighbouring subsystem plants. In 

addition, the solutions for neighbouring subsystems are often discarded and provide a 

prediction for the behaviour of neighbouring subsystems. It is still possible for neighbouring 

vehicles to deviate from this assumed behaviour without the addition of a compatibility 

constraint as suggested in [267-270]. 

1.5.2. BEHAVIOUR-BASED AND ARTIFICIAL POTENTIAL FIELD 

TECHNIQUES 

In behaviour-based approaches [195], each vehicle has a set of basic motor schemas. Each 

schema represents a desired behavioural response to sensory input. Possible motor schemas 

include collision avoidance, obstacle avoidance, group migration, and formation seeking 

[274, 275]. Often these behaviour-based control techniques are combined with artificial 

potential field methods to create simplistic control laws [276, 277].  

Potential field techniques for robotic applications were first described by Khatib [278] and 

have since been widely used in the mobile robotics community for tasks such as local 

navigation and obstacle avoidance [48, 275, 279-281]. In this method, a robot is modelled as 

a moving particle inside an artificial potential field generated by superimposing an attractive 

potential that pulls the robot to a goal configuration and a repulsive potential that pushes the 

robot away from obstacles [275]. Each vector potential represents a schema of the behaviour-

based controller. The negative gradient of the generated global potential field is interpreted as 

an artificial force acting on the robot and dictating its motion. 
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The direct mapping between the sensory inputs and the actuator outputs provides a highly 

reflexive system for mobile path-planning and navigation. Selection of an appropriate 

artificial potential field can be difficult due to the emergent nature of the design process. One 

method for ensuring that an artificial potential field contains no local extrema is to formulate 

it as a harmonic function [282]. Various harmonic functions have been used in the field of 

mobile robotics for navigation, including stream functions (from potential flow theory) [282], 

Van der Waal forces, Morse functions [125] and Lennard-Jones type potentials [32, 283, 

284]. 

Recently, artificial potential field methods have been extended to group behaviours such as 

swarming and flocking [32, 48, 51, 125, 193, 283-286], formation control [123, 287, 288], 

and distributed and decentralised sensory networks [95, 231, 289]. In Leonard and Fiorelli 

[188, 231], artificial potential fields were constructed in a virtual leader-follower architecture 

for formation control. Virtual leaders were used to describe a moving frame of reference that 

influenced the behaviour of the neighbouring vehicles (followers). Based on the leader-

follower architecture, a control law using potential functions describing the inter-vehicle 

interactions of the followers, and the navigation of leaders was derived. 

Each of the vehicles in the swarm move so as to minimise the total artificial potential 

energy in the system. By appropriate choice of potential function they are able to show 

asymptotic stability of various schooling and flocking behaviours. The framework presented 

in [188] allows for a homogenous group invariant to ordering, and size. Using this approach, 

Leonard and Fiorelli demonstrated the reactive nature of artificial potential field functions for 

flocking and schooling of multiple vehicles.  

One of the limitations induced by Leonard and Fiorelli’s control algorithm is the explicit 

nature of the communication network. Olfati-Saber [283] extended the work of Leonard and 

Fiorelli to include bump functions to truncate the artificial potential field induced by each 

agent and localise interactions to adjacent neighbourhoods. The distributed control law 

described by Olfati-Saber is used to synthesise flock behaviour. A similar approach using 

magnetic fields was proposed by Sigurd and How for collision avoidance in [281]. In [281], 

vehicles were modelled using a magnetic dipole to construct an artificial potential field from 

the magnetic density decay functions. This allowed the field generated by vehicles to be 

measured by neighbouring vehicles using single-axis magnetic sensors placed orthogonal to 

the generated field. Based on this measurement, a navigation function could be constructed 

from the gradient of the potential field to avoid collisions. [281] provided a novel and 
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practical demonstration of artificial potential field theory for the navigation of large groups of 

vehicles in a shared environment. 

Behaviour-based and artificial potential field approaches are often limited in a fundamental 

theoretical understanding of how the complex global behaviour of the interconnected system 

emerges from the simple local interactions of the individuals. Often, these approaches rely on 

extensive empirical data and experience to design the appropriate control laws that yield the 

desired functionality of the system. Problems associated with the use of artificial potential 

field methods are attributed to the local minima that arise from the construction of complex 

potential environments from the simplistic behaviour-based vector fields. When the scaling 

parameters are improperly balanced, unpredictable and sub-optimal results can ensue. For 

example, if an attractive potential of a goal location is inadequately scaled with respect to the 

repulsive potential of an obstacle, the vehicle may fail to reach the desired destination [275]. 

The lack of an analytical design guideline limits the practical application of artificial potential 

based control systems [275]. 

1.5.3. VIRTUAL STRUCTURES AND RIGID BODY FORMULATIONS 

Many of multi-vehicle applications have as part of their solution, the ability to collectively 

navigate through the environment and maintain geometric compliance to a desired structure. 

Using a centralised architecture, the simplest approach involves generating a set of reference 

trajectories and control laws for each vehicle in the group [290, 291] to manoeuvre each 

vehicle between configurations and avoid collisions [167]. In large-scale systems, the 

problem becomes computationally intractable as the size of the group increases. 

Communication and computational constraints limit the feedback to a centralised informant 

to process and deconflict the information at each sampling period. From a high-level 

supervisory perspective, the motion generation/control problem should be reduced to a lower-

dimensional space that captures the behaviour of the group to minimise control effort at the 

supervisory level [167]. This is similar in notion to swarming; where the exact behaviours of 

the vehicle are of insignificant interest relative to the collective group behaviour. 

One approach to reducing the control effort to a lower dimensional space is to model the 

group of vehicles as a virtual structure [292]. The concept of virtual structure was introduced 

in [292]. In the virtual structures approach, the motion of the group is treated using rigid body 

formulations, where each vehicle is represented by a particle in the system. Each particle in 

the structure maintains a fixed geometric relationship in the virtual structure [292]. The rigid 
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construction of virtual structures is amenable to the modelling of formation graphs [111, 293-

295]. In [296, 297], the rigidity constraints of the virtual structure are relaxed to investigate 

the propagation of disturbances on a swarm. The resulting model is based on the concept of 

tensegrity structures where the inter-vehicle relationships are modelled using struts and 

cables. Using the rigid-body model, the motion-planning problem is reduced to a left-

invariant control system on , and the individual trajectories are  orbits [167]. 

Motion-planning on  involves the choice of a distance metric (see for example [291, 

298]). The necessary conditions for rigid-body motion using distance metrics are derived in 

[291]. [113] and [299] extend the generation of optimal trajectories on  to a formation 

of mobile robots using Lyapunov energy-type functions. Examples of such functions include 

positive definite convex formation functions [117, 294] and biologically inspired artificial 

potential functions [123]. The global minima of such functions exhibit  symmetry, and 

expansion/contraction symmetries. These can be decoupled into group-level motion planning, 

and local-vehicle formation-keeping [123].  

)(nSE )(nSE

)(nSE

)(nSE

)(nSE

Virtual structures modelled on formation graphs and tensegrity structures unnecessarily 

constrain the problem. Formation graphs require identification and ordering of vehicles, 

which makes the overall architecture sensitive to failures, and re-organisation [210]. The 

rigidity constraint of the virtual structure approach is relaxed in [167] to control a scalable 

group of vehicles. In [167] an abstraction based on Lie groups (position and orientation of the 

vehicles) and shape manifolds for the group is presented that reduce the control variable to a 

lower dimensional manifold with a product structure. The resulting expression is a 

permutation and size invariant state description of the swarm. Decoupled controllers are then 

designed for each vehicle using feedback dependent on the current state of each vehicle and 

the state of the abstract manifold. [210] extends the work of [167] to address the problem of 

controlling a swarm of fully actuated point-like vehicles moving in three dimensions. A nine-

dimensional abstraction for the swarm is used to capture the position and orientation of a 

spanning ellipsoid and is invariant to number of vehicles and permutations. The framework 

presented in [210] was again dependent on a supervisory agent.  Vehicles represented in this 

scheme were characterised by simple feedback controllers and were socially incapable of 

self-organised or cooperative behaviour. The dependency of vehicles on a supervisory agent 

for group feedback limits the use of virtual structures to small-scale vehicle groups, such as 

spacecraft and satellite formations [57, 64, 66]. 
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1.6. CONTRIBUTION AND OUTLINE 

The goal of this dissertation is to develop a framework for controlling large groups of 

cooperative vehicles using decentralised control strategies. The research builds on the current 

body of knowledge to address the deficiency in mapping local interactions to purposeful 

group objectives. Traditionally, this problem has been approached either from the bottom-up 

or from the top-down. In the bottom-up approach, the local objectives of the vehicles have 

been designed using local interaction protocols. Examples of these include the 

phenomological models of socio-biological swarms. While these approaches accurately 

mimic the local interactions of natural flocks and swarms, there is little understanding of how 

or whether these strategies can be applied practically to solve a group objective. Approaching 

the control design using a top-down design strategy, involves decomposing a large-scale 

global group objective into a series of local subproblems. From a practical perspective, this 

approach can provide formal guarantees to the satisfaction of the group objective. Typical 

examples of this approach include the distributed and decentralised MPC scheme discussed in 

the literature. Despite the recent successes in developing these strategies, it is almost always 

implied that the group objective can be decomposed into a set of local objectives (for the 

distributed case) or that the local objectives somehow summate to produce the group 

objective (for the decentralised case). They also fail to account for the case when the group 

objective is intrinsically linked to the network topology. Often, these distributed and 

decentralised approaches assume a network topology that describes the interaction of the 

subsystems, and a cost function to describe the performance of the interacting subsystems. In 

some cases, such as in flocking, the network topology and the cost function are intrinsically 

linked together. Performance of the group is affected by their relative network topologies and 

the local interaction protocols. In this thesis, the problem of synthesising a group of agents to 

self-organise and direct their behaviour towards a common goal is addressed using both local 

network protocols and global objective functions. To frame this problem in a familiar and 

practical setting, the method is applied to a group of cooperative swarming UAVs. Local 

network protocols are represented by the flocking behaviour of neighbouring vehicles, whilst 

the group objectives are represented by the state of the collective group. The aim of this work 

is to answer the questions of whether and how the global group objectives can be achieved 

using purely localised rules of interactions.  

This thesis presents the fundamental and theoretical works necessary to consider the 

development of a group of cooperative systems. The systematic presentation of these results 
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and the developed framework aims to provide practitioners a design approach for cooperative 

control systems. The remainder of this thesis is organised as follows. In Chapter 2, the 

information flow in a distributed system is investigated. Relevant ideas from the literature on 

algebraic graph theory are presented in preparation for the development of distributed control 

schemes in later chapters. Problems relating to the distribution of information are addressed, 

and a generalised model for the group of vehicles is presented. Consensus algorithms, 

consistent with the literature, are derived using properties from algebraic graph theory. The 

necessary and sufficient conditions for consensus in a distributed system under fixed and 

switching networks are described.  A simple closed feedback consensus protocol is presented 

that achieves consensus on the coordination variable for a group of cooperative agents. The 

results of this chapter provide the theoretical framework for the developments in later 

chapters. Numerical simulations are also provided to illustrate the theory. 

 Chapter 3 presents a flocking protocol based on the generalised information consensus 

protocol presented in Chapter 2. The flocking protocol demonstrates consensus in the spatial 

distribution vehicles via numerical preference. Potential field functions are constructed to 

model the finite interactions of natural flocks and swarms. Using Lennard-Jones type 

potentials, stability is proven via Lyapunov arguments. Conditions for the asymptotic 

convergence for a group of vehicles to a stable flock configuration are also presented. Group 

level abstractions of the converged flock configuration are then discussed. These group level 

abstractions provide a low dimensional representation of the group at the supervisory control 

level, and permit a scalable approach to representing the shape spanned by the configuration 

of vehicles. 

 Chapter 4 approaches the problem of controlling the large group of vehicles as a unified 

structure and defining suitable optimisation problems for group navigation. It follows from 

the abstractions demonstrated by the group of vehicles applying the flock protocol and 

presents a rigid body construction for the flock configuration. Chapter 4 begins with a brief 

introduction of differential geometry. A review of the existence of useful metrics for the 

group navigation problem is then presented. The necessary conditions for generating optimal 

motions for the collective flock at the supervisory level are then presented. Following the 

works of Belta and Kumar in [254], a semi-rigid body model is introduced to consider the 

transition of the group of vehicles from an initial configuration to the rigid flock 

configuration. A modified metric for the semi-rigid body model of the evolving flock is then 
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presented. This provides a path planning method for a subset of vehicles to trace out a shape 

spanned by the group to conform to. 

 The problem of mapping the local interactions of the vehicles described in Chapter 3 to the 

group objectives presented in Chapter 4 is addressed in Chapter 5. A cooperative control 

scheme based on traditional model predictive control (MPC) is presented. The cooperative 

control scheme is implemented by decomposing the group task, to individual optimisation 

problems at the individual vehicle level. The decentralised MPC scheme allows the vehicles 

to deliberate the influence of their actions on the collective goal at each sampling period. 

Using the network exchange topology in Chapter 2, the vehicles exchange their plans at 

successive update periods, and negotiate a consensus on the cooperative solution. Sufficient 

conditions for convergence to a consensus are presented. The effect of coupling information 

is also discussed, and limitations of the implementation scheme are described. 

Chapter 6 combines the developments of Chapter 3, Chapter 4, and Chapter 5 to present a 

unified framework for controlling a swarm of vehicles. The framework is demonstrated for a 

group of vehicles tasked with the cooperative objective of flock convergence in the local 

frame, and conformance to the prescribed shape and motions of a supervisory controller. The 

experiments validate the proposed framework and its applicability to the cooperative control 

problem. A detailed summary of the contributions of this thesis, and extensions for future 

research are presented in Chapter 7. 
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Chapter 2. Information Exchange and Consensus 

In a multi-vehicle system, vehicles depend on information from neighbouring vehicles to 

cooperate and avoid conflicts. When the vehicles are coupled by a shared objective, the 

coupling naturally suggests what information should be available to each vehicle of the 

decentralised controller. Local information can be obtained through direct observation 

(sensory perception). Physical sensors, such as GPS and IMU, provide local state information 

regarding position, roll rate and bank angles, whilst long-range sensors such as cameras, laser 

range finders, and radar can provide non-local information, such as the position of 

neighbouring vehicles and obstacles. The accuracy and perspective of the information 

available to a vehicle by direct observation or state estimation, is limited by the sensors’ 

range, resolution, and calibration error. In non-omnidirectional sensors, such as cameras, 

antennas, and radar, limitations also arise due to the directivity patterns of the sensor. Peer-to-

peer communication (or communication exchange), can be used to resolve the limitations of 

the onboard sensors, and improve the resolution, accuracy and perspective of a vehicle. The 

use of communication networks to improve the quality of information is the basis of many 

distributed sensory systems and include applications such as Simultaneous Localisation and 

Map building (SLAM), and Decentralised Data Fusion (DDF) [300-303].  

Central to any discussion on distributed multi-agent and multi-vehicle systems is the nature 

of information flow through the communication network. Properties such as the 

communication topology, and the propagation of information, impact the performance of the 

interconnected system. In a strongly connected and complete network, vehicles exchange 

information with every other vehicle in the group, and complete knowledge of the connected 

system is propagated to each node. This implies maximal information flow and centralises the 

control problem to each node. Whilst this strategy improves the redundancy of the system 

and can guarantee optimality, several factors limit the possibility to convey and use global 

information for multi-vehicle systems. Firstly, the communication topology of a group of 

vehicles is an intrinsic property of the vehicles’ positions. The dynamic nature of the vehicles 

implies a dynamic communication topology that switches with accordance to the relative 
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position of the vehicles. In a group of vehicles navigating an obstacle field, the information 

flow is subject to link failure and creation as neighbouring vehicles negotiate obstacles. 

Limitations on hardware capabilities also act to reduce the area that information can be 

propagated and shared. These include available bandwidth, corruption of communication 

signals over large distances, interference, and transmitting power. 

The distributed nature of the information flow naturally implies an inconsistent view of the 

entire system. For cooperative control strategies to be effective, neighbouring vehicles must 

share a consistent view of the environment. This shared information can take the form of a 

cooperative objective, state information, or internal model of the environment. A direct 

consequence of this assumption is that the group must reach a consensus on the shared 

information.  

In this chapter, the consensus problem over spatiotemporal networks is investigated. The 

interplay between the communication topology and information consensus is investigated 

using methods from algebraic graph theory. For the purposes of generality, the physical 

realisation of the communication network is ignored and left for future development. The 

main application of these ideas will be the development and analysis of communication 

protocols for cooperative control strategies. 

The aim of this chapter is to introduce the main concepts of information flow and provide a 

cohesive overview of the problems associated to network control design. Similar work can be 

found in Jadbabaie et al. [46], Olfati-Saber and Murray [233], Fax and Murray [145], Moreau 

[239], and Ren and Beard [208]. The main contribution of this chapter is to unify these 

concepts into a single mathematical framework, and highlight some of the important results 

from these key research areas that will be instrumental in cooperative control strategies. This 

chapter is organised as follows: in Section 2.1, a graph theoretic approach to modelling the 

communication network is presented. A consensus protocol based on the sum-of-squares 

properties of graphs is then presented in Section 2.2. This is followed by a stability and 

performance analysis of the system on a static network. Section 2.3 extends the works to 

include spatiotemporal networks (switching networks) before a summary of major results is 

presented in Section 2.4. 
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2.1. A GRAPH THEORETIC MODEL TO DISTRIBUTED SYSTEMS 

In the following section, a brief review of graph theory is presented. Graphs are used to 

model the distributed nature of entities and their relations. In a group of vehicles, the 

communication network and spatial distribution can be modelled using a graph. The notions 

presented in this section provide the theoretical framework for the development and analysis 

of distributed systems and control laws used in later chapters. For a thorough analysis of 

graphs and their properties, see [304], [305] and [306].  

2.1.1. BASIC DEFINITIONS 

A graph G  is a pair consisting of a set of vertices (or nodes) },,,{ 21 NvvvV K= , and a set of 

edges . In a multi-vehicle system, each vehicle can be modelled as a vertex  in 

the graph  with spatial adjacency and connectivity described by the set of edges 

. The order 

VV⊆E × iv

G

Evve ji ∈= ),( V  and size E  of a graph G  physically represents the number of 

vertices in the graph and the number of edge connections. Information flow from vehicle  

to  is given by the path connecting  to  such that 

iv

jv iv jv Evv ji ∈),( . An undirected (or bi-

directional) graph satisfies the following edge relationship EvvEvv ijji ∈⇒∈∀ ),(),( . Note, 

the equivalence relation is not preserved for directed graphs; i.e., the ordering of vertices is 

not commutative EvvEvv ijji ∉⇒∈∀ ),(),(  (Figure 2-1 (a)). The spatial distribution of 

vehicles in a formation is an example of an undirected graph since the inter-vehicle distances 

are commutative. Note, whilst the distribution of vehicles on a Euclidean space is an example 

of an undirected graph, the information flow is not necessarily represented by a directed 

graph. The directivity patterns of the communication links may restrict the flow of 

information in one direction and induce a directed communication graph. Let  denote the 

subset of vertices  that are neighbours of vertex  and define the in-degree of a vertex  

as the total number of edges connecting  to  such that  and 

iN

jv iv iv

jv iv Evv ij ∈),( ijv N∈ . 

Similarly, define the out-degree of a vertex   as the total number of edges  to  such that 

 and . Then, the degree   (or valency) of a vertex  is the number 

of edges incident to  and corresponds to the total number of its neighbours 

iv jv iv

Evv ji ∈),( ijv N∈ )deg( iv iv

iv iN . For an  
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Figure 2-1. (a) Sample directed graph G on V = {v1, v7} with edge set E = {(v1,v7), (v2,v1), (v2,v7), (v2,v3),… 
(v3,v4), (v3,v6), (v6,v5)}. (b) Sample undirected and complete graph G. 
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Figure 2-2. A graph with three components {(v1, v2, v3), (v3, v4, v8, v9), (v5, v6)}. 

undirected graph, the in-degree and out-degree of a vertex are equal. When every possible 

edge exists in a graph, the graph is said to be complete (Figure 2-1 (b)). A graph G  is 

connected if there is a path in  between any given pair of vertices, and disconnected 

otherwise. Every disconnected graph can be split into a number of connected sub-graphs, 

called components  (Figure 2-2). The number of components of G  is denoted as . A 

graph  is strongly connected if there exists a path in  from any given vertex to any other 

vertex in G .  

G

F )(Gc

G G

2.1.2. ALGEBRAIC GRAPH THEORY 

One area of graph theory that is useful for modelling and analysing interconnected systems is 

algebraic graph theory. Algebraic graph theory provides a matrix representation to the graph 

structures described using set notation in traditional graph theory. In the following section, 

the basic concepts of algebraic graph theory are reviewed for the modelling and analysis of 

networked systems. For a thorough treatment of algebraic graph theory, see [304-306]. 
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Figure 2-3. Sample graph G and associated adjacency matrix A. 

Let  denote the graph with vertices  enumerated by . The 

connectivity of the graph is described by the square matrix 

),( EVG = iv Ni ,,1K=

A  (known as the adjacency 

matrix) with size V , and elements  describing the connectivity of adjacent vertices  and 

 such that: 

ija iv

jv

( )
otherwise

, if
,0
,1 Evv

a ji
ij

∈

⎩
⎨
⎧

=  (2.1)

An adjacency matrix defined in this way uniquely specifies an enumerated graph. Note that 

the adjacency matrix described in Equation (2.1) is discrete. In the proceeding analysis, a 

continuous approximation to Equation (2.1) is considered. An example of an adjacency 

matrix for a connected graph is given in Figure 2-3. 

 On a metric space, the adjacency of two vertices can be described using a distance metric. 

When the graph is used to describe the spatial distribution of a group of vehicles, the vehicles 

reside on a Euclidean space. The Euclidean norm provides a suitable metric to define the 

adjacency of neighbouring vehicles on a Euclidean space. Let jiij xxd −=  denote the 

Euclidean norm of two vertices,  and , and let iv jv r  denote a threshold on the interaction 

range of vertex . Two vertices  and  are connected if and only if iv iv jv 1≤rdij . Let Ρ  

denote the set of continuous locally Lipschitz functions with elements RR →:ijρ  associated 

to the edge  of graph G . Then a continuous approximation to the step 

function in Equation (2.1) is given by the following bump function: 

Evve jiij ∈= ),(

)/(: rda ijijij ρ=  (2.2)
As an example, the following bump function is considered as a candidate function of the 

adjacency matrix: 
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),0[

,0
),(

,1
)( ε

ε
ρ ∈

∈

⎪
⎩

⎪
⎨

⎧
= z

z
zCz k

ij  (2.3)

where )1,0(∈ε , and  is a  continuous function. A formal definition of the bump 

function 

)(zC k kC

)(⋅ijρ  in Equation (2.3) is given with respect to a vehicle’s sensory and 

communication capabilities in Section 3.2.1.  

Using Equation (2.1) or Equation (2.2), the neighbours of a vertex can be defined using 

the following set notation: 

iv

}),(:{}0:{ EvvVvaVv jijijji ∈∈=≠∈=N  (2.4)
Note  for all , and the graph has no loops, i.e., 0=iia iv Eii ∉),( . 

 Let ∆  denote the NN × degree matrix defined as }{)( ijG ∆=∆=∆ , where: 

ji
jivi

ij ≠
=

⎩
⎨
⎧

=∆
,0

),deg(
 (2.5)

The degree provides a measure of the adjacency of vertices in a graph. 

Associated with the adjacency and the degree matrices, is the graph Laplacian L . The 

Laplacian of a graph is defined as1 [306, 307]: 

 AL −∆=  (2.6)
As an example, consider the graph given in Figure 2-3. The Laplacian associated to Figure 

2-3 is given by: 

⎥
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−
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000000
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L  (2.7)

In multi-vehicle systems, this shared information can take the form of an -dimensional 

( ) vector. The following n -dimensional graph Laplacian is defined for the generalised 

case: 

n

1≥n

nLL 1⊗=ˆ  (2.8)
where ⊗  denotes the Kronecker product, and L̂  is a matrix of dimension . NnN ×
                                                 
1 In [150] the graph Laplacian was defined as . In general, there is no contention for a proper 

definition of the graph Laplacian . Regardless, the distinction between the various definitions is of little 

consequence to the theory.  

)(1 A−∆∆−

L
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 By definition, every row sum of the Laplacian matrix is zero. Therefore, the Laplacian 

matrix always has a zero eigenvalue 01 =λ  corresponding to a right eigenvector: 
T

rw )1,,1,1( K== 1  (2.9)
and identical nonzero elements. This means that 1)(rank −≤ NL . Associated with the graph 

Laplacian, is the Laplacian potential given by [236]: 

LxxT
G 2

1
=Ψ  (2.10)

Following the definition of the Laplacian potential, the following lemma summarises some of 

the basic properties of graph Laplacians. 

Lemma 1. (Undirected Graphs) 

Let with a non-negative adjacency matrix ),( EVG = TAA = of order . Then, the following 

properties hold: 

N

1. If L is a positive semi-definite matrix, then the Laplacian potential is also positive 

semi-definite and satisfies the following sum-of-squares (SOS) property: 

∑
∈

−=
Eji

jiij
T xxaLxx

,

2)(  (2.11)

Note this positive definiteness of L  does not necessarily hold for digraphs [233]; 

2. The graph G  has  connected components if and only if 1≥c cNL −=)(rank . 

Particularly, is connected if and only if G 1)(rank −= NL ; 

3. If G is a connected graph, then: 

2

01
02 min)(

x
LxxL

T

x
x
T =
≠

=λ  (2.12)

     and  if and only if 0)( =Ψ xG ji xx = , Nji ∈∀ , . 

Proof. 

All three results are well-known in the field of algebraic graph theory and their proofs can be 

found in [306] and [304]. 

Corollary. 

If the graph is connected, then the values of all nodes must be equal. 

 The last remark provides an important result for the definition of a consensus protocol. 
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2.2. INFORMATION CONSENSUS IN INFORMATION NETWORKS 

In distributed multi-agent systems, cooperating agents must agree on the information that is 

exchanged between connected vehicles. Shared information can include state information, 

group objectives, and world information. In this section, the agreement or consensus problem 

is addressed for an interconnected group of vehicles. For the purposes of generality, the 

problem is formalised using a simplified first-order differential model for the information 

flow (as in [46, 200, 224]): 

ii ux =&  (2.13)
where , and R∈ix R∈iu  is the information state and control of vehicle  respectively, 

, and . The information state can represent state information such as position, 

orientation, velocity, or some other coordination variable representative of the group task. In 

Chapter 3, this group coordination variable is described with reference to collective 

navigation of a flock of vehicles. For now, Equation (2.13) is used to represent the 

information dynamics for each vehicle . 

iv

Ni∈∀ 1>N

iv

 The interaction topology for the network of vehicles is given by the directed graph 

with concatenated set , , and network topology . Before 

proceeding with the definition of the consensus problem, some definitions introduced in 

[233] are re-iterated here: 

),( xGGx =
T

Nxxx ),,( 1 K= Nx R∈ G

Definition 1. (agreement) 

Two vertices  and  connected by an edge iv jv EvvEvv ijji ∈∨∈ ),(),(  are said to be in 

agreement if and only if . ji xx =

Definition 1 provides a formal description of agreement in cooperative agents. In distributed 

optimisation problems, the agents share information regarding solution quality to find an 

optimal solution to a centralised objective function. Two connected agents are then in 

agreement if and only if, the solutions that have been transmitted are identical. The notion of 

agreement can then be extended to include the collective graph in the following definition: 

Definition 2. (consensus) 

The vertices of a network have reached a consensus if and only if , , and ji xx = Nji ∈∀ ,

ji ≠ ; i.e. all vertices are in agreement. 
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Following the definition of consensus for the group, Definition 3 describes the common value 

for the network. 

Definition 3. (group decision variable) 

When the vertices of a network have reached a consensus, the common value of all the 

vertices is the group decision variable. 

The following definition for a subset of vertices in a graph will also provide useful for the 

formal definition of the consensus problem. 

Definition 4. (cluster) 

A cluster is any subset  of the vertices of the graph. The proximity graph describing the 

neighbourhood  of vehicle  is an example of a cluster. The set of neighbours of a cluster 

is given by: 

VJ ⊆

iN iv

jN

U
Jv

jiijij
i

EvvJvVv
∈

∈∈∈== }),(,:{: NN  (2.14)

Finally, the consensus problem for a network of cooperative vehicles is now described using 

the concepts introduced earlier. 

Definition 5. (consensus problem) 

Let  be a function of variables. Let RR →N:χ N )0(0 xx =  denote the initial state of the 

system such that . The T
Nxxx ))0(,),0(( 10 K= χ -consensus problem for a group of vehicles 

is to design a distributed feedback control law: 

N

)~( iii xku =  (2.15)
dependent on the states of vertex , and its neighbours’ current state ix ix~ ,  such that 

all vertices asymptotically reach a stable equilibrium  satisfying  and 

corresponding to the group decision variable. 

ij N∈∀

ex )( 0xxe χ=

 The following definition describes the conditions for asymptotic consensus: 

Definition 6. (asymptotic consensus) 

The set of vertices is said to have reached consensus asymptotically if 0)()( →− txtx ji , as 

 for all . ∞→t ij N∈
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Table 2-1. Consensus protocols for distributed systems. 

∑ =
==

N

i iN xxx
1

1)(Ave)(χ  average-consensus (2.16)
)(max)( ii xx =χ  max-consensus (2.17)

)(min)( xx i=χ  min-consensus (2.18)
 

For distributed (and decentralised systems), distributed control laws are of significant utility. 

Central to the notion of distributed control laws, is the set of protocols that facilitate their 

implementation within the distributed framework. The following definition for a distributed 

protocol is provided: 

Definition 7. (distributed protocol) 

 Denote  the cluster of vertices with indices satisfying the 

property . Protocol (2.15) is said to be distributed if  

},,{
1 mjji vvJ K= Njj m ∈,,1 K

ii iJ NU}{⊆ NJi < , .  Ni∈∀

Following the definition of a distributed protocol, several examples of the χ -consensus 

problem for distributed problem are presented in Table 2-1. 

The average-consensus problem (2.16) is an example of a distributed computational 

problem that yields the average group decision variable from a set of initial states . In a 

group of vehicles or a school of fish, the attitude/velocity alignment problem is an application 

of the average-consensus problem [46, 127, 128].  The max-consensus (2.17) and min-

consensus problem (2.18) can be used to describe distributed optimisation problems, where 

the group objective is to find the global minimum or maximum of a centralised objective 

function respectively [234]. Population based optimisation techniques such as PSO and ACO, 

are examples of distributed agents using the max-consensus or min-consensus protocols [18, 

19]. Due its relevance and extensive application in the biological and engineering fields, the 

remainder of this chapter is dedicated to the analysis of the average-consensus protocol. 

While the following analysis and discussion focuses solely on the average-consensus 

problem, the concepts introduced in this chapter are sufficiently general to accommodate the 

definition of other consensus problems such as the max-consensus and min-consensus 

problems. 

0x
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2.2.1. THE CONSENSUS PROTOCOL 

In multi-vehicle systems, a consensus protocol is necessary to describe the mechanism by 

which neighbouring vehicles reach agreement and lead to group consensus. A simple 

consensus protocol based on the SOS properties of the interconnected graph  (Equation 

(2.11)) and Definition 6, can be defined as follows [233, 308]: 

G

∑
∈

−=
ij

ijiji xxau
N

)(  (2.19)

Protocol (2.19) provides the closed loop dynamics of system (2.13) for time-invariant and 

dynamic information using the interconnection topology defined by the adjacency matrix of 

the graph G . Note, Protocol (2.19) describes a consensus protocol for a network with zero 

communication time-delays. In many real-world multi-vehicle networks, the physical 

implementation of communication hardware is plagued with communication lags and limited 

bandwidths. This can introduce communication delays and degraded performance. Work on 

communication networks with time-delays is currently an area of active research (see [233, 

309] for example) and is beyond the scope of this investigation. For the remainder of this 

work, it is assumed that the communication is ‘lag-free’. While this assumption limits the 

physical realisation of the communication network, the goal of this work is to provide a 

generalised theoretical framework for distributed (or decentralised) algorithms, and support 

the development of more complex communication systems. In the proceeding section, the 

convergence of the consensus protocol is investigated for time-invariant networks. 

2.2.2. LYAPUNOV ANALYSIS OF THE CONSENSUS ALGORITHM FOR TIME-

INVARIANT NETWORKS 

The consensus protocol described in the previous section defines the mechanism in which a 

group of individuals reach a consensus. The convergence of the consensus protocol provides 

an insight into the stability of the system, and the nature of the group decision variable. In the 

following section, the convergence properties of the consensus protocol are analysed by 

treating the graph Laplacian in Equation (2.10) as a candidate Lyapunov function. The 

following theorem provides the necessary conditions for asymptotic convergence of the 

average-consensus protocol in Equation (2.19): 
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Theorem 1. (asymptotic convergence) 

Let  be a connected graph. Suppose each vertex  applies protocol (2.19), then all 

vertices of the graph globally asymptotically reach an average-consensus, such that 

, and ,

G iv

)(lim txx t
e

+∞→= ))0((Ave xxx e
j

e
i == ji,∀ , ji ≠ . 

Proof. 

The closed-loop dynamics of system (2.13) applying protocol (2.19) evolve according to the 

gradient system of the Laplacian potential given by: 

)(xLxx GΨ−∇=−=& ,    Nnx R∈)0(  (2.20)
From Equation (2.20) the group decision variable for an interconnected graph can be 

obtained by explicit calculation of )exp( Lt− . The equilibrium points of (2.20) correspond to 

stationary points of )(xGΨ  and the region outside of these points, the potential is strictly 

decreasing with time [237]; i.e., if is an equilibrium of Equation (2.20), then . 

From Equation (2.10): 

ex 0=eLq

0)(
2
1)( ==Ψ eTee

G Lxxx  (2.21)

Following the connectivity of , , G cxx e
j

e
i == iji N∈∀ , , i.e. , Te ccx ),,( K= R∈c  and 

. Since the Laplacian potential equals zero at equilibrium, then 0
1

=∑ =

n

i iu )(Ave xx =  is an 

invariant quantity, Given the invariance property of , then , and 

. This implies , 

)(Ave x ))0((Ave)(Ave xxe =

cxe =)(Ave ))0((Ave xxe
i = Ni∈∀  [236]. In addition, the eigenvalues of L−  

are negative in the complex plane, and any solution of the system asymptotically converges to 

a point  in the eigenspace associated with the average-consensus of the network of 

vehicles [236]. The proofs and results are well known in the field of algebraic graph theory 

and can be found in [304] and [236] and references therein. 

ex

 From Theorem 1, the average-consensus protocol (2.19) converges to an equilibrium given 

by . This implies that the group decision variable (the equilibrium point) 

corresponds to the average value of the network of agents under a connected time-invariant 

graph topology. This feature is later exploited in Chapter 5 to define a decentralised 

optimisation control law for cooperative agents. 

))0((Ave xxe
i =
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2.2.3. PERFORMANCE OF NETWORK PROTOCOLS 

Of significant interest to the design of distributed control laws, is the transient behaviour of 

the consensus protocols. In the previous section, formal guarantees on the convergence of the 

consensus protocol to a group decision variable were provided. In this section, the effect of 

the graph connectivity on the performance of the consensus protocols is investigated.  

