
Unifying hardware and
software benchmarking:

a resource-agnostic model

Davide Morelli

University of Pisa
Computer Science Department

June 2015

Ph.D. thesis

2

Abstract

Lilja (2005) states that “In the field of computer science and engineering
there is surprisingly little agreement on how to measure something as fun-
damental as the performance of a computer system.”. The field lacks of the
most fundamental element for sharing measures and results: an appropriate
metric to express performance.

Since the introduction of laptops and mobile devices, there has been
a strong research focus towards the energy efficiency of hardware. Many
papers, both from academia and industrial research labs, focus on methods
and ideas to lower power consumption in order to lengthen the battery
life of portable device components. Much less effort has been spent on
defining the responsibility of software in the overall computational system
energy consumption. Some attempts have been made to describe the energy
behaviour of software, but none of them abstract from the physical machine
where the measurements were taken. In our opinion this is a strong drawback
because results can not be generalized.

In this work we attempt to bridge the gap between characterization
and prediction, of both hardware and software, of performance and energy,
in a single unified model. We propose a model designed to be as simple
as possible, generic enough to be abstract from the specific resource being
described or predicted (applying to both time, memory and energy), but also
concrete and practical, allowing useful and precise performance and energy
predictions. The model applies to the broadest set of resource possible. We
focus mainly on time and memory (hence bridging hardware benchmarking
and classical algorithms time complexity), and energy consumption. To
ensure a wide applicability of the model in real world scenario, the model is
completely black-box, it does not require any information about the source
code of the program, and only relies on external metrics, like completion
time, energy consumption, or performance counters.

Extending the benchmarking model, we define the notion of experimental
computational complexity, as the characterization of how the resource usage

3

4

changes as the input size grows.
Finally, we define a high-level energy model capable of characterizing

the power consumption of computers and clusters, in terms of the usage of
resources as defined by our benchmarking model.

We tested our model in four experiments:

Expressiveness we show the close relationship between energy and clas-
sical theoretical complexity, also showing that our experimental com-
putational complexity is expressive enough to capture interesting be-
haviour of programs simply analysing their resource usage.

Performance prediction we use the large database of performance mea-
sures available on the CPU SPEC website to train our model and
predict the performance of the CPU SPEC suite on randomly selected
computers.

Energy profiling we tested our model to characterize and predict the
power usage of a cluster running OpenFOAM, changing the number
of active nodes and cores.

Scheduling on heterogeneous systems applying our performance pre-
diction model to features of programs extracted at runtime, we predict
the device where is most convenient to execute the programs, in an
heterogeneous system.

Acknowledgements

I want to thank my supervisor Antonio Cisternino, for the constant insight,
for ensuring I was following the right path in my research, and for his friend-
ship.

The advice from Andrea Canciani has been extremely important to assess
the methodology in general, and to develop the energy model in particular.

Leonardo Bartoloni has helped me understanding the probabilistic frame-
work underlying a model based on regression analysis.

The last experiment reported in this thesis has been developed with
Gabriele Cocco, using his Ph.D. research we created a scheduling method-
ology for heterogeneous platforms.

I am grateful for the support and constant affect I received from my
family: my parents, my grandparents, and my sister, who supported and
encouraged me throughout this journey.

I wish to thank my wife for sharing her life with me, constantly pushing
me to pursue my dreams.

5

6

Contents

I Introduction 19

1 Benchmarking: art or science 21

1.1 Introduction . 21

1.2 Benchmarking is pre-science 23

2 Lack of a unified model 25

2.1 Time and energy . 26

2.2 Hardware and Software . 27

2.3 Computational energy models 28

3 Contributions of this work 31

3.1 Contributions . 31

3.2 Plan of work . 32

4 State of the art: characterization and prediction of perfor-
mance and energy 35

4.1 Hardware benchmarking . 36

4.1.1 Metrics . 36

4.1.2 Benchmarks . 39

4.2 Software characterization . 41

4.3 Energy characterization . 44

4.3.1 Power measurement approaches 44

4.3.2 Energy consumption of virtual machines 46

4.3.3 Energy consumption related to parallelism 46

4.3.4 Energy consumption related to time complexity 47

4.3.5 Energy management policies 47

4.3.6 Coarse grain energy models 47

4.4 Scheduling on heterogeneous architectures 50

7

8 CONTENTS

II Benchmarking Model 53

5 High level model 57

5.1 Definitions . 58

5.1.1 Program . 58

5.1.2 Computational Environment 58

5.1.3 Measure of resource consumption 59

5.1.4 Computational Pattern 61

5.1.5 Solver . 61

5.2 The model . 62

5.2.1 Characterizing a target program 63

5.2.2 Characterizing the target resource 65

5.2.3 A unified HW and SW model 66

5.2.4 A resource agnostic model 67

5.3 Role of computational patterns 68

5.4 Algebraic characterization of X 71

5.4.1 X needs to be full rank 71

5.4.2 Norm . 71

5.4.3 Cosine similarity . 73

5.5 Conclusion . 75

6 Solvers 77

6.1 Simplex . 77

6.1.1 The simplex algorithm 78

6.1.2 Geometric interpretation 79

6.1.3 Limits . 82

6.2 Linear regression . 84

6.2.1 Example . 84

6.2.2 Linear regression . 86

6.2.3 Algebraic characterization of the solver 87

6.2.4 Hardware and Software intrinsic relationship 90

6.2.5 Assumptions and limits 90

6.2.6 Residuals analysis . 91

6.2.7 Algebraic characterization of computational patterns . 92

6.3 Non negative matrix factorization 95

6.3.1 The surrogate . 96

6.3.2 The predictor . 97

6.3.3 Hardware and Software intrinsic relationship 98

6.3.4 Limits of NMF . 99

6.4 Conclusion and future work 100

CONTENTS 9

6.4.1 Bayesian regression . 100

6.4.2 Support Vector Regression 102

7 Experimental complexity of software 105

7.1 Characterization through the surrogate 105

7.2 Definition of experimental complexity 106

7.3 Relation with computational complexity 109

7.4 Bottlenecks . 109

7.4.1 Grace area . 110

7.5 Compositionality of Surrogates and Experimental complexity 111

7.5.1 Linear composition of surrogates and experimental com-
plexity . 111

7.5.2 Function composition 112

7.6 A single number is not enough 113

7.7 Conclusions . 117

8 Computational energy model 119

8.1 The energy model . 120

8.1.1 General form . 120

8.1.2 Fixed number of active machines and limited consid-
ered resources . 122

8.1.3 Automatic characterization of hardware 124

8.2 Discussion . 125

8.3 Conclusions . 129

9 Conclusions 131

III Experimental validation 133

10 Validating the expressiveness of the model and experimental
complexity using micro-benchmarks 137

10.1 Expressiveness of the model 138

10.1.1 Using the simplex solver 138

10.1.2 Using the linear regression and NMF solvers 140

10.2 Experimental computational complexity 145

10.2.1 The experimental setup 145

10.2.2 ξ is compositional . 149

10.3 Energy and experimental computational complexity: sorting
algorithms . 149

10 CONTENTS

10.3.1 Experiment setting . 152

10.3.2 Experimental results 152

10.4 Micro-architecture independence: limits of a single dimension 154

10.4.1 Different architectures 155

10.4.2 Using all the measures in the same model, only 1 pro-
gram as basis . 158

10.4.3 Using all the measures in the same model, with a
larger basis . 159

10.4.4 Using the target program as basis 160

10.4.5 Discussion . 160

10.5 Conclusions . 162

11 Validating performance prediction on multiple architectures
using CPUSPEC 163

11.1 CPUSPEC . 163

11.1.1 Bias error . 164

11.2 Predicting completion time using the linear regression solver . 164

11.2.1 Completion time prediction accuracy 167

11.2.2 Fitting residuals, bias, and prediction error 169

11.2.3 Discussion . 172

11.3 Conclusions . 172

12 Validating the energy model for concurrent parallel tasks
using OpenFOAM 177

12.1 Predict peak power . 177

12.1.1 Experiment setting . 178

12.1.2 Modelling power using Pinfr+m and P∆c, without sep-
arating Pinfr and Pm 180

12.1.3 Modelling power using Pinfr, P∆c, and Pm 182

12.2 Modelling energy consumption of concurrent programs 184

12.3 Conclusions . 190

13 Combining static analysis with the prediction model: best
device scheduling in heterogeneous environments 191

13.1 Introduction . 192

13.2 Code analysis and feature extraction 193

13.3 Prediction model . 194

13.4 Experimental validation . 197

13.4.1 Experiment setup . 197

13.4.2 Predicting the completion time 201

CONTENTS 11

13.4.3 Best-device prediction 204
13.4.4 Interpretation of the regression coefficients 205
13.4.5 Limits . 207

13.5 Conclusions . 208

IV Conclusions 209

14 Contributions 213

15 Future work 217

12 CONTENTS

List of Figures

6.1 Convex polytope of solutions in the resource consumption vec-
tor space . 81

6.2 Resources in the Programs Vector Space 83

6.3 Example of predicted values and residuals using linear and
non linear regressors . 93

7.1 Example of evolution of surrogate components as the input
size grows . 107

7.2 Example of points in the resource space 114

8.1 Realistic scenario: power model with Pinfr = 100, Pm = 90,
P∆c = 10; completion time following Amdahl’s law, with 10%
algorithm serial; and power model combined with Amdahl’s
law . 127

8.2 Idea scenario: power model with Pinfr = Pm = 0, P∆c = 10;
completion time following Amdahl’s law, with 0% algorithm
serial; and power model combined with Amdahl’s law 128

10.1 β for mergesort . 140

10.2 Measured resource consumption of mem 143

10.3 β for mem . 144

10.4 Characterization of mem using NMF 146

10.5 Resource (cpu-cycles, instructions, cache-misses, and cache-
references performance counters) usage of the programs . . . 148

10.6 β and ξ for f . 150

10.7 β and ξ for g . 150

10.8 Predicted and actual β values for f+g 151

10.9 Predicted and actual β values for fg 151

10.10β and ξ for heapsort . 153

10.11β and ξ for mergesort . 154

13

14 LIST OF FIGURES

10.12β and ξ for quicksort . 155

10.13β and ξ for quicksort, allowing linear combination of curves . 156

10.14β and ξ for mergesort on Athlon 157

10.15β and ξ for mergesort on ATOM 158

10.16Discrepancy in surrogates between Athlon, Opteron and ATOM159

10.17Measured versus fitted values using a single program as basis
on 3 different architectures 160

10.18Measured versus fitted values using 2 programs as basis on 3
different architectures . 161

10.19Concordance in surrogates between Athlon, Opteron and ATOM,
using the target program as basis 162

11.1 Completion time prediction RAE for different basis sizes and
training set sizes . 168

11.2 Completion time prediction accuracy with basis size 5 and
training size 50, ordered by bias error 170

11.3 Completion time prediction accuracy with basis size 25 and
training size 100, ordered by bias error 171

12.1 Measured power versus estimated power with fitted Pinfr+m

and P∆c . 181

12.2 Measured power versus estimated power with fitted Pinfr, Pm

and P∆c . 183

12.3 Predicted and measured instant power during serial (green)
and parallel (red) phases: cavity 185

12.4 Predicted and measured instant power during serial (green)
and parallel (red) phases: pitzDaily 186

12.5 Predicted and measured instant power during serial (green)
and parallel (red) phases: squareBump 187

12.6 Predicted and measured instant power during serial (green)
and parallel (red) phases: mixerVesselAMI2D 188

12.7 Distribution of Energy prediction error running two tasks in
parallel . 190

13.1 Finalizer construction and evaluation 194

13.2 Kernel to finalizer mapping for a feature that counts memory
reads . 194

13.3 Fitting residuals . 200

13.4 Measured and predicted completion time 202

13.5 Measured and predicted completion time 203

LIST OF FIGURES 15

13.6 Best device prediction relative accuracy 206

16 LIST OF FIGURES

List of Tables

5.1 Composition of programs in terms of computational patterns 70
5.2 Measures of the computational patterns 70
5.3 Measures of the programs . 71
5.4 Example of resource consumption of two programs 73

6.1 Fictional example for the Simplex solver 80
6.2 Data for the fictional example for the Simplex solver 81
6.3 Fictional example for the Linear Regression solver 88

7.1 Example of instructions and cache-miss usage for the basis
and the target program . 106

10.1 Completion time and energy consumption for cpu and mem . 138
10.2 Completion time and energy consumption for mergesort . . . 138
10.3 Basis resource consumption 141

11.1 Programs bias error . 165
11.2 Errors and residuals for test size 50 and basis size 5, ordered

by bias error . 174
11.3 Errors and residuals for test size 100 and basis size 25, ordered

by bias error . 175

12.1 Estimated Pinfr, Pmand P∆c 182
12.2 Accuracy measures . 189

17

18 LIST OF TABLES

Part I

Introduction

19

Chapter 1

Benchmarking: art or science

1.1 Introduction

Benchmarking is the analysis of the performance of computer systems. A
system is “any collection of hardware, software and firmware” (Jain, 1991).
Performance is measured using metrics. A metric is “the criteria used to
evaluate the performance of the system components” (Jain, 1991). Perfor-
mance analysis is therefore “a combination of measurement, interpretation,
and communication of a computer system’s speed or size” (Lilja, 2005).
However, today’s approach to measurement and interpretation is not sys-
tematic, it changes from researcher to researcher, sometimes with little ap-
parent common ground.

Communication of results is a crucial aspect, that in our opinion has de-
termined the lack of development of a mathematically sound benchmarking
model. One of the main purposes of measuring the performance of a com-
puter is to let the readers of the benchmark results compare that computer
with alternatives (Lilja, 2005). Therefore, the performance metric needs to
be simple to read. Traditionally this has led to choosing single numbers as
performance measures (Mashey, 2004). In this work we demonstrate the
limits of any approach based on a single dimension metric, that inherently
leads to a large characterization error.

There is surprisingly little consensus on the basic elements of computer
system performance analysis: the performance metric. Several performance
metrics have been used, yet the debate on which metric should be used is
still not settled. This confusion is well represented by the “megahertz myth”
1, a widely spread misconception about the performance of Apple comput-

1http://www.theguardian.com/technology/2002/feb/28/onlinesupplement3

21

22 CHAPTER 1. BENCHMARKING

ers compared to IBM PC computers. The origin of the myth resides in the
difference between the RISC (Apple) and the CISC (PC) architectures, that
results in a huge difference in the clock rates. However, clock rate is mis-
leading, as the effective performance of a computer depends on the effective
time needed to complete a task. Using clock rate as a performance metric is
improper, because of the profound difference in how Reduced Instruction Set
Computing architectures (RISC) and Complex Instruction Set Computing
architectures (CISC) work.

Several benchmark suites have been been used to measure different as-
pects of the computational systems. Some based on reduced version of sci-
entific software (e.g. Livermore Fortran kernels, NAS kernels, LINPACK),
some based on synthetic programs (e.g. Whetstone and Dhrystone), other
focusing on specific aspects of hardware (e.g. I/O benchmarks).

Given the abundance of performance metrics and benchmarks available,
computer manufacturers can usually find a particular combination that will
show that their system outperforms the competitors. Sometimes explicitly
exploiting deficiencies of benchmarks 2, if not simply cheating 3.

In section 4.1 we analyse the most used metrics and benchmarks.

Measuring performance of a system using standardized benchmark suites
is risky. Computer manufacturers are known to tune their systems to per-
form well on the reduced set of programs contained in the benchmarks suites.
The actual performance of the system in real applications could not reflect
the performance scores achieved with benchmark suites.

Moreover, there is not a clear mathematical set for the practice of analysing
performance. The “war of the means” (Mashey, 2004) is a clear example
of this lack of strict mathematical foundation in the field: the improper use
of arithmetic or geometric mean to summarize data can lead to misleading
results.

2“ATI cheating benchmarks and degrading game quality, says
NVIDIA”, available at http://www.pcauthority.com.au/Feature/232215,

ati-cheating-benchmarks-and-degrading-game-quality-says-nvidia.aspx, last
accessed 06/06/2015

3“Futuremark confirms nVidia is cheating in benchmark”, available at http://www.

geek.com/games/futuremark-confirms-nvidia-is-cheating-in-benchmark-553361/,
last accessed 06/06/2015; “Nvidia Points Finger at AMD’s Im-
age Quality Cheat”, available at http://www.tomshardware.com/news/

radeon-catalyst-image-quality-benchmark,11701.html, last accessed
06/06/2015; “Intel graphics drivers employ questionable 3DMark Van-
tage optimizations”, available at http://techreport.com/review/17732/

intel-graphics-drivers-employ-questionable-3dmark-vantage-optimizations,
last accessed 06/06/2015

1.2. BENCHMARKING IS PRE-SCIENCE 23

The analysis of the performance of hardware and the analysis of perfor-
mance of software have always been developed as separated models. Inar-
guably, they concur in equal measure to the overall performance of compu-
tational systems. We believe that only an approach that takes them into
account at the same time can capture their relationship.

1.2 Benchmarking is pre-science

Kuhn (2012) proposes a model for scientific evolution. In his view, scientific
progress in a field can be described by cyclic occurrences of three phases:

pre-science : when the field does not have a widely accepted and clear
paradigm that explains the phenomena. One or several paradigms
could be already present and discussed, but none is dominating the
field yet;

normal science : when a paradigm has emerged over the competitors
and is dominating the field. In this phase the scientific pursue does
not challenge the dominating paradigm, and performs incremental re-
search, extending the reach of the model, and clarifying its relationship
with other phenomena;

revolution : when evidence from experiments challenges the dominating
paradigm. The scientific community fragments and recognises the cri-
sis. New paradigms are proposed.

We believe benchmarking to be in the pre-science phase, as it lacks of an
accurate, simple, with broad scope, unifying paradigm. Lilja (2005) states
that “In the field of computer science and engineering [...] there is surpris-
ingly little agreement on how to measure something as fundamental as the
performance of a computer system.”. The field lacks of the most funda-
mental element for sharing measures and results: an appropriate metric to
express performance.

Kuhn (1977) defines 5 criteria that should be used to determine the
choice of a theory:

Accuracy the theory needs to explain and predict phenomena with empir-
ically adequate experimentation and observation.

Consistency the theory needs to be consistent with itself, as well as with
the other accepted theories

24 CHAPTER 1. BENCHMARKING

Scope the consequences of the theory should go beyond the immediate
scope of the laws and observations it is designed to explain.

Simplicity the theory should offer a simple explanation of phenomena,
similar to Occam’s razor

Fruitfulness the theory should “disclose new phenomena or previously un-
noted relationships among those already known” Kuhn (1977).

Colyvan (2001) lists similar requisites for a good scientific theory: is
elegant; is as simple as possible; explains the observations; allows predictions
that can falsify the model; is fruitful in disclosing potential for future work.

In our opinion, the benchmarking practice does not comply to all of
those requisites. Characterisation models usually have a very narrow scope,
focusing on particular details. This might produce accurate models, but
their utility will not go beyond the setting that they describe. As we will
see in chapter 4, in many cases the models are very detailed, crafted around
the specific hardware that is being modelled, making it difficult for other
researchers to apply the same approach to different settings (scope crite-
rion). In other cases complex models with non-linear projection on high
dimensional feature space are used to characterize performance (e.g. Sup-
port Vector Regression), without reporting the improvement over simpler
linear approaches. This goes against the simplicity criterion

Popper empathises the “falsifiability” of a theory as a requisite for that
theory to be science (Popper, 2014). Lilja (2005) lists “repeatability” and
“easiness of measurement” as two of the criteria that a good analysis should
have. For a model to be falsifiable, it needs to be high level enough to be
replicable on different hardware than the one used to define it. To avoid
over-fitting, its scope should not be too narrow. Interestingly, there is no
general setting for hardware and software characterization in literature, with
every model focusing only on particular aspects of computing systems.

For all this reasons, despite being a practice with decades of history, in
our opinion benchmarking should be considered more art than science. Our
work is an attempt to identify the issues in the field and to propose a mathe-
matically solid abstract model, capable of ensuring a common ground to the
benchmarking activities. Our hope is that it might help future researchers
to finally find a paradigm capable of being accepted as what Kuhn would
call “normal science”.

Chapter 2

Lack of a unified model

In science, a model is a simplified version of reality, therefore inherently false,
but still useful (Box and Draper, 1987). Models are false in the sense that,
being a simplification of reality, they necessarily omit some detail and offer
a surrogate of the phenomenon analysed. The very process of simplification
is the interesting aspect of model generation. The choice of the abstraction
level, hence which aspect of reality should be included in the model and
which should be excluded, is the choice that gives the model the potential
do be useful. Useful models help understand phenomena, reducing their
complexity to simpler terms that can be interpreted and manipulated.

The activities involved in modelling a phenomenon are:

• the recognition of a structure in the phenomenon. Structure emerges
from patterns in observations;

• the interaction of several entities in a single system. The identifica-
tion of the actors involved in the phenomenon is fundamental for the
isolation of the factors to be modelled;

• the generation of a model. Is the formalization of the principles and
the formal systems that explain reality. Models contain assumptions,
that justify the proposed synthesis of the phenomenon;

• the validation of the model. Falsifiability is a requisite of any theory to
be considered scientific (Popper, 2014). Therefore, the model should
therefore be easily repeatable and easy to measure (Lilja, 2005).

As discussed in the previous chapter, several authors Colyvan (2001),
Kuhn (1977), and Hawking (2011) agree that good theories should: offer

25

26 CHAPTER 2. LACK OF A UNIFIED MODEL

elegant models; be be as simple as possible, because simple explanations
should be preferred over complex ones; they should be consistent with the
observations, showing explanatory power ; and they should be able to create
accurate predictions of the modelled phenomena. Kuhn (1977) and Colyvan
(2001) also add that a good theory should be fruitful, i.e. have the potential
to be seminal for future work.

It is our opinion that the current state of the benchmarking field lacks
of a convincing model that embodies these characteristics. Researchers and
commercial players have focused on characterizing very specific aspects of
computational systems, generating a large amount of models that well de-
scribe particular aspects, but failing to offer an holistic description of re-
ality. The strong inter-dependency of hardware and software has not been
exploited by models that usually focus only on one of those two entities.
No model offers characterization of both aspects at the same time. When
the performance of a system is analysed, specific models for the considered
computational resource are produced. We could not find models capable of
describing the general and abstract behaviour of software running on hard-
ware, with respect to generic resource consumption, including completion
time, energy consumption, or performance counters.

2.1 Time and energy

Completion time and energy consumption are closely related. Energy is
equal to the completion time multiplied by the average power absorption:
E = PT . They are proportional, but the information about completion time
is not enough to derive energy, and vice versa. The power absorption of a
computing system could change depending on the nature of the computation,
e.g. the level of active cores in a parallel algorithm. Because of their close
relationship, it makes sense to create a benchmarking model that allows us
to use both quantities to characterize machines and programs.

Several models have been proposed to predict the power consumption
of hardware, the energy consumption of programs, or the completion time
of programs, always separately. Because each of these models focus on a
different aspect, they are profoundly different. The information contained
in the relationship between time and energy is never exploited.

In this work we attempt to design a benchmarking approach that uses
several different metrics at the same time, and is capable of characterizing
and predicting both completion time and energy consumption in a single
model.

2.2. HARDWARE AND SOFTWARE 27

2.2 Hardware and Software

Computing systems are made by hardware and software. The performance
of a system obviously depends on both factors. Traditionally they have been
characterized separately.

Hardware benchmarking is usually done using standard suites like SPEC.
They try to assign a score to the evaluated system. Necessarily, the perfor-
mance description of the hardware is limited to the tasks included in the
benchmark suite. When using the same hardware to execute a different pro-
gram, interactions between instructions and architecture, not present in the
benchmarks used to characterize the hardware, could arise. Therefore, the
performance analysis could not be accurate when changing the workload.

Software characterization models usually profile the execution by instru-
mentation or simulation. They usually assume a specific hardware, and they
model the time needed to complete every operation on that specific hard-
ware. The model of the software created for a specific architecture does not
apply to different architectures.

Imagine a program that makes use of a particular memory access pat-
tern, that has good performance on the hardware being used to profile the
program. Imagine now running the same program on a different machine,
with a faster CPU, but with a different memory topology. The second
machine might generally be considered better than the first, but the pro-
gram might have unexpected poor performance on it, because of the not
favourable memory access pattern. Profiling the program only on the first
machine, this issue could not reveal itself in the characterization phase, but
only when the model is applied to a different machine. In general, unless the
model is designed to allow measures coming from multiple machines, unex-
pected behaviour, like the one previously described example, could occur.
The same is true when characterizing a machine: if the benchmark suite
used to analyse it does not contain a relevant software behaviour, it will be
missed in the analysis, that at least in some cases will not be representative
of the effective performance of the machine.

More generally, the combination of particular hardware features with
particular combinations of instructions will reveal interesting behaviour of
programs, that will have unexpected consequences in real programs. We
believe that designing the benchmarking model to characterize both software
and hardware simultaneously will use the peculiar traits of programs to
create good characterizations, instead of suffering from them.

Surprisingly, even though is obvious that a model designed to character-
ize both hardware and software simultaneously would be able to exploit the

28 CHAPTER 2. LACK OF A UNIFIED MODEL

interaction between them, we only found a small number of models designed
to characterize both aspects of computation simultaneously (the most rele-
vant are from Kuperberg et al. (2008), Kuperberg et al. (2008), and Saavedra
and Smith (1996)). The most promising research in this direction is from
Saavedra and Smith (1996), where a machine and a program are charac-
terized in the same model. We decided to design a simple approach where
hardware characterization is the dual of software characterization, allowing
an arbitrary number of programs and machines to be used, to ensure that
the model will capture interesting patterns that may be visible only when
the same program is measured on different computers, or when the computer
is tested with different programs.

2.3 Computational energy models

Energy consumption has become of primary importance in IT computing.
In High Performance Computing (HPC), the goal of achieving maximum
performance has traditionally led to neglect energy efficiency, but in the
recent years initiatives like the Green500 1 witness that the performance-at-
any-cost paradigm is no longer feasible (Hemmert, 2010; Kindratenko and
Trancoso, 2011). Part of the problem is related to hardware architecture
optimization and dealt by manufacturers; however, the runtime behaviour
of executed programs can help reducing the overall energy consumption (Yao
et al., 1995; Shin and Choi, 1999). Moreover, the existence of time slots in
which the completion time of a computation can be considered equivalent
allows for interesting optimization problems in which energy consumption
can be adjusted in that time slot. For example, typical Computer Fluid
Dynamics jobs require long time to complete and often a variance of hours
in the completion time may be acceptable due to organizational procedures
(i.e. week ends, night time etc.).

Resource accounting is a major challenge for the management of cloud
environments (Sekar and Maniatis, 2011; Lindner et al., 2010), especially
in the billing model that is currently most diffused: pay-as-you-go, where
the customers are charged for the resources actually used by their processes.
Energy is one of the most important expenses in a cloud environment, there-
fore measuring the energy consumed by each client is particularly valuable
(Buyya et al., 2010; Kim et al., 2014, 2011).

In literature we can find several attempts to model the energy consump-
tion of tasks, in some cases parallel tasks. However, not many models at-

1http://www.green500.org

2.3. COMPUTATIONAL ENERGY MODELS 29

tempt to characterize parallel programs running at the same time on the
same machine, or cluster.

In this work we propose a simple high level energy model for concurrent
parallel tasks, running on the same computational environment, designed
to describe tasks running on clusters. With our model the job scheduler
can retain the ability to precisely estimate the energy consumption of every
single job. Moreover, the instantaneous power prediction can be used to
limit the power usage of a cluster or of a datacenter, to avoid overloading
the power distribution system.

30 CHAPTER 2. LACK OF A UNIFIED MODEL

Chapter 3

Contributions of this work

3.1 Contributions

Our contributions to the field are:

• The formalization of a simple and high level approach to benchmark-
ing.

– The proposed model can characterize and predict generic re-
source consumption of programs running on computational en-
vironments.

– The model is unified: it characterizes hardware and software us-
ing the same approach; it can accommodate experiments and
measures coming from different architectures in the same model;
it can accommodate measure from heterogeneous computational
resources, e.g. completion time, energy consumption, perfor-
mance counters.

– We show how the characterization of the resource of interest (e.g.
completion time, or energy), or the characterization of the pro-
gram of interest, can be interpreted algebraically. Standard no-
tions like norm and cosine distance, applied to those characteri-
zations, are expressive tools that contain useful information.

– We postulate the existence of computational patterns, ideal pro-
grams that can be used as building blocks to describe the be-
haviour of real programs.

– We describe 3 algorithms that can be used to create characteri-
zations and predictions, the simplex solver, the linear regression
solver, and the non negative matrix factorization solver.

31

32 CHAPTER 3. CONTRIBUTIONS

– We show the algebraic relationship between the solving algo-
rithms, the computational patterns, and the characterization.

• We extend our model to create the notion of experimental computa-
tional complexity of software. We discuss its relationship with theo-
retical time complexity. We show why any approach that uses a single
dimensional metric to characterize software will inherently have a large
error

• We define a simple energy model, that supports concurrent parallel
tasks, and a large range of architectures, from single core to large
clusters.

3.2 Plan of work

In this part we give an overview of the benchmarking practice. We state that
the community is still missing a common metric to indicate performance,
the basic tool to characterize hardware. Analysing the state of art, we argue
that a high level of fragmentation is present: hardware and software are ob-
viously closely related, but they are modelled separately; completion time,
energy, and the other computational resources necessary for a program to
perform its task are undoubtedly related to each other, but they are usu-
ally modelled with different models. Different and incompatible models are
usually built for different architectures. Software characterization models
are usually built only on a specific architecture. The state of art reveals
that benchmarking, performance analysis, and energy characterization, are
conducted as separate research fields, without a unified systematic method-
ology. Energy and completion time are closely related. However, with the
increasing degree of parallelism of modern architectures, thy are not neces-
sarily interchangeable. Completion time is not a representative metric for
highly parallel tasks. Total CPU time is more adequate for multi-core ar-
chitectures, but is not a feasible approach with heterogeneous architectures,
e.g. CPU and GPU.

In the second part we present our benchmarking model, a unified ap-
proach that characterizes and predicts generic resources consumption (e.g.
completion time, energy, performance counters) of programs. The model is
unified because it can be used to describe both hardware and software, and
the consumption of different resources. We also introduce the concept of ex-
perimental computational complexity that defines, empirically, the behaviour

3.2. PLAN 33

of programs as the input size grows. Moreover, we define an energetic model
that describes the power consumption of concurrent parallel programs.

In the third part we report the outcome of a set of experiments we de-
signed to validate our model: we test the expressiveness of our experimental
computational complexity using micro-benchmarks; we validate the accuracy
of predicting completion time of a representative set of programs (the CPU
SPEC suite), building the model on a set of architectures, and testing it on
a different set of architectures, to show that the model can be applied to
different architectures; we predict the power consumption of OpenFOAM
concurrent parallel tasks running on a small cluster to validate our energy
model; we predict the best device on an heterogeneous machine where to
run an OpenCL kernel, using our prediction model.

In the last part we draw conclusions on our research, discuss the impli-
cations, and indicate possible future work.

34 CHAPTER 3. CONTRIBUTIONS

Chapter 4

State of the art:
characterization and
prediction of performance
and energy

In this chapter we will present the state of the art in the field.

Performance characterization of hardware is a practice with a long tra-
dition. In section 4.1 we outline the characterization approaches. We then
continue listing the most used metrics, discussing the limitations of each
one. We also provide a short overview of the more used benchmark suites.

In section 4.2 we describe the state of the art of software measurement
and characterization. We list the most important approaches, with particu-
lar attention to the work that inspired our research.

In section 4.3 we describe the state of the art in energy characterization
of computing systems, listing the measurement tools, and the approaches
(profiling, simulation, black-box). We focus on energy models, capable of
characterize computing systems energetic behaviour, and the use of energy
as a possible approach to describe the overall computational effort needed
to complete a task.

We close this chapter describing the state of the art in scheduling on
heterogeneous architectures. This topic is interesting because it requires the
creation of models of performance of a given task on different devices, which
is related to our research goal.

35

36 CHAPTER 4. STATE OF THE ART

4.1 Hardware benchmarking

The evaluation of the performance of hardware involves techniques that
can be reduced to three categories: analytical modelling, simulation, and
measurement (Jain, 1991; Lilja, 2005).

Analytical modelling is a simplification of reality, therefore usually has
low accuracy. However, it can convey useful information about the analysed
hardware.

Measuring the performance of machines can produce the most accurate
description of their performance, because is using the actual hardware. How-
ever, the performance score is not necessarily representative of the effective
performance with real-world programs. Because of the difficulty involved
with experimentation, and because it needs access to the actual hardware,
it is not always feasible. Also, Measuring requires a large amount of time
and resources, to buy the computer and the measuring system, to prepare
the experiment, to run the experiment (possibly multiple times to ensure
statistical validity), and to process the measurements.

Simulation is a trade-off of the analytical modelling and the measuring
approaches. Creating simulation requires creating an emulator of the hard-
ware, a process similar to creating an analytical model. The results there-
fore reflect the limitations of the analytical model (simplification of reality).
However, the simulation could reveal unexpected behaviour, not modelled
by an analytical approach. Running simulations can require a large time.
Creating an emulator is usually less expensive than acquiring the hardware
and running experiments.

No approach comes without problems, and often the combination of
several approaches, if feasible, is to be preferred (Jain, 1991).

4.1.1 Metrics

Lilja (2005) states that good metrics should conform to the linearity, relia-
bility, repeatability, easiness of measurement, consistency, and independence:

Linearity : performance changes should be linearly proportional to changes
in the metric. People think linearly, using non linear metrics makes
them less intuitive;

Reliability : better scores should correspond to actual better performance.
This might seem obvious, but the MIPS metric is notoriously not reli-
able: system A could score higher MIPS than system B, but take more
time to complete tasks;

4.1. HARDWARE 37

Repeatability : it should be possible to repeat the analysis, obtaining the
same score. This is a basic principle of science;

Easiness of measurement : related to the previous criteria, it should be
possible to repeat analysis. Like in the scientific method is important
to be able to repeat experiments;

Consistency : the unit of a metric should not change as we change system,
or comparing alternative systems would be meaningless;

Independence : the metric should be independent from the interests of
hardware manufacturers.

Jain (1991) lists the following categories for performance metrics, de-
pending on the nature of the workload used as benchmark, and the aspect
of the system that we are interested in measuring: time; rate; resource uti-
lization; error rate; time to failure. For our research, metrics that fall in the
“resource utilization” and “completion time” categories are interesting. The
number of metrics that have been proposed throughout the years is large.
Some try to capture specific aspects of the performance of computing sys-
tems (e.g. I/O or connectivity). We will now list the most used performance
metrics that attempt to describe the overall performance of a system.

Execution time is the simplest measure of performance that can be de-
fined. It is simply the time needed by a defined task to complete.
Measuring completion time on a computer requires executing instruc-
tions that start, stop, and log the elapsed time. Those instructions
have an overhead and the result will therefore not be precise. For this
reason, this approach is only suitable for long-running tasks, where
the overhead of the measurement is small compared to the execution
time.

Clock rate is simply the CPU operating frequency. It was a popular per-
formance metric before the “megahertz myth” showed is limits. As
discussed in section 1.1, “clock speed” is a misleading metric, because
it might not reflect the effective performance of the machine. An archi-
tecture might have slower clock rate, but be able to perform complex
operations in a smaller number of CPU cycles than different architec-
ture, with faster clock.

MIPS is an acronym for Millions of Instructions Per Second, it measures
the amount of computation performed in a second. MIPS was, and still

38 CHAPTER 4. STATE OF THE ART

is, a very diffused metric to express performance. However, it suffers
the same limitations of clock rate, because the number of instructions
performed in a second does not necessarily reflect the amount of useful
work performed in the same amount of time (the difference between
RISC and CISC). As an example, imagine a system a where each in-
structions performs complex operations, and system b where the same
operation requires 3 time more instructions, because each instruction
performs simple operations. The MIPS of b might be two times larger
than the MIPS of a, but a would still be able to perform more work
than b in the same amount of time.

MFLOPS measures the number of floating-point arithmetic operations
that the system can perform in a second. It improves MIPS, be-
cause ensures that the performance scores between different system are
comparable. However, the concept of “floating-point arithmetic oper-
ation” is vague. There are different kind of operations, with different
complexity (sum, division, transcendental, trigonometric). Therefore,
MFLOPS suffers of similar problems as MIPS. Moreover, ignoring
every non-floating-point instruction is dangerous, because every real-
world computations require other instructions. Imagine a machine
with an extremely fast Floating Point Unit (FPU), but with extremely
slow memory and little cache; most real-world programs make use of
memory, and this machine will have poor performance, but a high
MFLOPS score.

QUIPS adopts a different approach and measures the quality of the solu-
tion that a system can provide in a limited amount of time, instead of
the quantity of operations. This approach is reasonable thinking about
fields like weather forecasting, or other numerical problems where the
precision of the solution is subject to a tolerance level, arbitrarily set
to limit the number of iterations. QUIPS has limited scope, as it
is only appropriate to describe the performance relative to problems
where the quality of the solution is measurable as a continuous value.

Speedup is the ratio between the completion time of a workload on a ref-
erence machine and the completion time of the same workload on the
reference machine. If the speedup is larger than 1, then the measured
machine has better performance than the reference machine, because
it requires less time to complete the workload.

SPEC is a performance metric that refers to the SPEC CPU benchmark

4.1. HARDWARE 39

suite. The completion time of the programs present in the suite are
normalized by the completion times on a reference (fixed) machine;
then the geometric mean of the ratios is used a single dimensional
metric. The SPEC metric suffers from the same problem as any other
metric that expresses performance as a single number. We will discuss
why this approach can not accurately describe the complex interac-
tions of computing systems in chapter 7.6.

4.1.2 Benchmarks

There is an interminable list of benchmarks used to assess the performance
of computing systems. Some attempt to capture the overall performance,
other try to capture the behaviour on specific tasks (e.g. database, MPI
communications, or I/O). In this section we report a small list with the
benchmarks that we have found interesting for our work.

