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Abstract

In this thesis, we study robust spatial formation control from several aspects. First, we

study robust adaptive attitude synchronization for a network of rigid body agents using

various attitude error functions defined on SO(3). Our results are particularly useful for

networks with large initial attitude difference. We devise an adaptive geometric approach

to cope with situations where the inertia matrices are not available for measurement. We

use the Frobenius norm as a measure for the difference between the actual values of inertia

matrices and their estimated values, to construct the individual adaptive laws of the agents.

Compared to the previous methods for synchronization on SO(3) such as those which are

based on quaternions, our proposed approach does not contain any attitude representation

ambiguity. As the final part of our studies from the attitude synchronization aspect,

we analyze robustness to external disturbances and unmodeled dynamics, and propose

a method to attenuate such effects. Simulation results illustrate the effectiveness of the

proposed approach.

In the next part of the thesis, we study the distributed localization of the extremum point

of unknown quadratic functions representing various physical or artificial signal potential

fields. It is assumed that the value of such functions can be measured at each instant. Using

high pass filtering of the measured signals, a linear parametric model is obtained for system

identification. For design purposes, we add a consensus term to modify the identification

subsystem. Next, we analyze the exponential convergence of the proposed estimation

scheme using algebraic graph theory. In addition, we derive a distributed identifiability

condition and use it for the construction of distributed extremum seeking control laws. In

particular, we show that for a network of connected agents, if each agent contains a portion

of the dithering signals, it is still possible to drive the system states to the extremum point

provided that the distributed identifiability condition is satisfied.
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In the final part of this research, several robust control problems for general linear time

invariant multi-agent systems are studied. We consider the robust consensus problem in

the presence of unknown Lipschitz nonlinearities and polytopic uncertainties in the model

of each agent. Next, this problem is solved in the presence of external disturbances. A

set of control laws is proposed for the network to attain the consensus task and under

the zero initial condition, achieves the desired H-infinity performance. We show that by

implementing the modified versions of these control laws, it is possible to perform two-time

scales formation control.
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Chapter 1

Introduction

Over the past decade, analyzing multi agent systems (MASs) has been one of the centers

of interest in control and optimization theory. The main reason for this growing popularity

can be attributed to the various practical applications of MASs, e.g. formation control of

aerial vehicles, attitude synchronization of multiple satellites, distributed resource alloca-

tion and identification, distributed power management, etc. From a practical standpoint,

controlling an MAS can be a challenging task due to the difficulties for controlling each

individual agent, being augmented with the complexities arising from the communication

between agents in the network such as packet loss and different network connection pro-

tocols. From a theoretical point of view, for designing and analyzing a distributed control

law for an MAS, several theories ranging from control and optimization to algebraic graph

theory are used in a unified framework to model the individual agents and their connec-

tions.

In general, MASs can be designed to be robust to the failure of one or a group of agents.

This provides the MASs with extra flexibility to perform a particular task using less time
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and resources. For example, in [2], it is shown that if two aircraft maintain a particular

relative distance with respect to each other during a transportation mission, the magnitude

of the drag forces on the follower aircraft will be reduced up to 15-20%. The followers must

be located in the wake of the tip vortices of the lead aircraft. The reason for such a signifi-

cant reduction lies in aerodynamic theory, where it can be shown that the aforementioned

tip vortices act as ”turbulators” and delay the separation of the flow from the aerodynamic

surfaces of the follower agents.

Among the many problems which have been considered in the field of MASs, the con-

sensus and synchronization tasks have received particular attention due to the fact that

many of the practical problems in MASs can be converted to these tasks using appropriate

transformations. For instance, by defining some offsets, the formation control problem can

be interpreted as a consensus problem. The rendezvous problem can also be solved using

zero offsets. In these problems, the individual robot control laws are typically derived by

calculating the gradient of a particular potential function which measures the amount of

‘disagreement’ in the robotic network. The main structure of the corresponding consensus

laws is directly related to the relative positions of the agents and the average locations of

the neighboring agents. At each time step, these average positions act as desired positions

for the agents. However, it is not always possible to treat the consensus problem with this

methodology. One example is the attitude synchronization problem, where the intrinsic

nature of SO(3), which is the set of all possible rotations in R3, does not permit us to

construct a continuous feedback control law that globally stabilizes the attitude of a rigid

body on it. In order to cope with such difficulties, several methods have been proposed,

such as using quaternions as coordinate charts on SO(3) for representing the attitude of a

rigid body and some geometric approaches.

Both the quaternion based and geometric approaches have their own capabilities and weak-
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nesses. For example, quaternions double cover the rotation manifold of a rigid body, and

hence they cause ambiguities in representation of the attitude of a rigid body, but they

are easy to work with. Geometric methods, on the other hand, give more insight about

the nature of the system and enable us to follow a systematic control design. Also, for

quaternions, usually metrics for calculating the attitude differences between the agents are

not optimal in the sense that they usually measure extra or less error since there is not any

injective map between the elements of SO(3) and quaternions. In the geometric control

methods, by choosing an appropriate error function on the configuration manifold of the

system, the error vectors and corresponding control laws are constructed. Following this

procedure, the control laws become independent of any charts, and for implementation one

can use both Euler angles and quaternions.

In the third chapter of this thesis, we consider the attitude synchronization problem for

multiple agents that is studied in [3], [4], [5] using an appropriate error function which

measures the amount of ”disagreement” between the attitudes of the agents. This task has

many applications in astronomy and defense systems. For example, the problem of imaging

using multiple synthetic aperture radars (SAR) can be expressed as the attitude synchro-

nization problem. Another practical application of the attitude synchronization problem

is satellite formation control for on-orbit assembly tasks or interferometry missions.

In order to achieve the consensus task among multiple mechanical agents, the information

of agents’ inertial properties is required. However, in many practical situations the exact

values of these properties might not be available or be time-varying. In this regard, chapter

3 can be divided in to two parts. In sections 3.2.3-3.3.5, the main goal is to design a set

of adaptive control laws, one for each agent, that synchronize agents’ attitudes and steer

their angular velocities to a common desired value. It is clear that this problem in its very

nature can be expressed as a consensus problem. The main difference between this prob-
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lem and previous synchronization problems is the fact that the attitude synchronization

problem is required to be solved on a general nonlinear manifold instead of a vector space

and hence the control laws must be defined in a way that could take such a difference into

account [6],[7].

In section 3.4.2, we consider the attitude control problem in the presence of time-varying

input dependent inertias. A geometric framework is used to solve this problem.

In chapter 4 we study the distributed extremum seeking task. This problem has been

studied extensively in the adaptive control literature due to its vast applications for au-

tomatic tuning of various electrical and mechanical components. Compared to classical

adaptive control problems where the desired objectives, i.e. set points, tracking paths,

etc. are known a priori, in an extremum seeking task, the control goals are not directly

available. However, it is assumed that partial information regarding the objectives is avail-

able through measurements. The exact values of the objectives, e.g. set points, must be

computed via online filtering of the received signals.

It is widely known that the main condition for successful adaptive identification is suffi-

cient information richness of the input of the identification model. If the objectives of the

control task are known and fixed, it can be shown that, in order to fulfill the regulation

or tracking control problem, it is not necessary to satisfy the persistence of excitation(PE)

at all times. In other words, successful identification of the parameters of the model is

not compulsory for obtaining the control goals. In extremum seeking problems, the input

of the system must be designed in a way that the PE condition will be satisfied during

the control period. This requirement violates the control objectives such as regulation.

However, in many practical situations, it is possible to add several small dithering signals

to the inputs of the models to assure that the PE condition is satisfied and at the same

time the final deviation from the control objective is restricted to a small neighborhood of
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the regulation point.

The objectives which are discussed in chapter 4 can be divided into Localization and Ex-

tremum Seeking tasks. For the distributed localization problem, we added a consensus

term to the identification dynamics of individual agents to enhance the identifiability of

the network. Further, we study the convergence behavior of the proposed method. Next,

we design a two time scales identification scheme where on the fast time scale the agents

reach consensus about the estimated values of the unknown target and on the slow time

scale the network as a whole converges to the actual values of the parameters.

In MASs, uncertainties and external disturbances can affect both the agents’ dynamics and

their information exchange process. For example, the communication links between the

agents can be constructed or deleted based on the relative distance of the agents. Also,

wireless communication devices can be subject to packet dropping and data loss issues. In

the first part of chapter 5, we consider the effects of polytopic uncertainties on the agents’

dynamics and design a set of control laws to achieve the consensus task. In the second

part of this chapter, an H∞ consensus problem is considered in the presence of polytopic

uncertainties and unknown Lipschitz nonlinearities. Finally, we study the two time scales

formation control problem which is a direct consequence of the robustness results.

1.1 Summary of the Main Contributions

• In chapter 3, we designed a set of novel coordinate independent adaptive control

laws to synchronize the attitudes of multiple rigid body agents with connected com-

munication topology. The convergence analysis of the proposed control laws is fur-

ther extended to the case which the dynamics of each agent is affected by bounded

disturbance torques. An adaptive σ-modification technique is used to increase the
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robustness of the control laws.

• In chapter 4, a novel distributed adaptive source localization algorithm is designed

based on the results of [1]. A collective condition for ensuring the exponential con-

vergence of the estimation system is obtained and it is used in the context of localiza-

tion problems to find a distributed identifiability condition for the extremum seeking

problem. We showed that for a network of connected agents, if each agent contains

a portion of the dithering signals, it is still possible to drive the system states to the

extremum point, provided that the distributed identifiability condition is satisfied.

• In chapter 5, the robust consensus problem for a network of agents with general

linear dynamics is considered where it is assumed that the uncertainties inside the

structure of the linear model belong to a set of known polytopes. Using this additional

information, a novel H∞ consensus controller is designed to fulfill the objective of

the robust consensus task.
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Chapter 2

Literature Review

Studying the behavior of MASs is inspired by the motions of groups of animals in nature.

Examples of such behavior are the movement of flocks of birds and migration of a school

of fish. In [8] three simple laws are proposed to model the flocking behavior of a group

of mobile agents in three dimensions. These laws include: ”Flock Centering” which can

be described as the tendency of individual agents to remain close to nearby flock mates,

”Obstacle Avoidance” which can characterize how the agents move within the flock such

that they avoid collision between themselves. The third law is ”Velocity Matching” which

describes the intention of nearby agents to match their respective velocity vectors. In [9] a

mathematical model for a ”Velocity Matching” law is proposed in the context of studying

the phase transition for systems which consist of several self-driven agents with constant

speed. It is assumed that at each time step, agents move in the average direction of the

motion of their respective neighbors added with a zero mean noise. The collective behavior

of agents and phase transition is studied for different numbers of agents and noise. The

”Escape Panic” behavior in a group of humans who are trapped within a closed area with
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few exits can also be modeled using similar methods described in [8]. This is done in

[10] where in addition to modeling, several optimal strategies are proposed to avoid the

perilous movement of a group of trapped human beings. In [11] several potential functions

are proposed to build a flocking control law which can subsume the previous three laws.

The consensus problem for a network of single integrators is first considered in the seminal

paper [12] by Olfati-Saber and Murray. This problem has received a great deal of attention

during the past decade due to the fact that many tasks in the field of MASs such as at-

titude synchronization and flocking can be converted to his problem. The communication

graph of the network is assumed to be directed and for the case of a balanced graph 1 a

simple set of linear control laws is proposed to achieve the consensus task. Using several

tools from algebraic graph theory and matrix analysis, the properties of the communication

graph of the network are embedded in to a single Laplacian matrix. Also, several conclu-

sions regarding the convergence properties of the control algorithms are obtained through

analysis of the spectral properties of the Laplacian matrix based on the Gershgorin circle

theorem [13]. It is shown that the convergence rate of the consensus algorithm is directly

related to the second smallest eigenvalue of the Laplacian matrix, i.e. λ2(L). Furthermore,

the stability of the control algorithms is investigated in the presence of switching topology

and time-delays in the communication channels. It is proved that there exists a trade-off

between robustness of the network with respect to time-delays and the performance of the

consensus task.

Optimizing the convergence properties of the consensus problem is crucial for achieving

better performance in MASs. In [14], the problem of finding the fastest averaging consen-

sus algorithm is considered for undirected graphs. The authors transformed this problem

to the task of finding the solution for a semidefinite program which can be solved effi-

1Graphs for which the number of in-degree and out-degree of each vertex in the graph are equal
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ciently using existing algorithms [14]. First, they defined two convergence criteria for the

consensus problem where the first is related to the asymptotic convergence for a large

number of time steps. The second is based on the amount of convergence at each time

step. It has been shown that these two problems can be cast as spectral radius and norm

minimization, respectively. In [15], the problem of maximizing the λ2(L) for the Laplacian

matrix of weighted undirected graphs is studied in detail. It is assumed that the weight of

each edge in the graph is a function of the relative distance between the vertices which are

located at both ends of the edge. Several functions are used to model the signals which

are received at vertices in the communication graph and a modified SDP2-based method

is used to solve the problem.

The conditions for asymptotic consensus which are presented in [12] are further relaxed in

[16] where it is proved that if the union of the communication graph of the network over

specific periods contains a spanning tree, then the asymptotic consensus can be achieved.

The authors also proved that for a nonnegative matrix where its row sums are positive

and equal to each other, the value of the row sum is an eigenvalue of the matrix which

corresponds to the consensus eigenvector. This result is then directly used to prove the

stability of the proposed consensus algorithm. In [17], the consensus problem over ran-

dom Erdos Renye graphs 3 is considered. The asymptotic convergence of the stochastic

consensus problem is studied using the notion of stochastic stability [18]. Interestingly, it

is found that unlike the deterministic case where a union of the network communication

graph is required to be connected over a specific period of time, in the probabilistic case,

the random graph implicitly contains such a connectivity feature. Another example of the

consensus problem for random graphs is investigated in [19] where the random graph is

2Semi Definite Program
3In Erdos Renye graphs, the probability of a link existing between any pair of vertices is equal to a pre

specified value.
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generated through a process called ”Random Rewiring” of the edges of the initial graph.

For this specific type of random graph, it is found that while it is possible to dramatically

increase the λ2(L) of the Laplacian matrix of the network using rewiring, the λmax(L) of

the graph will not change significantly and hence, the robustness of the network to the

time delays will not be affected.

In [20], the problem of finding the optimal control laws for the consensus task has been

discussed. In the first step of design, the authors assumed that the network topology is

a complete graph. After obtaining the classical LQR4 solution for such a graph, only the

control gains associated with the edges in the initial communication graph will be applied

to the agents. The asymptotic convergence of this method is studied for the case of finite

strings and lattice graphs. Also, the effects of increasing the local and cooperation gains

are investigated in depth through simulations. In [21], it is mathematically proved that

to solve the global optimal consensus problem for a MAS, full knowledge of the agents is

required. The authors further proved that for any valid Laplacian matrix, there exists an

optimal performance index which can be associated with the network topology. In [22] a

receding horizon control strategy for MASs is suggested where each agent tries to opti-

mize its own local objective function. These local costs will be designed in a way that the

MAS collectively attains a common objective. The authors made the assumption that each

agent, prior to updating its own state, sends and receives the information regarding the

most recent calculated optimal path with the neighboring agents in a synchronous fashion.

The stability of the proposed algorithm is then studied based on two requirements which

are related to the speed of the receding horizon updates and the deviation of the calculated

optimal trajectory which is obtained from the processor of each agents and the received

trajectory from the neighboring agents. In [23], a semi-decentralized optimal control ap-

4Linear Quadratic Control
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proach is proposed for the minimization of the local costs in MASs. The authors provided

a modified Hamilton-Jacobi-Bellman (HJB) for MASs which incorporates the concept of

multi-level control. The control law for each agent is partitioned into local and global

parts. The global part defines the relation between the control law of each agent and the

information which is received from the neighboring agents. This part is modeled with a

simple linear combination of the neighbors’ states. Using such simplification, a solution

to the HJB equation is obtained. In addition to control design, the robustness of the pro-

posed methods is also studied in the presence of faulty agents inside the network. In [24], a

game theoretic approach is suggested for the consensus problem where the communication

constraints between agents are modeled as Linear Matrix Inequalities (LMIs). Additional

convex constraints are also added to enhance the stability of the method. The RHC con-

sensus task for multiple general linear dynamics is analyzed in [25] where several sufficient

conditions are provided for the LTI5 dynamics, based on the Riccati Difference Equation

(RDE). Compared to the results of [22], the proposed algorithm only requires each agent

at each time step to receive the neighbors’ current states. A distributed optimal control

strategy is designed in [26] for the MASs with directed communication topologies. For the

special case where the Laplacian matrix of the network has a diagonal Jordan form, it is

shown that the global distributed optimal control problem always has a feasible solution. In

[27], the constrained optimal consensus problem for time varying net work communication

graphs is considered. To solve the constrained problem, the gradient of the disagreement

function in [12] is projected onto the set of the constraints for each agents. The authors

further studied the relation between their proposed method and the alternating projection

method with adaptive weights.

In [28], the controllability problem for the leader-follower MASs is studied. The leaders’

5Linear Time Invariant
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inputs were regarded as the main inputs of the dynamical system which consists of all

agents’ dynamics. The case of the line graph is considered as the benchmark example. It

is also shown that enhancing the connectivity of the network communication graph does

not necessarily lead to controllability of the system. These results are further extended to

more general cases using a graph theoretic perspective in [29]. It is proved that if none of

the eigenvectors of the Laplacian matrix has a zero component then the controllability of

the network does not depend on the choice of leader. The authors also investigated the

relation between the symmetries in network topology and controllability using the notion

of leader symmetry. They proved that if the network is leader symmetric then it is uncon-

trollable. For the case of multiple leaders, a necessary condition is derived based on the

equitable partitions of the topology of the network.

In [30], the formation control problem for multiple autonomous vehicles is discussed using

the double integrator model for agents. The authors used distance based structural po-

tential functions to define the cost of formation. These functions are built based on the

physical distance between the vertices of a rigid graph. The classical Hamiltonian mechan-

ics theory is then used to derive the equations of motion and control laws. In addition,

it is shown that if the initial velocities of agents belong to a particular set, then the col-

lision avoidance between the agents is guaranteed. Finally, sigmoid functions are utilized

to propose bounded control laws for agents. The flocking problem with partially available

information is formulated in [11]. Three types of agents are defined to model leaders, fol-

lowers and obstacles in the workspace. A formation potential function is designed which

acts as a repulsive function at close distance and attractive at long range. The gradients

of such functions are then used to construct the control laws. In the proximity of the

obstacles, each agent projects its velocity and positions on the nearby obstacles to find the

states of imaginary agents which are considered on the surface of the obstacles. The states
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of these fictitious agents are then used inside the potential functions to find the control

law which guarantees collision avoidance. Using such a framework, the compression and

fragmentation of a network of vehicles are shown with the help of simulations. In [31], the

behavior which is observed in [9] is mathematically proved using the properties of stochas-

tic matrices.

The algebraic graph theory is used in [32] to model the formation control problem on undi-

rected graphs. A Nyquist test is provided based on the spectral properties of the Laplacian

matrix to analyze the stability and robustness of the network. The authors used general

LTI dynamics to model the autonomous vehicles. In [33], the leader to formation stability

concept is presented. This idea closely resembles the notion of input to state stability [34].

The authors used tree graphs to model the topology of the network and used the properties

of class-K functions to compute the L2 gain of the formation. Further, they generalized the

results to nonholonomic vehicles using the bearing and distance measurements. Finally,

the formation gains for different graph architectures are obtained and it is concluded that

the parallel graph structure offers more stable and robust formation. In [35], a vision based

formation control law is proposed for nonholonomic vehicles. For obtaining the experimen-

tal results, each agent is equipped with an omnidirectional camera and various formation

strategies are tested in the presence of obstacles in the the robots’ workspace. The idea

of using virtual leaders as a tool for steering a swarm of holonomic vehicles is studied in

[36]. Beside proving the asymptotic stability of the formation control laws, the authors

investigated the robustness of the network to loss of one or more agents for fulfilling the

formation task.

The problem of attaining formation for the case in which the states of the leader are only

partially available to some of the followers is considered in [37]. A Lyapunov function

which contains the costs of estimation and formation is used to analyze the convergence of
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the algorithm. With the help of Young’s inequality, the lower bounds for formation control

and observer gains were obtained and it is shown that they are related to the spectral

properties of the Laplacian matrix of the network.

In [38], the formation control of nonholonomic vehicles is studied using the Lie group set-

ting. Using a coordinate independent representation of agents’ kinematics, it is shown that

for the case of fixed forward velocity, there exist two equilibrium points which are related

to flocking and cyclic pursuit. This idea is further extended to three dimensions using the

notion of natural Frenet frames. Compared to the two dimensional case, it is founded that

the agents can also perform the helical formation. The stability analysis is performed for

the formation of two vehicles. In [39], the cyclic pursuit problem for n ≥ 2 number of

agents is studied in detail. The authors used the definition of circulant matrices to rep-

resent the relative agents’ dynamics. The stability analysis is done using the linearization

method. In [40], several necessary and sufficient conditions for the formation control of

nonholonomic vehicles is presented. It is shown that the rendezvous problem is solvable if

and only if the network communication graph contains a globally reachable agent. Next,

it is proved that such condition can be satisfied if the Laplacian matrix has the zero as

its simple eigenvalue. Furthermore, the line formation is considered and it is verified that

such a formation is attainable if and only if the network topology contains at most two

disjoint and closed sets of agents. The rendezvous problem is further investigated in [41]

for multiple unicycles using several tools from nonsmooth analysis theory. The authors

devised a set of control laws which guarantee the connectivity maintenance of the network

for completion of the rendezvous task.

In [42], the distributed optimal formation control problem is considered using the dual

decomposition methods. The upper bound of the duality gap between the primal and dual

problem is also computed. The authors extended their results to the case of agent with
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nonlinear dynamics. The nonlinear model predictive control is used in [43] to solve the

optimal formation tracking problem for multiple nonholonomic vehicles. The optimization

problem is solved based on a splitting method which has the capability to be used for real

time implementation. In [44], a sequential linear programming method is proposed to solve

the formation control problem with guaranteed collision avoidance. The latter is achieved

via convexification of the collision constraints where each agent tries to find the optimal

trajectory within a convex polygon which is built using the position of its neighbors.

In [45] a formation control law is designed using a PDE-based approach. The discretized

linear reaction-advection PDE is used to find the control laws of agents. The stability of

several formation profiles are studied using a modified Lyapunov functional.

A formation control methodology is suggested in [46] that ensures the formation stability of

the network in addition to tracking the desired path. The authors used the notion of graph

rigidity and relative distance measurements to design the formation control laws. In [47],

the authors have proposed a decomposition method to separate the dynamics of formation

shape from the general maneuvers of the swarm. The formation shape is defined based on

the relative position vectors of the neighbors of each agent. Using such an approach, an

energy based framework is developed for the purpose of control design. In [48], this idea is

further extended to the flocking problem on balanced graphs. It is shown that for the case of

inertial agents a poor choice of formation control gains can cause unstable behaviors which

can be aggravated in the presence of cycles in the communication graph of the network. In

[49], the previous idea is used for a network of quadrotors. The motion constraints of these

robots greatly increase the complexity of the control design procedure. The authors used a

constructive method based on energy-like Lyapunov functions. Furthermore, a formation

tracking control law is introduced to ensure that the center of mass of the swarm will track

the desired path in a stable fashion. A set of control laws are suggested in [50] for time
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scale separation of the formation objectives. In this approach, the swarm first reaches the

formation shape in the fast time scale while its center of mass tracks the predefined path

on the slow time scale. The latter is particularly useful for situations in which the agents

should protect a high valued moving target. Singular perturbation theory is then utilized

to tune the speed of each subsystem. The collision avoidance between the agents is also

guaranteed through a similar approach as in [51]. In [52], the formation control on SE(3)

is considered for rigid graphs. It is mentioned that the quadratic function which is built

based on the difference between the relative distance of the neighboring agents and their

respective desired values, has undesired equilibrium points which are stable. In order to

solve this issue, the authors proposed a quadratic majorization technique to convexify the

main potential function. It is shown that this function only poses the formation shape

as its equilibrium point. Furthermore, the formation control problem is formulated us-

ing a set of linear equations. The solution to this problem is obtained using a modified

distributed Jacobi method. The robustness of the network to communication failure and

external noise is also studied. In [53], a distributed model predictive control is developed

for the formation task using online alternating direction of multipliers. The information

exchange between agents is modeled using a set of constraints. The proposed algorithm is

implemented on different graph topologies.

In [54], the coverage control problem for a network of holonomic and nonholonomic vehicles

is considered. A cost function is introduced to measure the optimality of the locations of

the agents in a domain in which the distribution of an event can be measured locally using

the attached sensors. Using the authors proposed method, each agent move toward the

centroid of the Voronoi cells which are built based on the locations of the near-by agents.

A modified Voronoi tessellation is used in [55] to solve the coverage control task in the

presence of pre-specified constraints on the amount of area which each agent can observe
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during the execution of the task. This algorithm is particularly useful for the case of a

heterogeneous network where many types of agents with different capabilities are used to

fulfill the mission.

In [56], the spacecraft formation control is considered for high inclination orbits. A two

points boundary value problem is generated from the Hamilton-Jacobi optimality condi-

tions. Using the expansion of the Hamiltonian of the network in terms of known functions,

the previous problem is solved. The authors used the famous Clohessy-Wiltshire equa-

tions of motion to represent relative spacecrafts’ dynamics. The formation flying problem

for multiple telescopes around the L2 liberation point of earth-sun system is presented in

[57]. It is reported that at such points, less interference from the astronomical objects

will affect the data acquisition systems. In [58], the formation control along elliptic or-

bits is considered and a modified version of Tschaunor-Hempd is used to represent the

relative dynamics. A formation keeping methodology is proposed in [59] for a network of

satellites which are subjected to J2 perturbation effects. The authors further studied the

effect of drag forces which result from the movement of the swarm in low earth orbits on

the formation performance. Several impulsive control strategies are proposed to reject the

aforementioned disturbances.

In [60], the Extremum Seeking(ES) problem for general nonlinear dynamics is studied in

detail. Using several convexity assumptions on the profile of the reference to out-put map,

the exponential stability of the averaged system is proved via linearization. The main idea

of this paper is to add multiple harmonic signals (associated with the number of unknowns)

at the input of the nonlinear system. The gradient of the unknown map is then extracted

using a combination of high and low pass filters. With the help of this method, the dy-

namical system on the fast time scale ”Oscillates” to extract information and on the slow

time scale steers itself toward the optimum location. Using the Tikhonov theorem [34], the
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stability of the whole system is concluded from the exponential convergence of the averaged

system. In [61], an ES method is proposed which besides obtaining the gradient of the

unknown map, has the capability to estimate higher order derivatives of the measurement

field. In [62], the previous idea is utilized to design a Newton-based Extremum seeking

(NES) approach. In this framework, the harmonic signals which are used to estimate the

gradient of the measurement field are multiplied with out-put measurements and passed

through a set of integrators to obtain the components of the Hessian matrix of the field.

Since the calculation of such a matrix might produce singularities, additional filtering is

used to ensure well-posedness of the resulting signals. The authors further demonstrated

through several simulations that compared to gradient based ES methods, the convergence

rate of the online optimization problem can be greatly improved. In [63], the same au-

thors presented the stochastic version of this algorithm. The performance of the ES task is

heavily dependent on the choice of the perturbation signals which are added to the input

of the dynamical systems.

It is shown in [64] that in addition to the frequencies and amplitudes of the dither signals,

their shapes also play an important role in the convergence of the ES algorithm. The

authors reported that for the special case of small oscillation, the best convergence speed

between all the waves with similar frequency and amplitude belongs to square wave signals.

In [63], the authors used the ES idea for the source seeking problem. The physical field

which is caused by the source is modeled as a quadratic functions with unknown constants.

It is assumed that the mobile robot can only measure the value of this field at its position.

A nonholonomic vehicle model is used for the purpose of stability analysis. The perturba-

tion signal is added to the forward velocity of the vehicle while its angular speed kept at

constant value. It is shown that the robot can be steered locally to a neighborhood of the

source position. The size of such neighborhood is inversely proportional to the magnitude
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of the dither signals. The draw-back of this method comes from the fact that changing the

forward velocity of a nonholonomic agent will produce nonsmooth trajectories. In [65], the

dither signal is added to the angular velocity of a nonholonomic vehicle for the purpose

of gradient extraction. Using this method, the mobile robot can follow a very smooth

trajectory toward the source location. The authors made an assumption that the mea-

surement sensor is located in front of the center of the vehicle. The logic behind this idea

is to increase the range of movement of the sensor for acquiring information from a larger

portion of the field of interest. Furthermore, the possibility of placing the measurement

sensor at the center of vehicle is investigated, however, it is shown that such a placement

requires the use of a derivative block in the demodulation part of the ES algorithm. In

[66], the three dimensional source seeking problem is considered for fixed wing UAVs. Two

ES demodulation loops are used for yaw and pitch steering. The authors proved that the

robot will eventually rotate around the source point. The radius of such a circle is shown

to be inversely proportional to to the distance of the measurement sensor to the center of

vehicle. A distributed ES scheme is devised in [67] based on partial differential equations.

The main goal of the proposed approach is to disperse the agents in a way that the swarm

density will be higher around the source point. The authors assumed that the vehicles

are capable of measuring their relative distance. In [68], the formation control problem is

formulated as an ES problem. The authors treat the formation shape as the Nash equi-

librium of the network and by adding dither signals to the forward velocities of the agents

the formation objective is attained.

In [1], an adaptive source localization scheme is suggested which is robust to slow drifts of

the source position. The authors assumed that the seeking robot can measure its distance

to the target. Using a high pass filter a linear parameter model is obtained where the

components of the source locations are treated as unknown coefficients. Based on classical
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adaptive control theory, the robustness of the proposed algorithm is studied. In [69], the

distributed localization and control is considered for a network of underwater vehicles. It

is assumed that each agent shares its information regarding the profile of the field, with its

neighbors. The control laws of the vehicles are then designed to ensure that the centroid

of the swarm will move in the direction of the gradient of the estimated field. In [70], the

distributed detectability condition for a network of observers is presented. Satisfaction of

this condition plays a fundamental role in the convergence proof of distributed H∞ and H2

filters since both method use modified output injections in their structures. The authors

considered the Simultaneous Localization and Mapping(SLAM) problem as a benchmark

to present their framework. The results were also generalized to the graphs which cannot

be spanned by a tree. In [71] a distributed H∞ filter is devised using the vector Lyapunov

functions. The observer gains were obtained as a solution of a set of LMI constraints. In

order to solve theses LMIs distributively, a gradient based algorithm is used. In [72], a

distributed Kalman filter is designed for the purpose of estimating the states of a linear

time-varying system. The computational complexity of obtaining the local Kalman gains

is also calculated. In [73], a distributed parameter identification problem is studied for

a network of sensors. To prove the main convergence results, the authors expanded the

measurement errors in terms of the eigenvectors of the Laplacian matrix of network.

The attitude control problem is considered in [74] using the unit quaternion representation

of the attitude kinematics. Several attitude error vectors are constructed on SO(3) and

used for the design of tracking control laws. The robustness of the proposed approach

is then investigated with the help of input to state stability analysis. Furthermore, the

results extended to the case where the inertia tensor is not available for tracking. In [75]

the disturbance rejection properties of the previous result is studied in detail.

In some practical situations, the attitude control objective must be obtained while it is
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guaranteed that the attitude of the robot will not enter to a pre specified set to protect the

onboard sensors from direct exposure to radiations. In [29], the attitude control problem

in the presence of convex attitude constraints is considered. To facilitate the convergence

proofs, several barrier functions are used to take in to account the costs of the constraints

inside the Lyapunov function which are used for stability analysis.

It is easy to show that the unit quaternions double cover the SO(3). This indicates that

for each physical attitude, there exist two unit quaternions. The former can cause redun-

dant motion of the rigid body. In [76] a switching quaternion representation is designed

to solve these redundancy issues. The authors used a nonsmooth Lyapunov function to

determine the switching position. The robustness of the proposed method with respect to

small measurement noise is also analyzed and a hysteresis based approach is suggested to

reject such disturbances.

Control of a Vertical Take off and Landing(VTOL) aircraft is a challenging task since

the coupling between the rotational and translational dynamics are highly intricate and

nonlinear. In [77], a multi level control structure is designed for position control of such

aircraft. Using their approach, the VTOL aircraft in the fast time scale adjusts its ori-

entation to generate the required translation control force. The stability analysis of the

proposed method is performed using singular perturbation theory and it is determined ex-

plicitly that to what extent the attitude controller should be faster than the translational

one. Tracking control of UAVs is also a challenging task. This is due to the fact that

these robots are under actuated. In another words, they have less number of actuators

than their degree of freedom. The translational and rotational dynamics of these robots

are highly nonlinear and coupled. It is possible to use simple PID or LQG controllers

for very simple maneuvers which do not involve large rotations, however, for ensuring the

global stability of VTOL-UAVs the full nonlinear model must be taken into account in
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the control design procedure which naturally leads to nonlinear feedback control laws [78].

Also, since these robots are generally have unstable zero dynamics the exact input-output

linearization method cannot be used because such techniques require a minimum phase

system [34]. However, the possibility of designing an approximate input-output lineariza-

tion is studied in [79]. Another nonlinear control method which has been extensively used

for controlling UAVs is Backstepping [80]. This is achieved by modeling the dynamics of

UAVs as a cascade system using suitable change of coordinates. In this regard, quadrotors

orientation and thrust is used as a control variable to stabilize the vehicle position and

in the next step the attitude controller is designed using Lyapunov stability analysis. In

[81], authors proposed a globally stable control law for VTOL-UAVs which is based on

using quaternion representation for both attitude kinematics and dynamics. They have

formulated two stages in the control problems. In the first part a globally stable control

law is designed for the translational dynamics while treating the effects of the rotational

part as a perturbation term. In the next step, the effects of the previous perturbation is

eliminated with the help of additional term in the attitude control laws. Performing such a

multistage design, requires smooth extraction of the attitude reference trajectory since the

time derivative this signal will be used in the attitude control design for tracking problem.

This is achieved with the algorithm which is first proposed in [82].

2.1 Contributions to Literature

The main contributions of this thesis, considering the relevant literature, as reviewed in

this chapter, can be summarized as follows
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2.1.1 Attitude Synchronization

In chapter 3, several robust adaptive attitude synchronization problems are studied for a

network of rigid body agents. Compared to [83],[5],[4], a coordinate independent approach

is used to obtain both the estimation and adaptive control laws from a single Lyapunov

function. Next, we modified the attitude synchronization control laws using the optimal

norm on SO(3) which is first introduced in [84]. The adaptive estimation law for each agent

is designed locally in the sense that the estimation dynamic of each agent is independent

of the estimation error of the neighboring agents. We further focused on the local adaptive

control design for each agent and construct a set of adaptive laws which can ensure the

convergence of the tracking error system for the cases in which the inertia tensors of agents

are time varying.