Define δ  as the group disagreement vector for a group of agents: 

 δ+= 1cx  (2.22)
where , and  satisfying )(Ave xc = NR∈δ 0

1
=∑ =

N

i iδ . The disagreement vector represents 

the deviation of the group’s state from the group decision variable. The group disagreement 

vector evolves according to the group disagreement dynamics given by: 

δδ L−=&  (2.23)
with solution given by: 

)exp()0()( tt βδδ −≤  (2.24)

Theorem 2. (performance of agreement) 

The group disagreement vector δ , as a solution to (2.23), globally asymptotically vanishes 

with a speed equal to )2(2
TLL += λβ , i.e., the Fiedler eigenvalue induced by the graph G  

with Laplacian L , i.e. 

)exp()0()( tt βδδ −≤  (2.25)

Proof. 

Let 2
2
1)( δδ =V  be a valid Lyapunov function for the disagreement dynamics (2.23). Then 

from [310]: 

[ ]δδδ
δ

)(
2
1 TT LL

t
VV +−=

∂
∂

∂
∂

=&  (2.26)

and from (2.19), the following inequality holds: 

( ) 0)(22 2
2 <−=+−≤ δβδλ VLLV T&  (2.27)

Therefore, )(tδ vanishes globally exponentially fast with a speed of β as  +∞→t .

 It was shown in [304] that for dense graphs, the Fiedler eigenvalue 2λ  is relatively large, 

and for sparsely connected graphs, 2λ  is relatively small. For this reason, Fiedler [242] 

termed this eigenvalue the algebraic connectivity of a graph. From Theorem 2, it can be 

shown that a network with dense interconnections solves an agreement problem faster than a 
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sparsely connected network [233]. In the following example, the average-consensus protocol 

is demonstrated for a group of vehicles. 

2.2.4. NUMERICAL EXAMPLE: THE AVERAGE-CONSENSUS PROTOCOL 

In this section, the average-consensus protocol (2.19) is applied to a group of 100 agents. The 

performance of the protocol is tested on 3 time-invariant network topologies with varying 

interconnection topologies. For the purposes of generality and simplicity, it is assumed that 

the information resides on a unitary space and evolves according to the following decoupled 

linear dynamics: 

)()()( tuBtxAtx iiiii +=& , 

where ,  ⎥
⎦

⎤
⎢
⎣

⎡
= ×

00
0 nn

i

I
A ⎥

⎦

⎤
⎢
⎣

⎡
=

×nn
i I

B
0 (2.28)

The initial distribution is given by ixi =)0( , for 20,,1K=i . The graph topologies with their 

corresponding information state evolution are shown in Figure 2-4. From Figure 2-4, the 

topology given by the complete graph (in which each node is connected to every other node 

in the network) demonstrates the fastest convergence ( 0526.1=β ) of the three networks. In 

fact, the complete graph converges to the group decision variable 22 times faster than the 

 nearest neighbours. It should be noted that the complete graph topology has 9.5 

connections more than the  nearest neighbour topology. In general, the complete 

interconnection structure is impractical for physical implementation; and is provided here for 

comparative purposes. 

1=k

1=k

2.3. INFORMATION CONSENSUS ON DYNAMIC NETWORKS 

The analysis so far has been limited to fixed communication topologies. The stability and 

performance of a fixed network topology was investigated in the previous section. It was 

shown that for a fixed network topology, the connectivity of the nodes influenced the rate of 

convergence of the information consensus. In the case of multi-vehicle systems, the 

information flow topologies are dynamic. This dynamic topology is time-varying due to the 

motions of vehicles in the group, and the subsequent communication link creation and failure.  
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(a) k = 19 (b) β = 1.0526 
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(c) k = 3 (d) β = 0.2174 
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(e) k = 1 (f) β = 0.0489 

Figure 2-4. Undirected interconnection graph for N = 100 with (a) complete connectivity (k = 100), (c) k = 6 
connectivity, and (e) k = 2 connectivity. The corresponding state evolution and Fiedler eigenvalue for the 
interconnection graphs in (a), (c), and (e) are shown in (b), (d), and (f) respectively. 
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For example, information links across adjacent vehicles can be disrupted as neighbouring 

individuals bifurcate around obstacles and dissociate from the group. Similarly, 

communication links can be created or re-established as vehicles enter the interaction range 

of neighbouring vehicles. In terms of the network topology G , edges are added and removed 

from the graph over time. In this case, the communication graph is state-dependent. Network 

systems with a dynamic topology are commonly referred to as switching networks in the 

literature. In the proceeding section, the role of state-dependent graphs on the connectivity of 

switching networks is investigated. 

2.3.1. DYNAMICS OF THE ADJACENCY MATRIX 

To begin the following analysis, consider a group of  vehicles with dynamics given by the 

set of first-order differential equations: 

N

ii ux =&  (2.29)
where  and  is the configuration and control of vehicle . 

For simplicity, it is also assumed that 

n
i

T
ii Qqx R=∈= m

ii Uu R=∈ iv

mn =  and the vehicles are fully actuated. The spatial 

distribution of vehicles in the group is described by the concatenated states 

. Denote the spatial adjacency of a vehicle using Equation (2.2). A graph 

 described in such a way defines a spatial graph, and the adjacency of 

neighbouring vehicles in the group. If 

nNN

i i RQq =∈∏ =1

),,( AEVG =

r  in Equation (2.2) is the communication range of a 

vehicle, then the spatial graph shares a one-to-one correspondence with the information 

network.  

 Suppose vehicle  applies the consensus protocol given in Equation (2.19): iv

∑
∈

−=
ij

ijiji xxau
N

)(  (2.30)

Then, the connectivity of the graph evolves according to Equation (2.29) and Equation (2.30). 

The average-consensus q  obtained from Equation (2.30) physically represents a collision of 

the vehicles . ij N∈

 Using the definition of the adjacency matrix A  presented in Section 2.1.2, the dynamics of 

the adjacency matrix can be calculated [148]. Let )(xaijx∇  denote the  gradient vector 

of  obtained from Equation (2.2) with respect to , and denote 

1×nN

)(xaij x )(xAx∇  as the  

matrix: 

2nNN ×

( )T
ijxx xaxA )()( ∇=∇  (2.31)
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Then: 

))(())(())(()( xIxAxxaxaxA Nx
T

ijxij &&&& ⊗∇=∇==  (2.32)
where  denotes the -dimensional identity matrix and NI N ⊗  denotes the Kronecker product. 

 By substituting the appropriate values from Equation (2.29) and Equation (2.30) into 

Equation (2.32) and using the SOS properties of the connected graph, the closed-loop 

dynamics of the spatial graph is obtained: 

Lxxxaxxaxxaxa TT
ijxG

T
ijx

T
ijxij ⋅−∇=⎟

⎠
⎞

⎜
⎝
⎛ Ψ∇−⋅∇=∇= )()(

2
1)())(()( &&  (2.33)

By explicit calculation, the evolution of the adjacency matrix can be determined given an 

initial distribution of nodes. Using the notations provided, a dynamic graph  can be 

described by the enumerated set of vertices V , and time-varying set of edges  given by 

the adjacency matrix dynamics in Equation (2.32); i.e. 

)(tG

)(tE

))(),(,()( tAtEVtG = . Note Equation 

(2.33) defines an autonomous system of differential equations. In the proceeding section, the 

dynamic graph  is parameterised to define a switching network. )(tG

2.3.2. SWITCHING NETWORKS 

In many multi-vehicle systems, the information network is characterised by a dynamic 

topology. The time-varying nature of the information network is attributed to the motion of 

the vehicles in the group, reconfiguration of the formation, or the attrition and extension of 

vehicles. The effect of the switching networks on the performance of distributed consensus 

protocols is of significant interest for the development of distributed and decentralised control 

laws. The remainder of this chapter is dedicated to the definition of switching networks, and 

the investigation of switching networks on consensus protocols.  

Borrowing from the notation in [233], let  denote the dynamic graph  

parameterised by a switching signal  with 

)(tsG )(tG

Kts →R:)( },,1{ mK K= . The discrete-state  

belongs to the finite collection of graphs given by: 

)(tsG

)},,({ )( AEVG ts ==Γ  (2.34)
with continuous state . A system described in such a way is an example of a hybrid 

system [233]. Given protocol (2.19), the continuous-state of the system evolves according to 

the following hybrid system dynamics [233]: 

nNx R∈

( ) )()( txGLtx k−=& ,    )(tsk = ,    Γ∈kG  (2.35)
 By definition, the communication topology is piecewise constant over finite lengths of time, 

called the dwell times [46]; and nodes are constrained to change control laws only at discrete 
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intervals; i.e.,  is piecewise constant with dwell times given by )(tL kkk ttT −= +1 , and  

are the switching instants [311]. In the case of the cooperative rendezvous problem, the 

switching instants are induced when adjacent vehicles enter a new neighbourhood, and the 

graph topology is described by an autonomous switching network. One approach to analysing 

the stability of the switching network is to investigate the matrix properties of the graph 

topologies [311]. Let 

K,, 21 tt

)0,(tΦ  denote the state-transition matrix associated to  and given 

as a function of the adjacency matrix dynamics in (2.32). Since the consensus protocol (2.19) 

is linear, its solution can be written as [311]: 

)(tL−

)0()0,()( xttx Φ=  (2.36)
It was shown in [46] that a switching network with dwell times  converges to the 

average-consensus c of the connected graph, i.e.: 

0>kT

1ct
t

→Φ
∞→

)0,(lim  (2.37)
and consensus is achieved if 

1cTtLTtLTtL kkkkt
=−⋅⋅−⋅− −−∞→

))(exp())(exp())(exp(lim 0011 K  (2.38)
Furthermore the group disagreement vector δ  (as described in Section (2.2.3)) vanishes 

exponentially fast with the least rate of: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=

Γ∈

∗

2
min

2

2
LL

G
λβ  (2.39)

and the system converges to the average-consensus value c . The proof follows in similar 

spirit to the proof of Theorem 2 in Section 2.2.3 and can be found in [233]. The results of 

[46] and [233] provide an insight into the performance of a switching network under 

consensus protocol (2.19). In the proceeding section, the convergence properties of the 

consensus protocol (2.19) are demonstrated on a time-varying communication network for a 

group of cooperative vehicles. 

2.3.3. NUMERICAL EXAMPLE: SWITCHING NETWORK 

In the following example, consensus on a switching network is demonstrated for the -

vehicle cooperative rendezvous problem. The objective of the cooperative rendezvous 

problem is to reach a consensus on the goal location of the group of vehicles. Examples of a 

spatial goal location include the intercept point of a moving target, such as a missile or 

aircraft [83], the centroid of a formation [312], or the interface of two docking spacecraft 

[313].  

N
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 For simplicity, consider  vehicles with first-order dynamics given by: 10=N

ii uq =& ,    Ni ,,1K=  (2.40)
where  is the position of vehicle i  on the plane , 

 is the corresponding velocity, and  is its 

acceleration inputs. The initial states  are randomly initialised in the rectangle bounded 

by . A simple PD controller for the cooperative control problem is 

constructed using the average-consensus protocol in Equation (2.19): 

2),( R=∈= i
T

iii Qyxq 2R=iQ

2),( R=∈= i
T

iii TQyxp && 2),( R=∈= i
Ty

i
x
iiu Uuu

)0(iq

]10,10[]10,10[ −×−

 ∑
∈

−=
ij

ijiji qqau
N

)(  (2.41)

where  is the vector of adjacency elements describing the connectivity of vehicle i  to the 

subset of neighbours 

ija

j  in the group given by: 

otherwise
 if

,0
,1

: rqqa ij
ij

≤−

⎩
⎨
⎧

=  (2.42)

The time-varying nature of the switching network is induced by the time-varying spatial 

distribution of the vehicles and evolves according to Equation (2.40) and Equation (2.41). 

Figure 2-8 shows the state trajectory of the group of vehicles in 2R  and the corresponding 

rendezvous point. The convergence of the disagreement vector δ  is shown in Figure 2-7, 

where the switching times of the network are indicated by the point markers. From Figure 

2-7, consensus is reached asymptotically. Performance of the network is improved as a 

function of ( )2)()( 2
2 kk GLGL +λ , where Γ∈kG . Snapshots of Γ∈kG  are given in Figure 

2-6. The time-varying nature of the interconnection graph in Equation (2.40) and Equation 

(2.41) describes an autonomous hybrid differential-algebraic system. Solving the precise time 

at which the interconnection topology of the group switches using analytical methods is 

difficult. In fact, solving hybrid differential-algebraic equations is currently an active area of 

research [314]; and is beyond the scope of this thesis. While impractical, current methods of 

determining switching times are performed through simulation or explicit calculations [315]. 

Through simulation, the set of graph topologies Γ  for the switching network is determined 

and shown in Figure 2-6. The corresponding switch times are provided above the snapshot. 

 44 



 

  

-10 -5 0 5 10

-10

-5

0

5

10

x (pos)

y 
(p

os
)

 
Figure 2-5. Initial distribution of vehicles in R2 and spatially induced communication graph. 

Figure 2-5 shows the initial distribution of the vehicles and the initial communication graph 

induced by . From Figure 2-5, the initial graph topology is connected (i.e., has only 

one connected component). Since the initial graph is connected, the degree of each node 

stabilises to  corresponding to the complete graph . This occurs at  in 

Figure 2-6 (f) and Figure 2-7. This can be demonstrated by considering the motion of two 

vehicles in the group. As two vehicles approach each other and reach a consensus on the 

rendezvous point, the neighbourhood of each vehicle collides.  Consequently, the -

neighbourhood graph topology becomes a 

10=r

1−N Nk sT 3955.1=

k

nk +  neighbourhood graph, and the valency of the 

vehicles in the group increases as the number of neighbours are increased. 
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Figure 2-6. Discrete state-evolution of information network and switching times. 
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Figure 2-7. Convergence of the group disagreement vector. 
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Figure 2-8. Rendezvous problem for N = 10 vehicles. 
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2.4. SUMMARY 

In this chapter, the main areas of algebraic graph theory have been identified for the 

consensus problems. A consensus protocol was developed using the SOS properties of the 

graph. Using results from algebraic graph theory, the convergence of the consensus protocol 

was demonstrated. The results were extended to time-variant network topologies. It was 

demonstrated through simulation that for a time-varying information network, the vehicles 

will converge to the average-value of the average-valued consensus protocol. The chapter 

presented the various fields of graph theory and network design, to develop a unified 

dynamic information network for multi-vehicle systems. The information network developed 

in this chapter provides the basis for further developments in later chapters, particularly in 

Chapter 5 where a decentralised implementation scheme is developed. In the next chapter, the 

information network is used to develop a set of inter-vehicle behaviours for cooperative 

flocking. 
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Chapter 3. Dynamic Flocks and the Semi-Rigid Body 

Model 

For purposeful applications of multi-vehicle systems, the cooperative control problem must 

be identifiable by a cooperative objective. To achieve the cooperative objective, the group of 

vehicles must reach consensus on a coordination variable. In multi-vehicle systems, this 

coordination variable is often specified with respect to the spatial distribution of vehicles in 

the group. It can include the precise location of the vehicles in the group, or a generalised 

group abstraction representative of the collective state of the vehicles. For example, the 

coordination variable for a flock of birds flying in V-formation can be represented using a 

state vector of position coordinates. The precise location of individuals in the flock is a 

suitable abstraction since the low-density of individuals in the flock, and the relatively 

coherent motion of the group make it possible to easily recognise the formation of a flock. In 

a plague of locusts however, the high-density of the group makes it difficult to identify the 

precise position of the individuals in the swarm at any given time. Consequently, abstractions 

based on the individual’s states provide an unsuitable coordination variable for these types of 

groups. Instead, abstractions based on the collective states provide a more appropriate 

coordination variable for large-scale swarms. This could include the boundary or density of 

the swarm, or an abstract descriptor such as entropy and energy. 

 The distinction between the two levels of abstraction, extricates the notion of a swarm-

based task from a formation-based task. Swarm-based tasks are often identifiable by only a 

small set of essential features representative of the group’s collective behaviour (group 

abstractions); whilst, formation-based tasks, are described by the precise states of the 

individual agents. Using the precise states of the individuals as an abstraction provides a 

coherent relationship between the individuals, their interactions, and their influence on the 

cooperative objective. This makes it possible to optimise the behaviour of the individuals, 

and derive formal guarantees on the stability and performance of the system.  

While strategies based on the precise states of the individuals can guarantee precision and 

optimality, they quickly become intractable as the number of individuals in the group is 
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scaled. In a group subject to attrition and extension, the dynamic nature of the population 

makes it difficult to define the precise states of the individuals without a centralised feedback 

control architecture. Information must continually be exchanged between the supervisory 

agent and the group of vehicles to evaluate the effectiveness of the current solution and re-

evaluate plans according to available assets. Limitations on communication, sensory, and 

processing hardware makes it difficult to physically realise centralised control architectures. 

For example, in cooperative space interferometers, the position of the satellites are optimised 

to enhance the imaging  

 Swarming tasks on the other hand, naturally admit a distributed or decentralised 

architecture. The use of group abstractions trivialises the precise behaviour of the individuals. 

This makes swarming more robust to attrition and extension. The lack of a centralised 

processing facility however, presupposes the notion of autonomy and self-organisation. 

Swarms of self-organising vehicles have limited appeal and application in populated areas; 

unless the behaviour of the vehicles is guaranteed and observable. The challenge is now to 

design control strategies that preserve the scalability properties of swarming tasks and 

preserve the precision of formation tasks. 

 In this chapter, a theoretical framework for flock behaviour is presented. The flock model is 

used to model a cooperative objective and demonstrate swarm-based tasks in cooperative 

vehicle systems. The purpose of this model is to unify a group of vehicles as a flock, and 

develop group abstractions that identify the group as a singular entity. These group 

abstractions are then used in later chapters to develop control strategies at the supervisory 

level for precision and optimality.  The flock algorithm presented in this chapter extends the 

work on consensus protocols introduced in the previous chapter to develop an artificial 

potential force model for the group of vehicles. The work is inspired by similar approaches in 

the field of mathematical biology to describe the behaviour of natural flocks and swarm, and 

the work on artificial flocks and swarms by Olfati-Saber in [32]. It aims to extend the current 

body of literature on artificial flock models by identifying controllable abstractions at a 

supervisory level that have appeared in similar models. The main contribution of this chapter 

is the identification of shape abstractions in Section 3.3 using scalable flock algorithms. It is 

shown in Section 3.3 that a stabilised flock exhibits the properties of a rigid-body system and 

provides the necessary group abstractions at the supervisory level to treat the group as a 

singular entity. 
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 This chapter is organised as follows. Section 3.1 reviews the concepts of flocking as 

identified by Reynolds [25]. Section 3.2 builds on the heuristics of Section 3.1 to develop a 

mathematical model of flock behaviour. The transient properties of the flock are investigated 

in Section 3.2.3 and Section 3.2.4 to identify group abstractions for shape control. Finally, the 

rigidity properties of the flock are then investigated in Section 3.3 to construct a definition for 

the (semi)-rigid body model of the flock for motion control. Together with the results 

presented in Section 3.2, these are used to define the set of group abstractions suitable for 

control at the supervisory level in Chapter 4. 
 

Cohesion: Converge 
towards flock centre 

Separation: Avoid 
collisions. 

Alignment: Orient with 
neighbours 

 
Figure 3-1. Reynolds' flock heuristic. 

3.1. FLOCKING THEORY 

One of the first heuristic models for a simulated flock was described by Reynolds in 1987 

[25]. In [25], Reynolds identified three primitive behaviours necessary for a flock of agents to 

achieve flocking. Stated under Reynolds’ rules, the behaviours that lead to simulated flocking 

are: 

1. Collision Avoidance: avoid collisions with nearby flockmates; 

2. Velocity Matching: attempt to match the velocity of nearby flockmates; and 

3. Flock Centring: attempt to stay close to nearby flockmates. 

These have also been stated under Reynolds’ boids as separation, alignment, and cohesion. 

The first heuristic, collision avoidance, ensures that agents do not collide with static obstacles 

and neighbouring flockmates. Collision avoidance forces vehicles to steer away from 

neighbouring flockmates and obstacles to avoid collisions. When coupled with velocity 

matching, the relative separation distance of neighbouring flockmates remains invariant with 

respect to ongoing geometric flight [25]. This observation plays an important role in the 

development of a semi-rigid body model of the collective flock.  
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 To prevent the vehicles from wandering, flock centring is introduced to force vehicles into 

the centre of the flock. In a distributed information network, the centre of the flock is the 

centre of neighbouring flockmates. The union of these neighbourhoods is the centre of the 

entire flock. If a vehicle is already close to the centre of the flock, the population density in 

its local neighbourhood is approximately homogenous in all directions; and the influence of 

flock centring on the vehicle is minimal. Alternatively, a vehicle located on the boundary of 

the flock, will have a greater displacement from the centre of the flock, and the influence of 

flock centring is large [25]. Together, these three behaviours ensure that agents aggregate to 

form a cohesive bond, and move with a common heading and velocity whilst avoiding 

collisions. In the proceeding section, a mathematical model for flocking is introduced. 

3.2. A MATHEMATICAL MODEL 

Consider  dynamically controlled vehicles with states  belonging to the manifold  and 

control  belonging to the control spaces . For fully actuated vehicles in free space, the 

states are position  (where 

N iq iQ

iu iU

d
ix R∈ 2=d  for the planar case, and 3=d  in free space) and 

orientation R∈iθ  vectors. The configuration of vehicle i  can be written as 

, for all  with respect to some fixed inertial reference frame , 

and controls as follows: 

n
i

T
i

T
ii Qxq R=∈= ),( θ Vi∈ }{F

n
ii Uu R=∈

⎩
⎨
⎧

=
=

ii

ii

up
pq

&

&
 (3.1)

For convenience, the vehicle states and controls are concatenated to form an -

dimensional control system describing the collective flock: 

nN

⎩
⎨
⎧

=
=

up
pq

&

&
 (3.2)

with , . Given the vector , the  

distribution of vehicles in the group and their connectivity can be described using the graph 

pair . Here, the vector  and its induced pair  are 

referred to as the configuration and structure of the group respectively. In the proceeding 

section, the connectivity of the graph is constructed using the information flow and relative 

interaction range of the vehicles. 

nNN

i i RQq =∈∏ =1
nNN

i i RUu =∈∏ =1
nNT

N Qqqq R=∈= ),,( 1 K

),( qG nNT
N Qqqq R=∈= ),,( 1 K ),( qG
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Figure 3-2. Closed-ball neighbourhood. 

3.2.1. SENSING TOPOLOGY AND THE INTERACTION RANGE 

In distributed and decentralised systems, the perspective of an individual is limited by the 

physical range of its sensors and communication devices. Let  denote the interaction 

range of vehicle .  physically represents the interactivity of a vehicle and is used to 

explicitly define the sensor and communication radius of a vehicle’s systems. A spherical 

neighbourhood is induced by the region enclosed by the closed ball defined by the radius  

and centred at : 

0≥ir

iv ir

ir

iq

}:{:),( ii
d

ii rqxxrqB ≤−∈= R  (3.3)
The set of spatial neighbours of vehicle  is the set of vehicles  bounded by the 

region enclosed by the ball  with radius  and centred at . Any vehicle  within 

the closed ball  such that 

iv Vv j ∈

),( ii rqB ir iq jv

),( ii rqB iij rqq ≤−  is connected to vehicle . The set of spatial 

neighbours of vehicle  is given by: 

iv

iv

}:{ iiji rqqVj ≤−∈=N  (3.4)
Equation (3.4) describes a spherical neighbourhood. Spherical neighbourhoods can be used to 

model omni-directional sensors and communication devices, such as radars and antennas. 

Various sensory and communication models can be extrapolated from the generalised ball 

model to accommodate for the directivity of specific sensors and communication devices. For 

example, the conic field-of-view of a camera is considered in [283] using the conic 

neighbourhood specified in Equation (3.5): 
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(a) (b) 

Figure 3-3. Examples of (a) spherical interaction range; and (b) conic interaction range. 

},:),{(:),,,( 3
iiiiiiii rxxxrx ϕθθθϕθ ≤−≤−×∈= RRC  (3.5)

where  and 3R∈ix R∈θ  denote the position and orientation of vehicle , and  and iv ir iϕ  

denote the range and viewing angles of the camera respectively. For the purposes of 

generality, it is assumed hereafter that all sensors and communication devices are omni-

directional. 

When information is communicated between adjacent vehicles and/or observed by physical 

sensors, the energy of the transmitted signal attenuates with distance from the signal source. 

The loss of signal quality over distance is modelled using a falloff function. Denote )(⋅iρ  the 

sensor and communication falloff for vehicle Vvi ∈  with finite interaction range . Using 

the distributed adjacency matrix of Equation (2.3) in Section (2.12), a simple choice for a 

falloff function is derived by mollifying the step function in Equation (2.1) with a bump 

function: 

ir

( )[ ]
otherwise

],[
),0[

,0
,sin1

,1
)( 2)(

)(
2
1

ir
z

ij rz
z

z
i

δ
δ

πρ π
δ
δ ∈

∈

⎪
⎩

⎪
⎨

⎧
++= −

−  (3.6)

where ij qqz −= ,  is the interaction range of vehicle  and ir iv ),0( ir∈δ .  

A spatially induced neighbourhood  with sensory and communication falloff given by 

Equation (3.6) defines a spatial adjacency matrix 

iN

)]([)( qaqA ij= : 

( )[ ]
otherwise

, if
,0 if

,0
,sin1

,1
)(:)( 2)(

)(
2
1 ijrqq

ijqq
zqa iij

ij

r
z

ijij i
≠≤−≤

≠<−≤

⎪
⎩

⎪
⎨

⎧
++== −

− δ
δ

πρ π
δ
δ  (3.7)
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Figure 3-4. Sensory and communication falloff function. 

The spatial adjacency matrix defines a spatially induced graph  [283]. If )(qG ji rr ≠ , 

, Vji ∈∀ , ji ≠ , then a spatially induced graph  is a digraph. As an example, consider 

the case when , then  and 

)(qG

ji rr > ij N∈ ji N∈  since iij rqq ≤−  and iij rqq ≤/− . In a 

homogenous flock, each vehicle has identical sensory and communication ranges; i.e., ji rr = , 

, Vji ∈∀ , ji ≠ . Consequently, a spatially induced graph  with homogenous vehicles 

induces an undirected graph.  

)(qG

3.2.2. THE FLOCK LATTICE 

In the following section, the flock heuristics of Section 3.1 are investigated to describe the 

topology of a spatially induced graph for a flock of vehicles. Let  denote the 

exclusion zone for vehicle  with radius 

),( iid dqB

iv ii rd ≤<0  and centred at  (see Figure 3-5). Then: iq

Definition 1. (collision) 

Two vehicles  and  are said to have collided if vehicle  has entered the exclusion zone 

of vehicle  defined by the closed ball . The opposite is also true when vehicle 

enters the exclusion zone of vehicle . 

iv jv jv

iv ),( iid dqB iv  

jv
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ri

 
Figure 3-5. Interaction and exclusion zone of vehicle vi. 

From Reynolds’ boids, cohesion naturally implies that a group of vehicles will collide to 

reach the centre of the flock qqq ji == , Vji ∈∀ , , ji ≠ ; i.e.: 

iij dqq ≤− ,    ij N∈∀ ,    ji ≠  (3.8)
On the other hand, separation ensures that potential collisions with neighbouring vehicles are 

avoided, i.e.: 

iij dqq >− ,    ij N∈∀ ,    ji ≠  (3.9)
These two observations lead to the following inter-vehicle constraint for flocks of vehicles: 

iij dqq =− ,    ij N∈∀ ,    ji ≠  (3.10)
The set of constraints in Equation (3.10) describe a spatially induced graph for flocking: 

Definition 2. (flock lattice) 

A flock lattice is a configuration of vehicles q  satisfying constraint (3.10) for all . Vvi ∈

 In a homogenous flock, where ijji ddd == , Vji ∈∀ , , ji ≠ , all edges of the spatial graph 

 induced by the flock lattice have equal lengths  (equidistant flock). Consider the 

case when the spatial graph  induced by the flock lattice is disconnected; i.e., there 

exists  components. Let  denote a component of , such that  is a 

strongly connected flock lattice, then  contains  flocks. 

)(qG ijd

)(qG

))(( qGc )(qF )(qG )(qF

)(qG ))(( qGc
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Figure 3-6. Examples of (a) a regular flock lattice, and (b) a quasi-flock lattice. 

Definition 3. (cohesive flock [284]) 

A flock is cohesive ],[ 0 fttt∈∀  if there exists a closed polygon with centre ))((Ave)( tqtq =  

that contains all vehicles . For example, for a ball of radius and centred at ],[ 0 fttt∈∀ 0>R

q , RtxR ≤>∃ )(:0 , . ],[ 0 fttt∈∀

 A closed polygon is used here to describe the permissible convex hull of a group of vehicles 

rather than a closed ball to generalise the possible topologies of a flock. 

Definition 4. (quasi-flock lattice  [284]) 

A quasi-flock lattice is any configuration  such that the underlying graph structure is 

disconnected.  

)(qG

Formally, let )(qF  denote the order of a component graph , then the density of the 

graph  is: 

)(qF

)(qG

∑ =

=Ρ ))((

1
)(

)(max
:))(( qGc

k k

kk

qF
qF

qG  (3.11)

A density of 1 denotes a strongly connected flock lattice  and )(qG 1))((0 <Ρ< qG  a quasi-

flock lattice. A similar definition for net density and quasi-flock lattices was provided in 

[283]. Figure 3-6 (b) provides an example of a quasi-flock lattice. 
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3.2.3. STRUCTURAL ENERGY OF THE FLOCK LATTICE 

The degree in which a configuration  conforms to a flock lattice is measured using the 

inter-vehicle constraints in Equation (3.10). A minimum for Equation (3.10) is found at 

)(qG

ijij dqq =− , , Vji ∈∀ , ji ≠ . A natural choice for a deviation metric is given by: 

( )∑ ∑
= ∈

−−=
N

i j
ijij

i

dqqq
1

)(
N

E ψ  (3.12)

where the locally Lipschitz continuous function )(⋅ψ , satisfying 00: ≥≥ →RRψ  and 

0)0( =ψ  has been introduced to define an energy potential field for the graph .  )(qG

Corollary. 

A configuration  is a global minimum of the potential function in Equation (3.12) if and 

only if  is a flock lattice satisfying the constraints in Equation (3.10). 

)(qG

)(qG

 To construct the energy potential field )(⋅ψ  in Equation (3.12), a smooth continuous 

function is constructed to define the inter-vehicle constraints of the flock lattice. Consider the 

constraints introduced in Equation (3.10) and implemented in Equation (3.12). Using the 

norm z , the following gradient information is observed for flock convergence: 

ij

ij

ij

dz
dz
dz

z
>
<
=

⎪
⎩

⎪
⎨

⎧

+
−=∇

1
1

0
:  (3.13)

where . From Equation (3.13), ij qqz −= z  is not differentiable at singular configurations 

when , therefore, it is unsuitable for inter-vehicle interactions. Let  

denote the attractive-repulsive pair-wise potential for inter-vehicle interactions with 

piecewise information given in Equation (3.13). A smooth energy potential recovering the 

piecewise information in Equation (3.13) is constructed using the following bounded sigmoid 

function: 

0=− ij qq ++ →RR:)(zφ

21
:)(

z

zz
+

=φ  (3.14)

The integral of Equation (3.14) yields a smooth continuous function for inter-vehicle 

interactions: 

11)(:)( 2 −+==Φ ∫ zdszz
z

s

φ  (3.15)
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Figure 3-7. (a) Norm functions ||z|| and Φ(z) and their derivatives (b). 

Applying Equation (3.15) to the flock constraints in Equation (3.10) the following smooth 

inter-vehicle constraints is observed: 

)()( ijij dqq Φ=−Φ  (3.16)
 By definition, the attractive-repulsive function in Equation (3.14) is effective nz R∈∀ . This 

corresponds to an infinite interaction range r  for each vehicle Vvi ∈ . A simple approach to 

creating a pair-wise potential with finite cut-off, is to multiply the pair-wise potential with a 

bump function using a process known as soft-cutting [284]. Using the mollified adjacency 

matrix in Equation (3.7) as a finite sensory and communication model, the attractive-

repulsive potential in Equation (3.14) is soft-cut to produce: 

2))((1

)(
)/()(

ij

ij
ij

dz

dz
rzz

Φ−−

Φ−
⋅= ρφρ  (3.17)

where . Equation (3.17) provides a model for the finite attractive-repulsive 

interactions of neighbouring vehicles. Integration of the attractive-repulsive potential 

recovers the potential energy 

)( ij qqz −Φ=

)(zψ  of the collective system:  

dssz
z

d
∫= )()( ρφψ  (3.18)

Using the energy potential described above, the conditions for flock convergence using 

energy dissipation techniques are presented in the following section. The results presented in 

the next section follow the results outlined in [294] and [316] and serve to provide a 

background to the main contribution of this Chapter – the development of a unified flock 

model at the supervisory level. 
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Figure 3-8. (a) The structural potential energy of the flock lattice, and its (b) gradient. 

3.2.4. FLOCKING AND THE DISSIPATION OF THE STRUCTURAL ENERGY 

Let  denote the body fixed frame of the flock centred at O}{M ′ . Denote the relative position, 

velocity, and control of vehicle  in frame as: iv }{M

qqq ii −=~ ,    ppp ii −=~ ,    uuu ii −=~ ,    Ni∈∀  (3.19)
where the notation )(⋅  is used to denote the average consensus of the position, velocity and 

control. Note, the average consensus of the position q  corresponds to the centroid of the 

flock. 

O′

Let  denote the vector of ones and NT R∈= )1,,1( K1 ⊗  the Kronecker product of two 

matrices. Then, the concatenated form of the relative position, velocity and control of the 

collective flock can be written as: 

qqq ⊗−= 1~  
ppp ⊗−= 1~  
uuu ⊗−= 1~  

(3.20)

From Equation (3.2), the relative dynamics of the flock is given by: 

⎩
⎨
⎧

=
=

up
pq
~~
,~~

&

&
 (3.21)

Denote M  as the mass matrix of the flock of vehicles given by: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

Nm

m
M

00
00
001

O  (3.22)

Let )(qV  denote the potential energy of the flock with pair-wise potential ( ))( ij qq −Φρφ : 

( )∑∑
≠

−Φ==
i ij

ij qqqq )(
2
1)(:)( ψϕV  (3.23)

and )~( pK  the relative kinetic energy of the flock: 
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N

i
ipp

1

2~
2
1)~(K  (3.24)

The Hamiltonian for the system of vehicles in the flock is then given by the sum of the 

relative kinetic energy and the potential energy of the graph: 

)()~()~,( qppq VKH +=  (3.25)
It was shown in [294] and [316] that reduction of )~,( pqH  to zero produces a flock lattice 

satisfying the constraints in Equation (3.10). Indeed, the derivation of Equation (3.10) in 

Section 3.2.3 is based on this presumption. By controlling )~,( pqH  it is possible to control 

the convergence of the vehicles to a flock lattice construction. This provides a meaningful 

flock abstraction to control the group at the supervisory level.  In the following section, the 

theorems of [294] and [316] are summarised. These will be integral to understanding the 

transient behaviour of the flock and rationalise a group abstraction in later chapters.  

Theorem 1. (zero structural energy [283]) 

1. 0)( =qV  if and only if the graph satisfies the structural constraints in Equation 

(3.16); 

)(qG

2. For 0)~( =pK  0tt ≥∀ , the distance between any two vehicles remains constant for all 

 and the graph topology  remains invariant for all  Furthermore, no 

two vehicles collides; 

0tt ≥ )(qG 0tt ≥

3. The velocity of all vehicles in the flock are equal if 0)~( =pK , 0tt ≥∀ . 

Proof. 