Patterson and Hennessy (2008) describe the problem of choosing the
program to evaluate hardware and groups benchmarks in four categories:
real programs, kernels, toy benchmarks, synthetic benchmarks. They also
presents the main benchmark suites and points out the main problems: a
single program can not be representative for all the possible workloads.
Moreover, the currently used performance metrics (e.g. MIPS, MFLOPS)
are not consistent nor useful.

LINPACK (Dongarra et al., 1979) is probably the most successful bench-
mark for longevity and adoption. Originally designed to assist the users of
the LINPACK package, it solves a system of linear equations, using the
BLAS library. The performance metric is MFLOPS and completion time.

System Performance Evaluation Cooperative (SPEC) is a consortium of
hardware manufacturer. It is the first attempt to provide a standardized
methodology to experimentation and reporting in the Benchmarking field.
SPEC has added programs to the suite (originally consisting of only 4 pro-
grams) to reflect the increased complexity in the hardware industry. They
have produced different benchmark suites for different aspects of computa-
tion. The most known is the CPUSPEC suite (Henning, 2000), but other
versions (e.g. for web servers, for Java VM) were released. The chosen per-
formance metric is a ratio (called SPECratio) between the execution time
on the profiled system and a reference system.

LINPACK and SPECCPU are the most used benchmark suites for eval-
uating performances of hardware. Salapura et al. (2005) use LINPACK to
evaluate hardware. Phansalkar et al. (2005); Phansalkar (2007) analyse the
similarity of programs in SPECCPU showing its redundancy.

40 CHAPTER 4. STATE OF THE ART

Rivoire et al. (2007a) propose JouleSort, a benchmark for energy effi-
ciency of hardware, and lists the existing energy efficiency benchmarks and
metrics (Rivoire et al., 2007b).

Performance Evaluation of Cost-Effective Transformations (PERFECT)
is composed of 13 complete applications (not synthetic or kernels), selected
as representative high-performance computations (Berry et al., 1989). It
reported total elapsed time and CPU time.

Livermore Fortran kernels were published in 1986 (McMahon, 1986),
consisting of 24 “do” loops, focusing on scientific computation, written in
Fortran. They have evolved over time, and have been ported to C. They
report the performance as arithmetic, harmonic and geometric means of
the MFLOPS of each program in the suite. They became popular because
the programs are kernels of real scientific computations. They were some-
what representative of the performance of the actual corresponding scientific
computations, but require much smaller time to measure.

The Numerical Aerodynamic Simulation (NAS) kernels are representa-
tive of fluid dynamic scientific programs (Bailey et al., 1991). They contain
complex numeric operations, but the performance is measured in MFLOPS.

Whetstone and Dhrystone are not used any more, but used to be very
popular. Whetstone (Curnow and Wichmann, 1976) was a synthetic pro-
gram that measured floating point performance, reporting results in number
of Whetstone interpreter instructions per second (MWhips); Dhrystone (We-
icker, 1984) measured integer performance, reported as number of Dhrystone
operations per second.

The Embedded Microprocessor Benchmark Consortium (EEMBC) anal-
yses the performance of hardware and software running on embedded sys-
tems. In 2009 they released the CoreMark (Gal-On and Levy, 2012), which
performs several algorithms, like sorting or matrix manipulation, iteratively.
It produces a single number score. EEMBC also released BrowsingBench,
to measure browsing performance, and AndEBench to measure performance
of Android platform.

Other benchmarks, that have been used in the past (Price, 1989; Jain,
1991), include:

• During the 1980s, the Digital Review magazine created a benchmark
to stress floating-point performance, reporting results as the geometric
mean of all tests. Results are also reported normalized on various sys-
tems. This benchmark suite has been criticized for using an instruction
mix not representative of real-world programming flows.

• The Dodoc benchmark uses Monte Carlo method to simulate opera-

4.2. SOFTWARE CHARACTERIZATION 41

tions within a nuclear reactor. Results are reported as ratio between
CPU time needed to complete the task and an arbitrary reference.

• Simulation Program with Integrated Circuit Emphasis (SPICE) from
the University of California at Berkeley, stressing integer and floating-
point performance.

• Stanford Integer and Stanford Floating Point suites contain small real-
world programs. The performance metric is completion time.

There are also simple programs that are used in benchmark suites, to
test particular aspects of computation. For example, the SIEVE kernel is
based on the Eratosthenes’ sieve algorithm to find all the prime numbers
below a certain number. It is used to compare microprocessors. Another
example is the Ackermann’s Function kernel, used to analyse the efficiency
of procedure-calling.

4.2 Software characterization

The approaches used to characterize software usually fall in one of the fol-
lowing categories:

Simulation : the program is run on a simulated computing system (Mukher-
jee et al., 2002). A virtual machine that models a particular architec-
ture is used as the host to run the program. All the relevant software
events are traced during execution and can be analysed in details.
For example it is possible to study the cache-miss rate of a program
with a particular memory topology. Simulation tools usually allow
the researcher to specify several aspect of the simulated architecture.
One of the most used simulation package is SimplesScalar (Burger
and Austin, 1997), a uniprocessor performance simulation tool. The
community has expanded the original tool with multi-threaded sup-
port. Other tools include Rsim (Hughes et al., 2002), used to simulate
shared memory multiprocessors, and Asim (Nellans et al., 2004), that
extends SimpleScalar with a finer grain support.

Profiling . Tracing interesting events during the execution of a program
(such as number of memory read, or conditional jumps), is a useful
technique used to analyse and profile software. Developers use tools
like “gprof” (Graham et al., 1982) or “valgrind” (Nethercote and Se-
ward, 2007) as a daily practice, to study difficult bugs, or simply to

42 CHAPTER 4. STATE OF THE ART

analyse the performance of their code. Patel and Rajwat (2013) sur-
vey embedded software profiling tools, evaluating profiling frameworks
like SnoopP (Shannon and Chow, 2004), Airwolf (Tong and Khalid,
2008), DPOP (Shenoy et al., 2010), DAProf (Nair and Lysecky, 2008),
and others. A limit of profiling is the overhead associated with the
sampling procedure, and the behaviour modification induced by the
instrumentation necessary to sample the code. This overhead can be
contained reducing the sampling, generating reports at regular inter-
vals instead of continuously (Metz and Lencevicius, 2004). However,
real-time systems rely on precise events timing, and the behaviour
modification could produce non representative reports. Sevitsky et al.
(2001) and Ammons et al. (2004) also propose interesting profiling
tools.

Black-box . Approaches like profiling require instrumentation of code,
altering its code with extraneous calls to the profiling framework, in-
troducing overhead. Moreover, there are cases in which instrumenting
closed source programs, running on real-time systems, is not viable.
Consider for example a scheduler acquiring information about running
processes to decide the resource allocation; instrumentation would re-
quire an excessive amount of overhead. Black-box measurement ap-
proaches do not require any change to the executable, and minimal
modification of the runtime. Typically only performance counters
need to be periodically collected. This still induces an overhead in
the computation, but much smaller than with profiling.

Saavedra and Smith (1996) propose an approach that was particularly
inspiring for our work: a model was proposed to characterize both hardware
and software, the overall resource cost is modelled as a linear decomposition
of simple components. Vijaykrishnan et al. (2000) also propose an energy
characterization model for both hardware and software. Our model lies
in the same category, but works on a coarser grain level, and allows the
simultaneous use of multiple devices and programs.

Metrics for software similarity are very interesting because allow us to
predict the behaviour or programs using measurements of similar programs
and allow their characterization.

Yamamoto et al. (2005) propose a metric of similarity based on source
code analysis. For the scope of our research we are interested in methods
that do not require access to the source code, because we want to be able
to characterize software as a black box.

4.2. SOFTWARE 43

Bonebakker (2007) uses performance counters to characterize software,
a technique that is becoming a standard de facto (Curtis-Maury et al., 2006;
Phansalkar, 2007; Eeckhout et al., 2002; Duesterwald et al., 2003). Bench-
marks are analysed, PCA is used to reduce the solution space and clustering
techniques are used to identify families of programs. Eeckhout et al. (2002)
have a similar approach, using statistical data analysis techniques such as
principal components analysis (PCA) and cluster analysis to efficiently ex-
plore the workload space in order to solve the problem of finding a repre-
sentative workload (the right benchmark with the right input dataset). The
idea of defining the similarity of programs to predict the energy usage of
a target program is becoming largely accepted (Phansalkar, 2007; Chang
et al., 2003; Duesterwald et al., 2003).

Other two key concepts are the idea that the environment where the
program is run must be taken into account (Chang et al., 2003) and the need
of finding a model capable of offering results that do not change if the same
program is run on a different hardware: Sherwood et al. (2001) characterize
software with a model consistent with the change of architecture, they have
a high level approach (not instruction level), but they do not focus on energy
consumption (Sherwood et al., 2002).

Completion time is the right metric to analyse performances of programs
(Hennessy et al., 2003). However, completion time clearly heavily depends
on both hardware and software. Characterizing a program with its comple-
tion time on a certain machine does not say much about its performance in
general. For multi-threaded programs Instructions Per Cycle (IPC) or Cy-
cles Per Instruction (CPI) are used. However, as discussed in section 4.1.1,
they are poor performance metrics. Alameldeen and Wood (2006) conclude
that total execution time should be used.

Computer science traditionally described the complexity of algorithms
with the Big-O notation, focusing on asymptotic behaviour. However, pro-
grams running on real-world systems need to comply to the physical limita-
tions of hardware, and an asymptotic description of their expected behaviour
is often not enough to predict their performance. Empirical Computational
Complexity attempts to fill the gap between the elegance of the theoretical
time-complexity approach, with detailed estimates provided by measures
from experiments, and characterizations provided by profilers. In chapter 7
we introduce the notion of experimental computational complexity, based on
the characterization that our benchmarking model automatically extracts
from the experimental data. Similar approaches can be found in the work
of Goldsmith et al. (2007). Martin (2001) stated that there is a need for
an “energy complexity” description of programs. We also use experimental

44 CHAPTER 4. STATE OF THE ART

computational complexity to investigate on the relationship between time
complexity and energy consumption.

4.3 Energy characterization

This section presents the most relevant research approaches on:

1. tools and devices used to measure the energy consumption;

2. the high level approach: simulation, profiling, black-box;

3. the models for characterization of energy consumption and estimation
of hardware and software;

4. the relationship between energy consumption and parallel algorithms,
virtual machines and time complexity;

5. proposals of policies for the energy management.

4.3.1 Power measurement approaches

In this section we discuss the state of the art in measuring the energy con-
sumed by software. We think that the the use of expansive devices, uneasy
to use by non technical users, reduces the reproducibility of the experiments.
We also found that too often the measurements are taken aiming at finding
the energy consumption of very small events (assembler instructions), losing
the ability to see interactions between hardware and software (e.g. patterns
of memory access).

The measurement tools

Tiwari et al. (1994) are the first authors to present a model to estimate the
energy needed to complete a sequence of instructions, where the energetic
cost of single assembler instructions are found empirically. This approach
has inspired most of the research that followed, in the sense that most re-
searchers tried to decompose the energetic cost of programs down to the
minimum components: assembler instructions (Steinke et al., 2001). How-
ever, Tiwari finds that the energetic behaviour of a single instruction varies
largely because of interaction with other instructions. He takes into account
very simple programs (few instructions repeated many times) and the inter-
action of instructions in the pipeline of a super-scalar architecture but we
believe that many other phenomena occur in real programs.

4.3. ENERGY 45

In many cases the chosen measurement tools were professional expansive
digital multimeters (Russell and Jacome, 1998; Flinn and Satyanarayanan,
1999; Bircher and John, 2008; Seo et al., 2009). Russell and Jacome (1998)
measure the energy consumption of 32 bit RISC using the same approach
as Tiwari: repeating a single assembler instruction many times. Flinn and
Satyanarayanan (1999) also use a multimeter to measure energy, it also
implements a system monitor to profile programs. The measurements are
precise but the testing set is difficult to build because of the cost of the
measuring tools and the difficulty of handling them.

In most of the approaches the sampling is time driven, dividing the
experiment in equally small time frames (usually in the scale of milliseconds).
Chang et al. (2003) propose an interesting shift: the sampling is energy
driven. Every time an energy quanta is consumed the measurement system
will take a sample. This approach is particularly good to measure idle times,
because the act of measuring is less intrusive (if the sampling is time driven
more interrupts will be produced and measurements will be altered). But
this approach requires non standard measurement devices and the operating
system has to be modified to respond to interrupts received every time an
energy quanta has been consumed.

More recently, Dutta et al. (2008) proposed hardware modifications that
could give energy measurements usable by the operating system, and Bircher
and John (2008) propose a measurement system very precise but difficult
to be replicated. Both proposed approaches require engineering skills and
allow to identify the energy consumption of single hardware components.

The high level approach: profiling, simulation, black-box

In many cases the measured program is analysed and profiled. Flinn and
Satyanarayanan (1999) measure the energy consumption with a digital mul-
timeter while a system process monitors the programs. Data from static
analysis of source code are gathered and matched with the energy measure-
ments to find the cost of single instructions.

Another common approach is simulating the execution of algorithms on
modified virtual machines or power level performance simulators (Brooks
et al., 2000; Vijaykrishnan et al., 2000)). Usually the simulators are coupled
with a power model (with the energetic cost of every instruction) and this
gives estimates of the energy that the program would actually consume
on a real hardware. This approach is particularly interesting for hardware
producers because is easy to have a quick idea of the possible power savings
just editing the power model, simulating the change in a component of the

46 CHAPTER 4. STATE OF THE ART

hardware. But this approach is only feasible for simple architectures, where
a cycle accurate simulator is possible and for relatively small programs.

The approach often referred to as black-box measures the software as a
whole without trying to break down the energy consumption of instructions.
This approach is the simplest to implement, does not need modifications to
the operating system, can work with a simple ammeter. Rivoire (2008)
describes the procedure and in Rivoire et al. (2007a) uses this method to
evaluate sorting algorithms. The measuring approach is as simple as possi-
ble: the current is measured in AC from the wall outlet. Other works falling
in this category are Sinha and Chandrakasan (2001) and Vijaykrishnan et al.
(2000).

4.3.2 Energy consumption of virtual machines

Energy consumption of virtual machines is a research field rapidly grow-
ing, mostly for the hype about cloud computing. The most investigated
issue is the management of clusters of virtualized applications, by means
of energy aware management models (Raghavendra et al., 2008; Beloglazov
and Buyya, 2010a,b; Lefvre and Orgerie, 2010; Kim et al., 2014) and tools
(Dhiman et al., 2010); cost models of live migration (Liu et al., 2011) and
consolidation (Beloglazov and Buyya, 2010a; Srikantaiah et al., 2008); disk
usage techniques (Ye et al., 2010). There are plenty of models for various
aspects of cloud computing, nonetheless no model has been proposed yet to
characterize software running in a virtualized environment. Also, there is no
simple tool available to measure the energy efficiency of hardware and hy-
pervisors running in a cloud environment, because the available specialized
benchmarks are either too complex (SPECvirt 1), incomplete (VMmark 2 is
unable to measure guest systems with more than one virtual processor) or
not freely available (Intel’s vConsolidate).

4.3.3 Energy consumption related to parallelism

Few are the models that describe the energy efficiency of parallel compu-
tations. Cassidy and Andreou (2011) extend Amdahl’s law, proposing a
function for finding the optimal level of parallelism minimizing the energy
consumption while preserving performances.

Amdahl is also used as a basis for energetic models of parallel computa-
tions (Cho and Melhem, 2008; Woo and Lee, 2008; Cho and Melhem, 2010)

1http://www.spec.org/virt_sc2010/
2http://www.vmware.com/products/vmmark/

4.3. ENERGY 47

in our opinion without proposing a simple and expressive model. We also
think that energy consumption could be used as an expressive metric of an
algorithm’s parallelism.

4.3.4 Energy consumption related to time complexity

The relationship between energy consumption and time complexity is mostly
yet to be studied. Martin et al. (2011) are the only authors we could find
proposing the idea of energetic complexity of software. They also define
metrics (similar to the well known Θ) and note that the widely used E × t
(energy multiplied by time) metric is misleading because CPU power usage
and CPU frequency are tied by a quadratic ratio, so the best metric is E×t2.

4.3.5 Energy management policies

Policies have been proposed (at many levels: firmware, operating system,
etc.) to reduce the energy consumption of hardware and software. This area
gained much attention when the laptops and the smartphones became ubiq-
uitous, since then saving battery life has been a primary concern. Lebeck
et al. (2000) study the energetic cost of policies of Page Allocation, we see
how the best results are obtained if we take into account both hardware and
software simultaneously. Neugebauer and Mcauley (2001) use energy as a
scheduling resource in the Nemesis OS. Zeng et al. (2002) also propose a
scheduling policy that aims at saving energy.

A more recent research topic is the tuning of processor speed by using
DVFS. Isci et al. (2006), Rangan et al. (2009) and Bircher and John (2008)
propose models of energy usage and attempt to improve the policy used to
adjust the processor speed in order to save energy not losing performances.

4.3.6 Coarse grain energy models

Most of the research around energy consumption modelling and power aware
scheduling is based on instruction-level power models (Li and John, 2003;
Tiwari et al., 1994; Brooks et al., 2000); Dynamic Voltage Scaling (Mishra
et al., 2003; Yang et al., 2005; Chen and Kuo, 2007); CMOS logic (Mudge,
2001). Already in 2004, Bianchini and Rajamony (2004) reported these ap-
proaches as “current state of art”, and stated that modelling overall energy
consumption and peak power would be the future challenges for server sys-
tems. But while copious amount of literature can be found on low-level
energy models, not the same can be said for models about the upper layers
of the software stack.

48 CHAPTER 4. STATE OF THE ART

Gu et al. (2014) review methods for power consumption measurement
systems. The need for high-level energy model is evident when trying to
describe the energy consumption of clouds, at the server level. Feng et al.
(2005) and Kim et al. (2011) showed that energy consumption can suc-
cessfully be characterized and predicted, even with simple and high-level
energy models (at the system level), complying with the recommendations
of Bianchini and Rajamony (2004). Kim et al. (2011),Wang et al. (2011),
Ma et al. (2009) and Zhang et al. (2011) use statistical approaches to model
and predict the energy consumption of programs.

Several energy model have been proposed to characterize the energy con-
sumption of tasks (Goiri et al., 2010; Kim et al., 2011), also parallel tasks
have been modelled (Garg et al., 2009; Li, 2012; Wang et al., 2010). Most
of the research focuses on Dynamic Voltage Scaling (DVS) of the CPU.
However, not many models attempt to describe the power and energy con-
sumption of concurrent parallel tasks, running on the same computational
environment.

In this work we present an energy model that has the same level of
abstraction as Feng et al. (2005) and Wang et al. (2011), but it models
the system power consumption in a different way. The most abstract form
of our model is compatible with one of the models reported in Gu et al.
(2014), we factor out some parts in a refinement in order to be able to
apply statistical analysis and automatically characterize the computational
environment. Our model is also a generalization of Kim et al. (2011), they
specialize the general energy formula to describe energy consumption in
terms of performance counters, focusing on virtual machines (VMs) running
on a single machine. We start from the same high-level energy formula, but
we focus on a higher level, modelling the energy consumption of a cluster,
in terms of number of active machines and cores, still achieving accurate
results.

Our work is closely related to Kim et al. (2011). They propose a simple
high level energy model. Like us, they use the coefficients of linear regression
to characterize servers, and use the coefficients to predict energy consump-
tion. They apply this model to several virtual machines (VMs) executing
concurrently on a single server, to separate the energy consumption of each
VM. We extend their approach to model the effect of scaling the model
on more physical machines. Our model has similar accuracy, but a coarser
grain, in particular we do not rely on performance counters, but only on
time measurements. This difference makes our model easier to be adapted
to systems with heterogeneous components (GPU, Xeon Phi, systems with
dedicated co-processors, etc.). With our approach there is no need to de-

4.3. ENERGY 49

velop ad-hoc probes, we only need the utilization time, whereas Kim et al.
(2011) needs some measure of the kind and number of operations performed
by each component. Moreover, collecting performance counters is not always
easy, and adds a computational load, especially when this has to be done
for each core or for each component in the case of heterogeneous systems.

Another approach similar to our is SPAN (Wang et al., 2011), where the
energy consumption of tasks is predicted using the number of instructions
per cycle (IPC). However, the scope of the models is different: our work uses
completion time whereas SPAN relies on performance counters; we model the
parallel execution of multiple tasks running on the same machine, whereas
SPAN only models a single active task; we model a multi-node architecture
whereas SPAN focuses on a multi-core architecture.

An important consequence of the choice of relying on the number of
operations is that, as can be seen in the Evaluation section of Kim et al.
(2011), when the number of operations does not describe well the program,
other counters are needed, such as the number of memory accesses. This
led the authors to conclude that “The first model is a simple model that
calculates the amount of energy consumption by multiplying the processor
time with the average power consumption of the processor, [...]. Due to the
oversimplification, this model still shows poor accuracy.”, whereas we show
that only relying on processor time, with an appropriate model, accurate
predictions are possible.

Other authors attempted to model and predict power consumption using
statistical approaches. Feng et al. (2005) propose a high level power model,
with different levels of granularity, system, node, and component level. They
model different components, and model parallel jobs, but they do not take
into account concurrent tasks. Moreover, the profiling phase is complex and
it requires manipulation of the computational environment. We think that,
to be adopted in a real world scenario, the profiling procedure should involve
the least possible effort.

Ma et al. (2009) also use a statistical model trained to predict GPU
power. Support vector regression (SVR) is used and compared to the pre-
dictions obtained using least square regression, with similar results. SVR
involves augmenting the dimensionality of the input domain and usually a
consequent mapping to non-linear spaces using kernel tricks. This allows
the model to capture non-linear behaviours, but it makes it very hard, if
not impossible, to interpret the model, that will have to be accepted or re-
jected only looking at the fitting of test data. This approach is prone to
over-fitting.

Zhang et al. (2011) use a different approach: random forest. The model

50 CHAPTER 4. STATE OF THE ART

has an R2 = 0.89, meaning that roughly 90% of the information has been
described by the model. The median absolute error is reported to be 0.043,
without further description of the error distribution.

Bircher and John (2012) model power consumption of subsystems (CPU,
memory, IO, disk and GPU) with ad-hoc linear models for each subsystem.
Their goal is to show that models can be created in a training phase using
performance counters, and that an estimate the system power consumption
can be carried out at runtime without the need for power sensing hardware.
During the training phase, power measurements require employing resistors
connected in series with the power source on each subsystem. The relative
prediction error in each subsystem is usually less than 0.1, but the paper
does not report the total error, that from an estimate should be less than
0.2. They use 13 performance counters.

4.4 Scheduling on heterogeneous architectures

For our research, scheduling on heterogeneous architectures is an interesting
topic, because selecting the best device for a program requires characteri-
zation of both hardware and software, and to carry out predictions of their
performance.

Scheduling on systems exposing multiple devices has been quite a studied
problem. In this section we present and discuss the most recent and relevant
works in this research area and in particular those focusing on scheduling on
CPU-GPU heterogeneous systems, trying to underline the major differences
with our approach.

Best device prediction is a classification problem, hence popular classi-
fication approaches, such as SVM (Support Vector Machines), have been
successfully used. Wen (2014) uses Support Vector Machines, with a Gaus-
sian Kernel, to predict whether an algorithm would run faster on the GPU
or on the CPU. An important limitation of this approach is that it is very
hard (if not impossible) to interpret the model created by an SVM, which
has to be accepted or rejected only looking at the prediction results and
might suffer from over-fitting. We tried to apply SVM to our data (using
the same kernel described by Wen (2014)) and could not replicate their best
device prediction accuracy. In contrast, as we show in the experimental part,
using a simple method such as linear regression it is possible to analyse the
regression coefficients, that will usually have an intuitive interpretation and
it is possible to verify them; e.g. the coefficient assigned to the number of
instructions feature should be in the same order of magnitude as the proces-

4.4. SCHEDULING 51

sor frequency, or the coefficient assigned to the number of memory accesses
should be compatible with the memory bandwidth.

Other statistical approaches have been attempted. Iverson et al. (1999)
uses K-Nearest Neighbour to predict completion time on the basis of code
and input similarities. Huang et al. (2010) apply Sparse Polynomial Re-
gression to a set of automatically selected features for completion time es-
timation. We think that linear regression should be favoured, because it is
an easier approach, it offers an understandable model and it is suitable to
progressive refinements. As stated by Huang et al. (2010), some non-linear
aspects may be impossible to model using linear methods. Nonetheless, lin-
ear regression is a feasible approach if the relation between the dependent
variable and the explanatory variables (e.g. completion time and code fea-
tures) is linear, which shifts the problem to meaningful feature selection.
For example, whereas the size of the input matrices (n) has not a linear re-
lation with the completion time in matrix multiplication (n3 for sequential
implementations), the completion time is linear on the number of opera-
tions/memory accesses. The problem is therefore to select the appropriate
features to consider in order to predict the completion time.

52 CHAPTER 4. STATE OF THE ART

Part II

Benchmarking Model

53

55

In chapter 5 we define a high level approach to a generic and unified
of computational systems characterization model. Our model creates an
analytic representation, called surrogate, of the entity we are interested in
modelling (a target program or a target resource), from measurements of
resource consumption of benchmarks running on known hardware. The tar-
get program is expressed in terms of the benchmarks, the target resource in
terms of the other resources. In this chapter we introduce the concept of
computational pattern.

In chapter 6 we discuss the different algorithms that can be used to
extract surrogates and to create predictions. Linear Regression is a simple
model that has an intuitive interpretation of the surrogate, yet offering good
predictive capabilities, as show in chapters 11 and 12. Linear Regression
assumes that the target program can be expressed as a linear combination
of benchmarks (or the target resource in terms of resources). This can be
explained using computational patterns.

In chapter 7 we introduce the concept of experimental complexity as
an empirical method to describe how the resource consumption of an al-
gorithm changes as the input size grows. In this chapter we also describe
how to use our model to predict bottlenecks. In section 7.5 we discuss the
compositionality of the model. We show how it can be explained in terms
of computational patterns. In section 7.6 we discuss the algebraic reasons
why a single number can not be a representative surrogate for a program
or a computational environment performance. This explains why simple
uni-dimensional metrics like FLOPS fail to describe performances.

In chapter 8 we introduce an energetic model, a set of equations that
show the relation between completion time, instant power and energy con-
sumption. This model is capable of describing both sequential and parallel
concurrent computations.

56

Chapter 5

High level model

In this chapter we provide a general and high level description of our black
box, regression based approach. The approach is black box in the sense that
does not require any knowledge of the source code of the program. It is easy
to apply because it does not require to change any aspect of the hardware,
it can be used with standard metrics such as performance counters.

Our approach can be seen as a Machine Learning task, more specifically
Supervised Learning, that infers properties from training data. The train-
ing data consists of a set of measures for a specified set of programs, here
called benchmarks. The measures need to be taken on a specified set of
resources. A regression model is created on the training data set, and the
regression coefficients are used as a characterization of the entity subject
of interest, usually a particular program, or a particular resource, such as
completion time or energy. The regression coefficient can also be used to
create prediction of resource usage.

The model we propose has several qualities required by a good scientific
model:

• it can explain past observations;

• it can predict future observations;

• it is computationally cheap to create a characterization of the target
entity (program or resource), and to create predictions;

• the quality of the characterization and predictions can be assessed,
therefore refused;

• the model is generic and applies to different phenomena;

57

58 CHAPTER 5. HIGH LEVEL MODEL

• the model is as simple as possible;

The model provides a surrogate of the program (or of the computational
resource) we want to describe. To be able to compute the surrogate using
the data measured with experiments, we need a solver. The simplest solver
is linear regression.

In the rest of this chapter:

• we define all the important terms used in the model, such as program,
resource, and solver, that creates characterizations and predictions;

• we define the general setting for the model, that can be implemented
using different solvers;

• we introduce the concept of computational patterns;

• we discuss some of the algebraic properties of the model;

5.1 Definitions

In this section we provide the definitions for the terms used in the rest of
the work.

5.1.1 Program

Definition 1 (Program). A program is a particular and defined sequence of
instructions. Programs is defined by a software and some input data.

We will use p or pi to indicate generic programs. If known, we will use
the program’s name, e.g. povray or gcc.

The same program can be run on different micro architectures, even
if it will generate different low level sequence of processor instructions, it
will still be considered the same program. When called to process different
input sizes, because the sequence of high level instructions will considerably
change, it will be considered a different program.

5.1.2 Computational Environment

Definition 2 (Computational Environment). A computational environment
is a computational system that can execute programs.

5.1. DEFINITIONS 59

We will use upper-case letters to indicate computational environments,
e.g. A or B.

Examples of computational environments are embedded computers, smart
phones, PCs with different micro-architectures, clusters. We consider part
of the computational environment the hardware as well as the operating
system and all the software running on the machine at the same time as the
program being measured.

5.1.3 Measure of resource consumption

Definition 3 (Resource). A resource is a finite asset of the computational
environment that is used by programs to run.

The energy or the time used by a computer to complete a program are ex-
amples of resources. The same resource on different computational environ-
ments are considered different resources: e.g. completion time on computer
A and completion time on computer B are different resources. Therefore a
resource also always refers to a computational environment.

We use r or ri to indicate generic resources.

Definition 4 (Measure). A measure is a positive real number that describes
the quantity of resource used by a certain program to run on a certain com-
putational environment.

We indicate the measure of the consumption of the resource r to exe-
cute the program p, we write µr(p), or µ(p) if clear from the context. In
the experimental we will indicate measures of completion time with t and
measures of energy consumption with e.

A measure always refers to both a program and a resource (therefore
a computational environment), i.e. a measure quantifies the usage of a
particular resource on a particular computational environment by a program.

Not every resource can be used in our model, it needs to provide measures
that respect the mathematical definition of measure, i.e. they need to have
the following properties:

• Non-negativity:

∀x µ(x) ≥ 0 (5.1)

Non negativity

all measures must be non negative real values

60 CHAPTER 5. HIGH LEVEL MODEL

• Null empty set:

µ(∅) = 0 (5.2)

Null empty set

the resource consumption of running an empty program must be equal
to zero

• Countable additivity:

∀xi µ(∪xi) =
∑

µ(xi) (5.3)

Countable additivity

if two programs p1 and p2 do not share a computational resource, then
the measure of its consumption when executing p1 and p2 must be
the sum of the resource consumption of executing them individually:
µ(p1 +p2) = µ(p1) +µ(p2). It’s often difficult to ensure that programs
do not share resources, in such case countable subadditivity is sufficient

∀xi µ(∪xi) ≤
∑

µ(xi) (5.4)

Countable sub additivity

Examples of valid resources are processor time, completion time, memory
allocations, energy. Examples of invalid resources are % processor time
(it may decrease), active memory (memory could be deallocated), power
(instant power could decrease). Usually invalid resources can be made valid
combining them with time.

An interesting example is average Power, which is not a valid resource.
Let’s consider a program p3 that is composed of 2 programs p1 and p2 ex-
ecuted sequentially: p3 = {p1; p2}. If Pp1 the average power during the
execution of p1 is higher than Pp2 the average power during the execu-
tion of p2, then Pp3 the average power during the execution of p3 will be
Pp2 ≤ Pp3 ≤ Pp1 . This violates countable sub additivity (the power used
by a part of a program is higher than the power used by the whole pro-
gram). On the other hand, because both average power and completion
time are always positive quantities, countable sub additivity holds for en-
ergy: Ep3 = Ep1 +Ep2 = Pp1Tp1 +Pp2Tp2 , Ep3 ≥ Ep1 , Ep3 ≥ Ep2 (where Tp1
and Tp2 are completion times for p1 and p2).

Countable sub additivity does not hold if a resource acts a bottleneck for
the computation. In section 7.4 we discuss the details of this phenomenon
and how this can be used.

5.1. DEFINITIONS 61

5.1.4 Computational Pattern

Definition 5 (Computational Pattern). A computational pattern is an ideal
program the exhibits a peculiar resource consumption.

Examples of computational patterns are: a program made in its entirety
by floating point operations; or a program that triggers a cache miss at
every instruction. Computational patterns are usually ideal programs, real
programs can not consist only of a single computational pattern. At most
synthetic benchmarks can approximate particular computational patterns.
Some computational pattern could be reasonably be guessed (in some case
even designed), but in general they are unknown, and may arise when new
micro-architectures are created: a novel micro-architecture could expose a
peculiar resource usage when used by a certain sequence of instructions.

Our model assumes that all programs can ideally be decomposed in se-
quences of computational patterns. The computational patterns form a basis
of the resource consumption space (because they are orthogonal with respect
to resource consumption). Any program, including both the benchmark and
the target program, can be written as a linear combination of the computa-
tional patterns. If every computational pattern used by the target program is
contained at least in one of the benchmarks, and if the benchmarks are not
linearly dependent, we can operate a change of basis and express the target
program as a linear combination of the benchmarks. If the target program
contains computational patterns that are not contained in any benchmark,
then the change of basis will lose information.

5.1.5 Solver

Definition 6 (Benchmark). A benchmark is a program used to predict the
measure of the target resource and the target program.

Definition 7 (target resource). The target resource is the resource that we
want to predict for the target program.

We use rt to indicate the target resource, or the name of the resource if
it is known.

Definition 8 (target program). The target program is the program that we
want to model in terms of the benchmarks, whose target resource we are
interested in predicting.

we use pt to indicate the target program, or the name of the program it
is known.

62 CHAPTER 5. HIGH LEVEL MODEL

Definition 9 (target measure). The target measure is the measure of the
target resource and the target program that we want to predict.

Definition 10 (Solver). A solver is an algorithm that, given a set of mea-
sures of the benchmarks and the target program, creates a surrogate for it.

Definition 11 (Surrogate). A surrogate is an analytic representation of the
target program (or the target resource). The surrogate is the output of the
solver.

The actual nature of the surrogate depends on the solver, it can be a
simple structure as a vector (for linear models), or a couple of matrices
(when using the Non Negative Matrix Factorization solver), or have a more
complex structure (when using a Support Vector Regression based solver).

If we assume that programs are linear combinations of computational pat-
terns, then the surrogate is surrogate is a linear combination of benchmarks
used.

The surrogate does not depend on the target resource or computational
environment

5.2 The model

In this section we present an abstract description of the model, where a
surrogate for the interesting aspect is created using measures the resource
consumption of benchmarks. The model will be implemented in section
5.2.1 to obtain a surrogate that characterizes a target program, and in 5.2.2
to obtain a surrogate that characterizes a target resource.

We define a matrix X containing the measures of resource consumption
of the benchmarks. To define X we proceed as follows:

• we decide the set of resources we want to use to build our model

• we decide the set of programs we will use as benchmarks

• we measure all the resources for all the benchmarks

• we build the matrix X using the measures. The way the measures are
arranged in the matrix depends on the actual implementation of the
model, as described in section 5.2.2 and 5.2.1

We then define a vector y with the measures of the aspect we are inter-
ested in modelling, either the target program or the target resource.

5.2. THE MODEL 63

The first goal of the model is to create a surrogate of the aspect we
are modelling. Analysing its surrogate we will be able to characterize the
target program or the target resource, gaining a better understanding of its
behaviour.

To build a surrogate β we will use some function f that maps X and y
into β, as shown in equation 5.5. The function f depends on the solver we
choose.

β = f(X,y) (5.5)

solver

The model can usually also predict the target resource consumption for
the target program.

Firstly, we define a new vector x with a new set of measures. As we will
explain in section 5.2.1, if the surrogate β describes the target program, then
x contains the measures of the target resource for the benchmarks. In section
5.2.2 we will show that if the surrogate β describes the target resource, then
x contains the measures of the target program for the other resources.

p is a prediction of the target resource usage for the target program.

The solver defines a function g is a function that maps β and x to p, as
shown in equation 5.6

p = g(β,x) (5.6)

predictor

f , β and g depend on the solver. In chapter 6 we will explore several
options, most of which can create both a surrogate β and a prediction p.
We will see that even the simplest approach (linear regression) still performs
remarkably well, and offers surrogates easy to interpret as well as precise
predictions.

5.2.1 Characterizing a target program

In this paragraph we describe one implementation of the abstract model to
obtain a surrogate of the target program capable of characterizing it, and to
be able to predict its target resource consumption.

The surrogate created with this approach characterizes the target pro-
gram in terms of the benchmarks. If the behaviour of the benchmark is

64 CHAPTER 5. HIGH LEVEL MODEL

known, this will provide useful information about the behaviour of the tar-
get program.

As described in the previous section, the matrix X contains all the mea-
sures of the consumption of all the chosen resources of all the chosen bench-
marks. We organize X in the following way:

• all the measures relative to the same resource lie in the same row.

• all the measures relative to the same benchmark lie in the same column.

Equation 5.7 shows the matrix X, with m resources and n programs.

X =

µr1(p1) µr1(p2) · · · µr1(pn)
µr2(p1) µr2(p2) · · · µr2(pn)

...
...

. . .
...

µrm(p1) µrm(p2) · · · µrm(pn)

 (5.7)

The vector y contains the measures relative to the target program, orga-
nized as a column of X, as shown in equation 5.8.

y =

µr1(pt)
µr2(pt)

...
µrm(pt)

 (5.8)

The surrogate characterizes the target program. The surrogate depends
on the solver used. Simple solvers create surrogates that can be easily
interpreted. For example, the surrogate created by Linear Regression, de-
scribed in section 6.2, expresses the target program as a linear combination
of benchmarks.

If the solver provides a predictor (the g function in equation 5.6), then
the surrogate can be used to predict the consumption of the target resource
by the target program. To obtain a prediction we need to build a the x vector,
by measuring all the benchmarks on the target resource. The measures are
organized in the same way as the rows of X, as shown in equation 5.9.

x =
(
µrt(p1) µrt(p2) · · · µrt(pn)

)
(5.9)

Applying equation 5.6 to the g function provided by the solver, the
surrogate β, and the vector x, we obtain a prediction of the measure of the
consumption of the target resource by the target program.

