12 research outputs found

    Performance Benchmarks for Custom Applications: Considerations and Strategies

    Get PDF
    The motivation for this research came from the need to solve a problem affecting not only the company used in this study, but also the many other companies in the information technology industry having similar problem: how to conduct performance benchmarks for custom applications in an effective, unbiased, and accurate manner. This paper presents the pros and cons of existing benchmark methodologies. It proposes a combination of the best characteristics of these benchmarks into a methodology that addresses the problem from an application perspective considering the overall synergy between operating system and software. The author also discusses a software design to implement the proposed methodology. The methodology proposed is generic enough to be adapted to any particular application performance-benchmarking situation

    Benchmarking insider threat intrusion detection systems

    Get PDF
    viii, 97 leaves : ill. ; 29 cm.Includes abstract.Includes bibliographical references (leaves 88-97).An intrusion detection system generally detects unwanted manipulations to computer systems. In recent years, this technology has been used to protect personal information after it has been collected by an organization. Selecting an appropriate IDS is an important decision for system security administrators, to keep authorized employees from abusing their access to the system to exploit sensitive information. To date, little work has been done to create a benchmark for small and mid-size organizations to measure and compare the capability of different insider threat IDSs which are based on user profiling. It motivates us to create a benchmark which enables organizations to compare these different IDSs. The benchmark is used to produce useful comparisons of the accuracy and overhead of two key research implementations of future insider threat intrusion algorithms, which are based on user behavior

    An investigation into computer and network curricula

    Get PDF
    This thesis consists of a series of internationally published, peer reviewed, journal and conference research papers that analyse the educational and training needs of undergraduate Information Technology (IT) students within the area of Computer and Network Technology (CNT) Education. Research by Maj et al has found that accredited computing science curricula can fail to meet the expectations of employers in the field of CNT: “It was found that none of these students could perform first line maintenance on a Personal Computer (PC) to a professional standard with due regard to safety, both to themselves and the equipment. Neither could they install communication cards, cables and network operating system or manage a population of networked PCs to an acceptable commercial standard without further extensive training. It is noteworthy that none of the students interviewed had ever opened a PC. It is significant that all those interviewed for this study had successfully completed all the units on computer architecture and communication engineering (Maj, Robbins, Shaw, & Duley, 1998). The students\u27 curricula at that time lacked units in which they gained hands-on experience in modern PC hardware or networking skills. This was despite the fact that their computing science course was level one accredited, the highest accreditation level offered by the Australian Computer Society (ACS). The results of the initial survey in Western Australia led to the introduction of two new units within the Computing Science Degree at Edith Cowan University (ECU), Computer Installation & Maintenance (CIM) and Network Installation & Maintenance (NIM) (Maj, Fetherston, Charlesworth, & Robbins, 1998). Uniquely within an Australian university context these new syllabi require students to work on real equipment. Such experience excludes digital circuit investigation, which is still a recommended approach by the Association for Computing Machinery (ACM) for computer architecture units (ACM, 2001, p.97). Instead, the CIM unit employs a top-down approach based initially upon students\u27 everyday experiences, which is more in accordance with constructivist educational theory and practice. These papers propose an alternate model of IT education that helps to accommodate the educational and vocational needs of IT students in the context of continual rapid changes and developments in technology. The ACM have recognised the need for variation noting that: There are many effective ways to organize a curriculum even for a particular set of goals and objectives (Tucker et al., 1991, p.70). A possible major contribution to new knowledge of these papers relates to how high level abstract bandwidth (B-Node) models may contribute to the understanding of why and how computer and networking technology systems have developed over time. Because these models are de-coupled from the underlying technology, which is subject to rapid change, these models may help to future-proof student knowledge and understanding of the ongoing and future development of computer and networking systems. The de-coupling is achieved through abstraction based upon bandwidth or throughput rather than the specific implementation of the underlying technologies. One of the underlying problems is that computing systems tend to change faster than the ability of most educational institutions to respond. Abstraction and the use of B-Node models could help educational models to more quickly respond to changes in the field, and can also help to introduce an element of future-proofing in the education of IT students. The importance of abstraction has been noted by the ACM who state that: Levels of Abstraction: the nature and use of abstraction in computing; the use of abstraction in managing complexity, structuring systems, hiding details, and capturing recurring patterns; the ability to represent an entity or system by abstractions having different levels of detail and specificity (ACM, 1991b). Bloom et al note the importance of abstraction, listing under a heading of: “Knowledge of the universals and abstractions in a field” the objective: Knowledge of the major schemes and patterns by which phenomena and ideas arc organized. These are large structures, theories, and generalizations which dominate a subject or field or problems. These are the highest levels of abstraction and complexity\u27\u27 (Bloom, Engelhart, Furst, Hill, & Krathwohl, 1956, p. 203). Abstractions can be applied to computer and networking technology to help provide students with common fundamental concepts regardless of the particular underlying technological implementation to help avoid the rapid redundancy of a detailed knowledge of modem computer and networking technology implementation and hands-on skills acquisition. Again the ACM note that: “Enduring computing concepts include ideas that transcend any specific vendor, package or skill set... While skills are fleeting, fundamental concepts are enduring and provide long lasting benefits to students, critically important in a rapidly changing discipline (ACM, 2001, p.70) These abstractions can also be reinforced by experiential learning to commercial practices. In this context, the other possibly major contribution of new knowledge provided by this thesis is an efficient, scalable and flexible model for assessing hands-on skills and understanding of IT students. This is a form of Competency-Based Assessment (CBA), which has been successfully tested as part of this research and subsequently implemented at ECU. This is the first time within this field that this specific type of research has been undertaken within the university sector within Australia. Hands-on experience and understanding can become outdated hence the need for future proofing provided via B-Nodes models. The three major research questions of this study are: •Is it possible to develop a new, high level abstraction model for use in CNT education? •Is it possible to have CNT curricula that are more directly relevant to both student and employer expectations without suffering from rapid obsolescence? •Can WI effective, efficient and meaningful assessment be undertaken to test students\u27 hands-on skills and understandings? The ACM Special Interest Group on Data Communication (SJGCOMM) workshop report on Computer Networking, Curriculum Designs and Educational Challenges, note a list of teaching approaches: ... the more \u27hands-on\u27 laboratory approach versus the more traditional in-class lecture-based approach; the bottom-up approach towards subject matter verus the top-down approach (Kurose, Leibeherr, Ostermann, & Ott-Boisseau, 2002, para 1). Bandwidth considerations are approached from the PC hardware level and at each of the seven layers of the International Standards Organisation (ISO) Open Systems Interconnection (OSI) reference model. It is believed that this research is of significance to computing education. However, further research is needed