The Theorem and Proof are similar to Proposition 2 in [283]. 

1. The zero potential energy follows directly from Equation (3.16); i.e.: 

( ) 0)(
2
1)(0))(( =−Φ=⇔=−Φ ∑∑

≠i ij
ijij qqqqq ψφρ V ,    ij N∈∀ ,    Ni∈∀  (3.26)

Therefore, the configuration  satisfying Equation (3.16) is a stable equilibrium of 

the energy potential. 

q

2. From Equation (3.24), 0~0)~( =⇔= ippK , Ni∈∀ . This implies that the inter-

vehicle distance ij qq −  between any two vehicles  and  is constant. The proof 

follows from the dynamics of the inter-vehicle distances; i.e.: 

iv jv

)()~~()()(
2

ij
T

ijij
T

ijij qqppqqppqq
dt
d

−−=−−=−  (3.27)
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For 0~ =ip  and 0~ =jp , Nji ∈∀ , , , hence concluding the 

proof of Part 2. 

0)()~~( =−− ij
T

ij qqpp

3. The proof follows from Part 2 and the fact that  remains invariant for all 

. If there exists 

))(( tqG

0tt ≥ 0~ ≠ip , then 0)~( ≠pK  and constant≠− ij qq  for any ij N∈ . 

Therefore, ij pp ~~ = , . Furthermore, by the connectivity induced by the invariant 

graph  in Theorem 1 in Section 2.2.2, the information state of neighbouring 

vehicles reaches the average consensus for all vehicles; i.e. 