5.2. THE MODEL 65

5.2.2 Characterizing the target resource

The abstract model can also be implemented to characterize the target re-
source.

The surrogate created with this approach characterizes the target re-
source in terms of the other resources. For example it could describe the
completion time on a particular machine in terms of the performance coun-
ters.

The matrix X is organized as the transpose of the matrix described in
the previous section:

• all the measures relative to the same resource lie in the same column.

• all the measures relative to the same benchmark lie in the same row.

Equation 5.10 shows the matrix X, with m resources and n programs.

X =

µr1(p1) µr2(p1) · · · µrn(p1)
µr1(p2) µr2(p2) · · · µrn(p2)

...
...

. . .
...

µr1(pm) µr2(pm) · · · µrn(pm)

 (5.10)

The vector y contains the measures relative to the target resource, orga-
nized as a column of X, as shown in equation 5.11.

y =

µrt(p1)
µrt(p2)

...
µrt(pm)

 (5.11)

The surrogate characterizes the target resource. The surrogate depends
on the solver used. For example, the surrogate created by Linear Regression,
described in section 6.2, expresses the target resource as a linear combination
of the other resources. In the 13 chapter we show how to describe completion
time as a linear combination of performance counters.

If the solver provides a predictor (the g function in equation 5.6), then
the surrogate can be used to predict the consumption of the target resource
by the target program.

To obtain a prediction we need to build a the x vector, by measuring
all the resources (except the target resource) on the target program. The

66 CHAPTER 5. HIGH LEVEL MODEL

measures are organized in the same way as the rows of X, as shown in
equation 5.12.

y =
(
µr1(pt) µr2(pt) · · · µrn(pt)

)
(5.12)

Applying equation 5.6 to the g function provided by the solver, the
surrogate β, and the vector x, we obtain a prediction of the measure of the
consumption of the target resource by the target program.

The output of the predictor is the same as in the implementation that
characterizes programs instead of resources. In both implementations we
predict the target resource usage of the target program.

5.2.3 A unified HW and SW model

In the previous sections we have shown how the same abstract model (de-
scribed in section 5.2) can be implemented to characterize either programs
(described in section 5.2.1) or resources (described in section 5.2.2). Both
implementations build their surrogates starting form the same data (the
matrix X), simply disposing measures in a different way (the matrix X
described in 5.2.2 is the transpose of the matrix X described in 5.2.1).

It is worth noticing that the model used to characterize hardware is the
dual of the model used to characterize software. To see how closely related
the two models are, consider the following:

• Regarding the model used to characterize and predict the target re-
source:

– be XHW the matrix containing the measures organized with each
row representing a benchmark and each column representing a
resource;

– be yHW the vector with measures of the target resource for the
benchmarks;

– be xHW the vector with measures of the resources for the target
program;

– the surrogate βHW is the characterization of the target resource
and is given by βHW = f(XHW,yHW);

– the prediction of the target resource consumption of the target
program is given by p = g(βHW,xHW).

5.2. THE MODEL 67

• Regarding the model used to characterize and predict the target pro-
gram:

– be XSW the matrix containing the measures organized with each
row representing a resources and each column representing a
benchmark ;

– be ySW the vector with measures of the target program for the
resources;

– be xSW the vector with measures of the benchmarks for the target
resource;

– the surrogate βSW is the characterization of the target program
and is given by βSW = f(XSW,ySW);

– the prediction of the target resource consumption of the target
program is given by p = g(βHW,xSW).

• Note that:

– XHW = X>SW;

– yHW = x>SW;

– xHW = y>SW.

In the next chapter we will see that with the solvers we propose, if XHW

and XSW are square matrices, p = xHWβHW = xSWβSW.
Our model is capable of describing both hardware and software char-

acteristics, in a unified Hardware and Software approach. As discussed in
chapter 2, this is a desirable feature of benchmarking, because the per-
formance of a program heavily depends on the computational environment
where it is executed, and the performance of a computational environment
depends on the software it runs. Hardware and Software are intimately tied,
and a model that does not take this fact into account, will inevitably build
surrogate that depend on the computational environment used to build the
model, hiding important information. Our approach allows us to identify
the contributions of Hardware and Software separately.

5.2.4 A resource agnostic model

The model is built using measures from different resources. As discussed
in chapter 2 the approaches in literature usually focus on a single resource
(e.g. completion time, or energy consumption), and usually a single compu-
tational environment is used, i.e. models and experiments are limited to a

68 CHAPTER 5. HIGH LEVEL MODEL

single computer. This makes the training phase difficult, because statistical
models are best trained if a large amount of data is available. Moreover,
the model can only contain the information present in the training data,
but an algorithm could have different behaviours on different computational
environments.

In our model, it is not only allowed, but even desirable to use heteroge-
neous resources (from different classes of resources, such as completion time,
performance counters and energy consumption). Moreover, it is desirable
to have measures from different computational environments, especially if
the benchmarks and the target program have a different behaviour on the
different computational environments. Our approach is therefore capable of
capturing subtle behaviours that are usually difficult to model, simply be-
cause the data used to build it contains information about those behaviours
that only emerge when a program is run on different architectures, or differ-
ent aspects of the computational environment are measured.

It is worth noticing that the model does not require the resources to
necessarily come from physical machines. It is possible to combine our ap-
proach with a simulation tool, to trace the execution of programs running
in an emulated operating system. This approach is useful when is difficult
to run experiments on physical machines, or when the number of avail-
able measured resources is not large enough. For example, it is possible to
simulate the program counting cache-misses, running on architectures with
different cache size and layout, to characterize the pattern of memory ac-
cess. Measures coming from physical resources and simulated resources can
be combined in the same model. Obviously physical resources will be more
reliable and representative of actual performance.

The same model can be used to predict every admissible resource. In
our work we focus on completion time and energy consumption, but as long
as the resource meets the requirements described in definition 3 it can be
used to build the model, and can be the target resource of a model. Our
model is therefore resource agnostic.

5.3 Role of computational patterns

This section explains the role of computational pattern in the algebraic
structure of our model. Examples of computational patterns are: a certain
amount of floating point multiplications, or a certain pattern of memory ac-
cess. Assuming to be able to measure the computational patterns on a large
enough number of resources, they will be linearly independent, because by

5.3. COMPUTATIONAL PATTERNS 69

definition 5 each computational pattern expresses a different resource con-
sumption behaviour, forming a basis of the resource consumption space. The
resources involved in the peculiar behaviour of the considered computational
patterns need to be measured to be able to distinguish them.

As an example, consider two computational patterns: pattern a captures
integer sums, pattern b captures integer multiplications. Imagine now mea-
suring those computational patterns only on architectures where the ratio
between the number of CPU cycles necessary to perform integer multipli-
cation and integer sums is the same. The computational pattern will be
collinear in the resource consumption space. However, as soon as we mea-
sure them on a different architecture, where this ratio changes, the patterns
a and b will become distinguishable. This is the why our model not only
allows, but encourages the usage of measures from different architectures.
Their usage in the same model will let computational patterns emerge.

However, as stated in Definition 5, a computational pattern is an ideal
concept. Real programs are composed of computational patterns, but in gen-
eral a computational pattern can not be a real program. A program can not
consist of a single computational pattern, as every program to run has to per-
form a several operations, e.g. loading instructions from memory, and can
not exclusively be composed of a single computational pattern. Therefore
computational patterns can not be measured directly, we can only measure
real program, that are composed of several computational patterns. Ideally,
synthetic benchmarks can be designed to approximate particular computa-
tional patterns.

As already stated, our model assumes that all programs can ideally be
decomposed in sequences of computational patterns. Therefore, if the matrix
W contains the measures of the resource consumption of each computational
pattern (the rows are resources, the columns are computational patterns),
and the matrix H contains the benchmarks expressed as linear combinations
of computational patterns (the rows are computational patterns, the columns
are programs), then the matrix of the measures of the resource consumption
of the programs X can be expressed as the matrix multiplication of W and
H, as shown in equation 5.13.

X = WH (5.13)

Benchmarks as compositions of patterns

If two of the measured resources are very similar, the corresponding rows
of W will be very similar, making W not full rank. As stated, computational

70 CHAPTER 5. HIGH LEVEL MODEL

Table 5.1: Composition of programs in terms of computational patterns

program a b c d

p1 1 1 0 0
p2 0 0 1 1
p3 1 0 1 0
p4 0 1 0 2

Table 5.2: Measures of the computational patterns

system a b c d

µ1 2 1 1 1
µ3 1 2 1 1
µ3 1 1 2 1
µ4 1 1 1 2

patterns are linearly independent, in the sense that each one expresses a
different resource consumption behaviour. The resources to be used (the
rows of X and W) should be chosen to reveal the different behaviour of
computational patterns, i.e. the computational patterns form a basis of W.

In the following example we have 4 programs p1, p2, p3 and p4, composed
of linear combinations of 4 computational patterns a, b, c and d, table 5.1
shows the composition of each program in terms of how many instances of
each compositional pattern. This table is the transpose of the H matrix.

Let’s assume we can measure the usage of 4 resources of computational
patterns, where they show different usage behaviour: on µ1 they all cost the
same, on µ2, µ3, µ4 and µ5 all compositional pattern cost the same except
one, that costs twice as much, as show in table 5.2. This table is equivalent
to the W matrix.

The 4 programs will therefore have the costs shown in table 5.3. This
table is the X matrix.

The matrix W is a function that maps vectors that express programs
as linear combinations of computational patterns (the columns of H) into
vectors that contain the resource consumption of programs (the columns of
X).

5.4. ALGEBRAIC CHARACTERIZATION OF X 71

Table 5.3: Measures of the programs

system p1 p2 p3 p4

µ1 3 2 3 3
µ2 3 2 2 4
µ3 2 3 3 3
µ4 2 3 2 5

5.4 Algebraic characterization of X

In this section we discuss the conditions that X should satisfy, and we present
a few algebraic tools that can be used to explore the information contained
in X.

5.4.1 X needs to be full rank

Depending on the solver used, there might be different conditions over X,
e.g. if Linear Regression is used as a solver it should not have more columns
than rows, as it would result in an under-determined system, as discussed
in section 6.2.

As a general rule, the matrix X should be full rank. If the rank is not full,
it means that some columns of X can be expressed as a linear combination
of the other columns. In other words, the information contained in a subset
of the columns is enough to explain the whole matrix.

If the model is used to characterize a target resource, then the columns
represent resources. If the rank of X is not full, it means that some re-
sources can be expressed as a linear combination of the other resources.
E.g. measuring the same phenomenon using two different metrics.

If the model is used to characterize a target program, then the columns of
X represent benchmarks. If the rank of X is not full, then some benchmarks
can be expressed as a linear combination of the other benchmarks. E.g. two
benchmarks are in fact the same program, only using a different input size,
and the computation does not change behaviour with a different input.

5.4.2 Norm

The norm of the columns of X can be useful in several situations, for example
to obtain a simple uni-dimensional measure of the cost of a program, or to

72 CHAPTER 5. HIGH LEVEL MODEL

quickly compare two related resources, e.g. the energy consumption on two
computational environments.

Different norms can be used, depending on the context where they are
applied. In this section the most common norm is discussed: the Euclidean
Norm.

Norm of a program

If the model is used to characterize a target program, the columns of X
represent benchmarks. The norm of the jth program is simply the norm of
the jth column of X, as shown in equation 5.14.

‖pj‖ =

√√√√ m∑
i=1

(µri(pj))
2 (5.14)

Norm of a program

Similarly, if the model is built to characterize a resource, the columns of
X represent resources, but the norm of a program can be calculated using
the corresponding row of X.

The norm of a program can be used to get a quick idea of a program’s
cost. Consider three programs p1, p2 and p3, and three resources r1, r2, and
r3, the completion time on three different machines. As shown in table 5.4,
p1 is slightly faster than p2 and p3 on the first two machines, but is two
times slower than p2 and p3 on the last machine. Asking “which program
is faster” is not well posed and does not have an answer. Instead, asking
“which program is usually faster” can be answered: two out of three times
p1 is faster than both p2 and p3, but this answer is misleading, because in the
single case where p1 is slower than p2 and p3 the difference is considerable.
Using the norm it can be seen that p1 has the larger norm (‖p1‖ = 2.91,
‖p2‖ = 2.54, and ‖p3‖ = 2.51), providing useful information about their
respective performances.

Norm of a resource

If the model is used to characterize a resource, the columns of X represent
resources. The norm of the jth resource is simply the norm of the jth column
of X, as shown in equation 5.15.

5.4. ALGEBRAIC CHARACTERIZATION OF X 73

Table 5.4: Example of resource consumption of two programs
p1 p2 p3

r1 1.1 1.2 1.3
r2 1.8 2.0 1.9
r3 2.0 1.0 1.0

‖rj‖ =

√√√√ m∑
i=1

µrj (pi)
2 (5.15)

Norm of a resource

Similarly, if the model is built to characterize a program, the columns of
X represent programs, but the norm of a resource can be calculated using
the corresponding row of X.

The norm can be used to compare two resources. Consider the example
reported in table 5.4, imagine the resources to be completion times on three
different machines. It is usually interesting to know “which machine is the
fastest”, performance bench marking attempts to address this issue (e.g. the
SPEC CPU suite). However, “fastest” is not well defined, as it depends on
the program. The third machine has the lowest completion time for two
out of three programs, and the first machine has the lowest completion time
only for p1. Therefore, it might seem reasonable to conclude that the third
machine is the “fastest”. However, considering the norms of the resources
(‖r1‖ = 2.08, ‖r2‖ = 3.29, ‖r3‖ = 2.45), is clear that the first machine has
the best overall performance.

5.4.3 Cosine similarity

Cosine similarity measures the cosine of the angle between two vectors.
Cosine similarity is close to 0 when they are orthogonal (least similar), and
is close to 1 when they are very close, independently of their module (most
similar).

Cosine similarity can be derived using the euclidean dot product, as
shown in equation 5.16.

74 CHAPTER 5. HIGH LEVEL MODEL

a · b = ‖a‖‖b‖cosθ

cosθ =
a · b
‖a‖‖b‖

(5.16)

Cosine similarity

Programs similarity

Cosine similarity can be applied to programs as shown in equation 5.17,
where pi is the vector with all the measures of the ith program for all con-
sidered resources (the ith column of the X matrix, when it is built to char-
acterize a target program, or the ith row of the X matrix, when it is built to
characterize a target resource).

cosθp1,p2 =
p1 · p2

‖p1‖‖p2‖
(5.17)

Programs similarity

If two programs have cosine similarity close to 1, they show a similar
behaviour on the considered resources, i.e. they may use a different amount
of resources, but in a similar way. If they have similarity close to 0, then they
have a very different behaviour with respect to the considered resources.

The benchmarks used to build the model should have a low similarity.
If they have high similarity they are not capturing different aspects of com-
putation.

If programs are too similar, X will not have full effective rank. Some
of the singular values of X will be small, even if not zero. A good set of
benchmarks will therefore only include programs that have low similarity
between each other.

Resources similarity

Cosine similarity can also be applied to resources to quantify how similarly
two resources are used by the benchmarks. Equation 5.18 shows how to
apply equation 5.16 to resources. ri is the vector containing the measures
of all the benchmark for the ith resource (the ith column of the X matrix,
when it is built to characterize a target resource, or the ith row of the X
matrix, when it is built to characterize a target program).

5.5. CONCLUSION 75

cosθr1,r2 =
r1 · r2

‖r1‖‖r2‖
(5.18)

Resources similarity

If two resources measure the same quantity, they will have similarity
equal to 1, even if they are using different scales. For example the comple-
tion times on two machines with similar CPUs, same architecture, but with
different clock rate, will be different, but the similarity will be close to 1. A
similarity near to zero is achieved only if the resources have very different
behaviour with the selected benchmarks.

5.5 Conclusion

In this chapter we have introduced our benchmarking model, from a concep-
tual perspective. Our model unifies hardware and software characterization
in a single approach. The model does not focus exclusively on a particular
resource, but allows the simultaneous usage of heterogeneous resources, such
as completion time, energy consumption, performance counters.

We introduced the notion of computational patterns, as ideal sequences
of instructions that expose interesting behaviour of programs on computing
systems. They can not be directly measured, but they justify the assumption
that programs can be explained as linear combinations of computational
patterns.

76 CHAPTER 5. HIGH LEVEL MODEL

Chapter 6

Solvers

In this chapter we present a few of the possible algorithms that can be used
to create surrogates and predictors.

Simplex is discussed in section 6.1. This algorithm explains the target
program as a non negative composition of the benchmarks (or the target
resource as a non negative composition of resources), and could be used in
case the benchmarks are close enough to pure computational patterns.

Linear regression is discussed in section 6.2. Linear regression is the
simplest solver. Because of its simplicity it produces intuitive surrogates,
that can be used to characterize the target program or the target resource.
Nonetheless, it has good predictive capabilities. Most of the experimental
section uses Linear Regression as solver.

Non-Negative Matrix Factorization is discussed in section 6.3. This algo-
rithm offers a possible decomposition of programs in terms of computational
patterns.

6.1 Simplex

Under the assumption that computational patterns can be fully captured by
micro-benchmarks, and that each computational pattern maps to a different
micro-benchmark (i.e. every micro-benchmark captures a different computa-
tional pattern), we can assume the surrogate β to be a vector of non negative
numbers, such that multiplying X by β we obtain y, plus some model error,
as shown in equation 6.1.

77

78 CHAPTER 6. SOLVERS

Xβ = y + ε (6.1)

Simplex

The surrogate needs to contain non negative values, because they rep-
resent the amount of computational patterns present in the target program,
there can be zeros, but not negative numbers, or the model would be incon-
sistent (a negative quantity has no justification in this model). Non integer
values are allowed assuming that the benchmarks used in the basis X can
contain several instances of the corresponding computational patterns.

We are interested in finding the vector x that minimizes the norm of
the error ε. As error we use the Manhattan norm (defined in equation 6.2).
Finding the β that minimizes the Manhattan norm of ε can be transformed
into a linear programming problem.

‖ε‖ =

n∑
i

|εi| (6.2)

Manhattan norm of ε

6.1.1 The simplex algorithm

The simplex algorithm is a popular algorithm (Murty, 1983) that does not
directly use simplices, but it operates on simplicial cones (the corners of
the feasible region). The simplex algorithm solves linear programming (LP)
problems expressed in the canonical form:

maximize c>w (6.3)

subject to Aw = b (6.4)

and w ≥ 0 (6.5)

LP canonical form

A solution of the LP problem consists of a w vector that satisfies the
constraints expressed by inequalities 6.4 and 6.5 and maximizes the linear
objective function 6.3.

The canonical form is also called the primal problem, and can be con-
verted in the dual problem, as shown in equations 6.6, 6.7, and 6.8.

6.1. SIMPLEX 79

minimize b>z (6.6)

subject to A>z = c (6.7)

and z ≥ 0 (6.8)

LP dual form

The strong duality theorem states that if there is an optimal solution ŵ,
then the dual has also a an optimal solution ẑ, and c>ŵ = b>ẑ.

The objective function we want to minimize is the Manhattan norm of
ε, the sum of the absolute values of the elements of the vector. However, the
absolute value is not a linear function, but it can be made linear introducing
2 slack variables for each εi as shown in equation 6.10.

ε = Xβ − y (6.9)

minimize min
n∑
i

|ε| = min
n∑
i

(zi + zn+i) (6.10)

subject to zi ≥ εi ∀i (6.11)

zn+i ≥ −εi ∀i (6.12)

βi ≥ 0 ∀i (6.13)

LP dual form

We can now express our problem in the dual form: equation 6.9 shows
how to define ε in terms of the matrix X (the measures of resource con-
sumption of the benchmarks) and vector y (the corresponding measures of
the target program), as defined in section 5.2; equations 6.11, 6.12, and 6.13
show the constraints.

The problem in dual form can be transformed in the canonical form, and
solved using the simplex algorithms.

6.1.2 Geometric interpretation

The constraints specify a convex polytope, possibly unbounded, over which
the objective function is maximized. If the model is used to characterize
a target program, the columns of the matrix X contain measures of the
benchmarks. If the columns are linearly independent, the benchmarks are
vectors in the resource consumption vector space, and they define the vertices
of the convex polytope that defines the feasible region. If the vector that

80 CHAPTER 6. SOLVERS

Table 6.1: Fictional example for the Simplex solver
program resource 1 resource 2

a 1.0 0.1
b 0.1 1.0
c 0.5 0.5
d 0.8 0.0

identifies the target program in the resource consumption vector space lies
inside the convex polytope, an optimal solution β with no error can be found.
If the target program lies outside the convex polytope, the solution will have
some error, and will lie on a face or on an edge of the convex polytope.

Figure 6.1 shows an example, where programs a and b are used as basis
(the matrix X). The points in the graph represent programs in the resource
consumption vector space. Table 6.1 shows the resource consumption of the
four programs. The grey region is the convex polytope that identifies the
area of the space that can be expressed as a linear combination of programs
a and b (the basis). The program c lies within the convex polytope, it can
therefore be expressed as a positive linear combination of the programs of
the basis. The program d lies outside the convex polytope, it can not be
expressed as a positive linear combination of the programs of the basis, and
its surrogate will contain some model error.

From the previous example is clear that collinearity in the basis should be
avoided. If a program in the basis can be expressed as a linear combination
of the other programs, it lies inside the convex polytope, so it can be removed
without loss of expressiveness.

If a program lies outside the convex polytope, it should be used as a
program of the basis, eventually removing other programs from the basis,
because it improves the expressiveness, allowing a larger set of programs to
be expressed without error. When this occurs, it means that the programs
used in the basis were not able to capture some computational pattern that
is captured by the new program.

The example can be extended to higher dimensional resource consump-
tion vector spaces. If the number n of programs used in the basis is lower
than the number m of resources, the polytope will be a subspace. For exam-
ple, if n = m−1 the polytope will lie on an hyperplane that splits the space
in 2 halves. Unless all the points lie on the hyperplane, more specifically
in the polytope, the model will contain some error. If a point is outside
the polytope and is not collinear with the basis, the only way to produce a

6.1. SIMPLEX 81

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

Convex cone

resource 1

re
so

u
rc

e
2

b

c

d

a

Figure 6.1: Convex polytope of solutions in the resource consumption vector
space

Table 6.2: Data for the fictional example for the Simplex solver
program instructions cache-misses completion-time

a 100000 100 993.72
b 20000 1000 1132.13
c 30000 500 932.69

surrogate without error is to extend the basis with the new program.

In section 10.1.1 we present a simple experiment where simplex is used
to characterize a program. The simplex can also be used to characterize a
target resource. In this case the columns of X contain the resource con-
sumption, the rows of X the benchmarks, and the y vector contains the
known measures for the target resource. The surrogate will express the tar-
get resource as a positive linear combination of the resources. Consider an
fictional example with the measures shown in table 6.2. We measure the
number of instructions, the number of cache-misses, and the completion
time, on three programs a, b, and c. We want to characterize completion
time using instructions and cache-misses.

The simplex solver characterizes completion time as shown in equation

82 CHAPTER 6. SOLVERS

6.14. The solver found the same coefficients we used to create the data in
table 6.2: time measured in millisecond, every instruction takes in average
10−2msec and every cache miss takes 1msec. We also added some multi-
plicative Gaussian noise with mean 1 and standard deviation 0.5 on the
µinstructions coefficient, to simulate the effect of non measured differences in
the instruction costs on the completion time.

µtime = µinstructions10−2 + µcache-misses (6.14)

Example surrogate

Figure 6.2 show the resources in the programs vector space. The axes
are the programs, the resources are points in the space. Completion time
and cache-misses are close to the origin because they are several order of
magnitude smaller than instructions; for the same reason they are also very
far from instructions. Completion time lies near to the plane identified by
the resources in the basis (instructions and cache-misses), close to the cone.
The model error is therefore small. Analysing the cosine similarity between
the resources we see that the resources used in the basis have low similarity
(see equation 6.15). Completion time is very similar to cache-misses (see
equation 6.16). Their vectors in the programs vector space are close. This
is expected, because the coefficient relative to cache-misses used to generate
completion time is 3 orders of magnitude larger than the coefficient relative
to instructions.

µinstructions · µcache-misses

‖µinstructions‖‖µcache-misses‖
= 0.3771 (6.15)

µcompletion-time · µcache-misses

‖µcompletion-time‖‖µcache-misses‖
= 0.8537 (6.16)

Cosine similarity between resources

More details about the properties of the convex polytopes that span from
positive linear dependence can be found in Davis (1954).

6.1.3 Limits

The simplex algorithm is a powerful tool, used to solve most of the lin-
ear programming problems. When used as a solver, it offers a simple and
straightforward interpretation of the surrogate. However, it is based on a
strong assumption, that it is possible to create and measure benchmarks that

6.1. SIMPLEX 83

02e+04

5000

1e+04

1.5e+04

2e+04

2.5e+04

3e+04

1.5e+04

b

1e+04
5000

c

02e+044e+046e+048e+041e+05

a
0

Figure 6.2: Resources in the Programs Vector Space

84 CHAPTER 6. SOLVERS

perfectly embody computational patterns. As discussed in section 5.3, this
is generally not true. This approach is therefore sound only in controlled
experiments, where is reasonable to assume that the interesting computa-
tional patterns are captured by the benchmarks in the basis. With real world
programs, the computational patterns involved will be a very large number,
possibly larger than the number of measured resources. The basis would
probably need to be extremely large, leading to a high risk of over-fitting,
and unreadable surrogates.

In next section we relax the non negative constraints on the surrogates,
allowing the solver to find solutions outside the polytope (but still on its
same subspace).

6.2 Linear regression

In the previous section we explored the use of simplex as a solver, under
the assumption that it is possible to create and measure benchmarks that
perfectly embody computational patterns. As discussed in 5.3, this is a
very optimistic assumption. In this section we remove this assumption.
Differently than with the simplex solver, we do not consider the benchmarks
that form the matrix X equivalent to computational patterns. However, both
the benchmarks and the target program are still considered formed by linear
combinations of computational patterns.

The non-negativity constraints over the elements of the surrogate β is
removed, which means that the surrogates do not have to be inside the
polytope identified by the benchmarks. In the example we provided for the
simplex solver (6.1)), where a and b are the benchmarks, not only c, but
also d can be expressed without error.

6.2.1 Example

To understand why negative values in the surrogate are admissible, and
what this means in terms of computational patterns, consider the following
example.

We measure 3 programs:

• program a performs a CPU intensive task: multiplication of two small
matrices. This task also uses a large amount of CPU, and a small
amount of memory;

• program b performs a memory intensive task: sum of two large matri-
ces. This task uses a large amount of memory, and a small amount of

6.2. LINEAR REGRESSION 85

CPU;

• program d performs a CPU intensive tasks: calculates π. This task
does not use any memory, only CPU.

The measured resources are:

• resource 1 : number of arithmetic instructions

• resource 2 : number of cache misses

Consider the following (oversimplified) computational patterns:

• computational pattern 1 : CPU usage

• computational pattern 2 : memory usage

Program d is composed exclusively of the computational pattern 1, with-
out any usage of computational pattern 2. Program a and program b are
composed of both patterns, in different measures.

Imagine using program a and program b as the benchmarks to form the
basis X, and to use program d as our target program. The three programs in
the resource usage space could look like figure 6.1 (the example in the simplex
solver section). Program d is outside the convex cone. Therefore it can not
be expressed as a positive linear combination of program a and program b.
However, it can be expressed by the following surrogate: β = (0.81,−0.8).

The surrogate can be interpreted as follows: “program d can be decom-
posed as 0.81 instances of program a, subtracting 0.08 instances of program
b”. If we consider what this means in terms of the computational patterns,
it translates to: “program d can be characterized as composed by 0.81 times
the computational patterns present in program a, subtracting 0.08 times the
computational patterns present in program b”. This interpretation expresses
the fact that program d is closer to the computational pattern 1 than both
program a and program b. Therefore, we have to cancel the memory usage
of program a, using program b, to describe program d in terms of a and b.

Similar considerations apply when expressing a target resource in terms
of other resources.

Allowing negative values in the surrogate is therefore consistent with the
assumption that all programs are composed of computational patterns, and
linear regression can be used to find the surrogate of the target program (or
of the target resource).

86 CHAPTER 6. SOLVERS

6.2.2 Linear regression

Over the years, linear modelling has been largely employed to describe or
estimate the dependency of certain phenomena from a set of known variables
in most of the scientific research fields (Blanco-Fernndez et al., 2013; Roundy
and Frank, 2004; Srinivasan and Bellur, 2014; Farahnakian et al., 2013; Isobe
et al., 1990). The linear model presented in this work is an evolution of
Morelli and Cisternino (2014), where we have shown that linear regression
can be used to predict the energy consumption and the completion time
of real world algorithms. The purpose of linear regression is to model the
relationship between a dependent variable, also called measured variable or
regressand, and a set of independent variables, also known as explanatory
variables or regressors.

Linear regression assumes a linear relationship between the dependent
variable and the explanatory variables. This does not imply that only linear
behaviour can be explained: as long as the independent variables expose
the same kind of non-linearity that characterizes the dependent variable,
linear regression represents a suitable method. For many algorithms the
completion time is non-linear with respect to the size of the input, but can
be linear with respect to certain features. For example, matrix multiplica-
tion completion time is non-linear with respect to the size of the input but
is linear with respect to the number of arithmetic operations. Using the
number of arithmetic operations number as an explanatory variable, linear
regression is able to build a model capable of expressing completion time as
the dependent variable.

Linear regression is defined by formula 6.17

y = Xβ + ε (6.17)

Linear regression

Where:

• y is the dependent variable

• X is the matrix of the explanatory variables

• β is the vector that contains the regression coefficients

• ε is the error term (fitting residuals)

6.2. LINEAR REGRESSION 87

6.2.3 Algebraic characterization of the solver

In this section is shown how to use Linear Regression to create a solver for
our model, and the algebraic structure and properties are discussed.

The Solver equation 5.5 immediately adapts to the Linear Regression
6.17. If X has linearly independent columns, and has at least as many rows
as columns (m ≥ n), then the Moore-Penrose pseudo-inverse X+ of X can
be used to estimate β. The pseudo-inverse can be calculated using equation
6.18.

X+ = (X>X)−1X> (6.18)

Left inverse

X+ can be estimated using the singular value decomposition (SVD) as
shown in equation 6.19, where Σ+ is calculated by taking the reciprocal of
each non-zero element on the diagonal, and replacing the others with zeros.
To ensure numerical stability diagonal elements close to zero (in the same
order of magnitude as the numerical precision used) will also be replaced
with zeros.

X = UΣV> (6.19)

X+ = VΣ+U> (6.20)

SVD estimation of the pseudoinverse

X+ can be used to estimate β, as show in equation 6.21.

β̂ = X+y (6.21)

Estimation of the surrogate

Is therefore straightforward to map equation 6.21 to the f function from
the solver equation 5.5.

The function g of the predictor equation 5.6 is simply a vector dot prod-
uct between the vector with measures of the benchmarks on the resources
and the β surrogate, as shown in equation 6.22.

p = xβ (6.22)

Predictor for linear regression

88 CHAPTER 6. SOLVERS

Table 6.3: Fictional example for the Linear Regression solver
p1 p2 p3 pT

CPU 1.0 0.1 0.1 1.0
Mem 0.1 1.0 0.5 2.0
I/O 0.0 0.0 1.0 3.0

Energy 10.1 2.0 2.5 µE(pT)

Extracting a surrogate and predicting measures is easy and computa-
tionally inexpensive.

As an example, consider table 6.3, that contains fictional measures of
three programs. The measured resources are some metric of CPU, memory,
and I/O. Program p1 is CPU bound, p2 memory bound, and p3 is I/O bound.
The target program is uses both CPU, memory and I/O. The target resource
is Energy, the last row of X.

Consider now building the model to characterize pT . The resulting X
and y vectors are shown in equation 6.23. The surrogate of pT (equation
6.25) shows that the program can be explained with a prevalence of p3 (the
I/O bound program), but both the CPU and memory bound programs are
present. The measures of the Energy consumption of the benchmarks and
the surrogate are multiplied to estimate the energy consumption of the target
program pT (equation 6.26).

X =

1.00 0.10 0.10
0.20 1.00 0.50
0.00 0.00 1.00

 y =

1.00
2.00
3.00

 (6.23)

X+ =

 1.02 −0.10 −0.05
−0.20 1.02 −0.49
0.00 0.00 1.00

 (6.24)

β = X+y =

 1.02 −0.10 −0.05
−0.20 1.02 −0.49
0.00 0.00 1.00

1.00
2.00
3.00

 =

0.66
0.37
3.00

 (6.25)

x =
(
10.10 2.00 2.50

)
µE(pT) = xβ =

(
10.10 2.00 2.50

)0.66
0.37
3.00

 = 14.93 (6.26)

Example for target program

6.2. LINEAR REGRESSION 89

Consider now building the model to characterize the target resource En-
ergy, using the same data as in the previous example. The resulting X and y
vectors are shown in equation 6.27. The surrogate of Energy (equation 6.29)
shows how much Energy is consumed by each unit of the other resources:
approximately 10 energy units are used by each CPU unit, 1 energy unit are
used for both each memory and I/O units. The measures of the program pT
for CPU, memory, and I/O are multiplied by the surrogate of the Energy to
estimate the energy consumption of the target program pT (equation 6.30).
The prediction for the target resource of the target program is the same as
in the previous example (equation 6.26).

X =

1.00 0.20 0.00
0.10 1.00 0.00
0.10 0.50 1.00

 y =

10.10
2.00
2.50

 (6.27)

X+ =

 1.02 −0.20 0.00
−0.10204082 1.02 0.00
−0.05102041 −0.49 1.00

 (6.28)

β = X+y =

 1.02 −0.20 0.00
−0.10204082 1.02 0.00
−0.05102041 −0.49 1.00

10.10
2.00
2.50

 =

9.80
1.02
1.01

(6.29)

x =
(
10.1 2.00 2.50

)
µE(pT) = xβ =

(
10.1 2.00 2.50

)9.90
1.01
1.00

 = 14.93 (6.30)

Example for target resource

In the first example the surrogate describes pT as a linear combination
of p1, p2, and p3. Choosing representative programs as benchmarks will
ensure that the surrogate will provide information about the nature of the
target program. In this example it roughly shows the proportion of CPU vs
memory vs I/O usage.

In the second example the surrogate shows how much Energy is con-
sumed by each measured unit of the CPU metric, memory metric, and I/O
metric. In chapter 13 it will be shown how this approach can be used to
estimate the time needed by each processor instruction, or by each memory
access.

The X+ matrix can be seen as a linear function that maps y (the mea-

90 CHAPTER 6. SOLVERS

sures of the target program, or the measures of the target resource) to its
surrogate β.

6.2.4 Hardware and Software intrinsic relationship

The previous example shows the close relationship between the use of the
model to characterize a target program, and a target resource. As already
stated in section 5.2.3, the models used to characterize the target program
and the target resource have many connections:

• the matrix X used in the model to characterize the target program is
equal to the transpose of the matrix X used in the model to charac-
terize the target resource;

• the vector y used in the model to characterize the target program is
equal to the transpose of the vector x used in the model to characterize
the target resource;

• the vector x used in the model to characterize the target program is
equal to the transpose of the vector y used in the model to characterize
the target resource.

As shown in the previous example, if the number of rows is equal to the
number columns of X (i.e. is a square matrix), the prediction of the target
resource for the target program in the two models is the same.

6.2.5 Assumptions and limits

Ordinary linear regression is sensitive to outliers in the dependent variable
(Anscombe, 1973). Completion time is likely to contain outliers, mainly
caused by certain sporadic effects that are not considered in the model or
to the instability of the system where the measurement is performed. When
it is reasonable to expect the presence of outliers in the measures, robust
variants of the ordinary least squares should be used instead of ordinary
least squares. This will help mitigate the effect of outliers that can have
a severe, negative impact on the quality of the model built. As shown by
Hoaglin et al. (2011) and Fox (1997), iterative approaches can help when
noise is present in the data.

As discussed in section 6.2.6, linearity is assumed between the depen-
dent and the independent variables. Is not always evident if linearity is a
reasonable choice, depending on the target program or target resource being

6.2. LINEAR REGRESSION 91

characterized. In chapter 13 we show that, with the right choice of explana-
tory variables, even a complex non linear phenomenon such as completion
time in a highly parallel environment, such heterogeneous GPU computing,
can be successfully modelled by linear regression.

Linear regression assumes that the observed values y differ from the
linear combination of Xβ by an additive noise, of independent, identically
distributed Gaussian distribution with zero mean. The residuals therefore
are assumed to be independent and zero centred. This can be a strong as-
sumption when dealing with measures of physical quantities, e.g. time or
energy. If an instrument used to measure is biased, the error will not be zero
centred, and linear regression will bias the solution accordingly. If an unex-
pected correlation between error is present in the data, linear regression will
offload that information on some combination of the independent variables.
Residual analysis can usually help identify these conditions, showing non
uniform or not zero centred distribution of residuals.

Linear regression also assumes constant variance of the residuals, also
called homoskedasticity. This assumption is often not verified. For example
completion time could be influenced by unexpected processes running in the
operating system at the same time as the measured program. In chapter
13 we address a non constant variance in measurement errors normalizing
measures by their variance. This is the most common approach to solve this
problem. Residual analysis shows the presence of heteroskedasticity.

6.2.6 Residuals analysis

When the number of rows of X is larger than the number of columns, i.e.
when m� n, is useful to analyse the residuals ε.

One of the assumptions of linear regression is that error, i.e. the vector ε
of the regression residuals, needs to have zero mean, and should not have any
correlation with the explanatory variables. Whenever the residuals violate
the assumptions, the error can not be seen as noise, indicating that the
regression model is not capturing all the relevant information.

To illustrate this phenomenon, consider the example shown in figure 6.3.
We generated two vectors with 1000 random numbers, uniformly distributed
between 0 and 1000. The dependent variable is non linearly depending on
both the vectors: y = k1x

2
1 + k2x

2
2. We also generated two vectors x3 = x2

1,
and x4 = x2

2. A uniformly distributed noise, between -100 and 100, was
added to y.

In the first row of figure 6.3, linear regression attempts to model a non
linear behaviour using a linear combination of linear regressors x1 and x2.