2.1.2 Distributed Localization and Extremum Seeking

In chapter 4, we designed a distributed adaptive source localization algorithm based on the

results of [1]. Compared to the adaptive attitude synchronization task, here the unknown

parameters (coordinates of the source) are assumed to be global and therefore, the local

adaptive estimation laws are built based on the states of each agents and its neighbors’

estimators. We derived a collective condition for ensuring the exponential convergence

of the estimation system. We later used the localization results including a distributed

identifiability condition for the extremum seeking problem. In particular, we showed that

for a network of connected agents, if each agent contains a portion of the dithering signals,

it is still possible to drive the system states to the extremum point, provided that the

distributed identifiability condition is satisfied.
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2.1.3 Robust Formation Control

In chapter 5, we considered the robust consensus problem for a network of agents with gen-

eral linear dynamics. Compared to [85], it is further assumed that the uncertainties inside

the structure of the linear model belong to a set of known polytopes. Using this additional

information, an H∞ consensus controller is designed to achieve the robust consensus task.
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Chapter 3

Attitude Synchronization

3.1 Preliminaries

3.1.1 Graph Theoretical Modeling of Rigid Body Networks

We use graph theory notions for representing the network topology of a group of rigid

bodies. Here, we state the theorems and definitions in abridged form and refer to [86]

for full versions of these theorems. We represent a network of m rigid body agents by

a directed graph G = (V, ε) of order m, which consists of a vertex set V of m elements

and another set of edges, ε ⊂ V × V . We index the elements of the vertex set with

{1, ...,m}. A graph is called undirected if (j, i) ∈ ε whenever (i, j) ∈ ε. A weighted graph

is a triplet D = (V, ε, A) where A stands for weighted adjacency matrix which has the

following properties: for each i, j in the index set the entry aij = aji = 1 if (i, j) ∈ ε, and

aij = 0 otherwise. Furthermore, we assume that aii = 0 for all vertices.
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3.1.2 Rotation Group SO(3)

SO(3) denotes the set of all orthogonal matrices in R3×3 whose determinants are equal to

1. so(3) denotes the Lie algebra of SO(3) and is defined as follows:

so(3) =
{
O ∈ R3×3|OT = −O

}
The mapping [·]∧ : R3 → so(3) is called the hat map and is defined as

x = [x1, x2, x3]T ∈ R3, [x]∧ =


0 −x3 x2

x3 0 −x1

−x2 x1 0

 (3.1)

Another useful map in this context is vee map [·]∨ : so(3) → R3, which is the inverse of

hat map. These maps have the following important characteristics [84]:

[a]∧b = a× b = −b× a = −[b]∧a (3.2)

tr
[
Q[a]∧

]
=

1

2
tr
[
[a]∧

(
Q−QT

)]
= [a]T

(
QT −Q

)∨
(3.3)

for all a, b ∈ R3 and Q ∈ R3×3.

Computing the gradient of a function on SO(3) has a crucial importance in stability analy-

sis since in the context of rigid body dynamics, the Lyapunov functions are usually defined

on the general manifold of the system. It is shown in [87] that if V (R) = tr
[
RTA

]
where

A ∈ R3×3 and R ∈ SO(3), then the gradient of V on SO(3) satisfies

∇VSO(3) =
1

2
R
[
RTA− ATR

]
.

Due to discontinuities in some of the functions which will be defined in Section 3.3.1,

we need to use the following generalized derivative notion in place of the regular deriva-

tive: Given a dynamical system ẋ = f(x(t), t) and a function V (x(t), t), the generalized
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derivative of V is defined as [88]:

˙̃V (x(t), t) =
⋂

ζ∈∂V (x(t),t)

ζT

 K[f ](x(t), t)

1

 ,

∂V and K[f ] are expressed by

∂V = co {lim∇V (x, t)|(ψ, σ)→ (x, t), (ψ, σ) /∈ χ}

K[f ](x) = co {lim f(β)|β → x, β /∈ χ}

where χ is the set of points where the gradient of V does not exist. Note that χ has a

measure zero, and co represents convex closure.

3.1.3 Rigid Body Dynamics

The attitude of a general rigid body evolves on the nonlinear manifold SO(3). This group

represents the set of all possible rotations in R3×3. Suppose that we have m rigid bodies

whose rotation matrices with respect to an inertial frame are expressed by Rk ∈ SO(3),

k ∈ {1, ...,m}. Then, the equations of motion of each agent can be expressed as follows:

JkΩ̇k = [JkΩk]
∧Ωk + uk (3.4)

Ṙk = Rk[Ωk]
∧ (3.5)

where Jk = diag(Jk1, Jk2, Jk3) denotes the inertia matrix of the kth agent, and Jk1, Jk2, Jk3

are principal moments of inertia, and without loss of generality we assume that Jk1 ≤ Jk2 ≤

Jk3. uk ∈ R3 is the control input and Ωk ∈ R3 is the angular velocity vector of this agent.

From (3.4) and (3.5), it is clear that these vectors are defined in body frame coordinates.

The components of these vectors in inertial coordinate frame can be easily obtained by

left multiplication of them by the rotation matrix. The model (3.4),(3.5) has been widely
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used in control theory to represent the attitude dynamics of a fully actuated vehicle which

can be modeled as a rigid body. A more accurate model can be obtained, for the vehicles

operating in the presence of external fields (such as wind or water) by adding a damping

term which is directly related to the angular velocity of the vehicle.

3.2 Problem Definition and Approach

3.2.1 Problems

The attitude synchronization problems we consider in this chapter can be formulated as

follows.

Problem 3.1(Nominal Synchronization Problem) Consider a network of m rigid body agents

(Fig. 3.1) whose dynamics are governed by (3.4),(3.5), Design a set of control laws that

asymptotically synchronizes the attitudes of the agents in the network, i.e.

Ω1 = Ω2 = · · · = Ωm = Ωd

R1 = · · · = Rm

where Ωd is the reference angular velocity.

It should be noted that Ωd is not a time-varying tracking signal. In fact, it is a constant

signal which is for the ideal model of rigid bodies is equal to Ωd = [0 0 1]T , The main

purpose of this signal is to increase the stability of the rigid bodies at the synchronized

state since from classical mechanics it is known that rotation around the axis with largest

moment of inertia is a stable equilibrium of (3.4) and (3.5). Many spacecraft are working

based on this technique to enhance the stability of their motion.

Problem 3.2 Consider Problem 3.1, but additionally assume that the values of inertia
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Figure 3.1: A typical rigid body network.

matrices Jk are not available for measurement. Perform task of Problem 3.1.

Problem 3.3 Consider Problem 3.2 and suppose that there exist a bounded disturbance or

unmodeled dynamics in the input channels, which is formulated by adding an uncertainty

term δk to the right hand side of (3.4), each entry δk,i of which satisfies ‖δk,i‖ ≤ ∆k,i, i ∈

{1, 2, 3} for known positive upper bounds ∆k,i. Perform task of Problem 3.1,

We address Problems 3.1 3.2, and 3.3 in the following sections. Before that, first, we

formulate the kinematic synchronization problem on a general manifold and analyze the

main strategy which is used in this chapter to achieve the consensus task for dynamics

agents from the kinematic controllers.

3.2.2 Kinematic Synchronization

In the context of MASs, the consensus problem for a network of agents has been studied

in depth based on vector spaces and the relation between the stability properties of the

system and the connectivity of the network was established during the past decade. The
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main element of these algorithms is the Laplacian matrix of the graph of the network. This

matrix has all the required information regarding the communication graph of the network

for computing control laws for each agent. In order to extend these results from vector

spaces to manifolds several methods have been proposed in [87] and [83]. The natural

way to perform this generalization is to embed the configuration manifold of the system in

Rd as in [87]. In order to formally define this algorithm, consider a general manifold Mn

together with a function f :Mn → R which is defined as follows:

f = η
n∑
i=1

n∑
j=1

aijtr
[
xTj xk

]
, η > 0 (3.6)

where η is a positive constant and we assumed that xi ∈ Rn×n to facilitate the construction

of this function on rotation manifold for the next sections. Next, consider the following

algorithm [87]:

ẋi = −β [grad(f)]M,k , k ∈ 1, · · · , n (3.7)

where β > 0 is a positive constant. The subscript M, k implies that this operation per-

formed on the manifold M along trajectory of xk. It is shown in [89] that, using this

algorithm for the network of agents will result in asymptotic stability of the synchroniza-

tion task, however, this algorithm will not guarantee that this convergence occurs in finite

time. In order to assure that the finite time convergence, it is possible to use the nons-

mooth algorithms which are proposed in [90].

In order to extend the results of kinematic synchronization to the dynamic case, we can

use the backstepping method [34]. Consider a simple kinematic equation ẋ = u, which

can be stabilized by u = g(x). The latter suggests that there exists a Lyapunov function

f(·) > 0 which its time derivative is negative definite, i.e., ∇f · g(x) < 0. Next, consider
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the following system:

ẋ = z

ż = u (3.8)

In order to stabilize the previous system (3.8), consider the following Lyapunov function

(z
′
= z − g(x)):

V = f +
1

2
(z − g(x))2 (3.9)

The time derivative of the Lyapunov function (3.9) will be as follows:

V̇ =
∂f

∂x
z + (u− ∂g

∂x
)z
′

(3.10)

Then, by choosing the following input:

u =
∂g

∂x
ẋ− ∂f

∂x
− kz′ (3.11)

The time derivative of (3.9) will become:

V̇ =
∂f

∂x
g(x)− kz′2 < 0 (3.12)

which ensures the asymptotic stability of the (3.9). In the next section, we use this idea

to propose a dynamic controller on SO(3).

3.2.3 Adaptive Attitude Synchronization

The main goal of this section is to solve Problem 3.2 for a network of m agents. We

will find a set of control inputs for the agents to synchronize their attitudes while having

a synchronized velocity, Ωd. In general, for stabilization problems, we do not need to
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have the value of the agent’s inertia matrix but for tracking purpose we need to have this

information to design the control laws. In this section, we propose an adaptive control law

for this problem based on the results of [87] as follows:

uk = −
[
ĴkΩk

]∧
Ωk + ĴkḞk + µ (Fk − Ωk + Ωd) (3.13)

where, Fk = α
∑m

j=1 ajk
[
RT
kRj −RT

j Rk

]∨
, k = 1, · · · ,m, α ≥ 0. µ is a positive constant

and Ĵk is the estimate of inertia matrix of the kth agent and ajk is the (j, k) element of

the adjacency matrix. In order to design an adaptive law for obtaining Ĵk, we consider the

modified version of the Lyapunov function proposed in [87]:(l > 0)

V =
−1

2

m∑
k=1

m∑
j=1

ajktr
(
RT
kRj

)
+

m∑
k=1

1

2dk

∥∥∥Jk − Ĵk∥∥∥2

F

+
l

2

m∑
k=1

(Ωr
k − Fk)

T Jk (Ωr
k − Fk) , (3.14)

where l, dk, k ∈ {1, · · · ,m}, are positive constants and Ωr
k = Ωk − Ωd. ‖·‖F denotes the

Frobenius norm. In fact, the values of dk are acting as tuning gains of the adaptation

laws and can be changed to enhance the performance of the adaptation process. Next, we

compute the time derivative of the Lyapunov function (3.14) as follows:

V̇ =
−1

α

m∑
k=1

tr
(
− [Fk]

∧ [Ωk]
∧)+

m∑
k=1

1

dk
tr
[
J̃k

˙̃Jk

]
+ l

m∑
k=1

(Ωr
k − Fk)

T
(
JkΩ̇

r
k − JkḞk

)
(3.15)

where J̃k = Jk − Ĵk. Using the fact that tr
(
− [a]∧ [b]∧

)
= 2aT b for a, b ∈ R3 and the

kinematic equations (3.4),(3.5), we have:

V̇ =
−2

α

m∑
k=1

F T
k Ωk +

m∑
k=1

1

dk
tr
[
J̃k

˙̃Jk

]
+ l

m∑
k=1

(Ωr
k − Fk)

T
(

[JkΩk]
∧Ωk + uk − JkḞk

)
(3.16)
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Next, we put (3.13) into (3.16):

V̇ =
−2

α

m∑
k=1

F T
k ΩK +

m∑
k=1

1

dk
tr
[
J̃k

˙̃Jk

]
+ l

m∑
k=1

(Ωr
k − Fk)

T ([JkΩk]
∧Ωk −

[
ĴkΩk

]∧
Ωk + ĴkḞk

+ µ (Fk − Ωk + Ωd)− JkḞk) (3.17)

Here, we can see the main rationale for using the Frobenius norm in the structure of the

Lyapunov function (3.14). This particular norm enables us to design adaptation laws for

each agent by combining the second and third term in (3.17). We rearrange (3.17) as

follows:

V̇ = l
m∑
k=1

(Ωr
k − Fk)

T (
[
J̃kΩk

]∧
Ωk + µ(Fk − Ωk + Ωd)

− J̃kḞk) +
−2

α

m∑
k=1

F T
k Ωk +

m∑
k=1

1

dk
tr
[
J̃k

˙̃Jk

]
(3.18)

Next, using the identities a · b = tr(abT ) and a · (b × c) = b · (c × a) = c · (a × b), for

a, b, c ∈ R3, we have

V̇ = lµ

m∑
k=1

(Ωrk − Fk)T (Fk − Ωk + Ωd)

m∑
k=1

tr

[
J̃k

(
1

dk

˙̃Jk − Ḟk(Ωrk − Fk)T − Ωk((Ωrk − Fk)× Ωk)T
)]

−2

α

m∑
k=1

FTk Ωk (3.19)

Choosing the adaptation laws as:

˙̃Jk = dk

[
Ḟk(Ω

r
k − Fk)T + Ωk((Ω

r
k − Fk)× Ωk)

T
]

(3.20)
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and using (3.20) in (3.19), after simplification, (3.19) will become as follows:

V̇ =
m∑
k=1

−
(
−µl − 1

α

)
‖Ωr

k − Fk‖
2

− 1

α

(
‖Ωr

k‖
2 + ‖Fk‖2)− 2

α
F T
k Ωd (3.21)

The summation over the last term of (3.21) is equal to zero. Using this fact and choosing

µ in a way that µl ≥ 1
α

, we can conclude that the time derivative of (3.14) is negative semi

definite. From this, it is possible to deduce that Ωr
k, Fk, J̃k are belonging to L∞. From

the fact that the Lyapunov function (3.14) is lower bounded and its time derivative is non

increasing, we can find that it has a finite limit i.e. limt→∞ V (t) = V∞. From (3.4) and

(3.5), we can conclude that Ω̇r
k, Ḟk ∈ L∞. Furthermore, using (3.21), we can write:

V̇ ≤ − 1

α

m∑
k=1

(
‖Ωr

k‖
2 + ‖Fk‖2)

⇒ −α
∫ ∞

0

V̇ dt ≥
m∑
k=1

∫ ∞
0

‖Ωr
k‖

2 dt+

∫ ∞
0

‖Fk‖2 dt

⇒ α(V (0)− V∞) ≥
m∑
k=1

‖Ωr
k‖

2
2 + ‖Fk‖2

2 (3.22)

So we can deduce that Ωr
k, Fk ∈ L2. By applying Barbalat’s Lemma [91] we will have

Ωr
k → 0, Fk → 0.

Remark 3.1 For solving the previous problem, we did not assume any reference signal for

the rotation matrix, and the consensus will be achieved on the general manifold of the

system. In order to perform the previous task in the presence of such a reference signal,

by considering a tree like topology for the network communication graph, it is possible

to consider a virtual leader with a fixed angular velocity Ωd and desired rotation matrix

Rd(t). Next, using the same procedure we can prove the stability results.
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3.2.4 Robust Adaptive Control

In this section, we consider the Problem 3.3. In fact, we want to design a more robust

control law for the previous task. In the past approach, we assumed that the system is

perfect and there is no external noise in the input. However, in aeronautic applications

a small noise caused by unmodeled dynamics or from the external sources can lead to

a catastrophic failure. In order to handle these types of noises, we need to modify our

previous approach. Agents dynamic models for this case were discussed in section 3.2.3.

As stated before, first we assume that the upper bound for these vectors are known i.e

‖δk‖ ≤ ∆k. We use Lyapunov function (3.14) to analyze this problem. The time derivative

of this Lyapunov function in this case takes the following form:

V̇ = l

m∑
k=1

(Ωr
k − Fk)T ([JkΩk]

∧Ωk + uk + δk − JkḞk)

−2

α

m∑
k=1

F T
k Ωk +

m∑
k=1

1

dk
tr
[
J̃k

˙̃Jk

]
(3.23)

we need to devise a method to suppress the effects of noises on the dynamics of each of

agents for achieving the attitude synchronization task. The latter can be done by adding

an extra term to the control law (3.13) which is related to the upper bound on the noise

vector. Our proposed control law for this case is as follows:

uk = −
[
ĴkΩk

]∧
Ωk + Ĵk

d

dt
Fk

+ µ(Fk − Ωk + Ωd)−
∆2
k(Ω

r
k − Fk)

∆k ‖Ωr
k − Fk‖+ εk

(3.24)

˙̃Jk = dk[Ḟk(Ω
r
k − Fk)T

Ωk((Ω
r
k − Fk)× Ωk)

T − 2σkĴk] (3.25)

where σk and εk are design parameters. (3.24) and (3.25) have an extra term compared to

equations (3.13) and (3.20). The main purpose of these terms is to confine the trajectories
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of the system to a small neighborhood of the origin by choosing sufficiently small values

for σk and εk. By choosing such values for these parameters, we will increase the control

effort and hence, there is a tradeoff between increasing the efficiency of the synchronization

task and the amount of control effort. After the insertion of (3.24) and (3.25) in (3.23), we

reach to

V̇ =
m∑
k=1

−
(
µl − 1

α

)
‖Ωr

k − Fk‖
2 − 1

α

(
‖Ωr

k‖
2 + ‖Fk‖2)

+ (Ωr
k − Fk)T

(
δk −

∆2
k(Ω

r
k − Fk)

∆k ‖Ωr
k − Fk‖+ εk

)
σktr[J̃kĴk] (3.26)

since ‖δk‖ ≤ ∆k, we can find that:

V̇ ≤
m∑
k=1

−
(
µl − 1

α

)
‖Ωr

k − Fk‖
2 − 1

α
(‖Ωr

k‖
2 + ‖Fk‖2)

σktr[J̃kĴk] + εk (3.27)

Next, we need to find some bounds for the
∑m

k=1 σktr[J̃kĴk] term. Here, we use the approach

from [92]:

m∑
k=1

σktr[J̃kĴk] =
m∑
k=1

σktr[J̃k(Jk − J̃k)]

=
m∑
k=1

σk(−J̃2
k,ii + J̃k,ijJk,ji) ≤

m∑
k=1

σk

(
−
J̃2
k,ii

2
+
J2
k,ij

2

)

=
m∑
k=1

−σk
2
tr[J̃2

k ] +
σk
2
tr[J2

k ]

=
m∑
k=1

−σk
2

∥∥∥J̃k∥∥∥2

F
+
σk
2
‖Jk‖2

F (3.28)

where we used summation convention for brevity, we need to assume that the values of the

maximum eigenvalues λk,M of the inertia matrices of agents are known. This assumption is
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not restrictive since we can easily approximate these values. Using this assumption, (3.28)

results in:
m∑
k=1

σktr[J̃kJk] ≤
m∑
k=1

−σk
2

∥∥∥J̃k∥∥∥2

F
+

3σk
2
λ2
K,M (3.29)

then we can write (3.27) as follows:

V̇ ≤
m∑
k=1

−
(
µl − 1

α

)
‖Ωr

k − Fk‖
2 − 1

α
(‖Ωr

k‖
2 + ‖Fk‖2)

−σk
2

∥∥∥J̃k∥∥∥2

F
+

3σk
2
λ2
K,M + εk (3.30)

we can conclude that if the following condition holds:

m∑
k=1

(
µl − 1

α

)
‖Ωr

k − Fk‖
2 +

1

α
(‖Ωr

k‖
2 + ‖Fk‖2)

+
σk
2

∥∥∥J̃k∥∥∥2

F
≥

m∑
k=1

(
3σk
2
λ2
K,M + εk

)
≥ β (3.31)

then V̇ ≤ 0. Here we can see the fact that by choosing sufficiently small εk and σk for each

agent in the network we can ’trap’ the trajectories of the system in to a small neighborhood

around the origin.

In the next scenario, we assume that the upper bound for each element of the δk is known,

i.e. ‖δk,i‖ ≤ ∆k,i , i ∈ {1, 2, 3}. The modified input for this case is as follows

uk = −
[
ĴkΩk

]∧
Ωk + Ĵk

d

dt
Fk

µ(Fk − Ωk + Ωd)− Pk (3.32)

˙̃Jk = dk[Ḟk(Ω
r
k − Fk)T + Ωk((Ω

r
k − Fk)× Ωk)

T ] (3.33)

where the ith element of Pk is as follows:

Pk,i = −∆k,isign(Ωr
k − Fk)i (3.34)

37



then, we can find that by using (3.32) and (3.33) the time derivative of the Lyapunov

function (3.14) results in:

V̇ ≤
m∑
k=1

−
(
µl − 1

α

)
‖Ωr

k − Fk‖
2 − 1

α
(‖Ωr

k‖
2 + ‖Fk‖2) (3.35)

The rest of stability proof can be carried forward based on the method which is used in

section 3.2.3

3.3 Attitude Synchronization with Optimal Norm

In this section, we analyze the different norm definitions which can be used to measure

the amount of ”disagreement” for the attitude synchronization problem of a rigid body

network.

3.3.1 Error Functions on SO(3) and Norm Definitions

An error function acts as an artificial potential energy of the network. In fact, we can

imagine this function as a potential energy of the network where agents are connected to

each other via imaginary rotational springs as depicted in Fig. 3.1. As we will discuss later,

this function can also be used to build error vectors between attitudes of the agents in the

network. These error vectors are used in the feedback control laws of the network. For

instance, in [87] and [5], the following function has been used for a typical network:

Vp =
m∑
i=1

m∑
j=1

ajitr[I3×3 −RT
i Rj] (3.36)

If the agents in the network are in a synchronized state, then this function will be equal

to zero. In other words, this function measures the total ”disagreement” in the network.
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In order to better understand the structure of (3.36), consider an individual term

Vij =
1

2
tr
[
I3×3 −RT

i Rj

]
(3.37)

The attitude error vector corresponding to (3.37) is as follows:

eR =
1

2

(
RT
i Rj −RT

j Ri

)∨
, (3.38)

The structure of the synchronization control laws presented in [83], [87], [5] are directly

related to this error vector. (3.38) can be derived by computing the gradient of (3.37) on

SO(3). In order to study the characteristics of (3.38), without loss of generality, we assume

that Ri = I, and substitute in (3.38), leading to

eR =
1

2

(
Rj −RT

j

)∨
(3.39)

We can use the Rodrigues formula to expand Rj as follows:

Rj = eω
∧θ = I +

ω∧

‖ω‖
sin (‖ω‖ θ) +

(ω∧)2

‖ω‖2 (1− cos (‖ω‖ θ))

RT
j = e−ω

∧θ = I − ω∧

‖ω‖
sin (‖ω‖ θ) +

(ω∧)2

‖ω‖2 (1− cos (‖ω‖ θ))

If ‖ω‖ = 1, θ represents the angle of rotation about the axis ω. We can easily observe that

(
Rj −RT

j

)∨
=

2

‖ω‖
sin (‖ω‖ θ)ω (3.40)

Since ‖ω‖ = 1, (3.40) indicates that the error vector is related to the angle between the

current and desired attitude position which is θ = 0 for Ri = I.

The main drawback of using error function (3.37) is as follows: From θ = 0 to θ = π
2

the norm of error vector increases, which is desirable; but from θ = π
2

to θ = π it decreases,

which is undesirable. Using (3.36), the controller needs to put extra effort for attitude

synchronization since the methodology for finding the attitude error will weight the actual
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difference in attitude positions differently from 0 to π
2

and from π
2

to π.

Next, we study an alternative function which monotonically increases with the difference in

attitude positions of agents. One such function is introduced in [84] for tracking a reference

signal on SO(3). Here, we use the following modified version of this function

Vij = 2−
√

1 + tr[RT
i Rj], Vp =

m∑
i=1

m∑
j=1

aijVij (3.41)

The error vector for (3.41) can be derived as

eij =
1

2
√

1 + tr
[
RT
j Ri

] (RT
j Ri −RT

i Rj

)∨
(3.42)

Again, using Rodrigues formula, we find that for Q = RT
j Rk = eω

∧
1 θ1 , (3.42) becomes:

‖eij‖ = sin
‖ω1‖ θ1

2
(3.43)

It is clear that unlike the error function (3.37), the error function (3.41) monotonically

increases from 0 to π. In [93], it is also shown that, (3.41) is actually the viscosity solution

to the Hamilton-Jacobi-Bellman equation for the optimal control problem on SO(3) with

the cost function:

H =
1

2

∫ ∞
0

tr[I3×3 −R(t)] + ΩT (t)Ω(t) dt (3.44)

where Ṙ = RΩ∧. We can show that the relative kinematics of two agents can also be

converted to this optimal control problem using the method which is first proposed in [38].

Consider two agents in the network with kinematics (3.5). If these agents have the same

attitudes then R−1
i Rj = I. In this regard, consider the following change of variable:

R = R−1
i Rj ⇒ Ṙ = R−1

i Rj

[
Ω∧j −R−1Ω̂∧i R

−1
]

(3.45)
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By denoting
[
Ω∧j −R−1Ω̂∧i R

−1
]

as Ω∧ij, (3.45) indicates that the attitude synchronization

of two agents can be seen as an optimal control problem with the cost function (3.44).

In this chapter, we use the following potential function to measure the amount of ”dis-

agreement” in the network and design the control laws

Vp =
m∑
k=1

m∑
j=1

ajk

(
2−

√
1 + tr[RT

kRj]

)
(3.46)

3.3.2 Synchronization Scheme Design

In this section, we revisit Problem 3.1 for a network of rigid body agents. We use the

optimal norm introduced in Section 3.3.1 for analysis and control design. Consider a

network consisting ofm rigid bodies with dynamic equations (3.4), (3.5). These rigid bodies

can be spacecraft, ground robots, a network of satellites in the earth orbit, or an array

of radio telescopes. We propose the following control law for the attitude synchronization

task of Problem 3.1 :

uk = − [JkΩk]
∧Ωk + JkNk + µ (Mk − Ωk + Ωd) , (3.47)

where

Mk = α
m∑
j=1

Mjk, Nk = α
m∑
j=1

Njk α > 0

Mjk =


ajk

2
√

1+tr[RTk Rj ]

[
RT
kRj −RT

j Rk

]∨
if tr[RT

j Rk] 6= −1

ajk
[
RT
kRj −RT

j Rk

]∨
otherwise

Njk =


d
dt

(
ajk

2
√

1+tr[RTk Rj ]

[
RT
kRj −RT

j Rk

]∨)
if tr[RT

j Rk] 6= −1

d
dt

(
ajk
[
RT
kRj −RT

j Rk

]∨)
otherwise

µ and α are positive constants and as we will show later, they can be adjusted to achieve

better stability results.
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Remark 3.2 : Njk = Ṁjk does not hold, because of the discontinuous nature of Mjk laws.

In order to study the stability properties of the previous algorithm we use the Lyapunov

function

V = Vp +
l

2

m∑
k=1

(Ωr
k −Gk)

TJk(Ω
r
k −Gk) (3.48)

where l is a positive constant and Ωr
k = Ωk − Ωd. Gk is defined as:

Gk =
m∑
j=1

Gjk =
m∑
j=1

αajk

2
√

1 + tr[RT
kRj]

[
RT
kRj −RT

j Rk

]∨
The main difference between our proposed Lyapunov function and the one proposed in [87]

is in the first term of (3.48). This term measures the artificial potential energy related to

the attitude differences of the rigid bodies in the network. As we mentioned earlier, it is

possible to consider this function as a potential energy of the network where agents are

connected to each other via imaginary rotational springs as depicted in Fig. 3.1.

It is clear that this function is positive definite for the attitude synchronization equi-

librium since tr[RT
kRj] ≤ 3. Next, we compute the generalized time derivative [88] of

V :

˙̃V =
1

2

m∑
k=1

m∑
j=1

−ajktr[ṘT
kRj +RT

k Ṙj]

2
√

1 + tr[RT
kRj]

+ l

m∑
k=1

(Ωr
k −Gk)

T (JkΩ̇
r
k − JkĠk) (3.49)

If tr[RT
kRj] = −1, we need to use the limits of Gk and Ġk. , existence and boundedness of

which are established in [84]. Substituting (3.4) and (3.5), we reach

˙̃V =
1

2

m∑
k=1

m∑
j=1

−ajktr[−Ω∧kR
T
kRj +RT

kRjΩ
∧
j ]

2
√

1 + tr[RT
kRj]

+ l
m∑
k=1

(Ωr
k −Gk)

T ([JkΩk]
∧Ωk + uk − JkĠk) (3.50)
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Using the fact tr[AT ] = tr[A] and tweaking the indices j and k, (3.50) can be rewritten as

˙̃V =
1

2

m∑
k=1

m∑
j=1

−ajktr[RT
kRjΩ

∧
j ]√

1 + tr[RT
kRj]

+ l

m∑
k=1

(Ωr
k −Gk)

T ([JkΩk]
∧Ωk + uk − JkĠk) (3.51)

Using the control law (3.47) for agents, (3.51) becomes

˙̃V =
1

2

m∑
k=1

m∑
j=1

−ajktr[RT
kRjΩ

∧
j ]√

1 + tr[RT
kRj]

+ l
m∑
k=1

(Ωr
k −Gk)

T (Jk(Nk − Ġk) + µ(Mk − Ωk + Ωd))) (3.52)

Using the facts limRi→Rj Mik = Gjk and limRi→Rj Nik = Ġjk, (3.52) can be expressed as

˙̃V =
1

2

m∑
k=1

m∑
j=1

−ajktr[RT
kRjΩ

∧
j ]√

1 + tr[RT
kRj]

− µl
m∑
k=1

(Ωr
k −Gk)

T (Ωr
k −Gk) (3.53)

Substituting (3.3) in (3.53), we obtain

˙̃V =
1

2

m∑
k=1

m∑
j=1

−ajkΩT
j

[
RT
j Rk −RT

kRj

]∨√
1 + tr[RT

kRj]

− µl
m∑
k=1

(Ωr
k −Gk)

T (Ωr
k −Gk), (3.54)

which, using the definition of Gk and changing the index, turns into

˙̃V =
−1

α

m∑
k=1

GT
kΩk − µl

m∑
k=1

(Ωr
k −Gk)

T (Ωr
k −Gk) (3.55)

Adding and subtracting
∑m

k=1 GkΩd, we obtain

˙̃V =
m∑
k=1

(
−
(
µl − 1

2α

)
‖Ωr

k −Gk‖2 − 1

2α

(
‖Ωr

k‖
2 + ‖Gk‖2)

− 1

α
GT
kΩd

)
(3.56)

43



Since

ajk√
1 + tr[RT

kRj]
(RT

kRj −RT
j Rk)

∨ =
−akj√

1 + tr[RT
j Rk]

(RT
j Rk −RT

kRj)
∨,

the summation over the last term in (3.56) is equal to zero and we deduce that ˙̃V ≤ 0,

and ˙̃V < 0 for ‖Ωr
k‖ 6= 0 and ‖Gk‖ 6= 0 for µl ≥ 1

2α
. Comparing to the results of [87],[83],

it is clear that we can choose smaller value of µ for stabilization. Now, we are in posi-

tion to invoke LaSalle-Yoshizawa Theorem for nonsmooth systems(Corollary 2 in [88]) and

conclude that the equilibrium of the system is asymptotically stable, i.e. Gk → 0 and

Ωr
k → 0, k ∈ {1, · · · ,m}.

Theorem 3.1 : Consider Problem 3.1 for a network of m rigid bodies with dynamics (3.4)

and (3.5). For µl ≥ 1
2α

, the control law (3.47) asymptotically synchronizes the attitudes of

the agents of the network.

Remark 3.3 : Since the control algorithm (3.47) is a backstepping-type controller, we can

regard α and µ as control gains for different steps of backstepping method. It is also

clear that choosing high value for α enables us to use smaller µ in (3.47). This particular

relation between the gains is directly related to the optimal norm (3.46) which appears

in the structure of the Lyapunov function (3.48). The latter property is also observed in

stability analysis of general mechanical systems. For instance, consider a simple spring-

mass-damper, where the rate of change of the mechanical energy (Lyapunov function for

the system) depends only on the value of the damper coefficient. However, in [94], authors

proposed a Lyapunov function for studying the input to state stability of the system whose

time derivative depends on both of the system gains and can be used for robust stability

analysis.
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3.3.3 Performance Analysis

In this section, we analyze and compare the performance of control algorithm (3.47) with

the results in [87]. As mentioned in Section 3.3.1, the norm of the error vector (3.38) is

directly related to the sine of the angle between the two neighboring agents while the norm

of the error vector (3.42) is proportional to the sine of the half of this angle. If there exists a

large physical difference θ = π−ε, where ε ≥ 0 is small, between the attitudes of the agents,

then the error vector (3.38) tends to zero despite this large difference. This issue can be

solved by using the error vector (3.42). In order to study the effects of this issue on the

performance of the synchronization task we start with an example of consensus problem in

two dimensional Euclidean space. In this regard, consider a network of holonomic agents

with kinematics ẋi = uix, ẏi = uiy, i ∈ {1, · · · , n}. This network can reach the state of

consensus using the algorithms proposed in [95]. We consider two special cases as follows:

uix,1 = −
∑
j∈Ni

sin (xi − xj) , uix,2 = −
∑
j∈Ni

sin

(
xi − xj

2

)
uiy,1 = −

∑
j∈Ni

sin (yi − yj) , uiy,2 = −
∑
j∈Ni

sin

(
yi − yj

2

)
(3.57)

Suppose that a network of four agents, with the communication graph depicted in Fig. 3.2,

is released from the following initial condition, where εix, εiy << 1:

X(0) = [ε1x, ε2x, π − ε3x, π − ε4x], Y (0) = [ε1y, π − ε2y, π − ε3y, ε4y] (3.58)

We can analyze the stability of the distributed algorithm (3.57) for this network using the

method proposed in [95] and the Lyapunov function

V = ζTx ζx + ζTy ζy, X = α1n + ζx, Y = β1n + ζy, α, β > 0. (3.59)

45



Figure 3.2: The initial network configuration for control algorithms (3.57).

where X = [x1, · · · , xn]T and Y = [y1, · · · , yn]T . Then for the previous algorithms, we have

V̇1 = −
∑
i

∑
j∈Ni

(ζix − ζjx) sin(ζix − ζjx), V̇2 = −
∑
i

∑
j∈Ni

(ζix − ζjx) sin

(
ζix − ζjx

2

)
,

(3.60)

hence, we can write

V̇1(0) = −π(sin(ε1 + ε3) + sin(ε2 + ε4)) +O(ε2), V̇2(0) = −π +O(ε), (3.61)

which clearly shows the huge difference between the decreasing rates of the Lyapunov

function (3.59) using the previous control methods in the beginning of the control task.