ij ≠∀

))(( tqG

ppp ji
~~~ == , Nji ∈∀ ,  

[283]. 

 The following provides a new definition of flocking for a group of vehicles using the 

Hamiltonian of the system. 

Definition 5. (flocking) 

Given a protocol , a dynamic graph is asymptotically stable if and 

only if both the following conditions hold [283]: 

)~,( pqku = ),~,),(( upqqG

1. There exists a constant  such that 0>C Ctptq ≤))(~),((H  for all ; 0≥t

2. 0))(~),((lim =∞→ tptqt H , i.e. for all 0>ε , there exists 0)( >= εTT  such that: 

ε≤))(~),(( tptqH  (3.28)
          for all  [283]. Tt >

Using the Hamiltonian for the flock of vehicles, the following centralised cost objective is 

defined: 

∑∑∑
≠=

−Φ+=
i ij

ij

N

i
ipq

qqppqJ ))((
2
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2
1)~,(min

1

2
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(3.29)

Solution to Equation (3.29) defines an implicit control law given by: 

)~,(: iii pqku =∗  (3.30)
and can be obtained from the gradient of the Hamiltonian. Denote )( iq q

i
V∇  the gradient of 

the potential energy of the system, with 
f

iij
j

ijiq uqqq
i

i
−=⋅−Φ=∇ ∑

∈

:))(()( n
N

V ρφ  (3.31)

and  is the unit vector along the edge that connects vehicle  to vehicle  and given by: ijn iv jv
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−Φ
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=n  (3.32)

Similarly, define the gradient of the kinetic energy of the flock as: 
p
i

j
ijij

T uppqapqLpp
i

−=−==∇ ∑
∈

:)~~)((~)(ˆ~)~(
N

K  (3.33)

with -dimensional graph Laplacian n L̂  satisfying the SOS properties in Equation (2.11). A 

simple distributed PD controller can be defined for vehicle  with dynamics given in 

Equation (3.1) using Equation (3.31) and Equation (3.33): 

iv

p
i

f
ii uwuwu ⋅+⋅= 21  (3.34)

where ,  are relative weighting terms introduced to adjust the influence of each vehicle 

objective. Solving for stationary points in the control law given in Equation (3.34) can yield 

the optimal control law of Equation (3.30) and represents the solution space of the flocking 

vehicles. In Chapter 5, an optimisation routine based on Model Predictive Control (MPC) is 

derived for decentralised implementation into a flock of vehicles. 

1w 2w

Remark. 

The first term in Equation (3.34) represents the flock deviation metric in Equation (3.12) that 

yields the flock lattice. This corresponds to the cohesion and separation rules of Reynolds’ 

rules. The second term of Equation (3.34) represents the velocity matching rule of Reynolds’ 

rules. Combined, the control law in Equation (3.34) provides a unified flocking protocol for 

multi-vehicle systems. In the proceeding section, the transient behaviour of Equation (3.34) is 

investigated for stability. The analysis follows in similar spirit to the works of [284] using 

LaSalle’s Invariance Principle (see Appendix A for a review of LaSalle’s Invariance 

Principle). 

3.3. RIGID FLOCK CONSTRUCTIONS 

The structure  induced by the spatial constraints of Reynolds’ flocking rules 

characterises a rigid construction. Rigidity of the flock structure provides an important 

abstraction for group motion planning and control. Consider a group of vehicles with 

dynamics given in Equation (3.1). Denote the average position and velocity of the flock 

lattice as: 

)),(( qqG

)(Ave qq =  (3.35)
and 

)(Ave pp =  (3.36)
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respectively, with average consensus protocol given by ∑ =
=

N

i iN xx
1

1:)(Ave . Let )(Ave uu =  

denote the average control state of the flock and define a ‘virtual body frame’  fixed to 

centroid O  with position and velocity given by 

}{M

′ q  and p  respectively. Then the translational 

dynamics of the collective flock is given by: 

⎩
⎨
⎧

=
=

up
pq

&

&
  (3.37)

where nupq R∈,,  ( 2=n  for the planar case, and 3=n  for the three dimensional case). Let: 

)(],,[~ qqRzyxq i
TT

iiii −== ,    Ni ,,1K=  (3.38)
denote the relative position of vehicle  in frame , and iv }{M )(),( nSEqR ∈  the group 

symmetry with rotation group . Then, from the structural constraints of the flock 

lattice in Equation (3.10) and Equation (3.38), the following property of the flock lattice is 

observed: 

)(nSER∈

ijijijij qqqqRqqRqqRqq −=−=−−−=− )()()(~~  (3.39)
This proves that the structural constraints of the flock lattice are invariant under rotation and 

translation of the coordinates. 

 Finally, the following constraint is introduced to complete this definition on flock rigidity. 

Definition 6. (infinitesimal motion [124]) 

An infinitesimal motion of a structure is given by the following inner-product: 

0~~,~~ =−− ijij qqpp ,    Eeij ∈∀  (3.40)
 The constraint in Equation (3.40) observes the length-preserving nature of rigid body 

systems. The following definition extends the concept of a rigid body system to flocking 

systems. 

Definition 7. (rigid flock) 

A flock is rigid if it preserves the condition of infinitesimal motion Eeij ∈∀ . 

According to Definition 6 and Definition 7, a flock that has converged to a flock lattice is a 

rigid flock and the motions of the flock are length-preserving; i.e., the flock lattice preserves 

the constraints in Equation (3.40). Following the definition of 6 and 7, the behaviour of a 

group of vehicles applying Protocol (3.34) is analysed in Theorem 2. 
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Theorem 2. (stable flock convergence)  

Consider a group of vehicles applying Protocol (3.34). Let })~,(:)~,{( cpxpxc ≤=Ω H  be a 

level-set of the Hamiltonian )~,( pxH  for the configuration of vehicles applying Protocol 

(3.34) such that for any solution starting in cΩ  forms a cohesive flock . Then, the 

configuration of vehicles converges to a flock lattice bounded by 

0≥t

))0(~),0((2 pqR H= . 

Proof. 

 Consider the Hamiltonian )~,( pqH  of the flock of vehicles in Equation (3.25) applying 

protocol (3.34). The time derivative of the Hamiltonian  is given by: )~,( pqH&

pqLppq T ~)(ˆ~)~,( −=H&  (3.41)
This implies that the energy of the system is monotonically decreasing for all . Since the 

collective potential and velocity mismatch of the collective group are initially finite, it follows 

that the Hamiltonian is bounded by: 

0≥t

∞<≤ ))0(~),0(())(),(( pqtptq HH  (3.42)
The potential energy )(qV  and kinetic energy  are also bounded according to )~( pK

))0(~),0(()( pqq HV ≤  (3.43)
and 

))0(~),0(()~( pqp HK ≤  (3.44)
respectively. Let })~,(:)~,{( cpqpqc ≤=Ω H  be a level set of the Hamiltonian )~,( pqH , then 

from LaSalle’s Invariance Principle (Equation A.1), the velocity mismatch is upper bounded 

by c  [284] since: 

ctptqp
i

i ≤≤∑ ))(~),((~
2
1 2 H ,    0≥∀t  (3.45)

Suppose the flock is cohesive for all  and bounded by a closed ball with radius  

such that 

0≥t 0>R

Rtx ≤)( , 0≥∀t . By the boundedness of the velocity mismatch in Equation (3.45) 

and the boundedness of the relative position of vehicles in the flock, the following triangle 

inequality is observed [284]: 

ζ:2)(~)(:)(~),( 2222 =+≤+= cRtptqtptq  (3.46)
where 0>ζ  is a constant. From Equation (3.25), Equation (3.46) becomes: 

ζ:2)~,(2:)(~),( 22 =+≤= cRpqtptq H  (3.47)
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Since the flock is upper bounded by ))0(~),0(( pqH , then the position of all vehicles remains 

inside the -sphere with radiusn ))0(~),0((2 pqR H= centred at q ; i.e.: 

}:{ Rqqq i
n

i
n ≤−∈= RS  (3.48)

Equation (3.48), provides a physically meaningful shape abstraction for a group of vehicles 

with a configuration described by the flock lattice.  

 From LaSalle’s Invariance Principle, all solutions starting in cΩ  converge to the largest 

invariant set in }0)(:{ =Ω∈= xqS c . However, the connectedness of the flock  implies 

information flow in the local frame . Based on Equation (3.41), and Section 2.2, this 

exchange of information state results in velocity consensus in the cohesive flock. From 

Theorem 1, the spatial graph  asymptotically converges to the flock lattice in Section 

3.2.2 bounded by the ball centred at 

0≥t

}{M

)(qG

q  with radius ))0(~),0((2 pqR H= . Therefore, the 

flock protocol in Equation (3.34) converges to a configuration  that is an extrema of q )(qV  

such that 0)( =∇ qV  which yields the flock lattice satisfying Reynolds’ rules [284]. 

Remark. 

From Theorem 2, a group of vehicles applying Protocol (3.34)will converge to the flock 

configuration described in Definition 6 and Definition 7. Moreover, the resulting space 

occupied by the flock configuration is bounded by Equation (3.48). Equation (3.48) provides 

a suitable shape abstraction that describes the group’s state and is exploited in Chapter 5 to 

formulate a group objective for the cooperative control problem. 

 This concludes the analysis of the local-vehicle interactions using simple flock protocols. In 

the proceeding chapter, the shape abstractions induced by the flock rigidity constraints are 

explored to derive controllable group abstractions and plan the motions of the flock. This 

chapter concludes with a brief demonstration of the flocking protocols. 

3.4. NUMERICAL EXAMPLE: FLOCKING FOR N-VEHICLES 

In this section, the flocking protocol in Equation (3.34) is demonstrated for the -vehicle 

problem on the plane. In the following simulations, each vehicle is assumed to be fully 

actuated with dynamics given by: 

N
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Figure 3-9. Flocking for N = 10 vehicles. 

⎩
⎨
⎧

=
=

ii

ii

up
pq

&

&
 (3.49)

and configuration . It is assumed that each vehicle interacts with 

neighbouring vehicles using a wireless communication device in the closed ball defined by 

Equation (3.3). For the following simulations, the flock parameters in Table 3-1 are 

arbitrarily selected.  

3),,( R=∈= i
T

iiii Qyxq θ

Table 3-1. Simulation parameters for flocking in 2D. 

ijd  10 
rrr ji ==  12 

δ  r5.0  
The position and velocity of each vehicle is initialised in the rectangles 

, and  ]20,20[]20,20[)0( −×−∈iq ]1,1[]1,1[)0( −×−∈ip , Ni∈∀  using a uniform random 

distribution. Consecutive snapshots of the flock evolution are shown in Figure 3-9; the 

corresponding interaction topologies are shown by the links in Figure 3-9. Figure 3-10 (a) 

and Figure 3-10 (b) show the corresponding potential and kinetic energy dissipation for the 

group of vehicles. From Figure 3-10 (a), the flock lattice induced by the flock protocol is a 

low-energy state for the optimisation problem given in Equation (3.29). Formulation of a 

centralised optimisation problem using the flock protocol is treated separately in Chapter 5. 

 67 



 

0 20 40 60 80 100
0

10

20

30

40

50

60

Time [sec]

H
(p
,q)

 
0 20 40 60 80 100

-20

0

20

40

60

80

100

120

Time [sec]

<p
j-p
i,q
j-q
i>

 
(a) (b) 

Figure 3-10. (a) Hamiltonian of the system, and (b) stabilisation of the rigidity constraint. 

Remark. 

In the previous simulation, the vehicles were randomly initialised in a rectangle that 

preserved strong connectivity of the initial interaction graph. Protocol (3.34) ensured 

vehicles converged towards a flock lattice and maintained a strongly connected interaction 

graph for all . In the following section, Protocol (3.34) is demonstrated on a group of 

vehicles with a disconnected initial graph topology. It will be shown how Protocol (3.34) fails 

to demonstrate a cohesive flock lattice i) for a group of initially disconnected vehicles, and ii) 

for a group of vehicles with large state variation. Through simulation, the influence of the 

interaction graph and the variation of state on the group’s ability to converge and maintain a 

cohesive flock lattice are demonstrated. 

0>t

3.5. NUMERICAL EXAMPLE: DISSOCIATION OF THE FLOCK LATTICE 

The ability of a group of vehicles to converge to a cohesive flock lattice is dependent on the 

initial distribution of the vehicles. The analysis of the flock protocol so far has concentrated 

on the case when the initial interaction graph is strongly connected for all . Consider the 

case when the initial swarm is sufficiently dispersed and the underlying graph topology is 

disconnected. Following Example 3.4, the initial position and velocity of the  vehicle 

problem is randomly selected from the rectangles 

0>t

50=N

]70,70[]70,70[)0( −×−∈iq , and  

, ]1,1[]1,1[)0( −×−∈ip Ni∈∀  using a uniform random distribution. Vehicle dynamics and 

simulation parameters are given in Equation (3.49) and Table 3-1 respectively. Figure 3-11 

(a) shows the initial distribution of vehicles in the plane with the links highlighting the 

corresponding interaction graph. From Figure 3-11 (a), 14 distinct components in the initial 

interaction graph are observed. Snapshots of the flock evolution are shown in Figure 3-11. 
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The initial distribution fails to converge to a cohesive flock lattice. Instead, the group 

dissociates to form a disconnected graph atypical of a flock lattice. 

In the following example, the effect of velocity distribution on the convergence of Protocol 

(3.34) is demonstrated. The vehicles are randomly distributed in the rectangle 

 with velocities sampled in the range ]20,20[]20,20[)0( −×−∈iq ]10,10[]10,10[)0( −×−∈ip . 

In this case, the vehicles preserve strong connectivity in the initial interaction graph, whilst 

observing a large variance in the initial velocity distribution. Figure 3-12 shows consecutive 

snapshots of the flock’s evolution. The corresponding interaction graphs are shown by the 

links in Figure 3-12. From Figure 3-12, the vehicles fail to converge to the desired flock 

lattice and the vehicles have dissociated.  

The failure to converge towards a flock lattice is attributed to the variation of the initial 

velocities of the vehicles. For a strongly-connected interaction graph with Protocol (3.34), 

large-scale velocities instigate the propagation of string instabilities in the interconnected 

system. These string instabilities have the effect of disconnecting the interaction graph into 

smaller components. If the velocities are sufficiently large, then the flock lattice becomes 

dissociated and the group cannot sustain a cohesive flock. In fact, the ability of Protocol 

(3.34) to converge to and sustain a cohesive flock lattice is observed only for a limited set of 

initial conditions. These results are in concert with the findings of Olfati-Saber in [284]. In 

the following section, global goals are introduced to produce stable and purposeful flocking. 
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Figure 3-11. Dissociation of a flock lattice due to sparse connectivity. 
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Figure 3-12. Dissociation of the flock lattice due to string instabilities. 
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3.6. INTRODUCTION OF THE NAVIGATION FUNCTION 

To attenuate possible fragmentation and promote purposeful application of the flock, a 

navigation function is introduced to Protocol (3.34) that facilitates global convergence to a 

desired equilibrium: 
g
i

p
i

f
ii uwuwuwu ⋅+⋅+⋅= 321  (3.50)

where , and ),,,(: ddii
g
i pqpqfu = Qqd ∈ , QTp

dqd ∈  is the desired equilibrium states of the 

centre of the flock. The pair  can be explicitly defined by a supervisory controller to 

provide a reference trajectory for the flock, or defined with respect to a group objective 

function. When the equilibrium states are defined by a supervisory agent, a simple 

navigational feedback controller can be developed for asymptotic convergence to the 

reference trajectory: 

),( dd pq

)~()~( 21 idid
g
i ppkqqku −−−−=  (3.51)

where . In the following example, the effect of the navigation function is 

demonstrated for a group of vehicles. 

0, 21 >kk

3.7. NUMERICAL EXAMPLE: NAVIGATION FEEDBACK 

 Consider the case when the group’s objective is to stabilise to a flock lattice and 

cooperatively track a reference trajectory. The equilibrium pair  is given by the 

dynamics of the following virtual agent: 

),( dd pq

⎩
⎨
⎧

−−=
=

)( drd

dd

qqkp
pq

&

&
 (3.52)

where  is the gain matrix for the feedback controller in Equation (3.52) and  is the 

desired reference trajectory given by: 

k rq

]100,60[
]60,40[

]40,0[

),020101000(
),200)10400(400(

),010(

∈
∈
∈

⎪
⎩

⎪
⎨

⎧

−−
−−

t
t
t

t
t

t
 (3.53)

For the following example, the initial position and velocity of the 15=N  vehicle problem 

is randomly selected from the rectangles ]70,70[]70,70[)0( −×−∈iq , and  

,  using a uniform random distribution and the weighting 

parameters are chosen to be , 

]1,1[]1,1[)0( −×−∈ip Ni∈∀

11 =c 12 =c , and 5.03 =c . Vehicle dynamics and simulation  
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Figure 3-13. Flocking with navigational feedback for N = 15 vehicles. 

parameters are given in Equation (3.49) and Table 3-1 respectively. These initial conditions 

are selected despite the flock dissociation witnessed in Example 3.5. 

Applying Protocol (3.50), the motion of the flock is shown in Figure 3-13. Simulation 

verifies the convergence of the group to the flock lattice using the navigation function; 

despite the unfavourable initial conditions. This concludes the development of a flock 

protocol for group cohesion and cooperative behaviour. In the next chapter, the group’s 

cooperative behaviour is considered at the supervisory level. It is here that the control of the 

group as a whole is considered using the protocols and abstractions introduced in this chapter. 

3.8. SUMMARY 

The flocking protocols for a group of vehicles were modelled using an artificial potential 

field approach. It was shown that the artificial potential field approached produced a 

decentralised control law that could be implemented at the local vehicles. When aggregated, 

the collective behaviour demonstrated by the vehicles applying the artificial potential field 

based control law demonstrated flock behaviour. An energy functional was used to describe 

the collective flock and provide a group abstraction identifiable by a supervisory agent. It was 
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shown that the minimisation of this energy functional (from a centralised perspective) would 

also result in the desired flock behaviour. Furthermore, it was shown that the flock would 

converge to a lattice construction bounded by the -sphere of radius n ))0(~),0((2 pqR H= . 

This provides a useful shape abstraction for a supervisory agent to control the motion and the 

shape of the flock independently. In the proceeding chapter, the motion of the vehicles 

adhering to a flock lattice is examined before a suitable cooperative control scheme is 

developed. The proceeding chapter serves to introduce the concept of group motion planning 

for the group of vehicles with configuration described in this chapter. 
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Chapter 4. Group Motion Planning and Shape Control 

Moving large groups of vehicles from an initial configuration to a final configuration with 

minimal supervision and control is fundamental to developing autonomous and cooperative 

multi-vehicle systems. The large-scale nature of flocks and swarms makes it difficult to 

develop control strategies at both the local vehicle level, and the group level. Traditional 

approaches based on centralised architectures constrain the number of vehicles that can be 

controlled and monitored by a supervisory agent. For example, in the common approach to 

path-planning for a formation of vehicles, the supervisory agent must calculate and assign 

reference trajectories to each vehicle in the group. The tracking problem is then handled by 

the individual vehicles. At each sampling period, the supervisory agent measures (via sensors 

or communication), the states of each vehicle to minimise the divergence of the group from 

the desired trajectory. Many of the path-planning problems represented in this way, are 

amenable to optimisation problems involving the minimisation (or maximisation) of a 

performance function. However, the dimensionality of large-scale multi-vehicle groups, such 

as flocks and swarms, prevent the resolution of the path-planning problem at the supervisory 

level using conventional optimal control techniques. Many optimal control techniques cannot 

handle systems of very high dimensionality; and so these approaches are generally limited to 

small-scale groups. Approaches based on distributed artificial intelligence have shown some 

promise in reducing the control efforts of a supervisory controller. These approaches work on 

the premise of behaviour-based control; where the individual vehicle controllers are designed 

using vehicle-level behaviours rather than group-level behaviours. The group-level 

behaviours emerge as a consequence of the local interactions of the vehicles. This makes it 

difficult to develop analytical relationships between the vehicle-level behaviours to the 

group-level behaviours that are amenable to scaling. The lack of a formal understanding 

between these two levels of behaviour, prevent the practical application of these strategies. In 

addition, decentralised path-planning strategies make it difficult to provide a meaningful level 

of control to a supervisory agent.  
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 Based on the practical limitations of a fully autonomous distributed path-planning strategy, 

this chapter will focus on the development of a path-planning strategy for a centralised 

architecture to control a large group of vehicles. This chapter deviates from the traditional 

research by addressing the dimensionality of the problem. By reducing the motion generation 

and control problem to a lower dimensional manifold, the information that is communicated 

and processed by the supervisory agent is amenable to optimisation. Furthermore, by using 

tools from differential geometry, optimal control problems for group navigation can be 

formulated that are certified open-loop optimal for a given configuration. This eliminates the 

need for continual communication between the vehicles and the supervisory agent during 

operation. The work in this chapter is inspired by the abstractions of large-scale flocks and 

swarms, such as plagues of locusts and schools of fish. The developments of this chapter rely 

on the reduction of the flock model introduced in the previous chapter to a subset of essential 

features characteristic of the overall group that preserves the properties of scalability. This 

chapter effectively extends the work in the previous chapter, to develop a low-dimensional 

abstraction of the collective flock at the supervisory level using the high-dimensional 

interactions of the vehicles. 

This chapter is organised as follows: Section 4.1 begins by introducing the notion of 

manifolds and tensor fields to lay the groundwork for further analysis. Section 4.2 continues 

by providing a background on matrix Lie groups that will be necessary to understanding the 

scalability and invariance of the vehicle control task. A background on Riemannian metrics 

and affine connections are then presented in Section 4.3 and Section 4.4 respectively. These 

will be necessary to develop the notion of a metric on a manifold for optimal control of a 

group of vehicles in Section 4.5 and Section 4.6. Optimality conditions to these metrics are 

then provided in Section 4.7. Using the matrix lie groups presented in Section 4.2, and the 

model introduced in Chapter 3 for the inter-vehicle relationships of a flock, Section 4.8 

presents the main contribution of this chapter to building a rigid body model of a flock. The 

rigid body model is then extended in Section 4.10 to a semi-rigid body model more typical of 

a dynamic flock. 

4.1. INTRODUCTION TO MANIFOLDS AND TENSOR FIELDS 

The set of all configurations of a system is called the configuration space and has the 

structure of a differentiable manifold [317]. Denote Q  an -dimensional smooth manifold n
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with a set of smooth real valued functions . The tangent space  to the manifold Q  

at the point  is the set of all derivations on  with elements given by the set of all 

linear functions on . If  denotes the set of all local coordinates on Q , then 

the set of associated derivations 

)(QC∞ QTq

q )(QC∞

QTq },,,{ 1 KK iqq

}{ iq∂
∂  forms a basis for  given by: QTq

2211 q
X

q
XX q ∂

∂
++

∂
∂

= K  (4.1)

The vector field X  on Q  is a smooth map  that associates a tangent vector 

 to each point . Similarly the set  forms the dual basis for a one-form 

field on 

TQQX →:

QTX qq ∈ Qq∈ }{ idq

α on  that associates a co-tangent vector Q qα  to each point . Let Qq∈ ⋅⋅,  denote 

the natural pairing between tangent and cotangent spaces, then iq
idq

∂
∂,  describes the action 

of a cotangent vector  on a tangent vector QTqq
∗∈α QTX qq ∈  and: 

ijq
i

idq δ=
∂
∂, ,  nji ,,1, K=  (4.2)

If  is a manifold with dimension n , then the tangent bundle TQ  and co-tangent bundle 

 of the manifold is given by a manifold of dimension  with the union described over 

all  of the tangent space and cotangent space respectively, i.e.: 

Q

QT ∗ n2

Qq∈

},),({ QTvQqvqTQ q∈∈=  (4.3)
and 

},),({ QTvQqvqQT q∈∈=∗  (4.4)
respectively. A manifold that will be useful in the analysis and control of multi-vehicle 

systems is the Riemannian manifold. The Riemannian manifold is constructed by assigning a 

metric to each tangent space  that varies smoothly as  varies over Q  [317]. Before 

proceeding with the formal treatment on Riemannian manifolds, a brief introduction into 

tensors over vector spaces is presented. 

QTq q

4.1.1. TENSOR FIELDS 

Tensors define geometrical objects with properties independent of coordinates and reference 

frames. They can be used to define physical laws with physical meanings and can be 

combined to generate higher dimensional tensors [317]. Examples of tensors are scalars, 

vectors and co-vectors. The components of a tensor are coordinate-dependent and change 

according to a change of basis. Tensors that transform like vectors are called contravariant 
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tensors, and those that transform like a co-vector are called covariant tensors. A tensor field 

is a smooth assignment of a tensor over each point  in a manifold Q  such that at each point 

 the vectors and co-vectors belong to the tangent space and its dual space respectively. A 

(covariant) metric tensor  is a symmetric bilinear positive form over a vector space that is 

used to measure distance in a space. At a given point  in a manifold , the metric tensor 

takes two vectors and returns a real number in a bilinear form. In standard tensor notation, a 

vector is denoted by  and a co-vector by . Metric tensors are denoted by  and preserve 

Einstein’s summation convention [317].  The smooth assignment of a metric tensor  to each 

point  yields a metric tensor field denoted in local coordinates by  [317]. 

Physically, a manifold assigned a metric field recovers the geometric properties of the 

manifold, such as distance, angle, parallel lines, and straight lines along a curve [318]. 

q

q

g

q Q

iv iu ijg

g

q ji
ij dqdqq)(g

4.1.2. DISTRIBUTIONS AND CO-DISTRIBUTIONS 

A distribution  assigns a subspace of the tangent space TQ  to each point on . The 

rank of  at point  is the dimension of the subspace 

∆ Qq∈

∆ Qq∈ Qq ⊆∆ . Given a (local) family of 

vector fields , a distribution is given by the linear subspace of the tangent 

space TQ  [319]: 

},,{ 1 kXXX K=

},,{span 1 kq XX K=∆  (4.5)
Equation (4.5) provides an equivalent characterisation of the constraints on the configuration 

manifold and captures the possible directions of motion in a drift free control system [320]. 

This class of control systems is general enough to include under-actuated, holonomic or 

nonholonomic systems.  

Similar to the notion of a distribution on a tangent space, is the co-distribution. The co-

distribution is a map that assigns to each Qq∈  a linear subspace of . Given a 

distribution , there exists a unique annihilating co-distribution 

QTq
∗

∆ ⊥∆  given by the following: 

{ }0, =∈=∆ ∗⊥ XQTq αα ,    ∆∈∀X  (4.6)
Provided  is non-singular in some open set , ∆ QU ⊂ ⊥∆  is also non-singular. 

 A non-singular k -dimensional distribution ∆  is integrable if there exists k  functions 

kφφ ,,1 K  that map U  to Q  such that . Integrability of the co-

distribution is equivalent to the integrability of its annihilator. 

},,{span 1 kdd φφ K=∆⊥
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4.2. MATRIX LIE GROUPS 

It was shown in Chapter 3 a flock of vehicles preserves the concepts of symmetry. The 

symmetry of an object (such as the flock of vehicles), can be quantified using the concepts of 

a Lie group. A Lie group  is a smooth manifold for which the group operations of 

multiplication and inversion are smooth functions. Let 

G

Ghg ∈,  denote the elements of a 

group  and  the group identity. A mapping  given by  is 

called left translation and the vector field 

G Id=e GGLg →: ghhLg =)(

X  is said to be left invariant if: 

)()( hXLTghX gh= ,  Gh∈∀  (4.7)
where  is the tangent map to  at h . Let ghLT gL GTe∈K,2,1ξ  denote vectors in the tangent 

space at identity . A left invariant vector field is given by [321]: GTe

ξξ ⋅== gLTgX ge ˆ)(  (4.8)
From Equation (4.8), the value of is uniquely determined by its values at )(gX eg = . 

Therefore, the tangent space  is identified by the set of left invariant vector fields GTe g  

describing the finite dimensional Lie algebra of G . The Lie bracket of two left invariant 

vector fields remains left invariant [321]. Define a Lie bracket on  by: g

[ ] [ 2121 ,ˆ, ]ξξξξ ⋅⋅=⋅ ggg ,    GTe∈21,ξξ  (4.9)
 Let ],[ad 2121

ξξξξ =  and  be the dual space of *g g  that describes the set of co-vectors of α  

such that 1,ξα  is a linear function of g∈1ξ . The dual operator of  is a mapping 

described by  and defined by 

1
adξ

*** :ad
1

gg →ξ ],[,,ad 212
*

1
ξξαξαξ = , . *g∈∀α

 For a matrix Lie group, the group operation is given by matrix multiplication and the 

corresponding Lie algebra g  is also a matrix Lie algebra with Lie brackets demonstrating the 

following multiplication properties: 

1. [ ] 0, =ξξ for every g∈ξ ; 

2. [ ] [ ] [ ]3231321 ,,, ξξξξξξξ +=+ g, ∈∀ 321 ,, ξξξ ; 

3. [ ][ ] [ ][ ] [ ][ ] 0,,,,,, 213132321 =++ ξξξξξξξξξ , g∈∀ 321 ,, ξξξ ; and 

4. [ ] 122121, ξξξξξξ −= . 

Condition 2 is typically referred to as Jacobi’s identity, and implies ],[],[ 2121 ξξξξ −=  (anti-

symmetry). 

 Consider the configuration space which represents a dynamic system, and therefore a 

differentiable manifold. The notion of symmetry of a dynamical system is captured 
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mathematically using the actions of a Lie group on a smooth manifold and its induced action 

on the tangent bundle of that manifold [317]. The following definition of a symmetry ensues: 

Definition 1. (symmetry) 

A symmetry of a differential equation is a transformation that preserves the family of 

solutions. 

 The Euler vector field in the plane 2R  with coordinates  and ),( 21 xx
21 21 xx xx ∂
∂

∂
∂ +  and 

rotated about the origin is an example of a symmetry on a vector field. The set of all 

symmetries of a given field form a group [317]. In the case of the Euler field, the generalised 

form of the Lie group is . ),2( RGL

4.2.1. KINEMATIC LIE GROUPS 

Of particular utility and importance to the analysis of multi-vehicle systems, is the Special 

Orthogonal group  given by: )3(SO

{ }1det,)3( 3
33 +==∈= × RIRRRSO TR  (4.10)

corresponding to the set of rotations for a rigid body in three dimensions. A similar form also 

exists for the planar case. Associated to the Special Orthogonal group , is the matrix 

Lie algebra  given by the  skew-symmetric matrices: 

)3(SO

)3(so 33×

{ }ωωω ˆˆˆ)3( 33 −=∈= × TRso  (4.11)
with bracket structure: 

[ ] 122121 ˆˆˆˆˆ,ˆ ωωωωωω −= ,  )3(ˆ,ˆ 21 so∈ωω  (4.12)
where the notation  is used to denote the skew-symmetric form of a vector2. Let ×  denote 

the cross product on 

)ˆ(⋅

3R  and define the operator  as , . 

Then: 

)3(: 3 so→⋅∧ R yxyx ×=∧ ˆ 3, yx R∈∀

[ ] ( )∧×= 2121 ˆ,ˆ ωωωω ,  )3(ˆ,ˆ 21 so∈ωω  (4.13)
and ωω ˆa  is a Lie algebra isomorphism between the Lie algebra  (with matrix 

commutator) and 

)3(so
3R  (with cross product). 

                                                 
2 For a vector , the skew-symmetric form is given by the following matrix : 

 

3
321 ),,( R∈= xxxx 33ˆ ×∈Rx

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−

−
=

0
0

0
ˆ

12

13

23

xx
xx

xx
x
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 For a rigid body system, the group of rigid transformations on 3R  is defined as the set of 

rotations , and translations  belonging to the Special Euclidean group 

with group element described by the pair , i.e.: 

)3(SOR∈ 3R∈d

)3(SE 3)3(),( R×∈= SOdRg

⎭
⎬
⎫

⎩
⎨
⎧

∈+==∈⎥
⎦

⎤
⎢
⎣

⎡
== ×

×

3
3

33

31

,1det,,,
10

)3( RR dRIRRR
dR

ggSE T  (4.14)

Associated with the Special Euclidean group  is the matrix Lie algebra  given by: )3(SE )3(se

( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∈−=∈=⎥
⎦

⎤
⎢
⎣

⎡
== ×

×

333

31

,ˆˆ,ˆ,,ˆ
00

ˆ
)3( RR vv

v T ωωωωξ
ω

ξse  (4.15)

where ξ  is the algebra element given by . Note the vector space  

is isomorphic to 

3)3(),( R×∈= sovωξ )3(se

6R  via the mapping [319]. 6),(ˆ R∈= vωξξ a

4.2.2. MOTION PARAMETERISATION 

Let  denote a body-fixed frame centred at }{M O′  of a rigid body, and  a fixed inertial 

reference frame. Denote a curve on  as 

}{F

)3(SE )3(],[:)( SEaatg →− . An element )(tξ  of the 

Lie algebra  can be associated to the tangent vector  of the curve at any arbitrary 

point  by: 

)3(se )(tg&

t

⎥
⎦

⎤
⎢
⎣

⎡
== −

00
)()()( 1 dRRRtgtgt

TT &&
&ξ  (4.16)

A curve on  described by )3(SE )3())(),(()( SEtdtRtg ∈=  and velocity given by the 

tangent vector physically represents the motion of the rigid body with vector pair 

 describing the angular and linear velocities respectively. In kinematics, 

elements of this form are called twists [319] and the Lie algebra corresponds to the 

space of twists [291]. It can be easily verified that the motion 

6),()( R∈= vt ωξ

)3(se

)(tξ  computed from Equation 

(4.16) is a left invariant representation of the tangent vector  and is independent of the 

choice of frame . Alternatively, the tangent vector  can be identified with a right 

invariant twist (invariant with respect to the choice of the body-fixed frame ) [291]. 

)(tg&

}{F )(tg&

}{M

Any element of the vector space  can be expressed as a )3(se 16×  vector of components 

corresponding to a chosen basis [291]. The standard basis for  is: )3(se
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−

=

0000
0010
0100
0000

1L  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡ −

=

0000
0000
0001
0010

3L  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0000
0000
1000
0000

5L  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

0000
0001
0000
0100

2L  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0000
0000
0000
1000

4L  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0000
1000
0000
0000

6L  

(4.17)

The twists , , and  represent the instantaneous rotations about the , , and  

axes; , , and  represent the instantaneous translations along the , , and  axes, 

respectively [291]. The components of a twist 

1L 2L 3L x y z

4L 5L 6L x y z

)3(se∈ξ  in this basis are given precisely by 

the velocity vector pair },{ vω . If },{ 11 vω  and },{ 22 vω  are vector pairs corresponding to the 

twists 1ξ  and 2ξ , the vector pair corresponding to their Lie bracket ],[ 21 ξξ  is given by [291]: 

},{},{ 212121 vvv ×+××= ωωωωω  (4.18)
The Lie bracket of two elements of a Lie algebra is an element of the Lie algebra and can be 

expressed as a linear combination of the basis vectors; i.e.: 

∑=
k

k
k
ijji LcLL ],[  (4.19)

where  are structure constants of the Lie algebra (with respect to the chosen basis) and 

determine the bracket operation on the Lie algebra [322]. 

k
ijl

4.2.3. ADJOINT ACTION OF SE(3) ON se(3) AND FRAME TRANSFORMATION 

RULES 

In the following section, the actions of a Lie group for rigid body motion are defined. The 

following definitions are well established and can be found in [319]. 

Definition 2. (left action) 

Let  be a smooth manifold and  a Lie group. A left action of G  on Q  is a smooth map 

,  such that: 

Q G

QQg →Φ : Gg ∈

• , for any ; qqe =Φ )( Qq∈
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• For every, Ghg ∈,  and , Qq∈ )())(( qq ghhg Φ=ΦΦ . 

Definition 3. (conjugation map) 

Let  be a Lie group. The map , G GGIg →: Gg ∈  given by  is called the 

conjugate map. 

1)( −= ghghIg

Consequently, the map  defines a left action of G  onto itself. gI

Definition 4. (adjoint action) 

The tangent map of  at identity e , gI geg IT=Ad  is called the adjoint action of G on , its 

Lie algebra. 

g

 For the subgroup  of : )3(SO )3(SE

1Ad −= ggg ξξ  (4.20)
and g∈ξ  is written in matrix form [319]. Therefore, the adjoint action of the group 

 on the Lie algebra )3(
10

SE
dR

g ∈⎥
⎦

⎤
⎢
⎣

⎡
= )3(se∈ξ  is given by: 

)3(
00

ˆ
se∈⎥

⎦

⎤
⎢
⎣

⎡
=

vω
ξ ,    )3(

00
Ad 1 se∈⎥

⎦

⎤
⎢
⎣

⎡ −
== − dRRvRggg

ωω
ξξ  (4.21)

where the notation )(⋅  is used to represent the skew-symmetric operator of multiplied 

matrices. Similarly, the adjoint action  of the twist written in vector form is represented 

by the  matrix : 

gAd

66× ]Ad[ g

)3(se∈⎥
⎦

⎤
⎢
⎣

⎡
=

v
ω

ζ ,    )3(]Ad[Ad se∈= ζζ gg ,     ⎥
⎦

⎤
⎢
⎣

⎡
=

RRd
R

g ˆ
0

]Ad[ (4.22)

The adjoint action of  on  can be used to write transformation rules for 

trajectories and twists when the inertial or the body frame is displaced. 

)3(SE )3(se

For a rigid body moving in free space, let  be a fixed inertial reference frame and  

be a body-fixed frame at O . The motion of the body in the inertial frame is uniquely 

described by the curve 

}{F }{M

′

)3()()( SEtgtg FM ∈= ; where the rotation of  and the position of 

 are defined with respect to . 

}{M

O′ }{F

 Proposition 1 gives the transformation rules for displacements of body-fixed frames. 
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Figure 4-1. Coordinate frames for specifying rigid body motions. 

Proposition 1. (body frame displacements) 

Assume the body frame is displaced by (a constant)  to  (see Figure 4-1 (b)). Let 

 describe the motion of 

MMg ′ }{M

)3()()( SEtgtg MF ∈=′ ′ }{M ′  in  and }{F )(tξ′  be the corresponding 

twist. Then, the following are true: 

• ; and MMgtgtg ′=′ )()(

• )(Ad)( tt
MMg ξξ
′

=′ . 

Proof. 

The first part follows immediately from the composition rule for elements in . For the 

second part, the result follows from the composition rule 

)3(SE

MMFMMF ggg ′′ = , the definition of 

the adjoint map and the definition of twists, i.e.: 

)(Ad)(Ad
)()()(

1

1111

tt
ggggggtgtgt

MMMM
gg

MMFMFMMMMFMF

ξξ
ξ

′−
′

==
==′′=′ ′

−−
′′

−
′

− &&&
 (4.23)

or, if the twists are written in vector form, 

)(][)( tAdt
MMg ζζ
′

=′  (4.24)
where the matrix form of the adjoint action is given by (4.22). 66×

 The following proposition describes the transformation rules for changes in the inertial 

frame. 
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Proposition 2. (inertial frame transformations) 

Suppose inertial frame  is displaced by a constant  to a new  and the body fixed 

frame  is left unchanged. Let 

}{F FFg ′ }{F ′

}{M )3()( SEgtg MF ∈=′ ′  denote the motion of  as seen 

from . The following describes the relation between curves and twists when the inertial 

frame is displaced: 

}{M

}{F ′

• ; )()( tggtg FF ′=′

• )()( tt ξξ =′ . 

Proof. 

For the first part, . For the second part: )()()()( 1 tggtggtgtg FFFMFFMF ′
−

′′ ===′

)()()()( 11111 tggggggggtgtgt FMFMFMFFFFFMMFMF ξξ ====′=′ −
′

−
′

−
′

−
′

− &&&&  (4.25)

Corollary. 

The twist  is invariant to changes in the pose of the inertial frame. The 

adjoint of the transformation of the body-fixed frame relates the twists when the body frame 

is displaced. 

)()()( 1 tgtgt &−=ξ

4.2.4. INVARIANT PROPERTIES OF THE LIE GROUP CONSTRUCTION 

A differentiable vector field is a smooth assignment of a tangent vector to each element of the 

manifold [323]. In the case of , a differentiable vector field )3(SE X is obtained by left 

translation of an element )3(se∈ξ . Let ξ  denote a vector field obtained via left translation 

of the Lie algebra element ξ , then the value of a vector field X  at an arbitrary point 

 is given by: )3(SEg ∈

ξξ ⋅== gggX )()(  (4.26)
and X  is a left invariant vector field [324]. Physically, left-invariance corresponds to 

independence of the choice of inertial reference frame [291] 

 Let 62 ,,, LL K  denote the basis of the Lie algebra )3(se , an  denote 1L d K),(),( 21 gLgL  

)(gL  the basis of the tangent space at any point )3(SE6 g ∈ . Then, a vector field X  can be 

expressed as [323]: 

∑=
6

i
iLXX  (4.27)

=1i
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where iX  is a real-valued function that varies over the manifold 323].  the coefficients 
i

Q  [ If

X  are con t, then stan X  is left invariant. For a rigid body, let )(tg  denote the motion of the 

the centroid O′  witof h respect to a fixed inertial reference fram , and e }{F dt
dgV =  the vector 

field tang t to t . Denote en )(g } the vector pair of functions associated to any arbitrary ,{ vω

vector field X , with components 

[ ]TXXX 321 ,,=ω ,    [ ]TXXXv 654 ,,=  (4.28)
then, the vector pair },{ vω  associated to V antaneous twist for the 

motion [319]. Motions for which the twis {

 corresponds to the inst

vt },ω  is constant are known in kinematics as 

screw motions otions physically correspond to rotation of the rigid body  [319]. Screw m

around the centreline with a constant angular velocity ω  and concurrent translation of the 

h Riemannian 

metric on a Riemannian manifold, the definition of a metric on  for motion planning 

tions, the properties of the Riemannian metric are 

f m

ilinear, symmetric form

body along the line with constant translational velocity v . 

4.3. RIEMANNIAN METRICS ON THE LIE GROUP 

Physically, the Riemannian metric provides the notion of length of a vector (or distance 

between two points on a manifold) [324]. By understanding the properties of t e 

)3(SE

will become intuitive. In the following sec

introduced as a preliminary understanding into the development o etrics on )3(SE . 

Definition 5. (Riemannian metric) 

A smoothly varying, positive definite, b  ⋅⋅,  assigned to the tangent 

A manifold endowed with a Riemannian metric defines a Riemannian manifold. 

space QTq  at each point q  on the manifold Q  is a Riemannian metric. 

Definition 6. (Riemannian manifold) 

 On an n -dimensional manifold, the metric is locally characterised by an nn×  matrix of 
∞C  functions jiij XX ,=g  where iX  and jX  are basis vector fields. The Riemannian 

metric provides the notion of the length of curves on a manifold [291]. In mechanical 

problems, the kinetic energy of a system defines a Riemannian metric that induces a 

Riemannian manifold. Curves that minimise the energy metric between two points are called 

geodesics. Geodesics are a generalisation of straight lines in Euclidean spa e  c nR  to 