92 CHAPTER 6. SOLVERS

The residuals are not uniformly distributed around zero, a non linear trend
is clear: the predicted values are initially overestimated (until approximately
2.5e6), then underestimated. The presence of such a strong trend indicates
that the information not captured by the linear regression can not be ex-
plained as noise. Therefore, the independent variable contains a non linear
behaviour not explained by the regressors.

In the second row of figure 6.3 the non-linear vectors x3 and x4 were
used as regressors. The predictions have the same accuracy for all ranges
of values. The residuals are uniformly distributed around zero. Such a
distribution of the residuals indicates that the information not captured by
the linear regression can be considered as noise. Therefore, all the interesting
behaviour of the independent variable is correctly modelled by the regressors
and the regression coefficients.

This example shows how important is the choice of the basis. It is often
possible to measure a relevant behaviour of the computational environment
using different but related metrics. Consider for example an algorithm that
performs naive matrix multiplication on a couple of matrices passed as ar-
guments. If we use the size of the matrix as a regressor, the completion
time will not be succesfully modelled, because they are not in a linear re-
lationship. Instead, using the number of CPU instructions as a regressor,
completion time will be succesfully modelled.

6.2.7 Algebraic characterization of computational patterns

In this section we show how a target program can be expressed as a linear
combination of benchmarks, under the assumption that every programs can
be expressed as linear combinations of computational patterns.

Consider the matrix W, containing the resource consumption of every
computational pattern. Every row of W corresponds to a resource and every
column of W to a computational pattern. Consider now the matrix H,
containing the composition of benchmarks, expressed as linear composition
of computational patterns. Each row of H corresponds to a computational
pattern and every column to a benchmark. Then equation 6.31, already
presented in section 5.3, shows how W and H can be used to define the
matrix X of the measures of the benchmarks, as defined in section 5.2.1.

X = WH (6.31)

Benchmarks as compositions of patterns

6.2. LINEAR REGRESSION 93

0e+00 2e+06 4e+06

0
2
0
0
0
0
0
0

Predictions, linear regressors

actual values

fi
tt

ed
v
a
lu

es

0 1000000 2500000

-5
e+

0
5

1
e+

0
6

Residuals, linear regressors

fitted values

re
si

d
u

a
ls

0e+00 2e+06 4e+06

0
e+

0
0

3
e+

0
6

Predictions, nonlinear regressors

actual values

fi
tt

ed
v
a
lu

es

0e+00 2e+06 4e+06

-1
0
0

0
1
0
0

Residuals, nonlinear regressors

fitted values

re
si

d
u

a
ls

Figure 6.3: Example of predicted values and residuals using linear and non
linear regressors

94 CHAPTER 6. SOLVERS

If every program can be expressed linearly in terms of computational
patterns, then a vector h that expresses the target program as a linear com-
bination of the computational patterns must also exist, as show in equation
6.32.

y = Wh (6.32)

Target program as composition of patterns

As explained in section 5.3, computational patterns are supposed to be
linearly independent. They are abstract programs, ideally in a number much
larger than both the measures resources and the number of used benchmarks.

If H is full rank, i.e. the benchmarks are composed of different combina-
tions of computational patterns, then linear regression can find two vectors
β and ε that satisfy equation 6.33.

h = Hβ + ε′ (6.33)

Surrogate from compositional patterns

W is a linear transformation from the computational pattern space, con-
taining linear combinations of computational patterns, to the resource space,
containing measures of resources used by the corresponding program. It
maps the matrix H into X and h into y. Equation 6.34 shows that the β
vector, from equation 6.33, is the surrogate, as presented in section 6.2.

h = Hβ + ε′

Wh = WHβ + Wε′

y = Xβ + ε

where ε = Wε′ (6.34)

Equivalence of surrogates

As explained in section 5.3, compositional patterns are not actual pro-
grams, and they can not be directly measured. Therefore neither W, H
nor h can be calculated. In section 6.3 Non Negative Matrix Factorization
is used to model those matrices, assuming to know the number of hidden
factors (the computational patterns).

6.3. NON NEGATIVE MATRIX FACTORIZATION 95

6.3 Non negative matrix factorization

Non Negative Matrix Factorization (NMF) is a recent technique widely used
to find hidden features in data in very different fields, from music analysis
(Smaragdis and Brown, 2003) to document clustering (Xu et al., 2003).

For example NMF could be used to analyse newspapers articles to find
topics, given the occurrence of words, i.e. certain combinations of words tend
to appear together. NMF takes as input a matrix containing the frequency of
each word, for each article, and outputs two matrices, one matrix containing
all possible topics, with the frequency of each word for each topic, and the
other matrix containing the occurrences of topics in articles.

NMF is defined by equation 6.35, where W is called the weights matrix
(or meta-genes matrix), and H is called the hidden factors matrix (or meta-
gene expression profiles matrix), and X is the matrix for which we want to
find the hidden factors.

WH ≈ X (6.35)

NMF

Where X is a n × p matrix, and W and H are respectively n × r and
r × p, and r is usually r � min(n, p).

NMF minimizes a cost function that includes the distance D between
X and WH, and an optional regularization function R that ensures certain
properties on W and H, as shown in equation 6.36.

arg min
W,H

(D(X,WH) +R(W,H))) (6.36)

NMF cost function

Typical distance functions D are the Frobenius distance or the Kullback-
Leibler divergence (LEE, 2001).

The regularization function R can be used when W and H should be cho-
sen, within the solution space, to have certain properties such as smoothness
or sparsity (Cichocki et al., 2008).

NMF is implemented with iterative algorithms, using multiplicative up-
date rules, that are shown to find local optima (LEE, 2001).

The choice of the initial values for W and H is crucial for the perfor-
mance of the algorithm and the quality of the solution (that is not guaran-
teed to be a global optimum). Several seeding methods are used: random

96 CHAPTER 6. SOLVERS

values from a uniform distribution; the result of Independent Component
Analysis (Marchini et al., 2013); non negative double singular value decom-
position (Boutsidis and Gallopoulos, 2008); manually provided fixed seeds.

As we have shown in section 6.2.7, that the weights matrix W and
the hidden factors matrix H can be interpreted as a decomposition of the
programs in terms of computational patterns. Equation 6.35 can be seen as
an approximation of equation 5.13, where X contains the measures of the
programs, W contains the measures of the computational patterns and H the
decomposition of each program (each column of X) in linear combinations
of computational patterns.

6.3.1 The surrogate

When using NMF as a solver to characterize a target program, the input
matrix for the NMF algorithm is a matrix X̄ made by concatenating the
vector y as a new column of the measurement matrix X, by convention the
rightmost column. The NMF algorithm outputs the matrices W and H̄.
The rightmost column h of the H̄ matrix contains the vector that expresses
the target program as a linear combination of the computational patterns.
The vector h has the same meaning as in equation 6.34. We call H the
matrix H̄ without the rightmost column. The columns of H are the vectors
that express the benchmarks as linear combinations of the computational
patterns.

The surrogate β is the pair of matrices W and H̄, as shown in equation
6.37.

WH̄ ≈ X̄ (6.37)

NMF for the solver

The matrix W can be seen as a function that maps a vector that ex-
presses a benchmark as a linear combination of computational patterns into
a vector that contains the resource consumption of that benchmark. The
columns of W can be seen as the characterization of the computational pat-
terns in terms of resource consumption.

It is interesting to notice that the surrogate created using NMF does
not only characterize the target program (or the target resource), it also at-
tempts an estimation of the computational patterns, and characterizes the
benchmarks (or the other resources). In section 10.1.2 we show the expres-
siveness of the surrogate created with NMF.

6.3. NON NEGATIVE MATRIX FACTORIZATION 97

6.3.2 The predictor

The predictor is found by determining a new row w of the matrix W, such
that the vector x containing the measures of the programs for the target
resource is equal to the multiplication of the vector w and the matrix H, as
shown in equation 6.38 and equation 6.39, where H+

right is the right pseudo-
inverse of H.

x = wH (6.38)

w = xH+
right (6.39)

p = wh (6.40)

predictor using NMF

The vector w can be seen as an additional row of the matrix W. When
the solver is used to characterize a target program, the vector w contains
the measures of the target resource for the computational patterns (when the
solver is used to characterize a target resource, the vector w contains the
decomposition of the target program in computational patterns). By right
multiplying w by H we obtain the measures of the target resource consump-
tion of the benchmarks (when the solver is used to characterize a target
resource, we obtain the measures of the target program for the resources).
This information is known, therefore we can compute w inverting H. Once
both w and h are known, the prediction can be computed multiplying w by
h (as defined in 6.3.1), as show in equation 6.40. This gives us the prediction
of the target resource for the target program (this is the same also when the
solver is used to characterize a target resource).

The right pseudo-inverse of H can be computed noting that H has more
columns (the number of benchmarks) than rows (the number of computa-
tional patterns), because NMF requires the number of hidden factors to
be smaller than the columns of X. Assuming that the benchmarks contain
enough variety, the hidden factors will not be linearly dependent, and H will
be full row rank. Matrices with full row rank have right inverses H−1

right with

HH−1
right = I. The right pseudo-inverse can then be computed with equation

6.43.

The pseudo-inverse can be estimated using the QR decomposition (equa-
tion 6.41), resulting in equation 6.47: in equation 6.42 we transpose QR;
in equation 6.43 we show the formula for the right pseudoinverse of H; in
equation 6.44 we substitute equations 6.41 and 6.42 into equation 6.43; in

98 CHAPTER 6. SOLVERS

equation 6.45 we simplify Q>Q; in equation 6.46 we apply the inverse op-
erator to R>R; in equation 6.47 we simplify RR−1.

H> = QR (6.41)

H = R>Q> (6.42)

H−1
right = H>(HH>)−1 (6.43)

H−1
right = QR(R>Q>QR)−1 (6.44)

H−1
right = QR(R>R)−1 (6.45)

H−1
right = QRR−1R−> (6.46)

H+
right = QR−> (6.47)

Right pseudoinverse estimation

6.3.3 Hardware and Software intrinsic relationship

The intrinsic relationship between the characterization of hardware and soft-
ware is particularly evident in the surrogate created by the NMF solver. The
surrogate is composed of two matrices W and H. Consider the following:

• when NMF is used to characterize a target program:

– XSW contains the measures of the benchmarks for the resources,
every resource is a row, every benchmark is a column

– NMF finds WSW and HSW such that XSW = WSWHSW

– WSW contains the resource consumption of computational pat-
ters: the rows of WSW are resources, the column are computa-
tional patterns

– HSW contains the benchmarks expressed as linear combinations
of computational patterns: the rows are computational patterns,
the columns are benchmarks

• when NMF is used to characterize a target resource:

– XHW contains the measures of the benchmarks for the resources,
every benchmark is a row, every resource is a column

– NMF finds WHW and HHW such that XHW = WHWHHW

– HHW contains the resource consumption of computational pat-
ters: the columns of HHW are resources, the rows are computa-
tional patterns

6.3. NON NEGATIVE MATRIX FACTORIZATION 99

– WHW contains the benchmarks expressed as linear combinations
of computational patterns: the columns of WHW are computa-
tional patterns, the rows are benchmarks

XHW = WHWHHW (6.48)

XSW = X>HW (6.49)

XSW = (WHWHHW)> (6.50)

XSW = H>HWW>
HW (6.51)

WSW = H>HW (6.52)

HSW = W>
HW (6.53)

XSW = WSWHSW (6.54)

(6.55)

As shown in equations 6.52 and 6.53, with simple algebraic transforma-
tions, the surrogate for the characterization of the target resource is also
a surrogate for the characterization of the target program. Equation 6.48
shows the definition of surrogate for XHW: equation 6.49 notes that the two
models have the same X matrix, simply transposed; equation 6.50 applies
a simple substitution to equation 6.49, using equation 6.48; equation 6.51
applies a simple property of transpose matrices: (AB)> = B>A>; equations
6.52 and 6.53 simply rename the matrices of the surrogate; in equation 6.54
we show that the surrogate of XHW can be used to build a surrogate for
XSW.

6.3.4 Limits of NMF

We have shown how to enrich the output of NMF to create a surrogate and
a predictor, not only characterizing the target program and predicting its
usage of the target resource, but also finding a theoretical set of possible
computational patterns and the decomposition of the programs. In practice,
however, the information contained in X will not be sufficient to really
capture all the interesting behaviours, both in terms of programs (that need
to use different computational patterns) and resources (that need to measure
the effect of the different computational patterns). Therefore, NMF will not
be able to find all the computational patterns, but only a combination of
them.

100 CHAPTER 6. SOLVERS

6.4 Conclusion and future work

In this chapter we have presented 3 solvers for our benchmarking model.
All the presented solvers assume that programs can be explained as linear
composition of computational patterns.

• The simplex solver assumes that is possible to design and measure
benchmarks that perfectly embody computational patterns. Under this
assumption finding the surrogate of the target program can be formu-
lated as a linear programming problem, and solved using the simplex
algorithm.

• Because computational patterns are ideal programs, is reasonable to
assume that they can be directly measured only in controlled set-
tings. Real-world programs are too complex to be analysed with such
assumption. We show that if both the benchmarks and the target
program can be assumed to be linear compositions of computational
patterns, then linear regression can be used to find a representative
surrogate.

• Non Negative Matrix Factorization can be used to characterize the
resources and the benchmarks in terms of hidden factors, that can be
interpreted as computational patterns.

Other solvers could be developed used with out benchmarking model.
Bayesian Regression and Support Vector Regression are natural extensions
that fit well in the general setting of our benchmarking model.

6.4.1 Bayesian regression

In section 6.2 we have argued that an important feature of the linear solver
is the ability to interpret the surrogate to verify its quality. This information
could be used to inform the regression process.

The general setting for linear regression is y = Xβ + ε. β is estimated
with the pseudo-inverse β̂ = (X>X)−1X>y; it can be noted that all the
information comes from the measures X and y. Ordinary least squares,
used in the linear regression solver presented in the section 6.2, assumes
that the information contained in the matrix X and vector y is enough to
find the regression coefficient β. This can be seen as a frequentist approach.

In Bayesian regression, additional information is provided in the form of
prior distribution over β, and this distribution is combined with the data X

6.4. CONCLUSION AND FUTURE WORK 101

and y to build a posterior distribution over the error ε and the coefficients
β, following Bayes theorem.

The Bayesian approach is particularly useful when there is prior knowl-
edge of the possible values that the surrogate β can have. For example, when
characterizing the completion time using performance counters, information
about the machine provided by the hardware vendor can be used to build
a prior. Consider a computer with a 2 GHz CPU; the regression coefficient
associated to the “CPU-cycles” resource needs to be positive (executing cy-
cles takes time), and is probably around 1

2×106
. This information could be

used to build a prior distribution for β.
Bayesian regression is a generalization of standard regression: ordinary

least squares can be seen as a particular case of Bayesian regression that
uses a uniform prior distribution (that assigns the same probability to every
possible value of β).

The error ε is assumed to be a Gaussian random variable with mean 0
and standard deviation σ. P (X,y, β, σ2) is the likelihood; it contains the
information about β and σ2 that can be extracted from the data (equivalent
to linear regression).

As shown in equation 6.56, the posterior distribution P (β, σ2|X,y) com-
bines the information form the prior distribution of β and σ2 with the like-
lihood.

P (β, σ2|X,y) ∝ P (X,y|β, σ2)P (β, σ2) (6.56)

Posterior distribution

Finding an analytical computation of the posterior distribution is usu-
ally difficult, but using Markov Chain MonteCarlo (MCMC) algorithms
(Gilks, 2005), such as the Gibbs sampler (Smith and Roberts, 1993), or
the Metropolis-Hastings sampler (Geyer, 1992), it can be approximated.

The advantages of a Bayesian approach over a frequentist approach are:

• in the frequentist approach we assume that the sample is large enough
to be representative;

• in the Bayesian approach all the assumptions are explicit

• the Bayesian approach follows the sequential nature of experimen-
tation: prior knowledge combined with new data leads to posterior
knowledge. The next experiment will use the posterior knowledge of
the previous experiment as prior knowledge: old posterior knowledge
combined with new data leads to a new posterior knowledge;

102 CHAPTER 6. SOLVERS

• Bayesian regression does not only offer the most probable values of
β and σ, it also describes their distributions. This allows to verify
statements such as “what is the probability that β is within a certain
range”.

6.4.2 Support Vector Regression

All the solvers presented in the previous sections assume the existence of
computational patterns that compose linearly into programs. This assump-
tion seems to be verified by the good characterization and prediction per-
formance of the model, as shown in the experimental section. However, the
model can be used even without assuming linearity.

Support Vector Machines (SVM) are a supervised learning model, widely
used for classification and regression. SVMs map the input data into a higher
dimensional space. When used for classification SVMs find the hyperplane
that better separates the data into two classes, i.e. the hyperplane that
defines the largest margin between the sets of points (Cortes and Vapnik,
1995). The maximum-margin hyperplane can be applied in a non-linearly
transformed feature space. This allows to separate points non-linearly sep-
arable. Meyer et al. (2003) compares SVMs and other classifiers.

The same principle used to classify non linearly separable points can
be applied to regression (Drucker et al., 1997), called Support Vector Re-
gression (SVR). The hyperplane that best fits the data is calculated in the
transformed feature space.

Bishop and Tipping (2003) explains the relationship between linear re-
gression, Bayesian regression, and Support Vector Machines.

SVR could therefore be used instead of linear regression, to account for
non-linear relationships between the programs. However, we believe that
SVR also has important drawbacks with respect to linear regression:

• the surrogate created by the linear regression solver has intuitive in-
terpretation, and can therefore be easily verified; the surrogate that
would be created by SVR would have no direct interpretation, because
the mapping to a higher-dimensional non-linear feature space makes
the regression coefficient non easily related to the original independent
variables.

• approaches based on SVMs are prone to over-fitting: is common prac-
tice to try several non-linear transformations until a good fit is achieved,
and the resulting model is rarely verified because of the lack of clarity
in the surrogate.

6.4. CONCLUSION AND FUTURE WORK 103

In chapter 13 we present an experiment where good results are achieved
with a linear model, in a similar setting where SVMs were used. We show
that renouncing to non-linearity does not compromise the prediction results,
and that the model created is easily verifiable. Nonetheless, it would be
desirable to study when the use of non-linear spaces makes the model more
accurate.

104 CHAPTER 6. SOLVERS

Chapter 7

Experimental complexity of
software

In the previous chapters we have considered applying different inputs to the
same algorithm as different programs. In this chapter we extend the model
adding the concept of experimental complexity, that describes the evolution
of the surrogate of a program as the input size changes.

7.1 Characterization through the surrogate

Studying how the surrogate β of a program changes with the input size
can reveal the nature of a computation and can be used to predict what
bottleneck the program will suffer as the input becomes too large.

Consider the following example. The basis is composed by two programs:

• pcpu a CPU intensive program, it does not use memory

• pmem a memory intensive program, it does not perform CPU intensive
tasks

and using them to characterize a target program p where the memory usage
grows linearly and the CPU usage polynomially. Imagine also using per-
formance counters closely related to CPU and memory usage, like “instruc-
tions” and “cache-misses”, as our resources. Imagine the resources usage of
the basis and the target program to be what reported in table 7.1.

Because pcpu and pmem are close to what we could call “CPU usage”
and the “memory usage” computational patterns, and because the chosen
resources accurately measure their usage, our model can characterize the

105

106 CHAPTER 7. EXPERIMENTAL COMPLEXITY OF SOFTWARE

program instructions cache-misses

pcpu 100 1
pmem 10 10

p(‖x‖ = 10) 501 10
p(‖x‖ = 20) 1004 40
p(‖x‖ = 30) 1509 90
p(‖x‖ = 40) 2016 160
p(‖x‖ = 50) 2525 250
p(‖x‖ = 60) 3036 360
p(‖x‖ = 70) 3549 490
p(‖x‖ = 80) 4064 640
p(‖x‖ = 90) 4581 810
p(‖x‖ = 100) 5100 1000

Table 7.1: Example of instructions and cache-miss usage for the basis and
the target program

evolution of the surrogate in an intuitive fashion. Figure 7.1 shows the
evolution of the components of β extracted by our model from the data in
table 7.1, using the performance counters as resources, pcpu and pmem as the
basis, and creating a surrogate for every input size of the target program p. Is
immediately visible that βmem grows linearly with the input size, while βcpu

grows polynomially, revealing the different behaviour of the target program
with respect to the computational patterns of interest.

This example is an oversimplification of reality. The available data is
usually not as auto-explicative as in table 7.1 (that would allow us to char-
acterize the target program’s behaviour even without looking at the surro-
gate). In section 10.2 we show experiments with real algorithms, starting
from measures that do not reveal the nature of the target program until we
analyse it through the evolution of the surrogate.

7.2 Definition of experimental complexity

In the previous section we showed how the evolution of the surrogate can re-
veal how the behaviour of a program changes as the input size grows. In this
section we formalize that intuition, introducing the concept of experimental
complexity of software, as a function that describes the relation between the
surrogate and the size of the input to the target program.

Definition 12 (Experimental complexity of a program). The experimental

7.2. EXPERIMENTAL COMPLEXITY 107

2 4 6 8 10

0
2
0

4
0

6
0

8
0

surrogate components

input size

memory

CPU

Figure 7.1: Example of evolution of surrogate components as the input size
grows

complexity ξ of a program is a vector valued function that maps the size of
the input data ‖x‖ of a program into its corresponding surrogate β.

Equation 7.1 shows that the vector valued function ξ is defined as a
vector of functions ξi, each describing how the ith coefficient of β changes
as the input of the program grows.

ξ(‖x‖) =

ξ1(‖x‖)
ξ2(‖x‖)

...
ξn(‖x‖)

 =

β1x

β2x
...
βnx

 = βx (7.1)

Experimental complexity

ξi can be found using curve fitting on a predefined set of functions.
Consider the example of the previous section, ξcpu and ξmem need to fit the
curves shown in figure 12. We define a set of possible interesting functions:

• flin = ‖x‖

108 CHAPTER 7. EXPERIMENTAL COMPLEXITY OF SOFTWARE

• flog = log(‖x‖)

• fsquare = ‖x‖2

• fcubic = ‖x‖3

• fexp = e‖x‖

• . . .

We then generate a vector for every fi, using the input size as the argument
of fi. At this point we run linear regression using the generated vectors as
independent variables, and the values of βmem as dependent variable. The
regression coefficient will show what combination of fi best fits the values
of βmem. For example in our case all the coefficients are extremely small
except for flin, that has a value of 0.5, showing that the target program is
linear with respect to the benchmark that expresses memory access.

We then repeat using the values of βcpu as dependent variables, and
find that all the coefficient are close to zero except for fsquare that has a
coefficient of 0.01, showing that the target program is quadratic with respect
to the benchmark that expresses the CPU intensive task.

The experimental complexity can be used to interpolate (or even extrap-
olate) resource consumption of the target program for input sizes for which
we have no measures for any resource, and we can not therefore apply the
solver to build a surrogate. In the previous example we could be interested
in predicting the “instructions” and “cache-misses” values for an input size
of 110. We can calculate β(‖x‖ = 110) as shown in equation 7.2, then
predict the “instructions” and “cache-misses” as shown in equation 7.3.

β(‖x‖ = 110) = ξ(‖x‖) =

=

(
ξmem(110)
ξcpu(110)

)
=

=

(
0.5 ∗ 110

0.01 ∗ 1102

)
=

=

(
55
121

)
(7.2)

7.3. RELATION WITH COMPUTATIONAL COMPLEXITY 109

(
µcache-misses(‖x‖ = 110)
µinstructions(‖x‖ = 110)

)
=
(
pTmem pTcpu

)
β(‖x‖ = 110) =

=

(
1210
5621

)
(7.3)

7.3 Relation with computational complexity

Unlike theoretical computational complexity approaches, such as the widely
used Big-O notation, experimental complexity is an empirical metric, there-
fore it depends on the measures available upon model creation. Like other
empirical analysis of algorithms performance, experimental complexity at-
tempts to describe the behaviour of programs with respect to a set com-
putational resources of interest. The limitation of empirical approaches is
typically the inability do abstract the characterization of the software from
the hardware where the program is measured. However, as shown in the
previous chapters, our approach is capable of combining information coming
from different hardware and resource usage measures, isolating the underly-
ing structure of the target program. The advantage of empirical approaches
is the fact that characterizations are directly applicable to real-world scenar-
ios, like scheduling and resource allocation, whereas theoretical approaches
are more suitable to the study asymptotic behaviour, the orders of growth,
ignoring the constant factors. In practice, however, constant factors are
important, because hardware has limited resources.

Our approach describes the programs in terms of features, relying on
regression to fit the features to actual measures. A similar approach has
been recently proposed by Goldsmith et al. (2007), based on basic blocks
extraction and clustering. Our model is considerably simpler, because it
looks at programs as black boxes, which makes it also easily portable.

7.4 Bottlenecks

The definition of measure requires countable additivity if the resource being
measured is not shared by two programs, or countable sub-additivity if they
share part of it. It could also happen that the measure of the sum of two
programs is larger than the sum of the measures of the programs taken in-
dividually. This can happen if running the programs simultaneously results
in bottleneck e.g. thrashing the system.

110 CHAPTER 7. EXPERIMENTAL COMPLEXITY OF SOFTWARE

We can consider the combination of programs as another program. For
example if we want to run program p1 and program p2, we can define pro-
gram p1,2 as their combination: p1,2 = {p1, p2}. Our model will still apply.
The discussion about bottlenecks caused by the simultaneous execution of
programs can be reduced to the more general discussion of bottleneck caused
by a program on a computational environment.

Bottlenecks happen when the demand for a computational resource is
higher than the computational environment can provide. Usually the op-
erating system will serialize the requests, and the computation will have
to wait for the resource to become available. E.g. if a program uses more
memory than physically available, the system will start swapping, and most
of the computational time will be spent waiting for data to be exchanged
between RAM and disk. When a bottleneck occurs the structure of the
computation changes, sometimes dramatically.

7.4.1 Grace area

The grace area of a computational environment is the combination and
amount of resources that is safe to consume on that particular environment
without occurring in significant bottlenecks. When a program is outside the
grace area its experimental computational complexity on that computational
environment changes, and the sub-additivity property does not hold.

In the resource measurement consumption space, restricted to resource of
a particular computational environment only, the grace area is the polytope
where programs do not thrash that machine.

Every machine will have different bottleneck conditions, therefore differ-
ent grace areas.

Let us now consider a set of identical CPU bound benchmarks. If
we execute them simultaneously, sub-additivity will hold only as long as
there are available processors. Imagine a computational environment with
n processors. Because the benchmarks are CPU bound, then can run each
on a separate processor in parallel. The completion time of the bench-
mark defined as the combination of the first n benchmarks p1...n =

⋃n
i=1 pi

will be equal to t(p1...n) = max(t(p1), . . . , t(pn)) = t(p1). Subadditivity
holds, because t(p1...n) ≤

∑n
i=1 t(pi). If we now run p1...n ns pn+1 simul-

taneously, we will have more active CPU bound programs than processors,
and some time will be spent switching context. The completion time of
t(p1...n+pn+1) > t(p1...n) + t(pn+1), violating the subadditivity constrain. A
resource is therefore valid only if is not acting as a bottleneck.

7.5. COMPOSITIONALITY OF SURROGATES AND EXPERIMENTAL COMPLEXITY111

7.5 Compositionality of Surrogates and Experi-
mental complexity

In this section we discuss the compositional properties of the surrogate β
and the experimental complexity ξ.

In section 10.2 we verify the compositionality of β and ξ using simple
toy-benchmarks and sorting algorithms, to compare the experimental results
with theoretical time complexity analysis.

7.5.1 Linear composition of surrogates and experimental com-
plexity

By definition, any linear composition of the basis X can be expressed by
the linear regression solver using a surrogate β. Imagine a program c being
defined as the linear combination of two programs a and b: c consists of ka
invocations of the program a and kb invocations of program b. The resource
usage of c will also be a linear combination of the resource usage of a and
b, as shown in equation 7.4.

pc = kapa + kbpb

µpc = kaµpa + kbµpb (7.4)

c is a linear combination of a and b

The surrogate βc of the program c can be written as a linear combination
of the surrogates βa and βb of programs a and b, as shown in equation 7.11:

• equation 7.5 follows from equation 7.4, because yc is composed of mea-
sures of the program c;

• equations 7.6, 7.7, and 7.8 simply report the formula of the estimation
of βa, βb, and βc using linear regression;

• equation 7.9 uses equation 7.5 to substitute yc with ya + yb

• equation 7.10 uses the distributive property of matrices

• equation 7.11 simplifies equation 7.10, using equations 7.6 and 7.7,
showing that the estimation of the surrogate of a linear combination
of programs is the linear combination of the surrogates.

112 CHAPTER 7. EXPERIMENTAL COMPLEXITY OF SOFTWARE

yc = kaya + kbyb (7.5)

β̂a = (XTX)−1XTya (7.6)

β̂b = (XTX)−1XTyb (7.7)

β̂c = (XTX)−1XTyc (7.8)

β̂c = (XTX)−1XT (kaya + kbyb) (7.9)

β̂c = ka(X
TX)−1XTya + kb(X

TX)−1XTyb (7.10)

β̂c = kaβ̂a + kbβ̂b (7.11)

Compositionality of surrogates

The compositional property of β does not depend on the input size.
Surrogates will therefore be compositional as the input size grows. As shown
in equations 7.12 to 7.15, this also makes the experimental complexity ξ
compositional: equation 7.12 and 7.13 simply state that applying ‖x‖ to ξ,
the corresponding β can be found; equation 7.14 states that surrogates are
compositional, independently of the input size; substituting equations 7.12
and 7.13 into equation 7.14 we can obtain a valid ξc, independently of the
input size.

ξa(‖x‖) = βa(x) (7.12)

ξb(‖x‖) = βb(x) (7.13)

βc(x) = kaβa(x) + kbβb(x) ∀x (7.14)

ξc(‖x‖) = βc(x) = kaξa(‖x‖) + kbξb(‖x‖) ∀x (7.15)

Compositionality of experimental complexity

7.5.2 Function composition

In this section we explore how the composition of functions reflects on the
surrogates and the experimental complexity. Imagine a program c composed
of an algorithm a that in turn calls another algorithm b, following a certain
function f(x). For example the algorithm a could call b on every element of
the input, in this case f(x) = ‖x‖, or it could call b on every element visited
during a binary search, in this case f(x) = log2 ‖x‖.

Assuming linearity in the composition of programs, as discussed in the
previous section, the resource consumption of c will follow equation 7.16.

7.6. A SINGLE NUMBER IS NOT ENOUGH 113

pc = pa + f(x)pb

µpc = µpa + f(x)µpb (7.16)

c is a ◦ b

Equations 7.17 to 7.21 show that, like in the previous section, the surro-
gates compose in the same way as the measures of the programs. Equation
7.22 shows that, because 7.21 holds for any input size, computational com-
plexity is compositional as well.

yc = ya + f(x)yb (7.17)

β̂c = (XTX)−1XTyc (7.18)

β̂c = (XTX)−1XT (ya + f(x)yb) (7.19)

β̂c = (XTX)−1XTya + f(x)(XTX)−1XTyb (7.20)

β̂c = β̂a + f(x)β̂b (7.21)

ξc(‖x‖) = βc(x) = βa(x) + f(x)βb(x) = ξa(‖x‖) + f(x)ξb(‖x‖) ∀x (7.22)

Compositionality of functions

7.6 A single number is not enough

As already noted by Smith (1988), characterizing performance with a single
number is error prone. Nonetheless, most of the benchmarks, including the
most used, represent performance with a uni-dimensional metric. This is
seen as “necessary evil” (Smith, 1988), to make the characterization easy
to interpret by the user. As discussed in section 1.1, especially referring
to the “war of the benchmark means” (Mashey, 2004), the choice of the
best single number metric is still an unresolved issue. Over the years the
benchmarking community has used several different single number metrics
(like MIPS, GFLOPS, etc.), leading to controversial results.

Using a single number is equivalent to either using a single resource
(without any further characterization), or to using our model with a single
program as the basis.

In this chapter we discuss why using a single metric to characterize
software or hardware is inadequate and inevitably leads to significant error.

Consider figure 7.2, where we show three programs in the resource space
(the axes are the measure of the resource consumption). If only p1 is used as

114 CHAPTER 7. EXPERIMENTAL COMPLEXITY OF SOFTWARE

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

programs in the resource space

Resource 1

R
es

ou
rc

e
2

p1
p2

p3

Figure 7.2: Example of points in the resource space

the basis to represent the other programs, only the programs with a resource
consumption multiple of p1 will be modelled without error. Geometrically
it means that, if the basis is only composed of p1, only the points that lie on
the line that passes through p1 and the origin (because of the null empty set
property of measures) can be expressed without error. The program p2 lies
on the line, it can therefore be modelled with β = 1.5, because p1β = p2.
However, program p3 does not lie on the same line as p1, therefore it can
not be modelled by any value of β without significant error.

This condition similarly applies to resource spaces of higher dimensions:
only the points that lies on the line that passes through the origin and the
single program in the basis can be modelled without significant error.

Using a single dimensional metric different than a program’s resource
consumption is still equivalent to trying to find a line in the resource con-
sumption space to express all possible programs.

In the rest of the chapter we analyse under which conditions this will
happen, in terms of computational patterns. For simplicity, we will limit the
discussion to 2 resources, and to metrics that use the resource consumption
of programs.

Equations 7.23 and 7.24 show the generic resource consumption of 2
computational patterns a and b, for 2 resources. For example, the resources

7.6. A SINGLE NUMBER IS NOT ENOUGH 115

could be completion time on two different machines, computational pattern
a could be pure CPU arithmetic instructions, and b memory usage.

a =

(
µa1

µa2

)
(7.23)

b =

(
µb1

µb2

)
(7.24)

Resource consumption of computational patterns

Equations 7.25 and 7.26 show the programs p1 and p2 are linear combi-
nation of the computational patterns a and b.

p1 = ka1a+ kb1b = ka1

(
µa1

µa2

)
+ kb1

(
µb1

µb2

)
=

(
ka1µa1 + kb1µb1

ka1µa2 + kb1µb2

)
(7.25)

p2 = ka2a+ kb2b = ka2

(
µa1

µa2

)
+ kb2

(
µb1

µb2

)
=

(
ka2µa1 + kb2µb1

ka2µa2 + kb2µb2

)
(7.26)

Programs composition and resource consumption

Imagine using the program p1 as the basis for our model, and p2 as the
target program. Because the basis is composed of only one program, the
surrogate β will be a simple scalar. Therefore, for the model to be accurate,
p2 will have to lie on the same line of p1 in the plane. This condition is
true if the ratio between the consumption of the two resources is equal
for p1 and p2, as shown in equation 7.27. Equations 7.28 to 7.34 are simple
arithmetic transformations: 7.28 multiplies both members of the equation by
(ka2µa2+kb2µb2)(ka1µa2+kb1µb2); equation 7.29 expands the multiplication;
equation 7.30 rearranges the terms to make the simplification in equation
7.31 more evident, where we subtract ka1ka2µa1µa2 and kb1kb2µb1µb2 to both

sides; in equation 7.32 we multiply both sides by
1

ka2µa2kb2µb2
; in equation

7.34 we factor the 4 terms into the multiplication of 2 differences; in equation
7.35 we show the conditions under which the equation is satisfied.

116 CHAPTER 7. EXPERIMENTAL COMPLEXITY OF SOFTWARE

ka1µa1 + kb1µb1

ka1µa2 + kb1µb2
=
ka2µa1 + kb2µb1

ka2µa2 + kb2µb2

(7.27)

(ka1µa1 + kb1µb1)(ka2µa2 + kb2µb2) = (ka2µa1 + kb2µb1)(ka1µa2 + kb1µb2)
(7.28)

ka1µa1ka2µa2 + ka1µa1kb2µb2 + kb1µb1ka2µa2 + kb1µb1kb2µb2 =

= ka2µa1ka1µa2 + ka2µa1kb1µb2 + kb2µb1ka1µa2 + kb2µb1kb1µb2

(7.29)

ka1ka2µa1µa2 + ka1kb2µa1µb2 + ka2kb1µa2µb1 + kb1kb2µb1µb2 =

= ka1ka2µa1µa2 + ka2kb1µa1µb2 + ka1kb2µa2µb1 + kb1kb2µb1µb2

(7.30)

ka1kb2µa1µb2 + ka2kb1µa2µb1 = ka2kb1µa1µb2 + ka1kb2µa2µb1

(7.31)

ka1µa1

ka2µa2
+
kb1µb1

kb2µb2
=
kb1µa1

kb2µa2
+
ka1µb1

ka2µb2

(7.32)

ka1µa1

ka2µa2
− kb1µa1

kb2µa2
+
kb1µb1

kb2µb2
− ka1µb1

ka2µb2
= 0

(7.33)(
ka1

ka2
− kb1

kb2

)(
µa1

µa2
− µb1

µb2

)
= 0

(7.34)

ka1

ka2
=
kb1

kb2
or

µa1

µa2
=
µb1

µb2

(7.35)

Condition for an accurate model

This shows that with a single dimension metric, the model can only be
accurate in two cases:

•
ka1

ka2
=

kb1

kb2
: if the ratio between the presence of computational pat-

terns in p1 and p2 is the same, which means that p1 and p2 have the
same structure. In other words, they are the same program, only run
multiple times or on a larger input size.

•
µa1

µa2
=
µb1

µb2
: if the ratio of the measures of the computational patterns

are the same, which means that they have the same behaviour on the

7.7. CONCLUSIONS 117

resources. In the case of the two resources being completion time on
two different machines, it can only happen if the machines have the
same architecture, simply one machine being slower than the other in
every aspect of the architecture. In the section 10.4 we show an exper-
iment where the same algorithm is measured on different architectures
(AMD vs ATOM), leading to different surrogates β.