From (3.60), we can deduce that this situation continues until the relative positions between

agents decrease. In particular, in the context of attitude synchronization, consider two

agents in the network with the disagreement function (3.41). The time derivative of (3.41)

is

dVij
dt

=
−1

2
√

1 + tr[RT
j Ri]

tr[RT
j RiΩ̂i − Ω̂jR

T
j Ri]. (3.62)
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Using (3.3), this can be rewritten as:

dVij
dt

=
−1

2
√

1 + tr[RT
j Ri]

[
−ΩT

i (RT
j Ri −RT

i Rj)
∨ − ΩT

j (RT
i Rj −RT

j Ri)
∨] (3.63)

Next, if we choose the kinematic controllers

Ωi =
−1

2
√

1 + tr[RT
j Ri]

[RT
j Ri −RT

i Rj]
∨, Ωj =

−1

2
√

1 + tr[RT
i Rj]

[RT
i Rj −RT

j Ri]
∨ (3.64)

then (3.63) becomes:

dVij
dt

=
−1

2(1 + tr[RT
j Ri)

∥∥[RT
j Ri −RT

i Rj]
∨∥∥2 ≈ sin2(

θij
2

). (3.65)

On the other hand, if we used the error vector (3.38) to design the kinematic controllers

[87],[83]

Ωi = [RT
j Ri −RT

i Rj]
∨, Ωj = [RT

i Rj −RT
j Ri]

∨

then, we can write

dVij
dt

=
−1

2
√

1 + tr[RT
j Ri

∥∥[RT
j Ri −RT

i Rj]
∨∥∥2 ≈ sin(

θij
2

) sin(θij). (3.66)

From (3.66), it is clear that in the presence of large angular difference (θij = π − ε, 0 <

ε << 1), Vij will decrease much faster with (3.64). The latter problem is aggravated in the

situations where the communication graph of the network compels the agents with large

attitude differences to become neighbors. One of such situations is depicted in Fig. 3.3,

where 4 agents with huge difference in attitude positions are communicating via a line

graph topology which is popular in attitude synchronization problems [96, 97, 5].
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Figure 3.3: Network of rigid bodies with large attitude differences with line graph topology.

3.3.4 Adaptive Attitude Synchronization with Optimal Norm

In the previous section, we assumed that the values of the principal moments of inertia were

available for the purpose of control design. This assumption is to some extent, restrictive

since these values may change during certain tasks. Hence, we need to modify the previous

approach to cope with situations where this information is not available. Here, we use the

adaptive control framework to find the estimates of the moments of the inertia of the rigid

bodies in the network. In this regard, we start by using (3.47), but instead of the values

of the moments of inertia, we use the current estimates

uk = −
[
ĴkΩk

]∧
Ωk + ĴkNk + µ (Mk − Ωk + Ωd) , (3.67)
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where Ĵk denotes the estimate of Jk. In order to fulfill such a design, we modify the

Lyapunov function (3.48) as follows:

V =
1

2

m∑
k=1

m∑
j=1

ajk

(
2−

√
1 + tr[RT

kRj]

)

+
l

2

m∑
k=1

(Ωr
k −Gk)

TJk(Ω
r
k −Gk)

+
m∑
k=1

1

2dk

∥∥∥Jk − Ĵk∥∥∥2

F
(3.68)

where ‖·‖F denotes the Frobenius norm and dk, k ∈ {1, · · · ,m} are positive constants. In

fact, as we show later, these parameters are the adaptation gains of the update equations

and can be adjusted to fine tune the transient behavior of the adaptation task. The

generalized time derivative of the Lyapunov function (3.68) is

˙̃V =
1

2

m∑
k=1

m∑
j=1

−ajktr[ṘT
kRj +RT

k Ṙj]

2
√

1 + tr[RT
kRj]

+ l
m∑
k=1

(Ωr
k −Gk)

T (JkΩ̇
r
k − JkĠk)

+
m∑
k=1

1

dk
tr[J̄k

˙̄Jk], (3.69)

where J̄k = Jk − Ĵk. Using (3.3),(3.4),(3.5),(3.67) we reach

˙̃V =
1

2

m∑
k=1

m∑
j=1

−ajkΩT
j

[
RT
j Rk −RT

kRj

]∨√
1 + tr[RT

kRj]
+

m∑
k=1

1

dk
tr[J̄k

˙̄Jk]

+ l

m∑
k=1

(Ωr
k −Gk)

T
([
J̄kΩk

]∧
Ωk + J̄kNk + µ(Mk − Ωk + Ωd)

)
(3.70)
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Next, using the identities aT b = tr[abT ], a, b ∈ R3 and aT (b × c) = bT (c × a) = cT (a × b),

we obtain

˙̃V =
m∑
k=1

tr

[
J̄k

(
1

dk
˙̄Jk − Ġk(Ω

r
k −Gk)

T − Ωk ((Ωr
k −Gk)× Ωk)

T

)]
− 1

α

m∑
k=1

GT
kΩk − lµ

m∑
k=1

(Ωr
k −Gk)

T (Ωr
k −Gk). (3.71)

Here, we can see the main rationale behind using the Frobenius norm in the structure of

the Lyapunov function (3.68). This particular norm produces the adequate terms in the

generalized time derivative of the Lyapunov function for canceling out the terms involving

J̄k. Here, it is clear that by choosing the following adaptation law

˙̂
Jk = − ˙̄Jk = −dk

[
Ġk(Ω

r
k −Gk)

T + Ωk((Ω
r
k −Gk)× Ωk)

T
]

(3.72)

we can eliminate the terms involving J̄k. However, here we use the adaptation laws

˙̂
Jk = − ˙̄Jk = −dk

2

[
Ġk(Ω

r
k −Gk)T + Ωk((Ω

r
k −Gk)× Ωk)

T

+(Ωr
k −Gk)ĠTk + ((Ωr

k −Gk)× Ωk)Ω
T
k

]
(3.73)

The only difference between (3.72) and (3.73) is that in (3.73) we have used the fact that

the inertia matrix estimates of agents must be symmetric. Substituting (3.73) into (3.71),

we reach

˙̃V =
−1

α

m∑
k=1

GT
kΩk − µl

m∑
k=1

(Ωr
k −Gk)

T (Gk − Ωk + Ωd). (3.74)

Adding and subtracting the
∑m

k=1G
T
kΩd term, we obtain

˙̃V =
m∑
k=1

−
(
lµ− 1

2α

)
‖Ωr

k −Gk‖2 − 1

2α

(
‖Ωr

k‖
2 + ‖Gk‖2)

− 1

α
GT
kΩd (3.75)
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Choosing lµ ≥ 1
2α

and using the fact that
∑m

k=1G
T
kΩd = 0, we conclude that ˙̃V ≤ 0,

and ˙̃V < 0 for ‖Ωr
k‖ 6= 0 and ‖Gk‖ 6= 0. Again, using LaSalle-Yoshizawa Theorem for

non-smooth systems (Corollary 2 in [88]), we establish that Ωr
k → 0, Gk → 0 as t→∞.

Theorem 3.2 : Consider Problem 3.2 for a network of rigid body agents with dynamics

(3.4) and (3.5). Control law (3.67) together with the adaptation laws (3.73) asymptotically

synchronize the attitudes of the agents provided that µl ≥ 1
2α

.

Remark 3.4 : In order to solve the attitude synchronization problem, we did not assume

any reference signal for rotation matrix, and the consensus will be achieved on the general

manifold of the system. But in many practical situations we need the agents in the network

to track a particular path on SO(3). For this case, we can assume a virtual leader with

an angular velocity Ωd and the desired rotation matrix Rd(t) for a tree shaped network

communication graph. Following the procedure of this section one can obtain the main

stability results.

3.3.5 Robust Adaptive Synchronization

In this section, the main objective is to design a method which can handle the effects of

unmodeled dynamics or unknown external disturbances. The main reason for performing

this task arises from the practical implementation of synchronization algorithm where a

small noise due to atmospheric drag or friction can cause a large amount of error. Here,

the robust synchronization task is achieved via manipulating the time derivative of the

Lyapunov function, aiming to decrease the virtual disagreement function of the network

in the course of time. We assume that the upper bounds on the external disturbances are

known a priori. We start by modifying our approach in Section 3.3.4 to make it suitable

for robust synchronization. Consider the derivative of the Lyapunov function (3.67) for
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the case that (3.4) is affected by the disturbance δk:

˙̃V = l
m∑
k=1

(Ωr
k −Gk)

T ([JkΩk]
∧Ωk + uk + δk)

− 1

α

m∑
k=1

GT
kΩk +

m∑
k=1

1

dk
tr
[
J̄k

˙̄Jk

]
(3.76)

As stated before, the objective is to suppress the effects of unmodeled dynamics, i.e. δk.

In order to fulfill this task, we assume that the upper bound for each element of the δk is

known, i.e. ‖δk,i‖ ≤ ∆k,i , i ∈ {1, 2, 3}. The modified adaptive control law for this case is

selected as

uk = −
[
ĴkΩk

]∧
Ωk + ĴkNk + µ(Mk − Ωk + Ωd)− Pk, (3.77)

˙̂
Jk = −dk[Ġk(Ω

r
k −Gk)

T + Ωk((Ω
r
k −Gk)× Ωk)

T ], (3.78)

where the ith element of Pk is chosen as

Pk,i = −∆k,isign(Ωr
k −Gk)i (3.79)

Using (3.77) and (3.78) the generalized time derivative of the Lyapunov function (3.67)

results in:

˙̃V ≤
m∑
k=1

−
(
µl − 1

2α

)
‖Ωr

k −Gk‖2 − 1

2α
(‖Ωr

k‖
2 + ‖Gk‖2)

+ l

m∑
k=1

3∑
i=1

(δk,i(Ω
r
k −Gk)i −∆k,i ‖Ωr

k −Gk‖i) . (3.80)

Since

l
m∑
k=1

3∑
i=1

(δk,i(Ω
r
k −Gk)i −∆k,i ‖Ωr

k −Gk‖i) ≤ 0,

we have

˙̃V ≤
m∑
k=1

−
(
µl − 1

2α

)
‖Ωr

k −Gk‖2 − 1

2α
(‖Ωr

k‖
2 + ‖Gk‖2). (3.81)
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Using LaSalle-Yoshizawa Theorem for nonsmooth systems, we can prove the stability of

the synchronization task.

Theorem 3.3 : Consider Problem 3.3. Control law (3.77) together with adaptation law

(3.78) will achieve the robust synchronization task provided that µl ≥ 1
2α

.

To the best of the authors’ knowledge, there is no other adaptive control law in the

literature for attitude synchronization based on geometric approach. Hence, it is hard to

do a comparative analysis for the performance of the proposed robust control law (3.77).

Furthermore, the design of (3.77) is based on a constructive Lyapunov analysis leading to

an asymptotic convergence result only, as seen above, not providing bounds for transient

performance. Yet there exist relevant non-adaptive designs in the literature, which may be

used to modify (3.77) into a form more suitable for performance analysis, for certain classes

of network topologies. One such design is proposed in [84] to reject external disturbances

for attitude control of a single robot. This approach can be modified and combined with

(3.77) for synchronization of two agents using the control law

uk = − [JkΩk]
∧Ωk + JkĠk + µ(Gk − Ωk + Ωd)−

∆2
k(Ω

r
k −Gk)

∆k ‖Ωr
k −Gk‖+ εk

(3.82)

together with the Lyapunov function (3.48) with m = 2 and a12 = a21 = 1. The time

derivative of V is found as

V̇ = −
2∑

k=1

(
lµ− 1

2α

)
‖Ωr

k −Gk‖2 − 1

α

2∑
k=1

(
‖Ωr

k‖
2 + ‖Gk‖2)

+
2∑

k=1

(Ωr
k −Gk)

T

(
δk −

∆2
k(Ω

r
k −Gk)

∆k ‖Ωr
k −Gk‖+ εk

)
(3.83)

If we know the upper bounds for δk terms, i.e ‖δk‖ ≤ ∆k, (3.83) reduces to

V̇ ≤ −
2∑

k=1

((
lµ− 1

2α

)
‖Ωr

k −Gk‖2 +
1

α
(‖Ωr

k‖
2 + ‖Gk‖2)− εk

)
. (3.84)
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Using the fact

G1 = −G2 =
1

2
√

1 + tr[RT
2R1]

[RT
2R1 −RT

1R2]∨

⇒ ‖Gi‖2 = sin2 θ12

2
⇒ V12 = 2−

√
1 + tr[RT

2R1] ≤ 2 ‖Gi‖2 (3.85)

we can rewrite (3.84) as follows:

V̇ ≤ −
2∑

k=1

(
lµ− 1

2α

)
‖Ωr

k −Gk‖2 − 1

2α
V12 + εk ≤ −βV + ε1 + ε2 (3.86)

Choosing µl ≥ 1
2α

and using the Bellman Gronwall Lemma [98], we deduce that (β = 1
2α
>

0)

V (t) ≤ e−βtV (0) +
ε1 + ε2
β

(3.87)

From (3.87), it is clear that trajectories of the system will be trapped inside a neighborhood

of the equilibrium of the synchronization task. We can adjust the size of the neighborhood

by choosing small values for ε = ε1 + ε2. However, the latter can increase the control effort

and hence there exists a tradeoff between the control cost and the performance of robust

control task. The analysis above can be easily extended to networks with more than two

agents having line graph topology.

3.4 Geometric Redesign Considering Time-Varying In-

ertia

3.4.1 Dynamics

In this section we summarize the notation used in this research, and review the attitude

kinematics and dynamics properties and typical scenario settings for rigid body rotational
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maneuvers. The attitude position of a rigid body is defined as the relative orientation

between the global inertial reference frame I and the rigid body fixed body coordinate

frame B and is expressed by the rotation matrix R ∈ SO(3), columns of which represent

the principle axes of the body fixed coordinate frame B in the inertial coordinate frame I.

The angular velocity vector of the rigid body which is expressed in the body coordinate

frame is defined as

bω =
[
RT Ṙ

]∨
(3.88)

where ∨ is the inverse of hat map which is defined as follows for x = [x1, x2, x3]T ∈ R3:

4
x=


0 −x3 x2

x3 0 −x1

−x2 x1 0

 . (3.89)

Note here that the estimation of a matrix A is denoted by Â and the estimation error is

represented by Ã = Â− A.

The attitude dynamics for a spacecraft can be derived by taking the time derivative of the

angular momentum in the inertial reference frame as follows:

d

dt
[I(t)ω] = İω + Iω̇ + ω × Iω = M =

∑
τext. (3.90)

where M ∈ R3 is the total external moment exerted on the spacecraft and I(t) ∈ R3×3

represents the inertia tensor expressed in body fixed coordinate frame.

The attitude reference signal is defined in its coordinate frame using the rotation matrix

Rr and its kinematics can be obtained using (4.1):

Ṙr = Rr

4
ωr (3.91)

where ωr ∈ R3 is the attitude reference angular velocity vector, and
4
ωr denotes its hat

map.
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Remark 3.5 In this section, we consider the following model for the inertia matrix of the

spacecraft:

I = I0 +
n∑
i=1

ψiIi (3.92)

where I0 is the inertia matrix for the rigid part of the spacecraft and it is assumed to be

constant. Each term inside the summation in (3.92) contains the effects of the nonrigid

parts of the spacecraft on the total inertia of the system. I is required to satisfy the

basic properties of an inertia matrix, i.e. it needs to be symmetric positive definite and

satisfy the triangle inequalities for the diagonal entries. We assume that the values of

Ii, i ∈ {0, 1, · · · , n} are unknown constant matrices and ψi are time varying functions

which can be measured at each time instant.

Model (3.92) encompasses many practical situations. For instance, consider the case of a

rigid spacecraft which deploys multiple moving bodies. Let ri(t) denote the position of the

center of mass (CM) of the ith moving body with respect to the CM of the main part of the

spacecraft and Im,i represent the inertia matrix of the ith body with respect to its principal

axis. Then, under the assumptions that attitudes of the moving bodies are fixed within

the spacecraft body frame coordinate B and the position of the CM remains unchanged,

i.e.
∑n

i=1 ri(t)mi = 0(mi is the mass of ith body.). Using parallel axis theorem, we can

write

I =

(
Imain +

n∑
i=1

Im,i

)
︸ ︷︷ ︸

I0

+
n∑
i=1

[
rTi riI3×3 − rirTi

]
mi (3.93)

where Imain represents the inertia matrix for the main body of the spacecraft with respect

to the body fixed coordinate B. Using differentiation with respect to time, the time varying

model of the inertia of the spacecraft can be computed based on the knowledge of ri(t).

Another practical scenario with time varying inertial parameters is the case of massive
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fuel usage. In general, obtaining an exact mathematical model for such a problem is quite

difficult since the fuel expenditure process is subject to complex combustion reactions

and sloshing effects, however, based on some simplifications, it is still possible to build a

mathematical model for such behaviors. For instance, consider an spacecraft for which the

CM of its fuel tank is located at the position rT with respect to the CM of the spacecraft.

Also, assume that the inertial principle axis of the fuel tank is parallel with the body axis

of the spacecraft. As a first attempt to model the fuel usage of the spacecraft, it is possible

to use the following linear approximation which is first proposed in [99]:

ṁT = −c1 ‖M‖ , mT (0) = m0 > 0, c1 > 0 (3.94)

where c1 is an unknown constant and m0 is the initial mass of the fuel tank. The model

(3.94) simply expresses the fuel rate as a linear function of the norm of the control moment

which is exerted on the spacecraft. Another model which can be used in this regard is as

follows

ṁT = −c1 ‖M‖+
n∑
i=2

ci ‖M‖i , ‖c2‖ , · · · , ‖cn‖ << c1 (3.95)

where the norm of ci, i ≥ 2 are assumed to be small compared with c1. Note that the

r.h.s of (3.95) can become positive for large ‖M‖, however, since in practice the norm of

M always has an upper bound Mmax, it is possible to use (3.95) to handle small deviation

from the linear model (3.94) using sufficiently small values for ci, i ≥ 2 .

The moment of inertia of the fuel tank, IT can be calculated based on the mass distribution

of the fuel inside the tank. As the next step of simplification, it is assumed that the density

of the fuel and its time derivative are uniform within the tank. Using this assumption and

the definition of principle moment of inertia, in [99], it is shown that for (3.94), the time

derivative of the IT can be obtained as follows

İT = −c1diag {f1, f2, f3} ‖M‖ , fi > 0 (3.96)
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where the constants fi are dependent on the geometry of the fuel tank (fi = 1
V

∫
x2
i dV , xi

is measured along the ith principle axis of the tank). As an example, for a spherical tank,

all fi are equal to 2
5
R2. For model (3.95), (3.96) will be changed as

İT =

(
−c1 ‖M‖+

n∑
i=2

ci ‖M‖i
)
diag {f1, f2, f3} . (3.97)

Using the parallel axis theorem, for the inertia matrix IT,C of fuel tank with respect to the

CM of the spacecraft, C, we can write

IT,C = IT +mT

[
rTT rT I3×3 − rT rTT

]
⇒ İT,C = İT +

(
−c1 ‖M‖+

n∑
i=2

ci ‖M‖i
)[

rTT rT I3×3 − rT rTT
]

=

(
−c1 ‖M‖+

n∑
i=2

ci ‖M‖i
)[

diag {f1, f2, f3}+ rTT rT I3×3 − rT rTT
]

(3.98)

defining α1 = diag {f1, f2, f3}+ rTT rT I3×3 − rT rTT , the following linear parametric model is

derived from (3.98)

İT,C =
n∑
i=1

Iiψ̇i, I1 = −α1c1I3×3, ψ̇1 = α1 ‖M‖ I3×3, Ii = ciα1I3×3, ψ̇i = I3×3 ‖M‖i , i ≥ 2

(3.99)

Remark 3.6 The approximation (3.95) is not the Taylor series expansion of ṁT in terms

of the variable ‖M‖. The purpose of the higher order terms in this model is to enhance

the accuracy of the modeling of ṁT . The values of ci, i ≥ 2 are assumed to be much

smaller than c1 to ensure negativity of ṁT for the interval (0,Mmax]. Each of ψ̇i can be

integrated with respect to time to find ψi based on the assumption that ‖M‖ is available

for measurement.

58



3.4.2 Attitude Control for Agents with Time-Varying Inertia

In this section we consider the reference attitude tracking control task for a spacecraft

with unknown time varying inertia as modeled by (3.92). Here, the main objective is to

design M in (3.90) in a way that ensures R→ Rr and ω → ωr. Since it is more prevalent

to express the attitude reference signal in its own coordinate frame, we need to design

the angular velocity error vector in such a way that its components are described in body

coordinate frame. Such an approach is first proposed in [100] for attitude control of a rigid

spacecraft. Consider the following angular velocity error vector:

eω = ω −RTRrωr. (3.100)

From (3.100) it is clear that ωr is brought into the body coordinate frame using the orthog-

onal transformation RTRr. Next, we need to define the attitude error vector to quantify

the differences between the current orientation and attitude reference signal. As in the case

of error vectors in Rn, this can be achieved by first constructing the attitude configuration

error function and using its derivative as an error vector. Such a function is constructed

in [101] as follows:

φ(RT
r R) =

1

2
tr
[
Kp(I −RT

r R)
]

(3.101)

where Kp is a symmetric positive definite matrix with three distinct eigenvalues. The error

function (3.101) is positive definite for all R and Rr and it becomes zero at R = Rr. Using

(3.101), the time derivative of φ(·) is derived as follows:

dφ

dt
=

1

2
tr
[
−KpṘ

T
r R−KpR

T
r Ṙ
]

=
−1

2
tr

[
Kp

4
ω
T

r R
T
r R +KpR

T
r R

4
ω

]
=
−1

2
tr

[
−Kp

4
ωr R

T
r R +KpR

T
r R

4
ω

]
(3.102)
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where we have used the fact that
4
ω
T

r = −
4
ωr. Using the identity R

4
x RT = [Rx]∧, we

obtain

dφ

dt
=
−1

2

[
KpR

T
r R

(
4
ω −RTRr

4
ωr R

T
r R

)]
=
−1

2

[
KpR

T
r R

4
eω

]
=

1

2

(
KpR

T
r R−RTRrKp

)∨ · eω (3.103)

The last equality in (3.103) resulted from the fact that tr

[
R
4
x

]
= −xT (R−RT )∨. (3.103)

suggests that attitude error vector can be chosen as

eR =
1

2

[
KpR

T
r R−RTRrKp

]∨
(3.104)

Also, using the Rodriguez formula the following lemma is proved in [101].

Lemma 3.1 [101] The error function (3.101) satisfies the following:

1. φ(RT
r R) = φ(RTRr) ≥ 0

2. φ(·) = 0 if and only if RT
r R = I, i.e. R = Rr

3. φ(·) is a quadratic function, i.e. there exists c1 and c2 where

c1 ‖eR‖2 ≤ φ(RT
r R) ≤ c2 ‖eR‖2 (3.105)

In Lemma 3.1, (1) ensures that the error function φ(·) is always positive semi definite and its

values are equal for the two rotation matrices representing the coordinate transformations

between the body and angular reference coordinate frames. (2) guarantees that the error

function will only vanish at the desired equilibrium point. Based on these characteristics it

is possible to use φ(·) as a part of attitude control Lyapunov function. (3) simply implies

that the error function possess the quadratic structure and thus in the context of Lyapunov

theory it can be used to find the convergence sets and design the nonlinear robust control
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laws.

The attitude control design procedure is started by considering the following Lyapunov

function

V =
1

2
eTωIeω + (b1 + b2d1)φ+ b2 (Ieω)T eR +

1

2
b2

2e
T
RIeR +

n∑
i=0

1

2ki
tr
[
ĨTi Ĩi

]
(3.106)

where b1, b2, d1, ki are positive constants. The main objective of the attitude control law

is to make the time derivative of (3.106) negative semi definite. The fact that (3.106) is a

positive definite function can be verified by using (3.105) and the bounds on the eigenvalues

of the inertia matrix, i.e. σminI3×3 ≤ I(t) ≤ σmaxI3×3. We have

xTWx ≤ V,W =



c1(b1 + b2d1) −1
2
b2σmax 0 · · · 0

−1
2
b2σmax

1
2
σmin 0 · · · 0

0 0 1
2k0

· · · 0
...

...
...

...
...

0 · · · · · · · · · 1
2kn


(3.107)

where x =
[
‖eR‖ , ‖eω‖ ,

∥∥∥Ĩ0

∥∥∥
F
, · · · ,

∥∥∥Ĩn∥∥∥
F

]T
∈ Rn+3. Noting that W > 0, (3.107) clearly

shows the positive definiteness of V . Next, consider the following control law

M = −b1eR − d1eω + Î

[
RTRrω̇r−

4
ω RTRrωr

]
+ ω × Îω + ν, (3.108)

where the first two terms are proportional controllers which are built on SO(3) using the

modified attitude and angular error vectors, the next two terms are added for tracking

the reference attitude and dealing with the inherent nonlinear dynamics of rotation. These

terms consist of the estimation of the inertia matrix, i.e. Î = Î0 +
∑n

i=1 ψiÎi, which must be

obtained from the Lyapunov design method. The term ν is added to counteract the time

variations in inertia and will be designed later. In order to analyze the stability properties
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of control law (3.108), we start by taking the derivative of each term in (3.106) with respect

to time as follows

1

2

d

dt

[
eTωIeω

]
= eTωIėω −

1

2
eTω

(
n∑
i=1

ψ̇iIi

)
eω

= eTω

(
M − İω − ω × Iω + I

4
ω RTRrωr − IRTRrω̇r

)
− 1

2
eTω

(
n∑
i=1

ψ̇iIi

)
eω (3.109)

Using (3.103), the time derivative of the second term on the r.h.s of (3.106) is equal to

(b1 + b2d1)er · eω. For the third term we have

b2
d

dt
[Ieω · eR] = b2

[(
İeω + Iėω

)
· eR
]

+ b2 [Ieω · ėR]

= b2e
T
Rİeω + b2e

T
R

(
M − İω − ω × Iω + I

4
ω RTRrωr − IRTRrω̇r

)
+ b2ė

T
RIeω (3.110)

For the fourth and fifth terms in (3.106) we have

d

dt

[
1

2
b2

2e
T
RIeR

]
= b2

2e
T
RIėR +

1

2
b2

2e
T
RİeR,

d

dt

[
n∑
i=0

1

2ki
tr
[
ĨTi Ĩi

]]
=

n∑
i=0

1

ki
tr
[
ĨTi

˙̃Ii

]
=

n∑
i=0

1

ki
tr
[
ĨTi

˙̂
Ii

]
. (3.111)

Hence, the time derivative of (3.106) is

V̇ = (eω + b2eR)T
(
M − İω − ω × Iω + I

4
ω RTRrωr − IRTRrω̇r

)
− 1

2
eTω

(
n∑
i=1

ψ̇iIi

)
eω

+ b2e
T
Rİeω + b2ė

T
RIeω + b2

2e
T
RIėR +

1

2
b2

2e
T
RİeR +

n∑
i=0

1

ki
tr
[
ĨTi

˙̂
Ii

]
+ (b1 + b2d1)er · eω

(3.112)
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Substituting (3.108) in (3.112), we obtain

V̇ = (eω + b2eR)T

(
−

(
n∑
i=1

ψ̇iĨi

)
ω + ω × Ĩω − Ĩ

4
ω RTRrωr + ĨRTRrω̇r

)

+
1

2
(eω + b2eR)T

(
n∑
i=1

ψ̇iĨi

)
(eω + b2eR) +

n∑
i=0

1

ki
tr
[
ĨTi

˙̂
Ii

]
− d1 ‖eω‖2 − b1b2 ‖eR‖2

+ b2ė
T
RIeω + b2

2e
T
RIėR (3.113)

where we have chosen

ν =
1

2

(
n∑
i=1

ψ̇iÎi

)
(eω + b2eR)−

n∑
i=1

ψ̇iÎiω (3.114)

Next, using the identity a · (b × c) = c · (a × c) we can stack the terms containing the

adaptation parameters as follows:

V̇ =
n∑
i=1

tr

[
Ĩi(

1

ki

˙̂
Ii +

1

2
(eω + b2eR)(eω + b2eR)T ψ̇i −RTRrω̇r(eω + b2eR)Tψi

+
4
ω RTRrωr(eω + b2eR)Tψi − ω(eω + b2eR)T

4
ω ψi − ω(eω + b2eR)T ψ̇i)

]
+ tr

[
Ĩ0(

1

k0

˙̂
I0 +RTRrω̇r(eω + b2eR)T−

4
ω RTRrωr(eω + b2eR)T + ω((eω + b2eR)× ω)T )

]
+ b2ė

T
RIeω + b2

2e
T
RIėR − d1 ‖eω‖2 − b1b2 ‖eR‖2 (3.115)

Choosing the adaptive control law

˙̂
Ii = −ki

2

(
Λi + ΛT

i

)
, i ∈ {0, · · · , n} (3.116)

Λi =
1

2
(eω + b2eR)(eω + b2eR)T ψ̇i −RTRrω̇r(eω + b2eR)Tψi

+
4
ω RTRrωr(eω + b2eR)Tψi − ω(eω + b2eR)T

4
ω ψi − ω(eω + b2eR)T ψ̇i i ∈ {1, · · · , n} ,

Λ0 = RTRrω̇r(eω + b2eR)T−
4
ω RTRrωr(eω + b2eR)T + ω((eω + b2eR)× ω)T ,
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(3.115) can be rewritten as

V̇ = b2ė
T
RIeω + b2

2e
T
RIėR − d1 ‖eω‖2 − b1b2 ‖eR‖2 . (3.117)

Further analysis of (3.117) leads to Theorem 3.4 below, in proving which, we use the

following lemma:

Lemma 3.2 [102] Consider A,B ∈ Rn×n where B = BT > 0. Then,

1

2
λ1(A+ AT )tr(B) ≤ tr(AB) ≤ 1

2
λn(A+ AT )tr(B). (3.118)

where λi(R) denotes the ith largest eigenvalue of the matrix R.

Theorem 3.4 Consider the dynamics (3.90),(3.91) and error variables (3.100),(3.104) to-

gether with control law (3.108) and adaptive law (3.116), then the error signals and

their time derivatives are bounded i.e. eR, ėR, eω, ėω ∈ L∞. Moreover, eR, eω ∈ L2 and

eω, eR → 0.

Proof. Differentiating (3.104) with respect to time results in

ėR =
1

2

[
−Kp

4
ωr R

T
r R +KpR

T
r R

4
ω +

4
ω RTRrKp −RTRr

4
ωr Kp

]∨
. (3.119)

using the facts that R
4
x RT = [Rx]∧ and

4
x R + RT

4
x= [(tr[R]I −R)x]∧, (3.119) can be

rewritten as

ėR =
1

2

[
tr
(
RTRrKp

)
I −RTRrKp

]
eω. (3.120)

To calculate the upper bound for the term
[
tr
(
RTRrKp

)
I −RTRrKp

]
, we start by calcu-

lating its Frobenious norm as follows

∥∥tr (RTRrKp

)
I −RTRrKp

∥∥
F

=
1

2

√
tr
[
K2
p

]
+ (tr[RTRrKp])

2 (3.121)
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Since −3 ≤ λi(R
TRr + RT

r R) ≤ 3, choosing A = RTRr and B = Kp and invoking Lemma

3.2, we have∥∥[tr (RTRrKp

)
I −RTRrKp

]∥∥2

2
≤
∥∥[tr (RTRrKp

)
I −RTRrKp

]∥∥2

F

≤ 1

4

(
tr
[
K2
p

]
+ b3 (tr[Kp])

2) (3.122)

for (b3 = 9
4
). Using (3.122) in (3.117), we obtain

V̇ ≤

b2σmax

√
tr
[
K2
p

]
+ b3 (tr[Kp])

2

2
− d1

 ‖eω‖2 − b1b2 ‖eR‖2

+
b2

2σmax

√
tr
[
K2
p

]
+ b3 (tr[Kp])

2

2
‖eω‖ ‖eR‖

≤ −

 ‖eω‖
‖eR‖

T
 b1b2

−b22σmax
√
tr[K2

p]+b3(tr[Kp])2

4

−b22σmax
√
tr[K2

p]+b3(tr[Kp])2

4
d1 −

b2σmax

√
tr[K2

p]+b3(tr[Kp])2

2


 ‖eω‖
‖eR‖


(3.123)

The parameter b2 must be chosen in a way that ensures

Q =

 b1b2
−b22σmax

√
S

4

−b22σmax
√
S

4
d1 − b2σmax

√
S

2

 > 0. (3.124)

where S = tr
[
K2
p

]
+ b3 (tr[Kp])

2. (3.124) is achieved if

b2 > 0, b2

(
b1d1 −

b1b2σmax
√
s

2
− sb3

2σ
2
max

16

)
> 0,

d1 −
b2σmax

√
s

2
≥ 0,

c1(b1 + b2d1)σmin
2

− 1

4
b2

2σ
2
max ≥ 0. (3.125)

To satisfy (3.125), we can choose b2 as follows:

b2 = min

(
b1d1

2γ
, 3

√
b1d1

2γ
,

2d1

σmax
√
s
,
c1d1σmin +

√
c2

1d
2
1σ

2
min + 2c1b1σminσ2

max

σ2
max

)
, (3.126)

γ = max

(
3b1σmax√

2
,
9σ2

max

8

)
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(3.126) results in V̇ ≤ −zTQz ≤ 0 where z = [‖eR‖ , ‖eω‖]T . From the fact that the

Lyapunov function V is positive definite, the latter implies that V will converge to a limit

V (∞) and hence, eR,eω,Ĩi, Îi i ∈ {0, · · · , n} belong to L∞. Integrating (3.123) from 0 to

∞ results in

V (∞)− V (0) ≤
∫ ∞

0

−zTQz dt, ⇒ z ∈ L2 ⇒ eR, eω ∈ L2 (3.127)

The closed loop system for angular velocity error (3.100), can be rewritten as follows:

Iėω = −b1eR − d1eω + ω × Ĩω − Ĩ
4
ω RTRrωr + ĨRTRrω̇r +

(
n∑
i=1

ψ̇iIi

)
(eω +RTRrωr)

+
1

2

(
n∑
i=1

ψ̇iÎi

)
(eω + b2eR). (3.128)

since eR,eω,Ĩi, Îi ∈ L∞, from (3.128) and (3.120), we deduce that ėω, ėR ∈ L∞. Finally,

since ėω, ėR ∈ L∞ and eω, eR ∈ L∞ ∩ L2, we can conclude that eω, eR → 0.