    Avaliação de desempenho em aglomerados de PCs interligados por Ethernet /

    Get PDF
    Orientador : Roberto André HexselDissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciencias Exatas, Programa de Pós-Graduação em Informática. Defesa: Curitiba, 2006Inclui bibliografi

    Unifying hardware and software benchmarking: a resource-agnostic model

    Get PDF
    Lilja (2005) states that “In the field of computer science and engineering there is surprisingly little agreement on how to measure something as fun- damental as the performance of a computer system.”. The field lacks of the most fundamental element for sharing measures and results: an appropriate metric to express performance. Since the introduction of laptops and mobile devices, there has been a strong research focus towards the energy efficiency of hardware. Many papers, both from academia and industrial research labs, focus on methods and ideas to lower power consumption in order to lengthen the battery life of portable device components. Much less effort has been spent on defining the responsibility of software in the overall computational system energy consumption. Some attempts have been made to describe the energy behaviour of software, but none of them abstract from the physical machine where the measurements were taken. In our opinion this is a strong drawback because results can not be generalized. In this work we attempt to bridge the gap between characterization and prediction, of both hardware and software, of performance and energy, in a single unified model. We propose a model designed to be as simple as possible, generic enough to be abstract from the specific resource being described or predicted (applying to both time, memory and energy), but also concrete and practical, allowing useful and precise performance and energy predictions. The model applies to the broadest set of resource possible. We focus mainly on time and memory (hence bridging hardware benchmarking and classical algorithms time complexity), and energy consumption. To ensure a wide applicability of the model in real world scenario, the model is completely black-box, it does not require any information about the source code of the program, and only relies on external metrics, like completion time, energy consumption, or performance counters. Extending the benchmarking model, we define the notion of experimental computational complexity, as the characterization of how the resource usage changes as the input size grows. Finally, we define a high-level energy model capable of characterizing the power consumption of computers and clusters, in terms of the usage of resources as defined by our benchmarking model. We tested our model in four experiments: Expressiveness: we show the close relationship between energy and clas- sical theoretical complexity, also showing that our experimental com- putational complexity is expressive enough to capture interesting be- haviour of programs simply analysing their resource usage. Performance prediction we use the large database of performance mea- sures available on the CPU SPEC website to train our model and predict the performance of the CPU SPEC suite on randomly selected computers. Energy profiling: we tested our model to characterize and predict the power usage of a cluster running OpenFOAM, changing the number of active nodes and cores. Scheduling: on heterogeneous systems applying our performance pre- diction model to features of programs extracted at runtime, we predict the device where is most convenient to execute the programs, in an heterogeneous system
    corecore