The previous demonstration naturally extends to higher dimension re-
source spaces. With n resources, the ratio between the consumption of all
the resources would have to be the same for basis and the target program, as
shown in equation 7.36. In general, with n-dimensional resource spaces the
model can only describe the programs that lie in the hyperplane identified
by the basis span. If the basis contain only 1 program, the hyperplane is
1-dimensional (a line).

µri(p1)

µrj (p1)
=
µri(p2)

µrj (p2)
∀i, j (7.36)

Condition for accurate model in n-dimensions

7.7 Conclusions

In this chapter we have extended our model to consider the relationship
between surrogates of the same program with a different input size. We
have introduced the notion of experimental computational complexity. We
have discussed its compositional properties, and we have shown why a per-
formance metric based on a single dimension can not be a representative
characterization of the performance of software.

Experimental computational complexity is an empirical performance anal-
ysis metric, an attempt to bridge the gap between theoretical time complex-
ity (Big-O) and the black-box measurement-based approaches to software
performance analysis.

In chapter 10 we will validate its expressiveness with experiments based
on sorting algorithms.

118 CHAPTER 7. EXPERIMENTAL COMPLEXITY OF SOFTWARE

Chapter 8

Computational energy model

As shown in the previous chapters, our benchmarking model can character-
ize and predict the consumption of generic resources. In our work we are
particularly interested in two specific resources: completion time and en-
ergy consumption. In this chapter we present a simple and high level energy
model that further describes the relationship between time and energy.

The ability to predict the energy needed by a system to perform a task,
or several concurrent parallel tasks, allows the scheduler to enforce energy-
aware policies, while providing acceptable performance.

The approaches in literature to model energy consumption of tasks usu-
ally focus on low-level descriptors and require invasive instrumentation of
the computational environment.

We developed an energy model and a methodology to automatically
extract features that characterize the computational environment relying
only on a single power meter that measures the energy consumption of the
whole system. In chapter 12 we show that once the model has been built,
the energy consumption of concurrent parallel tasks can be calculated, with
a statistically insignificant error, even without any power meter.

We show that our model can predict with high accuracy, even only us-
ing the utilization time of the cores in an HPC enclosure, without using
performance counters. Hence, the model could be easily applicable to het-
erogeneous systems, where collecting representative performance counters
can be problematic.

119

120 CHAPTER 8. ENERGY MODEL

8.1 The energy model

In this section we will present the energy model, starting with the most
general form, the we will refine and simplify the model assuming property
of the computational power and execution setting.

8.1.1 General form

Similarly to Feng et al. (2005) and Wang et al. (2011), in its most abstract
form, the energy consumed by a computational environment to complete a
set of tasks can be written as equation 8.1:

E =

∫ tend

tstart

P(t) dt (8.1)

where tstart and tend are starting and ending time of the set of tasks,
P(t) is the function of the instant power with respect to time, as written in
equation 8.2:

P(t) =
∑
i∈res

Piαi(t) (8.2)

Equation 8.2 represents instant power in its most general form, where the
instant power consumption is just the sum of the instant power consumption
of each computational resource (e.g. cores, memory, network). αi(t) is the
function of the utilization factor for the ith resource at time t, and Pi the
peak power consumption of the ith resource.

We define ti as the integral of αi(t), as shown in equation 8.3.

ti =

∫ tend

tstart

αi(t) dt (8.3)

Therefore, ti can also be defined as the average value of αi(t) in the timespan
from tstartto tend, multiplied by twall = tend − tstart.

Starting from the general energy definition 8.1 it is possible to replace
equation 8.2 to separate the time-dependent components from the peak
power as in 8.5. The sum and integral can be swapped by linearity to
get 8.6. Finally the equation can be simplified replacing the definition 8.3.

8.1. THE ENERGY MODEL 121

E =

∫ tend

tstart

P(t) dt = (8.4)

=

∫ tend

tstart

∑
i∈res

Piαi(t) dt = (8.5)

=
∑
i∈res

Pi

∫ tend

tstart

αi(t) dt = (8.6)

=
∑
i∈res

Piti (8.7)

Equation 8.1 can therefore be simplified to equation 8.7, where only the
peak power and average utilization factor of the resources are needed to
calculate the energy consumption and no integral is explicitly needed.

However, equation 8.2 can be further refined by thinking about the na-
ture of the various Pi. In particular we can identify two distinct elements
that contribute in defining the power consumption:

Infrastructure : that comprises everything that is constantly turned on
during all the computation, therefore not distinguishable from the
fixed cost of turning on the computational environment. Its power
consumption is written as Pinfr

Active machines : the number of active computers in a computational
environment, such as a cluster. The power consumption of each ma-
chine is written as Pm and refers to the overhead needed to power the
machine. If the machines are not identical, each group of identical
machine will have a different Pm. For simplicity we will assume that
all machines have identical overhead.

It is worth noticing that when the computational environment consists
of a single machine, Pinfr will include Pm, as they will not be distinguishable.

Equation 8.8 shows the refinement of equation 8.2, with Pinfrand Pmfactored
out.

P(t) = Pinfr + Pmm(t) +
∑
i∈res

Piαi(t) (8.8)

Machines could be turned on and off during the execution of jobs. In
the previous equation the number of machines that are active at time t is
described by the m(t) term.

122 CHAPTER 8. ENERGY MODEL

As an example let us consider the case of an HPC cluster where we com-
plete a task A with one dual-core machine active, then turn on an additional
dual-core machine (identical to the first machine) to execute a second task
B, therefore m(t) will be equal to 1, during the execution of task A and
2 during the execution of task B. P(t)will change over time, in particular
when we turn on the additional machine Pmm(t) will double suddenly. If
we model the consumption of cores, αi(t) will also change over time. Let us
assume task A to be strictly serial, it will then use only one core, and task
B to use all the cores available. αi(t) will also rise suddenly when task B
starts.

Now we discuss how the general model can be refined further by adding
reasonable hypothesis on its various terms in order to obtain variants useful
for analyzing the energy consumption and predicting the energy usage of a
given system.

8.1.2 Fixed number of active machines and limited consid-
ered resources

Under the assumption that the number of active machines does not change
during the execution of the workload of interest, the function m(t) becomes
a constant m.

E = twall(Pinfr +mPm) +
∑
i

Piti (8.9)

Is often unfeasible to attempt to model all the resources in a compu-
tational environment, and typically the desired level of accuracy allows to
restrict our attention on a limited set of resources.

Focusing on cores of homogeneous machines

Equation 8.10 shows the refinement of equation 8.9 focusing only on the
power consumed by cores, where P∆cis the difference between the power
consumption when performing useful job and idle state (idle state includes
job performed by the operating system, i.e. anything not directly related to
the observed tasks) and tk is the time that the core k has been active for
the observed tasks.

E = twall(Pinfr +mPm) + P∆c

∑
k∈cores

tk (8.10)

8.1. THE ENERGY MODEL 123

Assuming that cores can only be in either active or idle state is an
oversimplification, as CPUs have several possible active states. However,
in the experimental section we will show that this simple model already
achieves the desired descriptive and predictive results, therefore we are not
interested in modeling the time spent by cores in all the possible active state.
For these reasons we decided to opt for the simplest model, restricting the
state to either active or idle. The model can be refined to express the time
spent in several possible states, should this level of detail be considered
important.

Equation 8.10 assumes that all cores have identical power consumption,
i.e. we are modeling an homogeneous system. If we want to model an het-
erogeneous system, where different sets of cores have different power con-
sumption, we simply have to include multiple P∆cin equation 8.10. This is
true also for Pm, that is assumed to be identical for all machines. If this
assumption does not hold, it is sufficient to add multiple Pmto equation 8.10.

The case of a single parallel job

If we consider the execution of a single parallel job running in an HPC
cluster, we can assume that the task will start with a pre-processing phase
running on a single core (e.g. decomposing the mesh), then execute the
parallel job on all the cores for the same amount of time each, then a post
processing phase on a single core (e.g. recomposing the mesh). If we assume
that all the machines are turned on for the whole task, and that during the
parallel phase we will use n cores, the formula becomes:

E = twall(Pinfr +mPm + P∆c) + (n− 1)P∆ctjob (8.11)

where tjobis the time spent in the parallel phase.

The case of a single machine

To model the simple case of a job running on a single machine, we can
simplify equation 8.11, defining Pinfr+m = Pinfr +Pm, as shown in equation
8.12. Merging Pinfr and Pm is unavoidable because the inability to turn off
the machine makes it indistinguishable from the infrastructure.

E = twall(Pinfr+m + P∆c) + (n− 1)P∆ctjob (8.12)

124 CHAPTER 8. ENERGY MODEL

Sequential job on a single machine

The simplest case to model is that of a sequential job on a single machine.
Defining Pinfr+m+∆c = Pinfr+m + P∆c, equation 8.12 can be simplified to
equation 8.13.

E = twallPinfr+m+∆c (8.13)

8.1.3 Automatic characterization of hardware

In this section we will show how refinements of the energy model can be
used to automatically extract a characterization of the computational envi-
ronment.

The refinements presented in formulae 8.9, 8.10, 8.12, and 8.13, can be
generalized to:

E =
∑
i

Piti (8.14)

where Pi and ti are the power consumption and the utilization time of
the ith resource.

We will assume ti to be known, for every considered resource. The
scheduler usually has this information, at least for relevant computational
resources.

We can consider each Pi as a random variable. We can then run a set
of benchmarks, measuring ti and the energy consumption, with a simple
ammeter at the Power Distribution Unit (PDU), for each run. We can
then consider each run as an independent experiment, and use a statistical
approach to estimate Pi, for every i.

Equation 8.15 shows the general setting of regression analysis.

f(X, β) + ε = y (8.15)

where:

X is a matrix with the measured ti of the benchmarks, a row for every
experiment, a column for every i.

y is a vector with the measures of the energy consumption of the bench-
marks, in the same order as the rows of X.

β is a vector that contains the regression coefficients. Every coefficient
represents a Pi. The ith coefficient corresponds to the ith column of
X.

8.2. DISCUSSION 125

ε contains the fitting residuals, the regression error.

f() is a statistical multivariate function that predicts yi using the values of
the ith row of X and β.

When the underlying model can be assumed to be linear, ordinary least
square (linear regression) can be used as the regression algorithm, simple
vector dot product can be used as f(). Linear regression finds the β that
minimizes the norm of the vector ε from equation 8.16.

Xβ + ε = y (8.16)

Linear regression is an adequate statistical regression tool only if the
model exposes a linear behaviour. This assumption usually holds for high-
level models, whereas a linear approximation is usually not feasible on low-
level models. For example, performance counters measure low-level events
that interact in non-linear ways. If we build a linear model using perfor-
mance counters as ti, those non-linear interactions will not be modelled, and
a large error will arise.

As an example, imagine attempting to measure the completion time of
low level instructions such as arithmetic sums, measuring a benchmark with
very few branch mis-prediction on a super-scalar processor. The super-scalar
pipeline will execute several sums in parallel. If we try to use this model do
predict a program that contains only a few arithmetic sums between branch
mis-predictions, the super-scalar pipeline will often be empty, and the sums
will not be executed in parallel, resulting in a very different completion time.

Measures of energy and completion time are subject to noise, for example
caused by tasks executed in background by the operating system. For this
reason, some outliers are expected to be present in the measures. To mitigate
their effect on the results of the regression, we used a robust linear regression
algorithm (iterated re-weighted least squares), as described by Hoaglin et al.
(2011) and Fox (1997).

In chapter 12 we present experimental results of automatic characteri-
zation using the method described in this section.

8.2 Discussion

The power model presented in this chapter is a simple and coarse grain
model that describes the energy consumption of computational environments
at the cluster level. Notwithstanding the simplicity of the mode, we show in

126 CHAPTER 8. ENERGY MODEL

chapter 12 that it achieves remarkably precise power and energy consump-
tion predictions. Figure 8.1 shows a realistic example for a cluster where
Pinfr is equal to 100W, Pm to 90W and P∆c to 10W, on machines with 16
cores. Even using only 1 active core requires consuming Pinfr + Pm + P∆c

power, then the required power grows linearly with the number of active
cores. When we use more cores than available on a single machine, we turn
on the second machine. Using 17 cores the power consumption is equal to
Pinfr + 2Pm + 17P∆c.

We model the completion time of the program using Amdahl’s law (Am-
dahl, 1967), shown in equation 8.17: T (1) is the completion time for the
program using a single processing unit; T (n) is the completion time using
n processing units; s is the portion of the computation inherently serial (a
number between 0, completely parallel computation, to 1, completely serial
computation); n is the number of used processing units. Asymptotically,
the completion time with a very large number of processing units tends to
sT (1).

T (n) = T (1)(s+
1− s
n

) (8.17)

Amdahl’s law

Figure 8.1 also shows the energy consumption as the number of process-
ing units grows. The energy is simply the multiplication of the instant power
and the completion time. Because the power overhead of using additional
cores grows with the number n of cores, and the completion time decreases

proportionally to
1

n
, the energy consumption will initially decrease, then

when the power increases faster than the time decreases, the energy needed
will start to rise.

Figure 8.2 considers the ideal scenario where it is possible to build a
perfect computational environment that does not waste any power, and only
uses energy for useful work, we’ll have Pinfr = Pm = 0 (because no energy
is wasted in overhead), and some non-zero P∆c. Power now grows linearly
with the number of active cores.

Considering also the ideal scenario where we are able to build a perfectly
parallel computation, with no inherently serial portion (s = 0), the comple-
tion time will keep decreasing as we add processing units, asymptotically
tending to 0.

The resulting energy consumption is constant with the number of pro-
cessing units used. Adding units saves time, but consumes more power, in
the same ratio.

8.2. DISCUSSION 127

0 10 20 30 40 50 60

0
2
00

4
00

6
00

80
0

1
00

0
1
20

0

P
ow

er

0 10 20 30 40 50 60

0
2

4
6

8
10

T
im

e

0 10 20 30 40 50 60

0
50

0
10

00
15

00
20

00

Active cores

E
n

er
gy

Realistic scenario

Figure 8.1: Realistic scenario: power model with Pinfr = 100, Pm = 90,
P∆c = 10; completion time following Amdahl’s law, with 10% algorithm
serial; and power model combined with Amdahl’s law

128 CHAPTER 8. ENERGY MODEL

0 10 20 30 40 50 60

0
2
00

4
00

6
00

8
00

10
00

12
00

P
ow

er

0 10 20 30 40 50 60

0
2

4
6

8
10

T
im

e

0 10 20 30 40 50 60

0
50

0
10

00
15

00
20

00

Active cores

E
n

er
gy

Ideal scenario

Figure 8.2: Idea scenario: power model with Pinfr = Pm = 0, P∆c = 10; com-
pletion time following Amdahl’s law, with 0% algorithm serial; and power
model combined with Amdahl’s law

8.3. CONCLUSIONS 129

8.3 Conclusions

We presented a coarse-grain energy model for parallel concurrent tasks, with
several refinements of the general formula to show how it can be applied to
different cases ranging from no restrictions to single machine, single task,
multiple tasks on a single machine, limited considered resources.

We showed how linear regression can be applied to the formula to charac-
terize the hardware. The model was accurate enough to allow us to predict
peak power absorption with high statistical confidence.

We also showed how the model and the regression coefficient can accu-
rately estimate the energy consumption of a system executing concurrent
parallel tasks, only using the information available at runtime to the sched-
uler, which could then optimize the energy consumption while preserving
acceptable performance. This approach could also be used in cloud systems
to account for energy usage of tasks when a single computational environ-
ment is used for concurrent tasks.

We show that the predictions obtained from our model have high accu-
racy, even only using the utilization time of the cores in an HPC enclosure,
without using performance counters. Hence, the model could be easily appli-
cable to heterogeneous systems, where collecting representative performance
counters can be problematic.

Finally, while the estimate of the energy consumption relies on time
measurements, the prediction of the instantaneous power can be performed
using only the linear model coefficients. This makes it possible for a cluster
management system to decide how many nodes and cores can be activated
while respecting pre-determined power usage constraints.

As we will show in chapter 12, the energy model can be used to model the
energy consumption of concurrent and parallel tasks, running at the same
time on the same computational environment, e.g. a cluster. We show that
once the computational environment has been profiled and the energy model
coefficients (Pinfr, Pm, and P∆c) have been extracted, the energy consumed
by each individual task can be calculated with a small error. This could be
used by a cloud provider to account for energy consumption of the tasks.

130 CHAPTER 8. ENERGY MODEL

Chapter 9

Conclusions

In this part of the thesis we have presented our benchmarking model.

In chapter 5 we have introduced the general approach. The model is
resource agnostic, in the sense that different and heterogeneous resources
can be used to build the model, and can be the target of resource usage
prediction. The model can therefore be used to characterize completion time,
as well as energy consumption, and other interesting aspects of programs.
The model can be used to characterize both hardware and software. In
section 5.2.3 we discuss how the characterization of software is the dual of
characterization of hardware. Our model exploit the inherent relationship
and interdependency of hardware and software to characterize program’s and
computational environments behaviour. Our model is black-box, because it
does not require access to neither the source code of the analysed program,
or the specifications of the computational environment used to execute the
program. It only relies on measures of consumption of resources.

In chapter 6 we have presented three solvers: algorithms that can be used
to characterize the target program or the target resource using measures of
benchmarks. The characterization can be used to understand the nature of
the target program, explained in terms of linear combination of benchmarks;
or to understand the nature of the target resource, explained in terms of
linear combination of the other resources. The model can the use the char-
acterization to create predictions of the consumption of the target resource
by the target program. For example, our benchmarking model could be used
to predict the completion time of a program on a new architecture.

In this part we have also introduced the concept of computational pat-
terns to explain and discuss the properties of our model, and justify why
a simple linear approach can be used to build analytical models of com-

131

132 CHAPTER 9. CONCLUSIONS

plex non-linear phenomena such as the resource consumption of programs
on different architectures.

In chapter 7 we have also introduced the concept of experimental com-
putational complexity, an empirical metric of software complexity, that can
be used to describe how the resource consumption changes as the input size
grows. With respect to other empirical metrics, experimental computational
complexity is resource agnostic, and can be used to describe the consumption
of arbitrary resources. We use it to demonstrate why a single dimensional
metric for performance analysis can only be accurate if the architecture
being analysed does not change, or if the benchmark used to analyse the
machine is the same program whose performances we are interested in.

In our work we support the characterization and prediction of generic
resources, but we focus on completion time and energy consumption in par-
ticular. In chapter 8 we introduced our energy model, a simple high level
approach that is capable of describing the energetic behaviour of concurrent
parallel programs. We show how the energy model can be refined to describe
different kind of computational environments, from single core machines to
HPC clusters. The energy model is an attempt to describe the relationship
between the two resources of particular interest for our work: completion
time and energy.

Part III

Experimental validation

133

135

In this part we present the experimental validation of our benchmarking
model, using both micro-benchmarks and real-world applications.

In chapter 10 we test our model with a small number of micro-benchmarks,
designed to verify the expressiveness and the properties of the surrogate and
the experimental complexity, presented in the previous part.

In chapter 11 we use our model to predict the completion time of CPU
SPEC, using the huge database of experiment results available on the SPEC
website.

In chapter 12 we use our energy model to predict the power consumption
of a small cluster, using the widely used OpenFOAM suite.

In chapter 13 we use our model in conjunction with static analysis tech-
niques, to predict the best device to run OpenCL kernels on an heteroge-
neous machine.

136

Chapter 10

Validating the expressiveness
of the model and
experimental complexity
using micro-benchmarks

In this chapter we present a list of experiments performed with simple micro-
benchmarks we created and measured to show the capabilities of our model
in a simplified environment. In this chapter:

• we show that the surrogate β can be used to characterize the target
program;

• we characterize and predict the behaviour of algorithms using exper-
imental complexity of software, verifying the properties described in
chapter 7.5;

• we show that energy is a representative resource that reflects the com-
putational complexity of programs using sorting algorithms;

• we explore the use of a basis composed of a single benchmark, verifying
the theoretical results presented in chapter 7.6, showing that the use
of a single program as basis necessarily leads to large characterization
error when the architecture changes.

137

138 CHAPTER 10. MICRO-BENCHMARKS

10.1 Expressiveness of the model

10.1.1 Using the simplex solver

Experimental setup

In Morelli and Cisternino (2012), we showed how to use our model to char-
acterize mergesort, using two micro-benchmarks as basis, measuring only
completion time and consumed energy as resources.

Here we present an extended version of the same experiments. We mea-
sured the completion time and the energy consumption of a small set of
programs running on a desktop computer equipped with a CoreDuo proces-
sor with 2MB L2 cache and 1 GB RAM. To measure the energy consumption
we attached a simple ammeter to the computer power plug (therefore mea-
suring the whole machine power absorption), calculated the average instant
power during the execution of each program, then multiplied by the com-
pletion time. We prepared two synthetic benchmarks:

cpu is a simple add assembler instruction executed 220 times

mem is a program that sums a fixed number of random locations from a
large array

We used cpu and mem as our benchmarks and measured mergesort sorting
arrays of different sizes (1M, 2M, 4M, 8M, 16M, 32M).

Table 10.1.1 shows the measured completion time and energy consump-
tion for the program used as the basis, table 10.1.1 shows the measures
relative to the target program mergesort, changing the input size from 1M
to 32M.

cpu mem

time 2.14 s 7.26 s
energy 81.46 J 304.00 J

Table 10.1: Completion time and energy consumption for cpu and mem

p(1M) p(2M) p(4M) p(8M) p(16M) p(32M)

time 0.22 s 0.33 s 0.67 s 1.39 s 2.85 s 5.79 s
energy 8.60 J 13.20 J 27.49 58.29 J 121.79 J 254.82 J

Table 10.2: Completion time and energy consumption for mergesort

10.1. EXPRESSIVENESS 139

Referring to the high level model defined in section 5.2, we defined the
X matrix using the first two columns of the above table, and we used the
measurement vectors for mergesort at various input sizes as y vectors.

Using the simplex solver presented in section 6.1 we created a surrogate
β for every input size, such that yi = Xβi. We decided to use the sim-
plex solver because we were confident that the program in the basis can be
representative of actual computational patterns.

X =

(
2.14 7.26
81.46 304.00

)

y1M =

(
0.22
8.60

)
y2M =

(
0.33
13.20

)
y4M =

(
0.67
27.49

)
y8M =

(
1.39
58.29

)
y16M =

(
2.85

121.79

)
y32M =

(
5.79

254.82

)

Expressiveness of β

The resulting β vectors (calculated using the simplex solver) are:

β1M =

(
0.075118
0.008161

)
β2M =

(
0.075862
0.023093

)
β4M =

(
0.069347
0.071845

)
β8M =

(
0

0.248125

)
β16M =

(
0

0.528191

)
β32M =

(
0

0.780954

)
The evolution of the surrogate β is also shown in figure 10.1, where it can

be seen that for small input sizes the computation is dominated by CPU,
and for large input sizes it quickly gets dominated by memory usage. This
is expected because as the array grows it will not fit into cache and a lot of
cache miss will occur, therefore most of the time and energy will be spent
accessing memory.

It is worth noticing that only black box measures were taken on both
the programs used in the basis and the target program, in particular only
completion time and energy consumption. Nonetheless the model was able
to reveal the increasing memory usage of the sorting algorithm as the input
size grows. This result indicates that, given a representative set of programs,
non obvious behaviour of programs can be extracted from high level mea-
sures, such as energy consumption, not necessarily directly correlated with
the described phenomena.

140 CHAPTER 10. MICRO-BENCHMARKS

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

Evolution of β changing input size

input size (M)

b
et

a
co

m
p

on
en

ts

cpu
mem

Figure 10.1: β for mergesort

10.1.2 Using the linear regression and NMF solvers

In this section we characterize the memory access pattern, using two different
solvers: linear regression and NonNegative Matrix Factorization (NMF).

Experiment setup

We wrote two simple micro-benchmarks:

cpu sums 220 random numbers between 0 and 1024, extracted using the
“rand()” C function, and forced between 0 and 1024 using the modulo
“%” operator. The cpu program uses only simple CPU instructions,
it does not allocate, read, or write memory. We used cpu as one of the
programs in the basis, meant to represent CPU-only computations.

mem(n) allocates a buffer of 224 integers and, for ∀i ∈ [0, 224] assigns i to
the (i×n)%224 element of the buffer, where n is of the form n = 2k+1
(a power of 2, plus 1). Because the buffer size is a power of 2 and n is a
power of 2 + 1, all the items of the buffer are accessed by the algorithm,
if n = 1 the buffer is accessed sequentially, if n = 3 the algorithm skips
2 locations between each access, and so on. The mem program can
be used to test the impact of sequential versus non-sequential memory

10.1. EXPRESSIVENESS 141

access. We tested mem for values of n from 21 + 1 to 220 + 1. We
selected mem(33) as one of the programs in the basis, n = 33 ensures
a large amount of cache-misses. This makes it a good representative
of memory intensive computations.

We ran the benchmarks on a machine with an Intel(R) Core(TM)2 Duo
CPU E6550, 32K L1 cache, 4MB L2 Cache, 8GB RAM, running Linux
Fedora 22, kernel 4.0.2-300.

We measured the cpu-cycles, instructions, cache-misses, and cache-references
performance counters using the “perf” kernel tool. We repeated each run
30 times, reporting here only the mean value.

We used cpu and mem(33) (from now on simply called mem) as basis
for the model. All the other programs (and cases for mem(n)) are expressed
in terms of the basis. In other terms, βi describes the program i as a linear
combination of cpu and mem.

cpu mem

cpu-cycles 36133625.00 956232936.00
instructions 70765551.00 361442598.00

cache-misses 315.00 16944612.00
cache-references 35286.00 17414679.00

Table 10.3: Basis resource consumption

Table 10.3 shows the resource usage of the basis. The two programs
have very different behaviour with respect to the measured resources: the
number of cache-misses and cache-references in mem is higher by several
order of magnitudes than in cpu; the ratio between cache-misses and cache-
references in mem is approximately 1, meaning that almost every access
in cache resulted in a miss, whereas for cpu the ratio is 1 miss every 25
references; the ratio between cpu-cycles and instructions (CPI) is almost 0.5
for cpu, meaning that the super-scalar pipeline is efficiently used, whereas
CPI drops at almost 3 for mem, because most of the cpu-cycles are spent
waiting for cache-misses.

We measured mem(n) for values of n = 2k + 1, for k going from 1
to 20, on the same computational environment as in the previous section,
using the same performance counters (cpu-cycle, instructions, cache-misses,
cache-references).

Figure 10.2 shows the measured resource consumption of mem(n), as
the number of items of the buffer as skipped between accesses. Large n
values result in a sparse memory access patterns, small n values result in

142 CHAPTER 10. MICRO-BENCHMARKS

a more sequential access pattern. Large n values result in frequent cache
misses. The number of cache-misses is affected in non-obvious ways by the
L1 (32KB) and L2 (4MB) cache sizes. For n = 33 the number of cache
misses is already approximately equal to the number of memory accesses,
but for n between 2048 and 32768 the number of cache-misses reduces by an
order of magnitude, because the iterator cycles so quickly that the blocks
in memory are not replaced before they are used again the next time the
iterator reaches the same area of the buffer.

Characterization using linear regression

To characterize the memory access pattern, as n changes from n = 21 + 1
to 220 + 1, we used the linear regression solver, with cpu and mem(33) as
the benchmarks used for the basis. The X matrix is therefore equal to the
measures reported in table 10.3, normalized by row, and the yi vectors are
the measures of mem(i). The surrogate βi refers to the yi vector.

Figure 10.3 shows the evolution of β as n grows. For small values of n,
the memory access pattern is mainly sequential, therefore the computation
is dominated by CPU usage. For extremely large values of n the compu-
tation is dominated by cache-misses, therefore the surrogate assigns a large
value to the mem component of β, and a small negative value to the cpu
component. This indicates that for those values of n, mem(n) is even closer
to the memory computational pattern than mem(33). A possible interpreta-
tion of β220+1 ≈ (−0.92, 1.18) is that mem(220 + 1) can be explained as 1.18
instances of mem(33) removing the CPU usage of 0.92 instances of cpu.

Characterization using NMF

To characterize mem(n) we also used the NonNegative Matrix Factorization
(NMF) solver, presented in section 6.3. We ran NMF on the same matrix X
used in the previous section (containing the measures reported in table 10.3,
normalized by row). The surrogate found by the NMF solver explains the
measures of the programs in terms of 2 matrices W (the basis components
matrix) and H (the mixture coefficients matrix).

We used the nmf function from the NMF R package (Gaujoux and
Seoighe, 2010). The following options were used:

• the positive parts of the output of Independent Component Analysis
(ICA) was used as the seeder (Marchini et al., 2013)

10.1. EXPRESSIVENESS 143

1e+01 1e+03 1e+05

5.
0e

+
08

7.
0e

+
08

1.
0e

+
09

cpu-cycles

n (items skipped between accesses)

cp
u
-c

y
cl

es
(l

og
sc

al
e)

1e+01 1e+03 1e+0536
04

00
00

0
36

10
00

00
0

36
16

00
00

0

instructions

n (items skipped between accesses)

in
st

ru
ct

io
n
s

(l
o
g

sc
al

e)

1e+01 1e+03 1e+05

2e
+

05
1e

+
06

5e
+

06
2e

+
07

cache-misses

n (items skipped between accesses)

ca
ch

e-
m

is
se

s
(l

og
sc

al
e)

1e+01 1e+03 1e+05

5e
+

06
1e

+
07

2e
+

07

cache-references

n (items skipped between accesses)

ca
ch

e-
re

fe
re

n
ce

s
(l

og
sc

al
e)

mem resource consumption

Figure 10.2: Measured resource consumption of mem

144 CHAPTER 10. MICRO-BENCHMARKS

1e+01 1e+03 1e+05

-1
0

1
2

3
4

β values for the cache benchmark

n (skipped items between accesses)

b
et

a
co

m
p

on
en

t

cpu
mem

Figure 10.3: β for mem

• “Nonsmooth NMF” (Pascual-Montano et al., 2006) was used a to pro-
duce sparser factors (to better separate the influence of hidden factors
in the programs)

• he number of hidden factors was set to two (assuming that the only
interesting computational patterns present in the measured programs
were accessing memory efficiently and randomly)

Figure 10.4 shows the surrogate found using both the basis (cpu and
mem(33)) and all the cases for the mem(n) program.

The columns of the basis components matrix (the W matrix) report the
estimated measures of the two potential computational patterns present in
the programs. The first hidden factor captures the absence of cache-misses,
with a large number of cache-references and instructions. The second hidden
factor captures the cache-misses. This indicates that the surrogate found
by NMF found hidden factors close to the desired computational patterns.
Clustering the performance counters with respect to their importance to
find the hidden factors, cache-misses is the most important factor.

The columns of the mixture coefficients matrix (the H matrix) report
the estimated presence of hidden factors in each program. The first row rep-
resents the first hidden factor, the second row represents the second hidden

10.2. EXPERIMENTAL COMPUTATIONAL COMPLEXITY 145

factor. Clustering programs by their hidden factors composition we can see
2 groups. One group contains cpu and the instances of mem(n) for which
the number of cache misses is small, for small values of n (sequential memory
access) and for values of 212 + 1 < n < 217 + 1, as previously discussed. The
second group contains the mem basis program and the instances of mem(n)
that resulted in a large number of cache-misses.

This confirms that the surrogate found by NMF can extract useful infor-
mation regarding the behaviour of programs, indicating what combination
of computational resources constitute the hidden factors that might be close
to computational patterns.

10.2 Experimental computational complexity

In this section we validate the expressiveness of the experimental compu-
tational complexity ξ. We created and measured a few micro-benchmarks
designed to stress CPU only, memory only, and both CPU and memory
intensive computations. The goal of the test is to demonstrate that the
experimental complexity is capable of describing the behaviour of programs
with respect to interesting resource usage, and that it is compositional.

10.2.1 The experimental setup

We wrote a small number of simple micro-benchmarks:

cpu the same program presented in section 10.1.

mem(n) the same program presented in section 10.1.

f(n) consists of a cycle of length log2n, in each iteration are performed 220

integer sums, 220 integer multiplications, 221 integer modulo opera-
tions, and a random number extraction. We tested f for values of n
from 216 to 223, with increments of 216.

g(n) allocates a buffer of n integers, initially set to 0, assigns n random
numbers to n random locations of the buffer, sums the values of n
random locations of the buffer. The g program performs n memory
reads, n memory writes, n integer sums, 2n integer modulo operations,
3n random number extractions. We tested g for values of n from 216

to 223, with increments of 216.

f+g(n) a program that sums the output of f(n) and g(n). We tested f+g
for values of n from 216 to 223, with increments of 216.

146 CHAPTER 10. MICRO-BENCHMARKS

1 2

cache-misses

instructions

cache-references

cpu-cycles

basis
1
2

0

0.2

0.4

0.6

0.8

1

Basis components

cp
u

m
em

(2
57

)

m
em

(9)

m
em

(3)

m
em

(5)

m
em

(20
49

)

m
em

(65
53

7
)

m
em

(4
09

7
)

m
em

(17)

m
em

(3
27

6
9)

m
em

(8
19

3)

m
em

(163
8
5)

m
em

(1
04

8
577

)

m
em

(5
24

2
89

)

m
em

(2
62

1
45

)

m
em

(13
1
0
73)

m
em

(1
02

5
)

m
em

(129
)

m
em

(51
3
)

m
em

(65
)

m
em

(33)

m
em

2

1

basis
1
2

0

0.2

0.4

0.6

0.8

1

Mixture coefficients

Figure 10.4: Characterization of mem using NMF

10.2. EXPERIMENTAL COMPUTATIONAL COMPLEXITY 147

fg(n) a program with the same code as f(n), with the addition of a call to
g(n) in each iteration of the cycle (executed log2n times). We tested
fg for values of n from 216 to 223, with increments of 216.

We ran the benchmarks on the same machine as the the 10.1 section,
we also measured the same performance counters(cpu-cycles, instructions,
cache-misses, and cache-references), repeating each run 30 times, reporting
here only the mean value.

We used cpu and mem(33) (from now on simply called mem) as basis
for the model. All the other programs (and cases for mem(n)) are expressed
in terms of the basis. In other terms, βi describes the program i as a linear
combination of cpu and mem. Table 10.3 reports the measures of the basis,
and section 10.1.2 discusses those measures.

Figure 10.5 shows the resource consumption of the f, g, fg and f+g
programs.

The program f is CPU-bound and similar to the cpu program. as ex-
pected, the number of cpu-cycle and instructions grow logarithmically with
the input size. Like cpu, the number of cache references and misses is ex-
tremely low, because it does not make use of memory. However, the CPI is
slightly above 2, whereas the cpu CPI is approximately 0.5. This is probably
caused by a nested loop in f that interferes with the super-scalar pipeline:
the outer loop is repeated log2n times, the inner loop is repeated 220 times;
cpu only has a single loop of 220 iterations. This makes f non trivially
explainable with cpu alone.

The program g is memory-bound. The number of cpu-cycles, instruc-
tions, and cache-references performance counters grow linearly with the in-
put size. The number of cache-misses has a different behaviour for small
values of n (approximately below 220), where the buffer is contained in
cache, therefore resulting in a limited number of misses, and for large values
of n, because the buffer is not contained in cache, and because we access
random location of the buffer, the larger the buffer the more likely to require
data not contained in cache.

As expected, the performance counters of f+g program as simply the
sum of the performance counters of f and g. The performance counters of fg
show the composition of the f and g functions: the values of the performance
counters are the sum of the values for f with the multiplication of the times
g is performed (g is called inside the loop cycle of length log2n) and the
values of the performance counters of g.

148 CHAPTER 10. MICRO-BENCHMARKS

0e+00 1e+06 2e+06 3e+06 4e+06

1e
+

07
1e

+
08

1e
+

09
1e

+
10

cpu-cycles

input size

cp
u
-c

y
cl

es
(l

og
sc

al
e)

f
g
fg
f+g

0e+00 1e+06 2e+06 3e+06 4e+06

1e
+

07
1e

+
08

1e
+

09
1e

+
10

instructions

input size
in

st
ru

ct
io

n
s

(l
og

sc
a
le

)

f
g
fg
f+g

0e+00 1e+06 2e+06 3e+06 4e+06

1e
+

03
1e

+
05

1e
+

07

cache-misses

input size

ca
ch

e-
m

is
se

s
(l

og
sc

al
e)

f
g
fg
f+g

0e+00 1e+06 2e+06 3e+06 4e+06

1e
+

05
1e

+
06

1e
+

07
1e

+
08

cache-references

input size

ca
ch

e-
re

fe
re

n
ce

s
(l

og
sc

al
e)

f
g
fg
f+g

Programs resource consumption

Figure 10.5: Resource (cpu-cycles, instructions, cache-misses, and cache-
references performance counters) usage of the programs

10.3. ENERGYAND EXPERIMENTAL COMPUTATIONAL COMPLEXITY: SORTING ALGORITHMS149

10.2.2 ξ is compositional

We used our model to find the experimental complexity ξ of f and g, and
we combined ξf and ξg to predict the values of the surrogate β of f+g and
fg, to show that the experimental complexity is compositional.

We used cpu and mem(33) as the the basis for the model. To find the
experimental complexity ξ we used the same curves used in the previous
sections (linear, quadratic, cubic, logarithmic, log-linear)

To find the experimental complexity ξ we performed curve fitting, with
linear regression, using the following functions as independent functions:

linear y = k1x. This function captures loops of the form “for(in i=0; i <
n; i++)”.

quadratic y = k2x
2. This function captures two level nested linear loops.

cubic y = k3x
3. This function captures three level nested linear loops.

logarithmic y = k4dlog2 xe. This function captures loops of the form “for
(i=n; i>1; i = i/2)”.

log-linear y = k4xdlog2 xe. This function captures linear loops combined
with logarithmic loops.

Figure 10.6 shows the β values for f and the relative ξ. The values of
both the cpu and mem components of β are well described by the logarithmic
curve with a small linear component.