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Riemannian manifolds. A formal treatment of geodesics on Riemannian and semi-

Riemannian manifolds is presented in Section 4.4.2. The following proposition formalises the 

relationship between Riemannian metrics and Lie groups and provides a physical 

 

On any Lie group, and thus , an inner product on the Lie algebra  can be 

over the manifold using left (or right) translation [321]. 

Proof. 

er n ct of two arbitrary elements 

interpretation of the Riemannian metric of a Lie group.

Proposition 3. (Riemannian metrics on Lie groups) 

)3(SE )3(se

extended to a Riemannian metric 

Consid  the i ner produ )3(, 21 se∈ξξ  on the Lie group )3(SE  

iven by: g

2121, ζζξξ WT
I
=  (4.29)

where 1ζ  and 2ζ  are the  vectors of components 16× 1ξ  and 2ξ with respect to som  

y tangent vectors at the 

e basis

and W  is a positive definite matrix. Let 1V  and 2V  denote two arbitrar

group element )3(SEg ∈ . The inner product 
g

VV 21,  on the tangent space  is given  )3(SETg

by: 

Ig
VgVgVV 2

1
1

1
21 ,, −−=  (4.30)

A metric obtained in this way describes a left invariant metric [291]. 

tion 4. (left inva f

Physically, a left invari

Let of a rigid body passing through a point  at 

. Denote  and 

Proposi riance o  the Riemannian metric) 

ant metric is independent of the choice of the inertial frame. 

Proof. 

)  and )(2 tg  represent two motions (1 tg  g

0tt = )/)(( 11 dttdgV = )/)(( 22 dttdgV =   the corresponding velocity vector fields 

e tions become

such that )3(, 21 TVV g∈ . Let C  describe a displacement of the inertial reference frame. In 

the new reference frame, th

SE

 mo  )()(~
11 tCgtg =  and )()(~

22 tCgtg = , and the 

velocity vector fields 11
~ CVV =  and 22

~ CVV = . Then from Equation (4.30): 

gICg
VV 111111

21 VVVCgVCgVgVg 21212121 ,~,~~~,~~~,~ ==  (4.31)= −−−−−−
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Hence, the metric ⋅⋅,  is invariant to change in inertial reference frame. A right invariant 

metric is similarly defined.  

A detailed description of invariant metrics on )3(SE is presented in Section 4.5. In the 

curve on a m nifold. 

4.4. THE AFFINE CONNECTION AND ITS KINEMATIC CONNECTION TO 

RIGID BODY MOTION 

In the previous section, the motion of a rigid body was established using the smooth 

curve )3()( SEtg ∈ . The velocity of each point along )3()( SEtg

proceeding section, the Riemannian connection is used to define a measure of length for a 

a

∈  was shown to correspond 

to a value in the vector field V  belonging to the tangent space )3(SETg . In the following 

section, higher-order tangent spaces are analysed to develop kinematic control laws for the 

group of vehicles. Specifically, the acceleration and jerk of the rigid body are investigated. 

n ve involves the subtraction of vectors at different 

points. In the tangent space, these points are not related. In this section, the problem of 

 a curve is addressed using the theory of affine 

n t sp to another. Before proceeding with the definition of affine 

connections, it is first useful to describe the notion of a covariant derivative of a vector

e curve . The 

f

Differe tiation of vector fields along a cur

differentiating a vector field along

connections. Affine connections are used to provide a means of transporting vectors along a 

curve from o e tangen ace 

 field. 

4.4.1. THE AFFINE CONNECTION 

Definition 6. (covariant derivative) 

Let )3(SETX g∈  be an arbitrary vector field defined along th )3()( SEtg ∈

covariant derivative o  X   along  is: )(tg

t
ttX

dt
DX t

tt
t

)()(lim 0
0

0
0

−
=

→
 (4.32)

i.e., for the covariant derivative of 

X

X  to be de ned atfi  a point g , only the value of X  at g  

and the rate of change of X  along  is required. 

Proposition 6. (covariant derivative of a vector field) 

The covariant derivative of a vector field is another vector field. 

)(tg
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Proo  

Taking the c ive of a vector field Y  along its integral curve, yields a covariant 

derivative of 

f.

ovariant derivat

X  with respect t  th  vecto d Y , i.e.: o e r fiel

0
0

t
gY dt

DXX =∇  (4.33)

where dtDX is taken along the integral curve of passing through  [291]. 

Definition 7. (affine connection) 

Y 0g at 0tt =

Let X , 

SEX→  denoted by 

Y  denote smooth vector fields. An affine connection on )3(SE  is a smooth map 

))3(())3((: SEXSEX ×∇ ))3(( YYX X∇∇ a,:  that assigns to each pair 

X , Y  a smooth vector field  YX∇  such that for all smooth functions f , g  on )3(SE  and 

for all vecto X , Y , Z  the following properties are observed: 

Y ; and 

 of  with respect to 

r field 

1. ZgZfZ YXgYfX ∇+∇=∇ + ; 

2. YZY XX ∇+∇=+∇ )(

3. YfXYffY XX )()( +∇ . 

where YX∇  is the covariant derivative

Z

=∇

Y X  and represents the 

differentiation of vectors (and tensors). 

Given the local coordinates  of an arbitrary manifold  and a metric 

denote  and as coordinate representations of the metric  and its inverse  

 Note, the affine connection and covariant derivative are often used interchangeably in the 

literature. 

Definition 8. (Christoffel symbols) 

),,,,( 1 ni qqq KK Q g , 

jkg jkg g 1− . Theg

Christoffel symbols kΓ  on Q  are given by: ij

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

+
∂
∂

m
ij

j
mi

i
mjmkk

qqq
ggg

2
1  

F e

ordinates 

 of an arbitrary manifold  and me , the affine connection can be 

=Γij g (4.34)

ollowing Proposition 6 and Definitions 6-8, the affine connection, or covariant derivativ , 

can be expressed as a linear combination of vector fields. Given the local co

),,,,( 1 ni qqq KK Q tric g
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applied to a pair of coordinate vector fields iq∂
∂  via association with the Christoffel symbols 

k : ijΓ

k
k
ijj qqiq ∂

∂
Γ=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∇
∂
∂  (4.35)

where the summation convention is used to denote the summation of repeated indices. 

 On )3(SE , the Christoffel symbols k
ijΓ  of the connection at a point )3(SEg ∈  are given by: 

k
k LL

i
Γ=∇  (4.36)

where 
ijjL

61 ,, LL K  is the basis in )3(SETg .  

Associated to the affine connection ∇  on an arbitrary manifold Q  is the torsion tensor T  

and curvature tensor  given by Equation (4.37) and Equation (4.38) respectively: R

],[),( YXXYYX YX −∇−∇=T  (4.37)
YX ZZYX YXXY ],[),( ZZ ∇−∇∇−∇∇=R  8)(4.3

 On a Riemannian manifold, there exists a unique affine connection ∇  which is torsion-free 

etric [325]: and compatible with the m

ZYZYX X∇+∇= ,,  (4.3ZYX , 9)
and symmetric, i.e.: 

,[ YXXY ]YX =∇−∇  

 . In Section 4.6.2, the Riemannian 

connections corresponding to left invariant m trics on the  manifold are inves

 notion of length on a manifold is investigated with respect to 

th nnian connection. Together, these concepts wil

N ION  LENGTH 

(4.40)
This connection is known as the Riemannian or Levi-Civita connection and induces a 

compatible Riemannian metric on the manifold Q

tigated. e )3(SE

In the proceeding section, the

e Riemannian metric induced by the Riema l 

be used to construct length-minimal curves for motion planning of a rigid body system. 

4.4.2. GEODESICS A D THEIR RELAT SHIP TO

Given a Riemannian metric ⋅⋅,  on )3(SE , the length )(gL  of a smooth curve 

)3(],[: SEbag →  is given by [325]: 

∫=
b

dtVVgL 2
1

,)(  (4.41)

A curve that minimises the functional )(gL  also minimises the energy fun
a

ctional [325]:  )(gE

∫= a
dtVVgE )(  (4.4

b
, 2)
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If a curve m s a functional, it must also be a critical p int. Critical points of the energy 

functional )(gE  satisfy the following equation [325]: 

inimise o

0=∇
dt
dg

dt
dg  (4.43)

and are known as geodesics.  

For a rigid body with motion )3()( SEtg dttdgtV )()( =, velocity  and Riemannian ∈

connection , the acceleration ∇ )(tA  (and higher derivatives) of the rigid body, is given by 

ve of the velocity  (and acceleration )(tV )(tA  etc); i.e.: the covariant derivati

V
dt
dg

dt
t ⎜

⎝
)(A D

V∇=⎟
⎠
⎞⎛=  (4.44)

 Equation (4.43) an

geodesic is zero.  

The minimum acceleration curves for the terminal conditions  and 

SEvvV →  can be obtained by minimising the square of the  norm of the 

acceleration: 

From d Equation (4.44), the acceleration of a rigid body moving along a 

10
2

)3(],[: SEbag →

)3(],[: L

dtVVL
b

a VVa ∫
Here ∇  is the Riemannian connection and 

∇∇= ,  (4.45)

⋅⋅,  is the Riemannian metric over the manifold. 

 Suppose tq ∈)( onfiguration of the system and QTtq q is the cQ ∈)(&  its velocity, then a 

geodesic in the local coordinates is given by the solution of the following second-order 

ion: 

qq &&  (4.46)
where Γ  are the Christoffel symbols. This vector field is known as the geodesic s  

differential equat
iq&& 0=Γ+ kji

jk

i
jk

geodesic flow and is a local representation of a vector field on QTq  [326]. In Section 4.7, 

solutions to Equation (4.46) are used to define optimal motion control plans for a group of 

vehicles. 

pray or

4.4.3. THE EXPONENTIAL MAP 

Let Q  denote a manifold with a connection ∇ , and let G→ℜ:ξφ  denote the left invariant 

vector field ξX  passing through e  at 0=t , such that e=)0(ξφ  and ))(()( tXtdt
d

ξξξ φφ = . 

Then )(tξφ   unique one-para er subgro p of  whose tangent vector at the identity is the m  Get u

e  is equal to ξ . The function  defined by ξGGTe →:exp )1()exp( φξ =  is called the 
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exponential map of the Lie alg  into . Furtherm  is a local 

diffeomorphism from a neighbourhood of zero in  onto a neighbourhood of  in . This 

gives a local chart for  called the normal coordinates and are instrumental in the 

parameterisation of a Lie group.   For a matrix Lie group, the exponential map  

ebra ore, g G G→g:exp

g e G

Q

G→  isg:exp

given by the ordinary series expansion: 

∑
∞

=

=
0 !

exp
n

ξ  (4.47)

 Given a twist )3(se∈
k

nξ

ξ  with vector pair },{ vω  that induces a screw motion )(tg  about the 

screw axis },{ vω , the exponential map )3()3(: seexp se→  is defined as: 

)()exp( tgt =ξ  

e exponentiation of matrices in Equation (4.47). The exponential map for the 

special orthogonal group  can be computed explicitly, and is given by Rodrigue’s 

ula:

(4.48)
Using Equation (4.16), it can be shown that the exponential map given in Equation (4.48) 

agrees with th

)3(SO

form  

( ) ( )( ) 2

2

3
ˆ

cos1sin
ˆ

)ˆexp(
ω
ωωω

ω
ωω −++= I  (4.49)

where ⋅ is the Euclidean norm of a vector. 

Similarly, the exponential map for the special Euclidean group )3(SE  with Lie algebra 

described by the following 44×  matrix: 

 

ξ ,  (4.50)⎥
⎦

⎤
⎢
⎣

⎡
00

ˆ vω

and 122121 ],[

= 3, R∈vω  

ξξξξξξ −= , an be described by:  c

⎤
⎢
⎡

=
vI

expξ ,  0=ω   and  
⎤

⎢
⎡

I
Av)ˆexp(

exp
ω

ξ ,  ⎥ 0≠ω  = (4.51)⎥
⎦⎣ I0 ⎦⎣ 0

where: 

( )( ) ( )( )ωω
ω
ωω

ω
ω sin

ˆ
cos1

ˆ
3

2

23 −+−+= IA  (4.52)

 Now, consider the motion of a rigid body given by: 

)()( t
dt

tdg ξ  (4.53)

Since )(t

)(tg=

ξ  belongs to the Lie algebra )3(se , t∀ , then it can be expressed as a linear 

combination of the basis vectors in Equation (4.17) [324]. The solution of this differential 

equation can be written as the product of exponentials: 
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∏
=

4

coordinates.  

THE METRIC PROPERTIES OF SE(3) 

t  were 

a curve on a manifold. The length of a curve is one 

example of a metric for optimal trajectory generation. In this section, the metric prope  

Con th

 position of a vehicle in the flock, and let  denote the same 

 the fixed inertial frame . These vect an be related by the lifted action of 

 on 

=
6

1

))(exp()(
i

i LtStg  ( .54)

where )(tS i  are analytic functions dependent on g  and are taken as the set of local 

i

4.5. 

In Section 4.3, the invariant properties of the Riemannian me ric on SE briefly 

described as a measure of length of 

)3(

rties on

)3(SE are investigated to develop other invariant metrics for optimal trajectory generation for 

groups of vehicles. The results in this section can be found in a similar form in [319]. 

sider e motion of a group of vehicles. Let Mq  be a vector in the body-fixed frame 

}{M  corresponding to the Fq

vector in }{F ors c

)3(SE 3R : 

MFMF qRq =  (4.55)
where  is the position and orientation of  the frame  relative to 

frame  [319]. Let  denote the symmetric matrix representation of the left 

)3(),( SEdRg FMFMFM ∈= }{M

}{F  nnW ×∈R

invariant quadratic form ⋅⋅, . By Proposition 4, a metric is invariant under change of 

coordinate frames if: 

RWWR = ,    )3(SOR∈  (4.56)
c is the

. The following theorem presents the conditions 

for which a metric on  is bi-invariant and follows from [319]. 

Lemma 1. (bi-invariance of the quadratic form 〈⋅,⋅〉) 

 A final property for the development of motion plans for a group of vehi les,  

definition of a bi-invariant metric on )3(SE

)3(SE

Let  be a quadratic form (bilinear and symmetric) defined at the identity of  and 

roughout the manifold. Then, 

⋅⋅, )3(SE

extended by left invariance th  is bi-invariant if and only if: ⋅⋅,

IggI 2121 Ad,Ad, ξξξξ = ,    (SEg ) )3(, 21 se∈∀ ξξ  3∈∀ ,    (4.57)
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Proof. 

By Proposition 4, ⋅⋅,  is both left and right invariant for any )3(, 21 se∈ξξ  and a  

)3(SEg ∈ . Fr

ny

om Equation (4.20) and Equation (4.57): 

IgggI
gggggggggg 1

2
1

1
1

2
1

12121 ,,,, 1

−−−− ===
−

ξξξξξξξξ  (4.58)

ariance of the quadratic form Left inv  was given in Proposition 3 and Proposition 4.   To ⋅⋅,

prove bi-invariance of ⋅⋅, , it is sufficient to prove right invariance of the quadratic form. Let 

)(  and 1 hV )(2 hV  be two vectors from  and  an arbitrary element of . For 

er

)3(SETh h  )3(SE

any )3(SEg ∈ , the following is obs ved: 

h

I

I

hVhhVh (),( 11= −−

I

hVhV

gghVhgggghVhg

ghVhgghVhg

g

)(),(

)

)()(

)(,)(

,

21

21

1
2

11
1

1

2
11

1
11

=

=

=

−−−−−

−−−−

 

hence, 

hghghg
ghVhgghVhgghVhV )()(,)()()()(

)(2
1

1
1

21 1= −−
−

g ,11− (4.59)

⋅⋅,  is both left and right invariant (bi-invariant). 

n of invariant metrics) 

Let  denote the symmetric matrix representation of the quadratic form 

Lemma 2. (commutatio

nnW ×∈R ⋅⋅,  on 

 that satisfies Equation (4.56). Then, )3(SE

IW γ=  (4.60)
for some R∈γ . 

Proof. 

alueLet v  be an eigenvector of W  corresponding to an eigenv  λ . T en, fro quation 

(4.56): 

h m E

RvRWvWRv λ==  (4.61)
Therefore,  is an eigenvector of for any  Rv W )3(SOR∈  and wWw λ=  for any unit vector 

3R∈w . By taking w  as the standard Euclidean basis in 3R , it follows that IW γ= . 
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Theorem 1. (bi-invariance of the metric on SE(3)) 

The quadratic form ⋅⋅,  on with matrix rep e is bi-invariant if and only if 

⎢
⎣

=
0I

W
β

 (4.62)

)3(SE Wres ntation 

W  has the form: 

⎤⎡ II βα
⎥
⎦

Proof. 

By Lemma 1, ⋅⋅,  is bi-invariant if and only if for all )3(, 21 se∈ξξ  and )3(SEg ∈  Equation 

(4.57) is valid. Let: 

⎥
⎦

⎤
⎢
⎣

⎡
=

PN
NM

W T  (4.63)

denote the generalised form of W  with  33,, ×∈RPNM , and M , P  are symmetric. 

Expanding the quadratic form ⋅⋅,  in Equation (4.57), and using the matrix representation in 

Equation (4.63): 

NMNM ⎤⎡⎤⎡
]d]Ad[ gT

T
gT PNPN ⎢
⎣

=⎥
⎦

⎢
⎣

,    )3(SEg[A⎥
⎦

∈∀  ( .64)

Using the definition of the adjoint map

4

ping on 6R  in Equation (4.22), the conditions for bi-

invariance becomes: 

T

T

T

which is equ

T −  
(4.67)

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
=⎥

⎦

⎤
⎢
⎣

⎡
RRd

R
PN
NM

R
dRR

PN
M

T

T

ˆ
0

0

ˆ
 (4.65)

ivalent to: 

RdPdRRdNRRNdRM TTTT ˆˆˆˆ −+= (4.66)
PRd

N

MRR
RNRRN TT ˆ−=  

PRRP T=  (4.68)
By Lemma 2, P  in Equation (4.68) ust be of the form: m

IP γ=  
Letting 0=  in Equation (4.66) and Equation (4

(4.69)
d .67), then:  

IN β= ,    IM α=  (4.70)
Using IP γ= , IN β= , and IM α=  in Equation (4.66), it follows that 0)ˆ( 2 =dγ , 3R∈∀d , 

and 0=γ , hence proving the theorem. 

 The following proposition is used to prove the lack of bi-invariant metrics on SE )3(  
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Proposition 5. (lack of bi-invariant metrics on SE(3)) 

There does not exist a bi-invariant (positive-definite) m tric on )3(SE . 

Proof. 

ollowing Theorem 1, the matrix W  in Equation (4.6

e

F 2) has two distinct eigenvalues [323]: 

)4( 22
2
1

1 βααλ ++= ,    )4( 22
2
1

2 βααλ +−=  (4.71)
both of multiplicity 3 and product 21 . If 02βλλ −= =β , then 02 =λ . On the other hand, if 

0≠β , then 02 <λ . Therefore, the matrix cannot be positive definite. 

4.6. CHOICE OF METRICS ON SE(3) 

The definition of minimal-distance curves on the manifold is integral to the problem of 

f ng a 

sarily 

translate to the non-existence of the notion of length on plies t  

tricted to a choice 

)3(SE

motion planning. In Section 4.4.2, the notion of length on a mani old was defined usi

Riemannian metric. The non-existence of a bi-invariant metric on )3(SE  was proven in 

Section 4.5. However, non-existence of a bi-invariant metric on )3(SE  does not neces

)3(SE . Rather, it im hat the

definition of a metric is not intrinsic. The notion of length on SE  is res)3(

of metrics defined at an identity that is extended to the group by translation [319]. In this 

section, several metrics suitable for motion planning between a given set of initial and final 

conditions for a group of vehicles are presented that minimise a given cost function. 

The family of left invariant metrics on )3(se  parameterised by 3 scalars α , β , and γ , can 

γβ
 

be expressed in matrix form as [114]: 

⎥
⎦

⎤
⎢
⎣

⎡
=

II
W

βα
(4.72)

Different values of 
II

α , β , and γ  yield unique left invariant metrics. For example, when 

0== γβ , the metric known as the Killing form is obtained and is used to provide a measure 

of the angular velocities ( ) within the space of twists [114]. The metric known as the 

rm is obtained w en 

ωαωT

Klein fo h 0== γα  and provides a measure of ( . A popular metric, γωT2 )

known as the Park metric [298], is obtained when 0=β  and is u ed t rive a weights o de ed 

quadratic sum of the linear and ular velociti vvTγ+ .   ang es α )()( Tωω
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4.6.1. THE KINETIC ENERGY METRIC 

ajectory planning is the kinetic energy of the system. The 

kinetic energy of the rigid body shares the familiar structure and characterisations of the Park 

d generalised Park metric) is a scalar metric 

independent of the choice of inertial reference frame. Therefore, it is a left invariant metric. 

 denote the body fixed frame 

A metric of particular interest to tr

metric. By construction, the kinetic energy (an

When restricted to the group of rotations )3(SO , the metric is bi-invariant [298].  

 In the following, the kinetic energy metric is derived when the body fixed frame and the 

fixed inertial reference frame are initially aligned. Let }{M

centred at centroid O′  of the rigid body, and let e. 

Moreov

}{F  denote a fixed inertial reference fram

er, let the b  fixed frame  be aligned with the principal axis of the rigid body. 

Then, assumes the diagonal structure of Equation (4.73): 

⎢
⎣

=
mI

W
0

 (4.73)

ody }{M

W

⎥
⎦

⎤⎡H 0

where  is the mass of vehicle iv , Nim ∈∀ , and H  is the diagonal inertia matrix of the body 

out e body frame }{M  given by: 

⎤⎡ 00

ab th

⎢
⎢= yy

xxH
H 00  

, resp

⎥⎦⎢⎣ zzH00
where xxH , yyH , zzH  denote the moments of inertia about the x , y  and z  axes ectively. 

 Let )3(},{ se∈v

⎥
⎥H (4.74)

 re resent he inω p t stantaneous twist of the motion and associated with the 

vector . Then, the norm of the vector   assumes the familiar expression for the kinetic V V

energy: 

vmvHVV TT += ωω,  (4.75)
 Assume that the body fixed frame is displaced from frame  to }{M }{M ′  by: 

g  ⎥
⎦

⎢
⎣

′ 10MM (4.76)

The kinetic energy does not change if the body fixed frame is changed. This implies that the 

matrix gW  defining the energy metric of the new description of the motion is dependent on 

the body fixed frame }{M . The following proposition describes this dependence. 

⎤⎡ dR
=

 96 



 

P sropo ition 6. (frame dependence of the energy metric) 

Assume the rigid body is displaced from frame }{M  to }{M ′  according to Equation (4.76). 

Then the matrix of the kinetic energy metric is given by: 

d by the change of body frame  to  is given by: 

⎥
⎦

⎤
⎢
⎣

⎡ −−
=

mIRdmR
RdmRRdmRHRRW

T

TTT

g ˆ
ˆ)ˆ( 2

 (4.77)

Proof. 

From Proposition 1, the twist induce }{M }{M ′

11 Ad ξξ
MMg ′

=′ ,    22 Ad ξξ
MMg ′

=′ ,    ⎥
⎦

⎢
⎣

=
′ RRd

Ad
MM ˆ][  (4.78

and the metrics at identity are given by: 

⎡ R ⎤
g

0
)

212121 ]Ad[]Ad[Ad,Ad, ζζξξξξ
MMMMMMMM g

T
g

T

IggI
W

′′′′
==′′  (4.79)

The matrix of the metric becomes: 

′′ RRd
R

mI
H

R
dRR

T

TT

g MMMM ˆ
0

0
0

0

ˆ
]Ad[  (4.80)

 MAN

In this section, the Riemannian connections corresponding to the left invariant me  

 Let  denote the Riemannian connection compatible with the left invariant metric 

 in Equation (4.73). Then, for any three vector fields

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
== WW T

gg ]Ad[

and is the same as the form in Equation (4.77). 

4.6.2. THE RIE NIAN CONNECTION ON SE(3) 

trics in

Equation (4.72) and Equation (4.73) are investigated.  

∇

][ ijwW = X , Y , and Z  the follo  wing is

observed [325]: 

}],,[],,[],,[

,,,{, 2
1

ZYXYXZXYZ

YXZYZXZXYYZ X

+++

+−+=∇ L
 (4.81)

with Christoffel symbols given by (with r t to the chosen basis espec ): iL

∑ ++=Γ −

m
sj

s
misi

s
mjsm

s
ijkm

k
ji wcwcwcw )(1

2
1  (4.82)

where k
ijc  are the st  constants defined in Equation (4.19) and 1−

kmw is the element at km  

of 1−W . If ∇ is th

ructure

e Riemannian connection associated to the Riem etric in Equatio

(4.73) with vector fields given by  and , then the covariant derivative is 

given by [324]: 

annian m n 

i
iLXX ˆ= i

iLYY ˆ=
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⎭⎩
yxyxX dtdt 2

where 

⎬⎨ (4.83)
⎫⎧

×+×+=∇ yy v
dvd

Y ωωω
ω

,1  

dtd  is the derivative along the integral curve of X . Following Equation (4.38) and 

the covariant derivative in Equation (4.83), the Riemannian curvature ZYX ),(R  for any 

three vector fields X , Y , and Z  is: 

),( ZYX }0,)({4
1

zyx ωωω ××=  (4.84)
Having defined the necessary tools from differential geometry, the optimal motion generation 

problems for a rigid body can now be developed. 

which a trajectory minimises an integral cost function are 

presented. Example cost functions include the kinetic energy, velocity, acceleration, and jerk 

of the group of vehicles. The results presented follow the works of [324] and the concepts of 

calculus of variations. For brevity, only the main results of [324] are presented without proof. 

n generation using the calculus of variations, and 

R

4.7. NECESSARY CONDITIONS FOR OPTIMAL MOTIONS 

In this section, the conditions for 

For a detailed discussion on optimal motio

the relevant proofs, see Appendix B in [324].  

Let )3(],[: SEbag → denote a curve between the points a  and b . Then an optimal motion 

planning problem is given by the following integral cost function: 

∫ ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛=

b

a
dt

dt
dgh

dt
dghJ ,  (4.85)

In the following, specific examples of cost functions for optimal motion planning for a group 

of vehicles are presented. Furthermore, it is assume t the group of vehicles obeys the 

constraints induced by the flock lattice in Equation (3.40) and behaves like a rigid body 

system. 

4.7.1. MINIMUM-DISTANCE CURVES – GEODESICS 

d tha

Given a Riemannian metric, the length of a curve  defined between the points  and 

 following Equation (4.85) is given by [291]:  

)(tg )(ag

)(bg

dt
t

dg
t

dggLJ
b

a∫==
2
1

,)(  (4.86)

Moreover, a curve that minimises the functional in Equation (4.86) also minimises the energy 

functional  given by [291]: 

dtVVgE
b

a∫= ,)(  (4.87)
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))(( dttdgV = , and the critic oints ar given by geodesics [291]. 

 equipped with the metric in Equation (4.73) is given by [324]: 

where al p e 

 A geodesic )(tg  on (SE )3

))((1 ωωω HH
d

×−= −  
(4.88)t

d

In the case when 
0=d&&  

IH α= , an analytical expression for the geodesic passing through: 

,    

⎦⎣

0t

⎥
⎦

⎤
⎢
⎣

⎡
=

10
)0()0(

)0(
dR

g ⎥
⎦

⎤
⎢
⎣

⎡
=

10
)1()1(

)1(
dR

g  (4.89)

is given by [324]: 

)3(
)()(

)( SE
tdtR

tg ∈⎥
⎤

⎢
⎡

=  (4.90)

where:  
10

ˆexp()0()( RtR ω= )  
)0())0()1(()( dtddtd +−=  

))1()0(log(ˆ0 RR T=ω  
(4.91)

ase when IH α≠In the c , no closed form solution exists and numerical methods must be 

 the definition of the cost function for the minimum distance curves, expressions 

for higher-derivative curves can similarly be obtained. The first and second time derivatives 

celeration functional and minimum-jerk functional is given by Equation (4.92) 

and Equation (4.93) respectively: 

employed [254]. 

4.7.2. MINIMUM-ACCELERATION AND MINIMUM-JERK CURVES 

Following

of the velocity yield the acceleration and jerk of the group of vehicles. The corresponding 

minimum-ac

dtVVJ
b

a VV∫ ∇∇= ,A  (4.92)

dtVV
b

a VVVV∫ ∇∇∇ ,  (4.93)

where 

J jerk ∇=

))(( dttdgV =  and )3(],[:)( SEbatg → . In [324], the necessary conditions for 

optimality for the minimum-acceleration functional and minimum-jerk functional is given in 

Equation (4.94) and Equatio 5) respectivn (4.9 ely: 

d
0)3( =×+ ωωω &&  

0)4 =  
(4.94)(

0))(())(()(
)()())((

)(2

8
1

8
3

4
1

2
3

4
1

2
5

4
5

××−××−××

××−××+×××+

×+××+×+

ωωωωωωωωωω
ωωωωωωωωωω

ωωωωωωωω

&&&&&&

&&&&&&&&L

L&

 (4.95)

)3()3()4()5(

=××− ωL
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0)6( =d  
where )()( n⋅ denotes the n th derivative of )(⋅ .  

 In general, analytical solutions to the minimum acceleration and minimum jerk curves do 

not exist for arbitrary boundary conditions. It was shown in [324], for the special case when 

the initial velocities and accelerations are collinear with the initial velocity of the geodesic 

between the two endpoints, and the final velocities and accelerations are collinear with the 

final velocity of the geodesic, the minimu  acceleration curves are re-parameterised 

geodes mum-

unctio 73) 

m

ics; and analytical solutions to the minimum-acceleration functional and mini

jerk f nal can be obtained. This is only true for )3(SE with the metric in Equation (4.

IH α= IH α≠ [322]. For and  in Equation (4.73), the differential equations to be satisfied 

relaxation, or projection methods should be employed [327, 328]. 

4.8. THE RIGID-BODY CONSTRUCTION 

In the previous sections, t

can become difficult to derive and solve. In this case, numerical methods such as shooting, 

he necessary conditions for optimal motion generation for a group 

f vehicles were discussed. In this section, the group of vehicles is considered by using a 

rigid body model and applying the optimal motions to the navigation of the group. Applying 

the flock protocol in Equation (3.34), a floc rge to the rigid body 

construction induced by the flock lattice with edge constraints: 

,    

o

k of vehicles will conve

( ) ( ) )()()( dqqqq ij
T

ij Φ=−Φ−Φ Eeij ∈∀  (4.96)
i.e. from Equation (3.40): 

0~~,~~ =−− ijij qqpp ,    Eeij ∈∀  (4.97)
In the configuration manifold Q , the coordinates of the corresponding differential one-form 

ω  can be written as: 

])([: LL ijij qq −Φ=ω  (4.98)
where the non-zero elements in the above matrix appearing in the th and i j th positions 

respectively correspond to the edge . The rigidity constraint in Equation (4.98) is not 

unique and depends on the ordering given to the edges of the structural graph. 

 The set of constraints define a co-distribution capturing the feasible velocities along the 

geodesic [329] given by: 

ije

}{span ijωω = ,    Nji ,,1, K=  (4.99)
and annihilating distribution  [254]: rigid∆

 100 



 

))((Range qDrigid =∆  (4.100)
where 

⎤

⎢
⎢
⎢

⎣

⎡

−

−
=

N

n

Iq

Iq
qD

ˆ

ˆ
)(

1

MM  (4.101)

and  is the skew-symmetric matrix. Using the annihilating distribution, the rigidity 
⎥⎦n

⎥
⎥

)ˆ(⋅

constraint induced by the flock lattice on the configuration manifold Q  can then be expressed 

as [254]: 

)(qq rigid∆∈&  (4.102
wn in [254], that the rigidity constraint in Equation (4.102) is satisfied for all 

)
It was sho

if and only if: 

,    

0≥t  

)0()()()( ii qtRtdtq += Ni ,,1K=  (4.103)
quation (where ))(),(( tdtR  is a trajectory for the left invariant control system in E 4.16); i.e.: 

)()()( ttgtg ξ=&  (4.104)
with initial conditions nIR =)0( , 0)0( =d . Here, the Lie algebra )(tξ  corresponds to the left 

invariant twist of the rigid structure induced by the flock latti straints. Furth  

motion planning for the  vehicle rigid body motion problem can be reduced to a left 

ce con ermore,

N

invariant control system on )(nSE  by [254]: 

[ ] )()0( tIqRq ii ξ⋅−=&  (4.105)
T otion 

directions that conforms to a flock lattice. Following the rigid body model of the flock lattice, 

optimal motion generation for the group of -vehicles is reduced to generating one geodesic 

e local frame, it fails 

to consider the flexing during the transitional phase of the flock. In Section 4.10, the rigid 

body model is extended to include the transitional phase of the flock lattice by introducing 

he annihilating distribution )(qrigid∆  locally describes the set of all rigid body m

N

on the )3(SE  of the group structure, and N -geodesics on the )3(SO  of each vehicle. While 

this formulation accounts for the converged state of the flock lattice in th

the notion of a semi-rigid body model of the group of vehicles using the Hamiltonian of the 

system. For now, optimal motion generation for a group of vehicles using the current rigid 

body model is demonstrated for the converged flock of vehicles. 
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Figure 4-2. Configuration of the rigid flock structure in local frame for 6 vehicles in SE(3). 

4.9. NUMERICAL EXAMPLE: MOTION OF THE RIGID FLOCK LATTICE 

Consider a group of vehicles with dynamics given in Equation (3.49). Suppose the vehicles 

have converged to a coherent flock lattice with motions satisfying 0, =−− ppqq . Then, 

the flock of vehicles can be treated as a rigid body system with inter-vehicle distribution 

given by ijd . In the local frame }{M , the distribution of vehicles is given by the following 

flock lattice (Figure 4-2): 

 

⎥
⎥
⎦⎢

⎢
⎣

0
⎥
⎥

⎢
⎢

= 0
2

1q ,    

⎤⎡ 2 ijd

⎥⎦⎢⎣ 0
⎥
⎥

⎢
⎢= 2

2
2

ijdq ,    
⎤⎡ 0

⎥
⎥
⎦⎢

⎢
⎣

0
⎥
⎥

⎢
⎢

= 0
2

3q  

⎤⎡− 2 ijd

⎥⎦⎢⎣ 0
⎥
⎥
⎤

⎢
⎢−=

0

2
2

4
ijdq ,    

⎡

⎥⎦⎢⎣ 2
2 ijd
⎥
⎥
⎤

⎢
⎢
⎡

=5 0
0

q ,    
⎥⎦

vehicles with nfiguration given 

⎥
⎥
⎤

⎢⎣

⎡

− 2
2

6 0
0

ijd
q  

(4.106)

and the inertial frame  is assumed to be coincident with the local frame  at . 

Assuming compliance to a rigid body model, the objective is to navigate the group of 

co in Equation (4.106) from one configuration 

 to some desired final configuration 

⎢
⎢=

}{F }{M 0=t

))0(),0(()0( dRg = ))1(),1(()1( dRg = . For the re  

of this section, the following conditions are considered: 

mainder
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
010
001

)0(R ,    

,    

(4.107)

These correspond to a translation of the centre of the virtual structure induced by the flock 

lattice from the coordinates  to 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

0
0
0

)0(d  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

001
010
100

)1(R
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

200
0

200
)1(d  

)0,0,0(=q )200,0,200(=q , and a rotation of  ),(Rot 2
π−y  

ogenous with vehicle about the local frame. It is assumed that the group of vehicles is hom

mass given by . Optimal motion with respect to energy and acceleration 

are now considered. 

4.9.1. MINIMUM ENERGY CURVES 

For a group of vehicles with configuration (4.106) and masses 

mmi = , 6,,1 K=i

mmi = , 6,,1K=i , the mass 

moment of inertia H  is given by: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+=

2
5
42

2
3
42

2

00
00
002

2
ha

ha
a

mH  (4.108)

From Equation (4.73), the kinetic energy metric is given by: 

⎥
⎤

⎢
⎡

=
30

0
I

H
W

m
 (4.109)

and assumes the iagonal form
⎦⎣ 32

d  of the Park metric.  

Metric (4.109) induces the following cost function associated with the kinetic energy: 

∫=
b

a

It was shown in Section 4.7.1 that the minimum of Equation (4.110)

dtVVJ ,  (4.110)

 is given by the geodesics 

on )3(SE , and can be found by solving the following differential equations: 

))ω((1 ωω HHd
−=  

0=d&&  
Solutions are given

dt
×−

(4.111)

 in Equation (4.91), and correspond to uniform rectilinear translation of 

the centroid of the virtual structure, and uniform rotation between  and 0 2
π−  about y . The 

interpo  motions for the rigid body in Figure 4-2 is shown in igure 4-3 (lating  F a). 
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4.9.2. MINIMUM ACCELERATION CURVES 

As discussed in Section 4.7.2, analytical solutions to minimum acceleration curves generally 

do not exist for arbitrary boundary conditions. However, it is still possible to obtain 

trajectories satisfying the necessary conditions for min um-acceleration in Equatio  

100 grid 

points [330] in MATLAB. Figure 4-3 (b) shows the corresponding interpolating motions for 

nim

ic oving 

from one configuration to the next. Consider the case for a group of vehicles with random 

initial distribution applying the flock protocol in Equation (3.34). A group of vehicles 

applying the flock protocol will converge to a flock lattice (as described in Chapter 3) and 

maintain a fixed connectivity satisfying the rigidity constraints in Equation (3.40) and behave 

as a rigid body. The transition from the initial configuration to the flock lattice however, will 

induce a flexing of the graph topology that violates the rigidity constraints in Equation (3.40). 

In this phase, the flock is characterised by a semi-rigid body model with vehicle motions 

violating the paths defined by the geodesics in Section 4.7. To effectively plan the motions 

 

 

im n (4.92)

(and Equation (4.93) for minimum-jerk) by solving the associated boundary-value problem 

numerically. For the following example, the interpolating motion satisfying the differential 

equations in Equation (4.92) were solved using a finite-difference method with 

the mi um-acceleration curves for the configuration in Figure 4-2. 

4.10. THE SEMI-RIGID BODY CONSTRUCTION 

In Section 4.8, a rigid body model was constructed for a group of vehicles with fixed inter-

vehicle distances. This assumption, while sufficiently general to accommodate time-invariant 

vehicle distributions, fails to capture the transient behaviour of the group of veh les m

for a group of vehicles, the effect of these geodesically-conflicting motions must be 

considered.

From Equation (4.5), the rigid body constraints induce the following co-distribution on the 

tangent space QT ∗  [331]: 

},,,,{span Njiijrigid Kωω =   (4.112)
The annihilating distribution of rigidω   (i.e., 0)( =∆ rigidrigidω ) provides the set of rigidity 

constraints rigid∆  of the virtual st  on Tructure  Q∗ . For ii Qq ∈ , and 
i iQq , ∏∈ N

Ni ,,1K= , 

the annihilating distribution of rigidω  is given by [254]: 

))((Range qCrigd∆   (4.113)=
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Figure 4-3. Optimal trajectories for a rigid flock lattice with respect to (a) m
minimum acceleration. 
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where  is the column space of matrix , and  is the matrix whose 

columns are the basis for  given by: 

⎢
⎡−

=
31ˆ

)(
I

Iq
qC MM   

))((Range qC )(qC )(qC

∆ rigid

⎥
⎥

⎢
⎢
⎣− 31q̂

On the tangent manifold, the rigidity constraints are then given by: 

rigidq

⎥

⎦

⎤
(4.114)

∆∈&   (4.115)
 The set of motions violating the rigid body constraints, are then given by the orthogonal 

complement to the rigid distribution )(qrigid∆ . Given a Riemannian metric W  with product 

structure in Equation (4.29), the orthogonal complement of )(qrigid∆  yields the non-rigid 

distribution [254]: 

Nu)(q T
rigidnon =∆ − ))((ll WqD  (4.116)

where  is the matrix whose columns are the basis of)(qD  rigidnon−∆ . Denote  an QTqV qq ∈= &

arbitrary tangent vector to the point Qq∈ , and qV
rigid∆proj , qV

rigidnon−∆proj   the projection of

sum of the projection onto the rigid and non-rigid distributions, i.e. [333]: 

V
rigidnon−∆

 qV  

onto the distribution rigid∆  and rigidnon−∆  respectively3. Then, for a semi-rigid body induced by 

the flocking protocol in Equation (3.34), the tangent vector V  can be recovered using the q

qqq VV
rigid∆ += rojproj  

This provides the velocity at a point  as a function of the rigid and non-rigid contributions. 

4.11. SHAPE ABSTRACTIONS OF THE SEMI-RIGID CONSTRUCTION 

i

p (4.117)
q

In the following section, the semi-rigid body model constructed in this section, is used to 

construct a shape abstraction based on the energy metric of the system of equations. 

In Chapter 2, it was shown for a group of vehicles, that the flock lattice configuration is a 

minimum of the structural potential in Equation (3.12). By controlling the dissipation of the 

energy functional in Equation (3.12), the convergence of the group of vehicles from an 

arbitrary configuration to a des red flock lattice configuration can be controlled at a 

supervisory level. For a configuration of vehicles nQq R=∈  in the local frame }{M  and 

                                                 
3 In [176, 332], the notation qVer  and qHor  is used to denote the tangent space and orthogonal complement to 

the point q  respectively. 
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Figure 4-4. The n – sphere shape abstraction for a group of vehicles with controllable antipodal points. 

qcentred at , the position of a vehicle in the local frame applying Protocol (3.34) is located 

in the closed -sphere centred at  n q  with radius ))0(~),0(( pqR 2H= . 

m becomes a parameter of significant 

interest for identifying and controlling the group of vehicles at a supervisory level. In

energy of the system provides a one-dim nsional abstraction for the region occupied by the 

configuration of vehicles. Minimising the energy of the system, effectively controls the 

rcle in the planar case) bounding the region occupied by the 

Following the notation introduced in Section 4.10 for the semi-rigid body model of the 

flock, the quadratic form of the energy metric in Equation (4.73) can be re-written in term

Based on these observations, the energy of the syste

 fact, the 

e

evolution of the sphere (or ci

vehicles in the group. 

s of 

the rigid and non-rigid contributions [254]: 

21212121 proj,proj, qq
T

qqq VWVVVV
rigid ∆∆== proj,proj qqq VVV

rigidnonrigidnonrigid −− ∆∆+  (4.118)
grou v

k lattice; irrespective of the number of vehicles in the 

group. To adjust the expansion and contraction of the shape bounding the group of vehicles 

along the rigid and non-rigid projection, the following form of Equation (4.118): 

The problem of interest is to control the convergence of the p of ehicles at the 

supervisory level to the desired floc

212121 proj,proj)1(proj,proj, qqrqqrqq VVVVVV
rigidnonrigidnonrigidrigid −− ∆∆∆∆ −+= σσ  (4.119)

where the term )1,0(rσ ∈  has been introduced as a shape control parameter (see also [254, 

332, 333] for a similar treatment). For 1=rσ , the virtual structure is described by the rigid 

body model in Section 4.8. The vehicles move along geodesics corresponding to the optimal 

rigid body motions for the collective n this case, the behaviour of the vehicles is 

of the collectiv

group. I

strictly defined by the performance e group. In the extreme case, when 

0=rσ , the rigidity constraints of the virtual structure are relaxed, and motions are strictly 

non-rigid. This corresponds to motions orthogonal to the optimal rigid body motions of the 
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group. Setting 5.=rσ , the Christoffel symbols in Equation (4.46) become zero, and the 

es the optimal uncoordinated interpolating motions of 

v ual vehicles; straigh  u me [2

on (4.46), the motion 

o

some fu r then solv

cal from 

motion of the group of vehicles becom

the indi id t lines niformly parameterised in ti 54].  

Using the metric in Equation (4.119) and the geodesic flow in Equati

f a vehicle can be obtained by solving a two-point boundary value problem. For example, if 

the state of each vehicle is known at initialisation and at tu e time, ing the 

boundary value problem can be achieved using any number of numerical techniques. While 

this is possible when state information for each vehicle is available to a supervisory agent, it 

is highly impracti a computational and hardware point-of-view. Ideally, the motion 

generation and control for the group of vehicles at the supervisory level should be reduced to 

lower-dimensional manifold. Since the position of a vehicle in the flock is always located in 

the n -sphere given by:  

}:{ Rqq i
n

i
n −∈= RS  (4.120)

ncc

q ≤
then controlling the group of vehicles can be reduced to controlling the expansion and 

contraction of two antipodal points  along the surface of the -sphere (see 

 4  can be considered as virtual agents with dynamics given by: 

Qqq R=∈21 , n

),( 21
cc qqFigure -4). The points 

⎩
⎨
⎧

=
=

c
i

c
i

c
i

c
i

up
pq

&

&
,    2,1=i  (4.121)

The virtual agents define a virtual structure bounded by: 

{ }ccccnn qqqqqqqqq 12122
1 ,,: −−≤−−∈= RS  (4.122)

The virtual structure is used constraint the N  to the closed n -sphere in Equation (4.122). In 

the proceeding chapter, a cooperative control scheme using distributed optimisation 

techniques is presented to provide the final relationship between the individual vehicle 

positions and the shape abstraction described by the virtual agents ),( 21
cc qq . The result is a 

cooperative control scheme based on the virtual structure approach. Before proceeding with 

the development of the individual vehicle control laws, the optimal shape control problem for 

the supervisory level is demonstrated using the semi-rigid body model of the flock. The 

motion defined by this strategy, provides a constraint on the group objective that couples the 

vehicles and promotes group cooperation. 
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4.12. NUMERICAL EXAMPLE: SEMI-RIGID FLOCK CONTROL 

In this section, the shape abstraction described in the previous section is demonstrated for a 

group of  vehicles with dynamics given in Equation (3.49) initial distribution, and 

velocity given by: 

,    ,    ,    ,    

5=N

⎥
⎦

⎤
⎢
⎣

⎡
=

0
0

)0(1q ⎥
⎦

⎤
⎢
⎣

⎡
=

5
5

)0(2q ⎥
⎦

⎤
⎢
⎣

⎡
−

=
5

5
)0(3q ⎥

⎦

⎤
⎢
⎣

⎡
−
−

=
5
5

)0(4q ⎥
⎦

⎤
⎢
⎣

⎡−
=

5
5

)0(5q  

[ ]Tqqqqq 00)0()0()0()0()0( 54321 ===== &&&&&  
(4.123)

where  is the concatenated set of velocities for the group of vehicles. Suppose that the 

vehicles apply the flock protocol in Equation (3.34), then, from Theorem 2 in Chapter 3 the 

group of vehicles will converge to a flock lattice spanning the disk: 

)0(q&

}))0(),0((2:{2 qqqqq i
n

i &H≤−∈= RS  (4.124)
The objective is to navigate the group of vehicles from the initial disk configuration spanned 

by the distribution in Equation (4.123), to the desired final disk configuration in Equation 

(4.124) along a predefined trajectory. Controlling the shape spanned by the flock is achieved 