Note here that convergence of eR to zero does not guarantee the convergence of R to Rr.

As stated in Preposition 11.31 of [101], there exist three undesired equilibriums at Rre
π
4
ν j

where νj denotes the jth eigenvector of KP . In the next step of the analysis, we establish

that such equilibrium points are unstable:

For any of the three undesirable equilibrium points we have

(eω → 0, R→ Rre
π
4
ν j)⇒ Vuns = (b1 + d1b2)φ(Rre

π
4
ν j) +

n∑
i=0

1

2ki
tr
[
ĨTi Ĩi

]
= cte (3.129)

where the last part results from the fact that V (·) is a positive definite function with

negative semi definite derivative. From the Rodriguez formula we can write

φ(Rre
π
4
ν j) =

1

2
tr

(
Kp

(
I − I − sin(π)

4
ν j −(1− cos(π))

4
ν

2

j

))
= −tr

(
Kp

4
ν

2

j

)
(3.130)
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Using the identities R
4
x RT = [Rx]∧ and

4
x R +RT

4
x= [(tr[R]I −R)x]∧, we have

φ(Rre
π
4
ν j) = −tr((Kp

4
ν j)

4
ν j) = νj ·

(
Kp

4
ν j +

4
ν j Kp

)∨
= νTj (tr(Kp)I −Kp)νj

= tr(Kp)− λj(Kp) (3.131)

Using (3.131) in (3.129) results in

Vuns = (b1 + d1b2) (tr(Kp)− λj(Kp)) +
n∑
i=0

1

2ki
tr
[
ĨTi Ĩi

]
≥ (b1 + d1b2) (tr(Kp)− λj(Kp)) > 0 (3.132)

For a small neighborhood around the undesired equilibrium, i.e (eω = 0, R = Rre
π
4
ν j) the

function

V
′
= (b1 + d1b2) (tr(Kp)− λj(Kp))− V (3.133)

is positive for some R due to the fact that φ(RT
r R) is a continuous function. The time

derivative of (3.133), clearly satisfies

V̇
′
= −V̇ > 0, eR, eω 6= 0. (3.134)

Using Chetaev Theorem [34], instability of the undesired equilibrium follows. The latter

indicates that the attitude of the spacecraft will track the reference signal Rr(t) from

almost all initial conditions except R(0) = Rr(0)eπ
4
ν j . This result can be summarized in

the following theorem.

Theorem 3.5 The undesired equilibriums of the error systems (3.128) and (3.120) which

are located at R(0) = Rr(0)eπ
4
ν j are unstable.

Remark 3.7 Compared with [103] where Kp is chosen to be a diagonal positive definite

matrix for controlling the attitude of a rigid body, here, by using Lemma.3.2, the only

67



restriction which we assumed on the structure of the error function φ(·) is to be symmetric

and positive semi definite. This can lead to much less restrictive conditions on the allowable

bounds on the control parameters.

Remark 3.8 We can improve the bounds on the term tr(RTRrKp) using the method which

is first introduced in [104]. To see this, consider the following relation

tr(RTRr(Kp − λmin(Kp))) = tr(SYM(RTRr)(Kp − λmin(Kp)))

≤ λ1(SYM(RTRr))tr(Kp)− 3λmin(Kp)λ1(SYM(RTRr)) (3.135)

where λ1(·) denotes the first largest eigenvalue of a matrix and SYM(·) denotes the sym-

metric part of a square matrix. We can rewrite (3.135) as follows

tr(RTRrKp) ≤ λ1(SYM(RTRr))tr(Kp)−
3∑
i=1

(λ1(SYM(RTRr))− λi(RTRr))︸ ︷︷ ︸
≥0

(3.136)

Since the second term on the r.h.s of (3.136) is positive semi definite, it represents a tighter

upper bound compared with (3.118). It is also possible to find a better lower bound for

the l.h.s of (3.118) using the same procedure.

3.4.3 Robust Adaptive Control Using σ-modification

In this section we design a robust adaptive algorithm to enhance the robustness of the

adaptive controller designed in Section 3.4.2. We start by modifying the σ-modification

method [91] to prove the exponential stability of the system. First, instead of (3.116)
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consider the following adaptive laws

˙̂
Ii = −ki

2

(
Λi + ΛT

i

)
− kiσsiÎi, i ∈ {0, · · · , n} (3.137)

σsi =


0

∥∥∥Îi∥∥∥
F
< M0i

σ0i

(
‖Îi‖

F

M0i
− 1

)
M0i ≤

∥∥∥Îi∥∥∥
F
≤ 2M0i

σ0i

∥∥∥Îi∥∥∥
F
≥ 2M0i

Using (3.137) in (3.115), we have

V̇ = b2ė
T
RIeω + b2

2e
T
RIėR − d1 ‖eω‖2 − b1b2 ‖eR‖2 −

n∑
i=0

σsitr[ĨiÎi]. (3.138)

Further analysis of (3.138) leads to the following theorem:

Theorem 3.6 Consider the dynamics (3.90),(3.91) and error variables (3.100),(3.104) to-

gether with control law (3.108) and adaptive law (3.137), then the error signals and

their time derivatives are bounded i.e. eR, ėR, eω, ėω ∈ L∞. Moreover, eR, eω ∈ L2 and

eω, eR → 0.

Proof. Using the Cauchy-Shwartz inequality for the inner product < A,B >= tr[ATB],

we have

σsitr[ĨiÎi] ≥ σsi

∥∥∥Îi∥∥∥2

F
− σsitr[ÎiIi] ≥ σsi

∥∥∥Îi∥∥∥2

F
− σsi

∣∣∣tr[ÎiIi]∣∣∣ ≥ σsi

∥∥∥Îi∥∥∥2

F
− σsi

∥∥∥Îi∥∥∥
F
‖Ii‖F

≥ σsi

∥∥∥Îi∥∥∥
F

(∥∥∥Îi∥∥∥
F
−M0i

)
+ σsi

∥∥∥Ĩi∥∥∥
F

(M0i − ‖Ii‖F ) (3.139)

recalling the fact that M0i ≥ ‖Ii‖F , σsi ≥ 0 and σsi

(∥∥∥Îi∥∥∥
F
−M0i

)
≥ 0 we can conclude

that −σsitr[ĨiIi] ≤ 0 and hence the last term in (3.138) can only make it more negative.

Also, using the structure of (3.137), we have

−σsitr[ĨiÎi] ≤ −σ0itr[ĨiÎi] + 6σ0iM
2
0i (3.140)
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using (3.140) in (3.138), we have

V̇ ≤ b2ė
T
RIeω + b2

2e
T
RIėR − d1 ‖eω‖2 − b1b2 ‖eR‖2 −

n∑
i=0

σ0itr[ĨiÎi] +
n∑
i=0

6σ0iM
2
0i

≤ b2ė
T
RIeω + b2

2e
T
RIėR − d1 ‖eω‖2 − b1b2 ‖eR‖2 −

n∑
i=0

σ0itr[ĨiĨi]

+
n∑
i=0

∣∣∣σ0itr[ĨiIi]
∣∣∣+

n∑
i=0

6σ0iM
2
0i (3.141)

Next, using the Young inequality of trace [105], i.e. tr[ATB] ≤ 1
2
tr[ATA] + 1

2
tr[BTB] we

have :

V̇ ≤ b2ė
T
RIeω + b2

2e
T
RIėR − d1 ‖eω‖2 − b1b2 ‖eR‖2 − 1

2

n∑
i=0

σ0itr[ĨiĨi]

+
1

2

n∑
i=0

σ0itr[IiIi] +
n∑
i=0

6σ0iM
2
0i (3.142)

defining the vector ẑ = [‖eR‖ , ‖eω‖ ,
∥∥∥Ĩ0

∥∥∥
F
, · · · ,

∥∥∥Ĩn∥∥∥
F

] and using the identity ‖A‖2 ≤

‖A‖F ≤
√
r ‖A‖2 for A ∈ Rr, (3.142) turns into

V̇ ≤ −ẑTQ′ ẑ +
3

2

n∑
i=0

σ0iσ
2
max +

n∑
i=0

6σ0iM
2
0i (3.143)

again, we choose b2 such that for Q
′ ∈ Rn+3×n+3 we can write

Q
′
=



b1b2
−b22σmax

√
S

4
0 · · · 0

−b22σmax
√
S

4
d1 − b2σmax

√
S

2
0 · · · 0

0 0 1
2
σ00 · · · 0

...
...

...
...

...

0 0 0 0 1
2
σ0n


> 0 (3.144)
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for Lyapunov function (3.106) we have

xTW
′
x ≥ V,W

′
=



c1(b1 + b2d1) 1
2
b2σmax 0 · · · 0

1
2
b2σmax

1
2
σmax 0 · · · 0

0 0 1
2k0

· · · 0
...

...
...

...
...

0 · · · · · · · · · 1
2kn


(3.145)

hence, using (3.145), (3.143) can be rewritten as follows

V̇ ≤ − λmin(Q
′
)

λmax(W
′)
V +

n∑
i=0

(
3

2
σ0iσ

2
max + 6σ0iM

2
0i

)
⇒ V ≤ V (0)exp(− λmin(Q

′
)

λmax(W
′)
t) +

λmax(W
′
)

λmin(Q′)

n∑
i=0

(
3

2
σ0iσ

2
max + 6σ0iM

2
0i

)
(3.146)

which clearly demonstrates the exponential convergence of V to the set{
V ∈ R|V ≤ λmax(W

′
)

λmin(Q′)

n∑
i=0

(
3

2
σ0iσ

2
max + 6σ0iM

2
0i

)}
(3.147)

it is clear that the size of this set can be controlled by choosing small values for σ0i. To

complete the boundedness argument for the dynamics (3.90) we need to find the region of

attraction for the adaptive control law (3.108) and (3.137). At the desired equilibrium point

the value of φ becomes zero and at the other equilibrium points of the system it becomes

tr(Kp)− λiKp for i ∈ {1, 2, 3}, this suggests that the for φ < β < min
i

(tr(Kp)− λiKp) the

following set {
V ∈ R|V ≤ β

c2

λmin(W
′
)

}
(3.148)

becomes an invariant set if

λmax(W
′
)

λmin(Q′)

n∑
i=0

(
3

2
σ0iσ

2
max + 6σ0iM

2
0i

)
≤ β

c2

λmin(W
′
) (3.149)
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and hence, we can assure that φ < β for all time. (3.149) can be satisfied by choosing

small values for σ0i

Remark 3.9 From (3.137) it is clear that when the norm of the estimated inertia tensors

Îi are below the previously known upperbound, i.e
∥∥∥Îi∥∥∥

F
≤ M0i then there is no need

to modify (3.116) with the additive term −kiσsiÎi since the objective of the modification

term is to prevent the drift of the estimated inertia matrices. In [91] it is shown that

in comparison with the fixed modification approach, such a strategy preserves the ideal

convergence properties of the adaptive laws.

3.4.4 Geometric Parameter Projection

In this section we design an adaptive projection algorithm which is suited for the geometric

adaptive control law (3.137). Compared to the classic projection method we need to replace

the 2-norm with the Frobenious norm to perform the algebraic manipulation. we start

by considering the convex set S =

{
Î ∈ R3×3|

∥∥∥Î∥∥∥2

F
≤ ε

}
for which we can express the

following Lemma

Lemma 3.3 Consider an arbitrary member Î∗ inside the set S, i.e. tr(ÎT∗ Î∗) ≤ ε together

with an arbitrary boundary member Îb where tr(ÎTb Îb) = ε, then we can write

tr
[
(Î∗ − Îb)T Îb

]
≤ 0 (3.150)

Proof. For all 0 ≤ λ ≤ 1, we have∥∥∥λÎ∗ + (1− λ)Îb

∥∥∥2

F
≤ λ

∥∥∥Î∗∥∥∥2

F
+ (1− λ)

∥∥∥Îb∥∥∥2

F
, (3.151)

which can be rearranged as∥∥∥Îb + λ
(
Î∗ − Îb

)∥∥∥2

F
≤
∥∥∥Îb∥∥∥2

F
+ λ

(∥∥∥Î∗∥∥∥2

F
−
∥∥∥Îb∥∥∥2

F

)
. (3.152)
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Since (3.152) holds for all 0 < λ ≤ 1, we have

lim
λ→0

∥∥∥Îb + λ
(
Î∗ − Îb

)∥∥∥2

F
−
∥∥∥Îb∥∥∥2

F

λ
= tr

[(
Î∗ − Îb

)T
Îb

]
≤
∥∥∥Î∗∥∥∥2

F
− ε ≤ 0, (3.153)

where we have used the fact that for f : R3×3 → R the directional derivative in the direction

of f1 ∈ R3×3 is expressed as tr
(
(∇f)Tf1

)
and ∂

∂X
tr(XTBX) = BX +BTX.

Using the inner product < A,B >= tr[ATB] the modified projection algorithm can be

expressed as follows

˙̂
Ii = PR

(
Îi,
−ki
2

(Λi + ΛT
i )

)

=


−ki

2
(Λi + ΛT

i )− Îitr[ÎTi (−ki2
(Λi+ΛTi ))]

tr[ÎTi Îi]

(∥∥∥Îi∥∥∥2

F
− ε > 0 ∧ tr

[
ÎTi
(−ki

2
(Λi + ΛT

i )
)]
> 0

)
−ki

2
(Λi + ΛT

i ) otherwise

(3.154)

again as in the case of the projection algorithms which are built based on the norm ‖·‖2

we can show that the following lemma holds

Lemma 3.4 The following inequality is true for (3.154)

tr

[(
Îi − Îi,∗

)T (
PR

(
Îi,
−ki
2

(Λi + ΛT
i )

)
− −ki

2
(Λi + ΛT

i )

)]
≤ 0 (3.155)

to prove Lemma 3.4 first consider the case

(∥∥∥Îi∥∥∥2

F
− ε > 0 ∧ tr

[
ÎTi
(−ki

2
(Λi + ΛT

i )
)]
> 0

)

tr

(Îi,∗ − Îi)T
−ki

2
(Λi + ΛT

i )−

−ki
2

(Λi + ΛT
i )−

Îitr
[
ÎTi
(−ki

2
(Λi + ΛT

i )
)]

tr
[
ÎTi Îi

]


(3.156)

which can be rewritten as follows

tr

[(
Îi,∗ − Îi

)T
Îi

]
tr
[
ÎTi
(−ki

2
(Λi + ΛT

i )
)]

tr
[
ÎTi Îi

] ≤ 0 (3.157)

73



Using the projection algorithm (3.154), Îi(t) never leaves the set Si. This can be seen by

taking derivative of the convex function V1 =
∥∥∥Îi∥∥∥2

F
− ε as follows

V̇1 = tr

[
ÎTi PR

(
Îi,
−ki
2

(Λi + ΛT
i )

)]
(3.158)

which becomes zero if the trajectories of Îi leaves Si

∥∥∥Îi∥∥∥2

F
− ε ≥ 0⇒ V̇1 = tr

ÎTi
−ki

2
(Λi + ΛT

i )−
Îitr

[
ÎTi
(−ki

2
(Λi + ΛT

i )
)]

tr
[
ÎTi Îi

]
 = 0

(3.159)

Using the previous results, we can use the projection algorithm with the adaptive law

(3.116) to ensure both the stability of the system and the restriction of
∥∥∥Îi∥∥∥ to the Si.

This can be shown by taking the time derivative of (3.106) as follows

V̇ ≤ b2ė
T
RIeω + b2

2e
T
RIėR − d1 ‖eω‖2 − b1b2 ‖eR‖2

+
n∑
i=0

tr

[
Ĩi

(
PR

(
Îi,
−ki
2

(Λi + ΛT
i )

)
+
ki
2

(Λi + ΛT
i )

)]
(3.160)

where using lemma 3.4 and choosing b2 as in (3.126) results in V̇ ≤ −zTQz ≤ 0. Using

the same argument as in section. 3.4.2 we can prove the stability of the main system.

Remark 3.10 The proof of Lemma 3.4 is obtained based on the convexity of the set S.

Using lemma 3.4, we can conclude that the last term on the r.h.s of (3.160) can only

makes the V̇1 more negative and therefore the same conclusions regarding the convergence

properties of control laws (3.108),(3.116) can be deduced. However, the transient behavior

of the signals of the system can be different due to the change in the structure of the

estimation laws.
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3.4.5 Input Dependent Time Varying Inertia

In this section, we find the conditions under which the adaptive control law (3.108),(3.154)

will be extended to the case of an spacecraft with input dependent time varying inertia.

For this purpose, consider (3.108) in the following form

M = −b1eR − d1eω + Î

[
RTRrω̇r−

4
ω RTRrωr

]
+ ω × Îω︸ ︷︷ ︸

α2

+
n∑
i=1

ψ̇iÎi

(
ω − 1

2
(eω + b2eR)

)

= α2 +
n∑
i=1

ψ̇iÎi

(
ω − 1

2
(eω + b2eR)

)
(3.161)

First, we start with the simple linear case as in (3.94), i.e. M = α2+‖M‖α1Î1
(
ω − 1

2 (eω + b2eR)
)
.

Since the value of the α2 can be calculated at each time, to ensure the existence of

M for each α2 the following equation must have a feasible solution at all time, (α3 =

α1Î1

(
ω − 1

2
(eω + b2eR)

)
)

‖M‖2 (1− ‖α3‖2)− 2αT2 α3 ‖M‖ − ‖α2‖2 = 0 (3.162)

since the last term in (3.162), has the negative sign, if ‖α3‖ < 1, the (3.162) always has a

feasible solution and the adaptive controller (3.108),(3.154) will achieve the control goals.

In order to further analyze this condition we can write

‖α3‖ < 1⇒
∥∥∥Î1

∥∥∥∥∥∥∥ω − 1

2
(eω+b2eR)

∥∥∥∥ =

∥∥∥∥1

2
eω +RTRrωr −

b2

2
eR

∥∥∥∥∥∥∥Î1

∥∥∥(‖eω‖
2

+ ‖ωr‖+
b2

2
‖eR‖

)
≤
∥∥∥Î1

∥∥∥
‖eω‖

2
+ ω̂r +

b2

2

√
λmax(Kp)

c1


≤
∥∥∥Î1

∥∥∥
F

‖eω‖
2

+ ω̂r +
b2

2

√
λmax(Kp)

c1

 ≤ √ε
‖eω‖

2
+ ω̂r +

b2

2

√
λmax(Kp)

c1

 < 1

(3.163)
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hence, we conclude that if the following condition satisfies at all time t ≥ 0

‖eω(t)‖ ≤ 2√
ε
− 2ω̂r + b2

√
λmax(Kp)

c1

(3.164)

then (3.162) is guaranteed to have a solution at all time. In order to enforce the condi-

tion (3.164), the initial conditions for eω must be limited to a set. This can be seen by

considering the Lyapunov function (3.106). Since V̇ ≤ 0 we can write

V (0) >
σmin

2
eTωeω + (b1 + b2d1)c1e

T
ReR − b2σmax ‖eω‖ ‖eR‖+

b2σmin
2

eTReR +
1∑
i=0

tr[ĨTi Ĩi]

>
σmin

2
eTωeω + (b1 + b2d1)

c1

c2
λmin(Kp)− b2σmax ‖eω‖

√
λmax(Kp)

c1

+
b2σminλmax(Kp)

2c2
+

1∑
i=0

tr[ĨTi Ĩi]

which by completing the squares results in

V (0) +
b2

2σ
2
maxλmax(Kp)

2c1σmin
>
σmin

2

∥∥∥∥∥∥eω − b2σmax
σmin

√
λmax(Kp)

c1

∥∥∥∥∥∥


+
c1

c2

(b1 + b2d1)λmin(Kp) +
b2σminλmax(Kp)

2c2

(3.165)

also, for the upperbound on V (0) we can write

V (0) <
σmax

2
‖eω(0)‖2 + (b1 + b2d1)λmax(Kp) + b2σmax ‖eω(0)‖

√
λmax(Kp)

c1
+
b22σmaxλmax(Kp)

2c1

+

(
2ε0
k0

+
2ε

k1

)
<
σmax

2

‖eω(0)‖+ b2

√
λmax(Kp)

c1

2+ (b1 + b2d1)λmax(Kp) +

(
2ε0
k0

+
2ε

k1

)
(3.166)
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hence if the initial condition for eω(0) is chosen as follows

σmax
2

‖eω(0)‖+ b2

√
λmax(Kp)

c1

2+ (b1 + b2d1)λmax(Kp) +

(
2ε0
k0

+
2ε

k1

)
︸ ︷︷ ︸

B1

<
−b2

2σ
2
maxλmax(Kp)

2c1σmin
+
σmin

2

α4 −
b2σmax
σmin

√
λmax(Kp)

c1

2

︸ ︷︷ ︸
B2

(3.167)

where α4 >
b2σmax
σmin

√
λmax(Kp)

c1
. using (3.167), we can write

σmin
2

‖eω‖ − b2σmax
σmin

√
λmax(Kp)

c1

2

<
σmin

2

α4 −
b2σmax
σmin

√
λmax(Kp)

c1

2

(3.168)

which ensures ‖eω‖ < α4 at all time provided (3.167) holds. Fig. 3.4 illustrates this case

A more elegant approach for satisfaction of the condition ‖α3‖ < 1 is to use the switching

σ-modification method which is described in Section. 3.4.3. Using (3.137), the trajectories

of the system (3.90) will be confined to the following set

σmin
2
‖eω‖2 +

(
b2

2σ
2
min

2
+ c1(b1 + b2d1)

)
‖eR‖2 − b2σmax ‖eR‖ ‖eω‖ ≤

V (0) +
λmax(W

′
)

λmin(Q′)

n∑
i=0

(
3

2
σ0iσ

2
max + 6σ0iM

2
0i

)
︸ ︷︷ ︸

α5

= M1 (3.169)

a better approximation can be achieved by finding M1 for which the following curves

become tangent to each other

σmin
2︸ ︷︷ ︸
a

‖eω‖2 +

(
b2

2σ
2
min

2
+ c1(b1 + b2d1)

)
︸ ︷︷ ︸

b

‖eR‖2−b2σmax︸ ︷︷ ︸
c

‖eR‖ ‖eω‖ = M1

‖eω‖+ b2 ‖eR‖ =
2√
ε
− 2ω̂r = M2 (3.170)
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Figure 3.4: Set of allowable initial conditions for (3.168)

To find the location of the intersection, we can write

2ab2 ‖eω‖+ cb2 ‖eR‖ = 2b ‖eR‖+ c ‖eω‖

2ab2(M2 − b2 ‖eR‖) + cb2 ‖eR‖ = 2b ‖eR‖+ c(M2 − b2 ‖eR‖)

⇒ ‖eR‖ =
2ab2M2 − cM2

2ab2
2 − 2cb2

, ‖eω‖ = M2 −
2ab2M2 − cM2

2ab2 − 2c
(3.171)

using (3.171), M1 can be readily computed. Hence, if the initial conditions for ‖eω‖ and

‖eR‖ satisfies

σmin
2
‖eω(0)‖2 +

(
b2

2σ
2
min

2
+ c1(b1 + b2d1)

)
‖eR(0)‖2 − b2σmax ‖eR(0)‖ ‖eω(0)‖

≤M1 − α5 −
(

2ε0
k0

+
2ε

k1

)
then the condition ‖α4‖ ≤ 1 will hold.
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Figure 3.5: Set of allowable initial conditions for (3.169)

Remark 3.11 It should be noted that due to the presence of α5 and
∑n

i=0
2εi
ki

in the r.h.s of

(3.169), it is not possible to use the initial conditions which are located in the blue region

which is depicted in Fig. 3.5. By choosing small values for σ0i inside the adaptation laws

(3.137) we can increase the size of the allowable set of initial conditions. However, in this

case the norm of the estimated inertia matrices may become large and thus leads to loss

of performance.

Remark 3.12 Note that if we use second order model for fuel depletion process then the

control law (3.161) can be rewritten as follows

M = α2 + α3 ‖M‖+ εα
′

4︸︷︷︸
α4

‖M‖2 (3.172)

79



Also, we have

‖M‖2 = ‖α2‖2 + 2 ‖M‖αT2 α3 + ‖M‖2
(

2αT2 α
′

4 + ‖α3‖2
)

+ 2 ‖M‖3 αT3 α
′

4 + ‖M‖4
∥∥∥α′4∥∥∥2

(3.173)

Next, consider the following solution for (3.173)

‖M‖ = M0 + εM1 +O(ε2) (3.174)

using (3.174) in (3.173), we reach to the following equalities

M2
0 = ‖α2‖2 + 2M0α

T
2 α3 +M2

0 ‖α3‖2

2M0M1 = 2M1α
T
2 α3 + 2M1M0 ‖α3‖2 + 2M2

0α
T
2 α
′

4 + 2M3
0α

T
3 α
′

4 (3.175)

which results in the following two solutions

‖M‖ =
−αT2 α3 ±

√
(αT2 α3)2 − ‖α2‖2 (‖α3‖2 − 1)

‖α3‖2 − 1
+ ε

M2
0α

T
2 α
′
4 +M3

0α
T
3 α
′
4

M0 − αT2 α3 −M0 ‖α3‖2 +O(ε2)

(3.176)

The second term on the r.h.s of (3.176) accounts for the nonlinear second order term inside

(3.172). It is interesting to note that since (3.173) is of the fourth order in ‖M‖, hence,

according to the fundamental theorem of algebra it has four roots. These extra solutions

can also be computed using the singular perturbation theory. However, in the context of

control, ensuring the existence of one real solution for (3.173) is sufficient.

Remark 3.13 If the upperbounds on İ,ωr and ω̇r are known apriori then it is possible to

build a hybrid nonlinear robust adaptive control law to push the trajectories of the system

to the allowable set of initial conditions (3.169) and then use the adaptive law (3.137)

to fulfill the tracking task. This approach provides global stability for the system at the

expense of extra control efforts.
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Figure 3.6: Angular velocity vector components versus time

3.5 Simulation Results

In this section, we present the simulation results for the algorithms which are considered

in this chapter. First, we consider the simulation results of the control law (3.13) together

with adaptation law (3.20) for a network of three agents with a complete communication

graph. Fig. 3.6 illustrates the results for the angular velocity of these agents versus time.

The desired angular velocity in this case is [0, 0, 1]T Rad
Sec

. As it can be seen from Fig.

3.6, the third component of the angular velocity vector of the agents in network converged

to 1 after two seconds. Simulation parameters in this case are chosen as µ = 5 and α = 1.

From Fig. 3.7, we can deduce that the total disagreement in the network disappeared over

time as a result of control law (3.13). The disagreement function of this network will take

the following form

Ψ =
3∑
i=1

3∑
j=1

tr(I3×3 −RT
i Rj)→ 0 (3.177)

simulation results for the problem 3.2 with disagreement function (3.36), are presented in
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Figure 3.7: Disagreement Function(dimensionless)

Fig. 3.8 and Fig. 3.9. We used λK,M = 1, µ = 5, α = 3 for the control parameters. The

considered network consists of three agents with line communication graph. The robust

control parameters are chosen to be δ =
√

300 and ε = 1 for all agents in Fig. 3.8. Using

the results of the analysis in section 3.2.4, we can deduce that the trajectories of the system

eventually reach to the following set:

3∑
k=1

(
5− 1

3

)
‖Ωr

k − Fk‖
2 +

1

3
(‖Ωr

k‖
2 + ‖Fk‖2) (3.178)

σk
2

∥∥∥J̃k∥∥∥2

F
≤

m∑
k=1

(
3σk
2
λ2
K,M + εk

)
≤ 15

2
(3.179)

The norm of disturbance signal is assumed to be less than 10
√

3 and the desired angular

velocity vector is again [0, 0, 1]T Rad
Sec

. As it can be seen from Fig. 3.9, by choosing sufficiently

small control parameters(εk = 0.01, σk = 0.01), we can steer the system trajectories near

the desired value for the angular velocity vector. In this case, the system states will be
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Figure 3.8: Angular velocity vector components(robust adaptive approach with large values

for control parameters) εk = 1, δk =
√

300, σk = 1

Figure 3.9: Angular velocity vector components(robust adaptive approach with small val-

ues for control parameters) εk = 0.01, δk =
√

300, σk = 0.01
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confined in the following set

m∑
k=1

(
5− 1

3

)
‖Ωr

k − Fk‖
2 +

1

3
(‖Ωr

k‖
2 + ‖Fk‖2) +

σk
2

∥∥∥J̃k∥∥∥2

F

≤
m∑
k=1

(
3σk
2
λ2
K,M + εk

)
≤ 0.15

2
(3.180)

The difference between the Fig. 3.8 and Fig. 3.9 stems from the fact that we chose different

values for the robust control parameters. This indicates the possibility of controlling the

size of the final set at the expense of increasing the control effort.

Next, we present the results of a set of simulations testing the synchronization algo-

rithms proposed in Sections 3.3.2-3.3.5. First, we consider the simulation results for the

control law (3.67) together with adaptation law (3.73), for a network of thirteen agents with

a tree communication graph depicted in Fig. 3.10(a). Fig. 3.11 shows the time behavior of

the angular velocities of these agents.

The desired angular velocity in this case is Ωd = [0 0 1]T ( rad
sec

). As seen in Fig. 3.11,

the components of the angular velocity vectors of the agents in the network converge to a

sufficiently small neighborhood of Ωd after eight seconds. Design parameters in this case

are µ = 5 and α = 1. From Fig. 3.12, we deduce that the total disagreement in the

network disappeared over time as a result of control law (3.67). The initial value of the

disagreement function of this network can be calculated as:

Ψ2(0) =
13∑
i=1

n∑
j∈Ni

2−
√

1 + tr [RT
i (0)Rj(0)] = 23.1443

Simulation results for the robust control algorithm (3.77), (3.78) are presented in Fig. 3.13

for the case that a bounded noise (r(t) = 10 sin(t)[1 1 1]T (N ·M)) is affecting the control

inputs. The values of the control parameters and the network communication graph are

the same as previous case.
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(a) (b)

Figure 3.10: Network communication graph examples.

Figure 3.11: Components of the angular velocity vector Ω versus time.
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Figure 3.12: Disagreement function.

Figure 3.13: Simulation results of the robust adaptive control law (3.77).
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Next, we consider a network of six agents with a line communication graph. Fig. 3.14

illustrates the behavior of the third components of angular velocity vectors as result of

implementing the robust algorithm (3.82) on this network. The simulation parameters are

the same as the previous cases and ∆k = 20. εk is set to 1 in case (a) and 0.1 in (b). From

(3.84), it is clear that the trajectories of the system will reach to the set{
Ωr
k, Gk |

6∑
k=1

4 ‖Ωr
k −Gk‖2 + (‖Ωr

k‖
2 + ‖Gk‖2) ≤ 6εk

}
. (3.181)

The simulation results for various other example networks, including the one with a star

communication graph depicted in Fig. 3.10(b), show similar behaviors.
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(a)

(b)

Figure 3.14: Time behavior of Ω3 with robust adaptive control law (3.82) with ∆k = 20

and (a) εk = 1 and (b) εk = 0.1.
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3.6 Summary

In this chapter, we first considered the adaptive attitude synchronization for a network

of rigid bodies and used a geometric approach to solve the problem. Such an approach

results in a coordinate independent control and estimation laws which can be used in

large rotational maneuvers to handle the singularities which are inherent in the attitude

representation of a rigid agent. In the convergence analysis of the proposed method, we

used the Frobenius norm as the measure for the estimation error of the inertia matrices

of the agents. Comparing to the two norm of a matrix, this norm has a greater value

and hence it leads to more conservative convergence results. However, working with such

norm is much more simpler in the context of Lyapunov theory. In the next part of this

chapter, we used an optimal norm on SO(3) as an error function for measuring the attitude

differences in the network. Our proposed control laws act as set of virtual rotational

spring and dampers between agents. In the next step, we solved the adaptive version

of this problem. We further extend these results to the case of robust adaptive control

design for the situations where the network is subjected to external disturbances and

unmodeled dynamics. Furthermore, we considered the adaptive attitude control problem

in the presence of time varying input dependent inertia matrices. We proposed a modified

projection method to solve this problem.
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Chapter 4

Distributed Extremum Seeking and

Localization

In this chapter, we consider the distributed localization and extremum seeking problems

for a network of mobile agents. The main rationale behind using multiple agents in lo-

calization of an unknown source is to enhance the identifiably of the network by mixing

the information of individual agents through an implementation of a consensus-type algo-

rithm. It will be shown that if certain connectivity conditions are met, then the consensus

framework will enable all agents in the network to agree upon the location of the source.

This consensus strategy will force the more ”informed” agents to share their estimations

of the location of the source with others at the expense reducing the convergence rate of

their estimation algorithms. However, there are certain cases where none of the agents has

access to sufficient information for identification, and all the ”informed” agents have equal

role in the localization problem. For these cases, if the collective identifiability condition is

satisfied by the network of agents then the aforementioned decadence of convergence will
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not occur and the network as a whole fulfill the localization task. The main objective in

extremum seeking and source localization problems which we consider here, is to find the

location of the extremum of a quadratic function F (·) : Rm −→ R

F (θ) = (θ − θ∗)T H (θ − θ∗) + c1 (4.1)

where c1 is a constant parameter. This function can represent the measurement of a

particular sensor at the state θ [60, 62, 63]. The idea for using a quadratic function as

a profile of the field is rooted in the fact that any smooth function can be approximated

locally by its Taylor expansion near each extremum point. Since the gradient of such a

function will vanish at the extremum point θ∗, for a general nonlinear smooth function

F (·), we can write:

F (θ∗ + θ̃) = F (θ∗) +
1

2
θ̃T∇2F θ̃ + h.o.t, θ̃ = θ − θ∗ (4.2)

Noting that ∇F (θ∗) = 0. Additionally, We use the assumption that the location of the

extremum point is time invariant, and treat the localization task as an adaptive parameter

identification problem. The approximation (4.2) enables us to extract the gradient of the

field using averaging methods [34] and find the location of the extremum point.

4.1 Adaptive Source Localization

In the adaptive source localization problem, where (4.1) corresponds to the strength of the

source located at θ∗, we assume that each agent can measure the value of the function (4.1)

at its state θi ∈ Rm,i = 1, · · · , n

Di(t) = F (θi) = θ̃Ti Hθ̃i + c1, θ̃i = θi − θ∗ (4.3)
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where n is the number of agents and we assumed that the Hessian matrix of the field

(∇2F = H) is constant. In order to devise a cooperative adaptive localization algorithm,

we use the framework proposed in [1] for a single agent and generalize it to a network of

agents through embedding a consensus filter in the identification subsystem.