Figure 10.7 shows the β values for g and the relative ξ. The cpu com-
ponent of β is well described by the linear curve, the mem component by a
combination of logarithmic and negative linear curves.

We manually defined ˆξf+g = ξf + ξg and ˆξfg = ξf + dlog2 nξge, from the
manual analysis of the source code of the f+g and fg programs. We then
predicted the β values applying equation 7.3 to ˆξf+g and ˆξfg. Figures 10.8
and 10.9 show the predicted and actual β values. As can be seen they are
very close, confirming the compositionality of ξ.

10.3 Energy and experimental computational com-
plexity: sorting algorithms

In this section we explore the use of energy consumption as the only mea-
sured resource, trying to characterize the experimental complexity of algo-
rithms only looking at their energy consumption. The goal of this exper-

150 CHAPTER 10. MICRO-BENCHMARKS

0e+00 2e+06 4e+06

5.
0

5.
5

6.
0

6.
5

cpu

input size

b
et

a.
cp

u

β
ξ

0e+00 2e+06 4e+06

0.
02

0
0.

02
6

mem

input size
b

et
a
.m

em

β
ξ

f microbenchmark β values and ξ

Figure 10.6: β and ξ for f

0e+00 2e+06 4e+06

0
2

4
6

8

cpu

input size

b
et

a.
cp

u

β
ξ

0e+00 2e+06 4e+06

0
.0

0
.2

0.
4

mem

input size

b
et

a.
m

em

β
ξ

g microbenchmark β values and ξ

Figure 10.7: β and ξ for g

10.3. ENERGYAND EXPERIMENTAL COMPUTATIONAL COMPLEXITY: SORTING ALGORITHMS151

0e+00 2e+06 4e+06

6
8

12
16

input size

b
et

a.
cp

u

actual
predicted

0e+00 2e+06 4e+06
0
.1

0
.3

0
.5

input size

b
et

a
.m

em

actual
predicted

Actual vs predicted β values for f + g

Figure 10.8: Predicted and actual β values for f+g

0e+00 2e+06 4e+06

0
50

1
50

cpu

input size

b
et

a
.c

p
u

actual
predicted

0 10 30 50

0
2

4
6

8

mem

input size

b
et

a.
m

em

actual
predicted

Actual vs predicted β values for fg

Figure 10.9: Predicted and actual β values for fg

152 CHAPTER 10. MICRO-BENCHMARKS

iment is to show that energy is a good metric, capable of capturing the
complexity of algorithms.

10.3.1 Experiment setting

We created a simple micro-benchmark (called CPU), to be used as basis,
that performs 220 integer sums. We measured the power consumption us-
ing an ammeter at the power plug, of a computer with an AMD Opteron
SledgeHamer 1.4 GHz, Socket 940, 2 GB RAM, running Windows Vista
Home Edition. The declared CPU power consumption is 89 W. The energy
used by the CPU micro-benchmark is 217.54 J. We wrote an measured 3
sorting algorithms, mergesort, heapsort, and quicksort, written in C, using
vectors of dimension from 1M to 41M elements.

Because we are measuring a single resource and the basis is composed
of a single benchmark, the equation 6.17 simplifies from matrix to scalar
operations only, as shown in equations 10.1 and 10.2, where µCPU is the
measured energy consumption of CPU, and µp(i) is the energy consumption
of the target program.

y = Xβ + ε

µp(n) = µCPUβn (10.1)

βn =
µp(n)

µCPU
(10.2)

For every input size n we found the corresponding βn, simply dividing the
energy consumption of the algorithm by the energy consumption of CPU.

To find the experimental complexity ξ we performed curve fitting, with
linear regression, using the same curves described in section 10.2.2 (linear,
quadratic, cubic, logarithmic, and log-linear).

10.3.2 Experimental results

Figure 10.10 shows the single component of βn (simply the ration between
heapsort and the CPU benchmark) as the input size changes, and the ξ.
The best fitting curve was log-linear, with R2 = 0.9999 and multiplicative
factor 4.74× 10−09. The complete formula of ξ is shown in equation 10.3.

ξ(n) = 4.74× 10−09n log2 n (10.3)

ξ of heapsort

10.3. ENERGYAND EXPERIMENTAL COMPUTATIONAL COMPLEXITY: SORTING ALGORITHMS153

0e+00 1e+07 2e+07 3e+07 4e+07

0
1

2
3

4
5

Heapsort sorrogate

input size

b
et

a
co

m
p

on
en

t

β
ξ

Figure 10.10: β and ξ for heapsort

Figure 10.11 shows the single component of βn (simply the ration be-
tween mergesort and the CPU benchmark) as the input size changes, and the
ξ. Like for heapsort, the best fitting curve was log-linear, with R2 = 0.9998
and multiplicative factor 1.08× 10−08. The complete formula of ξ is shown
in equation 10.4.

ξ(n) = 1.08× 10−08n log2 n (10.4)

ξ of mergesort

Figure 10.12 shows the single component of βn (simply the ration be-
tween quicksort and the CPU benchmark) as the input size changes, and the
ξ. The best fitting curve was quadratic, with R2 = 0.9934 and multiplicative
factor 2.38× 10−14. The complete formula of ξ is shown in equation 10.5.

ξ(n) = 2.38× 10−14n2 (10.5)

ξ of quicksort

For all sorting algorithms the experimental computational complexity ξ
was the same as the theoretical time complexity O. Interestingly, the ξ of

154 CHAPTER 10. MICRO-BENCHMARKS

0e+00 1e+07 2e+07 3e+07 4e+07

0
2

4
6

8
10

Mergesort surrogate

input size

b
et

a
co

m
p

on
en

t

β
ξ

Figure 10.11: β and ξ for mergesort

quicksort was the same curve as the theoretical worst case O(n2) instead
of the average case O(n log n). However, as can be seen in figure 10.12 the
growth of the surrogate is not as steep as n2. It lies between n log n and n2,
a curve not modelled by ξ. Allowing linear combinations of curves, the best
fit is the sum of quadratic and log-linear. Figure 10.13 shows the fitting of
the surrogate and the ξ described in formula 10.6.

ξ(n) = 1.54× 10−14n2 + 3.17× 10−9n log2 n (10.6)

ξ of quicksort, with quadratic and log-linear combined

10.4 Micro-architecture independence: limits of a
single dimension

To verify the limits of using a single value as surrogate presented in chapter
7.6, we compared the results for mergesort characterized using CPU only
presented in the previous section, with the same programs (the CPU bench-
mark and mergesort) on different machines. We expect the surrogate to
show small differences for similar architectures, and large differences for dif-
ferent architectures. In the first experiment we use a machine of the same

10.4. MICRO-ARCHITECTURE INDEPENDENCE: LIMITS OF A SINGLE DIMENSION155

2e+06 4e+06 6e+06 8e+06 1e+07

0.
0

1.
0

2.
0

Quicksort surrogate

input size

b
et

a
co

m
p

on
en

t

β
ξ

Figure 10.12: β and ξ for quicksort

family, but with a slightly newer processor. In the second experiment we use
a completely different architecture. We present the results of characterizing
using measures from each architecture separately, as well as in the same
model. We conclude this section showing that using the target program to
characterize itself, the model error disappears, and that using multiple pro-
grams as basis (instead of just a single program), the model error becomes
much smaller.

10.4.1 Different architectures

In the first experiment we used the same micro-architecture as in the previ-
ous section, but with a slightly newer processor: AMD Athlon 64 X2 Toledo
4200++, 2.20 GHz, Socket 939, 2 GB RAM, running Windows Vista Home
Edition. The differences between the Opteron machine (presented in the
previous section) and the Athlon machine are:

• the socket 939 is similar to socket 940, but is revised removing the
need for buffered memory, doubling peak memory bandwidth;

• the clock rate of the Athlon machine is faster than the Opteron (2.2
GHZ versus 1.4GHz);

156 CHAPTER 10. MICRO-BENCHMARKS

2e+06 4e+06 6e+06 8e+06 1e+07

0.
0

1.
0

2.
0

Quicksort combined surrogate

input size

b
et

a
co

m
p

on
en

t

β
ξ

Figure 10.13: β and ξ for quicksort, allowing linear combination of curves

• the Opteron is single core, the Athlon is dual core;

We measured the energy consumption of the CPU micro-benchmark (177.25
J), and of mergesort. Because the micro-architecture is similar, the compu-
tational patterns will have a similar resource consumption on the Athlon
and Opteron machines. However, because the CPU is not the same, the
computational patterns resource consumption not be exactly the same. In
particular we expect the CPU to run faster, while the cost of accessing mem-
ory will be similar, thus violating the conditions expressed in equation 7.35.
We expect therefore the model created using a single program in basis to
produce inconsistent surrogates.

ξ(n) = 5.44× 10−9n log2 n (10.7)

ξ of mergesort on Athlon

In the second experiment we used a different micro-architecture: an Intel
ATOM N230, 512KB L2, 4MB RAM. Measured the energy consumption of
the CPU micro-benchmark (96.62 J), and of mergesort. Because the ar-
chitectures of the Opteron and ATOM machines are substantially different,
the computational patterns will also have a largely different resource con-

10.4. MICRO-ARCHITECTURE INDEPENDENCE: LIMITS OF A SINGLE DIMENSION157

0e+00 1e+07 2e+07 3e+07 4e+07

0
1

2
3

4
5

6

mergesort surrogate on Athlon

input size

b
et

a
co

m
p

on
en

t

β
ξ

Figure 10.14: β and ξ for mergesort on Athlon

sumption, violating the conditions expressed in equation 7.35. We expect
therefore the model to produce inconsistent surrogates.

Figure 10.15 shows the single component of βn (simply the ration be-
tween mergesort and the CPU benchmark) as the input size changes, and
the ξ. Like for mergesort on the AMD machine, the best fitting curve was
log-linear, with R2 = 0.9998 and multiplicative factor 1.79 × 10−9. The
complete formula of ξ is shown in equation 10.8.

ξ(n) = 1.79× 10−9n log2 n (10.8)

ξ of mergesort on ATOM

The ξ of mergesort found using the measures on both the Athlon, Opteron,
and ATOM follows the same curve n log n. However, the multiplicative fac-
tors are different. In particular, on the ATOM is an order of magnitude
smaller than on the Opteron. Predictions made with the β found using
measures on Opteron alone, would produce a large error on the ATOM
machine.

Figure 10.16 shows the surrogates calculated independently on the 3
machines. We can verify that the surrogate calculated on Opteron is close
but not equal to the surrogate calculated on the Athlon. The distance

158 CHAPTER 10. MICRO-BENCHMARKS

0.0e+00 1.0e+07 2.0e+07

0.
0

0.
2

0.
4

0.
6

mergesort surrogate on ATOM

input size

b
et

a
co

m
p

on
en

t

β
ξ

Figure 10.15: β and ξ for mergesort on ATOM

increases as the difference between architectures becomes significant: the
surrogates on Opteron and ATOM are radically different.

10.4.2 Using all the measures in the same model, only 1
program as basis

As expected from the theoretical results in chapter 7.6, combining the mea-
sures from different architectures in the same model, but using a single
program as basis, with a different structure than the target program, will
lead to an imprecise model. We combined the measures from the previous
experiments, using CPU as basis, and mergesort as the target program, on
Athlon, Opteron and ATOM.

For every input size we build a surrogate, using the measures of the CPU
micro-benchmark on the 3 architectures as matrix X (single column), and
the measures of mergesort on all architectures as y. In this experiment the
surrogate is the same for all the architectures.

To test the goodness of the model, we plotted the actual values versus
the fitted values, as shown in figure 10.17. The fitted values show the rep-
resentation that the model makes of the actual data. The characterization
error is large, as evident by the difference between the actual values and the
fitted values, for all the architectures.

10.4. MICRO-ARCHITECTURE INDEPENDENCE: LIMITS OF A SINGLE DIMENSION159

0.0e+00 1.0e+07 2.0e+07

0
2

4
6

8

Mergesort surrogate discrepancy

input size

b
et

a
co

m
p

on
en

t Opteron
ATOM
Athlon

Figure 10.16: Discrepancy in surrogates between Athlon, Opteron and
ATOM

10.4.3 Using all the measures in the same model, with a
larger basis

To further verify the theoretical model, we added one program to the basis.
We measured quicksort on a single input size n = 1M , on all the architec-
tures. We used quicksort as an example of program different than the target
program (they have different computational complexity), composed of dif-
ferent computational patterns than the CPU micro-benchmark (quicksort
uses memory, while CPU only performs arithmetic operations).

For every input size we build a surrogate, using the measures of the CPU
micro-benchmark and quicksort(1M) on the 3 architectures as matrix X (2
columns), and the measures of mergesort on all architectures as y. In this
experiment the surrogate is the same for all the architectures.

As expected, the characterization using a basis with more than a single
program is more accurate. The differences between the Opteron, Athlon, and
ATOM architectures are better captured than in the previous experiment,
even using a small basis (2 programs).

160 CHAPTER 10. MICRO-BENCHMARKS

0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07 2.5e+07

0
50

0
10

0
0

15
00

mergesort fitted vs measured (basis size = 1)

input size

E
n

er
g
y

Opteron
Opteron fitted
ATOM
ATOM fitted
Athlon
Athlon fitted

Figure 10.17: Measured versus fitted values using a single program as basis
on 3 different architectures

10.4.4 Using the target program as basis

To further confirm the theoretical results in chapter 7.6, we verified that
using the target program as the only program in the basis, the surrogates
found independently on the 3 architectures will be the same.

The surrogates as the input size grows are shown in figure 10.19.

10.4.5 Discussion

In this section we have verified that using a single program as basis can only
lead to precise model in 2 cases:

• the architecture is substantially the same

• the target program is the same as the program in the basis

10.4. MICRO-ARCHITECTURE INDEPENDENCE: LIMITS OF A SINGLE DIMENSION161

0.0e+00 5.0e+06 1.0e+07 1.5e+07 2.0e+07 2.5e+07

0
50

0
10

0
0

15
00

mergesort fitted vs measured (basis size = 2)

input size

E
n

er
g
y

Opteron
Opteron fitted
ATOM
ATOM fitted
Athlon
Athlon fitted

Figure 10.18: Measured versus fitted values using 2 programs as basis on 3
different architectures

In chapter 11 we will show that using a sufficiently large number of
benchmarks and resources from different computational environments the
model becomes accurate, and the prediction has a small error.

Most of the approaches to benchmarking used nowadays attempt to use
a single number to characterize computer systems. This experiment shows
that this approach inherently leads to inaccurate models. In chapter 13
we will show that using more than a single dimension to characterize hard-
ware (the dimensionality of β), we can build expressive models, and the
predictions can be accurate enough to chose the best device for the tar-
get program. The dimensionality of β does not need to be large, in fact it
should be as small as possible to ensure readability of the surrogate, and
avoid over-fitting.

This verifies the the theoretical result described in chapter 7.6: the model

162 CHAPTER 10. MICRO-BENCHMARKS

0.0e+00 1.0e+07 2.0e+07

0.
0

0.
4

0.
8

Mergesort surrogate concordance

input size

b
et

a
co

m
p

on
en

t Opteron
ATOM
Athlon

Figure 10.19: Concordance in surrogates between Athlon, Opteron and
ATOM, using the target program as basis

created using a single metric can not be accurate when the underlying com-
putational environment changes significantly.

10.5 Conclusions

In this chapter we have presented a few experiments using toy benchmarks,
designed to verify the expressiveness, the properties and the limits of the
surrogate β and the experimental computational complexity ξ. We have seen
that characterizing a target program using a single program as basis leads to
a large error as we apply the same model to different architectures. We have
verified that the surrogate and the experimental complexity of software are
expressive and compositional. We have also seen that energy is a resource
that reveals the theoretical complexity of algorithms.

Chapter 11

Validating performance
prediction on multiple
architectures using
CPUSPEC

In this chapter we show the prediction accuracy of our model, using the
widely used benchmarking suite SPEC CPU, and predicting the comple-
tion time of the suite on a machine not used to train the model. This
demonstrates that the model is capable of accurate cross-architecture re-
source consumption predictions.

11.1 CPUSPEC

We tested our model using the SPEC CPU2006 data publicly available on
the SPEC website 1, using the completion time on each report as a different
computational resource, choosing a subset of the suite as the benchmarks
and the rest of the suite as the target programs.

We decided to use the SPEC CPU suite because it has been proven to
be a representative workload for real world applications, it has been used
to prove the performance of several other performance predictors, and all
the data needed to replicate the experiment is publicly available, allowing
repeatability of the presented results.

1https://www.spec.org

163

164 CHAPTER 11. CPUSPEC

We downloaded the data from the SPEC website, we kept only the com-
plete results that had both SPEC INT and SPEC FP, creating one row for
each machine and one column for each program of the suite. The resulting
matrix contained 1133 rows and 29 columns. The software and scripts used
to download and aggregate the data, to create the models, to make predic-
tions and to check the prediction errors is available with open source license
2.

11.1.1 Bias error

Performance measures will have bias error, as shown by Mytkowicz et al.
(2009), because of unexpected phenomena. Our dataset consists of 4082
different SPEC INT or SPEC FP reports, of which some from the same
machine, some from different. 2634 reports from SPEC INT and 2568 from
SPEC FP. In some case we have more than one report from a machine
(repeated experiment). We extracted the reports that have been run on
machines with the same components and analyzed the difference in the mea-
sures to estimate the bias error. We calculated the expected measure for a
program as the average value x̄ =

∑
x

m where m is the number of measure
we have for that program, the relative error as e = x−x̄

x̄ and the bias error of
a program as the Root Mean Squared Error (RMSE) of the relative errors

RMSE =

√∑
e2

m .

The total bias error (RMSE) of the CPU SPEC is equal to 0.0330, the
bias error of the programs varies from 1% to more than 7%. Therefore we
expect an error when trying to predict the program’s completion time of
the same order of magnitude as its bias error. We will study the correlation
between the prediction error and the bias error. We expect he prediction
error to be positively correlated with the bias error (guessing the correct
completion time will be harder for those programs with a large bias error).

11.2 Predicting completion time using the linear
regression solver

The primary objective of our experiment is to test the prediction accuracy
of our prediction model using the data from CPU SPEC 2006. In each
experiment we proceeded as follows:

2https://github.com/vslab/Energon

11.2. PREDICTING COMPLETION TIME 165

Table 11.1: Programs bias error

type program bias error
SPEC INT 445.gobmk 0.0101
SPEC INT 458.sjeng 0.0107
SPEC FP 444.namd 0.0108
SPEC FP 453.povray 0.0113
SPEC INT 464.h264ref 0.0113
SPEC INT 473.astar 0.0126
SPEC INT 403.gcc 0.0129
SPEC FP 454.calculix 0.0129
SPEC FP 416.gamess 0.0132
SPEC INT 401.bzip2 0.0133
SPEC FP 447.dealII 0.0146
SPEC INT 400.perlbench 0.0154
SPEC INT 483.xalancbmk 0.0158
SPEC FP 450.soplex 0.0164
SPEC INT 429.mcf 0.0170
SPEC INT 456.hmmer 0.0181
SPEC FP 433.milc 0.0207
SPEC INT 471.omnetpp 0.0216
SPEC FP 482.sphinx3 0.0218
SPEC FP 465.tonto 0.0226
SPEC FP 481.wrf 0.0280
SPEC FP 434.zeusmp 0.0340
SPEC FP 435.gromacs 0.0351
SPEC INT 462.libquantum 0.0432
SPEC FP 437.leslie3d 0.0535
SPEC FP 459.GemsFDTD 0.0593
SPEC FP 470.lbm 0.0681
SPEC FP 410.bwaves 0.0701
SPEC FP 436.cactusADM 0.0768

166 CHAPTER 11. CPUSPEC

1. we chose the number m of resources used to build the model (training
size), and the number n of benchmarks (basis size)

2. we picked a program form the CPU SPEC suite as the target program

3. we randomly selected m results from the CPU SPEC 2006 database.
This represents the knowledge we have when we build the model. We
extracted one results from the rest of the CPU SPEC 2006 database
to test the model. We created a matrix Mmodel with the selected
m CPU SPEC results, each system is a row of the matrix and each
measure of the program is a column

4. we normalized each row of Mmodel (to make sure each computational
environment had the same weight in the model). This matrix consti-
tutes the training set of our model.

5. we pick one of the programs of CPUSPEC as the target program

6. we selected a random subset of n programs in the CPU SPEC suite to
be used as the benchmarks, the basis for our model. The probability of
choosing a program as basis is proportional to its correlation with the
target program. Similar programs will therefore be preferred as basis.

7. we created the matrix X keeping only the columns of Mmodel relative
to the n benchmarks

8. we found the surrogate β of the target program, using Robust Least
Squares as the solver, such that Xβ = y, where y is the vector of
measures of the target program for the systems used to build the model

9. we predicted the resource consumption of the target program on 100
randomly selected systems from the CPU SPEC database that were
not used in the training set (Mmodel) by estimating the resource con-
sumption of the target program (p), multiplying the vector containing
the measures of resource consumption of the benchmarks on the new
system x by the surrogate p = xβ

10. we calculated the relative error between the predicted resource con-
sumption p and the real resource consumption t as p−t

t

11. we also calculated Relative Absolute Error (RAE), defined in equation
11.1 s, where pi is the predicted value, µi is the measured value and µ̂
is the mean of the measured values.

11.2. PREDICTING COMPLETION TIME 167

12. we repeated this experiment for every program in the CPU SPEC
suite, 100 times for each program (to ensure statistical significance,
selecting random benchmarks and random resources), for basis sizes
varying from 2 to 25 benchmarks, and training sizes from 40 to 200. A
total of 1670400 predictions have been performed.

ERAE =

∑
|pi − µi|∑
|µi − µ̂|

(11.1)

RAE

11.2.1 Completion time prediction accuracy

In this section we report the prediction accuracy of our model choosing
the basis (the programs used as benchmarks). Figure 11.1 shows the RAE
changing the amount of information available when building the model, both
in terms of small training set (40 machines) to large training set (200 ma-
chines) and small set of benchmarks (10) to a large set of benchmarks (25).
RMSE is a good measure of the overall prediction error because it includes
both the bias and the variation of the errors. Every combination of basis
size and training set shows the RMSE of a large number of experiments:
for each program (29) were repeated 100 experiments, each including 100
predictions, for a total of 290 thousands predictions.

As expected, with limited information available when building the model,
the predictions contain a large error.

With a limited number of benchmarks in the basis, RAE is consistently
high even using a large amount of measures. This can be explained by the
fact that the programs in CPU SPEC are very different. Therefore, using
a small set of randomly selected benchmarks as the basis, is unlikely that
they will contain representative aspects of the target program. The resulting
model will not be able to characterize the important characteristics of the
target program and the predictions will have a large error.

For small values of training size is noticeable a minimum in RAE for
values of basis size approximately a quarter of the training size. This is an
expected phenomenon, because a large basis with not enough data points
results in a model that over-fits the data, with little residuals, but large
prediction error.

The number of benchmarks used in the basis should therefore be chosen
depending on the amount of measures available for the training set, making

168 CHAPTER 11. CPUSPEC

tr
ai

n
in

g
si

ze

50

100

150

200

basis size

5
10

15

20

25

R
A

S

0.15

0.20

0.25

0.30

0.35

0.40

RAE changing basis size and training size

Figure 11.1: Completion time prediction RAE for different basis sizes and
training set sizes

11.2. PREDICTING COMPLETION TIME 169

sure that the number of rows in the matrix X is considerably larger than
the number of rows.

Predictions accuracy for each program

In this section we will explore the detailed predictions in two cases: a limited
amount of information available when building the model (using both a small
basis size and a small training set), and a large amount of information (using
a large basis and a large training set).

Figure 11.2 shows the distribution of the relative prediction errors and
the fitting residuals, using 5 benchmarks as basis, and 50 different machines,
for each program.

Figure 11.3 shows the distribution of the relative prediction errors and
the fitting residuals, using 25 benchmarks as basis, and 100 different ma-
chines, for each program.

Programs are ordered by their bias error, to show that there is a negative
correlation between the prediction accuracy the bias error.

The overall RAE of the case with 5 benchmarks and 50 machines is 0.27,
whereas with 25 machines and 100 machines RAE is only 0.16.

The improvement is noticeable especially in the benchmarks with high
bias error, such as 459.GemsFDTD (where the prediction error mean and
standard deviation went from -0.05 and 0.32, to -0.01 and 0.16), or 470.lbm
(that went from -0.11 and 0.78, to -0.03 and 0.26). This improvement is ex-
pected, because with a larger basis more detailed behaviour can be captured,
and with a larger training set the risk of over-fitting decreases.

11.2.2 Fitting residuals, bias, and prediction error

The prediction error and the regression residuals are closely related. Their
correlation is as high as 0.97. This is also evident from figures 11.2 and 11.3
and tables 11.2 and 11.3 where, for each program, the distribution of pre-
diction error and fitting residuals are shown. Programs with large residuals
have poor performance predictions (e.g. 436.cactusADM or 410.bwaves),
programs with small residuals have good predictions (e.g. 445.gpbmk or
458.sjeng).

Also, as expected, bias error is positively correlated with prediction error
(0.89). The programs in figures 11.2 and 11.3 are ordered by bias error, and
the prediction error is generally very small in the first programs and large
in the last programs.

170 CHAPTER 11. CPUSPEC

-1.0 0.0 1.0

0
2

4
6

445.gobmk

D
en

si
ty

-1.0 0.0 1.0

0
4

8

458.sjeng

-1.0 0.0 1.0

0
2

4
6

8

444.namd

-1.0 0.0 1.0

0
4

8

453.povray

-1.0 0.0 1.0

0
4

8

464.h264ref

-1.0 0.0 1.0

0
4

8

473.astar

D
en

si
ty

-1.0 0.0 1.0

0
2

4
6

403.gcc

-1.0 0.0 1.0

0
2

4
6

454.calculix

-1.0 0.0 1.0

0
4

8

416.gamess

-1.0 0.0 1.0

0
4

8

401.bzip2

-1.0 0.0 1.0

0
2

4
6

447.dealII

D
en

si
ty

-1.0 0.0 1.0

0
4

8

400.perlbench

-1.0 0.0 1.0

0
2

4
6

483.xalancbmk

-1.0 0.0 1.0

0
2

4

450.soplex

-1.0 0.0 1.0

0
2

4
6

429.mcf

-1.0 0.0 1.0

0
2

4

456.hmmer

D
en

si
ty

-1.0 0.0 1.0

0
1

2
3

433.milc

-1.0 0.0 1.0

0
.0

1
.5

3
.0

471.omnetpp

-1.0 0.0 1.0

0
1

2
3

482.sphinx3

-1.0 0.0 1.0

0
4

8

465.tonto

-1.0 0.0 1.0

0
.0

1
.5

481.wrf

D
en

si
ty

-1.0 0.0 1.0

0
.0

1
.5

434.zeusmp

-1.0 0.0 1.0

0
.0

1
.5

435.gromacs

-1.0 0.0 1.0

0
.0

0
.6

462.libquantum

-1.0 0.0 1.0

0
.0

1
.0

2
.0

437.leslie3d

relative error

-1.0 0.0 1.0

0
.0

1
.0

2
.0

459.GemsFDTD

relative error

D
en

si
ty

-1.0 0.0 1.0

0
.0

0
.6

1
.2

470.lbm

relative error

-1.0 0.0 1.0

0
.0

1
.0

410.bwaves

relative error

-1.0 0.0 1.0

0
.0

0
.6

1
.2

436.cactusADM

relative error

Densities of relative errors (black) and fitting residuals (red) with basis size 5 and training set size 50

Figure 11.2: Completion time prediction accuracy with basis size 5 and
training size 50, ordered by bias error

11.2. PREDICTING COMPLETION TIME 171

-1.0 0.0 1.0

0
1
0

2
0

445.gobmk

D
en

si
ty

-1.0 0.0 1.0

0
1
0

2
0

458.sjeng

-1.0 0.0 1.0

0
5

1
0

444.namd

-1.0 0.0 1.0

0
5

1
0

453.povray

-1.0 0.0 1.0

0
5

1
0

464.h264ref

-1.0 0.0 1.0

0
5

1
5

473.astar

D
en

si
ty

-1.0 0.0 1.0

0
4

8
1
2 403.gcc

-1.0 0.0 1.0

0
4

8

454.calculix

-1.0 0.0 1.0

0
1
0

2
0

416.gamess

-1.0 0.0 1.0

0
1
0

2
0

401.bzip2

-1.0 0.0 1.0

0
4

8

447.dealII

D
en

si
ty

-1.0 0.0 1.0

0
5

1
5

400.perlbench

-1.0 0.0 1.0

0
4

8

483.xalancbmk

-1.0 0.0 1.0
0

4
8

450.soplex

-1.0 0.0 1.0

0
4

8

429.mcf

-1.0 0.0 1.0

0
2

4
6

456.hmmer

D
en

si
ty

-1.0 0.0 1.0

0
2

4
6

433.milc

-1.0 0.0 1.0

0
2

4

471.omnetpp

-1.0 0.0 1.0

0
2

4
6

482.sphinx3

-1.0 0.0 1.0
0

4
8

1
4 465.tonto

-1.0 0.0 1.0

0
2

4

481.wrf

D
en

si
ty

-1.0 0.0 1.0

0
1

2
3

434.zeusmp

-1.0 0.0 1.0

0
2

4

435.gromacs

-1.0 0.0 1.0

0
.0

1
.0

462.libquantum

-1.0 0.0 1.0

0
.0

1
.5

3
.0

437.leslie3d

relative error

-1.0 0.0 1.0

0
2

4

459.GemsFDTD

relative error

D
en

si
ty

-1.0 0.0 1.0

0
.0

1
.5

3
.0 470.lbm

relative error

-1.0 0.0 1.0

0
.0

1
.5

410.bwaves

relative error

-1.0 0.0 1.0

0
.0

1
.0

436.cactusADM

relative error

Densities of relative errors (black) and fitting residuals (red) with basis size 25 and training set size 100

Figure 11.3: Completion time prediction accuracy with basis size 25 and
training size 100, ordered by bias error

172 CHAPTER 11. CPUSPEC

Therefore, fitting residuals, bias error, and prediction error, are closely
related. Knowing the bias error of a program gives an immediate idea of
the expected quality of the prediction quality. Looking at the distribution
of the regression residuals is possible to estimate the prediction uncertainty.

11.2.3 Discussion

Recently an analysis of the redundancy of the CPU SPEC 2006 suite (Ka-
reem and Singh, 2015) showed that 429.mcf, 471.omnetpp, 403.gcc, and
462.libquantum exhibit different behaviour with respect to the rest of the
suite. The authors used Principal Component Analysis to cluster the pro-
grams, similarly to what previously done by Phansalkar et al. (2005).

From the existing literature we might conclude that those programs that
do not fit into any cluster found by PCA will have poor performance pre-
dictions, because of the reduced similarity with the programs in the basis.
However, with our experiment, we found that this is generally not true.
With the exception of 462.libquantum, all the programs that are outside
the main PCA clusters (429.mcf, 471.omnetpp, and 403.gcc) have accurate
performance prediction.

11.3 Conclusions

The experiment presented in this chapter shows that our model can be used
to predict the resource consumption (in particular the completion time) of
programs using a black box approach. We tested the model using the data
from the SPEC CPU 2006 suite, using a subset of the suite as surrogates and
predicting the completion time of the remaining programs, with an increasing
accuracy as we use more data to build the model. The model has been
extensively tested with this data (290000 predictions), making it a reliable
measure of accuracy. We have also shown that the fitting residuals can be
used as a reliable estimation of the prediction error.

This model can also be used to characterize the behaviour of a program,
only using measures of its resource usage.

Linear regression, despite its simplicity, offers comparable or superior
prediction accuracy than more complicated approaches (as described in
Sharkawi et al. (2009)), using only completion time instead of a large set
of performance counters (as describe in Phansalkar et al. (2005); Sharkawi
et al. (2009)). It should therefore be preferred to more complicated models.

This model could be used in an HPC scheduler (where the source code of
the tasks is seldom available) to better allocate the nodes (the right number

11.3. CONCLUSIONS 173

of nodes, with the right amount of memory); or to predict the resources
needed by a task in a cloud, to consolidate the virtual machines while keeping
the required SLA; or in an operative system scheduler, because once the
model has been built, the prediction is computationally not expensive.

174 CHAPTER 11. CPUSPEC

Error mean Error SD Residuals mean Residuals SD

445.gobmk 0.01 0.21 -0.00 0.16
458.sjeng 0.01 0.13 -0.00 0.10
444.namd 0.03 0.31 -0.01 0.24

453.povray -0.01 0.15 0.02 0.12
464.h264ref -0.00 0.15 0.00 0.11

473.astar 0.01 0.14 0.00 0.09
403.gcc -0.00 0.14 0.00 0.11

454.calculix -0.02 0.15 0.02 0.13
416.gamess 0.00 0.14 0.00 0.10

401.bzip2 0.00 0.14 -0.00 0.11
447.dealII -0.01 0.15 0.01 0.10

400.perlbench 0.00 0.13 0.00 0.10
483.xalancbmk -0.02 0.13 0.02 0.12

450.soplex -0.01 0.13 0.01 0.10
429.mcf -0.02 0.14 0.02 0.12

456.hmmer -0.02 0.25 0.03 0.19
433.milc -0.03 0.23 0.04 0.18

471.omnetpp -0.01 0.18 0.01 0.14
482.sphinx3 -0.01 0.15 0.02 0.12

465.tonto -0.01 0.12 0.01 0.10
481.wrf -0.03 0.19 0.03 0.16

434.zeusmp -0.03 0.27 0.04 0.22
435.gromacs -0.02 0.20 0.02 0.16

462.libquantum -0.17 0.50 0.19 0.40
437.leslie3d -0.06 0.32 0.07 0.26

459.GemsFDTD -0.05 0.32 0.05 0.26
470.lbm -0.11 0.78 0.14 0.41

410.bwaves -0.06 0.51 0.10 0.37
436.cactusADM -0.09 0.50 0.12 0.37

Table 11.2: Errors and residuals for test size 50 and basis size 5, ordered by
bias error

11.3. CONCLUSIONS 175

Error mean Error SD Residuals mean Residuals SD

445.gobmk 0.00 0.07 0.00 0.03
458.sjeng 0.00 0.05 0.00 0.03
444.namd 0.01 0.11 0.00 0.04

453.povray -0.00 0.08 0.00 0.04
464.h264ref -0.00 0.09 0.00 0.04

473.astar -0.00 0.07 0.00 0.03
403.gcc -0.00 0.10 0.00 0.05

454.calculix -0.01 0.14 0.01 0.08
416.gamess -0.00 0.06 0.00 0.03

401.bzip2 -0.00 0.05 0.00 0.03
447.dealII 0.00 0.11 0.00 0.06

400.perlbench 0.00 0.07 0.00 0.03
483.xalancbmk -0.00 0.11 0.00 0.06

450.soplex 0.00 0.09 0.00 0.04
429.mcf -0.01 0.12 0.01 0.06

456.hmmer 0.00 0.20 0.01 0.09
433.milc -0.00 0.18 0.01 0.10

471.omnetpp -0.00 0.14 0.00 0.07
482.sphinx3 0.00 0.14 0.00 0.07

465.tonto -0.00 0.08 0.00 0.04
481.wrf -0.01 0.15 0.01 0.11

434.zeusmp -0.00 0.19 0.01 0.11
435.gromacs -0.01 0.20 0.02 0.11

462.libquantum -0.10 0.51 0.10 0.28
437.leslie3d -0.01 0.21 0.01 0.12

459.GemsFDTD -0.01 0.16 0.00 0.09
470.lbm -0.03 0.26 0.03 0.16

410.bwaves -0.02 0.35 0.02 0.16
436.cactusADM -0.03 0.42 0.05 0.22

Table 11.3: Errors and residuals for test size 100 and basis size 25, ordered
by bias error

176 CHAPTER 11. CPUSPEC

Chapter 12

Validating the energy model
for concurrent parallel tasks
using OpenFOAM

In the previous chapters we have used our model to characterize and predict
the performance of micro-benchmarks and complex programs (CPUSPEC).
In this chapter we present a set of experiments that we conducted to test the
energy model presented in chapter 8. Using programs used for Computer
Fluid Dynamics running on a small cluster we measured the power and
energy consumption. We used our model to predict the peak power of a
cluster running parallel tasks. Moreover, we attempt to model the energy
consumption of concurrent parallel tasks running on the same computational
environment.

12.1 Predict peak power

As discussed in section 2.3 the ability to predict the peak power consump-
tion of a complex computational environment such as a cluster, or a subset
of enclosures of a cluster, is important to avoid over-utilization of Power
Distribution Units (PDU) and to avoid over-heating. More generally, char-
acterization of power absorption is an important task to estimate battery
life in mobile devices, such as smartphones or netbooks. Almost the entirety
of those devices have multiple processing units. The energy model presented
in chapter 8 can be applied to both those computational environments, and
could be used by the Operating System to predict the power absorption.

177

178 CHAPTER 12. OPENFOAM

12.1.1 Experiment setting

We designed a series of experiments to check if the energy model is capable
of extracting the power consumption coefficients of our energy model (Pinfr,
Pmand P∆c) only using the total energy consumption and the information
available at runtime to the scheduler (twall, tjob, n and m).

We measured a small set of real-world programs running on a 4 nodes
enclosure of an HPC cluster, and used linear regression to extract PinfrPmand
P∆c. To check the accuracy of the estimation, we tried to predict peak power
absorption.