by generating the motions of the  antipodal points along the surface of the disk between 

the initial shape and the final shape. The motion of the antipodal points is governed by the 

dynamics in Equation (3.49), and is obtained by smoothly varying the kinetic energy metric 

in Equation (4.73). The metric in Equation (4.73), assumes that any two points in the local 

frame observes the rigidity constraints in Equation (3.40). However, since the flock evolves 

according to the flock protocol in Equation (3.34) and is described by the semi-rigid body 

model in Section 4.10, then the metric is no longer constant. 

 Following the definition of a semi-rigid body model, and Equation (4.119), the metric 

induced by the semi-rigid body constr , can be obtained by considering the 

pr s. 

Expanding Equation (4.119) for the rigid body model: 

cN

uction 
r

Wσ

ojections of the motion along the rigidity preserving and rigidity violating direction

2121

212121

)()()1()()(

proj,proj)1(proj,proj,

wqWDqDwvqWCqCv

VVVVVV

TT
r

TT
r

qqrqqrqq rigidnonrigidnonrigidrigid

σσ

σσ

−+=

−+=
−− ∆∆∆∆

 (4.125)

where , and  are the components of the projections on the basis: v w

vqCVqrigid
)(proj =∆  

wqDVqrigidnon
)(proj =

−∆  
(4.126)

and from Equation (4.125) the following is observed: 
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q
TT WVqCqWCqCv )())()(( 1−=  

q
TT WVqDqWDqDw )())()(( 1−=  

(4.127)

rσ  Following Equation (4.125), the new semi-rigid body metric with shape control parameter 

is defined as: 

( )[ ]
( )

TTTTTT

TT
r

TT
r

q
T

qq

WVqCqWCqCqWCqCWVqCqWCqC

wqWDqDwvqWCqCv

VWV
r

r

)())()()(()()())()((

)()()1()()(

:

11

2121

−− +=

−+=

=

σ

σσ

σσ

 (4.128)

q VV ,

[ ]q
TTTT

q
TT

r

qqr

WVqDqWDqDqWDqDWVqDqWDqD )())()()(()()())()(()1( 11 −−−+ σ
Solving Equation (4.128) for 

r
Wσ , yields the new matrix of the energy metric for the semi-

rigid body model [254]: 

( )
( ) WqDqWDqDqWD

WqCqWCqCqWCqW
TTT

r

TTT
rr

)()()()()1(

)()()()()(
−

−

−+

+=

σ

σσ

L

L
 (4.129)

Using the semi-rigid body energy metric in Equation (4.129), the optimal trajectories for the 

antipodal points can now be determined. 

 From Equation (4.114) and Equation (4.116), the column spaces )(qC  and )(qD  for two 

points in a plane is given by the following: 

 
⎥
⎥
⎥
⎥
⎤

⎢
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01y
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⎥⎦⎢⎣ 10x 2 ⎥⎦⎢⎣ 1
Using the column spaces in Equation (4.130), the semi-rigid energy metric in Equation 

(4.129), and Equation (4.34), the 64 Christoffel Symbols for the geodesic flow equations in 

(4.46) can be obtained. For the general case of 2

⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

−=
−

−

−

−
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21
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yy
xx

cc

cc

cc

cc

cqD  (4.130)

=n , 2=cN , the Christoffel symbols are 

provided in Appendix B. 

 For the following example, assume 121 === mmm , and the boundary conditions for the 

two antipodal points is given by: 

⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎡ −

=
0

})0(max{

)0(

0 i

c

qq

q ,    )0(
)1()(

)1( 6 cc q
dR

q ⋅⎥
⎤

⎢
⎡

=
−π

 (4.131)
10 ⎦⎣

⎦
⎢
⎢

⎣

−−
0

})0(max{ 0 iqq
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where 2
0 10})0(ax{ =− iqq , m [ ]T )( 6

π−Rd 1)1( = 5000 − , and  is the rotational subgroup 

)2(SO  parameterised by θ  and corresponding to a rotation about the body fixed frame {M  }

by 6
πθ −

Figure 4-5 shows the corresponding trajectories of the antipodal points solved using the 

= . 

semi-rigid body energy metric in Equation (4.129) for 1.0=rσ , 5.0= , and 75.0=rσ rσ . 

From Figure 4-5, as the shape control parameter 0→rσ , the antipodal points are only 

permitted to move along the antipodal line connecting them. This causes the disk spanned by 

the flock to expand and contract. As 5.0→rσ , the Christoffel yms bols become zero and the 

ories are the optimatraject l motions described in Section 4.7.1; i.e. straight lines. On the other 

hand, as  0.1→rσ , the non-rigid motions are penalised, and the corresponding geodesics are 

optimal rigid motions. This correspo e case when the antipodal points remain a fixed 

otion. In this example, the rigid body case 

nds to th

during the group’s m 1=rσ  is not available since 

RY 

In this chapter, the concepts of differential geometry were introduced and applied to the 

p of vehicles. By treating the converged flock 

the initial and final configurations specified are not consistent with the rigid body model. 

4.13. SUMMA

motion generation problem for a grou

configuration as a rigid body, optimal control techniques familiar to rigid body motion were 

applied. This provided a useful abstraction for the group of vehicles. The rigid body model 

was then extended to include the motions induced by the flock protocols that would violate 

the rigid body paths. The resulting model was a semi-rigid body construction. To map the 

individual vehicles to this rigid body model, and preserve scaling, virtual agents were used to 

represent the shape spanned by the group. Using the convergence results in Chapter 3, the 

shape abstraction was defined using the n -sphere. The group motion and shape abstraction 

both provide a method for controlling the group at the supervisory level. Convergence of the 

individuals to the desired shape and pose as prescribed by the supervisory controller 

represents the cooperative control problem for the individual vehicles. In the next chapter, the 

relationship between this desired group level behaviour, and the local vehicle level is 

considered by designing a cooperative control scheme based on traditional model predictive 

control. This provides the last piece of the decentralised cooperative control framework to 

realise the cooperative objective.  
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(a) σr = 0.1 
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Figure 4-5. Motions induced by the semi-rigid body metric for various shape control parameters σr. 

σr = 0.7
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Chapter 5. Cooperation Through Decentralised Model 

Predictive Control 

In this chapter, the problem of cooperative control for a group of vehicles is addressed. A 

 e

tion to reach a 

consensus on the coordination variable rep he shared 

respond to solutions to a finite-time optimisation problem. The finite-time 

oop state trajectory that takes the vehicle’s current state to a final optimal state in 

the desired abstract manifold. This provides the necessary (and final) relationship between 

the local interactions of the vehicles and the group-level behaviours. Coordination follows 

from the exchange of these plans with neighbouring vehicles to negotiate a consensus on the 

final group state matching the commanded group states of the supervisory agent.  

The main objective of this chapter is to develop a decentralised coordination scheme for the 

h samp

 Section 5.4 followed by a discussion 

in Section 5.5 on the limitations of the distributed implementation. The proposed cooperative 

control scheme will then be demonstrated for a group of vehicles in Chapter 6 for search and 

rescue. 

decentralised cooperative control schem  based on traditional Model Predictive Control 

(MPC) is proposed. The cooperative control scheme uses shared informa

resentative of the group task. T

information refers to optimal plans generated by each vehicle at the sampling periods. The 

plans cor

optimisation problem represents arbitration between the local goals of the vehicles and the 

global goals of the group. Solutions to the finite-time optimal control problem correspond to 

the open-l

cooperative vehicles using a traditional MPC scheme to develop plans and exchange 

information at eac ling period. The chapter is organised as follows. In Section 5.1, the 

original centralised MPC scheme is introduced and a numerical demonstration is presented in 

Section 5.2 for the flock of vehicles described in Chapter 3. In Section 5.3, the main 

contribution of this chapter, the decentralised cooperative control scheme, is presented. The 

closed-loop stability of the system is then presented in
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5.1. PROBLEM FORMULATION 

Consider  dynamically decoupled vehicles with time-invariant state equations given by: N

( ))(),()( tutqftq iiii =&  (5.1)
with state vector  belonging to the set of feasible states , and input vector 

 belonging to the set of feasible inputs  for vehicle . The state of each 

vehicle is updated according to the continuous function  and is assumed 

stabilisable at the equilibrium pair  of vehicle . For fully actuated vehicles in free 

space, the states are described by position and orientation vectors; i.e. 

 Let , and 

in
i tq R∈)( in

iQ R⊆

im
i tu R∈)( im

iU R⊆ iv

iii nmn
if RRR →×:

),( e
i

e
i uq iv

T
iii xq ),( θ= . 

iNnN

i iQtq R∏ =
=∈

1
)( iNnN

i iUtu R∏ =
=∈

1
)(

e collective flock, and le

 denote the concatenated form of the 

state and input vectors of th t  denote the corresponding 

equilibrium pair of the collective system. Then, 

(5.2)
e collective flock with concatenated state vector 

),( ee uq

))(),(()( tutqftq =&  
is the n -dimensional control system for thN

)](,),([)( 1 tqtqtq NK= , and input vector )](,),([)( 1 tututu NK=  stabilisable by the state update 

functions ))](),((,)),(),(([))(),(( 111 tutqftutqftutqf NNNK=  to the equilibrium pair ),( e
i

e
i uq . 

5.1.1. COUPLING CONSTRAINTS 

The above discussion implies that the vehicles in Equation (5.2) are completely decoupled in 

the collective system. If the vehicles are truly autonomous and act independently from any 

centralised control, then the system is decentralised and the behaviour is an emergent 

property of the (possibly competing) interactions of the vehicles. For purposeful group 

behaviour, the vehicles must cooperate to achieve a global group goal. This could include 

l

nature of the decentralised control architecture

en

d in Chapter 3.

objectives such as formation stabilisation, multi-point rendezvous, and synchronised 

interception. The group objective induces a coupling constraint on the vehicle’s behaviour, 

and describes a distributed information architecture. Whi st this contrasts the decoupled 

, it turns out that the distributed control 

architecture is only used to describe the information flow in the system, and not the control of 

the vehicles. Decentralisation is achieved by using the group abstractions in Chapter 3, and 

dowing the vehicles with sufficient autonomy, to plan and coordinate their actions with 

neighbouring vehicles and avoid collisions. In this section, the coupling constraints of 

vehicles are modelled using the graph structures introduce  
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 To remain consistent with the ite interactions of the vehicles in the flock, and the 

physical limitations of the sensors and communication devices, the interaction graphs 

depicted in Section 3.2.1 are used to model the coupling constraints in the flock. Associate 

i

 fin

the th vehicle to node  of the interaction graphi v  ),( EVG = , and an edge Evve ji ∈= ),(  

connecting vehicle  to iv jv , ji ≠ . If there exists an edge Evve ji ∈= ),(  between vehicle 

and hicle  and  are coupled either through the cost function or constraints. In 

Section 3.2.1, the sensory and communication radius  for vehicle  induced a spatial 

interconnection graph , with adjacency matrix: 

iv  

iv jv

ir iv

),( EVG =

 jv , then ve

( )[ ]
otherwise

, if
,0 if

,0⎪
⎩

and spatial neighbourhood of vehicle iv  defined by: 

,cos1
,1

)(:)( )1(
)(

2
1 ijrxx

ijxx
zxa iij

j
z

ijij ≠≤−≤

≠<−≤
⎪
⎨

⎧
+== −

− δ
δ

ρ ε
ε  (5.3)

i

}:{ iiji rxxVj ≤−∈=N  (5.4)
For the purposes of generality, it is assumed that the flock is homogenous, and the vehicles 

share identical sensory and communication capabilities; i.e., irr jr==  and iiρρ ρ== , 

Nji ∈∀ , , ji ≠ . 

Remark. 

In Section 2.3, for a group of mobile vehicles with finite interaction range r , the induced 

spatial information network is time-varying. In the proceeding sections, a time-invariant 

on exchange topology is an example of an autonomous hybrid 

differential-algebraic system. Analytical methods to analyse the stability of these types of 

systems is currently a rea of acti re rch in the athematics and control fields. 

Therefore, the proof of stability for the time-varying case can only be shown using a 

numerical example. This is provided in Section 5.5. 

In the following, a centralised optim tion roblem is formulated for a group of vehicles 

e shared objective. Let 

information network is assumed. Stability becomes more difficult to prove when the 

interaction graph is a switching network. It was shown in Section 2.3, that the switching 

network of the informati

n a ve sea m

5.1.2. THE CENTRALISED OPTIMISATION PROBLEM 

isa p

ix~  denote the states of all neighbouring vehicles of vehicle jvwith som

 115 



 

iv  such that }),(|{~ Eijxx jn
ji ∈∈= R , in

ix
~~ R∈  with ∑ ∈

=
Eijj ji nn

),(|
~ , and let im

iu
~~ R∈  

denote the set of corresponding inputs ij N∈∀ . Denote the corresponding equilibrium pair 

for the group of neighbo ith urs w ),()~,~( eee
i

e
i uxux ⊆  and define 

RRRRR →××× iiii mnmn
il

~~
:  as the ributed integrated cost function associated to  

 satisfying 

dist vehicle

Ni∈∀ 2)~,~,,()~,~,,( iiiiiiiii uxuxcuxuxl ≥  and . The 0)~,~,,( =e
i

e
i

e
i

e
i uxuxl iiv , 

centralised cost function for the interconnected system is then given by: 

∑
=

.5)

where the sum of 

=
N

i
iiiii uxuxluxl

1
)~,~,,(),(  (5

~ ),~,,( iiiii uxuxl  recovers the cost of . The information network induces  ),( uxl

the following coupling constraints: 

0),(, ≤jiji xxg  
n ,  is a cont s

(5.6)

between neighbouring vehicles iv  and jv , where ji nn
jig :, RRR →× inuou  

(possibly non-convex) function. Using ix

c
ji

~ , Equation (5.6) can be r ritten as: 

0)

ew

~,( ≤ii xxg  (5.7)
Note the undirected nature of the information flow induces redundant constraints on the cost 

function. 

 Having defined the cumulative cost of the interconnected system, and the constraints 

induced by the information flow, consider the following infinite time optimal control 

∫

i

problem: 
∞

∗
∞ =

0
},,{

),(min:))((
10

dtuxltxJ
uu K

 

Subject to: ))(),(()( tutxftx iiii =&  
Ni ,,1K= ,    0≥t  

ii Xtx ∈)( ,    ii Utu ∈)(  
 (5.8)

0))(~
ij N∈∀  ),((, ≤txxg iiji ,    t

)0(0 xx =  
Given Problem (5.8), the control objective is to stabilise the collective system to the 

equilibrium pair ,( ee ux en the variable ix  is the dynamic states of vehicle iv , the 

optimisation problem in Equation (5.8) the equilibrium pair ),( ee ux  corresponds to a 

distribution of vehicles. For a given initial state of the collective system iNnx R∈)0( , 

) . Wh
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Problem (5.8) is feasible if the set of optimal inputs }),1(),0({ K∗∗ uu  drives the N  systems to 

their equilibrium points e
ix  while satisfying state, input and coupling constraints.  

 
Figure 5-1. Traditional MPC scheme. 

5

A  each sa

er shifted horizon using the new state measurements obtained by 

a

.1.3. FINITE HORIZON CONTROL 

In many cases, solving an infinite horizon control problem is computationally intractable. An 

infinite horizon controller can be designed by repeatedly solving a finite time optimal control 

problem over a receding horizon. t mpling period, an open-loop optimal control 

problem is solved over a finite horizon, and the optimal input is applied in the proceeding 

sampling period. A new finite time optimal control problem is then solved at the next 

sampling period ov the 

pplying the optimal control input from the previous horizon. The resultant controller is 

referred to as a Receding Horizon Controller (RHC) or Model Predictive Controller (MPC) 

[334]. 

 To decompose the optimisation problem in Equation (5.8) into a set of finite time sub-

problems, let ],[ Ttt kkk +∈τ  denote the prediction horizon interval with update time kt , 

}21{ K,,k =∈N , and prediction length T . For any prediction horizon kτ , the predicted states 

)}|(,),|(,),|({)(ˆ 1 kTkikkkikkiki ttxttxttxtx +∆++= KK  are obtained by applying the predicted set 

of control inputs )}|(,),|(,),|({)(ˆ 1 kTkikkkikkiki ttuttuttutu −+∆+= KK  to system (5.1) using the 

current set of state measurements )( ki tx  at time kt . The concatenated set of predicted st  ates
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and predicted control inputs for the collective flock at time kt  is similarly denoted by 

nNtx k
~

)(ˆ R∈  and mNtu k
~

)(ˆ R∈ , respectively. Let X ⊆ iNn
f R denote the terminal region 

associated to the prediction horizon (i.e., fkTk Xttx ∈+ )|( ). Then, the terminal cost f nction 

))|(( kTk
T ttxl +  takes the state )( ktx  from time kt  to the terminal state )( Tktx +  at time Tkt + . 

Using the finite time horizon ],[ Ttt kkk

u

+∈τ , and the predicted states nN
ktx

~
)(ˆ R∈ , and 

control trajectories mN
ktu

~
)(ˆ R∈ , Problem (5.8) can be expressed as the following constrained 

finite time optimal control problem: 

( |(),|(min:))((
)}(ˆ{

t

kkktukT utxltxJ
Tk

k

∗ = ∫ ) ( ))|() kTk
T

k ttxldt ++
t

k

k

+

τ  ττ

Subject to: ))|(),|(()|( kkikkiikki tutxftx τττ =&  
Ni ,,1K= ,    ],[ Ttt kkk +∈τ  

ikki Xtx ∈)|(τ ,    ikki Utu ∈)|(τ  
],[ Ttt kkk +∈τ  
0))|(),|((, ≤kkjkkiji txtxg ττ ,    ij N∈∀  
)()|( kkk txttx =  

fkTk Xttx ∈+ )|(  

(5.9)

Denote the optimal solution to Equation (5.9) at time  with (ˆ tu∗  

. At the next sampling period, each vehicle applies the first sample of 

(5.10)
and the remainder of the predicted input is discarded. The optimisation problem (5.9) is 

repeated at the next sampling period  over the next shifted horizon 

kt K),|({:) kkk ttu∗=

)}|(, 1 kTk ttu −+
∗K

)(ˆ ktu∗ , such that:  

)|()( 1 kkk ttutu ∗
+ =  

1+kt ],[ 111 ++++ ∈ Tkkk ttτ  (see 

Figure 5-1). This process of re-sampling and recomputing over each horizon closes the open-

loop solution of Equation (5.9). 

5.2. NUMERICAL EXAMPLE: RECEDING HORIZON CONTROL FOR 

In the following example, the concepts of model predictive control are applied to a group of 

lised along the line: 

FLOCKING 

vehicles using a centralised architecture. Consider a group of 6 vehicles with position 

initia
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,    ,    ,    

,    
(5.11)

and velocity randomly selected in the range 
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=
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)0(6q  

]1,1[]1,1[)0( −×−∈ip , Ni∈∀ . Each vehicle is 

assumed to have dynamics decoupled from

: 

 the other vehicles, and described by 
n

iiii Xtqtqtx 2))(),(()( R=∈= & , n
ii Utu R=∈)(

)()()( tuBtxAtx iiiii +=& ,   (5.12)
where: 

,    (5.13)

and  is the -dimensional identity matrix. Concatenating the vehicle dynamics to produce 

the group dynamics: 

0≥t  

⎥
⎦

⎤
⎢
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⎡
=

00
0 n

i

I
A ⎥

⎦

⎤
⎢
⎣

⎡
=

n
i I

B
0

 

nI n

)()()( tButAxtx +=& ,   (5.14)
with 

0≥t  
nNN

i iXx 2
1

R=∈∏ =
, nNN

i iUu R=∈∏ =1
, ),,(diag 1 NAAA K= , ),,(diag 1 NBBB K= . 

 of a common objective. In this example, the objective is to stabilise the 

group of vehicles to the flock lattice in Chapter 3. Using the Hamiltonian of the system from 

Section 3.2.4: 

 The control objective is to asymptotically stabilise the group of vehicles to the equilibrium 

),,( 1
e
N

ee xxx K=

( )∑ ∑∑
∈≠=

−Φ+=
i jij

ij

N

i
i

i

qqpx
N

H
,1

2 )(
2
1~

2
1)( ψ  (5.15)

the centralised integrated cost function for flocking is given by: 

2

,1

2 ))((
2
1

2
1),( uqqquxl

i jij
ij

N

i
i

i

+−Φ+= ∑ ∑∑
∈≠= N
ψ&  (5.16)

where the minimum of Equation (5.16) yields the position values   at 

corresponding to the flock lattice of Chapter 3. Note the term

),,( 1
e
N

ee qqq K= ex  

 2u  has been introduced to 

penalise the control input. While the 2L -norm used to penalise the control input here is non-

linear, the scale of the optimisation problem is assumed to be solvable. A more conservative 

approach to formulating the optimisation problem in Equation (5.16) would be to linearise the 

penalty on the control input through the introduction of an appropriate penalty function such 

as the ∞L -norm or to soften the constraints. Assuming that the optimisation problem in 

Equation (5.16) is solvable with the penalty function and the constraint definitions, solutions 
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to the centralised objective function in Equation (5.16) at each sampling period , can be 

obtained by repeatedly solving Equation (5.9) over successive horizons 

kt

],[ Ttt kkk +∈τ . 

sT 4.2= ,  For the following simulation, the horizon length is varied between 

 and the control input for each vehicle  is bounded by Equation (5.17): 

(5.17)
The MPC scheme is implemented in a centralised architecture with full state-feedback to a 

supervisory agent. Information from each vehicle is transmitted to the supervisory agent at 

each sampling period  seconds and is used to solve the corresponding finite-time 

optimal control problem in Equation (5.9) over the horizon [ 11 ++

sT 6.3= , 

sT 8.4= iv

}1,1|),({: 2 ≤≤−∈== iyixiyixii uuuuuU R  

 6.0=kt

],1 ++∈ Tktkk tτ . Optimal 

control trajectories for proceeding horizons are then transmitted to each vehicle. It is assumed 

that an inner-loop controller for each vehicle is then used to track the control trajectories 

provided by the supervisory agent with zero error at each sampling period. For the following 

simulation, it is also assumed that the computational time of the supervisory agent, and the 

information exchanged times between the supervisory agent and the vehicles are negligible. 

In practice, the computational and information exchange times are non-negligible since 

delays will affect the stability and performance of the system. 

To solve the finite-time horizon control problem at each sampling period, a global 

optimisation search procedure based on the dual-primal gradient-based recurrent neural 

network is used [335-340]. The dual-primal gradient-based recurrent neural network 

presented in [337] is based on the reduction of the duality gap induced by the Dual-Quadratic 

Programming (DQP) representation of Problem (5.9) and Equation (5.16). The dual-primal 

gradient-based recurrent neural network has the advantage of guaranteeing convergence to 

the global minimum without the explicit expression of the gradient information of the 

objective. This means that the dual-primal gradient-based recurrent neural network is 

sufficiently robust to be applied naïvely to many DQP problems. A detailed description of the 

dual-primal gradient-based recurrent neural network and its functioning is given in [337, 339, 

340] with applications presented in [335, 336, 338]. 

The dissipation of the structural potential for the flock lattice for sT 4.2= , sT 6.3= , and 

 is shown in Figure 5-2. Increasing the horizon length, in general, improves the 

response of the system and leads to a faster convergence. The state trajectories of the 

hicles converging to the flock lattice for 

sT 8.4=

group of ve sT 4.2=  sT 6.3= , 8.4=  are and T s

shown in Figure 5-3, Figure 5-4, and Figure 5-5. Triangles are used to represent the direction 



 

of the corresponding velocity vector. The corresponding model predictive control law for 

each vehicle is shown in Figure 5-6 and Figure 5-7. 

From Figure 5-6 and Figure 5-7, the effect of the hard constraint has minimal effect on the 

solution quality for specified scenario. In each of the cases, vehicles most further from the 

centre of the flock ride the control limit at the initial stage of the simulation. This suggests 

that based on the distance of the vehicles and the connectivity of the network, the vehicles 

will be initially forced to move towards the centre of the group. This is in concert with the 

flock protocol introduced in Section 3.2.4. Despite this initial saturation, however, the penalty 

function successfully minimises the control input over successive periods. This is shown by 

the gradual decay of the control input for each vehicle in Figure 5-6 and Fi

follows the sharp initial control input. This highlights an area of further study involving the 

investigation of the relationship between the hard constraints of the vehicle’s actuators and 

the communication radius of the network’s connectivity.  

As in many linear quadratic optimisation problems, the hard constraints and the 

gure 5-7 that 

2L -norm 

penalty functions can be made complementary by simply representing the hard constraints as 

linear inequalities and softening the constraints. This would have the added benefit of 

linearising the problem space and reducing the complexity of the optimisation problem. 

Another approach to specifying the penalty function of the control input and controlling the 

degradation on the response of Equation (5.16) is to minimise the deviation between 

successive control inputs. This would have the effect of smoothing out any overshoot or 

oscillatory behaviour in the control response.  
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Figure 5-2. Dissipation of the structural potential for T = 2.4s, T = 3.6s, and T = 4.8s. 
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Figure 5-3. Convergence of the flock lattice for T = 2.4s using the centralised model predictive control 
law. 
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olFigure 5-4. Convergence of the flock lattice for T = 3.6s using the centralised model predictive contr  

law. 
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Figure 5-5. Convergence of the flock lattice for T = 4.8s using the centralised model predictive control 
law. 
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Figure 5-6. Centralised model predictive control law u1(t) for T = 4s, T = 3.6s, and T = 4.8s. 
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Figure 5-7. Centralised model predictive control law u2(t) for T = 2.4s, T = 3.6s, and T = 4.8s. 
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5.3. COOPERATIVE DECENTRAL  MODEL PREDICTIVE CONTROL 

STRAT

ISED  

EGY 

In this section, the centralised optimal control problem is decoupled into  finite time 

proceeding shifted horizon act to constrain the optimal control problem in Equation (5.9) and 

are used by the vehicles to estimate the effect of the neighbours’ plans on their own plans for 

N

optimal control problems for implementation into N  vehicles. The coupling induced by the 

information flow is used to reach a consensus and solve the optimal control problem of 

Equation (5.9). Two types of information are available to each vehicle in the flock; i) the 

states and controls of the interconnected vehicles, and ii) the partial solutions of the 

optimisation problem. Partial solutions are defined as those intrinsically coupled to the 

perspective of the individual vehicles. Due to the bounded sensory and communication limits 

of each vehicle, the information available to each vehicle is localised to a finite range. 

 Each vehicle has information about its current states and its neighbours’ current states 

through sensory and communication means. Based on the information provided, each vehicle 

computes its own open-loop optimal trajectories. At each sampling period, vehicles exchange 

the set of predicted state trajectories for the next shifted horizon with neighbouring vehicles 

and receive their predicted plans over the next shifted horizon. The received plans for the 

the proceeding prediction horizon. A more formal description is presented in Definition 1. In 

the case of flocking, the predicted trajectories of neighbouring vehicles are used to define a 

time-invariant network over the prediction horizon. For ),0[ ∞∈kt , the dynamic flock 

topology is approximated by a switching network with a fixed topology over predicted dwell 

times. In later sections, the decentralised model predictive controller is implemented with 

respect to other multi-vehicle objectives.  

Definition 1. (notation) 

Over the prediction horizon ],[ Tkkk tt +∈

 

τ , in the optimal control problem for each system 

 the following notation is defined for Ni ,,1K= , and associated with the initial state )( ki tx ,

the decentralised model predictive control strategy: 
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Table 5-1. Notation for decentralised model predictive control. 

current state in
ki tx R∈)(  the current state of vehicle  at time iv kt  

neighbours’ 

current state 
in

ki tx
~

)(~ R∈  
the current state of neighbours j  of i  (i.e. ij N∈ ) at 

time t  k

planned control the control being optimised and applied to the system 

over th + kitrajectory 
iTm

ki tu R∈)(ˆ  
e interval ],[ tt  using state )(tx  at time t  Tkk  k

planned state 

trajectory 
in

ki tx R∈)(ˆ  
],[ by applying the set )(ˆ ki tu  to system (5.1) 

T
the state trajectories obtained over the interval 

Tkk tt +

assumed state 

trajectory 
inT

ki tx
~

)( R∈)  
the set of neighbours’ plans transmitt

i 1−kj i

ed at time  to 

vehicle  and derived using states tx j N∈∀  

 t

v )( , 

where the state iki Xtx ∈)(  and input iki tu U∈)(  constraint for each vehicle contain the 

origin in their interior. 

By definition, the assumed state trajectories of the neighbours for the th vehicle at timei  kt  

over the interval ],[ Tkkk tt +∈τ , ij N∈∀  is the concatenated set of planned state trajectories 

i 1−kj 1−k

neighbour ij N∈∀  (i.e. 

for neighbours  over the interval obtained using state tx  at time t  by j N∈∀ )(

)}(ˆ,),(ˆ{ 11 −− kNkj txtx
i

K , ij N∈∀ ). Vehicle iv  assumes that vehicle 

jv  does not deviate from its transmitted plans. An important point is that the initia  condition 

of every assumed state trajectory is equal to the actual initial state value of the 

corresponding system, i.e.: 

)|()(

l

~
1−= ttxtx kiki

)  (5.18)
N . To be consistent with the notation ixfor every i ,,1K= ) , let jix _

)  be the vector of assumed 

state trajectories of neighbour jv   for vehicle iv , i.e.: 

)()|( 1_ kjkji txttx =−
)  (5.19)
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Using the definitions provided, the finite time optimal control problem for le iv  at time 

kt  is given by: 

 vehic

,

t

t
kiTi ttxJ

Tk

ki

∗
+

( )

( ))|(),|(

)|(),|(ˆ),|(ˆmin:))(
)}(ˆ{

kTkikTki
T

i

kkkikkikkiituki

ttxttxl

dtxtuxltx
k

+++

= ∫
)

)) ττττ
 

Subject to: ))|(),|(()|( utxftx

),((

kkikkiikki tτττ =&  
Ni ,,1K= ,    ],[ Ttt kkk +∈τ  

ikki Xtx ∈)|(τ ,    ikki Utu ∈)|(τ  
],[ Ttt kkk +∈τ  

iji N∈),(  
))|(),|((, 0≤kkjkkiji txtxg ττ ,    ij N∈∀  

)()|( ktk xttx k =  
( ifk Xtx )()| kT t α∈+  

(5.20)

where 

{ }0,::)(
2

≥≤−∈= iiP

e
i

n
if xxxX ααα R  (5.21)

and ),∞∈i 0[α  is a constant, and 0>= TPP  is a terminal weighting matrix. The control 

objective is to cooperatively and asymptotically stabilise all the vehicles to the equilibrium 

 of the collective flock. Cooperation is achieved by the minimisation of the cost 

ion in Equation (5.20). The optimal solution to the optimal control problem in Equation 

(5.20) is then given by: 

Tkk ttu K

e origin  as: 

pair ),( ee ux

funct

))|(ˆ,)(ˆ kkiiki ttutu +
∗∗∗ =  (5.22)

 Consider a linearization of system (5.1) about th
),|(ˆ(

 )0,(),( e
iii xux =

)()()( kiikiiki tuBtxAtx +=&  (5.23)
with )0,( e

iiii xxfA ∂∂= and )0,( e
iiii xufB ∂∂= . If Equation (5.23) is stabilisable, then a linear 

fee l law: 

is defined such that has eigenvalues in the open left-half complex plane and is 

asymptotically stable [341]. Application of the first component of the th sub-problem 

defines an implicit control law in Equation (5.24) that stabilises vehicle  in  to the 

equilibrium e ux  with closed-loop dynamics: 

(5.25)

dback contro

))((:)( e
i

K
iii xtxKtu −=  (5.24)

iii KBA +

i

iv )( i
f

iX ε

 ),( e
ii

 )))((),(()( e
i

K
ii

K
ii

K
i xtxKtxftx −=&  

 128 



 

for all 0≥t , and the collective equilibrium is a function of the assumed state trajec ories 

)( ki tx

t
) . The generalised form of Equation (5.25) is then given by: 

)))(),((),(()( txtxKtxftx i
K
ii

K
ii

K
i

)
& =  (5.26)

Lemma 1. (region of attraction) 

There exists a constant ∞∈  specifying a neighbourhood ),0[iα )( ifX α  of the origin in the 

form of [341]: 

{ }0,::)(
2

≥≤−∈= iiP

e
i

n
if xxxX ααα R  (5.27)

Proof. 

The proof follows from the works of [342]. Define the function RR →nV :  for some positive 

definite, symmetric matrix P  by: 

222)|(:)(
tK utxxV Tk += ∫
+ τ :)|( ikkkikkiii xdt =ττ  (5.28)

Com f E  
1

Pt RQ
k+

puting the time derivative o quation (5.28) along a solution of Equation (5.26) yields:

))(()(2)(())(((

2

TTT
Pkidt

d
k

K
i

txPtxtAPPKBAtx φ++++=
 (5.29)

)()())(),(( kiiiikiiki txKBAtxKtx
))

)(:))((

kikikiiiiiiiiiki

idt
d

xKB

txtxV =

where ki ftx :))(( =φ +− . The last term in Equation (5.29) is 

d by the inequality theorem in [341]: bounde

2

min

2

)(
)(

)())(()())(()(

Pki

kikik
T
ikik

T
i

tx
P
LP ⋅ φ

(5.30)
txLPtxPtxtxPtx

⋅≤

⋅⋅≤⋅≤

λ

φφ φ

 

where { }0)(),()()())((sup: ≠∈= kiifkikiki txXtxtxtx αφφ . For ),0[ ∞∈iα : L

P
P)(L minλκ

φ
⋅

≤ 5

in the r

 ( .31)

egion of X and ),0[ ∞∈κ)( if α , and Inequality (5.30) becomes: 

i xPtx⋅≤ κ (5.32)
Substituting Equation (5.32) into Inequality (5.29) yields: 

))(T ttxPtx φ  ()())(()( kik
T
ikik

)())())((()( 2
kiii

T
iiik

T
iPk

d

e following Lyapunov candidate function as in [341]: 
iidt txIKBAPPIKBAtxtx κκ +++++≤  (5.33)

Introducing th
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nn
i

T
iiii

T
iii RKKQIKBAPPIKBA ×∈+−=++++ R)()( κκ  (5.34)+

and substituting Equation (5.34) into Inequality (5.34): 

)())(()( kii
T
ik

T
iPkidt

d txRKKQtxtx +−≤  (5.35)
It follows that for sufficiently large constants 0>i

2

α , Inequality (5.35) is satisfied such that 

i
T
i RKKQ

e
ik

K
iPk xtxt

+
−−≤ )() , and the region de inK

idt
d x (

2
ed by: f

{ }0,::)( ≥≤−∈= xxxX ααα R  (5.36)

n

2

iiP

e
i

n
if

is an invariant region of attraction for the system (5.1) controlled by (5.24) [342]. A y 

trajectory of system (5.26) beginning in )( ifX α  stays in )( ifX α  and converges to the origin 

[341]. 

 Various methods can be used to define the equilibrium pair for a collective multi-agent 

system. In the virtual leader architecture [188, 231, 295] equilibrium of the collective flock is 

described by the relative inter-vehicle distance of neighbouring vehicle to the leader agent. In 

equilibrium emerges from the locally interacting and cooperating agents. Examples include 

flocking [25, 46, 127, 128, 236] and the network consensus problem [218, 233]. Central to 

the stability analysis of the decentralised model predictive control strategy for cooperative 

vehicles, is the definition of an equilibrium pair. The equilibrium for a group of vehicles 

provides a coordination variable for group consensus. In a cooperative decentralised multi-

vehicle system, consensus on the coordination variable (or equilibrium pair) yields the 

coopera

many decentralised and cooperative systems, the equilibrium is not known a priori. Instead, 

tive behaviour of the group. In Section 2.2.1, it was shown that for a group of 

vehicles exchanging information using the  consensus protocol in Equation (2.19) will 

information state; i.e.: converge to the average-value of the 

∑ =
==

N

i iN xxx
1

1)(Ave)(χ  (5.37)
where the information state of vehicle iv  is denoted by ix . When the communicated 

information is the positional states of the vehicles, the average-consensus is given by the 

centroid of the formation of vehicles. In Chapter 3, an inter-vehicle distance offset d  was 

introduced to induce spatial flocking in a group of vehicles. The consensus protocol was then 

used to prove the convergence of a gro of connected vehicles to the flock lattice with 

distribution centred on the average position 

up 

q  of the initial distribution 0q , and velocity 

equalling the average velocity p  of the connected group. Following these observations, the 
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following definition for the decentralised optimisation problem in Equation (5.20) with 

info ation exchange prescribe

Definition 2. (grou i

The equilibrium state for a group of interconnected vehicles  is given by the average 

valu  

(5.38)

rm d by Equation (2.19) is made: 

p equ librium state) 

nex R∈

ed consensus of the communication network; i.e.: 

)(Ave: xxe =  
and by the invariance property, is a constant such that cxe = , Ni∈∀ . 

 Following Problem (5.20) and Definition 2, the terminal region induced by the consensus 

protocol with is given by: 

))0(),0((: xxRX f
i &2H==  (5.39)

where ))0(),0(( xx &H is equivalently defined as ))0(~),0(( pqH  Section  3.2.4.  Based on the 

neighbouring plans )( ki tx) of vehicle , it is possible to define an error state using the 

consensus protocol in Equation (2.19). From Definition 1, at time  and 

 (where ) for the th vehicle, and 

iv

kt , iki Xtx ∈)( ,

)}|(ˆ,),|(ˆ{)(ˆ kTkikkiki ttxttxtx +
∗∗∗ = K )()|(ˆ kikki txttx =∗ i

)}|(ˆ,),|(ˆ,),|(ˆ,),|(ˆ{)( 11111111 −+−
∗

−−
∗

−+−
∗

−−
∗= kTkkkkTkjkkjki ttxttxttxttxtx

ii NN KKK
) ,  over 

the prediction interval 

ij N∈∀

],[ 111 Tkkk tt +−−− ∈τ . The trajectories  and )(ˆ ki tx∗ )( ki tx)  overlap for 

, except for the first sampling interval of theij N∈  j th vehicle and the last sampling 

interval of the th vehicle. The first sampling interval of thei  j th vehicle is the previous state 

of the vehicle; i.e. and can be excluded from the error state. For purposeful 

consensus, on terval of the 

)( 1−kj tx

ly the prediction in j th vehicle over  is considered. 

The predicted state of the 

],[ 1
^
, Tkkjk tt ++∈τ

j th vehicle is truncated for the th vehicle over the interval 

, such that the predicted states of the 

i

],[ 1
^
, Tkkjk tt ++∈τ j th vehicle at time  transmitted to 

the th vehicle produces the set of assumed states 

1−kt

i K
) ),|({)(ˆ: 1___ −== kkjikjiji ttxtxx  

)}|(, 11_ −+− kTkji ttxK  at time  for the th vehicle. 

 The objective is to minimise the deviation of the assumed state trajectories of neighbouring 

vehicles with the predicted states for the th vehicle for 

 kt i

i Ni ,,1K=  to achieve consensus. For 

a homogenous group of vehicles, the prediction horizon length of each vehicle is equal. The 

mismatch in the last sampling interval of the th vehicle with the  i j th vehicle corresponds to 
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a prediction made by the j th neighbour at time  and a prediction made by the th vehicle 

at time . For compatibility purposes, the final sampling period of the th vehicle’s 

prediction is truncated such that . This assumption is valid since the assumed 

state of the 

1−kt i

kt i

],[ 1
^
, Tkkik tt +−∈τ

j th vehicle has not been made yet. This yields the following optimisation horizon 

+−  for the overlapping regions of the sampling periods of the ],[t∗ ∈τ 1 Tkkk t j th vehicle, and 

ll known property of the model predictive control law given in Equation (5.24) is not 

g   

terminal cost constraint is introduced to stabilise the system and achieve consensus. Fo

veh

consensus is defined over the optimisation horizon. 

A we

uaranteed stabilisable due to the receding horizon [343]. In Section 5.4, an appropriate

r now, 

it is immediate to show that the error state )|( kki tx ∗τε  between the predicted state of the i th 

icle at time t  and the assumed state from the k j th vehicle using state )( 1−kj tx  is given by 

the following: 

∑ −
∗∗ = kkjkki txtx )|(ˆ)|(ˆ 1ττε

∈
−

∗−
ij

kki tx
N

)|(ˆ 1τ  (5.40)

where . Using the error state  and the dynamic model in Equation 

(5.1), the consensus problem is converted into a regulation problem. Thus, the decentralised 

finite time optimal control problem associate th vehicle at time  can be re-

written as: 

],[ 1 Tkkk tt +−
∗ ∈τ )|( kki tx ∗τε

d with the i kt

))|(ˆ())|(ˆ),|(ˆ(min:))(),((
)}(ˆ{, kTki

T
ik

t

t
kkikkiitukikiTi ttxldtutxltxtxJ

Tk

k
ki

+
∗∗∗∗ += ∫

+
εε τττ)  

Subject to: ))|(),|(()|( kkikkiikki tutxftx ∗∗∗ = τττ εε&  
Ni ,,1K= ,    

,    
],[ 1 Tkkk tt +−

∗ ∈τ  

ikki Xtx ∈∗ )|(τ ikki Utu ∈)|(τ  

iji N∈),(  
0))|(),|((, ≤kkjkkiji txtxg ττ ,    ij N∈∀  
)()|( kkk txttx =  

)()|( ifkTk Xttx α∈+  

(5.41)

 Let PxxT
P
=⋅ 2  denote the generalised weighted norm of a vector or matrix. Then, the 

in h vehicle can be rewrdividual cost function il  associated with the i t itten as the following 

bounded cost function over the optimisation horizon ],[ 1 Tkkk tt +−
∗ ∈τ : 

22εε ˆˆ)ˆ,ˆ(
RiQiiii uxuxl +=  (5.42)
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and 
2

)|(ˆ())|(ˆ(
PkTkikTki

T
i ttxttxl ++ = εε  (5.43)

over the terminal period, where nnQ ×∈R , mmR ×∈R , and nnP ×∈R  are weighting matrices 

associated to the 2-norm. Problem (5.41) can then be rewritten as: 

222

)}(ˆ{, ˆmin:))(),((
tukikiTi xtxtxJ ∗ = ∫

) )|(ˆ()|(ˆ)|(
PkTki

t

t
kRkkiQkki ttxdtut

Tk

ki
+

∗∗∗ ++
+

εε τττ  

k

k

Subject to: ))|(,|(()|( kkikiikki tutxftx ∗∗∗ = τττ εε&  )
Ni ,,1K= ,    

,    
],[ 1 Tkkk tt +−

∗ ∈τ  

ikki ikkiXtx ∈∗ )|(τ Utu ∈)|(τ  

iji N∈),(  
0))|(),|((, ≤kkjkkiji txtxg ττ ,    ij N∈∀  
)()|( kkk txttx =  

)()|( ifkTk Xttx α∈+  

(5.44)

ion 3. (compatibility constraint) 

Problem (5.44) involves only the state and input variables of the th vehicle at time  and its 

neighbours’ assumed states from time . To ensure compatibility with the predicted  

Definit

i kt

1−t  plans

)(ˆ kj tx  of the j th neighbour at successive intervals and the transmitted plans of proceeding 

sampling times (i.e. assumed states of the i th agent )|(_ kkji tx τ) ), the following compatibility 

constraint is introduced to Problem (5.44): 

κττττ ≤−=⋅⇒≤ − )|(ˆ)|(:)(0))|(),|(( 1_,, kkikjijikkjkkiji txtxgtxtxg )  (5.45)

where ⋅  is the standard Euclidean norm. Constraint (5.45) enforces a degree of consistency 

between what a vehicle is actually doing and what neighbours believe that agent is doing 

between successive horizons. A similar compatibility constraint was defined in [267]. 

 Having defined the distributed optimal control problem for each vehicle in the flock, the 

 each vehi

ouring assumptions. Hence, 

main implementation algorithm is now introduced. 

Definition 4. (implementation algorithm) 

0. Initialisation: At time cle solves Problem (5.20) with initial state )( 1−tx  

independently from neighb

1−t ,

0)( 1 /=−tiN , Ni ,,1K=∀ . The 

assumed states are given by the empty set 0)( 1 /=−tx)  over the current h  orizon
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(i.e. ] ), Ni ,,1K∀ . By definition, the flock topology is described by a 

disconnected graph at initialisation, and the compatibility constraints are relaxed. 

The optimal control )|( 10 −
∗ ttui  is then applied Ni ,,1K

,[ 11 pHtt +−− =

=∀  over the proceeding 

horizon ],[ 000 Ttt +∈τ ; 

Following the in very prediction horitialisation stage, over e izon ],[ Tkkk tt +∈τ , each vehicle 

1. Solves Problem (5.44) using measurements of its current state  and the assumed 

urs

Ni ,,1K= : 

)( ki tx

states of its neighbo  )|( 1−kki tx τ) , ij N∈∀  to obtain the set of optimal trajectories 