The first step of the design of such an algorithm is to obtain a model which is linear in

unknown parameters of the system, i.e., Hessian matrix elements and coordinates of the

target. We start by taking derivative of (4.3) as follows:

2DiḊi = 2 ˙̃θTi Hθ̃i = 2
∑
l

∑
k

˙̃θi,lθ̃i,kHlk

= 2
∑
l

∑
k

θ̇i,lθi,kHlk − θ̇i,lθ∗kHlk =
∑
l

∑
k

(
d

dt
(θi,lθi,k)Hlk − 2

dθi,l
dt

Hlkθ
∗
k

)
(4.4)

From (4.4), it is clear that we can stack the unknown parameters into the following vectors:

Ξ =

[
H11, · · · , H1m, · · · , Hmm,−2

∑
k

θ∗kH1k, · · · ,−2
∑
k

θ∗kHmk

]T
∈ R

m(m+3)
2 (4.5)

Also, by stacking the known signals in model (4.4)

Φi =

[
d

dt
(θi,1θi,1), · · · , 2 d

dt
(θi,1θi,m), · · · , d

dt
(θi,mθi,m),

dθi,1
dt

, · · · , dθi,m
dt

]T
∈ R

m(m+3)
2 (4.6)

passing both sides of (4.4) through a low pass filter results in:

s

s+ a
D2
i =

1

s+ a
ΦT
i Ξ (4.7)

The rationale for using such a filtering is to avoid explicit use of differentiation of the

available signals. Using (4.7), we can design an adaptive estimation algorithm to identify

Ξ.
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Remark 4.1 For the case Hij = 0, i 6= j the vectors Φi and Ξ can be expressed as follows:

Ξ =

[
H11, · · · , Hmm,−2

∑
k

θ∗kH1k, · · · ,−2
∑
k

θ∗kHmk

]T
∈ R2m

Φi =

[
d

dt
(θi,1θi,1), · · · , d

dt
(θi,nθi,m),

dθi,1
dt

, · · · , dθi,m
dt

]T
∈ R2m (4.8)

Comparing (4.8) with (4.6), it is clear that the components of the latter do not contain the

multiplication of the states of different agents. For a general case, since H is a symmetric

matrix with real elements, we can deduce that by choosing appropriate coordinates, we can

diagonalize the matrix H and hence, design the identification algorithm based on (4.8).

We start the design procedure with an example of a quadratic potential function of the

form f(x, y) = a(x − x∗)2 + b(y − y∗)2 + 2c(x − x∗)(y − y∗), where [x∗, y∗]T denotes the

position of the source. For each agent, we have:

D2
i = a(xi − x∗)2 + b(yi − y∗)2 + 2c(xi − x∗)(yi − y∗)

2DiḊi = 2aẋi(xi − x∗) + 2bẏi(yi − y∗) + 2cẋi(yi − y∗) + 2cẏi(xi − x∗) (4.9)

As mentioned before, in order to avoid using explicit differentiation in the structure of the

distributed identification algorithm, we pass the both sides of (4.9) through a stable low

pass filter which results in (a > 0)

zi = ΦT
i η, zi =

s

s+ a
D2
i ,

η = [a c b (−2ax∗ − 2cy∗) (−2by∗ − 2cx∗)]T , Φi =
s

s+ a
[x2
i 2xiyi y

2
i xi yi]

T (4.10)

Using the classical gradient based adaptive parameter identification method [91], the ith

agent can use the following ” selfish” estimation algorithm to locate the target

˙̂ηi = γiΦiΦ
T
i (η − η̂i), η̃i = η − η̂i (4.11)

where η̂i, denotes the estimation of the ith agent from the parameters of the field.
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4.1.1 Persistence of Excitation

The success of the algorithm (4.11) depends on the Persistence of Excitation (PE) of the

Φi term. Note that, although ΦiΦ
T
i is always positive semi definite, the asymptotic con-

vergence of the estimation errors to zero can not be concluded by checking the eigenvalues

of ΦiΦ
T
i since (4.11) is a non-autonomous system. The formal definition of a PE signal is

as follows

Definition 4.1 :[91] The function Φ is said to be persistently exciting (PE), if and only

if there exist constants ε1, ε2, T such that for all (τ ≥ 0)

ε2In ≥
∫ τ+T

τ

Φ(t)Φ(t)T dt ≥ ε1In (4.12)

It is shown in [91] that the PE condition is sufficient for ensuring the convergence of

the estimation algorithm (4.11). Since the satisfaction of the PE condition is not an

straightforward task for one agent, here, we seek for a distributed version of (4.11) which

”blends” the information which is a gathered by different agents to enhance the chance

of the successful identification of the target’s unknown parameters. This objective can be

approached through several perspectives. The most common method to achieve this goal

is to add a consensus term on the right hand side of (4.11). This extra term will help the

network to satisfy the PE condition using a less restrictive condition compared to (4.12).
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4.2 Distributed Localization

4.2.1 Problem Definition

In order to formally define and analyze the distributed localization problem, first, we need

to present the properties of the Laplacian matrix L of a typical sensing network. We start

by assuming that communication graph of the network is undirected. For such a graph the

following properties hold:(L ∈ Rn×n)

• L1n = 0n, i.e. 1n is an eigenvector of matrix L which is associated with the zero

eigenvalue.

• For a connected graph G, the eigenvalues λi, i ∈ {2, · · · , n} are strictly positive.

Using these properties, we can write any vector x ∈ Rn as follows:

x =
µ√
n

1n +
n∑
j=2

νjvj, Lvi = λivi (4.13)

where µ2 + ‖ν‖2 = ‖x‖2.

Next, we formally define the localization problem.

Problem 4.1: Consider a network of n agents which are connected through a undi-

rected graph G = (V, E,A), where V denotes the set of vertices of the graph G and E

is the set of edges of this communication topology. Suppose that each agent has access

to the measurement of the target field at its current state which is through appropriate

filtering can be modeled as (4.11). Design a distributed identification scheme to find the

location of the target and derive the conditions under which the exponential convergence

of the identification system is guaranteed.
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4.2.2 Distributed Localization Laws

In order to solve Problem 4.1, the identification subsystem for each agent in the network

which is built based on adding the extra consensus terms to the r.h.s of (4.11) to decrease

the disagreement between η̂i, can be expressed as follows

˙̂ηi = γiΦiΦ
T
i (η − η̂i) +

∑
j∈Ni

(η̂j − η̂i) (4.14)

Using (η̃i = η − η̂i), (4.14) can be rewritten as

˙̃ηi = −γiΦiΦ
T
i η̃i +

∑
j∈Ni

(η̃j − η̃i) (4.15)

Next, using the stack vector of η̃i,(η̃ = [η̃1, · · · , η̃n]T ) and the definition of the Laplacian

matrix, we can write

d

dt
η̃ = −(L⊗ Im)η̃ −Ψη̃ (4.16)

where Ψ is defined as

Ψ =


γ1Φ1ΦT

1 · · · 0
... · · · ...

0 · · · γnΦnΦT
n

 (4.17)

In order to analyze the convergence properties of (4.17) we can use the Lyapunov function

V = 1
2
η̃T η̃ and its time derivative which is obtained as follows

V̇ = −η̃T ((L⊗ Im + Ψ))η̃ ≤ 0 (4.18)

Since the communication graph of the network is assumed to be undirected, we can con-

clude that the distributed estimation algorithm will converge to the actual values if the

PE condition is satisfied by the network. On the other hand, for a general directed graph,
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the same conclusion can not be obtained. However, if we assume that the directed graph

of the network is strongly connected and balanced it is still possible to conclude that V̇ ≤ 0

and hence, guarantee the stability of the system.

4.2.3 Convergence Analysis

The main purpose of this section is to verify the exponential convergence of (4.16) since in

[73] only the asymptotic convergence has been proved. Proving the exponential convergence

of (4.16) will pave the way for investigating the convergence of (4.16) for cases in which φi

are dependent on the systems state i.e. (ηi).

We start by the following dynamics for each subsystem:(η̃i = η̂i − η)

˙̃ηi = ˙̂ηi = −Γ
φiφ

T
i

m2
i

η̃i + Γ
∑
j∈Ni

(η̃j − η̃i) (4.19)

Next, we consider the Lyapunov function 1
2

∑n
i=1 η̃

T
i Γ−1η̃i = 1

2
η̃T (In ⊗ Γ−1) η̃, where η̃

denotes the stack vector of η̃i. Integrating from t to t+ T results in:

V (t+ T )− V (t) =

∫ t+T

t

V̇ dτ (4.20)

we have:

V̇ = η̃T (In ⊗ Γ−1)(−(In ⊗ Γ)Φη̃ − (In ⊗ Γ)(L⊗ In)η̃)

= −η̃TΦη̃ − η̃T (L⊗ In)η̃

= −
n∑
i=1

(η̃Ti φi)
2

m2
i

− 0.5
n∑
i=1

∑
j∈N(i)

(ηi − ηj)T (ηi − ηj) ≤ 0 (4.21)

where the second line is resulted from the identity ((A⊗B)(C⊗D) = (AC⊗BD)). (4.21)

clearly demonstrates the stability of the system (4.19). Further analysis of V results into
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the following theorem:

Theorem 4.1 Consider a network of n sensor agents with connected and undirected commu-

nication graph topology which is defined in Problem 4.1. Suppose that estimation dynamics

are designed as (4.14) for which η∗ and φi are defined in (4.5) and (4.6). If there exist

α0, β0, T0 > 0 such that the following condition is satisfied at all time t > 0,

T0β0 ≥
∫ t+T0

t

n∑
i=1

φi(τ)φi(τ)T dτ ≥ α0T0 (4.22)

then the error vector η̃ exponentially converges to 1n ⊗ η∗ with the convergence rate no

less than γ = 1− γ1 > 0 where γ1 = γ2γ3λminΓ and γ2 and γ3 are defined as

γ2 = max

((
‖¯̃η‖2

α0T0 − 2nβ0T0 ‖¯̃η‖
√

1− n ‖¯̃η‖2

)
, λ2(1− n¯̃ηT ¯̃η)

)
,

γ3 = min

(
1

∆ (2m′ + 2β4λ2
max(Γ)T 2

0 )
,

T0

4∆(1 + 2λ2
nT

2
0 )

)
(4.23)

In (4.23), n is the number of agents, β = max
i

sup
τ≥0
|φi(τ)|, λ2 denotes the algebraic connec-

tivity of the network and λn is the nth largest eigenvalue of the Laplacian matrix. ∆ is

defined as

∆ = max

(
λnλ

2
max(Γ)m

′2
β2T 2

0

(1 + 2λ2
nT

2
0 )

,
2T 2

0 λn
m′ + β4λ2

max(Γ)T 2
0

)
(4.24)

and ¯̃η =
(1Tn⊗Im)η̃

n‖η̃‖ .

Proof. Using (4.21) in (4.20), we have:

V (t+ T )− V (t) =

∫ t+T

t

[
−

n∑
i=1

(η̃Ti (τ)φi(τ))2

m2
i

−0.5
n∑
i=1

∑
j∈N(i)

(η̃i(τ)− η̃j(τ))T (η̃i(τ)− η̃j(τ))

 dτ (4.25)
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for each η̃i, we can write:

η̃Ti (τ)φi(τ) = η̃Ti (t)φi(τ) + (η̃Ti (τ)− η̃Ti (t))φi(τ)) (4.26)

using the fact that (x+ y)2 ≥ 0.5x2 − y2, we can write

1

m′

{
1

2

∫ t+T

t

n∑
i=1

(η̃Ti (t)φi(τ))2 dτ −
∫ t+T

t

n∑
i=1

((η̃Ti (τ)− η̃Ti (t))φi(τ))2 dτ

}

≤
∫ t+T

t

n∑
i=1

(η̃Ti (τ)φi(τ))2

m2
i (τ)

dτ (4.27)

Next, consider the quantity A =
∫ t+T
t

∑n
i=1(η̃Ti (t)φi(τ))2 dτ , we need to find that to what

extent A will stabilize the system (4.19). To achieve such a goal, we start by decomposing

the η̃i in to the ’consensus’ and ’disagreement’ parts as follows:

η̃i =

(
(1Tn ⊗ Im)η̃

n ‖η̃‖
+ vi

)
‖η̃‖ = (¯̃η + vi) ‖η̃‖ ,

n∑
i=1

vi = 0 (4.28)

based on (4.28), A turns in to

A =
n∑
i=1

η̃Ti (t)

∫ t+T

t

φi(τ)φTi (τ) dτ η̃Ti (t)

= ‖η̃(t)‖2

∫ t+T

t

n∑
i=1

(¯̃ηT + vTi )φi(τ)φTi (τ)(¯̃η + vi) dτ

= ‖η̃(t)‖2

∫ t+T

t

n∑
i=1

¯̃ηTφiφ
T
i

¯̃η + 2¯̃ηTφiφ
T
i vi + vTi φiφ

T
i vi dτ (4.29)

for decomposition (4.28), we can also write(
n∑
i=1

η̃Ti (t)η̃i(t)

‖η̃(t)‖2 = 1,
n∑
i=1

vi = 0

)
→

n∑
i=1

vTi vi = 1− n ‖¯̃η‖2
(4.30)

which immediately implies that ‖vi‖ ≤
√

1− n ‖¯̃η‖2
. Next, suppose that

T0β0 ≥
∫ t+T0

t

n∑
i=1

φi(τ)φi(τ)T dτ ≥ α0T0 (4.31)
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such a condition directly indicates that if the persistency of excitation is satisfied for a

collection of agents, then it is possible to reach a conclusion regarding the exponential

convergence of the system (4.19). It is interesting to note that (4.31) suggests that even

in the case that none of the agents is fully satisfying the PE condition, it is possible to

achieve the exponential convergence of the parameters. In another words, the existence

of consensus terms inside the estimation laws will help the network to fulfill the robust

estimation task.

From (4.31) we can conclude that
∫ t+T0
t

φiφ
T
i dτ ≤ β0T0 and hence

n∑
i=1

∫ t+T0

t

2vTi φiφ
T
i

¯̃η dτ ≥ −2nβ0T0 ‖¯̃η‖
√

1− n ‖¯̃η‖2
(4.32)

using (4.32), we can rewrite (4.29) as follows:

A ≥ ‖η̃(t)‖2

[
¯̃ηT (t)

n∑
i=1

∫ t+T0

t

φi(τ)φTi (τ) dτ ¯̃η(t)− 2nβ0T0 ‖¯̃η‖
√

1− n ‖¯̃η‖2

]
(4.33)

Next, we use (4.31) in (4.33)

A ≥
(
‖¯̃η‖2

α0T0 − 2nβ0T0 ‖¯̃η‖
√

1− n ‖¯̃η‖2

)
‖η̃‖2 (4.34)

we also have:

η̃i(τ)− η̃i(t) =

∫ τ

t

˙̃ηi(σ) dσ = −
∫ τ

t

(
Γ
φiφ

T
i η̃i

m2
i

−
∑
j∈Ni

(η̃i(σ)− η̃j(σ))

)
dσ

⇒ (η̃i(τ)− η̃i(t))Tφi(τ) = −
∫ τ

t

η̃Ti (σ)φi(σ)

mi(σ)

φTi (τ)Γφi(σ)

mi(σ)
dσ

−
∫ τ

t

∑
j∈Ni

φTi (τ) (η̃i(σ)− η̃j(σ)) dσ (4.35)
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Next, we consider the second term on the left side of (4.27)∫ t+T0

t

n∑
i=1

((η̃i(τ)− η̃i(t))Tφi(τ))2 dτ ≤

2

∫ t+T0

t

n∑
i=1

(∫ τ

t

∑
j∈Ni

φTi (τ) (η̃i(σ)− η̃j(σ)) dσ

)2

dτ︸ ︷︷ ︸
C1

+

∫ t+T0

t

2
n∑
i=1

(∫ τ

t

(
η̃Ti (σ)φi(σ)

mi(σ)

)2

dσ

∫ τ

t

(
φTi (τ)Γφi(σ)

mi(σ)

)2

dσ

)
dτ︸ ︷︷ ︸

C2

(4.36)

where we have used the following form of Schwartz inequality for the second term[∫ b

a

ψ1ψ2 dx

]2

≤
∫ b

a

ψ2
1 dx

∫ b

a

ψ2
2 dx (4.37)

since mi(σ) ≥ 1, we can write the second line in (4.36) as: (β = max
i

sup
τ≥0
|φi(τ)|)

C2 ≤ 2β4λmax(Γ)2

∫ t+T0

t

(τ − t)
∫ τ

t

n∑
i=1

(
η̃Ti (σ)φi(σ)

mi(σ)

)2

dσdτ

≤ 2β4λmax(Γ)2

∫ t+T0

t

n∑
i=1

(η̃Ti (σ)φi(σ))2

m2
i (σ)

{
T 2

0 − (σ − t)2

2

}
dσ

≤ β4λmax(Γ)2T 2
0

∫ t+T0

t

n∑
i=1

(η̃Ti (σ)φi(σ))2

m2
i (σ)

dσ (4.38)

Also, for the first term on the r.h.s (4.36), we can write:

2

∫ t+T0

t

n∑
i=1

(∫ τ

t

∑
j∈Ni

φTi (τ) (η̃i(σ)− η̃j(σ)) dσ

)2

dτ

≤ 2β2

∫ t+T0

t

(τ − t)
∫ τ

t

n∑
i=1

(∑
j∈Ni

(η̃i − η̃j)

)T (∑
j∈Ni

(η̃i − η̃j)

)
dσdτ

= 2β2

∫ t+T0

t

(τ − t)
∫ τ

t

η̃T (L⊗ In)2η̃ dσdτ (4.39)
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Using the properties of the Laplacian matrix, we can write

η̃ =
m∑
j=1

cj√
n

1n ⊗ νj +
n∑
i=2

m∑
j=1

dijαi ⊗ νj,
m∑
j=1

c2
j +

n∑
i=2

m∑
j=1

d2
ij = ‖η̃‖2 (4.40)

where ej denotes the jth unit vector. (4.40) indicates that η̃ can be written in terms of the

eigenvectors of the Laplacian matrix

η̃T (L⊗ In)η̃ =
n∑
i=2

m∑
j=1

λid
2
ij, η̃

T (L⊗ In)2η̃ =
n∑
i=2

m∑
j=1

λ2
i d

2
ij

→ η̃T (L⊗ In)2η̃ ≤ λnη̃
T (L⊗ In)η̃ (4.41)

using (4.41) in (4.39),

c1 ≤ 2β2

∫ t+T0

t

(τ − t)
∫ τ

t

λnη̃
T (σ)(L⊗ In)η̃(σ) dσdτ ≤

2β2

∫ t+T0

t

λnη̃
T (σ)(L⊗ In)η̃(σ)

∫ t+T0

σ

(τ − t) dτdσ

≤ 2β2T 2
0 λn

∫ t+T0

t

η̃T (σ)(L⊗ In)η̃(σ) dσ (4.42)

thus, we have

−
∫ t+T0

t

n∑
i=1

(η̃Ti (τ)φi(τ))2

m2
i (τ)

dτ ≤ −1

2m′

(
‖¯̃η‖2

α0T0 − 2nβ0T0 ‖¯̃η‖
√

1− n ‖¯̃η‖2

)
‖η̃‖2

+
1

m′

[
β4λmax(Γ)2T 2

0

∫ t+T0

t

n∑
i=1

(η̃Ti (σ)φi(σ))2

m2
i (σ)

dσ+

2β2T 2
0 λn

∫ t+T0

t

η̃T (σ)(L⊗ In)η̃(σ) dσ

]
(4.43)

102



which results in

−
∫ t+T0

t

n∑
i=1

(η̃Ti (τ)φi(τ))2

m2
i (τ)

dτ ≤

−
(
‖¯̃η‖2

α0T0 − 2nβ0T0 ‖¯̃η‖
√

1− n ‖¯̃η‖2

)
(2m′ + 2β4λmax(Γ)2T 2

0 )
‖η̃‖2

+
2m

′
β2T 2

0 λn
m′ + β4λmax(Γ)2T 2

0

∫ t+T0

t

η̃T (σ)(L⊗ In)η̃(σ) dσ (4.44)

For the second term inside the integral in (4.25), we can write

−1

2

∫ t+T0

t

n∑
i=1

∑
j∈Ni

(η̃i(τ)− η̃j(τ))T (η̃i(τ)− η̃j(τ)) ≤

−1

4

∫ t+T0

t

n∑
i=1

∑
j∈Ni

(η̃i(t)− η̃j(t))T (η̃i(t)− η̃j(t)) dτ

+
1

2

∫ t+T0

t

n∑
i=1

∑
j∈Ni

(η̃
′

i − η̃
′

j)
T (η̃

′

i − η̃
′

j) dτ (4.45)

where we have used the inequality (a+ b)2 ≥ 0.5a2 − b2 and the following definition

η̃i(τ) = η̃i(t) + (η̃i(τ)− η̃i(t))︸ ︷︷ ︸
η̃
′
i

= η̃i(t) + η̃
′

i (4.46)

Integrating ˙̃ηi from t to τ results in

η̃i(τ)− η̃i(t) =

∫ τ

t

˙̃ηi(σ) dσ = η̃
′

i → η̃
′

i − η̃
′

j =

∫ τ

t

( ˙̃ηi(σ)− ˙̃ηj(σ)) dσ (4.47)

Next, we try to find the upper bound for the second term on the r.h.s of (4.45) by squaring

both sides of (4.47) and taking the summation over all agents as follows

n∑
i=1

∑
j∈Ni

(η̃
′

i − η̃
′

j)
T (η̃

′

i − η̃
′

j) ≤
n∑
i=1

∑
j∈Ni

(∫ τ

t

( ˙̃ηi(σ)− ˙̃ηj(σ)) dσ

)T (∫ τ

t

( ˙̃ηi(σ)− ˙̃ηj(σ)) dσ

)

≤
n∑
i=1

∑
j∈Ni

(τ − t)
∫ τ

t

(
( ˙̃ηi(σ)− ˙̃ηj(σ))

)T (
( ˙̃ηi(σ)− ˙̃ηj(σ))

)
dσ ≤ (τ − t)

∫ τ

t

˙̃ηT (L⊗ In) ˙̃η dσ (4.48)

103



using (4.40) we have

˙̃ηT (L⊗ In) ˙̃η ≤
n∑
i=2

m∑
j=1

λid
2
ij ≤ λn ˙̃ηT ˙̃η = λn

n∑
i=1

˙̃ηTi ˙̃ηi (4.49)

which results in

n∑
i=1

∑
j∈Ni

(η̃
′

i − η̃
′

j)
T (η̃

′

i − η̃
′

j) ≤ (τ − t)
∫ τ

t

λn

n∑
i=1

˙̃ηTi ˙̃ηi dσ (4.50)

using (a+ b)2 ≤ 2a2 + 2b2 for
∑n

i=1
˙̃ηTi ˙̃ηi, we can write

n∑
i=1

˙̃ηTi ˙̃ηi ≤ 2
n∑
i=1

(η̃Ti φi)
2φTi ΓTΓΦi + 2

n∑
i=1

(∑
j∈Ni

(η̃i − η̃j)

)T (∑
j∈Ni

(η̃i − η̃j)

)

≤ 2λ2
max(Γ)β2

n∑
i=1

(η̃Ti φi)
2 + 2

n∑
i=1

(∑
j∈Ni

(η̃i − η̃j)

)T (∑
j∈Ni

(η̃i − η̃j)

)
(4.51)

hence, for (4.48) the following holds∫ t+T0

t

n∑
i=1

∑
j∈Ni

(η̃
′

i − η̃
′

j)
T (η̃

′

i − η̃
′

j) dτ ≤
∫ t+T0

t

(τ − t)
∫ τ

t

2λnλ
2
max(Γ)β2

n∑
i=1

(η̃Ti φi)
2 dσdτ

+

∫ t+T0

t

(τ − t)2λ2
n

∫ τ

t

η̃T (σ)(L⊗ In)η̃(σ) dσdτ (4.52)

changing the order of integrations results in∫ t+T0

t

n∑
i=1

∑
j∈Ni

(η̃
′

i − η̃
′

j)
T (η̃

′

i − η̃
′

j) dτ ≤ 2λnλmax(Γ)β2T 2
0

∫ t+T0

t

n∑
i=1

(η̃Ti φi)
2 dσ

+ 2λ2
nT

2
0

∫ t+T0

t

η̃T (σ)(L⊗ In)η̃(σ) dσ (4.53)
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Next, using (4.53), we can find the following upperbound

−1

2

∫ t+T0

t

n∑
i=1

∑
j∈Ni

(η̃i(τ)− η̃j(τ))T (η̃i(τ)− η̃j(τ)) dτ ≤

−1

4(1 + 2λ2
nT

2
0 )

∫ t+T0

t

n∑
i=1

∑
j∈Ni

(η̃i(t)− η̃j(t))T (η̃i(t)− η̃j(t)) dτ

+
λnλ

2
max(Γ)β2T 2

0

(1 + 2λ2
nT

2
0 )

∫ t+T0

t

n∑
i=1

(η̃Ti φi)
2 dσ (4.54)

Using the definition of the Laplacian matrix and ¯̃η, we have

η̃T (L⊗ In)η̃ =
n∑
i=2

m∑
j=1

λid
2
ij ≥

n∑
i=2

m∑
j=1

λ2d
2
ij ≥ λ2(1− n¯̃ηT ¯̃η) ‖η̃‖2 (4.55)

using (4.55), (4.54) turns into

−1

2

∫ t+T0

t

n∑
i=1

∑
j∈Ni

(η̃i(τ)− η̃j(τ))T (η̃i(τ)− η̃j(τ)) dτ ≤

−T0λ2(1− n¯̃ηT ¯̃η)

4(1 + 2λ2
nT

2
0 )

‖η̃‖2 +
λnλ

2
max(Γ)β2T 2

0

(1 + 2λ2
nT

2
0 )

∫ t+T0

t

n∑
i=1

(η̃Ti φi)
2 dσ

hence, we can write

V (t+ T0)− V (t) ≤ −


(
‖¯̃η‖2 α0T0 − 2nβ0T0 ‖¯̃η‖

√
1− n ‖¯̃η‖2

)
(2m′ + 2β4λmax(Γ)2T 2

0 )
+
T0λ2(1− n¯̃ηT ¯̃η)

4(1 + 2λ2nT
2
0 )

 ‖η̃‖2
+

2T 2
0 λn

m′ + β4λ2max(Γ)T 2
0

∫ t+T0

t

η̃T (σ)(L⊗ In)η̃(σ) dσ

+
λnλ

2
max(Γ)m

′2
β2T 2

0

(1 + 2λ2nT
2
0 )

∫ t+T0

t

n∑
i=1

(
η̃Ti φi
mi

)2

dσ (4.56)

since −V̇ (σ) =
∑n

i=1
(η̃i(σ)Tφi(σ))2

m2
i

+ η̃T (σ)(L⊗ In)η̃(σ), based on the following definition

∆ = max

(
λnλ

2
max(Γ)m

′2
β2T 2

0

(1 + 2λ2
nT

2
0 )

,
2T 2

0 λn
m′ + β4λ2

max(Γ)T 2
0

)
(4.57)

105



we can write

V (t+ T0)− V (t) ≤ −


(
‖¯̃η‖2 α0T0 − 2nβ0T0 ‖¯̃η‖

√
1− n ‖¯̃η‖2

)
∆ (2m′ + 2β4λ2max(Γ)T 2

0 )
+
T0λ2(1− n¯̃ηT ¯̃η)

4∆(1 + 2λ2nT
2
0 )

 ‖η̃‖2 (4.58)

hence, if the following condition holds

γ
′

1 = λmin(Γ)


(
‖¯̃η‖2

α0T0 − 2nβ0T0 ‖¯̃η‖
√

1− n ‖¯̃η‖2

)
∆ (2m′ + 2β4λ2

max(Γ)T 2
0 )

+
T0λ2(1− n¯̃ηT ¯̃η)

4∆(1 + 2λ2
nT

2
0 )

 > 0 (4.59)

from (4.58), we can assure that γ
′
1 ≤ 1 and V (t+ T0) = γ

′
V (t) ≤ V (t).(γ

′
= 1− γ′1)

As it is clear from (4.59), γ
′
1 can also become negative which does not represent the real

situations since according to (4.21), V̇ ≤ 0. A more realistic bound for the stability of

(4.19) can be derived by noting the fact that the r.h.s of (4.34) must be changed as follows

A ≥ max

((
‖¯̃η‖2

α0T0 − 2nβ0T0 ‖¯̃η‖
√

1− n ‖¯̃η‖2

)
, 0

)
‖¯̃η‖2

(4.60)

Therefore, from the fact that λ2(1− n¯̃ηT ¯̃η) ≥ 0, we can calculate a conservative bound for

the convergence of (4.19) as follows

V (t+ T0)− V (t) = −γ2γ3λmin(Γ)V (t) = −γ1V (t), → V (t+ T0) = γV (t)

γ2 = max

((
‖¯̃η‖2

α0T0 − 2nβ0T0 ‖¯̃η‖
√

1− n ‖¯̃η‖2

)
, λ2(1− n¯̃ηT ¯̃η)

)
,

γ3 = min

(
1

∆ (2m′ + 2β4λ2
max(Γ)T 2

0 )
,

T0

4∆(1 + 2λ2
nT

2
0 )

)
(4.61)

where γ1 = γ2γ3λmin(Γ) and γ = 1− γ1. Next, if we divide the domain [0, t] with the sub

domains of length T0, for t = (n− 1)T0, we can conclude V (t) ≤ V (nT0) ≤ γnV (0) which

proves the exponential stability of the identification system.
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4.2.4 Analysis of Convergence Rates

In this section, we analyze the L2 gain of the identification system and study the effects of

changing the parameters such as the level of the satisfaction of the persistency excitation

α0 in (4.31) on the convergence of the algorithm (4.19). From (4.59) and (4.61), it is clear

that the performance of (4.19) also depends on the state of the ”consensus” in the network.

In other words, if we consider x2 = n ‖¯̃η‖2
as a measure of consensus in the system (4.19),

it is clear that the exponential decadence of (4.61) has a nonlinear relation with x. We can

rewrite the γ
′
1 as follows

γ
′

1 =
T0λ2λmin(Γ)

4∆(1 + 2λ2
nT

2
0 )

+

(
α0T0λmin(Γ)

n∆ (2m′ + 2β4λ2
max(Γ)T 2

0 )
− T0λ2λmin(Γ)

4∆(1 + 2λ2
nT

2
0 )

)
x2

− 2
√
nβ0T0λmin(Γ)

∆ (2m′ + 2β4λ2
max(Γ)T 2

0 )

√
x2 − x4 (4.62)

For the purpose of simplification, consider the parameters a, b, c with the following defini-

tions

a =
T0λ2λmin(Γ)

4∆(1 + 2λ2
nT

2
0 )
, b =

(
α0T0λmin(Γ)

n∆ (2m′ + 2β4λ2
max(Γ)T 2

0 )
− T0λ2λmin(Γ)

4∆(1 + 2λ2
nT

2
0 )

)
,

c =
2
√
nβ0T0λmin(Γ)

∆ (2m′ + 2β4λ2
max(Γ)T 2

0 )

first, note that c is at least two times greater than b, this is due to the fact that β0 ≥ α0

and λ2 ≥ 0 for a connected graph. It is also clear that if the level of the satisfaction of the

PE condition is high i.e. α0 >> 1, then the network performs the identification process

much faster regarding (4.21), however, b can be either negative or positive and hence, we

divide the analysis in to two parts depending on the sign of b. The effects of changing b

and c are depicted in Fig. 4.1
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Figure 4.1: Effects of changing b and c in γ
′
1 (Case 1), (b ≥ 0)

Case 1: (b ≥ 0)

For this case, we can calculate the minimum of the γ
′
1 by computing the derivative of γ

′
1

with respect to x as follows:

dγ
′
1

dx
= 2bx− c(x− 2x3)√

x2 − x4
= 0 ⇒ 2b

√
x2 − x4 = c(1− 2x2)b > 0 ⇒ 1− 2x2

min > 0

⇒ 4(b2 + c2)x4 − 4(b2 + c2)x2 + c2 = 0⇒ xmin =

√√√√1−
√

b2

b2+c2

2
(4.63)

where the other solution is disregarded since (1 − 2x2
min > 0). Calculating the second

derivative of γ
′
1 with respect to x, we have:

d2γ
′
1

dx2
= 2b+

c(12x2 − 2)

2
√
x2 − x4

+
c(−4x3 + 2x)2

4
√
x2 − x4

= 2b+
2c(2b2 − 3bd+ 2c2)

cd
+

4b2c(b4 − bd3 + c4 + 2b2c2)

c3d3
> 0, d2 = b2 + c2 (4.64)
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which demonstrates that the xmin is indeed a minimizer of γ1. The minimum value of γ1

is as follows:

γ
′

1(xmin) = a+
b

2
−
√
b2 + c2

2
(4.65)

γmin represents the worst gain of the system which is positive definite. In fact, (4.65)

suggests a criteria for designing the network communication graph to ensure the conver-

gence of the estimates of the unknown parameters. However, it should be noted that such

an approach is quite conservative as the first term in γ
′
1 must be replaced with a better

approximation.

Case 2: (b < 0)

The effect of changing b and c for this case is shown in Fig. 4.2. It is clear that we need to

choose the other solution of (4.63) for this case as 1 − 2x2
min < 0 must hold. Calculating

the second derivative of γ1 in this case results in:

d2γ1

dx2
= 8b+ 4d+

4b2c(b+ d)

c3
, d2 = b2 + c2 (4.66)

which is positive definite since (b < 2c). Next, we try to get a better bound for the L2 gain

of the estimation system.

We can also find a better approximation on the bound for γ1. This can be done by noticing

that the r.h.s of (4.34) can be better approximated by a positive semi definite function, in

fact, since the first term on the l.h.s of (4.27) is always positive semi definite, this can be

done by replacing the summation with the max function of the two terms.

γ2 = max

((
‖¯̃η‖2

α0T0 − 2nβ0T0 ‖¯̃η‖
√

1− n ‖¯̃η‖2

)
, λ2(1− n¯̃ηT ¯̃η)

)
, (4.67)
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Figure 4.2: Effects of changing b and c in γ
′
1 (Case 2), (b < 0)

It is clear that even for any small α0, γ1 is positive semi definite. The latter comes from

the fact that the first term in the argument of the max function only becomes zero where

1− n ‖¯̃η‖2
= 0 and at this point the second argument is positive definite based on (4.31).