OpenFOAM is an open source Computational Fluid Dynamics (CFD)
and structural analysis tool, widely used in HPC clusters. We tested our
model measuring the completion time and energy consumption of 4 cases of
the tutorials included in the OpenFOAM CFD suite, running on an enclo-
sure in the IT Center data center at the University of Pisa, with 4 compute
nodes, each node equipped with 2 Intel(R) Xeon(R) X5670 CPUs (2.93GHz),
hyper threading disabled, each CPU has 6 cores. We measured the instant
power consumption of the whole enclosure (at the power socket) using a
Phidgets 1122 ammeter 1, that has a range of 30A and 0.042A of resolu-
tion on AC, corresponding to a measurement error of approximately 9W.
One compute node was running Windows HPC server 2008 with the mea-
surement framework we wrote 2 to control the experiment and measure the
energy consumed by the enclosure. The remaining 3 compute nodes were
installed with CentOS, Kernel 2.6.32, we installed OpenFOAM from the
RHEL RPM package available on the OpenFOAM website 3. We modified
4 of the tutorials included in the OpenFOAM distribution as follows:

1. case cavity with the icoFoam solver, augmenting the mesh density 900
times, 100 iterations

2. case pitzDaily with the adjointShapeOptimizationFoam solver, aug-
menting the mesh density 400 times, 10 iterations

3. case squareBump with the shallowWaterFoam solver, augmenting the
mesh density 6400 times, 90 iterations

4. case mixerVesselAMI2D with the pimpleDyMFoam solver, augmenting
the mesh density 1000 times, 10 iterations

1http://www.phidgets.com/
2https://github.com/vslab/Energon
3http://www.openfoam.org

12.1. PREDICT PEAK POWER 179

We measured the completion time twall(real time elapsed from the start
of the job to its completion on all nodes), time elapsed in parallel execu-
tion tjob(real time spent during the parallel phase of the computation), and
energy consumed (the product of average instant power, measured by the
ammeter at power distribution unit level, and completion time) by the 4
programs running on 1 (12 cores), 2 (24 cores) and 3 nodes (36 cores).

The programs have different behaviour, indicating different underlying
computational patterns:

• squareBump achieves the best performance with 36 cores, indicating
a CPU bound computation, that is not penalized by communications

• cavity and pitzDaily reach the minimum at 24 cores, and the perfor-
mance remain the same using the full 26 available cores, showing an
I/O bound computation, that is penalized by frequent communications

• mixerVesselAMI2D achieves the best performance with 12 cores, in-
dicating an even stronger I/O bound computation.

Equation 8.11 can be rewritten as equation 12.1:

E = Pinfrtwall + Pmmtwall + P∆c(twall + (n− 1)tjob) (12.1)

For every program we measured n, m, twall, tjob and E
We tried to estimate Pinfr, Pmand P∆cusing linear regression.
To get an immediate idea of the quality of our estimates we calculated

the reference values of Pinfr, Pmand P∆cas follows:

experiment A : we measured the measurement system alone, with no
active compute node. The power consumption was 161.08 W.

experiment B : we measured the measurement system alone, with 1 active
but idle compute node. The power consumption was 261.85 W.

experiment C : we measured the measurement system alone, with 1 active
compute node with 1 processor running at 100%, the remaining 11 idle.
The power consumption was 273.40 W.

We defined the reference Pinfr = 161.08W as the power consumption
measured during experiment A, the reference Pm = 100.77W as the differ-
ence between the power consumption of the experiment B and the experi-
ment A; the reference P∆c = 11.56W as the difference between the power
consumption during experiment C and experiment B.

180 CHAPTER 12. OPENFOAM

The experiments in the following two sections have been designed to
study the accuracy of the energy model, that was designed to be as simple as
possible while retaining high accuracy, using formula 12.1. The accuracy is
high enough to allow us to avoid modeling other aspects of the computational
system, focusing only on active cores.

To verify the quality of the model, we tested the difference between the
predicted and the measured peak power in each experiment, using:

F-test to test whether two normally distributed populations can be con-
sidered to have the same variance.

T-test to test whether the differences between the measured and predicted
values can be considered purely the effect of the noise present in the
measured values. We used the variant known in statistics as paired
t-test, or repeated measures t-test.

p-value the probability that the F-test or the T-test results happened by
chance. The null hypothesis of the F-test is that the two populations
have the same variance; the null hypothesis of the T-test is that the
two populations have the same mean. We reject the null hypotheses
only if their p-values are lower than 0.05, i.e. the probability that the
results of the experiment happened by chance are less than 5%.

R2 the coefficient of determination, indicating how well data fit a statistical
model. R2 indicates the amount of information in the data explained
by the model, values near to 1 indicate a good fit. For example, an
R2 = 0.99 indicates that 99% of the data is explained by the model.

12.1.2 Modelling power using Pinfr+m and P∆c, without sepa-
rating Pinfr and Pm

In our first experiment we tried to explain the energetic behaviour of our
computational environment only in terms of infrastructure and active cores,
neglecting the power usage differences related to turning on the machines.
The goal of this experiment is to show that separating Pinfr+m into Pinfr and
Pm is necessary if multiple machines are used. We rewrote 8.12 into 12.2.

E = Pinfr+mtwall + P∆c(twall + (n− 1)tjob) (12.2)

We can get an estimate of Pinfr+m and P∆c from the measurements of
OpenFOAM executions, using formula 12.2: we build a matrix X where

12.1. PREDICT PEAK POWER 181

0 5 10 15 20 25 30 35

0
40

0
10

00

cavity

Cores

P
ow

er

0 5 10 15 20 25 30 35

0
40

0
10

00

pitzDaily

Cores

P
ow

er

0 5 10 15 20 25 30 35

0
40

0
10

00

squareBumpFine

Cores

P
ow

er

0 5 10 15 20 25 30 35

0
40

0
10

00

mixerVesselAMI2D

Cores

P
ow

er

Figure 12.1: Measured power versus estimated power with fitted Pinfr+m

and P∆c

every row is a program, the first column contains twall, and the second
(twall + (n− 1)tjob).

We also prepare a vector y with the E, the energy consumption of all
the programs, in the same order as the rows of the matrix X.

The coefficient of the regression, the values of β, are our estimates for
Pinfr+m and P∆c.

Regression assigns Pinfr+m = 247.03, and P∆c = 21.28. R2 = 0.8209,
showing that the fitting is not very accurate.

Figure 12.1 shows the estimated peak power using formula 12.1 with
Pinfr+m and P∆c fitted with the regression (the continuous line), as well as
the measured values (the points) sampled in the middle of the execution,
when all the cores are active (peak power consumption).

It is evident how inaccurate peak power absorption is modeled by formula

182 CHAPTER 12. OPENFOAM

12.2, in a computational environment where the number of active machines
can change.

F-test for the estimated and the measured peak power consumption re-
ports a ratio of variances of 1.54 and a p-value of 0.01, showing that the
difference in the variances of the measured and predicted peak power was
relevant. We also ran a T-test to check if the mean of the absolute values of
the differences between predicted and measures peak powers was less than
9W (the expected power measurement error). The T-test reported a p-value
below 0.01, forcing us to reject the null hypothesis. This indicates that the
probability that the difference of the means of the measured and predicted
peak powers was within measurement error was very low. Both the F-test
and the T-test found statistically relevant differences in the two datasets,
showing that the predicted peak powers were not accurate.

12.1.3 Modelling power using Pinfr, P∆c, and Pm

To verify that 12.1 can describe accurately the energy consumption of a
parallel task, we added an independent variable to the regression, whose
coefficient represents Pm.

Similarly to what we did in the previous experiment, we build a matrix
X where every row is a row is a program, the first column contains twall, the
second contains mtwall and the third (twall + (n − 1)tjob). This is the same
matrix as the one built for the previous experiment, with the addition of a
column.

The same vector y is the same as the previous experiment.
The coefficient of the regression, values of b, are our estimates for Pinfr,

Pm and P∆c. This time R2 = 0.9993, showing that the regression could fit
the data with a much higher confidence than it was possible in the previous
experiment.

Estimated Reference Relative error

Pinfr 163.76 161.08 0.02
Pm 97.84 100.77 -0.03

P∆c 10.51 11.56 -0.09

Table 12.1: Estimated Pinfr, Pmand P∆c

Table 12.1 reports the values of the estimated Pinfr, Pmand P∆c, as well
as the reference values, and the relative errors.

Figure 12.2 shows the estimated power using formula 12.1 with Pinfr,
Pm and P∆c fitted with the regression, as well as the measured values. The

12.1. PREDICT PEAK POWER 183

0 5 10 15 20 25 30 35

0
40

0
80

0

cavity

Cores

P
ow

er

0 5 10 15 20 25 30 35
0

40
0

80
0

pitzDaily

Cores

P
ow

er

0 5 10 15 20 25 30 35

0
40

0
80

0

squareBumpFine

Cores

P
ow

er

0 5 10 15 20 25 30 35

0
40

0
80

0

mixerVesselAMI2D

Cores

P
ow

er

Figure 12.2: Measured power versus estimated power with fitted Pinfr, Pm

and P∆c

184 CHAPTER 12. OPENFOAM

estimated values are extremely close to the measured values.

F-test for the estimated and the measured peak power consumption re-
ports a ratio of variances of 0.96 and a p-value of 0.80. We ran a T-test, to
test the null hypothesis that the mean of the absolute values of the differ-
ences between predicted and measured peak power was less than 9W (the
measurement error). The T-test reported a p-value close to 1, allowing us to
accept the null hypothesis. This shows that the model accurately predicted
peak powers, as both the F-test and T-test could not find statistically rele-
vant differences in the mean and the variances of the predicted and measured
peak power.

Figures 12.3, 12.4, 12.5, and 12.6 show the measured instant power for
most of the experiments. The green and red lines indicate the predicted
power consumption during the serial and parallel phases, the dotted lines
indicate the uncertainty introduced by the ammeter (9W). This shows how
precisely the power absorption can be predicted only using values known
to the scheduler (m and n) and the architecture characterization, i.e. the
coefficients extracted by our model (Pinfr, Pm, and P∆c).

12.2 Modelling energy consumption of concurrent
programs

Energy is one of the main expenses in a datacenter. Most of the cloud
infrastructure offer a pay-per-use cost model. Therefore, is important for
cloud providers to be able to account for the energy consumption of each
task (Kim et al., 2011). However, in a virtualized environment, several tasks
run on the same machine at the same time.

Several energy model have been proposed to characterize the energy con-
sumption of tasks (Goiri et al., 2010; Kim et al., 2011), also parallel tasks
have been modelled (Garg et al., 2009; Li, 2012; Wang et al., 2010). Most
of the research focuses on Dynamic Voltage Scaling (DVS) of the CPU.
However, not many models attempt to describe the power and energy con-
sumption of concurrent parallel tasks, running on the same computational
environment. Our energy model can be used to model concurrent execu-
tion of tasks. In this section we validate the characterization and prediction
of energy consumption in the case of several tasks running on at the same
time. This information could be used for accounting in datacenters and
cloud environments.

We designed an experiment to check if our model can accurately de-
scribe the energy consumption of two concurrent parallel programs, running

12.2. MODELLING ENERGY CONSUMPTIONOF CONCURRENT PROGRAMS185

0 400 1000

26
0

28
0

30
0

32
0

3 cores

Time (s)

P
ow

er
(W

)

0 400 800

28
0

30
0

32
0

34
0

6 cores

Time (s)

P
ow

er
(W

)

0 200 400 600

2
8
0

3
2
0

3
6
0

9 cores

Time (s)
P

ow
er

(W
)

0 100 300

30
0

35
0

40
0

12 cores

Time (s)

P
ow

er
(W

)

0 50 150

40
0

45
0

50
0

15 cores

Time (s)

P
ow

er
(W

)

0 100 200 300

40
0

50
0

18 cores

Time (s)

P
ow

er
(W

)

0 100 200

40
0

50
0

60
0

21 cores

Time (s)

P
ow

er
(W

)

0 100 200
40

0
50

0
60

0

24 cores

Time (s)

P
ow

er
(W

)

0 100 200

5
00

60
0

70
0

27 cores

Time (s)

P
ow

er
(W

)

0 50 100 150

50
0

60
0

70
0

80
0

30 cores

Time (s)

P
ow

er
(W

)

0 100 200 300

50
0

6
00

70
0

80
0

33 cores

Time (s)

P
ow

er
(W

)

0 100 200

5
00

60
0

7
00

80
0

36 cores

Time (s)

P
ow

er
(W

)

Instant power consumption of cavity

Figure 12.3: Predicted and measured instant power during serial (green)
and parallel (red) phases: cavity

186 CHAPTER 12. OPENFOAM

0 400 800

2
60

28
0

3
00

32
0

3 cores

Time (s)

P
ow

er
(W

)

0 400 800

26
0

30
0

3
40

6 cores

Time (s)

P
ow

er
(W

)

0 200 500

2
60

3
00

3
40

3
80

9 cores

Time (s)

P
ow

er
(W

)

0 200 400

30
0

35
0

40
0

12 cores

Time (s)

P
ow

er
(W

)

0 200 400

40
0

45
0

50
0

15 cores

Time (s)

P
ow

er
(W

)

0 200 400

40
0

50
0

18 cores

Time (s)

P
ow

er
(W

)

0 200 400 600

35
0

45
0

55
0

21 cores

Time (s)

P
ow

er
(W

)

0 200 400

40
0

50
0

60
0

24 cores

Time (s)

P
ow

er
(W

)

0 200 400

45
0

5
50

65
0

75
0

27 cores

Time (s)

P
ow

er
(W

)

0 200 400

4
5
0

55
0

6
50

75
0

30 cores

Time (s)

P
ow

er
(W

)

0 200 400

50
0

60
0

70
0

80
0

33 cores

Time (s)

P
ow

er
(W

)

0 200 400

50
0

60
0

70
0

80
0

36 cores

Time (s)

P
ow

er
(W

)

Instant power consumption of pitzDaily

Figure 12.4: Predicted and measured instant power during serial (green)
and parallel (red) phases: pitzDaily

12.2. MODELLING ENERGY CONSUMPTIONOF CONCURRENT PROGRAMS187

0 400 800

26
0

28
0

30
0

3 cores

Time (s)

P
ow

er
(W

)

0 200 600

26
0

28
0

3
00

32
0

34
0

6 cores

Time (s)

P
ow

er
(W

)

0 200 400

2
6
0

3
00

3
4
0

9 cores

Time (s)
P

ow
er

(W
)

0 200 400

26
0

3
00

34
0

3
80

12 cores

Time (s)

P
ow

er
(W

)

0 100 300

40
0

45
0

50
0

15 cores

Time (s)

P
ow

er
(W

)

0 100 250

40
0

50
0

18 cores

Time (s)

P
ow

er
(W

)

0 100 250

40
0

50
0

60
0

21 cores

Time (s)

P
ow

er
(W

)

0 100 200 300
40

0
50

0
60

0

24 cores

Time (s)

P
ow

er
(W

)

0 100 200

5
00

60
0

70
0

27 cores

Time (s)

P
ow

er
(W

)

0 100 200

50
0

60
0

70
0

80
0

30 cores

Time (s)

P
ow

er
(W

)

0 100 200

5
00

6
00

70
0

80
0

33 cores

Time (s)

P
ow

er
(W

)

0 100 200

5
00

6
0
0

70
0

80
0

36 cores

Time (s)

P
ow

er
(W

)

Instant power consumption of squareBumpFine

Figure 12.5: Predicted and measured instant power during serial (green)
and parallel (red) phases: squareBump

188 CHAPTER 12. OPENFOAM

0 200 500

26
0

2
80

30
0

3 cores

Time (s)

P
ow

er
(W

)

0 200 500

26
0

30
0

34
0

6 cores

Time (s)

P
ow

er
(W

)

0 200 400

2
60

3
00

3
40

3
80

9 cores

Time (s)

P
ow

er
(W

)

0 200 400

26
0

30
0

34
0

38
0

12 cores

Time (s)

P
ow

er
(W

)

0 200 400

35
0

40
0

45
0

50
0

15 cores

Time (s)

P
ow

er
(W

)

0 200 400

40
0

50
0

18 cores

Time (s)

P
ow

er
(W

)

0 200 400

40
0

50
0

60
0

21 cores

Time (s)

P
ow

er
(W

)

0 200 400

35
0

45
0

55
0

24 cores

Time (s)

P
ow

er
(W

)

0 200 400

50
0

60
0

70
0

27 cores

Time (s)

P
ow

er
(W

)

0 200 400

4
50

55
0

65
0

75
0

30 cores

Time (s)

P
ow

er
(W

)

0 200 400

5
00

6
0
0

70
0

80
0

33 cores

Time (s)

P
ow

er
(W

)

0 200 400

50
0

6
00

70
0

80
0

36 cores

Time (s)

P
ow

er
(W

)

Instant power consumption of mixerVesselAMI2D

Figure 12.6: Predicted and measured instant power during serial (green)
and parallel (red) phases: mixerVesselAMI2D

12.2. MODELLING ENERGY CONSUMPTIONOF CONCURRENT PROGRAMS189

simultaneously on the same machine. We tested the model assigning 1, 3
or 6 cores to cavity, mixerVesselAMI2D, squareBumpFine and pitzDaily on
the same machine used in the previous section, testing all programs pairs
and combinations of number of cores (1, 3 or 6). We ran a total of 90
experiments.

Under the assumption that the machine will not thrash, equation 8.9
can be refined into equation 12.3 as follows:

• setting m = 1 because we use only one machine

• we measure twalland tjob1 and tjob2 , information available to the sched-
uler at runtime

• P∆c
∑

i∈cores ti can be refined as the sum of the number of cores used
by each program multiplied by their tjob

E = (Pinfr +Pm +2P∆c) max(twall1 , twall2)+P∆c((n1−1)tjob1 +(n2−1)tjob2)
(12.3)

Figure 12.7 shows the energy prediction error distribution for all tests
(90), and filtering by program (36 each). Table 12.2 reports a statistical
analysis of the prediction accuracy and relative errors. 99% of the predic-
tions have an error below 0.04.

The F-test on the predicted and measured values report a p-value of
0.86 and a ratio of variances equal to 0.96. We also ran the T-test, with the
null hypothesis that the absolute values of the differences of the predicted
and measured values were less than 9W (the measurement error). The T-
test reported a p-value of 0.18, allowing us to accept the null hypothesis.
This shows that the differences in the predictions and the measures are not
statistically relevant, and they should be assumed to have same variance and
difference of mean within measurement error. This confirms the accuracy of
the model.

Measure Mean Median 10 perc 50 perc 90 perc 99 perc

Relative accuracy 1.0004 1.0004 0.9802 1.0004 1.0208 1.0255
Relative errors 0.0004 0.0004 -0.0198 0.0004 0.0208 0.0255
Absolute percentage errors 0.0129 0.0109 0.0026 0.0109 0.0241 0.0353

Table 12.2: Accuracy measures

190 CHAPTER 12. OPENFOAM

0.96 0.98 1.00 1.02 1.04

0
5

15

Energy prediction
relative accuracy

All programs
Relative accuracy

D
en

si
ty

0.94 0.98 1.02

0
1
0

20

Energy prediction
relative accuracy

Each program
Relative accuracy

D
en

si
ty

cavity
pitzDaily
squareBumpFine
mixerVesselAMI2D

Figure 12.7: Distribution of Energy prediction error running two tasks in
parallel

12.3 Conclusions

In this chapter we have tested the accuracy of our energy model. We could
characterize the power coefficients Pinfr, Pm, and P∆c, using regression on
a set of measures of a real world program (OpenFOAM) running in a small
cluster, only using information available to the scheduler: completion time,
number of machines, the number of core used, and readings from an ammeter
at the power plug level (information available on most PDU units). Using
the power coefficients we could predict the peak power absorption of the
cluster reliably.

Moreover, to test the ability of the model to describe the energy con-
sumption of concurrent parallel programs running at the same time on the
same cluster, we predicted the energy consumption of 90 different combina-
tions of programs and number of user cores. The predictions had a small
error. The model is therefore precise, and could be used to build an energy-
based accounting system for a datacenter, without requiring any substantial
modification to the Operating System or the scheduler, simply processing
the scheduler logs.

Chapter 13

Combining static analysis
with the prediction model:
best device scheduling in
heterogeneous environments

The last few years have seen an increasing number of programming models,
languages and frameworks to address the wide heterogeneity and broad avail-
ability of parallel computing resources by raising the level of programming
abstraction and enhancing portability across different platforms. Despite
the ability to run parallel algorithms across different devices, each device
is generally characterised by a restricted set of computations for which it
outperforms others. On increasingly popular multi-device heterogeneous
platforms, the problem is therefore to schedule computations in a way that
automatically chooses the best device among the available ones, each time
a computation has to be run.

The broad availability and affordability of multi-device systems intro-
duces a dynamism in both the system configuration and in the set of com-
putations to run that make traditional scheduling approaches to be unfit
because of restrictions on the computational structure or of the overhead
introduced by the scheduling policy.

In this chapter we combine our benchmarking model with runtime code
analysis, to efficiently address the problem of dynamically exploiting the
computing power of heterogeneous, parallel platforms through a scheduling
strategy based on algorithmic feature extraction, completion time prediction
and classification. The goal of this experiment is to prove that our bench-

191

192 CHAPTER 13. SCHEDULING

marking model can be adapted with sophisticated techniques, in this case
runtime analysis of programs, to predict the most performance device for a
given instance of a program, at runtime.

In this chapter:

• we describe a strategy to efficiently extract programs features at run-
time;

• we combine our benchmarking model, more specifically the linear re-
gression solver with code analysis, to estimate the completion time of
parallel programs on heterogeneous platforms;

• we show how to use the surrogate to analyse the device characteriza-
tion;

• we show how to use the linear regression solver to predict the comple-
tion time on several different devices;

• we apply the performance prediction model to dynamically best-schedule
algorithms on heterogeneous platforms based on completion time. Since
completion time is a metric, we introduce the chance to easily refine
the scheduling policy to take into account data-transfer overhead and
sub-optimal scheduling.

13.1 Introduction

In the last few years computing has become increasingly heterogeneous,
offering a broad portfolio of different parallel devices, ranging from CPUs,
through GPUs to APUs1 and coprocessors. On the laptop and desktop
CPUs market, the recent trend sees embedding a multicore CPU and a
GPU on the same chipset (Ketan Paranjape et al., 2014) 2 . From the GPUs
point of view we have been heading toward system equipped with multiple
cards, exploiting proprietary inter-communication technologies, such as SLI,
or effectively doubling the entire GPU architecture on a single card. Intel
recently released an hybrid device called“Xeon Phi”, a coprocessor for cluster
nodes and desktop systems, which is becoming quite popular and affordable
for a broad audience. Given this, today’s desktop computers are effectively

1APU is the term used by some processors brands to refer to a CPU and a GPU
integrated into the same die

2http://www.slideshare.net/PankajSingh137/amd-9th-intlsocconf-presentation

13.2. CODE ANALYSIS AND FEATURE EXTRACTION 193

equipped with one or more multicore CPUs, multiple GPUs and possibly
highly-parallel coprocessors.

In this chapter we show how our resource usage characterization and
prediction model can be used to schedule parallel computation on hetero-
geneous platforms. Our approach is device-aware and computation-based,
which means it focuses on the specific characteristics of each available device
and on the structure of each computation.

13.2 Code analysis and feature extraction

Recently OpenCL 3 has become one of the most popular approaches for
heterogeneous parallel programming, thanks to which parallel algorithms
can run on CPUs, GPUs and other kind of accelerators with nearly hundred-
percent portability. One of the major OpenCL limitations is the lack of any
support to exploit the heterogeneity of a system in a device-aware fashion.

F# to OpenCL (FSCL) (Cocco, 2015) 4 is a framework for high-level
programming and execution on heterogeneous platforms that addresses the
problem of raising abstraction over both OpenCL programming, making
it possible to program OpenCL kernels from within F#, while helping to
dynamically exploit the heterogeneity of a platform through a transparent,
device and computation aware scheduling approach.

The main problem in code analysis for feature extraction is that for most
computations the value of a feature depends on the input.

FSCL statically 5 pre-computes features, analysing the AST of the kernel
and building a finalizer for each feature, which completes the evaluation of
the feature value as soon as the input is known.

Feature finalizers are computed the first time a kernel is seen and stored
in a data-structure for future use (fig. 13.1). Once built, a feature finalizer
can be applied to multiple, different sets of kernel arguments to retrieve the
matching feature value. Thanks to the static analysis of the kernel AST
and the construction of a lambda that generally contains very lightweight
code6, the overhead of completing feature evaluation at kernel execution
time, which corresponds to applying the lambda to the kernel arguments, is
mostly irrelevant.

3https://www.khronos.org/opencl/
4http://fscl.github.io/FSCL.Compiler/
5With “statically” we mean at kernel compilation time, that is the first time a particular

kernel is seen
6For features counting particular construct in a kernel, such as the number of memory

accesses, the finalizer code contains only few arithmetic operations

194 CHAPTER 13. SCHEDULING

Figure 13.1: Finalizer construction and evaluation

Building a feature finalizer for a particular kernel consists in mapping
the kernel to a lambda function, preserving the set of parameters but re-
placing the body. Figure 13.2 shows this mapping for a sequential matrix
multiplication kernel and a feature that counts the number of accesses to
the elements of the input arrays.

Figure 13.2: Kernel to finalizer mapping for a feature that counts memory
reads

This approach combines static analysis of code with actual parameters
used at runtime. For example, the finalizer code that counts the number of
arithmetic expression with a dependency on the kernel actual arguments, is
shown in figure 13.2.

13.3 Prediction model

We will use linear regression as the solver for this experiment, as presented
in section 6.2.

As discussed in section 6.2.5, ordinary linear regression is sensitive to

13.3. PREDICTION MODEL 195

outliers in the dependent variable. Completion time is likely to contain out-
liers, mainly caused by sporadic effects that may not be considered in the
model and to the instability of the system where the measurement is per-
formed. Outliers can be introduced also by an heavy task in the system that
steals computing resources from the running tests or by driver instability.
For this reason, our prediction model employs a robust regression method
instead of ordinary regression (Hoaglin et al., 2011; Fox, 1997).

The linear model is build running the benchmarks on each available
OpenCL device in the system. Each model correlates a set of features to
the completion time on a specific device. For each device a linear model is
separately built starting from the following data:

• A set of benchmarks: for each benchmark we consider several cases
by varying the input size. Each benchmark case is executed on the
device to obtain the corresponding completion time. With respect to
the concept of programs, as defined in section 5.1, each benchmark
case is considered a different program.

• A set of features: each feature captures a certain aspect of a program.
The chosen features are extracted from each benchmark case. The
features are here considered as resources, as defined in section 5.1.
The completion time is the target resource.

• A matrix A where each column is a feature and each row is a bench-
mark case.

• A vector t with the completion times of the benchmark cases on the
considered device, in the same order of the cases in A

After having defined a set of benchmark cases and features, a matrix A
and a vector t, we build the matrix of the explanatory variables X from A.

Linear regression assumes homoskedasticity (i.e. constant variance) in
the error terms. In particular, the error on a feature should not be correlated
to the completion time. In our model we instead expect the errors on features
to be affected by such a correlation. To deal with this issue, we employ the
Weighted Least Squares method, which is a generalization of ordinary least
squares that relaxes this assumption by normalizing the equations using the
variance of the completion time. To estimate the standard deviation of the
completion time of each benchmark case, we repeated every experiment 100
times. For our model, we set the dependent variable y as the component-
wise normalization of t by its standard deviation (i.e. y[i] = t[i]/σ(t[i]),

196 CHAPTER 13. SCHEDULING

so that the error can be assumed to be identically distributed on all of the
samples. Consistently, we also normalize each row of A in the same way, as
shown in equation 13.2.

Finally, we add to the resulting matrix an unary column, normalized
like t, which constitutes the intercept of the linear regression. Conceptually,
the intercept represents the time needed to start any computation, indepen-
dently from the specific benchmark case being measured.

y =

t1/σ(t1)

t2/σ(t2)

...
tm/σ(tm)

 (13.1)

Normalised regressand

X =

1/σ(t1) a1,1/σ(t1) a1,2/σ(t1) · · · a1,n/σ(t1)

1/σ(t2) a2,1/σ(t2) a2,2/σ(t2) · · · a2,n/σ(t2)

...
...

...
. . .

...
1/σ(tm) am,1/σ(tm) am,2/σ(tm) · · · am,n/σ(tm)

 (13.2)

Normalised regressors

We can now apply y (as defined in the equation 13.1) and X (as defined
in the equation 13.2) to the regression equation (equation 6.17 presented in
section 6.2).

The resulting surrogate β (the set of regression coefficients) describes the
completion time on the considered device in terms of a linear combination
of the features.

Completion time is an unreliable measure, subject to unpredictable er-
rors due to the presence of running processes and tasks in the system during
the execution of the measured program. Since we expect the presence of
outliers in the data, as already said we employ a robust regression method,
which uses the Iteratively Re-weighted Least Squares algorithm (Holland
and Welsch, 1977) to identify and discard the outliers.

Once β has been calculated, we can use formula 6.22 presented in section
6.2 to predict the completion time of a target program (case) on the device
considered. In this formula, x is a vector that contains the same features
used in X but calculated on a target program.

13.4. EXPERIMENTAL VALIDATION 197

The solver is performed independently for each OpenCL device avail-
able, building y in equation 13.1 starting from the completion times of the
benchmark cases on the device.

In the context of our benchmarking model, the features extracted at
runtime on the OpenCL kernels are the measured computational resources;
the model is used to characterize the completion time target resource, the
surrogate (the regression coefficients) will express the time taken to complete
every unit of reported feature.

13.4 Experimental validation

In order to validate the model, we define a set of relevant features to extract
and a set of programs that form the training set. Then, we extract the
chosen features from each training sample case. Finally, we build a device
model (i.e. set of regression coefficients) independently for each device in the
running system. Given a device d, we run each sample case on d to obtain
the corresponding completion time. With the set of feature values and
completion times for all the sample cases, we prepare the model described
in section 5.2, consisting of the matrix of the explanatory variables X and a
dependent vector y, which contains the completion time of the cases on the
specific device. We finally apply linear regression to X and y to obtain the
device model. While feature extraction is performed once, linear regression
is repeated for each device in the system.

Once the set of device models has been built, we use it to predict the
completion time of a set of testing programs. Each test is also executed
to measure its actual completion time. Finally, we calculate the accuracy
in selecting the best device for each test in terms of the ratio between the
completion time of the estimated fastest device and the measured lowest
completion time across the set of devices.

13.4.1 Experiment setup

To validate the prediction model we setup an heterogeneous system equipped
with an APU and a discrete GPU. The APU is a chipset that includes a
CPU and a GPU on-die. With “D-GPU” we indicate the discrete GPU and
with “I-GPU” the on-die GPU. The system configuration is reported below.

• AMD Fusion A10-5800K (CPU with an integrated AMD HD 7660D
GPU)

198 CHAPTER 13. SCHEDULING

• AMD HD 7970 (discrete GPU)

• 4GB DDR3 Ram - 1333 Mhz

• Windows 7 64 bit

In the definition of the training set, we focus on including computations
that stress only specific features and device characteristics with a minimal
effect on the others. Since this set of samples constitute the “basis” used to
predict the completion time of other computations, we want to start from
a minimal set of samples (i.e. small basis) capable of describing a possibly
wide set of other algorithms and progressively refine it by introducing further
samples.

Vector addition This kernel performs an element-wise sum of two vectors,
where each work-item sums the elements matching its own global in-
dex. Given the very short execution time and the extremely lightweight
nature of the computation, this sample allows to focus on the data-
transfer time and on the contribution of the work-space size to the
completion time. We execute the kernel varying the input size from
1MB up to 128MB with 1MB step.

Matrix multiplication naive A matrix multiplication kernel where each
work-item in a 2D work-space multiplies a row of the first matrix by a
column of the second. The first matrix is accessed with a cache-friendly
pattern, while the second is accessed with a matrix-width stride that
may incur many cache misses. For this reason, matrix multiplication
allows to capture the impact of cache misses on completion time. We
run this kernel starting from 64x64 elements matrices up to 2048x2048,
with a 64-elements step.

Logistic map A logistic map performed on each element on an input vec-
tor filled with random floating point values. Since each work-item
performs one only memory access and many arithmetic operations,
this sample captures the impact of floating point operations on the
completion time. We execute the kernel varying the input size from
1MB up to 128MB with 1MB step and the number of iterations per-
work-item from 1000 to 10000.

For each training sample we produce 30 cases characterized by different
input sizes. Each case is then run 100 times to get the average completion
time and the standard deviation.

13.4. EXPERIMENTAL VALIDATION 199

The selection of the features to extract is related to the aspects stressed
by the set of training samples. We consider memory accesses and operations
(arithmetic, logic and transcendent) two of the most relevant features to use
in order to characterize the completion time. While a given operation takes
a fixed same amount of time to complete, memory accesses have a different
impact depending on whether the data accessed is in cache or not. For this
reason, instead of considering the amount of memory accesses we estimate
the number of cache misses. Cache misses are estimated by detecting the size
of the data cache and cache line on a specific device7 and by computing the
strides of memory accesses in the sample. A first approximation introduced
is considering each array separately as like as each array was stored in a
separate, private data cache. At kernel-compilation time we pre-compute
the access strides to each (global) array and we count the number of accesses
with a certain stride by assessing the total trip-count of the loops containing
the memory access operations. A second approximation is introduced by
considering the largest stride among the memory accesses in a loop, as if the
block of memory between the lowest and the highest addresses was entirely
used. At kernel-execution time we complete the evaluation of the strides
and the relative trip count. These information are then coupled with the
cache line and the size of the data cache to estimate the number of cache
misses.

Given a certain number of operation and memory accesses per-work-
item, the completion time should be affected by the total number of work-
items launched. Therefore, we add the work-space size to the set of the
computed features.

Total number of instructions executed This feature represents the com-
putation as if all of the operations had the same cost and were executed
in a sequential order.

Number of instructions executed per thread This feature represents
the computation as if all of the work-items could perform operations
in a pure parallel fashion.

Cache misses This feature captures the time spent waiting for memory
accesses that do not hit the cache.

Global work-items This feature corresponds to the amount of work-items
spawn to execute a computation.

7This information can be retrieved through the OpenCL device-query API or running
micro-benchmarks

200 CHAPTER 13. SCHEDULING

1 100 10000

-0
.4

-0
.2

0
.0

Residuals for CPU

CPU completion time

re
si

d
u

a
ls

(r
el

a
ti

v
e)

1 5 20 100

-1
.2

-0
.8

-0
.4

0
.0

Residuals for D-GPU

D-GPU completion time

re
si

d
u

a
ls

(r
el

a
ti

v
e)

2 5 20 100 500

-0
.1

5
-0

.0
5

0
.0

5

Residuals for I-GPU

I-GPU completion time

re
si

d
u

a
ls

(r
el

a
ti

v
e)

Figure 13.3: Fitting residuals

Kernel-launch overhead The cost of starting a kernel. Since the value of
this features is always 1 (intercept), linear regression charges it with
the part of the completion time that it is not able to properly describe
in terms of the other features (non-linear terms).

This set of features should be sufficient to investigate the costs of launch-
ing a kernel, the amount of time spent performing arithmetic, logic, or tran-
scendent operations and the overhead of memory accesses. Several other
factors may contribute to the completion time, but we want to start from
the coarsest model and progressively refine it as like as for the set of training
samples.

Figure 13.3 shows the residuals of the fitting for both CPU, discrete
GPU and integrated GPU. Since we normalize X by t (section 13.3), the
residuals are shown as relative values. The analysis of the residuals reveals
the following:

• Most of the residuals lie near 0, which in general indicates a good fit.

• Residuals are larger for completion times close to zero. This is ex-
pected, because cases that have a very short completion time are more
likely to be affected by measurement errors induced by the influence of
external and unpredictable effects, such as the presence of other pro-
cesses running in the system. This also suggests that we should expect
a relevant prediction error for programs that complete in a short time.

13.4. EXPERIMENTAL VALIDATION 201

13.4.2 Predicting the completion time

To evaluate the error in predicting the completion time of computations
using the models built for the devices in the running platform, we define a
set of test samples.

Sum of matrix rows This kernel sums the rows of a two-dimensional ma-
trix, producing a vector whose size is equal to the matrix width. Each
work-item performs a reduction along a column. As for all the matrix-
based samples, we run this kernel starting from 64x64 elements matri-
ces up to 2048x2048, with a 64-elements step.

Sum of matrix columns This kernel sums the columns of a two-dimensional
matrix, which results in a vector matching the matrix height. Each
work-item performs a reduction along a row.

Sobel filtering A Sobel 3x3 filtering algorithm on a 2D matrix.

Convolution filtering A generalization of Sobel filtering, with a generic
input filter varying in size from 3x3 to 19x19 elements.

Matrix transpose naive Matrix transpose performed by making each work-
item to transpose a single element of the matrix.

Matrix transpose advanced Matrix transpose that exploits local mem-
ory to make successive work-items to read and write successive matrix
elements, enabling coalescing and reducing channel/bank conflicts.

In the set of test samples we also include the training samples used
to build the device models. Using a set of samples to predict themselves
provides, in addition to the set of residuals, an insight on the quality of the
fitting.

In figures 13.4 and 13.5 we compare the measured completion time and
the estimated completion time for each test sample by varying the input
size. The left column reports the measured completion time on CPU, dis-
crete GPU and integrated GPU, while the right column shows the predicted
completion time on the same devices. To be easily compared with each other,
both the completion times are expressed in the same logarithmic scale.

The first three samples illustrated in figures 13.4 and 13.5 are the training
samples used to build the device models. As expected, the predicted com-
pletion times of these programs is very close to the measured completion
times.