 and control inputs kiu τ∗ ; 

Tk +

),(ˆ kki tx τ∗ )|(ˆ kt

2. Implements the first sample of )|(ˆ kki tu τ∗ , ,[ kk tt ] , i.e.: 

kk tτ , 

∈τ

)|(ˆ)( kkiki ttutu ∗∗ =  (5.46)
3. Transmits the associated state trajectories ˆix∗ )|( ],[ Tkkk tt +∈τ  to nei o

vehicles  plans 

ghb uring 

i  and receives thej N∈ )|( kki tx τ) , ],[ Tkkk tt +∈τ  of neighbouring 

vehicles ; 

d 

trajectory plans of neighbours kk t

ij N∈

4. Repeats steps 1 to 3 at time 1+kt , based on the new state information )( 1+ki tx , an

)|(ix τ) . 

By Definition 4, it is possible that at initialisation, the local objectives of a subset of 

vehicles in the flock  will be met over the prediction horizon VVv ll ⊆∈ ],[ 111 Ttt +−−− ∈τ  and 

t−− 11 atexx =)|(τ . Let Vv ∈  denote the subset of vehicles such thll ll  ilv N∉ , Ni∈∀ , il ≠ , 

then by application of )|(ˆ 11 −−
∗ ttul , vehicles ll Vv ∈  will reach and in at equilibrium for all 

future time. For a flock of vehicles, the distribution of vehicles in the group is bounded by an 

ellipsoid with radius 

 rema

R . By the dissipation of the structural energy (see Section 3.2.4), the 

distribution of vehicles converges tion, and the structural graph 

 

 to the flock lattice construc

topology is described by a connected graph. Therefore, the vehicles Vv ∈  will become all

neighbour of vehicle Ni∈  at some future time such that ilv N∈ . By the adjacency of 

vehicles and the connectivity of the information network, vehicles lv  and iv  exchange 

predicted plans. If iv  has not yet reached equilibrium e
ii xtx ≠−− )|( 11τ , then the predicted 
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plans of iv  serve to act as an input to the optimisation problem of lv . In proceeding 

optimisations, lv  accommodates for iv ’s predicted plans; it cannot be guaranteed that the 

decentralised optimal value function ))(~),((,Tl txtxJ ∗  decreases with each prediction kiki

horizon update. The mutual exchange of information via the communication network of the 

flock of vehicles naturally suggests that a consensus must be reached to achieve a stable 

equilibrium. In the following section, the stability of the decentralised model predictive 

scheme is investigated using the consensus protocols in more detail. 

5.4. STABILITY ANALYSIS 

In this section, the conditions that lead to stability of the individual vehicles are presented 

using Lyapunov arguments. The objective is to show that through the application of the 

decentralised model predictive control law in Equation (5.46), the closed-loop state )(tx  

converges to the neighbourhood of objective states ex . Without loss of generality, the value 

function )(, ⋅∗
TiJ  is treated as a candidate Lyapunov function. Before proceeding with the 

analysis, the following assumptions are made: 

Assumption 1. 

1. Ni∈∀ , the function nmn
if RRR →×:  in Equation (5.1) is twice continuously 

differentiable with 0)0,( =e
ii xf  and if  is stabilisable; 

2. f
iX  is control invariant, f

f
i XX ⊆ ; 

3. There exists a constant ),0(max ∞∈ρ  such that max)|( ρτ ≤−∗ e
kk xtx  and 

max)|(ˆ ρτ ≤− e
kk xtx , for all ],[ Tkkk tt +∈τ ; 

Following the standard arguments in [342], it is assumed that initial feasibility of the 

implementation in Equation (5.44) implies subsequent feasibility. Therefore, it is sufficient to 

prove that only ))(( kT txJ ∗  decreases. The following lemma provides a bound on the decrease 

of ))(( 1+
∗

kT txJ : 
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Lemma 2. (bounded candidate function) 

))(),(( 11, ++
∗

kikiTi txtxJ )  is a valid Lyapunov function and the state of the closed-loop system 

converges to the origin; i.e. 0)(lim =∞→ kt tx
k

. 

oof. 

The proof follows from Lyapunov arguments, close in spirit to the arguments of [270, 341, 

344].  

For any kt , the collective decentralised value function for the flock of vehicles is given by: 

Pr

2

1

22
)|(ˆ()|(ˆ)|(ˆ:))(),((

PkTki

t

t

N

i
kRkkiQkkikkT ttxdtutxtxtxJ

Tk

k

+
=

∗∗∗∗ ++= ∫ ∑
+

εε τττ)  (5.47)

Applying the optimal control in Equation (5.46) to Equation (5.47), takes the system to time 

und is constructed by considering a feasible and 

e p ceeding prediction interval 

11 Tkk t +++

1+kt  with states )( 1+ktxε . An upper bo

suboptimal solution to Problem (5.47) for vehicle iv , over th ro

, Ni∈∀ . For vehicle  the state update is bounded by: iv ,[1k t+ ∈τ ],

2

11 )|(ˆ( kTki ttx ++++ εL

For all Ni∈ , the upper bound for the collective optimal value fu ))(), 11 ++ kk txt

1

2

11

2

11

2,

)|(ˆ)|(ˆ

)|(ˆ(
1

1

1

P

k
t

RkkiQkki dtutx

ttx
k

k

k

∗
++

∗
+

∗
+

∗

+≤

+

∫
+

+

+

ε

ε

τττ L

L
(5.48)

nction ((∗T xJ

1

2

11

2

11
,

11, )|(ˆ)|(ˆ:))(),((
1

k

t

t
RkkiQkkikikiTi dtutxtxtxJ

Tk
∗
++

∗
+

∗
+

∗
+

∗
++

∗ += ∫
++

ε τττ L
)

11

t
Pkki

T

+++

+
 

T

+

 )  is 

then given by: 

2
)|(ˆ(

1

ttx

k

+

+

εL 11

1
1

2

11

2

1111 )|(ˆ)|(ˆ))(),((

PkTki

k
t i

RkkiQkikkT dtutxtxtxJ

+++

∗
+

=
+

∗
++

∗
+++

∗ +≤ ∫ ∑ ε τττ L
)

 

1t NTk ++

k

L≤− ∗
+

∗ ))(())(( 1 kTkT txJtxJ  

LL ∗
+

=
+

∗
++

∗
+∫ ∑

++

+

+ 1
1

2

11

2

11

1

1

)|(ˆ)|(ˆ k

t

t

N

i
RkkiQkki dtutx

Tk

k

τττε  

(5.49)
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LL ∗

=

∗∗∗∗∫ ∑
+

+− k

t

t

N

i
RkkiQkki dtutx

Tk

k

τττε

1

22, )|(ˆ)|(ˆ  

∑∑
=

+
∗

=
+++ −+

N

i
PkTki

N

i
PkTki ttxttx

1

2,

1

2

11 )|(ˆ()|(ˆ( εεL  

It follows that if inequality (5.49) holds, then , and ))(())(( 1 kTkT txJtxJ ∗
+

∗ ≤

))(),(( 11, ++
∗

kikiTi txtxJ )  is a positive non-decreasing function along the closed-loop trajectories. 

 

 for all  Equation (5.49) is sufficient to ensure that the state of 

Furthermore, since )(⋅TJ  is lower bounded by zero and the trajectories initialised at∗

ii Xx ∈)0(  remain in iX 0≥kt ,

the closed loop system converges to zero as ∞→kt  [265].  

 Befo  prore ceeding with the main results of this introduction, the following assumptions and 

definitions are made. 

Assumption 2. (terminal state) 

The assumed state )|( 11_ −+− kTkji ttx)  of the j th neighbour of vehicle iv  remains invariant over 

the terminal period T  for all ij N∈ at time kt . 

 Following Assumption 2, the terminal constraint of Problem (5.44) is given by: 

Definition 5. (terminal cost) 

The terminal constraint for Problem (5.44) using the average-valued consensus is given by: 

2
)()|(ˆ

Pk
e
ikTki

T
i txttxl −= +  (5.50)

where 

∑
=

o the average consensus) 

 decreases over successive sampling periods

−+−=
i

j
kTkji

i
k

e
i ttxtx

N

N 1
11_ )|(1)( )  (5.51)

Theorem 1. (convergence t

)(⋅∗
TJ  toward a closed neighbourhood of the 

objective state by the bound: 

[ ]κρmκ +≤

−
+
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 (5.52)
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Proof. 

By Definition 4, the prediction intervals of successive optimal state and control trajectories 

 state and control 

trajectories at any sampling period  can be given as  

1 kkik tu ∗∗
+ = τ  r

in

overlap at successive sampling periods. Therefore, the predicted

1+kt |()|(ˆ 1 kkikki txtx ∗∗
+

∗ = ττ

)|()

)  and

|(ˆ ki tu ∗τ espectively over the interval ],[ 1 Tkkk tt ++
∗ ∈τ . Consequently, the 

equality in Equation (5.49) can be simplified and written as: 
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 (5.53)

where ],[ 1 TkTkk tt +++
+ ∈τ , and e

i
e
jij xxd −= . From Definition 2, and the connectivity of the 

information network )(xG , )(Ave xxx e
i

e
j ==  and 0=ijd  for ij N∈∀  ji ≠ . Hence, the 

average-valued consensus complies with the invariance properties of the consensus protocol 

and the inequality in Equation (5.53). By the properties of Lemma 1, the sum of the last three 

terms in the inequality above is non-positive, and the inequality holds after removal of these 

terms. Hence: 
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 (5.54)

 th ality: Using e triangle inequ

222

ppp
βαβα +≤−  (5.55)

Equation (5.54) becomes: 
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 (5.56)

where the inequality has been replaced by a summand of three norms. The first norm 

corresponds to the initial point and is trivial for analysis. 
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 From the compatibility constraint in Equation (5.45) and the bounded constraint in 

Assumption 1, the following bounds are introduced κττ ≤− ∗
−

∗ )|(ˆ)|( 1_ kkjkkji txtx) ,  

max)|( ρτ ≤−∗∗ e
ikki xtx , and max)|(ˆ ρτ ≤−∗ e

jkkj xtx  to Equation (5.56): 
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Using the bound in Equation (5.57), the integrated expression in Equation (5.54) becomes: 

[ ]κρκ
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kQijkkjkkiQijkkjkki ddtxtxdtxtx

N  (5.58)

where κ  is the compatibility constraint given by Equation (5.45).  

Equation (5.58) provides a bounding result on the decrease in  from one update to the 

next. The value 

)(⋅∗
TJ

maxρ  and κ  are new optimisation variables. In the proceeding section, the 

transient response of the cooperative control scheme is discussed.  

5.5. TRANSIENT RESPONSE OF THE COOPERATIVE CONTROL SCHEME 

By considering the centralised cost function in Equation (5.5) as a cooperative control 

objective, and the solutions to Problem (5.9) as the coordination variables of the cooperative 

task, the decentralised model predictive control strategy presented in Section 5.3, provides 

the cooperative control framework to coordinate the actions of a group of vehicles and 

resolve the cooperative task. Coordination is achieved by exchanging information between 

vehicles in the group, and reaching a consensus on the coordination variable. In this case, the 

information is the plans of the vehicles over successive prediction horizons, and represents 

partial solutions to the cooperative objective. 

Information consensus for a time-invariant and a time-varying network was investigated in 

Chapter 1. It was shown for a time-invariant network, that a connected group of vehicles will 

asymptotically reach a consensus on the information state at a rate equal to the Fiedler 

eigenvalue of the graph Laplacian. A similar discussion was also presented for the time-

varying network topology described by a hybrid autonomous equation. In both cases, the 
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information flow was modelled using a first-order differential equation, and assumed 

continuous information exchange. Since the information exchange of the decentralised model 

predictive control strategy is also assumed continuous, then it would be expected that the 

convergence of the coordination variable would reflect the behaviour of the time-invariant or 

time-varying network model. For the decentralised model predictive control strategy 

however, the information state represents a partial solution to the cooperative objective, and 

evolves according to the solution space of the optimisation problem in Equation (5.41). 

Nonetheless, assuming a Lyapunov value function for the cost objective, the information state 

will demonstrate asymptotic convergence. This presumption is based on the Lyapunov 

arguments in Section 5.4. The rate at which the coordination variable reaches consensus, is 

then dependent on the convergence of the information state. This is directly related to the 

quality of the solution found over each horizon. 

In the unconstrained case of the receding horizon problem, the information state (plans over 

the proceeding horizon) of each vehicle is permitted to converge to the optimum value at 

each sampling period. Since the information is localised to each ve  the plans 

generated by each vehicle are optimal only for th t vehicle. Conflicts occur when the plans 

optimised for one vehicle, do not complement the plans optimised for a neighbouring vehicle. 

By considering the plans of neighbouring vehicles at each sampling period, the vehicles can 

coordinate their actions to reach a consensus. If the optimal plans generated by neighbouring 

vehicles at successive sampling periods are not constrained, and are permitted to deviate 

excessively from the previous sampling period, then it would be expected that the 

decentralised model predictive controller would demonstrate poor convergence as the 

vehicles attempt to compensate for the mismatch between the previous plans and the new 

plans of their neighbours. For this reason, the compatibility constraint 

hicle, then

a

κ  was introduced to 

Problem (5.41) to mitigate the information mismatch between previously transmitted plans 

and newly developed plans at each horizon. 

Whilst the compatibility constraint can be used to minimise oscillations about the 

equilibrium and improve the convergence of the coordination variable, it can also reduce the 

ised model predictive control strategy. Consider the case when transient response of decentral

κ  is small. Then, the permitted deviation of successive plans will also be small at 

consecutive updates. This results in a sluggish transient response. Despite this, the system 

will eventually reach a consensus based on the stability properties of the Lyapunov function. 

On the other hand, by relaxing the compatibility constraint and permitting large deviations 
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between successive updates, the convergence of the system would be characterised by 

oscillations about the consensus point as vehicles attempt to reach a consensus on irrelevant 

and obsolete information. The effect of the compatibility constraint is now stated formally: 

Theorem 2. (bound on optimal state) 

The th iteration deviates at most from the original plan by S κS . 

Proof. 

The proof can be found by applying the compatibility constraint recursively over successive 

updates. From Equation (5.45), the compatibility constraint is given by: 

κττ ≤−− )|(ˆ)|( ^
,1

^
,_ kikikjkij txtx)  (5.59)

where , and . In addition, the following assumption 

holds:  
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That is, the assumed state trajectories of vehicle y theiv  b  j th neighbour at time , is the 

vehicle  at time 

k

predicted state of  iv 1−k . Consider the interval  for which the 

optimisation problem is defined in Equation (5.41). Then for , the following 

+−1

],[ 1 Tkkk tt +−
∗ ∈τ

1=k

compatibility constraint is observed for the terminal value t : Tk

κ≤− )|(ˆ)|( 10_ ttxttx TiTij
)  (5.61)
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 (5.62)

Summing both sides of the inequalities yields: 

κSttxttx
S

k
kTkikTkij ≤−∑

=
+−−+−

1
111_ )|(ˆ)|()  (5.63)

and from the triangle inequality: 

κSttxttx STSiTSij ≤− +−+− )|(ˆ)|( 101_
)  (5.64)
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Hence, after the th update, the current state deviates from the original optimal state by at 

most 

S

κS .  

 solution at , is proportionally constrained to the 

quality of the original solution obtained at 

 1>k

1=k

 From Theorem 2, the quality of the

 and is proportional to the sampling rate of 

the information exchange between neighbouring vehicles. The effect of this constraint is 

similar to a step-size discretisation in a digital controller. By increasing the sampling rate of 

the information exchange, the transient response of the system would be expected to 

demonstrate poor convergence. In contrast, decreasing the sampling rate would lead to 

‘sluggish’ transient behaviour. This is demonstrated by the numerical example in Section 5.6.  

The introduction of the compatibility constraint effectively diminishes the model predictive 

control scheme’s ability to handle uncertainty and changes to the operating conditions. 

Nonetheless, the compatibility constraint is necessary to promote coherence in the shared 

information and coordinate the actions of the individuals. By carefully selecting parameter κ  

at design-time, the compatibility constraint can be tolerated to provide a good balance 

between the transient response of the system, and the convergence of the solution. In the 

following section, the transient response of the cooperative control scheme is demonstrated 

for the consensus problem. 

5.6. NUMERICAL EXAMPLE: TRANSIENT RESPONSE OF THE 

COOPERATIVE CONTROL SCHEME 

Consider the consensus problem for 4=N  agents with information state R∈ix , control 

input R∈iu , and dynamics given by: 

)()()( tuBtxAtx iiiii +=& , 

where ⎥
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(5.65)

Given the initial distribution of information for the group of agents: 

x )0( T]106.63.30[=  
(5.66)

where 

Tx ]0000[)0( =&  
Txxxxx ],,,[ 4321= , Txxxxx ],,,[ 4321 &&&&& = , the objective is to achieve consensus on the 

information state x . The consensus protocol given in Equation (2.19) produces the following 

cost function for the cooperative control problem from Equation (5.41): 

∑
∈ i

−
∗

−
∗∗ −=

j
kkikkjkki txtxtx

N
)|(ˆ)|(ˆ)|(ˆ 11 τττε  (5.67)
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Problem (5.41) is solved by applying the decentralised control scheme in Definition 4. For 

the following simulation, sT 6.3= , and }0.1000.1001.0001.0{=κ . Figure 5-8 shows 

the transient response for the cooperative decentralised model predictive scheme for each 

value of κ . For comparison, the consensus protocol cs given in Equation (2.20) with dynami

is included in Figure 5-8. This is shown by the broken lines in Figure 5-8 for the 

corresponding vehicle. The convergence of the disagreement vector δ  for the cooperative 

decentralised model predictive control scheme is shown in Figure 5-9 and is compared to the 

solution obtained from the dynamics of Equation (2.20). From Figure 5-8, the compatibility 

constraint influences the transient response and the convergence of the system to the average 

value. For 0>>κ , the information state rapidly converges towards the average value, but 

fails to settle on the equilibrium. On the other hand, for 0<<κ , the compatibility constraint 

limits the divergence of S  successive plans by κS , and acts to dampen the oscillations 

induced by achieving a consensus with neighbouring agents (shown in Figure 5-10). The 

compromise for this asymptotic behaviour is a sluggish transient response. 

5

represented by the coupling of obj centralised objective function. 

A cooperative control schem a traditional model 

predictive control strategy. This was done to exploit the predictive nature of MPC to develop 

plans that could be exchange is allowed th hicles to negotiate on new plans and arrive 

nsensus on the coordination le o

information consensus, flocking, group tracking, and decentralised model predictive control 

ar unified into a sing la l u

 

.7. SUMMARY 

In this chapter, the problem of cooperative control for a group of agents was addressed by 

formulating the cooperative control problem as an optimisation problem. Cooperation was 

ectives and constraints in the 

e was then created by decentralising 

d. Th e ve

at a co variab . In the proceeding chapter, the concepts f 

e u r and robust design methodology for cooperative contro for a gro p 

of vehicles. 
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Figure 5-8. The effect of the compatibility constraint on the transient response of the cooperative decentralised 
model predictive control scheme. 
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Figure 5-9. Effect of the compatibility constraint on the convergence of the disagreement vector for the 
consensus problem. 
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Figure 5-10. Divergence of predicted trajectories over successive prediction horizons. 
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Chapter 6. Application 

In this chapter, the cooperative decentralised model predictive control scheme presented in 

the previous chapter is applied to a group of autonomous vehicles. The scheme is 

implemented locally on each vehicle and is used to coordinate the actions of the vehicles 

towards the group objective. A switching network using the finite interaction range in 

Chapter 2 is used to describe the underlying communication graph topology for the 

coordination scheme. The group cooperative objective is defined using the shape and group 

abstractions described in Chapter 4. Controlling the group of vehicles involves two levels of 

control. At the supervisory level, the optimal motions of the group, and the desired shape 

spanned by the vehicles is evaluated using the strategies described in Chapter 4. These are 

then transmitted to the individual vehicles to define a group objective. The cooperative 

control problem is then solved dynamically online at the local vehicle level using the 

cooperative decentralised model predictive control scheme. Using only local information, 

 prediction horizon and evaluates the effect of 

 at the local vehicle is

i er 3. These represent e

h the g o e  d ed 

optimisation problem for each vehicle. Here, the role of the decentralised model predictive 

control strategy is to arbitrate between the local vehicle levels nd the group coop  

ves to demonstrate a practical implementation of the strategies developed 

thus far and is organised as follows. A description of the system and the centralised 

cooperative objective is described in Section 6.1. The desired motion and shape of the group, 

as prescribed by the supervisory controller, is described in Section 6.2. Decomposition of the 

tasks of the individual vehicles is then presented in Section 6.3 before the decomposition of 

each vehicle develops a set of plans over a

these plans on the cooperative objective. Plans are exchanged between neighbouring vehicles 

at successive sampling periods to coordinate the behaviour of the vehicles and achieve a 

consensus on the group’s actions. Cohesion of the group level  

addressed using the flock protocols descr bed in Chapt the local v hicle 

objectives and are combined wit roup’s cooperative bjectiv  to formulate a istribut

a erative

objectives, and provide the mapping from the precision of the local flock protocol, to the 

generalised group abstractions. 

This chapter ser
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the centralised cooperative objective for each vehicle is presented in Section 6.4. Numerical 

experiments are then presented in Section 6.5 to demonstrate the effectiveness of the 

proposed cooperative control scheme before Section 6.6 concludes with final remarks. 

6.1. SYSTEM IMPLEMENTATION 

The advancement of sensor technologies and small-scale robotics has seen a growing interest 

in the development of unmanned aerial vehicles for surveillance, reconnaissance, and 

intelligence operations.  Unmanned sensory platforms can be used in lieu of dedicated 

manned vehicles for dangerous or repetitive operations.  Recent developments in small-scale 

and inexpensive UAVs present an opportunity to develop teams of UAVs for cooperative 

sensing and imaging tasks and modalities.  Groups of UAVs can be used to produce dynamic 

and spatiotemporal sensor networks.  Search and rescue operations using spatially distributed

rage time over a region of interest. 

by the recent interest in mobile sensory platforms, the strategies discussed in the 

 

sensory networks can be used to greatly improve the cove

Motivated 

previous chapters are applied to a group of UAVs for cooperative sensor coverage. 

Consider N  vehicles deployed in a search region χ  of known dimension. The objective is 

to cooperatively stabilise the group into a cohesive flock that maximises the sensory footprint 

of the collective system. As the flock moves around the search region, sensory information 

about the environment is collected; reducing the uncertainty of the environment. Each vehicle 

iv , Ni ,,1K=  is assumed to have decoupled dynamics given by: 

)()()( tuBtxAtx iiiii +=& ,   0≥t , 

and ⎥
⎦

⎤
⎢
⎣

⎡
=

00
0 n

i

I
A ,    ⎥

⎦

⎤
⎢
⎣

⎡
=

n
i I

B
0

 
(6.1)

where n
iiii Xtqtqtx 2))(),(()( R=∈= & , and )(tui  are the state and control inputs of vehicle 

iv , n
ii Qtq R=∈)( , n

iqi QTtq R=∈)(& , n
i tu R∈)(  are the configuration and control 

manifolds, and nI  is the n -dimensional identity matrix. Each vehicle is also subject to the 

following input constraints: 

ii Uu ∈  (6.2)
Concatenating vehicles states, the following nN2 -dimensional control system is obtained for 

the collective group: 

)()()( tButAxtx +=& ,   0≥t , 
and ),,(diag 1 NAAA K= , ),,(diag 1 NBBB K=  (6.3)
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with qQTQTq R==∈nNN

i iQQq R==∈ ∏=1
, nNN

i iq ∏=1
& UUu R==∈, nNN

i i∏=1

supervisory level by commanding the position and orientation of the centroid O′  of the flock 

of vehicles, and the shape spanned by the 

. 

The group of vehicles with dynamics given in Equation (6.3) can be controlled at the 

configuration of vehicles in the fram  fixed to 

owing definit

Definition 2. (Shape Abstraction) 

The shape spanned by the group of vehicles in the flock is identified by the shape variable 

 

Definition 3. (Group Abstraction) 

The pose abstraction and the shape abstraction together define the group’s abstract variable 

e }{M

the centroid O′ . This leads to the foll ions derived from the concepts introduced 

in Chapter 4: 

Definition 1. (Pose Abstraction) 

If G  is a Lie group, then Gg ∈  defines the gross position and orientation of the flock of 

vehicles in the world frame }{F , and  is referred to as the group variable. 

Ss∈ . 

Α∈= ),( sgα  on the group manifold Α . 

The group abstraction α  provides a mapping from the configuration space Q  to the lower 

dimensional manifold Α  that captures the group’s be  The group abstraction haviours. α  is 

invariant to the number and ordering of vehicles in the flock. For a group of vehicles with 

configuration Qq∈  in the local frame }{M , the moti n of the grou arameterised by time 

t  in an arbitrary n -dimensional Special Euclidean space )(nSE , is described by

o p p

 th ir e pa

)())(),(()( nSEtdtRt ∈= , where: g

⎭
⎬
⎫

⎩
⎨
⎧

∈==∈⎥
⎦

⎤
⎢
⎣

⎡
== × n

n
Tnn dIRRR

dR
ggnSE RRR ,det,,,

10
)(  (6.4)

where d  i

I

s given by the centroid of the flock as described in Section 4.2.1, and given by: 
N

qqd R∈== ∑1: n  (6.5)
i

iN
and R  is the rotational component of the flock. To consider the rotation and shape of the 

flock, the concept of the virtual agent from Section 4.11 is re-introduced.  
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Definition 4. (virtual agent) 

The virtual agents c
iv , 2,1=i , is the pair ),( 21

cc vv  of controllable antipodal points located on 

the surface of an n -sphere. 

Denoting nc
i

c
i

c
i

c
i Xtqtqtx 2))(),(()( R=∈= &  the states of the i th virtual agent, 2,1=i , then 

the n -sphere bounded by the pair ),( 21
cc vv  is given by: 

{ }ccccnn qqqqdqdqq 122
1 ,,: −−≤−−∈= RS  (6.6)

where Equation (6.6) is a bounding on the shape spanned
12

 by the group of vehicles

rtual agents represent the shape 

∈),,( K ,    

 Ni ,,1K=  

in the local frame }{M . Therefore, the positions of the vi

variable Ss∈  used to control the group of vehicles; i.e.: 

s = cnNc
i

c
i Rqq cNi ,,1K= ,    NNc <  (6.7)

)2(SOR∈  for 2=n  is given by:  Following Definition 4., the rotational part 

0yx
1

=∑
=

i

cN

i

cc ,    2,1=i cN  (6.8)

where 2)y,x( R∈= c
i

c
i

c
iq . Simila 3rly, the rotational part for =n , )3(SOR∈  is given by the 

following equation: 

cccccc === ∑∑∑
ccc NNN

,    0zyzxyx 2,1=
1

ii
1

ii
1

ii
=== iii

c (6.9)

where 3)z,y,x( R∈= c
i

c
i

c
i

c
iq . 

The rotation

N  

 R  defined by Equation (6.8) or Equation (6.9) can be seen as the rotation 

diagonalising the inertia tensor of the system of virtual agents with respect to the centre and 

orient e  [210]. The dimension of the abstract space  is 

the  (assuming ) independent of the number of vehicles in the flock. 

Equation (6.4) and Equation (6.7) define the abstract state 

ation in the fram }{F cnNnSE R×)( ,

refore n +2 cnN NNc <

),( sg=α  of the group that can be 

controlled by the supervisory agent. It is assumed that this information is calculated offline 

and transmitted to the vehicles prior to dep ent. Figure 6-1 shows the implementation 

architecture for navigating the group of vehicles using the abstract state 

loym

α . In the proceeding 

section, calculation of the group abstract state α  is presented for coverage control. 
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Figure 6-1. Implementation of the cooperative decentralised model predictive control scheme for a group 
of vehicles. 

6.2. MOTION GENERATION AND SHAPE EVOLUTION 

The problem of interes t uce the un a  of the enviro ent by navigating a flock 

is inspired by the parallel 

sweep trajectory presented in [345] (see Figure 6-2). 

t is o red cert inty nm

of vehicles through the environment. The trajectory used here 

Sqqs cc ∈= ),( 21  

q1  

q2  

c

c

}{M
 

nS  
GtdtRtg ∈= ))(),(()(  

χ  

 
Figure 6-2. Sweep trajectory for coverage control. 
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 From Figure 6-2, the sweep trajectory is piecewise continuous and consists of 7 trajectory 

primitives – 4 straight line and 3 semi-circular segments. Borrowing the notation of [346], a 

trajectory primitive is given by ))(),((],0[: tqtqT iiii &aπ . Two trajectory pri  

0 1 qa

mitives

))(),(,[: 111 tqtT &(]π , and ))(),((],0[: 2222 tqtqT &aπ  are compatible 21 ππ C  if there 

exists Gg ∈12  such that ))0(,()( 21211 xgTx Ψ= , where C  is a compatibility  [346]. If   relation

21 ππ C , the concatenation 1π  and 2π  is defined as QTQTT q×→+ ],0[:2 211ππ , with: 

(),(( 1

122212

11
21

Tt
TtqTtqg

tqtq ≤

⎩
⎨
⎧

−−Ψ
=

&

&
ππ  (6.10)

 in Figure 6-2 are considered for the 

 

otherwise
 if

)),()),(,((
)),

where QQG →×:  is left action of the group G  on the state manifold Q . For 

convenience, only the first trajectory primitives shown

Ψ

motion generation problem (see Figure 6-3).

5

-10 -5 0 5 10 15 20 25 30
-15
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-5

0

1 2 

y 
(p

os
)

3 4 

x (pos)
 

Figure 6-3. Trajectory segments of the parallel sweep trajectory. 

Remark. 

While the strategy described above reduces the uncertainty of the environment, constraining 

stributed nature 

of the mobile sensors. Vehicles are constrained to maintain a fixed inter-vehicle distance, and 

motion of each vehicle is dictated by the consensus of the flock. By allocating the vehicles to 

of optimally distributing 

mobile sensors in the environment, is known as the coverage control problem, and has been 

the motion of the vehicles to a flock configuration, inefficiently exploits the di

a region of the search space and relaxing the constraints induced by the flock lattice, the 

efficiency of the search can be drastically improved. The problem 

 151 



 

investigated extensively in the literature [67, 90, 95, 98, 347-349]. Various search strategies 

strated exceptional performance with 

respect to a performance criterion, such as minimum energy, minimum completion, minimum 

uncertainty etc. In this chapter, the optimality of search strategy is of trivial concern. Rather, 

the purpose of this chapter is to demonstrate cooperative control strategies for a group of 

vehicles.  

have been proposed in the literature that have demon

6.3. TASK DECOMPOSITION OF THE COOPERATIVE CONTROL 

PROBLEM 

The cooperative objective for the group of vehicles is represented using the cost function in 

Equation (5.5): 

∑=
N

iiiii uxuxluxl )~,~,,(),(  (6.1
=

1)
i 1

where  }),(|{~ Eijxx jn
ji ∈∈= R , in

ix
~~ R∈ , im

iu
~~ R∈  are the set of state and control inputs for 

neighbours jv , ij N∈∀ , and  RRRRR →××× iiii mnmn
il

~~
:  is a positive convex function 

describing the objectives of vehicle iv , such that 0)~,~,,( =e
i

e
i

e
i

e
ii uxuxl  is an equilibrium. 

 The individual objective functions )~,~,,( iiiii uxuxl  are constructed using the decomposition 

of tasks. Each vehicle in the grou ubject to a local vehicle objective, and a group 

cooperative objective. At th e of each vehicle is to stabilise to 

a position in the local frame co  Stabilisation of the flock 

lattice in the local frame is achie sing the structural energy and velocity 

mismatch in Section 3.2.4. Following the derivation in 3.2.4, the energy of a vehicle with 

neighbourhood  is given by: 

p is s

e local vehicle level, the objectiv

rresponding to the flock lattice.

ved by minimi

iN

∑∑
∈∈ ii jj NN

−⋅−Φ= ijijijiii qqqqxxE )())(() +~,( &&nρφ  (6.12)

 is the unit vector along thwhere ij e edge connecting vehicle  to vehicle 

Equation (6.12) defines a cost function for local vehicle flocking: 

n iv jv . 

∑ ∑
∈

−+⋅−=
ij

ijijijiiii qqqqxxl
N

E )())(
∈

Φ=
ij

ii
f xx

N
()~,(:)~,( &&n  (6.13)

The convergence of a group of vehicles to the flock lattice describes a semi-rigid body model 

(see Section 4.11). The semi-rigid body model provides a means of coupling the vehicles and 

defining a group level behaviour using the abstract state ),( sg

ρφ

=α  described in the previous 

section. The objective of the group, using the abstract state ),( sg=α , is to navigate the flock 
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of vehicles through the environment from an arbitrary initial position and orientation 

))0(),0(()0( dRg =  with shape , to a final desired position and orientation 

e

itigat

)0(s

))1(),1(()1( dRg =  with shape )1(s . This corresponds to the set of motion primitives in 

Section 6.2 describing the parallel sweep traj ctory.  

By choosing the motion of the centre of the virtual agents in Equation (6.5) as the reference 

trajectory for the flock of vehicles to navigate, the group task is reduced to tracking at the 

individual vehicle level. The tracking cost function for the i th vehicle is then defined as 

follows: 

)(:),( dqgxl c
ii

t
i −= φ  (6.14)

Equation (6.14) specifies the group cooperative objective, and the navigational feedback in 

Equation (3.51) that m es flock dissociation. 

 The last part of the cooperative objective is to stabilise the flock to the virtual structure 

defined by the virtual agents in Equation (4.122). Since the virtual structure constrains the 

position of vehicles in the flock to remain inside the n -sphere defined by ),( 21
cc qq , the 

group’s compliance to the virtual structure is given by a constraint on the cooperative 

objective; i.e.: 
cc qqqq 12 −≤−  (6.15)

Since the positions of the virtua ts are time-varying, then the constraints in Equation 

(6.15) are also time-varying, and the shape of the flock is permitted to transform. In the next 

section, the optimal control problem for the group of vehicles is formulated for the 

centralised and decentralised implementation strategies. 

6.4. THE COOPERATIVE CONTROL PROBLEM 

Combining Equation (6.13) and Equation (6.14), the following objective function is defined 

for the i th vehicle: 

)()())((:)

i

l agen

~,~,,( dqcqqcqqcuxuxl c −⋅+−⋅+⋅−Φ⋅= 321 i
j

ijij
j

ij
ii

∑∑ φφ &&n  
∈∈

ρ
NN

(6.16)

 have been introduced to weight the relative importance of each 

t

iiiii

0,, 321 ≥cccwhere the terms 

behaviour. The centralised cooperative objective for the collective group is hen recovered by 

summing Equation (6.16) along Ni ,,1K= : 

∑
=

=
N

i
iiiii uxuxluxl

1
)~,~,,(),(  (6.17)
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Following the notation introduced in Chapter 5 for the cooperative decentralised model 

predictive control strategy, the cooperative control problem for the i th vehicle in the flock is 

given by: 

( )
t Tk

k
t

kkikkikkiitukikiTi

k
ki )}(ˆ{,

Subject to: )|()|()|( kkiikkiikki tuBtxAtx ∗∗∗ += τττ&  
Ni ,,1K

dtxtutxltxtxJ ττττ∫
+

= )|(),|(ˆ),|(ˆmin:))(),((  ∗∗∗∗ ))

= ,    ],[ 1 Tkkk tt +−
∗ ∈τ  

ikki Xtx ∈∗ )|(τ ,    ikki Utu ∈∗ )|(τ  

iji N∈),(  
κττ ≤− ∗

−
∗ )|(ˆ)|( 1_ kkjkji txtx) ,    ij N∈∀  

)|()|()|()|(ˆ 12 kk
c

kk
c

kkkki tqtqtdtx ττττ −≤− ∗∗  

)()|( kikki txttx =  

Tki tx fk Xt ∈+ |(

(6.18)

)  
At each sampling period , vehicle  solves Problem (6.18) using the group information 

 from the supervisory controller, the predicted states of  its 

kt iv

))|(),|(()|( kkkkkk tstgt ∗∗∗ = τττα

neighbours )( ki tx)  over the proceeding horizon ],[ Tkkk tt +∈τ , its current state , and the 

set of predic ates transmitted to its neighbours at the previous sampling period (assumed 

states 

)( ki tx

ted st

)(_ kji tx) ). For the following, the neighbours  of a vehicle  are given by the ball 

bounded by the sensory and communication range : 

jv iv

ir

}:{ iijji rqqNv ≤−⊆=N  (6.19)
The neighbourhood in Equation (6.19) defines the information exchange topology for vehicle 

 with configuration graph , and connectivity iv ),( iii EG N }:),({: ijjii vvveE N∈== . Given 

the cooperative control problem described above, the d e 

for the th vehicle is given by Definition 4 in Chapter 5. In the following section, a 

simu f the -vehicle cooperative problem is presented. 

6.5. NUMERICAL EXAMPLE 

For the following simulation, a flock size of 

ecentralised implementation schem

i

lation o N

6=N  is used for the cooperative coverage 

control problem. The dimension of the position vector for each vehicle is  and the 

group configuration is initialised along the line given by: 

2=n
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⎥
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⎢
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⎡
=

0
3

)0(1q ,    ,    ,    ,    ,    
(6.20)

Each vehicle is subject to the following control input constraints: 

(6.21)
and neighbourhood region: 

⎥
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⎤
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⎡
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2

)0(2q ⎥
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0
2

)0(5q
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⎣

⎡−
=

0
3

)0(6q  

}2,1,11:),{( 2
21 =≤≤−∈= juuuU ji R  

2.1:{ ≤−⊆= ijji qqNvN  (6.22)

The group objective is to track the parallel sweep trajectory shown in Figure 6-3 

The parallel sw ctory is decomposed into 4 trajectory primitives

6-3. The reference trajectory parameterised by time  for the centroid of the flock 

 is given by 

4),( R∈dd & . 

eep traje  as shown in Figure 

t
4),( R∈dd &

),40[
]40,30[
]30,20[

]20,0[

),10,60(
),10,40(

)10,20(
),0,(

)(
2
1

2
1

2
1

2
1
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∈
∈
∈

⎪
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⎩

⎪
⎪
⎨

⎧

−+−
+−+−

+−+
=

t
t
t
t

t
tt

tt
t

td  (6.23)

Note, the motion primitives described by Equation (6.23) correspond to the minimum-energy 

geodesics described in Section (4.71). Using the geodesics in Equation (6.23), the desired 

shape abstractions for the group are constructed. 

 Given the initial distribution of vehicles in Equation (6.20), the initial shape is bounded by 

the disk: 

}}max{:{)0( 22
iqqqqq −≤−∈= RS  (6.24)

In this case, the radius of the initial disk , is )0(2S 5.10 =R . From Equation (3.48), the 

group of vehicles applying Protocol (3.34), converges to the region bounded by 

))0(~),0((2 pqR H= . This provides the final shape of the flock lattice. The shape control 

problem for the group involves solving the two-point boundary value problem of two 

antipodal points on the initial disk to the final disk: 

}))0(),0((2:{)1( 22 qqqqq &H≤−∈= RS  (6.25)
Let  denote the concatenated states of the virtual agents. The boundary 

conditions for the virtual agents for each trajectory segment are given by: 

4R∈cq , 4R∈cq&
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where 
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R  is the shape spanned by the flock lattice described in Table 6-1 and solved using 

Equation (3.23), Equation (3.24), and Equation (6.25). 
Table 6-1. Flock parameters for shape evolution. 

10 ijd  
rrr ji ==  12 

δ  r5.0  
 

The interpolating motions for the virtual agents that yield the shape state , is obtained 

by solving the set of geodesic equations in Equation (4.46). To solve the geodesic equations 

in Equation (4.46), the set of Christoffel symbols for each trajector  must be 

calculated. Assume that the set of virtual agents are identical with ma , and 

ollowing 

metric is considered for the minimum energy case: 

Sts ∈)(

y primitive

sses mm == 21 m

that the body-fixed frame of each agent is aligned with the principal axis. The f
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M  (6.27)

The projection basis from Equation (4.114) and Equation (4.116) using the virtual agents’ 

coordinates is given by: 
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Expanding Equation (6.27) along the rigid and semi-rigid projections yields: 

(6.29)

To solve the boundary value problem for the shape state, define the following shape control 

variables for each segment of the trajectory as shown in Figure 6-4: 
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Figure 6-4. Desired shape evolution for the group of vehicles. 

(6.30)

From Equation (4.34), Equation (6.28), and Equation (6.29) the 64 Christoffel symbols for 

the motion of the two virtual agents are obtained (see Appendix B). Using Equation (4.46) 

and the Christoffel Symbols in Appendix A, the interpolating motions for the shape state for 

each motion primitive are calculated using a finite-difference method with 100 grid points 

[330] in MATLAB. Figure 6-4 shows the corresponding desired motions of the shape 

evolution for the collective flock. The paths traced out by the virtual agents provide the 

constraints on the cooperative decentralised model predictive problem in Equation (6.18). 

 For comparison, the centralised model predictive control scheme described in Section 5.1 is 

applied to the group of vehicles. In this scheme, a centralised feedback control architecture is 

used to solve the motion planning and shape evolution problem described in Equation (6.16). 

Following the im eme in Section 5.1.2 and Section 5.1.3, the centralised 

.16) 

is given by: 

),40[
]40,30[
]30,20[

]20,0[

99.0
99.0
99.0
5.0

)(

∞∈
∈
∈
∈

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

t
t
t
t

trσ  

plementation sch

finite horizon control problem for the group of vehicles with cost objective in Equation (6
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τττ  )

Subject to: ))|(),|(()|( kkikkiikki tutxftx τττ =&  
Ni ,,1K= ,    ],[ Ttt kkk +∈τ  

ikki Xtx ∈)|(τ ,    ikki Utu ∈)|(τ  
],[ Ttt kkk +∈τ  
0))|(),|((, ≤kkjkkiji txtxg ττ ,    ij N∈∀  
)()|( kkk txttx =  

fkTk Xttx ∈+ )|(  

(6.31)

where ( ))|(),|( kkkk tutxl ττ  is the recovered cooperative objective in Equation (6.17) and 

0))|(),|((, ≤kkjkkiji txtxg ττ  are the nonlinear constraints associated with the shape spanned 

by the flock: 
cc

i qqqq 12 −≤− ,    Ni ,,1K=∀  (6.32)
 Given the abstract state ))(),(()( tstgt =α , the centralised and decentralised implementation 

schemes described  Chapter 5 are applied to the group of vehicles. For both cases, the 

following weighting parameters for each task in Problem (6.16) are arbitrarily selected 

. Unless specified, a prediction horizon length of 

 in

1321 === ccc 6.3=T  seconds and an 

update period of 0.6 seconds are also used in both the centralised and decentralised strategies. 

To solve the optimal control problem, a global search strategy based on Particle Swarm 