Fig. 4.3 illustrates the effect of changing parameters for γ1 for two cases depending on

the value of the algebraic connectivity of the network λ2. (a) depicts the case that (λ2) is

high compared to b and c. The figure on the right, suggests that for this case the better

convergence behavior can be achieved by enforcing the network to reach to the consensus

state on a faster time scale. On the other hand, for the figure on the left, the maximum

of γ1 occurs at the boundaries, i.e. x = ±1, and this suggest that achieving the consensus

task will decrease the performance of the estimation task. Anther interesting fact which

can be deduced from Fig. 4.3 is that the convergence behavior of the network is not just

dependent on the lower bound in (4.31). It is clear that by increasing the upper bound in

(4.31), the worst γ1 of the network will be decreased. This case will occur at

x = ±

√
2ab+ c

√
c2 + 4ab+ 2a2 + c2

2(a2 + 2ab+ b2 + c2)
(4.68)
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Figure 4.3: Effects of changing b and c in γ2,

which suggests that increasing the algebraic connectivity will push the minimum toward

x± 1. This shows that increasing λ2 will improve the worst convergence gain.

4.2.5 Two time Scales Approach Toward Consensus Estimation

In this section, we devise another approach for distributed estimation problem. In the

previous section, we discussed the case that the maximum of γ1 will happen around the

consensus equilibrium. Inspired by such cases, here, we design an algorithm which takes

the consensus task as the main priority. We address this issue using a singular perturba-

tion consensus method which is described in [106],[107]. The main idea is to achieve the

consensus task on the fast time scale and the estimation task on the slower time scale. We

start by introducing the following lemmas from [107].

Lemma 4.1 : [107] Consider a network of agents with Laplacian matrix L with the constant
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Figure 4.4: A particular case for which the consensus is the priority

inputs ui ∈ Rn, then the system:

żi = −(zi − ui)−
n∑
i=1

Lij(zj + νj)

ν̇i =
n∑
i=1

Lijzj (4.69)

will converge to the average of ui, i.e. 1
n

∑n
i=1 ui.

Lemma 4.2 [106] Consider a network of agents with Laplacian matrix L with the inputs

ui and small ε > 0, then the following system

εżi = −(zi + βui + u̇i)−
n∑
i=1

Lij(zj + νj)

εν̇i =
n∑
i=1

Lijzj, ẋi = −βxi − zi, β > 0 (4.70)

will ensure that
∥∥xi(t)− 1

n

∑n
i=1 ui(t)

∥∥ < O(ε).

We can formulate the consensus estimation problem using Lemma 4.2. Consider u =

θ̂, ui = θ̂i, i ∈ {1, · · · , n}. Then, consider the filter (4.70) together with the following
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system

˙̂
θi = −βεiφi = −βφiφTi (θ∗ − xi) (4.71)

where εi = φi(θ
∗ − xi). From Lemma 4.2, we can conclude that there exist k such that,

xi(t)→ 1
n

∑n
i=1 θ̂i + kiε, we have

˙̂
θi = −βφiφTi

(
1

n

n∑
i=1

(θ̂i − θ∗) + kiε

)
, β > 0 (4.72)

Next, using the change of variables θ̃i = θ̂i − θ∗ and S =
∑n
i=1 θ̃i
n

, and summing (4.72) over

all agents, we can write

Ṡ = −β

(
n∑
i=1

φiφ
T
i

)
S +Gε (4.73)

assuming that (4.48) is satisfied here, i.e there exists α0 such that
(∑n

i=1 φiφ
T
i

)
> α0,

then the first order approximation of (4.73) in terms of ε, (Ṡ1 = −β
(∑n

i=1 φiφ
T
i

)
S1), is

exponentially stable and using Theorem 8.3 in [34], we can conclude that the trajectories of

the main system (4.73) remain in the ε-neighborhood of origin on the infinite time intervals.

Remark 4.1 In [105], authors have shown that it is possible for the estimation subsystem to

converge to actual values of the parameters provided that it uses the previously recorded

information which is sufficiently rich to ensure the stability of the estimation subsystem.

This approach can be used to reduce the oscillation in the inputs which are needed to

ensure that the PE condition is satisfied for the estimation system. Using the results of

this section, it is easy to add the consensus term inside the main estimation laws. This

way we can ensure the convergence of estimation subsystems provided that the recorded

data for all agents satisfy the PE condition which is much less restrictive than satisfying

the PE condition for the recorded data of a single agent. In order to show this, consider

a network of n agents with a connected topology graph and suppose that each agents has

113



access to p data from previous measurements. Consider the estimation system of (4.19)

without the denominator term. The consensus estimation algorithm can be expressed as

follows

˙̂ηi = φiεi −
p∑

k=1

φ(xk)εk −
∑
j∈Ni

(η̂i − η̂j) (4.74)

εi = φTi (η̂i − η∗), εk = φ(xk)
T (η̂i − η∗) = φ(xk)

T η̂i − φ(xj)
Tη∗

where φ(xk) represents the previous data at xk which could be the states of a mobile

robot. It should be noted that εk can be computed since all φ(xk)
T and η̂i and φ(xj)

Tη∗

are measurable. Using the same procedure in this section, we can reach to a similar gain

as in (4.61)

γ1 = max

(
2λ2(1− n¯̃η2),

(¯̃η2α1T0 − 2β1T0 ‖¯̃η‖
√

1− n¯̃η)

m′ + β4Γ2T 2

)
(4.75)

where α1 and β1 are as follows

T0β1 ≥
n∑
i=1

p∑
k=1

φ(xki)φ(xki)
T +

∫ t+T

t

n∑
i=1

‖φi(τ)‖2 dτ ≥ α1T0 (4.76)

which suggests that we can choose higher values for α1 to satisfy the PE condition for the

estimation network. We can summarize the result of this section in to the following lemma:

Lemma 4.3 Consider a network of estimator as in (4.73) and suppose that the recorded

data for all agents contain m linearly independent vectors φ(xik), i.e

Z = [φ(x11), · · · , φ(x1p), · · · , φ(xn1), · · · , φ(x1p)] , Rank(Z) = m (4.77)

Then condition (4.76) will be satisfied and the exponential convergence of the network is

followed.

Remark 4.2 we can also study the stability of the network (4.19) for the situations which
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the parameters are slowly varying, i.e.
∥∥∥θ̇∗i ∥∥∥ ≤ εi and |θi| ≤ δi. It is possible to show

that the system is enjoying nice robustness properties with respect to the variation of the

parameters with respect to time. To see this, consider a network of multi agent systems

which each agent can measure the following function at its location

fi =
m∑
k=1

(xik − θ∗k)2 (4.78)

using differentiation, we have

d

dt

(
f −

m∑
k=1

x2
ik

)
= −2

m∑
k=1

ẋikθ
∗
k − 2

m∑
k=1

θ̇∗k(xik − θ∗k)

→ zi = φTi θ
∗ + αi (4.79)

Next, suppose that the trajectories of agents are bounded i.e. |xik| ≤Mi which results in

α(ε) = 2
m∑
k=1

θ̇∗k(xik − θ∗k) ≤ |2mεi(δi +Mi)| ≤ |2mε(δi +Mi)| , ε = max
i

(εi) (4.80)

and for estimation network we can write

˙̂ηi = γφiφ
T
i η̃i +

∑
j∈Ni

(η̂j − η̂i) + α(ε)

→ ˙̃ηi = γφiφ
T
i η̃i +

∑
j∈Ni

(η̂j − η̂i) + α(ε)− η̇∗ (4.81)

using the fact

|α(ε)− η̇∗| ≤ 2mε(δi +Mi) + εi ≤ ε(2m(δi +Mi) + 1) ≤ Kε→ (α(ε)− η̇∗) ∈ O(ε) (4.82)

and assuming the collective PE condition is satisfied, we can conclude that the main system

is stable and using Theorem 8.3 in [34], it is easy to conclude that the trajectories of the

perturbed system will remain in the ε-neighborhood of the main system on an infinite time

interval.
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4.3 Extremum Seeking Using Adaptive Localization

4.3.1 Single Agent

In this section, we design an adaptive extremum seeking algorithm based on [1] for a single

agent. In general, we are trying to add the concept of ”control” to the localization problem

of previous sections. The main difficulty toward this goal comes from the fact that the

robot needs to simultaneously satisfy the PE condition and reaching the target which are in

contradiction. From practical point of view, if the robot reaches to a neighborhood of the

target and stays in that neighborhood for the future time, it would be sufficient. This can

be attained by embedding oscillatory signals in to the inputs of the vehicle to ensure that

the PE condition is satisfied at least locally in the vicinity of the target. Since studying the

stability of the resulting system is very difficult due to the system nonlinearities and the

presence of time-varying signals, we focus on the stability of the averaged system which is

time invariant and can be approached by classic techniques. In the next step, we extend

the results to infinite interval based on the local exponential convergence of the main

subsystem and Theorem 8.3 in [34]. We start by considering the kinematics of a single

holonomic robot with the adaptive extremum seeking algorithm which is depicted in Fig.

4.5. Suppose that the robot is moving in R2 and it can measure its distance to an unknown

target, i.e. (d2 = (x− x∗)2 + (y − y∗)2), we can write

d

dt
[d2(t)] = 2[ẋ ẏ]

 x− x∗

y − y∗

 (4.83)

An interesting feature of (4.83) is that it has a linear in parameter structure and thus

the classical adaptive parameter estimation techniques can be easily used to construct the

identification subsystem. Also, notice that if we consider a general quadratic function
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Figure 4.5: Extremum seeking loop for a single vehicle based on [1]

which has elliptical level curves as opposed to (4.83) where the level curves are assumed

to be circular, two additional terms will be added to the r.h.s of (4.83) which contain

the parameters regarding the shape of the field. It is also possible to derive the linear

in parameter model of the location of the extremum without differentiation. To see this

consider the following equations∫ t

0

d2 dt =

∫ t

0

(x2 + y2) dt− 2x∗
∫ t

0

x dt− 2y∗
∫ t

0

y dt+ (x∗2 + y∗2)t

d2t = (x2 + y2)t− 2xx∗t− 2yy∗t+ (x∗2 + y∗2)t (4.84)

where the second equation in (4.84) is obtained via multiplying the square of the measure-

ment of the distance by the value of the current measurement of time. Subtracting the
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two equations in (4.84), we can write(∫ t

0

d2 dt− td2

)
−
(∫ t

0

(x2 + y2) dt− (x2 + y2)t

)
= 2x∗

(∫ t

0

x dt− tx
)

+ 2y∗
(∫ t

0

y dt− ty
)

(4.85)

The l.h.s of (4.85) can be measured at each time instants and it is clear that the r.h.s

contains the linear in parameter model of the coordinates of the extremum point. Both of

(4.83) and (4.85) can be used for building the extremum seeking algorithm, however, here,

we use (4.83) to facilitate the convergence proofs. Since using the differential of signals in

the design might not be practical due to the external noises, we introduce the following

low pass filters from [1]

ż1 = −αz1 + 0.5d2(t)

η = −αz1 + 0.5d2(t)

ż2 = −αz2 + 0.5(x2 + y2)

m = −αz2 + 0.5(x2 + y2)

ż3 = −αz3 + [x y]T

V = −αz3 + [x y]T

using previous definitions, it is easy to verify that

η(t) = m(t)− V T [x∗, y∗]T (4.86)

Then adaptive localization algorithm for this problem can be written as ˙̂x

˙̂y

 = −γ(η −m+ V T [x̂ ŷ]T ) (4.87)
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Using the change of variables [x̃ ỹ]T = [x̂ − x∗ ŷ − y∗]T , our proposed extremum seeking

algorithm for this case can be expressed as follows:

ẋ = −kx(x− x̂) + αx sin(ωt)

ẏ = −ky(y − ŷ) + αy cos(ωt) ˙̃x

˙̃y

 = −γV V T

 x̃

ỹ

 (4.88)

here, we show that the equilibrium of the averaged system of (4.88) is locally exponentially

stable. Consider the additional change of variables

x̄ = x− αx sin(ωt)

ȳ = y − αy cos(ωt) (4.89)

since V = [V1, V2]T = s
s+α

 x

y

, we have

V1 =
s

s+ α
[x̄+ αx sin(ωt)] = V̄1 +

s

s+ α
(αx sin(ωt)) (4.90)

Also, we can observe that

s

s+ α
(αx sin(ωt)) =

ωs

(s+ α)(s2 + ω2)

time domain−−−−−−−→ ω2 sin(ωt) + αω cos(ωt)

α2 + ω2
− αωe−αt

α2 + ω2
(4.91)

The second term in (4.91) will vanish quickly because of the presence of the exponential

term and the fact that the value of ω is high. For V2, we can write

V2 =
s

s+ α
[ȳ + αy cos(ωt)] = V̄2 +

s

s+ α
(αy cos(ωt)) (4.92)
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again, as in the case of V1, we have

s

s+ α
(αy cos(ωt)) =

s2

(s+ α)(s2 + ω2)

time domain−−−−−−−→ ω2 cos(ωt)− αω sin(ωt)

α2 + ω2
+

α2e−αt

α2 + ω2
(4.93)

therefore, the estimation subsystem becomes

˙̃x = −γ
([
V̄ 2
1 +

α2
x

(α2 + ω2)2
[ω2 sin(ωt) + αω cos(ωt)]2 +

2V̄1
α2 + ω2

[ω2 sin(ωt) + αω cos(ωt)]

]
x̃

+

[
V̄1V̄2 + V̄1

ω2 cos(ωt)− αω sin(ωt)

α2 + ω2
+ V̄2

ω2 sin(ωt) + αω cos(ωt)

α2 + ω2

]
+
ω2 cos(ωt)− αω sin(ωt)

α2 + ω2

ω2 sin(ωt) + αω cos(ωt)

α2 + ω2

)
ỹ (4.94)

using the facts∫ 2π
ω

0

sin(ωt) cos(ωt) = 0

α2
x

ω2 + α2

∫ 2π
ω

0

sin2(ωt) dt =
α2
x

ω2 + α2

∫ 2π
ω

0

cos2(ωt) dt =
πα2

x

ω(ω2 + α2)
(4.95)

we can obtain the averaged system of (4.88) as follows

ẋave = −γ
(
V̄ 2

1,ave +
ωπα2

x(1 + α2)

α2 + ω2

)
x̃ave − γ(V̄1,aveV̄2,ave)ỹave (4.96)

for ỹ we have

˙̃y = −γ(V 2
2 ỹ + V1V2x̃) (4.97)

˙̃y = −γ

([
V̄ 2
2 +

α2
y

(α2 + ω2)2
[ω2 cos(ωt)− αω sin(ωt)]2 − 2V̄2

α2 + ω2
[ω2 cos(ωt)− αω sin(ωt)]

]
ỹ

+

[
V̄1V̄2 + V̄1

ω2 cos(ωt)− αω sin(ωt)

α2 + ω2
+ V̄2

ω2 sin(ωt) + αω cos(ωt)

α2 + ω2

]
+
ω2 cos(ωt)− αω sin(ωt)

α2 + ω2

ω2 sin(ωt) + αω cos(ωt)

α2 + ω2

)
x̃ (4.98)
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which results in

ẏave = −γ
(
V̄ 2

2,ave +
ωπα2

y(1 + α2)

α2 + ω2

)
ỹave − γ(V̄1,aveV̄2,ave)x̃ave (4.99)

thus, the linearized system is as follows ˙̃xave

˙̃yave

 = −γπ(1 + α2)

α2ω2

 α2
x 0

0 α2
y

 x̃ave

ỹave

 (4.100)

and for the kinematics of the robot we have

˙̄x = −kx(x̄+ αx sin(ωt)− x∗ − x̃) + αx sin(ωt)− αxω cos(ωt)

˙̄y = −ky(ȳ + αy cos(ωt)− y∗ − ỹ) + αy cos(ωt) + αyω sin(ωt) (4.101)

and the averaged trajectories can be computed by

˙̄xave = −kx(x̄ave − x∗ − x̃ave)

˙̄yave = −ky(ȳave − y∗ − ỹave) (4.102)

system (4.102), together with (4.100) composed the averaged system of the extremum seek-

ing problem and since it is locally exponentially stable we can conclude that the trajectories

of the main system remains in a neighborhood of the origin with the size of O
(

1
ω

)
.

Remark 4.3 In (4.91) and (4.93) we did not consider the effects of exponential decaying

terms which are produced by filtering the agents velocities. Since these transient behav-

iors can be considered as the vanishing perturbation terms, it is possible to show that the

exponential stability of the system (4.100)-(4.102) will not be affected [34] and therefore,

the convergence to a O
(

1
ω

)
neighborhood of [x∗, y∗] is guaranteed.

Remark 4.4 For the linearization of (4.96) and (4.99), we only used the equations regarding

the robot states, however, the complete linearized system should be written based on the

states of the high-pass filters which are used for the coordinates of the mobile robot. It
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is easy to deduce that the linearized version of the filters equations are also exponential

stable and decoupled.

4.3.2 Multi Agent Case

In this section, we consider the adaptive extremum seeking problem for a network of agents.

Again, we consider a quadratic potential for the field with circular level curves and for the

sake of simplicity, we assume that the Hessian matrix of this field is diagonal and it is

equal to Im. The extension for the case which the Hessian matrix is a general symmetrix

positive definite matrix can be obtained easily using the framework which is proposed in

section 4.3.3.

For this case, the measurements of the agents can be expressed by

d2
i =

m∑
j=1

(
xij − x∗j

)2
, i = {1, · · · , n} (4.103)

where [x∗1, · · · , x∗m] denotes the location of the extremum of the field. Differentiating (4.103)

with respect to time, we have:

zi =
1

2

d

dt

(
m∑
j=1

(
xij
)2 − d2

i

)
=

m∑
j=1

ẋijx
∗
j (4.104)

Consider the following definitions

φi = [ẋi1, · · · , ẋim]T , θ = [x∗1, · · · , x∗m]T , (4.105)

Next, consider the following consensus parameter identification law which is inspired by

(4.19)

˙̃xi = ˙̂xi = −γφiφTi x̃i −
∑
j∈Ni

(x̂i − x̂j) (4.106)
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together, with the following extremum seeking law

ẋi = −(xi − x̂i) + ζi, ζi = [ζ i1, · · · , ζ im]T (4.107)

where ζ ij are either orthogonal 2kπ-periodic functions or equal to zero. The identification

subsystem for each agent can be expressed as follows

˙̂xi = −γ(xi − x̂i)(xi − x̂i)T − γ(xi − x̂i)ζTi − γζi(xi − x̂i)T − γζiζTi −
∑
j∈Ni

(x̂i − x̂j) (4.108)

Next, we compute the average of the identification subsystems

˙̂xi,ave = −

[
γ(xi,ave − x̂i,ave)(xi,ave − x̂i,ave)T −

γ

2kπ

∫ 2kπ

0

ζiζ
T
i dt

]
x̃i,ave −

∑
j∈Ni

(x̂i,ave − x̂j,ave) (4.109)

Using the following identities for periodic ζ ik and ζ il

1

2kπ

∫ 2kπ

0

ζ ikζ
i
l = 0, for k 6= l

1

2kπ

∫ 2kπ

0

ζ ikζ
i
l = 1, otherwise (4.110)

thus, χi = 1
2kπ

∫ 2kπ

0
ζiζ

T
i dt is a diagonal matrix whose diagonal elements are either zero or

one. We can write

˙̂xi,ave = −
[
γ(xi,ave − x̂i,ave)(xi,ave − x̂i,ave)T − γχi

]
x̃i,ave −

∑
j∈Ni

(x̃i,ave − x̃j,ave) (4.111)

finally, the linearized identification subsystem is as follows

˙̂xi,ave = −γχix̃i,ave −
∑
j∈Ni

(x̃i,ave − x̃j,ave) (4.112)

Using the results of the previous section, we can conclude that the averaged trajectories

of the identification subsystem will converge if
∑n

i=1 χi > 0. This condition clearly shows

the benefit of using a consensus filter inside the extremum seeking identification subsystem

since according to this condition none of agents is required to satisfy the PE condition. For
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example a subset of m agents for which each agent only has one dither signal with respect

to a distinct coordinate is sufficient for the satisfaction of the PE condition (4.48) for the

whole network.

Remark 4.5 In this section, we applied an extra consensus term to the estimation subsys-

tem to enhance the identification process of the extremum point coordinates. It is also

interesting to point out that the consensus terms can also be added to the kinematic con-

troller of the agents. In this context, the consensus filter acts as a ”rendezvous” filter.

In another words, instead of sharing the information regarding the position of the target,

the agents tries to reach to a common trajectory while reaching to the extremum point.

This can be useful in the situations where there exist a well-informed agent in the network

which can take the role of the leader.

4.3.3 Extremum Seeking for General Hessian Matrix

It is also possible to extend the previous results to the case of quadratic fields with general

positive definite symmetric Hessian matrix. Here, we use the framework which is first

proposed in [60] for ES task. We show that the idea of using a consensus filter for the

network will give the extra freedom for choosing the extremum seeking dither signals. To

describe the method, consider a quadratic cost function f(θi) = f ∗+ (θi− θ∗)TH(θi− θ∗).

The identification subsystem can be described by

˙̂
θi = KMi(t)[f

∗ + (θ̂i + Si(t)− θ∗)TH(θ̂i + Si(t)− θ∗)]−
∑
j∈Ni

(
θ̂i − θ̂j

)
Si(t) = [a1i sin(ω1it), · · · , ami sin(ωmit)]

T ,

Mi(t) = [
2

a1i

sin(ω1it), · · · ,
2

ami
sin(ωmit)]

T (4.113)
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where ωmi are either distinct positive integers or zero, defining θ̃i = θ̂i − θ∗ we can rewrite

(4.113) as follows

˙̂
θi = Kf ∗Mi(t) +

1

2
KMi(t)

[
(θ̃i)THθ̃i + 2(θ̃i)THSi(t) + STi (t)HSi(t)

]
−
∑
j∈Ni

(
θ̂i − θ̂j

)
(4.114)

computing the average of the system (4.114) from 0 to 2kπ, we have

˙̂
θ = ˙̃θiave = KΠiHθ̃

i
ave −

∑
j∈Ni

(
θ̃iave − θ̃jave

)
(4.115)

where Πi = 1
2kπ

∫ 2kπ

0
Mi(t)S

T
i (t) dt and we have used the facts

1

2kπ

∫ 2kπ

0

Mi(t) dt =
1

2kπ

∫ 2kπ

0

Si(t) dt = 0, 1
2kπ

∫ 2kπ

0
mik(t)sil(t) dt = 0 for l 6= 0,

1
2kπ

∫ 2kπ

0
mik(t)sil(t) dt = 1 otherwise

(4.116)

(4.115) suggests that Πi is a diagonal matrix whose diagonal elements are either zero or

one. Again, using the results of the previous sections, we can conclude that if the following

condition is met

n∑
i=1

Πi > 0 (4.117)

then the local convergence of the extremum seeking algorithm will be followed. This impli-

cates that even if a subset of m-agents for which each agent contains a distinct frequency

for a distinct coordinate, and the dither signals of the other n − m agents are equal to

zero, we can still guarantee the convergence of the estimates to the extremum value of the

function of the field.

Remark 4.6 Note that (4.115) represents a gradient-based extremum seeking algorithm
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since the convergence of the method is directly dependent on the Hessian matrix of the

field. This might force the seeking agent to move in the direction of the gradient of the

field to reach to the extremum state which might not be the shortest path to that point.

As in Newton-based optimization method, it is possible to extend the current results in a

way that the convergence of (4.115) does not depend on the Hessian matrix of the field.

One way to achieve this is to use the method in [63] to estimate the Hessian matrix us-

ing additional filtering. Using the filtered version of its inverse, it is possible to design a

Newton-based distributed ES method.

4.4 Cooperative Extremum Seeking with Multiple Du-

bin’s Vehicles

In this section, we consider the cooperative extremum seeking task for multiple nonholo-

nomic agents with fixed forward velocities. This problem is first considered in [65],[66] and

in [108], it is extended to a network of unicycles. Here, we assume that the agents can

only measure the function of the field at their respective locations together with a convex

function of the relative distances to their respective neighbors. We employ a modified

ES method to solve this problem. As in the previous sections, the main idea is to add

several dithering signals at the inputs of the vehicles to find the gradient of the field and

the relative formation errors. Then, such information will be used to steer the network

toward the extremum point while, simultaneously, it fulfills the formation goals. Fig. 4.6

depicts the framework which we use in this section. Compared to the methods which are

used in [65] and [66], here, we can see that each agent can obtain the local formation cost

from its neighbors and adds it to the value of the measured signal of the field. In the next
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Figure 4.6: Distributed extremum seeking loop

part of the algorithm, the gradient of the collected signals are computed using the dis-

tributed filtering which is built based on the states of the high pass filters of the neighbors

of each agent. The network will be steered to the location of the extremum by adjusting

the angular velocities of the vehicles using the acquired gradient. Assuming that the field

sensors are located at the distance of q in front of the agents, the dynamical system which
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represents Fig. 4.6 can be expressed as follows:

ṙi = Uejθi

θ̇i = aω cos(ωt) + cξi sin(ωt)− dξ2
i sin(ωt)

ėi = hξi +
∑
j∈Ni

(ξi − ξj), e = [e1, · · · , en]T

ξi = −(α
∥∥ri + qejθi + rext

∥∥2
+ β

∑
j∈Ni

‖ri − rj‖2 + ei), ξ = [ξ1, · · · , ξn]T (4.118)

j1 = f ext − α
∥∥ri + qejθi − rext

∥∥2 − β
∑
j∈Ni

‖ri − rj‖2 , J = [j1, · · · , jn]T (4.119)

where ri, θi denotes the position vector and heading angle of the ith agent. ei can be

computed as follows

e = (sI + hI + L)−1(hI + L)(J)− f ext1n

→ ξ = (sI + hI + L)−1sJ = J − (sI + hI + L)−1(hI + L)J = J − e− f ext1n (4.120)

From (4.120), it is clear that ξi denotes the state of the filter of the ith agent and ei con-

tains the difference between the low-pass filtered version of the obtained signals and the

extremum of the field which is assumed to be unknown. It should be noted that ei does not

appear explicitly in the extremum seeking control loop and it is defined for the purpose of

stability analysis. Also, (4.120) indicates that a consensus term is added to ”Blend” the

information of the nearby agents to enhance the identifiably of the network. Furthermore,

(4.118) suggests that the rendezvous cost is added to the measured signal of the field. This

can be easily extended to the formation case by considering the offsets between the agents

position vectors and the center of formation in the relative costs.

In order to analyze the algorithm (4.118)-(4.119), we use the methodology which is pro-
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posed in [65] by considering the following change of variables

r̂i = ri − rext

θ̂i = θi − a sin(ωt) (4.121)

using (4.121), we can write (τ = ωt)

dr̂i
dτ

=
U

ω
ej(θ̂i+a sin(τ))

dθ̂i
dτ

=
1

ω
(c− dξi) ξi sin(τ)

dei
dτ

=
1

ω

[
hξi +

∑
j∈Ni

(ξi − ξj)

]
(4.122)

The first set of equations in (4.122) describes the evolution of the positions of the agents

while the second set represents the evolution of the angular directions of the vehicles. The

third set is related to the dynamics of the differences between the current measurements

of the sensors which are added to the local formation costs with the value of the field at

the extremum point. From (4.122), it is also clear that by changing the time scale to τ ,

the system (4.118)-(4.119) turns into the canonical form of the averaging theory. in order

to facilitate the analysis, consider the new quantity θ∗i

θ∗i = arg
(
rext − ri

)
⇒ ξi =

[
α
(
q2 +

∥∥r̂2
i

∥∥− 2q ‖r̂i‖ cos(θ̂i − θ∗i + a sin(τ))
)

+ β
∑
j∈Ni

‖r̂i − r̂j‖2 + ei

]
(4.123)

these variables are shown in Fig. 4.7. It is clear that (4.123) results from writing the cosine

formula for the triangle which is constructed by the center of the ith agent, its field sensor

and the location of the extremum of the field. To further continue the stability analysis,
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Figure 4.7: Definition of the relative vectors

we consider the following error variables

ρi = ‖r̂i‖

θ̃i = θ̂i − θ∗i (4.124)

using (4.124), the dynamics of the error variables ρi, θ̃i can be obtained as follows

dρi
dτ

= −U
ω

cos(θ̃i + a sin(τ))

dθ̃i
dτ

=
1

ω
(c− dξi)ξi sin(τ) +

U

ρiω
sin(θ̃i + a sin(τ))

dei
dτ

=
1

ω

[
hξi +

∑
j∈Ni

(ξi − ξj)

]
(4.125)

where ξi is computed using (4.118). We continue the convergence analysis using (4.125)

instead of (4.122) since with the help of the new error variables (4.124), it is possible to
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perform the analysis with the scalar variables. Our main strategy for achieving this goal

is to find out that to what extent the filtered version of the measured signals will help the

agents to reach to the extremum point. In this regard, we substitute (4.118) in (4.125).

Using the facts that (4.125) is periodic and in canonical form of the averaging theory,

integrating (4.125) from 0 to 2π, results in

1

2π

∫ 2π

0

(
−U
ω

)
cos(θ̃i + a sin(τ)) dτ

=
−U
2ωπ

∫ 2π

0

cos(θ̃i) cos(a sin(τ))− sin(θ̃i) sin(a sin(τ)) dτ =
−U
ω

cos(θ̃i,ave)J0(a)

1

2π

∫ 2π

0

sin(θ̃i + a sin(τ)) =

1

2π

∫ 2π

0

sin(θ̃i) cos(a sin(τ)) + cos(θ̃i) sin(a sin(τ)) dτ = sin(θ̃i,ave)J0(a)

1

2π

∫ 2π

0

sin(τ) cos(θ̃i + a sin(τ)) dτ =

1

2π

∫ 2π

0

sin(τ) cos(θ̃i) cos(a sin(τ))− sin(τ) sin(θ̃i) sin(a sin(τ)) dτ = −J1(a)

=
1

2π

∫ 2π

0

sin(τ)
(

cos(θ̃i + a sin(τ))
)2

dτ =
−1

2π

∫ 4π

0

sin(τ) sin(2θ̃i) sin(2a sin(τ)) dτ

=
−1

2
J1(2a) sin(2θ̃i) (4.126)

using the subscript ”ave” for the averaged variables, we can write the average system as

follows for the case that β = 0

dρi,ave
dτ

= −UJ0(a)

ω
cos(θ̃i,ave)

dθ̃i,ave
dτ

=

[
UJ0(a)

ρi,ave
− 2αqJ1(a)ρi,ave

(
c+ 2d

(
α(q2 + ρ2i,ave)

)
+ ei,ave

)] sin θ̃i,ave
ω

+
1

ω
2dα2q2ρ2i,aveJ1(2a) sin(2θ̃i,ave)

dei,ave
dτ

=
1

ω

(
2hαqρi,aveJ0(a) cos(θ̃i,ave)− α(q2 + ρ2i,ave)− ei,ave

)
+

1

ω

∑
j∈Ni

[(
2hαqρi,aveJ0(a) cos(θ̃i,ave)− α(q2 + ρ2i,ave)− ei,ave

)
−
(

2hαqρj,aveJ0(a) cos(θ̃j,ave)− α(q2 + ρ2j,ave)− ej,ave
)]

(4.127)
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one of the equilibrium point of the system (4.127) can be expressed as follows

ρ1,ave = · · · = ρn,ave =

√
UJ0(a)

2cαqJ1(a)

θ̃1,ave = · · · = θ̃n,ave =
π

2

e1,ave = · · · = en,ave = −α (UJ0(a) + 2cαq3J1(a))

2cαqJ1(a)
(4.128)

using linearization, it is straightforward to show that (4.128) is exponentially stable under

the following conditions:

2UJ0(a)J1(a) + hRJ1(2a)− 2hRJ0(a)J1(a) > 0 (4.129)

Note that a better stability condition can be derived based on the properties of the Lapla-

cian matrix of the network. This is the subject of our ongoing research. Also, using

Theorem 8.3 in [34] we can find that the exponential stability of (4.127) indicates that the

trajectory of the main system (4.118)-(4.119) will reach to a O
(

1
ω

)
neighborhood of the

equilibrium points (4.128).

4.5 Simulation Results

In this section, we present the simulation results of the previous algorithms. Fig. 4.8

illustrates the results for the cooperative extremum seeking method of section 4.4. The

forward velocities of the agents are assumed to be 0.1m
s

and the dither signal is chosen to

be sin(60t). The field sensors of the agents are are located at the distance of 0.1m in front

of the center of each vehicle. The values of the constants of the high-pass filters are chosen

to be the same and equal to one. The function of the field is z = 1− (xi−1)2−1.2(yi−1)2.

The desired relative distance between the agents is 0 and as it can be seen from Fig. 4.8, In
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the first stage of the motion, the agents try to reach to each other and in the second phase,

together, they move toward the extremum location. In Fig. 4.9, the relative position of

the agents is chosen to be 1m. Furthermore, it is assumed that one of the agents does not

have the capability of measuring the aforementioned field. The trajectory of this vehicle

is depicted with solid line. It is clear that by sharing the consensus cost, this agent also

fulfills the extremum seeking objective. Fig. 4.10 shows the components of the position of

each vehicle versus time. In Fig. 4.11, it is assumed that the field sensors are located at

the center of each vehicle. In this case, instead of the high-pass filter, a derivative block

is used inside the extremum seeking loop(Fig. 4.6). The simulation results for the case

that both agents have the field sensors and the desired relative position is equal to 1m is

depicted in Fig. 4.12. Fig. 4.13 shows the results of same problem with a network of three

agents. The communication graph of the network is assumed to be a line. These results

suggests that the extremum seeking algorithm can be used to fulfill the formation control

objectives. This can also be extended to three dimensions. Fig. 4.14-4.15 illustrates this

situation where the desired relative distance is chosen to be 1m.
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Figure 4.8: Trajectories of vehicles for cooperative extremum seeking setting of Section 4.4
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Figure 4.9: Trajectories of the agents for the case in which one of the vehicles(solid line)

can not measure the value of the field while performing the cooperative extremum seeking

setting of Section 4.4

Figure 4.10: Components of the positions of the vehicles versus time for cooperative ex-

tremum seeking setting of Section 4.4
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Figure 4.11: Trajectories of the vehicles for the case that the field sensors are located at

the center of the agents

Figure 4.12: Simultaneous extremum seeking and formation control with two agents
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Figure 4.13: Simultaneous extremum seeking and formation control using a network of

three agents with line communication graph
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Figure 4.14: Formation control in three dimension using extremum seeking method

Figure 4.15: X and Y components of the agent positions versus time
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4.6 Motion Camouflage

In the previous sections we studied the cooperative localization and extremum seeking

problems. The extremum seeking problem can also be defined for situations where the

agents are not sharing their data with each other and the amount of information which

the agents can elicit from each other is limited. One example is the motion camouflage

problem [109],[110]. The main purpose of this task is to capture an specific evader with a

chaser agent. This agent must camouflage its motion toward the evader in a way that the

angular velocity of the line which connects these two agents, remains zero. This objective

is inspired by observing the behavior of the natural predator-prey systems in nature. For

instance, in [111], it is mentioned that many predator animals are using this tactic to min-

imize the deviation in their apparent position which is viewed from the line of sight(LOS)

of the prey. This will help the predators to decrease the amount of information which the

prey can elicit from their relative motion. In addition, in [112], it is reported that the

insects which their eyes are consist of arrays of visual units, e.g. flies,bees,etc. are far more

susceptible to the component of the relative velocity which is orthogonal to the LOS of the

predator-prey system compared to the component which is along in this direction. Here,

we analyze this problem in detail and propose several control strategy to fulfill this task.

We start the mathematical modeling by considering the two dimensional case in which the

dynamics of both chaser and evader agent can be represented by the following kinematics(α ∈

{c, e} where ’c’ and ’e’ denote the chaser and evader agents):

ẋα = vα cos θα

ẏα = vα sin θα (4.130)

θ̇α = uα
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where vα and uα denote the linear and angular velocities of the agents, respectively and

vc > ve. The position vectors of these two agents are defined as rc = [xc, yc]
T and re =

[xe, ye]
T . During the motion camouflage period, the direction of the rc − re must be fixed.

In this regard, we can define two different motion camouflage situations. In the first case,

the chaser agent increases its distance to perform the motion camouflage task
d
dt
|rc−re|

| ddt (rc−re)|
= 1

and in the second scenario, the chaser agent tries to reach to evader
d
dt
|rc−re|

| ddt (rc−re)|
= −1. Fig.

4.16 illustrates these two situations. In the context of control theory, the second task

Figure 4.16: Two different kinds of motion camouflage state

is more important since we usually need to capture the evader. In the second step of

the modeling, there is a need for a mathematical measure to quantify the deviation from

motion camouflage state. We use the method which is first introduced in [109]. This

approach is based on comparing the time derivative of the relative measurements which

can be obtained easily by using image processing or other devices. Consider the following

performance index:

I = 1−

(
d
dt
|rc − re|∣∣ d

dt
(rc − re)

∣∣
)2

(4.131)

It is obvious that the minimums of the function (4.131) are related to the two states of

motion camouflage. The main problem which we want to solve in this section can be
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formally expressed as follows:

Problem 4.3 Considering the dynamics (4.130) for the evader and chaser agents, design a

control method to minimize the cost function (4.131) without the knowledge of the evader’s

plan i.e. ue.

The first method which we use in this section is based on the dynamics of the variable.(r̂ =

rc − re)

P =
d
dt
‖r̂‖
dr̂
dt

(4.132)

Next, we express the kinematics of the agents in the Frenet Serret frame as follows

ṙc = tc

ṫc = ucnc

ṅc = −uctc

ṙe = tc

ṫe = veuenc

ṅe = −veuetc

(4.133)

where ti is the unit vector which is along the velocities of the agents. ni is the unit vector

which is together with ti and z forms the right handed orthonormal basis. Since ‖r̂‖2 = r̂T r̂

we can rewrite (4.132) as follows

P =
r̂T ˙̂r

‖r̂‖ || ˙̂r||
(4.134)

using (4.133), we start the control design procedure by taking the time derivative of (4.134)

as in [109]

Ṗ =
|| ˙̂r||
‖r̂‖

[
1− P 2

]
+

¨̂rT

|| ˙̂r||

[
r̂

‖r̂‖
− P

˙̂r

|| ˙̂r||

]
‖r̂‖ (4.135)

for the bracket of the second term on the r.h.s of (4.135), we have

r̂

‖r̂‖
− P

˙̂r

|| ˙̂r||
=

(
r̂TR ˙̂r

‖r̂‖ || ˙̂r||

)
R ˙̂r

|| ˙̂r||
=

1

|| ˙̂r||2

(
r̂TR ˙̂r

‖r̂‖

)
R ˙̂r (4.136)
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hence, the time derivative of P changes into

Ṗ =
|| ˙̂r||
‖r̂‖

 1

|| ˙̂r||2

(
r̂TR ˙̂r

‖r̂‖

)2
+

1

|| ˙̂r||3

(
r̂TR ˙̂r

‖r̂‖

)
˙̂rTRT

(
ucnc − v2uene

)
(4.137)

Using the definitions of ni and ti, (4.137) becomes

Ṗ =
|| ˙̂r||
‖r̂‖

 1

|| ˙̂r||2

(
r̂TR ˙̂r

‖r̂‖

)2
+

uc

|| ˙̂r||3

(
r̂TR ˙̂r

‖r̂‖

)(
1− vtTc te

)
+
v2ue

|| ˙̂r||3

(
r̂TR ˙̂r

‖r̂‖

)(
v − tTc te

)
(4.138)

Consider the following control law for the chaser agent

uc = −k1

(
r̂TR ˙̂r

‖r̂‖

)
− k2sgn

(
r̂TR ˙̂r

)
v2(1 + v)ūe (4.139)

Using (4.139) in (4.138), we can write

Ṗ = −

 k1∥∥∥ ˙̂r
∥∥∥
(
1− vtTc te

)
−

∥∥∥ ˙̂r
∥∥∥
‖r̂‖

 1∥∥∥ ˙̂r
∥∥∥
(
r̂TR ˙̂r

‖r̂‖

)2

− k2v
2(1 + v)

∣∣∣∣∣ 1

|| ˙̂r||

[
1

|| ˙̂r||2

(
r̂TR ˙̂r

‖r̂‖

)]∣∣∣∣∣ ūe (1− vtTc te)+
v2ue

|| ˙̂r||3

(
r̂TR ˙̂r

‖r̂‖

)(
v − tTc te

)
(4.140)

where ūe = max ‖ue‖. Since 1− vtTc te ≥ 1− v > 0, choosing k2 ≥ 1
1−v results in

Ṗ ≤ −

 k1∥∥∥ ˙̂r
∥∥∥
(
1− vtTc te

)
−

∥∥∥ ˙̂r
∥∥∥
‖r̂‖

 1∥∥∥ ˙̂r
∥∥∥
(
r̂TR ˙̂r

‖r̂‖

)2

− v2(1 + v)

∣∣∣∣∣ 1

|| ˙̂r||

[
1

|| ˙̂r||2

(
r̂TR ˙̂r

‖r̂‖

)]∣∣∣∣∣ ūe +
v2ue

|| ˙̂r||3

(
r̂TR ˙̂r

‖r̂‖

)
(v + 1)

≤ −

 k1∥∥∥ ˙̂r
∥∥∥
(
1− vtTc te

)
−

∥∥∥ ˙̂r
∥∥∥
‖r̂‖

 1∥∥∥ ˙̂r
∥∥∥
(
r̂TR ˙̂r

‖r̂‖

)2

(4.141)
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from the fact that 1− v ≤
∥∥∥ ˙̂r
∥∥∥ ≤ 1 + v, we can conclude that there exist ρ∗ such that for

‖r̂‖ > ρ∗ we have Ṗ ≤ 0. On the other hand, if we use the following control law for the

pursuer agent

uc = −k1

(
r̂TR ˙̂r

‖r̂‖

)
−

(
v2
(
v − tTc te

)
1− vtTc te

)(
αū

ū ‖α‖+ ε

)
(4.142)

α =
1

|| ˙̂r||

[
1

|| ˙̂r||2

(
r̂TR ˙̂r

‖r̂‖

)](
v − tTc te

)
v2 (4.143)

we have

Ṗ ≤ −

 k1∥∥∥ ˙̂r
∥∥∥
(
1− vtTc te

)
−

∥∥∥ ˙̂r
∥∥∥
‖r̂‖

 1∥∥∥ ˙̂r
∥∥∥
(
r̂TR ˙̂r

‖r̂‖

)2

+ α

(
ue −

αū

αū+ ε

)

≤ −(1− P 2)

 k1∥∥∥ ˙̂r
∥∥∥
(
1− vtTc te

)
−

∥∥∥ ˙̂r
∥∥∥
‖r̂‖

+ ū ‖α‖ − ūα2

ū ‖α‖+ ε

≤ −(1− P 2)

 k1∥∥∥ ˙̂r
∥∥∥
(
1− vtTc te

)
−

∥∥∥ ˙̂r
∥∥∥
‖r̂‖

+ ε (4.144)

Next, we study the performance of the previous algorithms. Using (4.144), we can write

Ṗ ≤ −(1− P 2)

[
k1(1− v)

(1 + v)
− (1 + v)

‖r̂‖

]
+ ε (4.145)

suppose that we choose k1 as follows

k1 =
1 + v

1− v

(
1 + v

r̄
+ c̄

)
(4.146)

then for ‖r̂(t)‖ > r̄ we have

Ṗ ≤ −c̄(1− P 2) + ε (4.147)
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integrating from P0 to P (t) results in∫ P (t)

P0

1

−ε+ c̄(1− P 2)
dP = −

∫ t

0

t dt

⇒ 1√
c̄(c̄− ε)

[
tanh−1

( √
c̄P√
c̄− ε

)
− tanh−1

( √
c̄P0√
c̄− ε

)]
≤ −t (4.148)

thus

P (t) ≤
√
c̄− ε√
c̄

tanh

(
tanh−1

( √
c̄P0√
c̄− ε

)
−
√
c̄(c̄− ε)t

)
= f (4.149)

Also, from (4.149), we can show that if ‖r̂(0)‖ > r̄ then ‖r̂(t)‖ will remain outside the

r̄-neighborhood of the origin for

t ≤ ‖r̂(0)‖ − r̄
1 + v

= T1 (4.150)

therefore, in order to ensure that P (T ) ≤ −1 + ε1, the following must hold

tanh−1

( √
c̄P0√
c̄− ε

)
−
√
c̄(c̄− ε)T ≤ 1

2
ln

[
1 +

√
c̄√
c̄−ε(−1 + ε1)

1−
√
c̄√
c̄−ε(−1 + ε1)

]
(4.151)

which can be achieved since ε can become arbitrary small. Fig. 4.17 shows this situation.

4.6.1 Motion Camouflage Using Extremum Seeking Methods

The next tool which we use here is the extremum seeking approach in [60]. In fact, we try

to solve the motion camouflage task as a real time optimization problem. In this regard, we

consider the control algorithm which is depicted in Fig. 4.18 The main purpose of the high

pass filter in Fig. 4.18 is to extract the local information regarding the gradient of the cost

function associated with (4.131) from its measurement at each time instants. Passing this

signal through an integrator, we can design a local adaptation law which helps the agents
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Figure 4.17: Behavior of function f

to find the better estimation of the field. The simulation results for this case are shown in

Fig. 4.19-4.21 As it can be seen from the simulation results, the chaser agents captured the

target after 900 (sec). Fig. 4.19 suggests that the trajectories of the system has reached to

a neighborhood of the optimal state. As mentioned before, the chaser agent did not have

any access to the evader plan which is in this case, chosen to be ue = sin(0.001t). From

Fig. 4.19, we can also see that after capturing the evader the performance index abruptly

changes to 1, the main reason for this behavior is stemming from the fact that we assumed

a constant linear velocity for the agents. In another word, this is a numerical issue since

the simulation must be stopped after capturing the target by the chaser. Fig. 4.21 shows

that the chaser agent has captured the target and the relative distance between the chaser

and evader agents monotonically decreased.
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Figure 4.18: Extremum seeking loop for motion camouflage(First method)

Next, we consider the motion camouflage task in three dimensions. For this purpose, we

use the model (4.46)-(4.48) for representing the path of both evader and pursuer agents.

Our proposed strategy for fulfilling this task is depicted in Fig. 4.22. As it is depicted in

Fig. 4.22, we have used two different frequency in the structure of the extermum seeking

scheme, in fact, by using this approach we can acquire more date about the position

of the evader. The latter is to some extent related to the persistency of the excitation

of adaptation algorithm which is hidden in the structure of the search algorithm. The

simulation results for this section are depicted in Fig. 4.23 through 4.25. The evader and

pursuer forward velocities in this case are assumed to be 0.1 and 0.2, receptively.
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Figure 4.19: Paths of evader and chaser agents

Figure 4.20: The value of the cost function I versus time for motion camouflage
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Figure 4.21: Distance between two agents versus time for motion camouflage

Figure 4.22: Extremum seeking loop for motion camouflage in 3D
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Figure 4.23: Simulation results for motion camouflage in 3D

Figure 4.24: Simulation results for motion camouflage(side view)
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Figure 4.25: The value of the cost function I versus time for motion camouflage
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4.7 Summary

In this chapter, we first studied the distributed localization problem for finding the ex-

tremum point of the unknown quadratic function. It is assumed that the value of such

function can be measured at each instant. Using high pass filtering of the measured signals

an identification model is obtained which is linear in unknown parameters. In the next

step of the design procedure, we added a consensus term to modify the identification sub-

system and proved the exponential convergence of the proposed estimation scheme. In the

next part of this chapter, we used the localization results such as distributed identifiably

condition for the extremum seeking problem. In particular, we showed that for a network

of connected agents, if each agent contains a portion of the dithering signals, it is still

possible to drive the system states to the extremum point provided that the distributed

identifiably condition is satisfied. In the next section, we tackled the distributed source

seeking problem. We considered a network of Dubin’s vehicles with fixed forward veloc-

ities and showed that it is feasible to steer the robots to the extremum point of a field

in the presence of partial availability of the information about the field. In addition, the

formation control problem is formulated as an extremum seeking task where the formation

pattern correspond to the extremum of formation costs. In the final part of this chapter

we studied the motion camouflage problem. Two control algorithms were designed to solve

this problem for the situations where the plan of evader is not available for chaser agent.

The first approach has better performance compared to the second one, however, it needs

extra control effort. Finally, we consider the motion camouflage task as an extremum

seeking problem.
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Chapter 5

Robust Formation Control

In this chapter, we consider several robust control problems for MASs with general linear

time invariant dynamics. Compared to previous chapters, here, we assume that in addition

to the external norm bounded uncertainties, the internal dynamics of each agent belongs to

a known polytope. In general, studying the robustness of control algorithms for a network

can be divided into the two main branches. In the first category, the robustness can be

defined as assessing the stability of the network with respect to the uncertainties which

are present in the dynamics of each agent. In the second class, the robustness can be

characterized as the measure of stability for different types of communication topologies.

These switching topologies can be resulted from communication failure, packet-dropping,

etc. In the first part of this chapter, we consider two robust control problems for a network

of mobile agents with undirected communication topology in the presence of polytopic

uncertainties and Lipschitz nonlinear dynamics. The former can be caused by unmodeled

dynamics and the latter is the result of lack of knowledge regarding the agents parameters

such as mass, inertia tensor, etc. Furthermore, we consider the two time scale formation
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control problem which is a result of analyzing the robustness of the algorithms for MASs.

5.1 Robust Consensus Problems

In this section, we consider a network of n identical agents whit dynamics

ẋi = A(ρ)xi +Bui +B1f(xi) (5.1)

for each agent i with state xi ∈ Rm and input ui ∈ Rm1 . f(·) is a Lipschitz continuous

function that satisfies (k1 > 0)

‖f(x)− f(y)‖ ≤ k1 ‖x− y‖ (5.2)

and A(ρ) belongs to the set

A =

{
A(ρ) =

p∑
k=1

ρkAk,

p∑
k=1

ρk = 1, ρk ≥ 0

}
(5.3)

ρ is an unknown constant vector which represents the uncertainty in the model (5.1), and

as seen from (5.3) it belongs to a polytope with Ak as its vertices. The robust consensus

problems which we consider in this section are formally defined as follows:

Problem 5.1 Consider a connected network of agents with dynamics (5.1)-(5.3). Fur-

thermore, assume that the communication graph topology of the network is undirected.

Design a set of distributed control laws for the network such that x1 = · · · = xn as t→∞.

Problem 5.2 Consider Problem 5.1, but, in addition, assume that the dynamics of each

agent is also subject to an external norm and energy bounded disturbance ωi, i.e., let the

agent dynamics be in the form

ẋi = A(ρ)xi +Bui +B1f(xi) +Dωi. (5.4)
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Design a set of distributed control laws which guarantee the desired level of H∞ perfor-

mance γ > 0 for the consensus task, i.e.∫ ∞
0

ZTZ dt ≤ γ2

∫ ∞
0

ΩTΩ dt (5.5)

where Z and Ω are the stack vectors of performance variables and external disturbances

of the agents defined as

zi = C

(
xi −

1

n

n∑
j=1

xj

)
, Ω = [ω1, · · · , ωn]T , Z = [z1, · · · , zn]T (5.6)

where C is a constant matrix and ωi belongs to the space of square integrable functions,

L2.

5.1.1 Polytopic Uncertainties

In this section, we consider Problem 5.1 with the following formation control law:

ui = k2K
n∑
i=1

aij(xi − xj), i = 1, · · · , n (5.7)

where k2 ∈ R and K ∈ Rm1×m are control gains to be designed in a way to ensure the

convergence of the error system. aij is the element of adjacency matrix which is defined

in Chapter 3 and L denotes the Laplacian matrix of the network which is introduced in

Chapter 4. (5.7) can be written in compact form as

U = k2(L⊗ Im)KX

X = [xT1 , · · · , xTn ]T , U = [uT1 , · · · , uTn ]T (5.8)

The control law (5.7) has similar structure with the one proposed in [85] and [113]. However,

in this case, the control gains k2 and K must be designed in a way that ensures the stability
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of the network inside the uncertainty polytope (5.3). Since the communication topology

of the network is undirected, it is easy to show that 1TnL = 0n and hence, 1n is a left

eigenvector of the Laplacian L. Considering the new error variables ei = xi − 1
n

∑n
j=1 xj,

which represent the deviation of xi from the average state of the network, the stack vector

of the errors can be expressed as follows:

E =

((
In −

1n1
T
n

n

)
⊗ Im

)
X, E = [eT1 , · · · , eTn ]T (5.9)

The error dynamics of the agents can be computed by taking derivative of (5.9) with respect

to time and using (5.7) in (5.1) results in:

ėi = A(ρ)ei +B1

(
f(xi)−

1

n

n∑
j=1

f(xj)

)
+B

(
ui −

1

n

n∑
j=1

uj

)

= A(ρ)ei +B1

(
f(xi)−

1

n

n∑
j=1

f(xj)

)

+ k2


n∑
j=1

aijBK(xi − xj)−
1

n

n∑
j=1

n∑
s=1

ajsBK(xj − xs)︸ ︷︷ ︸
=0,


= A(ρ)ei +B1

(
f(xi)−

1

n

n∑
j=1

f(xj)

)
+ k2

n∑
j=1

LijBKej

⇒ Ė = (In ⊗ A(ρ))E + k2(L⊗BK)E + ν (5.10)

where ν is the stack vector of all νi = B1

(
f(xi)− 1

n

∑n
j=1 f(xj)

)
. The second term on on

the third line of (5.10) is equal to zero due to the fact that 1n is both the right and left

eigenvectors of the Laplacian matrix which is associated with the zero eigenvalue. In order

to analyze the stability properties of (5.10), consider the following Lyapunov function

V =
1

n

n∑
i=1

eTi P
−1ei =

1

n
ET (In ⊗ P−1)E (5.11)
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where P is the positive definite matrix which must be calculated. The time derivative of

(5.11) is

V̇ =
1

n

[
ET (In ⊗ AT (ρ)) + k2E

T (L⊗KTBT ) + νT
]

(In ⊗ P−1)E

+
1

n
ET (In ⊗ P−1) [(In ⊗ A(ρ))E + k2(L⊗BK)E + ν] . (5.12)

Using the identity (A⊗B)(C ⊗D) = (AC ⊗BD) we have

V̇ =
1

n
ET
[
(In ⊗AT (ρ)P−1) + (In ⊗ P−1A(ρ)) + k2(L⊗KTBTP−1) + k2(L⊗ P−1BK)

]
E

2

n
νT (In ⊗ P−1)E. (5.13)

Choosing K = −1
2
BTP−1, (5.13) can be rewritten as

V̇ =
1

n
ET
[
(In ⊗ AT (ρ)P−1) + (In ⊗ P−1A(ρ))− k2(L⊗ P−1BBTP−1)

]
E

2

n
νT (In ⊗ P−1)E. (5.14)

The last term on the r.h.s of (5.14) satisfies

2

n
νT (In ⊗ P−1)E =

2

n

n∑
i=1

eTi P
−1νi =

2

n

n∑
i=1

eTi P
−1B1

(
f(xi)− f

(
1

n

n∑
j=1

xj

))

+
2

n

n∑
i=1

eTi P
−1B1

(
f

(
1

n

n∑
j=1

xj

)
− 1

n

n∑
j=1

f(xj)

)
.︸ ︷︷ ︸

=0, since
∑n
i=1 ei=0

(5.15)

Hence,

2

n
νT (In ⊗ P−1)E ≤ 2k1

n

n∑
i=1

∥∥eTi P−1B1

∥∥ ‖ei‖ ≤ 1

n

n∑
i=1

[
k2

1e
T
i P
−1B1B

T
1 P
−1ei + eTi ei

]
≤ 1

n
ET
(
In ⊗

((
k2

1P
−1B1B

T
1 P
−1
)

+ I
))
E. (5.16)
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Defining Y = (In ⊗ P−1)E, we can rewrite (5.16) as follows:

V̇ ≤ 1

n
Y T (In ⊗ P )

[
(In ⊗AT (ρ)P−1) + (In ⊗ P−1A(ρ))− k2(L⊗ P−1BBTP−1)

]
(In ⊗ P )Y

+
1

n
Y T (In ⊗ P )

(
In ⊗

((
k2

1P
−1B1B

T
1 P
−1
)

+ I
))

(In ⊗ P )Y. (5.17)

Using the properties of the Kronecker product we have

V̇ ≤ 1

n
Y T
(
In ⊗

(
PAT (ρ) + A(ρ)P + k2

1B1B
T
1 + P 2

)
− k2

(
L⊗BBT

))
Y

≤ 1

n
Y T
(
In ⊗

(
PAT (ρ) + A(ρ)P + k2

1B1B
T
1 + P 2 − k2λ2BB

T
))
Y (5.18)

Note that we have used Fiedler eigenvalue theorem [12] for the second line in (5.18).

Therefore, if the conditionsPAT (ρ) + A(ρ)P + k2
1B1B

T
1 − k3BB

T P

P −I

 < 0, k2 ≥
k3

λ2

(5.19)

is satisfied, we can conclude that the consensus will be achieved. Since A(ρ) belongs to

the polytope (5.3), condition (5.16) can be turned into the following set of conditions,PATi + AiP + k2
1B1B

T
1 − k3BB

T P

P −I

 < 0,

i ∈ {1, · · · , p} , k2 ≥
k3

λ2

(5.20)

Remark 5.1 : Compared with the results in [85], here, there exist p LMIs which must be

checked at the vertices of the uncertainty polytope to ensure the stability of the consensus

task.

5.1.2 H∞ Consensus in the Presence of Polytopic Uncertainties

In the previous section, the consensus task achieved in the presence of the polytopic uncer-

tainties, in this section, we study the Problem 5.2 in detail and consider the effects of the
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external disturbances on the dynamics (5.1). It should be noted that each element of ωi

belongs to the space of square integrable functions over [0,∞). In other words, the distur-

bance ωi is assumed to be energy bounded. The assumptions on network communication

graph are considered to be the same as in the previous section. Defining ei and E as in

(5.9), we have (Ω = [ω1, · · · , ωn]T )

ėi = A(ρ)ei +B1

(
f(xi)−

1

n

n∑
j=1

f(xj)

)
+B

(
ui −

1

n

n∑
j=1

uj

)
+D

(
ωi −

1

n

n∑
j=1

ωj

)

=⇒ Ė = (In ⊗ A(ρ))E + k2(L⊗BK)E + (In ⊗D)(F ⊗ I)Ω, (5.21)

Where we have assumed that the control laws have the same structure as in (5.7).The

performance for each agent is defined as follows

zi = C

(
xi −

1

n

n∑
j=1

xj

)
(5.22)

The main objective of this section is to achieve asymptotic consensus while under the zero

initial condition the H∞ performance is assured to be less than γ i.e.(Z = [z1, · · · , zn]T )

J =

∫ ∞
0

ZTZ dt ≤ γ2

∫ ∞
0

ΩTΩ dt (5.23)

In order to design the gain K in a way that achieves the consensus task and guarantees

the H∞ performance γ in the presence of polytopic uncertainties, consider the following

Lyapunov function

V =
n∑
i=1

p∑
l=1

eTi (ρlQ
−1
l )ei =

n∑
i=1

eTi

(
p∑
l=1

ρlQ
−1
l

)
ei

=
n∑
i=1

eTi Q
−1(ρ)ei = ET (In ⊗Q−1)E (5.24)
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taking the derivative of (5.24) with respect to time results in

V̇ = ET
[(

(In ⊗ AT (ρ)) + k2(L⊗KTBT )
)

(In ⊗Q−1)

+(In ⊗Q−1) ((In ⊗ A(ρ)) + k2(L⊗BK))
]
E

+ 2ET (In ⊗Q−1)ν + 2ET (In ⊗Q−1)(In ⊗D)(F ⊗ I)Ω (5.25)

using (5.15), we have

V̇ ≤ ET
[(

(In ⊗ AT (ρ)) + k2(L⊗KTBT )
)

(In ⊗Q−1)

+(In ⊗Q−1) ((In ⊗ A(ρ)) + k2(L⊗BK))
]
E

+ ET
(
In ⊗

((
k2

1Q
−1B1B

T
1 Q
−1
)

+ I
))
E + 2ET (F ⊗Q−1D)Ω (5.26)

Next, using the change of variable Ē = (In ⊗Q−1)E, (5.26) turns into

V̇ ≤ ĒT
[
(In ⊗Q)

(
(In ⊗ AT (ρ)) + k2(L⊗KTBT )

)
+ ((In ⊗ A(ρ)) + k2(L⊗BK)) (In ⊗Q)] Ē

+ ĒT
(
In ⊗

((
k2

1B1B
T
1

)
+Q2

))
Ē + 2ĒT (F ⊗D)Ω (5.27)

under the zero initial condition assumption, we can conclude that (5.23) satisfies if V̇ +

ZTZ − γ2ΩTΩ < 0. Using the fact

2ĒT (F ⊗D)Ω− γ2ΩTΩ = γ−2ĒT (F 2 ⊗DDT )Ē

− γ2
(
Ω− γ−2(F ⊗DT )Ē

)T (
Ω− γ−2(F ⊗DT )Ē

)
(5.28)

we can write

V̇ + ZTZ − γ2ΩTΩ ≤ ĒT (In ⊗ (QCTCQ))Ē + γ−2ĒT (F 2 ⊗DDT )Ē

+ ĒT
[
(In ⊗Q)

(
(In ⊗ AT (ρ)) + k2(L⊗KTBT )

)
+ ((In ⊗ A(ρ)) + k2(L⊗BK)) (In ⊗Q)] Ē

+ ĒT
(
In ⊗

((
k2

1B1B
T
1

)
+Q2

))
Ē (5.29)
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since the multiplication of F and L is commutative, they can be simultaneously diago-

nalized using a single orthogonal matrix U . This can be proved using Schur decompo-

sition. Also, From the fact that 1n is the right and left eigen vector for both matri-

ces, we can choose a unitary matrix U = [ 1n√
n
M ] such that UTFU = diag(0, In−1) and

L̄ = UTLU = diag(0, λ2, · · · , λn). Hence, using the change of variable ¯̄E = (UT ⊗ In)Ē we

can write

V̇ + ZTZ − γ2ΩTΩ ≤ ¯̄ET (In ⊗ (QCTCQ)) ¯̄E + γ−2 ¯̄ET (UTF 2U ⊗DDT ) ¯̄E

+ ¯̄ET
[
(In ⊗Q)

(
(In ⊗ AT (ρ)) + k2(UTLU ⊗KTBT )

)
+
(
(In ⊗ A(ρ)) + k2(UTLU ⊗BK)

)
(In ⊗Q)

] ¯̄E

+ ¯̄ET
(
In ⊗

((
k2

1B1B
T
1

)
+Q2

)) ¯̄E (5.30)

for F 2, we can write

F 2 =

(
In −

1n1
T
n

n

)(
In −

1n1
T
n

n

)
= In −

2

n
1n1

T
n +

1

n2
1n1

T
n1n1

T
n = F (5.31)

from (5.31), we can conclude that UTF 2U = diag (0, In−1). Since the first element of ¯̄E is

equal to zero, defining ¯̄Er =
[

¯̄E2, · · · , ¯̄En

]T
and L̄r = diag(λ2, · · · , λn) > 0 we can write

V̇ + ZTZ − γ2ΩTΩ ≤ ¯̄ET
r (In−1 ⊗ (QCTCQ)) ¯̄Er + γ−2 ¯̄ET

r (In−1 ⊗DDT ) ¯̄Er

+ ¯̄ET
r

(In−1 ⊗Q)
(
(In−1 ⊗ AT (ρ)) + k2(L̄r ⊗KTBT )

)︸ ︷︷ ︸
ĀT

+
(
(In−1 ⊗ A(ρ)) + k2(L̄r ⊗BK)

)︸ ︷︷ ︸
Ā

(In−1 ⊗Q)

 ¯̄Er

+ ¯̄ET
r

(
In−1 ⊗

((
k2

1B1B
T
1

)
+Q2

)) ¯̄Er (5.32)
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thus, to achieve H∞ performance, we need to design K such that the following holds

(In−1 ⊗Q)ĀT + Ā(In−1 ⊗Q) + (In−1 ⊗Q)(In−1 ⊗ CTC)(In−1 ⊗Q) + γ−2(In−1 ⊗DDT )

+ (In−1 ⊗ (k2
1B1B

T
1 ) +Q2) < 0 (5.33)

using the facts

ε

(In−1 ⊗Q)
(
(In−1 ⊗ AT (ρ)) + k2(L̄r ⊗KTBT )

)︸ ︷︷ ︸
ĀT

+
(
(In−1 ⊗ A(ρ)) + k2(L̄r ⊗BK)

)︸ ︷︷ ︸
Ā

(In−1 ⊗Q)


= −(In−1 ⊗Q) + (I + εĀ)(In−1 ⊗Q)(I + εĀT )− ε2Ā(In−1 ⊗Q)ĀT (5.34)

and

ε(In−1 ⊗Q)(In−1 ⊗ CTC)(In−1 ⊗Q) =

ε(In−1 ⊗QCT )(I − ε
(
In−1 ⊗ (CQCT )

)−1
)(In−1 ⊗ CQ) +O(ε2)
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(5.34) turns into the following inequality

−(In−1 ⊗Q)−1 I + ε
(
(In−1 ⊗AT (ρ)) + k2(L̄r ⊗KTBT )

)
0

I + ε
(
(In−1 ⊗A(ρ)) + k2(L̄r ⊗BK)

)
−(In−1 ⊗Q) In−1 ⊗D

0 (In−1 ⊗DT ) −γ2ε−1I

0 In−1 ⊗Q 0

0 In−1 ⊗BT1 0

In−1 ⊗ C 0 0

0 0 In−1 ⊗ CT

In−1 ⊗Q In−1 ⊗B1 0

0 0 0

ε−1I 0 0

0 ε−1k21I 0

0 0 ε−1I


< 0 (5.35)

choosing K = VM−1 and using corollary 2.4 in [114], we can show that the H∞ consensus
problem has a solution, if and only if the following set of LMIs have a feasible solutions.

(In−1 ⊗ (Qi −MT −M)) ((In−1 ⊗MT ) + ε
(
(In−1 ⊗MTATi ) + k2(L̄r ⊗ V TBTi )

)
(In−1 ⊗M) + ε

(
(In−1 ⊗AiM) + k2(L̄r ⊗BV )

)
−(In−1 ⊗Qi)

0 (In−1 ⊗DT )

0 In−1 ⊗Q

0 In−1 ⊗BT1
In−1 ⊗ CM 0

0 0 0 In−1 ⊗MTCT

In−1 ⊗D In−1 ⊗Q In−1 ⊗B1 0

−γ2ε−1I 0 0 0

0 ε−1I 0 0

0 0 ε−1k21I 0

0 0 0 ε−1I


< 0 (5.36)

Remark 5.2 The convergence results in [85] can not be directly extended to the H∞ con-

sensus problem in the presence of polytopic uncertainties as in the section 5.1.1. The main

difficulty here is stemming from the structure of the Lyapunov function which is used for

the control design task. This function depends on the uncertainty parameters and hence,
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it should be chosen in a way that satisfies the convexity properties. In this regard, here,

we used the method in [114] to solve this problem.