Optimisation (PSO) [19, 27, 350, 351] is used. 

 Snapshots of the flock’s evolution applying the centralised control scheme are shown in 

Figure 6-5. The desired centroidal motion gd ∈  is also depicted in Figure 6-5 by the dashed 

centreline. The centroid of the group q  at each sampling period is also shown by the circular 

marker in Figure 6-5. Tracking is achieved when the desired centroidal motion and the 

centroid of the flock are coincident. The corresponding tracking error, the evolution of the 

and Figure 6-7, stabilisation of the 

flock configuration and minimisation of the tracking objective in Equation (6.16) is satisfied 

after  seconds. At  seconds, the tracking error increases and reaches a peak at 

 seconds. Comparison of Figure 6-6 with the boundary conditions in Equation (6.23) 

suggest a discontinuity between the concatenation of the first and the second trajectory 

segments shown in Figure 6-3. In addition, examination of the control inputs shown in Figure 

6-8, reveal that each vehicle begins to apply a control input 3.6 seconds before intersection 

structural potential, and the applied control inputs of the flock are shown in Figure 6-6, 

Figure 6-7, and Figure 6-8 respectively. From Figure 6-6 

13=t 17≈t

20≈t
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with the second trajectory segment. This corresponds to the prediction horizon length and 

demonstrates the efficacy of model predictive control in plan generation for optimal 

performance. A similar phenomenon is also observed at 40≈t  seconds. Between 20=t  and 

40=t  seconds, the tracking performance of the group fails to stabilise to the minimum. 

During this period, the vehicles negotiate the twist induced by the geodesics connecting the 

second and third trajectory segments. The gradient of the curve, and the short period of the 

twist forces the vehicles to correct their heading and adjust their control inputs during the 

turn. This is shown in Figure 6-8 by the nonzero control inputs between 20=t  and 40=t  

seconds. The group’s failure to stabilise to the minimum during this period suggests that the 

response of the system is inadequate for the specified turn. Increasing the frequency of the 

sampling period will improve the transient response of the system at the cost of greater 

computational demand. 

Remark. 

From Figure 6-7, the group reaches a minimum structural energy at 6.3=t  seconds before 

stabilising to a higher energy level at  13>t  seconds. This suggests that the final 

configuration does not conform to the ideal flock lattice with 10=ijd . Rather, the stabilised 

flock configuration represents a compromise between the desired tracking objective and the 

desired flock configuration. A possible approach to resolve the arbitration between the 

ly conflicting objectives is to separate the tasks in Equation (6.16)possib is 

a

. Using th

pproach, the optimisation problem becomes multi-objective. Multi-objective optimisation is 

not treated in this thesis. However, it is anticipated that the proposed framework is 

sufficiently general to accommodate the multi-objective formulation. 

 For the decentralised implementation, the effect of the compatibility constraint κ  is 

investigated. Figure 6-9 shows the trajector  of the flock using the centralised 

implementation scheme and the decentralised implementation scheme for varying 

y

κ . The 

corresponding tracking performance and structural energy are shown in Figure 6-11 and 

Figure 6-12 respectively. For illustrative purposes, the corresponding control input of the 

fourth vehicle 4=v  is shown in Figure 6-10. In general, the decentralised implementation 

scheme facilitates cooperation and achieves the desired objectives, wi arable (albeit 

suboptimal) performance to the centralised case. 

th comp
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(a) t = 0.0s (b) t = 12.6s 

-5 0 5 10 15 20 25 30
-15

-10

-5

0

5

x [m]

y 
[m

]

 
-5 0 5 10 15 20 25 30

-15

-10

-5

0

5

x [m]

y 
[m

]

 

(c) t = 24.6s (d) t = 36.6s 
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(e) t = 48.6s (f) t = 60.0s 

Figure 6-5. Snapshots of the flock evolution using the centralised model predictive control scheme. 
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Figure 6-6. Tracking performance of the centralised implementation scheme. 

0 10 20 30 40 50 60
184

184.5

185

185.5

186

186.5

Time [sec]

V
(q
)

 
Figure 6-7. Convergence of the structural potential for the flock lattice. 
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(a) v = 1 (b) v = 2 
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Figure 6-8. Demonstration of the applied control input for each vehicle using the centralised scheme. 
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Figure 6-9. Flock evolution using the (a) centralised implementation scheme, and the decentralised 
implementation scheme with (b) κ = ∞, (c) κ = 0.6, and (d) κ = 0.1. 
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From Figure 6-11, relaxing the compatibility constraint ( +∞→κ ) induces a fast transient 

response with a sluggish settling time. This is in concert with the theoretical investigations 

mismatch between 

 be a conservative 

estimate on the convergence of the information consensus. In fact, the very same reason used 

to argue the propagation of information mismatch in neighbouring vehicles, i.e. the ability to 

posed in Section 5.5. The anticipated overshoot potentially induced by the 

the assumed and applied states of neighbouring vehicles however; appear to

generate new plans, is the same reason that allows the vehicles to gracefully reach a 

consensus with minimal chattering. This is due to the structure of the objective function. 

From Equation (6.18), the optimisation problem involves the plans of neighbours at each 

sampling period over the prediction horizon. Since vehicles must plan for future sampling 

periods using the previous plans of neighbouring vehicles (and only apply the first step of the 

predicted plans), the anticipated mismatch between the shared plans gradually tends to zero. 

This results in the appreciable convergence towards the equilibrium. 

In contrast, constricting the compatibility constraint ( 0→κ ), the settling time and the 

overshoot of the tracking error is further reduced. This is a strated by the stabilisation 

of the structural energy in Figure 6-12. However, strict com ility constraints reduce the 

e control scheme at developing successive plans significantly 

lso illu

patib

efficacy of the model predictiv

divergent from previous plans. This limits the vehicles’ robustness to tolerate changes in the 

operating conditions. This is shown in Figure 6-11 by the large tracking errors at 20=t  and 

40=t  seconds corresponding to the interface of adjoining trajectory segments. 

One way to minimise these errors is to increase the prediction horizon and accommodate 

the sluggish response induced by the strict compatibility constraint. Increasing the prediction 

horizon however, incurs a larger computational penalty since the optimisation problem 

becomes large-scale. For illustrative purposes, the decentralised implementation scheme is 

demonstrated for 6.3=T  and 0.6=T  seconds using 06.0=κ . Figure 6-13 and Figure 6-14 

shows the corresponding tracking error and evolution of the structural potential for the group 

of vehicles. For 0.6=T  seconds, the overshoot and settling time of the tracking error is 

significantly less than for 6.3=T  seconds. While this strategy can be employed to improve 

the transient behaviour of the vehicles, increasing the prediction horizon will inevitably lead 

to longer computational times and larger computational demands. 
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Figure 6-10. Comparison of the control input for vehicle v = 4 using the (a) centralised implementation scheme, 
and the decentralised implementation scheme with (b) κ = ∞, (c) κ = 0.6, and (d) κ = 0.1. 
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Figure 6-11. Comparison of the tracking performance for the centralised implementation scheme, and the 
decentralised implementation scheme for varying κ. 
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Figure 6-12. Comparison of the structural potential for the centralised implementation scheme, and the 
decentralised implementation scheme for varying κ.  
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Figure 6-13. Effect of the prediction horizon length on the tracking performance using the decentralised 
implementation scheme. 
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Figure 6-14. Effect of the prediction horizon length on the convergence of the flock configuration using 
the decentralised implementation scheme. 
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6.6. SUMMARY 

In this chapter, the proposed cooperative control scheme developed in the previous chapters 

was implemented on a group of vehicles. The objective of the group was to maintain a flock 

lattice construction whilst adhering to the cooperative objectives specified by the supervisory 

controller. Cooperative objectives included the optimal motion of the group and evolution of 

the shape spanned by the flock configuration. Numerical experiments were presented to 

demonstrate the effectiveness of the proposed cooperative control framework. The 

decentralised cooperative control scheme was then compared to the traditional centralised 

model predictive control scheme presented in Section 5.1. In general, performance of the 

decentralised cooperative control strategy was comparable to the centralised implementation. 

Results also indicated that the compatibility constraint discussed in Section 5.3 was a 

m. In fact, strict application of the 

compatibility of the optimal predicted plans at 

g of successive finite horizon 

problems. Without disturbances, such as changing objectives, or changing flock patterns, the 

conservative constraint on the distributed proble

compatibility constraint reduced the efficacy of the model predictive control scheme to 

accommodate for changes in the environment. This was particularly evidenced by the large 

errors induced by the sudden change in direction between successive trajectory segments. 

Furthermore, implementation of the compatibility constraint was trivial during the trajectory 

segments. This was due to the inherent 

successive update periods induced by the natural couplin

vehicle’s plans would naturally converge to a consensus due to the coupling in the 

cooperative objective. In fact, relaxing the compatibility constraint ( ∞=κ ) demonstrated 

good transient response (despite the investigations in Section 5.5) with comparable 

performance to the centralised implementation. It should be noted that this observation is 

only valid for applications where vehicle’ plans are not subject to drastic changes or 

disturbances. While the strategy developed in the previous chapters has demonstrated 

potential in this chapter, the following chapter concludes with a discussion on the 

significance of the results and future areas of research.  
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Chapter 7. Conclusion and Recommendations 

In this thesis the problem of controlling a large group of vehicles for cooperative tasks was 

investigated. A theoretical framework was presented that mapped the local vehicle 

behaviours to group behaviours. Methods to model the local vehicle behaviours using 

principles from natural flocks and swarms were presented, and group abstractions based on 

these interactions were derived. A decentralised cooperative control scheme was then 

developed to coordinate the actions of the individuals towards a group task represented at the 

group manifold. In the following section, a summary of the material presented in this thesis is 

provided. Major contributions of the work are highlighted before areas of future research are 

discussed. 

urally admit a distributed protocol for consensus on an information 

n

7.1. CONTRIBUTIONS 

For cooperative control of multiple agents, the exchange of information is necessary to 

coordinate the actions of individuals towards a common goal. Coordination involves 

consensus on the exchanged information. The distributed nature of the information flow, and 

the sufficient conditions for consensus on a time-invariant and time-varying communication 

network were investigated in Chapter 2. Using tools from algebraic graph theory, a 

theoretical framework for modelling and analysing the communication topology for a group 

of vehicles was presented. It was shown that the sum-of-squares (SOS) properties of the 

graph Laplacian nat

etwork. Application of the consensus protocol based on the SOS properties of the graph 

Laplacian was shown to asymptotically converge to the average value of the connected 

information network. Furthermore, the rate of convergence for a connected information graph 

using the distributed consensus protocol was bounded by the second smallest eigenvalue of 

the graph Laplacian. This provided a useful measure and guarantee to the network’s 

performance. 

 The consensus protocol was then extended to the case of a switching network to model the 

spatiotemporal nature of the communication exchange topology for a group of vehicles. 
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Following the works of [46], it was shown that the switching network was piecewise 

continuous. The closed-form of the information flow was then derived by applying the 

consensus protocol. The resulting system provided a model for the evolution of information 

on a group of vehicles subject to spatially induced communication topologies. It was shown 

th

 to describe the conformity of the flock’s configuration to the 

k

 help stabilise the system and provide a tangible representation of 

th

at the closed-form of the information flow was described by a hybrid differential 

autonomous system. 

In Chapter 3, the SOS properties of the graph Laplacian that were used in Chapter 2 to 

derive a consensus protocol, were then extended to flocking behaviour for a group of 

vehicles. It was shown that the flocking behaviour is an example of consensus on a 

distributed system; where the information state represents the set of spatial constraints 

prescribed by Reynolds’ flock model. Based on this premise, a mathematical model for 

flocking was presented using fixed inter-vehicle constraints. The configuration induced by 

this model was identified by a flock lattice. A simple distributed flock protocol was then 

constructed using Lennard-Jones type potentials. The Lennard-Jones type potentials provided 

a smooth energy functional

desired flock lattice. The minimum of the energy functional induced by the flock 

configuration was shown to correspond to the desired floc  lattice. This provided an 

identifiable metric to control the convergence of the flock to the lattice construction. The 

flock protocol was then implemented as a simple PD controller to investigate the stability and 

performance of the flocking protocol for a group of point-like vehicles. It was shown that the 

group of vehicles converge to a configuration with fixed-inter vehicle distances; supporting 

the proposed model. The spatial constraints of the flock lattice, represented the first two 

behavioural traits of Reynolds’ rules. A second term was introduced to produce flock 

alignment. This was known as the velocity alignment term. Together, the structural flock 

protocol and the velocity alignment term provided stable flocking. It was shown by 

simulation for higher-order systems that a group of vehicles applying the flock protocol, will 

only stabilise to the flock lattice given a specific set of initial conditions. A navigational 

feedback was introduced to

e cooperative group objective. These were further developed in Chapter 4. 

Analysis of the interconnected group applying the flock protocol revealed that for a given 

initial configuration, the group of vehicles will converge to the largest subset of the 

Hamiltonian. This provided a shape abstraction that bounded the distribution spanned by the 

vehicles. Using this representation, the group could be treated as a unified virtual-structure 
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controllable at a supervisory level. The control problem at the supervisory level was then 

reduced to shape control and vehicle path planning for a single rigid body system. Trajectory 

generation and tracking for the individual vehicles were then treated at the local vehicle level 

by developing optimal cooperative control strategies in Chapter 5. 

The problem of controlling the shape and motion of the group of vehicles as a rigid body 

was investigated in Chapter 4. The approach presented here exploited the symmetries induced 

by the converged flock lattice and the reduction of control to a lower-dimensional manifold. 

By using this approach, the notions of scalability and reductionism could be applied. 

 used to establish the optimal conditions for 

irtual 

Techniques from differential geometry were then

navigating the group as a rigid body system. Conditions for optimality were given for the 

minimum energy, minimum acceleration, and minimum jerk cases.  Analytical expressions 

for these were presented given a symmetric bi-invariant metric. 

To control the shape, virtual agents were introduced along the surface of the n -sphere 

representing the distribution spanned by the N  vehicles. Controlling the virtual agents (or 

antipodal points of the n -sphere) affected the expansion and contraction of the shape spanned 

by the group of vehicles and considered the group as a virtual structure. Using this approach, 

complex polygons representative of more elaborate flock configurations could be defined by 

specifying more virtual agents along the surface. However, increasing the number of points 

along the shape spanned by the vehicles increases the complexity of the path planning 

problem for the virtual structure, and alternative abstractions should be investigated.  

 In the case of a group of vehicles transitioning from a quasi-flock or disconnected 

configuration to the flock lattice, the vehicles were shown to violate the rigidity constraints of 

the rigid body model. The conditions that were presented for optimal motion generation were 

invalid since the group of vehicles was now identified by a semi-rigid body model. 

Projections along the rigidity preserving directions and rigidity violating directions were used 

to resolve the energy metric for the semi-rigid body model and define ‘suboptimal’ motions 

for the virtual agents to trace and map out a shape trajectory. Solving the trajectories for the 

virtual agents was approached by interpolating the motions and solving the boundary value 

problem associated to the geodesic flow equations. Boundary conditions were provided using 

the shape spanned by the initial configuration and the shape spanned by the Hamiltonian of 

the flock protocol. Solving the boundary value problem for the planar case of two v

agents was demonstrated. It was shown that for this case, a total of 64 Christoffel Symbols 

need to be solved. While this strategy is sufficient for small groups of virtual agents, and can 
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even be applied to the motion generation of each vehicle, it is highly intractable to apply to 

motion generation of each vehicle or to increase the number of virtual agents. 

 To resolve the motion generation segment of the vehicles in the local frame, a cooperative 

control scheme was designed based on a decentralised model predictive control strategy in 

Chapter 5. The work exploited the predictive nature of the control scheme to permit 

negotiation and consensus between neighbouring vehicles at successive update periods. Here, 

the predicted states were used to represent the plans and intentions of vehicles at future 

sampling periods. The plans represented the state trajectories of the individuals that satisfied 

the cooperative objective and optimised the local vehicle behaviours.  Formulating the 

cooperative objective and local objective in this way enabled the coherent resolution of the 

group task from the local behaviours. Sufficient conditions for consensus applying this 

strategy were also provided. It was shown that if vehicles transmitted information, and then 

deviated from their original plans in the proceeding update period, then the system would 

d

r controlling the group as a 

collective, and the cooperative decentralised model predictive control scheme were 

ented on a group of vehicles tasked w

plication of the combined theoretical developments in the 

emonstrate poor convergence and ultimately poor cooperation. To resolve this issue, it was 

necessary to introduce a compatibility constraint that would penalise the behaviour of 

vehicles if they deviated too far from their previous plans. This ensured that the vehicles 

would be more cohesive. It was shown for small values of the compatibility constraint, 

consensus was sluggish. On the other hand, by relaxing the compatibility constraint, and 

permitting larger deviations between successive plans, the consensus on the coordination 

variable was difficult to achieve since vehicles would be permitted to deviate from their 

intentions at successive intervals. Nonetheless, the compatibility constraint was necessary to 

ensure cooperative behaviour, despite its limiting effect on the power of model predictive 

control. Finally, in Chapter 6, the theoretical framework fo

implem ith cooperative navigation. The objective of 

Chapter 6 was to demonstrate the ap

previous chapters to a cooperative control problem. Using the methods presented in Chapter 

4, the shape and motion of the group was obtained for the group. These were used to 

represent the cooperative objective for the group of vehicles. Applying the cooperative 

control scheme in Chapter 5, it was demonstrated that the framework achieves cooperation in 

the local frame and satisfies the group objectives. For comparative purposes, a centralised 

implementation of the cooperative objective was also presented using traditional model 

predictive control. The decentralised cooperative control scheme achieved the desired 
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cooperative objective, and demonstrated similar performance to the centralised case when the 

compatibility constraint was relaxed. This suggested that the bounds on the compatibility 

constraint developed in Chapter 5 were conservative estimates for the case when the 

7

rovide a more realistic model of multi-vehicle 

s

information is coupled in the cooperative objective. Furthermore, enforcing strict 

compatibility constraints prevented the vehicles from significantly deviating from previous 

plans and accommodating for changes in the operating conditions. In these scenarios, the 

performance of the decentralised cooperative control scheme was not optimal. It was shown 

that by increasing the sampling period and the frequency of information exchange, the 

behaviour of the decentralised cooperative control scheme with strict compatibility 

constraints could be recovered. 

7.2. APPLICATION AND FUTURE WORK 

The results presented in this thesis raise many questions and research possibilities. While the 

work has attempted to integrate as many of the relevant approaches and build on them to 

develop a unified model, there are still some avenues of research that need to be addressed 

for the practical implementation of this framework. In the following sections, several 

potential research directions are proposed. 

.2.1. INFORMATION FLOW AND CONSENSUS 

In Chapter 2, a simplified model of the information exchange topology for a generalised 

distributed system was developed. Based on the SOS properties of the graph Laplacian, a 

simple consensus protocol was developed that would achieve consensus on the exchanged 

information state. It was assumed, for the purposes of generality, that the information was 

synchronised and perfect (lossless). In practice, the exchange of information through wireless 

media is subject to noise, uncertainty, interruption and delays; particularly for multi-vehicle 

applications. These can be caused by hardware limitations, interferences with the 

environment, the directivity of the transmitted information flow, or the ad-hoc nature of the 

communication network.  The effect of these disturbances can invalidate the convergence 

properties of the proposed consensus protocols. Therefore, it is necessary to analyse 

asynchronous protocols with time delays to p

ystems. Already, several authors [137, 209, 233, 308, 309] have begun investigating the 

effects of delays and asynchronicity on the consensus of information networks. These studies 

will help to further the understanding of multi-vehicle interactions in a realistic setting. 
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The situatedness of the information flow in a multi-vehicle system admits a switching 

communication network. It was shown for a group of vehicles with finite interaction range, 

that the switching network is piecewise continuous with dynamics governed by a hybrid 

differential autonomous equation. Analytical methods to solve these types of problems are 

currently an active area of research, with no explicit solutions known to exist. Understanding 

the behaviour of the switching network can provide insight into the switching instances of the 

network and the length of the dwell times. This can provide invaluable information in 

developing optimal coordination control strategies that exploit the dwell periods. For 

example, in the proposed cooperative decentralised model predictive control scheme, the 

rmined based on an empirical investigation. 

na such as 

becomes more difficult using numerical simulation. A thorough investigation should be 

prediction horizon and sampling period were dete

By understanding the length of the dwell times and the switching instances, the cooperative 

decentralised model predictive control scheme can be optimised to exchange information 

only at the switching instances. This would reduce the frequency of information exchange 

and the power and bandwidth required to maintain continuous communication. 

7.2.2. FLOCKING 

In Chapter 3, a Lennard-Jones type artificial potential field was used to model the inter-agent 

behaviours of the vehicles in the flock. The Lennard-Jones type potential was constructed by 

fitting a smooth continuous function to the spatial constraints of Reynolds’ rules. The 

resulting potential field was a continuously smooth approximation to the Euclidean norm. 

While this is sufficiently general, other Lennard-Jones type potentials could be used to model 

the intricate behaviours of natural flocks and swarms. Studies in the fields of particle physics, 

electrochemistry, molecular biology, and mathematical biology can provide an insight into 

the application of Lennard-Jones type potentials to modelling natural phenome

flocks and swarms.  

By introducing secondary behaviours to the original flock model and accommodate for 

more realistic motions, the number of controllable parameters will be increased. These are 

represented by the weighting terms on each vector field corresponding to each additional 

behaviour. Until now, the weighting parameters were arbitrarily selected or deduced from 

empirical investigations. This was possible since the behaviour set was minimal and the 

influence of each parameter could be easily investigated through simulation. As the number 

of vehicles and/or number of behaviours is increased, the resolution of individual behaviours 
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performed to develop analytical expressions for the influence of the weighting parameters on 

the behaviours of the vehicles. This will provide a greater insight into the stability of the 

stem, the influence of the vehicles on the cooperative objective, and ultimately, the 

development of an automatic tuning system for the individual vehicle controllers. 

An issue pertinent to artificial potential field-based controllers is the emergence of local 

minima. In this thesis, the problem of local minima was briefly considered by introducing a 

navigational feedback term representative of the group cooperative objective. This provided a 

suitable means of coordinating the behaviours of the vehicles and directing the motion 

towards a global minimum. When the cooperative objective is not spatially dependent, or 

when the group is not coupled by a group cooperative objective, navigational feedback is 

unsuitable for avoiding local minima. In some cases, the navigational feedback can introduce 

unwanted local minima, such as navigation through an obstacle field. Methods to circumvent 

the existence of local minima should be investigated; and contingencies to overcome these 

minima should be developed. Possible contingencies could include reversion to a motion 

primitive such as loitering.  

 Other shape abstractions using the internal flock lattice model should also be investigated to 

broaden the applications of the flock. In this thesis, only the -sphere bounding the flock 

distribution was considered. The -sphere bound provides only one type of shape and limits 

the possible applications for a flock. Many applications require more complex shapes to be 

formed. Recently, authors have investigated the use of Fourier descriptors [352, 353] as a 

method of modelling the shape boundary for a group of vehicles. In these methods, two types 

of vehicles are distinguished; leaders and followers. The leaders assume positions along the 

perimeter of the desired shape, whilst followers ‘fill’ the internal volume. Using this 

approach, the artificial potential field can be modified to accommodate a secondary 

behaviour that forces the vehicles to conform to the shape and distribution specified by the 

Fourier descriptors. This approach has recently been applied by the authors to a group of 

vehicles for radar deception [215]. Using potential fields in this manner, involves a mapping 

on the navigational term.  

A similar approach to using the shape conforming potential is the use of morphogenesis 

gradients. Morphogenesis gradients are inspired by the field of cellular biology. While highly 

speculative, it could be possible to define a global potential field that is coded into the 

vehicles. This global morphogenesis gradient determines the role or behaviour of the vehicle 

within the flock based on their relative distance from a placeholder (such as the desired 

sy

n

n
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centroid of the flock). In this case, vehicles closer to the centre of the flock, might be required 

to have a stricter conformity to the flock lattice, whilst those further away, would assume the 

gents, and switch to the required behaviour. The morphogenesis gradient 

sts itself in the weighting parameters of the flock behaviours. This 

approach is highly advantageous since it would be more amenable to scaling; i.e. virtual 

agents do not have to be defined explicitly at design time. Behaviours of the vehicles are 

rm

. 

The co

the flock as a cooperative objective. The approach used was based on the assumption that the 

optima  geometric control 

on a le

transiti , however, violates the rigidity 

this mo dity preserving and rigidity 

tin

flock l

rigid m as constructed by introducing a shape control parameter to the rigid body 

directio

betwee e boundary conditions, the stringency of the rigidity constraints, and 

conditi o violate the rigidity constraints; i.e. the initial shape and 

parame ns could 

role of the leader a

essentially manife

dete ined based on their position in the gradient field and evolve with the flock. 

7.2.3 GROUP MOTION PLANNING 

operative task in this thesis was demonstrated by considering the group navigation of 

group adheres to a rigid body construction. By treating the flock as a rigid body system, 

l trajectories for the group could be derived using techniques from

theory. These approaches provide a nice method for solving the motion generation problem 

ft-invariant control system preserving the symmetric properties of the rigid flock. The 

on from an initial configuration to a flock configuration

constraints of the rigid body model, and the system is considered as a rigid body system. In 

del, the motion of each vehicle in the flock features a rigi

viola g component. In this thesis, the transition of the group from one configuration to the 

attice was treated using a semi-rigid body system using a semi-rigid metric. The semi-

etric w

metric and resolving the motions along the geodesic preserving and geodesic violating 

ns. One area of research involves the limits of this shape parameter. The relationship 

n the permissibl

the range of allowable shape parameters should be investigated. In this thesis, the boundary 

ons were arbitrarily selected t

final shape were incompatible. By simulation, it was shown that only a small set of shape 

ters exist for this type of navigation objective, and purely rigid body motio

not be achieved 1=rσ . Understanding the relationship between the boundary conditions and 

ape parameter provides an insight into the allowable motions of the group at the the sh

supervisory level and can further reinforce the notion of open-loop optimal commands. 

 Another area of extension (more aligned to practical implementation) is the effect of the 

shape boundary on object collisions. In natural flocks and swarms, the individuals can easily 
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bifurcate and converge around an obstacle to avoid collisions. Applying the shape boundary 

ints prevents any excursions of the individuals from the desired shape. A potential 

t arises when the

constra

conflic  flock comes into contact with a physical object in the environment. 

automa le modes could include flock 

the flo

flock. e-state automaton naturally implies a relaxation of the shape 

objecti

collisio nsider the significance of the shape boundary 

Follo to find the optimal 

flow e

coordinates in the local frame. While for small groups of vehicles (such as the subset of 

 

solving

differe i-rigid metric. Ideally, 

o

researc resents the flow 

 
PREDI

betwee

represe cy of the cooperative 

compa  re-

evaluate an optimisation problem under disturbance or changing environmental conditions. 

Research possibilities involve finding alternative approaches to reduce the limiting effect of 

Protocols must be developed to negotiate obstacles. This could be achieved by a finite-state 

ton to switch between modes of behaviour. Possib

loitering, flock bifurcation and convergence, and re-planning the desired centroidal path of 

ck. Practical insights into safe switching modes for collision avoidance would be 

provided by a mission specialist and would be dependent on the desired objectives of the 

Implementing a finit

boundary constraints to avoid collisions and prevent conflicts between the desired group’s 

ves and the allowable behaviours of the individuals. Therefore, the introduction of safe 

n avoidance protocols would have to co

constraints. 

wing the symmetric approach described in thesis, it is also possible 

motions of each vehicle rather than just the virtual agents. However, solving the geodesic 

quations is centralised since the geodesic flow equations are dependent on the 

virtual agents), this is permissible, the approach is not readily scalable. As it was shown, 

 for only two points on a planar manifold resulted in the simultaneous resolution of 8 

ntial equations with 64 Christoffel symbols relating to the sem

the m tions of each vehicle should exploit the nature of the geodesic flow. An avenue of 

h is to investigate the possibility of defining a geodesic bundle that rep

field of the flock that can be solved in a decentralised manner. 

7.2.4. COOPERATIVE CONTROL VIA DECENTRALISED MODEL 

CTIVE CONTROL 

In this thesis, cooperation was achieved by the mutual exchange of plans and intentions 

n neighbouring vehicles to reach a consensus on some coordination variable, 

ntative of the solution of the cooperative objective. A dependen

decentralised model predictive control strategy is the compatibility constraint. The 

tibility constraint restricts the power of traditional model predictive control to
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the compatibility constraint on finding new solutions. Possibilities include removing the 

tibility constraint, and developing protocols to switch the controller and safeguard the 

. 

compa

vehicle

assume em at each prediction 

Depen he amount of information being 

of such

model rmation exchange. It was assumed that the 

flow o and performance of the cooperative control 

investi

losses gated with context to the decentralised model predictive control 

develo dropouts and 

The l scheme 

strict c the information 

to prop

consid  of the implementation. For example, in this thesis, it was 

e

practic

wireles

commu

require um frequency needed to demonstrate 

The c

functio

the flock. Weighting parameters were used to tune the relative importance of the individual 

 Other areas that need to be investigated, is the effect of delays and asynchronicity. It was 

d that the computational time to resolve the optimisation probl

horizon was negligible. In practice, the vehicles require time to compute their solutions. 

ding on the hardware processor capabilities, and t

received from neighbours, this can be a significant factor that could determine the feasibility 

 an approach in real-world situations. In addition, the foundation of the decentralised 

predictive control strategy was the info

information exchange is lossless, and synchronised, with no delays. Any disturbance to the 

f information will affect the stability 

scheme. Therefore, more realistic models of the information exchange topology need to be 

gated and applied to the cooperative control scheme. Effects such as delays and packet 

should be investi

strategy. To robustify the cooperative control strategy, contingencies should also be 

ped information is not received or corrupted due to communication 

interference.  

effect of the sampling time on the convergence of the cooperative contro

should also be investigated. It was shown in Chapter 6 how the transient behaviour with a 

ompatibility constraint can be improved by increasing the frequency of 

flow. Bounds on the performance error and the compatibility constraint should be established 

erly determine the frequency of the information exchange. This should ideally also 

er the practical issues

assum d that the vehicles were able to freely send and receive information as needed. In 

e, constraints on hardware and the vulnerability of information transmitted across a 

s medium limit the ability of vehicles to convey information over open channels of 

nication. An important area of investigation is the minimum amount of information 

d that achieves consensus, and the minim

appreciable performance and fault tolerance. 

ooperative control problem in this thesis was formulated using a singular objective 

n combining the local behaviours of the vehicles with the desired group objectives of 
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tasks in

tasks r nted on the same solution space or in some way coupled, the same approach can 

differe

and ob endently) is multi-objective optimisation. Multi-objective optimisation 

the des

propos uccessful results [354]. 

The m l of this thesis was to present a unified framework in which a supervisory 

the behaviour of the vehicles converge to the desired objectives. Due to limited simulation 

for sm s. Simplifying assumptions were 

approa

derived ealistic setting would provide practical insights into the 

vehicle

and extension, and high-fidelity models. Similarly, practical implementation issues on the 

world synchronicity, delays, uncertainty, 

 The c

feature m. The results suggest 

spatial

traffic assembly. Extensions to other non-

proces  also possible by formulating the 

objective as a cooperative control problem. Exploration of these ideas could validate the 

 the distributed objective functions of each vehicle. While this approach was valid for 

eprese

not be effectively applied to applications where the tasks are conflicting and/or reside on 

nt solution spaces. A more general approach (and one that treats the individual tasks 

jectives indep

can ensure that the solution is the best compromise between the vehicle’s local objectives and 

ired group’s objectives. Recently, the authors have investigated the application of the 

ed approach using multi-objective formulations with s

7.2.5. IMPLEMENTATION 

ain goa

controller can control a large group of vehicles using a limited set of abstractions, and make 

facilities and resources however, the cooperative control framework was only demonstrated 

all-scale populations with simple integrator dynamic

made to construct an idealised setting that demonstrated the efficacy of the proposed 

ch. While these assumptions were used to promote the theory, application of the 

 control laws into a r

limitations of the proposed framework. Possible extensions would include higher-order 

 systems exhibiting nonlinear dynamics, large-scale populations with random attrition 

information network should also be modelled to consider the validity of the approach on real-

multi-vehicle systems. These include the effect of a

and noise on the stability and performance of the cooperative control framework.  

ooperative framework proposed, has also only been demonstrated for applications that 

 the spatial coordinates as a solution to the cooperative proble

that the framework presented is amenable to many other multi-vehicle scenarios admitting a 

 representation. These include cooperative rendezvous, coverage control, intelligent 

control, cooperative object manipulation, and self-

spatial cooperative control problems, such as mathematical optimisation using distributed 

sors and distributed internet search agents, are
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gener ity of the approach and provide further insight into the practical capacities and 

ions of the developed framework into multi-vehicle and multi-agent systems. 

al

limitat
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Appendix A. LaSalle’s Invariance Principle 

Let RR →nV :  be a locally positive definite function such that on the compact set 

})(:{ cxVx n
c ≤∈=Ω R , 0)( ≤xV& . Define: 

}0)(:{ =Ω∈= xVxS c
&  (A.1)

As ∞→t , the trajectory tends to the largest invariant set inside S . Moreover, if S contains 

no invariant sets other than 0=x , then 0  is asymptotically stable. 
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Appendix B. Christoffel Symbols for 2 Rigid Bodies in a 

Plane 

The 64 Christoffel symbols for two vehicles in a plane derived using MATLAB are listed 

below: 
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