5.2 Two Time Scale Formation Control

In this section, we consider the two time scales behavior for multi agent systems, we start

our analysis by considering a simple network of two mechanical agents whose dynamics are

expressed as follows

Mi(ri)r̈i + Ci(ri, ṙi)ṙi = fi + ωi, i = 1, 2 (5.37)

where ri ∈ Rn1 are coordinates of each agent in physical workspace. ωi ∈ Rn1 denotes the

summation of external disturbance or modeled dynamics which are affecting the ith agent

and it is assumed to be upper bounded, i.e. ‖ωi‖ ≤ ω̄i. From (5.37), it is clear that M1 and

M2 are time varying inertia matrices which are only dependent on ri. The latter is due to

the fact that (5.37) is the result of Lagrange’s equation of motion with quadratic energy

functions. The term involving Ci contains the Coriolis and damping effects. In general, for

Ci and Mi we can assume the followings

M ≤ ‖Mi(ri)‖ ≤ M̄, ‖Ci(ri, ṙi)‖ ≤ C ‖ṙi‖ (5.38)

where C,M, M̄ ∈ R are positive constants. As the main formation control objective, the

center of mass of all the agents are required to follow the desired path on the slow time

scale while the agents maintain a particular distance from each other. In order to design

a set of control laws for agents such that they exhibit such a two time scales behavior,

we use the strategy which is first proposed in [50] by considering the following change of
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coordinates

R =
r1 + r2

2
, E =

r1 − r2

2
(5.39)

It is clear that R represents the center of mass of the two agents and E denotes the

respective relative position vector. Using (5.39) and (5.37), we can write

R̈ =

(
M−11 f1 +M−12 f2

)
2︸ ︷︷ ︸
fR

+

(
M−11 ω1 +M−12 ω2

)
2︸ ︷︷ ︸
ωR

−
(
M−11 C1 −M−12 C2

)
2︸ ︷︷ ︸
Mb

Ė −
(
M−11 C2 +M−12 C2

)
2︸ ︷︷ ︸
Ma

Ṙ

Ë =

(
M−11 f1 −M−12 f2

)
2︸ ︷︷ ︸
fE

+

(
M−11 ω1 −M−12 ω2

)
2︸ ︷︷ ︸
ωE

−
(
M−11 C1 −M−12 C2

)
2︸ ︷︷ ︸
Mb

Ṙ−
(
M−11 C1 +M−12 C2

)
2︸ ︷︷ ︸
Ma

Ė

or in matrix form  R̈

Ë

 =

fR
fE

+

ωR
ωE

−
Ma Mb

Mb Ma

Ṙ
Ė

 (5.40)

Notice that the matrix Mb makes the dynamics of R and E coupled. The error system can

be written as followsëR
ëE

 =

fR
fE

+

ωR
ωE

−
Ma Mb

Mb Ma

ėR
ėE

−
Ma Mb

Mb Ma

Ṙr

0

−
R̈r

0

 (5.41)

Next, consider the following control laws

fR = MaṘr + R̈r + fr1(eR) + fr2(ėR)

fE = MbṘr +
1

ε2
fe1(eE) +

1

ε
fe2(ėE) (5.42)

where ε is the small constant which represent the time dilation and needs to be chosen

later. Using (5.42), the control law for agents can be obtained as follows

f1 = C1Ṙr +M1(R̈r + fr1(eR) + fr2(ėR) +
1

ε2
fe1(eE) +

1

ε
fe2(ėE))

f2 = C2Ṙr +M2(R̈r + fr1(eR) + fr2(ėR)− 1

ε2
fe1(eE)− 1

ε
fe2(ėE)) (5.43)
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and the closed loop system for (5.41) becomes

ëR = −MaėR −MbėE + fr1(eR) + fr2(ėR)

ëE = −MaėE −MbėR +
1

ε2
fe1(eE) +

1

ε
(ėE) (5.44)

before studying the stability properties of (5.44), first we need to bring the equation to the

canonical form of the singular perturbation theory using the following definitions

XR =

eR
ėR

 , XE =

1
ε
eE

ėE

 (5.45)

as follows

ẊR =

0 I

0 −Ma

XR +

0 0

0 −Mb

XE +

 0

fr1(XR1) + fr2(XR2)


ẊE =

0 I
ε

0 0

XE +

 0

1
ε2
fe1(εXE1) + 1

ε
(XE2)

+

0 0

0 −Ma

XE +

0 0

0 −Mb

XR (5.46)

or, in canonical form as

ẊR =

0 I

0 −Ma

XR +

0 0

0 −Mb

XE +

 0

fr1(XR1) + fr2(XR2)


εẊE =

0 I

0 0

XE +

 0

1
εfe1(εXE1) + fe2(XE2)


+ ε

0 0

0 −Ma

XE +

0 0

0 −Mb

XR

 (5.47)

In order to ensure that for ε = 0, the second line in (5.47) only has isolated solution,

the function fe1(·) must be a homogenous function to cancel 1
ε
. Hence, we can choose

fe1(εXE1) = k1εXE1. Also fe2 must vanish at zero, i.e. (fe2(0) = 0). In order to use

165



Theorem 8.3 in [34], first we need to show that the origin of boundary layer system

ẊE =

0 I

0 0

XE +

 0

k1XE1 + fe2(XE2)

 (5.48)

is exponentially stable. This can be investigated by using the time derivative of the Lya-

punov function V = 1
2
XT
EXE as follows (Q is a symmetric positive definite matrix.)

V̇ =
1

2

(
2ẊT

E1XE1 + 2ẊT
E2XE2 + 2(ẊT

E1XE2 +XT
E1ẊE2)

)
=

1

2

(
2XT

E2XE1 + 2(k1XE1 + fe2(XE2))TXE2

+2(XT
E2XE2 +XT

E1(k1XE1 + fe2(XE2)))
)

(5.49)

if the function fe2(·) is designed to satisfy the following conditions

XT
E2fe2(XE2) ≤ −a1X

T
E2XE2, ‖fe2(XE2)‖ ≤ a

′

1 ‖XE2‖ (5.50)

then (5.49) turns in to

V̇ ≤ −1

2

‖XE1‖

‖XE2‖

T  −2k1 −(1 + k1 + a
′
1)

−(1 + k1 + a
′
1) 2a1 − 2


︸ ︷︷ ︸

W1>0

‖XE1‖

‖XE2‖



≤ −λmin(W1)V < 0 (5.51)

which clearly demonstrates the exponential stability of the system (5.44).

Next, we study the stability of the reduced system

ẊR =

0 I

0 −Ma

XR +

 0

fr1(XR1) + fr2(XR2)

 (5.52)

Using the Lyapunov function V2 = 1
2
XT
RPXR, we have

V̇ = 2XT
R2P11XR1 + (−MaXR2 + fr1 + fr2)TP22XR2 +XT

R2P22(−MaXR2 + fr1 + fr2)

2XT
R2P12XR2 +XT

R1P12(−MaXR2 + fr1 + fr2) + (−MaXR2 + fr1 + fr2)TP12XR1 (5.53)
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choosing fr1 = −Kr1XR1 and fr2 = −Kr2XR2, (5.53) turns into

V̇ =

XR1

XR2

T
−W2︷ ︸︸ ︷ −P12kr1 −Kr1P12 −Kr1P22 + P11 − P12Kr2

−P22Kr1 + P11 −Kr2P12 2P12 −Kr2P22 − P22Kr2

XR1

XR2


+ 2

XR1

XR2

T 0 0

0 −Ma


︸ ︷︷ ︸

Q

P11 P12

P12 P22

XR1

XR2

 (5.54)

The matrix P can be chosen in a way that W2 becomes negative definite. Hence, we can

write

V̇ ≤ −λmin(W2) ‖XR‖2 + 2XT
RQPXR (5.55)

for Ma we have

‖Ma‖ =

∥∥∥∥M−1
1 C1 +M−1

2 C2

2

∥∥∥∥ ≤M−1C︸ ︷︷ ︸
γ1

∥∥∥XR2 + Ṙr

∥∥∥ ≤ γ1 ‖XR2‖+ γ1V̄r (5.56)

where
∥∥∥Ṙr

∥∥∥ = ‖Vr‖ ≤ V̄r. Using (5.56), (5.55) can be rewritten as follows

V̇ ≤ −λmin(W2) ‖XR‖2 + 2γ1λmax(P )(‖XR2‖+ V̄r) ‖XR‖2 (5.57)

Therefore, if ‖XR2‖ ≤ l1, then V̇ ≤ −(λmin(W2) − 2γ1λmax(P )(l1 + V̄r)) ‖XR‖2. The

latter suggests that if the condition λmin(W2) ≥ 2γ1λmax(P )(l1 + V̄r) is satisfied then the

exponential stability of the origin will be guaranteed for the trajectories which are starting

inside the set V ≤ λmin(P )l21
2

. Next, we consider the interconnection conditions as follows

(
∂V2

∂XR

)T 0 0

0 −Mb

XE ≤ γ1(‖XR2‖+ V̄r)X
T
RPXE

≤ γ1λmax(P )(‖XR2‖+ V̄r) ‖XR‖ ‖XE‖ (5.58)
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which for trajectories inside the set V ≤ λmin(P )l21
2

can be rewritten as follows

(
∂V2

∂XR

)T 0 0

0 −Mb

XE ≤ γ1λmax(P )(l1 + V̄r) ‖XR‖ ‖XE‖ (5.59)

Also, we can write

ε

(
∂V1

∂XE

)T 0 0

0 −Ma

XE +

0 0

0 −Mb

XR

 ≤ ε(l1 + V̄r)
(
‖XE‖2 + ‖XE‖ ‖XR‖

)
(5.60)

thus, for the following Lyapunov function

ν = (1− d)V2 + dV1 (5.61)

we can find that ν̇ = zTW3z, z = [‖XR‖ ‖XE‖]T where

W3 =

 (1− d)(λmin(W2)− 2γ1λmax(P )(l1 + V̄r)))
−1
2 (1− d)γ1λmax(P )(l1 + V̄r)− 1

2d(l1 + V̄r)

−1
2 (1− d)γ1λmax(P )(l1 + V̄r)− 1

2d(l1 + V̄r)
d
ελmin(W1)− ε(l1 + V̄r)


hence, if the following condition

ε ≤ λmin(W1)(λmin(W2)− 2γ1λmax(P )(l1 + V̄r))

λmin(W2)(l1 + V̄r)− 2γ1λmax(P )(l1 + V̄r)2 + 1
4(1−d)d [(1− d)γ1λmax(P )(l1 + V̄r) + d(l1 + V̄r)]2

(5.62)

holds, the exponential stability of the whole system will be guaranteed.

Remark 5.3 From (5.43), it is clear that compared with [50], here, we used general nonlinear

feedback control laws for each subsystem to find less restrictive bound on the perturbation

parameter ε.
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5.2.1 Complete Graph Topology

In order to generalize the previous results to the case of n agents with complete communi-

cation graph, consider the following transformations

R =
1

n

n∑
i=1

ri, Ej = rj −
1

n

n∑
i=1

ri, j ∈ {1, · · · , n− 1} (5.63)

which represents the location of the center of agents R (not center of mass) and the relative

vector of position of agents from R. Fig.5.1 illustrates the vectors R and Ej. Using (5.63),

Figure 5.1: Illustration of the vectors R and Ej
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the modified error dynamics can be obtained as follows

ëR = −

 1

n

n∑
i=1

M−1i Ci︸ ︷︷ ︸
Ma

 ėR −
1

n

n−1∑
i=1

M−1i Ci −M−1n Cn︸ ︷︷ ︸
nMbi

 ėEj

−

(
1

n

n∑
i=1

M−1i Ci

)
Ṙr +

1

n

n∑
i=1

M−1i fi︸ ︷︷ ︸
fR

ëEj = −

M−1j Cj −
1

n

n∑
i=1

M−1i Ci︸ ︷︷ ︸
Mcj

 ėR −
(
n− 1

n

)
M−1j Cj︸ ︷︷ ︸

Mdj

ėEj +
1

n

n−1∑
i=1,i6=j

(
M−1i Ci −M−1n Cn

)
ėEi

−

(
M−1j Cj −

1

n

n∑
i=1

M−1i Ci

)
Ṙr +M−1j fj −

1

n

n∑
i=1

M−1i fi︸ ︷︷ ︸
fEj

, j = 1, · · · , n− 1 (5.64)

following the similar steps as in the case of two agents, we choose the following control

laws

fR =

(
1

n

n∑
i=1

M−1
i Ci

)
Ṙr + fr1(eR) + fr2(ėR)

fEj =

[
M−1

j Cj −
1

n

n∑
i=1

M−1
i Ci

]
Ṙr +

1

ε2
fe1j(eEj) +

1

ε
fe2j(ėEj) (5.65)

As in the case of two agents, consider the following definitions

XR =

eR
ėR

 , XEj =

1
ε
eEj

ėEj

 (5.66)
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using (5.66), we can write

ẊR =

0 I

0 −Ma

XR +
n−1∑
i=1

0 0

0 −Mbi

XEi +

 0

fr1(eR) + fr2(ėR)


εẊEj = ε

0 0

0 −Mdj

XEj +

0 0

0 −Mcj

XR

+

0 0

0 I

XEj

+ ε

 n−1∑
i=1,i 6=j

0 0

0 −Mbi

+

 0

1
ε
fe1j(εXEj1) + fe2j(XEj2)

 (5.67)

using the homogeneity assumption for the function, i.e. fe1j(εXEj1) = εke1jXEj1, the

boundary layer equations can be written as follows

ẊEj =

0 0

0 I

XEj +

 0

ke1jXEj1 + fe2j(XEj2)

 , j ∈ {1, · · · , n− 1} (5.68)

If the function fe2j(·) satisfies

XT
Ej2fe2j(XEj2) ≤ −a1jX

T
Ej2XEj2, ‖fe2j(XEj2)‖ ≤ a

′

1j ‖XEj2‖ (5.69)

using the Lyapunov function V1j = 1
2
XT
EjXEj, we can show that V̇1j ≤ −λmin(W1j)V1j. For

reduced system the following holds

V̇2 ≤ α1 ‖XR‖2 , for ‖XR2‖ ≤ l
′

1 (5.70)

Checking the interconnection conditions, it is easy to drive the upperbound on ε.

Remark 5.4 Compared with the results of [50], The nonlinear functions fe2j(·) provides

extra freedom for control design of the fast and slow subsystems.

5.2.2 General Balanced Graph

In the previous section, we used the complete graph topology to design a two time scale

control law for agents since the transformation (5.63), requires that the jth agent gather
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information from all agents which are existing in the network. In order to generalize the

previous results to a larger class of communication graphs, first, we need to modify (5.63)

to incorporate the structure of the communication graph of the network. This can be

attained by using the following transformation from [47],[49]

w =

R
E

 = Ur, U =

 1TnM∑n
i=1Mi

Lg a1

⊗ I3 (5.71)

where Lg denotes the grounded Laplacian matrix of the network which can be obtained

from

L =

Lg a1

aT2 a3

 (5.72)

It is possible to show that the rank of Lg1 = [Lg a1] is equal to n−1, this can be seen from

the following theorem.

Theorem 5.1 [86]: Suppose that Lg ∈ R(n−1)×(n−1) denotes the submatrix of the original

Laplacian matrix of network which is obtained by deleting its ith row and jth column,

then the number of spanning tree in the communication graph of the network is equal to

(−1)i+j det(Lg) .

Since it is assumed that the communication graph of the network is connected, it has

at least one spanning tree, hence, from Theorem 5.1 we can conclude that det(Lg) 6= 0

and hence [Lg a1] is of full row rank. In addition, it is easy to show that 1TnM does not

belong to the row space of [Lg a1] based on the fact the L1n = 0. This shows that the

transformation U is not singular and has an inverse which can be computed based on the

following lemma.

Lemma 5.1 [115] For any two matrices X1, X2 where [X1 X2] is nonsingular and XT
1 SX2 =
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XT
1 S

TX2 = 0 with detS 6= 0, then the following holds

[X1 X2]

(XT
1 SX1)−1XT

1

(XT
2 SX2)−1XT

2

S = I (5.73)

hence, with S = M−1 for (5.73) we can write

[
M1n∑n
i=1Mi

LTg1

]( 1TnM∑n
i=1Mi

M−1 M1n∑n
i=1Mi

)−1 (
1TnM∑n
i=1Mi

)
M−1(

Lg1M
−1LTg1

)−1
Lg1M

−1

 = I (5.74)

which proves that the inverse of the transformation U can be expressed as follows

U−1 =
[
1n M−1LTg1(Lg1M

−1LTg1)−1

]
⊗ I3 =

[
1n L+

g1

]
⊗ I3 (5.75)

Next, consider the following control laws for agents

fi = −k1

ε

∑
j∈Ni

ẋij −
k2

ε2

∑
j∈Ni

xij − (Mi(k3(ẋi − Ṙr) + k4(xi −Rr)− R̈r)−K1CiṘr)︸ ︷︷ ︸
bi

(5.76)

using (5.76) as the control inputs of the agents, we have

(M ⊗ I3)Ẍ +
k1

ε
((L+ C)⊗ I3)Ẋ +

k2

ε2
(L⊗ I3)X +B = 0 (5.77)

Using the transformation P = UX, (5.77) turns into

(M ⊗ I3)U−1P̈ +
k1

ε
((L+ C)⊗ I3)U−1Ṗ +

k2

ε2
(L⊗ I3)U−1P +B = 0 (5.78)

post multiplying (5.78) by U−T results in

U−T (M ⊗ I3)U−1P̈ +
k1

ε
U−T ((L+ C)⊗ I3)U−1Ṗ

+
k2

ε2
U−T (L⊗ I3)U−1P + U−TB = 0 (5.79)
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for U−T (M ⊗ I3)U−1 we can write

U−T (M ⊗ I3)U−1 =

 1Tn ⊗ I3

(L+
g1)T ⊗ I3

 (M ⊗ I3)
[
1n L+

g1

]

=

 1TnM1n 1TnML+
g1

(L+
g1)TM1n (L+

g1)TML+
g1

⊗ I3 = diag(
n∑
i=1

Mi, (L
+
g1)TML+

g1)⊗ I3 (5.80)

where we have used the fact that 1TnML+
g1 = 0. For U−T (L⊗ I3)U−1, we have

U−T (L⊗ I3)U−1 =

 1TnL1n 1TnLL
+
g1

(L+
g1)TL1n (L+

g1)TLL+
g1

⊗ I3 = diag(0, (L+
g1)TML+

g1)⊗ I3 (5.81)

where the last line resulted from L1n = 1TnL = 0. For U−T (C ⊗ I3)U−1,

U−T (C ⊗ I3)U−1 =

 1TnC1n 1TnCL
+
g1

(L+
g1)TC1n (L+

g1)TCL+
g1

⊗ I3 (5.82)

using (5.80)-(5.82), (5.79) becomes

n∑
i=1

MiP̈1 + k1(1TnC1n)Ṗ1 + k1[(1TnCL
+
g1)⊗ I3]Ṗ2 + (1Tn ⊗ I3)B = 0

[((L+
g1)TML+

g1)⊗ I3]︸ ︷︷ ︸
M+

P̈2 +
k1

ε
[((L+

g1)TLL+
g1)⊗ I3]︸ ︷︷ ︸

L+

Ṗ2 +
k2

ε2
[((L+

g1)TLL+
g1)⊗ I3]︸ ︷︷ ︸

L+

P2

+ [(L+
g1)T ⊗ I3]B + k1[((L+

g1)TC1n)⊗ I3]Ṗ1 + k1[((L+
g1)TCL+

g1)⊗ I3]Ṗ2 = 0

Also, we have

(1Tn ⊗ I3)B =
n∑
i=1

Mi(k3(ẋi − Ṙr) + k4(xi −Rr)− R̈r)−K1CiṘr

=

(
n∑
i=1

Mi

)
(k3(Ṗ1 − Ṙr) + k4(P1 −Rr))− k1(1TnC1n)Ṙr (5.83)
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and

((L+
g1)T ⊗ I3)B = [((Lg1M

−1LTg1)−1Lg1M
−1)⊗ I3](M ⊗ I3)(k3Ẋ + k4X)

− k1((L+
g1)T ⊗ I3)(C ⊗ I3)(1n ⊗ I3)Ṙr

= ((Lg1M
−1LTg1)−1 ⊗ I3)(Lg1 ⊗ I3)(M−1 ⊗ I3)(M ⊗ I3)(k3Ẋ + k4X)

− k1((L+
g1)T ⊗ I3)(C ⊗ I3)(1n ⊗ I3)Ṙr

= ((Lg1M
−1LTg1)−1 ⊗ I3)︸ ︷︷ ︸

α

(k3Ṗ2 + k4P2)− k1((L+
g1)T ⊗ I3)(C ⊗ I3)(1n ⊗ I3)Ṙr (5.84)

using (5.83) and (5.84), we have(
n∑
i=1

Mi

)
(P̈1 − R̈r) +

(
k1(1TnC1n) + k3

n∑
i=1

Mi

)
(Ṗ1 − Ṙr)

+

(
k4

n∑
i=1

Mi

)
(P1 −Rr) + k1[(1TnCL

+
g1)⊗ I3]Ṗ2 = 0

M+P̈2 +

(
k1

ε
L+ + k3α + k1[((L+

g1)TCL+
g1)⊗ I3]

)
Ṗ2 +

(
k2

ε2
L+ + k4α

)
P2

+ k1[((L+
g1)TC1n)⊗ I3]Ṗ1 − k1((L+

g1)T ⊗ I3)(C ⊗ I3)(1n ⊗ I3)Ṙr = 0 (5.85)

based on the following transformations

η =

P1 −Rr

Ṗ1 − Ṙr

 , ζ =

P2

ε

Ṗ2

 (5.86)
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(5.85) turns into

η̇ =

 0 1

k4 k3 + k1 (
∑n

i=1Mi)
−1

(1TnC1n)

 η +

0 0

0 k1 (
∑n

i=1Mi)
−1

[(1TnCL
+
g1)⊗ I3]

 ζ
ζ̇ =

 0 I
ε

(M+)−1
(
k2
ε
L+ + εk4α

)
(M+)−1

(
k1
ε
L+ + k3α + k1[((L+

g1)TCL+
g1)⊗ I3]

)
 ζ

+

0 0

0 k1(M+)−1[((L+
g1)TC1n)⊗ I3]

 η (5.87)

which can be rewritten as follows

η̇ =

 0 1

k4 k3 + k1 (
∑n

i=1Mi)
−1

(1TnC1n)

 η +

0 0

0 k1 (
∑n

i=1 Mi)
−1

[(1TnCL
+
g1)⊗ I3]

 ζ
εζ̇ =

 0 I

(M+)−1k2L
+ (M+)−1k1L

+

 ζ+

ε

 0 0

(M+)−1 (εk4α) (M+)−1
(
k3α + k1[((L+

g1)TCL+
g1)⊗ I3]

)
 ζ

+

0 0

0 k1(M+)−1[((L+
g1)TC1n)⊗ I3]

 η
 (5.88)

From (5.88), it is clear that the boundary layer system can be written as follows

ζ̇ =

 0 I

−(M+)−1k2L
+ −(M+)−1k1L

+

 ζ (5.89)

to study the stability properties of (5.89), consider the following Lyapunov function

V1 =
1

2
ζT

(k2 + δk1)
(
L++(L+)T

2

)
δM+

δM+ M+

 ζ (5.90)

differentiating (5.90) with respect to time, we can prove the stability of the system.
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5.3 Simulation Results

In this section, we present the simulation results of the control algorithm (5.76) for two

different graph topologies. Fig. 5.2, shows the result for a network of six agents with

diamond-shaped communication graph. The components of the initial positions of agents

are chosen to be random numbers between 0− 30m and the initial velocities are assumed

to be zero. Also, for the control parameters, we have

k1 = k2 = 1, ε = 0.1 k3 = k4 = 0.3

The desired relative offset between agents are chosen based on the following matrix
1 5 5 1 3 3

1 1 5 5 3 3

3 3 3 3 −2 8


Fig. 5.3 illustrates the results for a cubic-shaped communication graph where the offset

matrix is chosen as follows 
1 5 5 1 5 5 1 1

1 1 5 5 1 5 5 1

3 3 3 3 7 7 7 7
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Figure 5.2: Diamond-shaped two time scaled formation control
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Figure 5.3: Cubic-shaped two time scaled formation control
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5.4 Summary

In this chapter, we considered several robust control problems for multi agent system. In

the first section , we consider the robust consensus problem in the presence of unknown

Lipschitz nonlinearities and ploytopic uncertainties in the model of each agent. These

types of uncertainties are ubiquitous in mechanical and electrical systems. For instance,

many unmodeled dynamics satisfy the Lipschitz condition. Also, the lack of information

regarding the agents parameters such as mass, inertia tensor, electrical properties, can

be seen as polytopic uncertainties since in many practical situations an approximation of

the convex sets containing these parameters are known apriori. In the next section, this

problem is solved in the presence of external disturbances. A set of control laws is proposed

for the network to attain the consensus task and under the zero initial condition, achieves

the desired H∞ performance. It is widely known that the exponential stability concept

provides certain level of robustness for the systems. In the next part of this chapter, we

designed distributed control laws to satisfy such a strong notion of stability. We showed

that by implementing these control laws, it is possible to perform two time scales formation

control.

180



Chapter 6

Conclusion and Future Directions

In this research, we studied multiple spatial formation control problems for a network of

moving agents. Several distributed control and estimation laws are proposed to solve atti-

tude synchronization, extremum seeking and formation tracking problems in the presence

of modeling uncertainties and external disturbances. Based on these distributed robust

algorithms, we study the convergence properties of the aforementioned tasks under the

effects of local (e.g. inertia tensors) and global (e.g. location of the source) uncertainties.

Here, we summarize the results of this work and propose some future research directions.

Several distributed robust and adaptive control laws to solve the attitude synchronization

problem have been proposed. The uncertainties which affect the agents are assumed to

be local, and hence the robust adaptive laws are also designed locally based on the dy-

namical states of each agent and its respective neighbors. Since the uncertainties within

the dynamics of each agent do not directly affect the neighbors, the adaptive estimation

laws do not depend on the estimation states of the neighboring agents. We first considered

the adaptive attitude synchronization for a network of rigid bodies and used a geometric
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approach to solve the problem. Such an approach results in a coordinate independent

control and estimation law which can be used in large rotational maneuvers to handle

the singularities which are inherent in the attitude representation of a rigid agent. In the

convergence analysis of the proposed method, we used the Frobenius norm as the measure

of the error in estimation of the inertia matrices of the agents. Compared to the 2-norm of

a matrix, the Frobenius norm has a greater value and hence, it leads to more conservative

convergence results. However, working with such a norm is simpler in the context of Lya-

punov analysis. The main strategy used for deriving the adaptive control and estimation

laws is based on constructive control design methods. A single Lyapunov function is used

for measuring the deviation of the network from the synchronized state and the estimation

error. The distributed robust adaptive laws are then designed to make the time derivative

of such a function negative semi definite. Later, we used an optimal norm on SO(3) as an

error function for measuring the attitude differences in the network. Our proposed control

laws act as a set of virtual rotational spring and dampers between agents. In the next

step, we solved the adaptive version of this problem. We further extended these results

to robust adaptive control designs for situations where the network is subject to external

disturbances and unmodeled dynamics, and for the cases where the inertia matrices are

time varying and input dependent, using a modified projection method. Finally, we proved

that based on this modified approach it is possible to increase the region of attraction of

the tracking error subsystem. This indicates that compared to the previous methods, our

proposed approach can fulfill the attitude tracking problem from a wide range of initial

conditions.

Using similar adaptive approaches, we next studied the distributed localization problem

for finding the extremum point of the unknown quadratic function which can be regarded

as a local model for smooth and analytic convex cost functions. Compared to the atti-
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tude synchronization problem, the uncertainties (location of the source) are assumed to be

global and therefore the local adaptive estimation laws are designed based on the states of

each agent and its neighbors’ estimators. For solving this problem, it is assumed that the

value of the cost function can be measured at each instant. Using high pass filtering of the

measured signals, an identification model is obtained which is linear in unknown parame-

ters (the coordinates of the extremum point). In the next step of the design procedure, we

added a consensus term to modify the identification subsystem and proved the exponential

convergence of the proposed estimation scheme. Such a term plays as a local averaging

filter which mixes the information of each agent and its neighbors from the global unknown

parameters.

We later used the localization results including a distributed identifiability condition for

the extremum seeking problem. In extremum seeking problems, in addition to successful

identification of the extremum location, it is required that the physical states of the seeking

agents reach the extremum position. In order to solve this problem with a single agent, a

dithering signal must be added to the dynamics of the agent to ensure the satisfaction of

the persistency of excitation condition during the control period. Next, we extend this task

to the case of a network of seeking agents. In particular, we showed that for a network

of connected agents, if each agent contains a portion of the dithering signals, it is still

possible to drive the system states to the extremum point, provided that the distributed

identifiability condition is satisfied. For the distributed source seeking problem with a

network of Dubin’s vehicles with fixed forward velocities, we showed that it is feasible to

steer the robots to the extremum point of a field in the presence of partial availability of

the information about the field. In addition, the formation control problem is formulated

as an extremum seeking task where the formation pattern corresponds to the extremum

of formation costs. Defining as an extremum seeking problem, we also studied the motion
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camouflage problem without explicit knowledge of agent positions. Two control algorithms

were designed to solve this problem for the situations where the plan of the evader is not

available to the chaser agent. The first approach has better performance compared to the

second, however, it needs extra control effort.

Finally, we studied robust re-design of the proposed schemes assuming that the uncertain-

ties belong to certain sets of convex polytopes. This additional information is exploited

to obtain less conservative robust control laws. We considered the robust consensus prob-

lem in the presence of unknown Lipschitz nonlinearities and polytopic uncertainties in the

model of each agent. Later, this problem is solved in the presence of external disturbances.

A set of control laws is proposed for the network to attain the consensus task and under

zero initial conditions, achieves the desired H∞ performance.

The results of this research can be extended in the following directions.

1. For the attitude synchronization problem, we assumed that the network consists of

rigid agents. One possible future direction is to consider this problem for a network

of non-rigid agents. This situation can arise in the case of spacecraft with flexible or

moving rigid appendages. For the case of spacecraft with flexible parts, the equations

of motion can be derived as follows[116]

JkΩ̇k = −[Ωk]
∧JkΩk − [Ωk]

∧ + δTk η̇k − δTk η̈k + uk (6.1)

η̈k + Ckη̇k +Kkηk = δkΩ̇k (6.2)

From (6.1) and (6.2), it is clear that the interconnection between the rigid body and

the flexible appendages is modeled with the use of the coupling matrix δk for the kth

agent. ηk is the vector of modal coordinates for this agent. Ck and Kk denote the
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damping and stiffness matrices, respectively. The first step of design can be carried

out by modifying the control law (3.13) with the help of the Lyapunov function

V =
−1

2

m∑
k=1

m∑
j=1

ajktr
(
RT
kRj

)
+

m∑
k=1

1

2dk

∥∥∥Jk − Ĵk∥∥∥2

F

+
l

2

m∑
k=1

(Ωr
k − Fk)

T Jk (Ωr
k − Fk) +

m∑
k=1

(
ηTk ηk + η̇Tk η̇k

)
. (6.3)

However, it should be noted that the estimation subsystem in this case will also

contain the ηk terms and hence, they should be designed in a way to ensure the

stability of the whole network dynamics. Another possible extension in this regard is

to solve the attitude synchronization task with agents whose inertia tensors are time

varying. In practice, this situation happens as the fuel is depleted. Furthermore,

this problem can be solved in the presence of unknown elasticity coefficients such as

Young modulus, structural damping ratio, etc.

2. A second potential research direction is to tackle the distributed extremum seeking

problem, using receding horizon control methodology. This point of view can be

used to design a distributed online optimization scheme which does not contain the

dithering signals explicitly. The required level of excitation of the input signals can

be satisfied by embedding the PE condition as an additional constraint for a model

predictive control problem definition and thus the amount of agitation in the input

terminals of agents can be reduced. More formally, we can represent the dynamics

of the seeking agents by the following dynamics (xik ∈ Rn1 , uik ∈ Rn2 , θ ∈ Rn3)

xik+1 = f(xik, u
i
k(x

i
k − θ̂i), θ) (6.4)

yik = h(xik, u
i
k, θ), i ∈ {1, · · · , n} (6.5)

where θ denotes the vectors of unknowns such as the coordinates of the extremum

point and θ̂i is the estimation of the unknown parameters by the ith agent. Next,
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following the control sequence vector for the prediction horizon of length N as

ūik =
[
ui,kk

T
, ui,kk+1

T
, · · · , ui,kk+N−1

T
]T

(6.6)

the distributed model predictive control problem will be formulated as

min
ū1,··· ,ūn

J(k, ū1, · · · , ūn) =
n∑
i=1

(
F (x̂ik+N − θ̂ik+N) +

N−1∑
s=0

g(x̂ik+s − θ̂ik+s, u
i,k
k+s)

)
subject to x̂ik+s+1 = f(x̂ik+s, u

i,k
k+s, θ̂

i), ui,kk+s ∈ U

s = 0, · · · , N − 1, i = 1, · · · , n

x̂ik+s ∈ X , s = 0 · · · , N

∑
j∈Ni

N−1∑
s=0


ujk−s

ujk−1−s
...

ujk−N+1−s




ujk−s

ujk−1−s
...

ujk−N+1−s



T

> αI, i ∈ {1, · · · , n} (6.7)

where X and U denote the set of allowable domains for states and input vectors. α

represents the local level of satisfaction of the PE condition which must be attained

by the agents in the network. Such a distributed optimization problem can be solved

using methods which are introduced in [117]. Also, note that using the optimization

framework for satisfaction of the PE condition, it is possible to choose time varying

values for α which depend on the distance between the states of each agent and its

neighbors with the location of the extremum point i.e.
∑

j∈Ni

∥∥∥x̂ik − θ̂ik∥∥∥. This can

significantly decrease the agitation in the inputs of the agents near the location of

the extremum and therefore leads to a smoother approach towards the extremum

seeking problem.

3. As another future research direction, the distributed localization problem can be

analyzed further in the context of distributed optimization methods. In this regard,
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it is feasible to use distributed total least squares (TLS) to find the location of the

extremum. In TLS problems, it is assumed that both dependent and independent

variables are subject to disturbances. For instance, in source seeking, it is common

that in addition to the noise affecting the measurement of the field, the dynamics of

each robot also are subject to the external disturbances from the environment, e.g.

wind and friction. To model such a distributed optimization problem, we can start

by considering the modified version of (4.7) as

Zi + δZi = (Φi + δΦi) Ξ (6.8)

where Zi + δZi corresponds to the vector of measurements which are available to

the ith agent through communication with its neighbors. The matrix Φi + δΦi is

constructed based on the states of the dynamics of each agent and its neighbors.

The distributed localization problem can be formulated as follows

min
δZ1,··· ,δZn,δΦ1,··· ,δΦn

n∑
i=1

‖δΦi‖2
F + ‖δZi‖2

2

subject to Zi + δZi = (Φi + δΦi) Ξ, i = 1, · · · , n (6.9)

where the Frobenius norm is used to measure the error in the matrix Φi. The solu-

tion to the program (6.9) can be obtained using Alternating Direction Methods of

Multipliers [118].

4. In robust consensus design, we assumed that the polytopic uncertainties which affect

the dynamics of each agent are time invariant. One possible extension is to consider

a linear parameter varying model for the dynamics of the agents and find a set of

consensus gains to ensure that the L2 gain of the network will remain below a pre-

specified value. Furthermore, it is possible to add the effects of uncertainties in the

communication graph of the network to the stability analysis. For instance, for the
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case that the Laplacian matrix of the network belongs to a known polytope L̄ and

the agents’ dynamics are as (5.1) with B1 = 0 and ω = 0, we can write

Ė = (In ⊗ A(ρ(t)) + k2(L(ρ(t))⊗BK))E (6.10)

The dynamics (6.10) is robustly stable if the time derivative of the Lyapunov function

V = ET

(
In ⊗

(
p∑
l=1

ρlPl

))
E = ET

 p∑
l=1

ρl (In ⊗ Pl)︸ ︷︷ ︸
P
′
l

E (6.11)

is negative definite, i.e.

(In ⊗ A(ρ(t)) + k2(L(ρ(t))⊗BK))T

(
p∑
l=1

ρlP
′

l

)

+

(
p∑
l=1

ρlP
′

l

)
(In ⊗ A(ρ(t)) + k2(L(ρ(t))⊗BK)) +

(
p∑
l=1

ρ̇lP
′

l

)
< 0 (6.12)

Unfortunately, (6.12) does not possess convexity and hence, by checking it at vertices

of uncertainty polytopes we can not prove stability. One simple approach to address

this problem is to use the method in [119] based on verifying the feasibility of the

following conservative conditions for sufficiently large a > 0:
−XT +X P

′
i +XT (In ⊗ Al + k2Ll ⊗BK)) XT

? −aP ′i +
∑p

l=1 P
′

l θl 0

? ? −a−1P
′
i

 < 0, i = 1, · · · , n (6.13)

where θl denotes the vertices of the polytope which contain the time derivative of

the parameters. The LMI conditions (6.13) must be solved for fixed a > 0 to find

X ∈ Rn×n and symmetric positive definite matrices P
′

l . Also, the sum of squares

techniques [120] can be used in this context for both the design and stability analysis.
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