202 CHAPTER 13. SCHEDULING

0 20 40 60 80 100 120

1
5

5
0

VectorAdd

measured completion time

case

ti
m

e
(l

o
g
)

0 20 40 60 80 100 120

1
5

5
0

VectorAdd

predicted completion time

case

ti
m

e
(l

o
g
) CPU

D-GPU

I-GPU

0 10 20 30 40 50 60

1
1
0
0

MatmulNaive

measured completion time

case

ti
m

e
(l

o
g
)

0 10 20 30 40 50 60

1
1
0
0

MatmulNaive

predicted completion time

case
ti

m
e

(l
o
g
) CPU

D-GPU

I-GPU

0 50 100 150 200 250 300

1
5

Logistic

measured completion time

case

ti
m

e
(l

o
g
)

0 50 100 150 200 250 300

1
5

Logistic

predicted completion time

case

ti
m

e
(l

o
g
) CPU

D-GPU

I-GPU

0 10 20 30 40 50 60

1
5

2
0

SumRows

measured completion time

case

ti
m

e
(l

o
g
)

0 10 20 30 40 50 60

1
5

2
0

SumRows

predicted completion time

case

ti
m

e
(l

o
g
) CPU

D-GPU

I-GPU

0 10 20 30 40 50 60

1
5

2
0

Sobel

measured completion time

case

ti
m

e
(l

o
g
)

0 10 20 30 40 50 60

1
5

2
0

Sobel

predicted completion time

case

ti
m

e
(l

o
g
) CPU

D-GPU

I-GPU

Figure 13.4: Measured and predicted completion time

13.4. EXPERIMENTAL VALIDATION 203

0 100 200 300 400 500

1
5

2
0

1
0
0

Convolution

measured completion time

case

ti
m

e
(l

o
g
)

0 100 200 300 400 500

1
5

2
0

1
0
0

Convolution

predicted completion time

case

ti
m

e
(l

o
g
)

CPU

D-GPU

I-GPU

0 20 40 60 80 100 120

1
5

5
0

5
0
0

TransposeAdvanced

measured completion time

case

ti
m

e
(l

o
g
)

0 20 40 60 80 100 120

1
5

5
0

5
0
0

TransposeAdvanced

predicted completion time

case

ti
m

e
(l

o
g
)

CPU

D-GPU

I-GPU

0 10 20 30 40 50 60

1
2

5
1
0

SumCols

measured completion time

case

ti
m

e
(l

o
g
)

0 10 20 30 40 50 60

1
2

5
1
0

SumCols

predicted completion time

case

ti
m

e
(l

o
g
)

CPU

D-GPU

I-GPU

0 20 40 60 80 100 120

1
5

2
0

1
0
0

Transpose

measured completion time

case

ti
m

e
(l

o
g
)

0 20 40 60 80 100 120

1
5

2
0

1
0
0

Transpose

predicted completion time

case

ti
m

e
(l

o
g
)

CPU

D-GPU

I-GPU

Figure 13.5: Measured and predicted completion time

204 CHAPTER 13. SCHEDULING

The overall behaviour of most of the samples shows a simple relation
between the input size and the completion time. Two noticeable exceptions
are MatMulNaive and SumRows, whose non-monotonicity is well above mea-
surement noise. A possible explanation for the evident spikes in the graphs
is the eviction of many cache lines when accessing memory with a stride of
4KB, 6KB and 8KB. These spikes are correctly estimated thanks to the the
cache-miss-estimation feature. The same behaviour is correctly predicted
in SumRows, even though it does not belong to the set of training sam-
ples. This is consistent with our expectation: the aforementioned spikes are
indeed caused by a particularly aggressive cache eviction.

The prediction of CPU completion times is generally more accurate than
the prediction of GPUs. This is mainly due to the fact that the cache-miss-
estimation feature models the cost of accessing memory from the CPU with
sufficient accuracy, while it does not properly fit the GPUs, where the cost
of memory accesses depends on the access pattern in a different way. To ac-
curately predict the completion time on GPUs, additional information must
be retrieved and analysed, such as coalescing in reading and writing mem-
ory, ALU fetch ratio8 and channel/bank conflicts. In addition, information
about the usage of LDS (Local Data Share) memory are needed to improve
the prediction of TransposeAdvanced.

13.4.3 Best-device prediction

The quality of completion-time prediction is only partially related to the
quality of best-device guessing. A very precise prediction of the measured
completion times leads to a reliable best-device guess, but errors that may
affect the completion time prediction not necessarily imply a specific error in
guessing the most efficient device. It is sufficient to consider a linear model
that overestimates the completion time of a constant factor independently
from the input size and the device. In such a case, the quality of the com-
pletion time estimation is low, but the one of best-device guessing may be
instead very high.

For this reason, we evaluate the accuracy of best-device prediction. Fig-
ure 13.6 shows the frequency of the relative prediction accuracy, measured
as the ratio between the completion time of the device predicted by our
algorithm and the actual optimal device. We also show the geometric mean
of the relative accuracy (red line). A geometric mean equal to 1 corresponds
to situations where the algorithm always predicts the correct device. When

8The occupancy of GPU ALUs during the time a memory request is served

13.4. EXPERIMENTAL VALIDATION 205

the geometric mean is near to 1 the algorithm does not always predict the
best device across the input sizes, but the performance degradation is low,
hence the error is small. Higher values of the geometric mean correspond
to situations where the difference between the predicted device and the best
device is relevant. For example, a geometric mean close to 2 means that the
predicted device usually takes twice the time than the best device.

The programs in the basis (VectorAdd, MatMulNaive and Logistic) show
an ideal behaviour, with a geometric mean very close to 1, or exactly 1. Con-
volution also shows an ideal prediction error. SumRows, Sobel and Trans-
poseAdvanced have a very low geometric mean, with the vast majority of
the predictions being accurate. Transpose is plotted on a different x scale,
because it is the only algorithm for which we obtain prediction errors larger
than 2. The geometric mean for this test sample is therefore high (close to
2), even though most of the predictions were accurate (the frequency of the
bin relative to 2 is considerably higher than the others combined together).

13.4.4 Interpretation of the regression coefficients

Each linear regression coefficient can be easily interpreted as the time needed
to perform one unit of the corresponding feature. As explained in section
5.1 a valid feature “counts” the occurrences of a certain phenomenon, while
the corresponding coefficient quantifies the time needed for each occurrence.
The linear regression applied to the training samples creates a linear model
for each device, with a coefficient for each feature. In our experiments, the
coefficient for the total number of instructions executed feature for the CPU
is 0.24e − 9. If we consider this coefficient, the value of the corresponding
feature and the completion time on the CPU, we can estimate the number
of operations per second of the CPU. The particular value of the regression
coefficient for the total number of instructions leads to an estimated 4.2e9
operations per second, which means 2.1e9 operations per second on each of
the two CPU cores. This number is very close to the declared operating
frequency of the CPU, between 3.8 and 4.2 GHz. A similar evaluation can
be done for the GPUs.

Given that we count high-level instructions that may not have a one-to-
one match with low level executable code, we expected a larger estimation
error. Moreover, not all of the low-level instructions require exactly a sin-
gle clock cycle and many other relevant behaviours are not modelled, such
as super-scalarity and the effect of branches. Nonetheless, the coefficients
and their corresponding physical values are surprisingly close. This shows
that our method can accomplish a twofold purpose: predict the completion

206 CHAPTER 13. SCHEDULING

VectorAdd

best device prediction relative accuracy

fr
eq

u
en

cy

1.0 1.2 1.4 1.6 1.8 2.0

0
4
0

1
0
0

MatmulNaive

best device prediction relative accuracy

fr
eq

u
en

cy

1.0 1.2 1.4 1.6 1.8 2.0

0
3
0

6
0

Logistic

best device prediction relative accuracy

fr
eq

u
en

cy

1.0 1.2 1.4 1.6 1.8 2.0

0
1
5
0

3
0
0

SumRows

best device prediction relative accuracy
fr

eq
u

en
cy

1.0 1.5 2.0 2.5 3.0 3.5

0
1
0

2
5

Sobel

best device prediction relative accuracy

fr
eq

u
en

cy

1.0 1.2 1.4 1.6 1.8 2.0

0
5

1
5

Convolution

best device prediction relative accuracy

fr
eq

u
en

cy

1.0 1.2 1.4 1.6 1.8 2.0

0
2
0
0

5
0
0

TransposeAdvanced

best device prediction relative accuracy

fr
eq

u
en

cy

1.0 1.2 1.4 1.6 1.8 2.0

0
6
0

1
2
0

SumCols

best device prediction relative accuracy

fr
eq

u
en

cy

1.0 1.5 2.0 2.5

0
2

4
6

Transpose

best device prediction relative accuracy

fr
eq

u
en

cy

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
2
0

4
0

Figure 13.6: Best device prediction relative accuracy

13.4. EXPERIMENTAL VALIDATION 207

time of computations running on heterogeneous platforms and estimate the
characteristics of the available devices.

13.4.5 Limits

As shown in the previous sections, linear regression can successfully describe
and predict complex behaviours of hardware and software, but only if the
following conditions are met:

• The features must provide an adequate model of the costs incurred by
target programs. The model can be high-level, i.e. it does not need to
explicitly account for compiler optimization or runtime details, but it
must capture all of the aspects that characterize the computation. For
example, in our experiments we can successfully predict the CPU cache
miss behaviour of Sum of matrix rows because a similar behaviour is
shown by Matrix multiplication naive, that is present in the basis.
Conversely, with our set of features we would not have been able to
evaluate I/O costs, as none of the features was related to them.

• The basis must exercise the features independently, to avoid multi-
collinearity between the input data. In our experiments, the Logistic
map kernel was designed so that the number of work items and the
amount of arithmetic operations could be chosen independently. In
the other kernels we used, both the number of work items and the
number of operations to be performed depend on the size of the data.

If none of the features captures an important behaviour of the target
program, predictions will contain a large error. The opposite is also usually
true, that is if predictions have a large error the target program is character-
ized by a relevant uncaught behaviour. This is interesting because it helps
understanding what is worth investigating when trying to describe a target
program.

If two algorithms are similar in every feature we measure but they differ
on an important aspect that we do not measure, then we will not be able to
capture their difference in the model, and the predictions will not be able
to discriminate between them.

The prediction model can only capture linear relationships between com-
pletion time and features. Only features that “count” events that are rele-
vant for the completion time will affect the prediction.

Static code analysis shows some limitations in case of complex control
flows, such as loops where the trip count depends on the content of an array

208 CHAPTER 13. SCHEDULING

or while-loops conditioned by multiple variables. Some advanced techniques,
like LLVM branch probability estimation and loop-unrolling algorithms, may
be employed in the future to widen the range of computations that can be
covered.

13.5 Conclusions

In this chapter we presented a simple but effective completion time predic-
tion approach that uses the linear regression solver to create a model for
each device exposed by arbitrary heterogeneous platforms. We evaluated the
quality of the approach to predict the completion time of an heterogeneous
set of devices and the effectiveness in determining the best device where to
schedule a kernel.

The prediction accuracy of our model has been tested against more com-
plex models, like the one described by Wen (2014), based on SVM, and
despite its simplicity, it resulted more accurate. Following Occam’s Razor,
the simpler model should be chosen over a complex one. Moreover, the
regression coefficients found by the linear model have an intuitive physical
explanation, as shown in section 13.4.4.

Part IV

Conclusions

209

211

As discussed in chapters 1.1 and 2, the field of software and hardware
performance analysis and energy characterization is fragmented and lacks
of a systematic approach with the properties of accuracy, consistency, broad
scope, simplicity, and fruitfulness, listed by Kuhn (1977) as requisites for a
good scientific model. In this work we attempt to provide a simple, generic,
and abstract model that adheres to the aforementioned characteristics.

212

Chapter 14

Contributions

In this work we have introduced the concept of computational pattern, a
theoretical basic unit of computation. We postulate the existence of a large
number of computational patterns, one for each computational behaviour
with respect to computational resource consumption. We also postulate
that real programs are composed of combinations of computational patterns,
and that the different resource consumption of the patterns on different ma-
chines can explain the different behaviour of programs on different machines.
Computational patterns are not directly measurable, because real programs
are composed of several different patterns.

We have presented our benchmarking model, an attempt to formally
define a well founded, black-box, unified hardware and software, based upon
generic resources model, capable of both characterizing and predicting target
program’s and target resource’s consumption.

The model is black-box both from the point of view of the hardware and
the software:

hardware : it is sufficient to observe the consumption of resources from
outside the computational environment, i.e. energy consumption alone
is enough to characterize, as shown in chapter 10.

software : programs can be characterized without analysing their source
code, simply observing and performing statistical analysis of their re-
source usage.

Our benchmarking model offers a unified view on hardware and software.
In literature, hardware and software have traditionally been modelled with
different approaches and methodologies. We argue that, due to their intrin-
sic relationship (one depends on the other), they should be modelled by a

213

214 CHAPTER 14. CONTRIBUTIONS

unified approach. Our benchmarking model can be used to characterize a
target program, or a target resource, with simple algebraic transformations
(a matrix transpose on the matrix X).

Our work also attempts to offer a simple approach, valid for the broadest
possible set of computational resources. Traditionally, profoundly different
models have been proposed for different computational resources. Our model
treats all resources in the same way, assuming a few properties are respected
(the mathematical properties of measures). Examples of resources are com-
pletion time, energy consumption, and performance counters.

We have described how different solvers can be used to characterize and
to predict the resource consumption of the target program:

Simplex is straightforward under the assumption that the benchmarks used
to build the matrix X embody computational patterns, and that the
target program is composed of computational patterns present in the
used benchmarks;

Linear Regression is the simplest and more generic solver, that does not
assume the benchmarks to embody computational patterns, therefore
more suited for real world programs and computational environments.
The only assumption used in this solver is that the underlying com-
putational patterns compose linearly into programs. We argue that
non-linear independent variables can model complex behaviour of de-
pendent variables. In the experimental validation we report several
experiments where the linear solver was able to capture elusive be-
haviours, such as the effect of cache-eviction on completion time;

NonNegative Matrix Factorization is a natural choice, having postu-
lated that programs are linear combinations of computational patterns.
NMF offers a possible characterization of the benchmarks in terms of
hidden factors, possibly computational patterns, identifying their re-
source consumption.

Despite the simplicity of the solvers presented, in the experimental section
we show that we were able to predict the performance of programs, with
an accuracy equal if not superior to other approaches in literature, that
make use of complex models. As stated by Newton at the beginning of the
3rd book of the “Principia”: “We are to admit no more causes of natural
things than such as are both true and sufficient to explain their appearances.
Therefore, to the same natural effects we must, as far as possible, assign the
same causes” (Newton, 2011).

215

We introduce the notion of experimental computational complexity ξ, as
a curve fitting process on the surrogates of programs, as the input size grows.
We show the relationship with traditional time complexity. We also show
some of the properties of compositionality of ξ. It can be used to characterize
a target program, but also to predict the surrogate of a program for which
we have no measures (by interpolation, or extrapolation).

Most of the benchmarking approaches in literature attempt to describe
systems and programs using a single metric. In section 7.6 we discussed
why this approach inevitably leads to a large characterization (therefore
prediction) error. We show that such approach can only lead to small error
if either the model is used on a single architecture, or the model is normalized
using the same program that we want to characterize

The natural tendency in industry to offer a single number to characterize
the performance of systems and program could be a reason why prediction
models in literature are usually designed to describe a single architecture,
with little portability. Our approach not only can be ported from an archi-
tecture to another, but is more precise if the matrix X contains measures
coming from different architectures.

Lastly, we introduced a simple energy model, capable of accurately char-
acterize the power and energy consumption of computational environments
from the resource to the cluster level. We also showed how to automatically
characterize the power consumption of the factors in the model. In chapter
12 we presented an experiment that makes use of the energy model. The
energy model is capable of describing the energy consumption of concurrent
parallel programs.

We have validated our contributions with extensive testing on several
different machines, using both micro-benchmarks and real-world programs,
as well as widely used benchmarking suites.

216 CHAPTER 14. CONTRIBUTIONS

Chapter 15

Future work

As discussed in section 6.4, more solvers could be explored. We think that
a Bayesian approach to regression would be beneficial, because it makes
the assumptions behind the model explicit, and offers a characterization
in terms of random distribution, more expressive than single numbers in
presence of noise. The model could also be used without assuming linearity
in the combination of computational patterns into programs, using non-linear
regression methods, such as Support Vector Regression.

Our benchmarking model analyses programs only considering their whole
execution. It would be interesting to apply the model to program phases.
Programs behaviour characterization has been explored by Duesterwald
et al. (2003), Sherwood et al. (2002), Wunderlich et al. (2003), and Perelman
et al. (2003). An elementary first attempt could be to split the program’s
execution in time windows, and use apply our model to the measured re-
source consumption in every window independently. The surrogate would
then become the evolution of the surrogates of each time window. The
model could then be enhanced allowing uneven window sizes, detecting a
substantial change in the surrogate as the trigger to declare the beginning
of a new program’s phase. However, this approach treats every window in-
dependently, neglecting the underlying structure between program’s phases.
To overcome this limitation, an Hidden Markov Model (HMM) could be used
to model the evolution of the program, assuming the phase as the hidden
state. The surrogate would then not only identify the program’s phases,
but also characterize each phase, and describe the transition probability
between phases. To pursue this approach, we would need to redefine the
resource consumption to allow partial usage (in a time window, as opposed
to the whole program’s execution); then using the cosine similarity between

217

218 CHAPTER 15. FUTURE WORK

defined in section 5.4.3 we could separate program’s phases; then encode the
transitions with an HMM.

We tested our model on several types of devices, including netbooks,
workstations, HPC cluster enclosures, heterogeneous platforms equipped
with CPU, GPU, and APU. However, our model should also apply to em-
bedded devices and FPGAs. It would be interesting to run experiments on
a broader range of devices to verify if the model is still capable of accurate
predictions.

Our benchmarking model is abstract enough to be applied to other fields.
Potentially it could be used to characterize and predict the behaviour of
systems where the interaction between the components can be approximated
with linear interactions of smaller, simpler elements.

For example, it could be applied to the field of business benchmarking.
Modelling the use of resources by explanatory business processes to complete
tasks, our model could be used to characterize a particular business process
in terms of other processes (the rows of the matrix X being resources and
the columns business processes, the vector y as the target business process).
Also, it would be interesting to model a performance metrics in terms of
consumption resources by business processes (the rows of the matrix X being
the processes, the columns the resources, the vector y being the analysed
performance metric).

Bibliography

A. R. Alameldeen and D. A. Wood. IPC considered harmful for multiproces-
sor workloads. IEEE Micro, 26(4):8–17, 2006. URL http://www.cecs.

pdx.edu/~alaa/ece588/papers/alameldeen_ieeemicro_2006.pdf.

G. M. Amdahl. Validity of the single processor approach to achieving
large scale computing capabilities. In Proceedings of the April 18-20,
1967, spring joint computer conference, AFIPS ’67 (Spring), pages 483–
485, New York, NY, USA, 1967. ACM. doi: http://doi.acm.org/10.
1145/1465482.1465560. URL http://doi.acm.org/10.1145/1465482.

1465560.

G. Ammons, J.-D. Choi, M. Gupta, and N. Swamy. Finding and remov-
ing performance bottlenecks in large systems. In ECOOP 2004Object-
Oriented Programming, pages 172–196. Springer, 2004. URL http:

//link.springer.com/chapter/10.1007/978-3-540-24851-4_8.

F. J. Anscombe. Graphs in statistical analysis. The American Statisti-
cian, 27(1):17–21, 1973. URL http://amstat.tandfonline.com/doi/

pdf/10.1080/00031305.1973.10478966.

D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber, and others. The NAS parallel benchmarks. International Jour-
nal of High Performance Computing Applications, 5(3):63–73, 1991. URL
http://hpc.sagepub.com/content/5/3/63.short.

A. Beloglazov and R. Buyya. Adaptive threshold-based approach for energy-
efficient consolidation of virtual machines in cloud data centers. In Pro-
ceedings of the 8th International Workshop on Middleware for Grids,
Clouds and e-Science, MGC ’10, pages 4:1–4:6, New York, NY, USA,
2010a. ACM. ISBN 978-1-4503-0453-5. doi: http://doi.acm.org/10.

219

220 BIBLIOGRAPHY

1145/1890799.1890803. URL http://doi.acm.org/10.1145/1890799.

1890803.

A. Beloglazov and R. Buyya. Energy Efficient Resource Management in Vir-
tualized Cloud Data Centers. In Proceedings of the 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing, CC-
GRID ’10, pages 826–831, Washington, DC, USA, 2010b. IEEE Com-
puter Society. ISBN 978-0-7695-4039-9. doi: http://dx.doi.org/10.1109/
CCGRID.2010.46. URL http://dx.doi.org/10.1109/CCGRID.2010.46.

M. Berry, D. Chen, P. Koss, D. Kuck, S. Lo, Y. Pang, L. Pointer, R. Roloff,
A. Sameh, E. Clementi, and others. The perfect club benchmarks: Ef-
fective performance evaluation of supercomputers. International Jour-
nal of High Performance Computing Applications, 3(3):5–40, 1989. URL
http://hpc.sagepub.com/content/3/3/5.short.

R. Bianchini and R. Rajamony. Power and energy management for server
systems. IEEE Computer, 37(11):68–74, 2004. URL ftp://athos.

rutgers.edu/cs/pub/technical-reports/work/dcs-tr-528.pdf.

W. L. Bircher and L. K. John. Analysis of dynamic power management
on multi-core processors. In Proceedings of the 22nd annual international
conference on Supercomputing, ICS ’08, pages 327–338, New York, NY,
USA, 2008. ACM. ISBN 978-1-60558-158-3. doi: http://doi.acm.org/10.
1145/1375527.1375575. URL http://doi.acm.org/10.1145/1375527.

1375575.

W. L. Bircher and L. K. John. Complete system power estimation us-
ing processor performance events. Computers, IEEE Transactions on, 61
(4):563–577, 2012. URL http://ieeexplore.ieee.org/xpls/abs_all.

jsp?arnumber=5714687.

C. M. Bishop and M. E. Tipping. Bayesian regression and classification.
Nato Science Series sub Series III Computer And Systems Sciences, 190:
267–288, 2003. URL http://research.microsoft.com/pubs/67158/

bishop-nato-bayes.pdf.

A. Blanco-Fernndez, A. Colubi, M. Garca-Brzana, and M. Montenegro.
A Linear Regression Model for Interval-Valued Response Based on Set
Arithmetic. In R. Kruse, M. R. Berthold, C. Moewes, M. . Gil, P. Grze-
gorzewski, and O. Hryniewicz, editors, Synergies of Soft Computing and

BIBLIOGRAPHY 221

Statistics for Intelligent Data Analysis, number 190 in Advances in In-
telligent Systems and Computing, pages 105–113. Springer Berlin Heidel-
berg, Jan. 2013. ISBN 978-3-642-33041-4, 978-3-642-33042-1. URL http:

//link.springer.com/chapter/10.1007/978-3-642-33042-1_12.

J. L. Bonebakker. Finding representative workloads for computer system
design. Technical report, Sun Microsystems, Inc., Mountain View, CA,
USA, 2007.

C. Boutsidis and E. Gallopoulos. SVD based initialization: A head start
for nonnegative matrix factorization. Pattern Recognition, 41(4):1350–
1362, 2008. URL http://www.sciencedirect.com/science/article/

pii/S0031320307004359.

G. E. Box and N. R. Draper. Empirical model-building and response surfaces.
John Wiley & Sons, 1987. URL http://psycnet.apa.org/psycinfo/

1987-97236-000.

D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. In Proceedings of
the 27th annual international symposium on Computer architecture, ISCA
’00, pages 83–94, New York, NY, USA, 2000. ACM. ISBN 1-58113-
232-8. doi: http://doi.acm.org/10.1145/339647.339657. URL http:

//doi.acm.org/10.1145/339647.339657.

D. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0. ACM
SIGARCH Computer Architecture News, 25(3):13–25, 1997. URL http:

//dl.acm.org/citation.cfm?id=268810.

R. Buyya, A. Beloglazov, and J. Abawajy. Energy-efficient management of
data center resources for cloud computing: A vision, architectural ele-
ments, and open challenges. arXiv preprint arXiv:1006.0308, 2010. URL
http://arxiv.org/abs/1006.0308.

A. S. Cassidy and A. G. Andreou. Beyond Amdahl’s Law: An Objective
Function That Links Multiprocessor Performance Gains To Delay and
Energy. IEEE TRANSACTIONS ON COMPUTERS, 2011.

F. Chang, K. Farkas, and P. Ranganathan. Energy-Driven Statistical Sam-
pling: Detecting Software Hotspots. In B. Falsafi and T. Vijaykumar,
editors, Power-Aware Computer Systems, volume 2325 of Lecture Notes
in Computer Science, pages 105–108. Springer Berlin / Heidelberg, 2003.
ISBN 978-3-540-01028-9.

222 BIBLIOGRAPHY

J.-J. Chen and C.-F. Kuo. Energy-Efficient Scheduling for Real-Time
Systems on Dynamic Voltage Scaling (DVS) Platforms. In Proceed-
ings of the 13th IEEE International Conference on Embedded and Real-
Time Computing Systems and Applications, RTCSA ’07, pages 28–38,
Washington, DC, USA, 2007. IEEE Computer Society. ISBN 0-7695-
2975-5. doi: http://dx.doi.org/10.1109/RTCSA.2007.37. URL http:

//dx.doi.org/10.1109/RTCSA.2007.37.

S. Cho and R. Melhem. Corollaries to Amdahl’s Law for Energy. IEEE
Comput. Archit. Lett., 7(1):25–28, Jan. 2008. ISSN 1556-6056. doi:
10.1109/L-CA.2007.18. URL http://dl.acm.org/citation.cfm?id=

1383041.1383084.

S. Cho and R. G. Melhem. On the interplay of parallelization, program
performance, and energy consumption. Parallel and Distributed Systems,
IEEE Transactions on, 21(3):342–353, 2010. URL http://ieeexplore.

ieee.org/xpls/abs_all.jsp?arnumber=4798160.

A. Cichocki, R. Zdunek, and S.-I. Amari. Nonnegative matrix and ten-
sor factorization [lecture notes]. Signal Processing Magazine, IEEE, 25
(1):142–145, 2008. URL http://ieeexplore.ieee.org/xpls/abs_all.

jsp?arnumber=4408452.

G. Cocco. FSCL: Homogeneous programming and execution on heteroge-
neous platforms. PhD dissertation, University of Pisa, 2015.

M. Colyvan. The indispensability of mathematics. Oxford University Press,
2001. URL http://espace.library.uq.edu.au/view/UQ:1352.

C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):
273–297, 1995. URL http://link.springer.com/article/10.1007/

bf00994018.

H. J. Curnow and B. A. Wichmann. A synthetic benchmark. The Computer
Journal, 19(1):43–49, 1976. URL http://comjnl.oxfordjournals.org/

content/19/1/43.short.

M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and D. S. Nikolopou-
los. Online power-performance adaptation of multithreaded programs
using hardware event-based prediction. In Proceedings of the 20th an-
nual international conference on Supercomputing, ICS ’06, pages 157–
166, New York, NY, USA, 2006. ACM. ISBN 1-59593-282-8. doi:

BIBLIOGRAPHY 223

http://doi.acm.org/10.1145/1183401.1183426. URL http://doi.acm.

org/10.1145/1183401.1183426.

C. Davis. Theory of positive linear dependence. American Journal of Math-
ematics, pages 733–746, 1954. URL http://www.jstor.org/stable/

2372648.

G. Dhiman, G. Marchetti, and T. Rosing. vGreen: A System for Energy-
Efficient Management of Virtual Machines. ACM Trans. Des. Autom.
Electron. Syst., 16(1):6:1–6:27, Nov. 2010. ISSN 1084-4309. doi: http://
doi.acm.org/10.1145/1870109.1870115. URL http://doi.acm.org/10.

1145/1870109.1870115.

J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. LINPACK
users’ guide, volume 8. Siam, 1979. URL https://books.google.

it/books?hl=en&lr=&id=AmSm1n3Vw0cC&oi=fnd&pg=PR5&dq=linpack&

ots=EEGawHct3u&sig=t9rebtIN7_taRAKjvf1S-oF6sNg.

H. Drucker, C. J. Burges, L. Kaufman, A. Smola, V. Vapnik,
and others. Support vector regression machines. Advances in
neural information processing systems, 9:155–161, 1997. URL
https://books.google.it/books?hl=en&lr=&id=QpD7n95ozWUC&

oi=fnd&pg=PA155&dq=vapnik+support+vector+machine&ots=

iCmrlFYR9w&sig=sjPNZuzMMuH3vyVLrpLOUSmyS08.

E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing and Pre-
dicting Program Behavior and its Variability. In Proceedings of the 12th
International Conference on Parallel Architectures and Compilation Tech-
niques, PACT ’03, pages 220–, Washington, DC, USA, 2003. IEEE Com-
puter Society. ISBN 0-7695-2021-9. URL http://dl.acm.org/citation.

cfm?id=942806.943853.

P. Dutta, M. Feldmeier, J. Paradiso, and D. Culler. Energy Metering for
Free: Augmenting Switching Regulators for Real-Time Monitoring. In
Proceedings of the 7th international conference on Information processing
in sensor networks, IPSN ’08, pages 283–294, Washington, DC, USA,
2008. IEEE Computer Society. ISBN 978-0-7695-3157-1. doi: http://
dx.doi.org/10.1109/IPSN.2008.58. URL http://dx.doi.org/10.1109/

IPSN.2008.58.

L. Eeckhout, H. Vandierendonck, and K. D. Bosschere. Workload Design:
Selecting Representative Program-Input Pairs. Parallel Architectures and

224 BIBLIOGRAPHY

Compilation Techniques, International Conference on, 0:83, 2002. ISSN
1089-795X. doi: http://doi.ieeecomputersociety.org/10.1109/PACT.2002.
1106006.

F. Farahnakian, P. Liljeberg, and J. Plosila. LiRCUP: Linear Regression
Based CPU Usage Prediction Algorithm for Live Migration of Virtual
Machines in Data Centers. In 2013 39th EUROMICRO Conference on
Software Engineering and Advanced Applications (SEAA), pages 357–364,
Sept. 2013. doi: 10.1109/SEAA.2013.23.

X. Feng, R. Ge, and K. W. Cameron. Power and Energy Profiling of Scien-
tific Applications on Distributed Systems. 2005. URL http://www.mscs.

mu.edu/~fengx/web/pubs/IPDPS2005PowerProfiling.pdf.

J. Flinn and M. Satyanarayanan. PowerScope: A Tool for Profiling the
Energy Usage of Mobile Applications. In Proceedings of the Second
IEEE Workshop on Mobile Computer Systems and Applications, WM-
CSA ’99, pages 2–, Washington, DC, USA, 1999. IEEE Computer Soci-
ety. ISBN 0-7695-0025-0. URL http://dl.acm.org/citation.cfm?id=

520551.837522.

J. Fox. Applied regression analysis, linear models, and related methods.
Sage Publications, Inc, 1997. URL http://psycnet.apa.org/psycinfo/

1997-08857-000.

S. Gal-On and M. Levy. Exploring CoreMarkA Benchmark Maximizing
Simplicity and Efficacy. The Embedded Microprocessor Benchmark Con-
sortium, 2012. URL https://backdraft-technologies.com/techlit/

coremark-whitepaper.pdf.

S. K. Garg, C. S. Yeo, A. Anandasivam, and R. Buyya. Energy-efficient
scheduling of HPC applications in cloud computing environments. arXiv
preprint arXiv:0909.1146, 2009. URL http://arxiv.org/abs/0909.

1146.

R. Gaujoux and C. Seoighe. A flexible R package for nonnegative matrix
factorization. BMC bioinformatics, 11(1):367, 2010. URL http://www.

biomedcentral.com/1471-2105/11/367.

C. J. Geyer. Practical markov chain monte carlo. Statistical Science, pages
473–483, 1992. URL http://www.jstor.org/stable/2246094.

BIBLIOGRAPHY 225

W. R. Gilks. Markov chain monte carlo. Wiley Online Li-
brary, 2005. URL http://onlinelibrary.wiley.com/doi/10.1002/

0470011815.b2a14021/full.

I. Goiri, F. Julia, R. Nou, J. L. Berral, J. Guitart, and J. Torres.
Energy-aware scheduling in virtualized datacenters. In Cluster Comput-
ing (CLUSTER), 2010 IEEE International Conference on, pages 58–67.
IEEE, 2010. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=5600320.

S. F. Goldsmith, A. S. Aiken, and D. S. Wilkerson. Measuring empirical
computational complexity. In Proceedings of the the 6th joint meeting
of the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering, pages 395–404.
ACM, 2007. URL http://dl.acm.org/citation.cfm?id=1287681.

S. L. Graham, P. B. Kessler, and M. K. Mckusick. Gprof: A call graph
execution profiler. In ACM Sigplan Notices, volume 17, pages 120–126.
ACM, 1982. URL http://dl.acm.org/citation.cfm?id=806987.

C. Gu, H. Huang, and X. Jia. Power Metering for Virtual Machine in
Cloud ComputingChallenges and Opportunities. 2014. URL http://

ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6905704.

S. Hawking. The grand design. Random House LLC, 2011.

S. Hemmert. Green hpc: From nice to necessity. Computing in Science
& Engineering, 12(6):0008–10, 2010. URL http://www.computer.org/

csdl/mags/cs/2010/06/mcs2010060008.html.

J. L. Hennessy, D. A. Patterson, and D. Goldberg. Computer architecture:
a quantitative approach. Morgan Kaufman, 2003.

J. L. Henning. SPEC CPU2000: Measuring CPU Performance in the
New Millennium. Computer, 33(7):28–35, July 2000. ISSN 0018-9162.
doi: 10.1109/2.869367. URL http://dl.acm.org/citation.cfm?id=

619053.621510.

D. C. Hoaglin, F. Mosteller, and J. W. Tukey. Exploring data tables, trends,
and shapes, volume 101. John Wiley & Sons, 2011. URL http://books.

google.it/books?hl=en&lr=&id=pzf2u-vHk3gC&oi=fnd&pg=PR13&dq=

+Robust+regression.+In+Exploring+Data+Tables,+Trends,+and+

Shapes&ots=NFyYThiBgM&sig=IOlYI9kw4N2ZOM1GROHFg-O5Eb8.

226 BIBLIOGRAPHY

P. W. Holland and R. E. Welsch. Robust regression using iteratively
reweighted least-squares. Communications in Statistics-Theory and Meth-
ods, 6(9):813–827, 1977. URL http://www.tandfonline.com/doi/abs/

10.1080/03610927708827533.

L. Huang, J. Jia, B. Yu, B.-G. Chun, P. Maniatis, and M. Naik. Pre-
dicting Execution Time of Computer Programs Using Sparse Polynomial
Regression. In J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S.
Zemel, and A. Culotta, editors, NIPS, pages 883–891. Curran Associates,
Inc., 2010. URL http://dblp.uni-trier.de/db/conf/nips/nips2010.

html#HuangJYCMN10.

C. J. Hughes, V. S. Pai, P. Ranganathan, and S. V. Adve. Rsim: simulating
shared-memory multiprocessors with ILP processors. Computer, 35(2):
40–49, 2002. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=982915.

C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi. An
Analysis of Efficient Multi-Core Global Power Management Policies: Max-
imizing Performance for a Given Power Budget. In Proceedings of the 39th
Annual IEEE/ACM International Symposium on Microarchitecture, MI-
CRO 39, pages 347–358, Washington, DC, USA, 2006. IEEE Computer
Society. ISBN 0-7695-2732-9. doi: http://dx.doi.org/10.1109/MICRO.
2006.8. URL http://dx.doi.org/10.1109/MICRO.2006.8.

T. Isobe, E. D. Feigelson, M. G. Akritas, and G. J. Babu. Linear regression
in astronomy. The Astrophysical Journal, 364:104–113, Nov. 1990. ISSN
0004-637X. doi: 10.1086/169390. URL http://adsabs.harvard.edu/

abs/1990ApJ...364..104I.

M. A. Iverson, F. Ozguner, and L. C. Potter. Statistical prediction of
task execution times through analytic benchmarking for scheduling in
a heterogeneous environment. In Heterogeneous Computing Workshop,
1999.(HCW’99) Proceedings. Eighth, pages 99–111. IEEE, 1999. URL
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=765115.

R. Jain. The art of computer system performance analysis: techniques for
experimental design, measurement, simulation and modeling. New York:
John Willey, 1991.

A. P. Kareem and R. A. Singh. Principal component and cluster analysis of
SPEC CPUint2006 Benchmarks. 2015. URL http://hypatia.teiath.

gr/xmlui/handle/11400/4987.

BIBLIOGRAPHY 227

Ketan Paranjape, Steve Hebert, and Bob Masson. Heterogeneous Comput-
ing in the Cloud: Crunching Big Data and Democratizing HPC Access
for the Life Sciences. Technical report, 2014.

N. Kim, J. Cho, and E. Seo. Energy-based accounting and scheduling of
virtual machines in a cloud system. In Green Computing and Commu-
nications (GreenCom), 2011 IEEE/ACM International Conference on,
pages 176–181. IEEE, 2011. URL http://ieeexplore.ieee.org/xpls/

abs_all.jsp?arnumber=6061323.

N. Kim, J. Cho, and E. Seo. Energy-credit scheduler: An energy-aware
virtual machine scheduler for cloud systems. Future Generation Com-
puter Systems, 32:128–137, 2014. URL http://www.sciencedirect.

com/science/article/pii/S0167739X1200115X.

V. Kindratenko and P. Trancoso. Trends in high-performance computing.
Computing in Science & Engineering, 13(3):92–95, 2011. URL http:

//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5756280.

T. S. Kuhn. Objetivity, value judgment, and theory choice. 1977.
URL http://books.google.it/books?hl=en&lr=&id=iGpd3xLGNbYC&

oi=fnd&pg=PA74&dq=Objectivity,+Value+Judgment,+and+Theory+

Choice.&ots=1ocI5l6Z-2&sig=i9ZAx202dZigqsaNDEQRg1rjTrE.

T. S. Kuhn. The structure of scientific revolutions. University of Chicago
press, 2012. URL http://books.google.it/books?hl=en&lr=&id=

3eP5Y_OOuzwC&oi=fnd&pg=PR5&dq=The+Structure+of+Scientific+

Revolutions&ots=xUYOD8lJnN&sig=aLYSOzSLoodXkE2Tt2FMF7SqNjk.

M. Kuperberg, K. Krogmann, and R. Reussner. Performance pre-
diction for black-box components using reengineered parametric be-
haviour models. In Component-Based Software Engineering, pages 48–63.
Springer, 2008. URL http://link.springer.com/chapter/10.1007/

978-3-540-87891-9_4.

A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power aware page allocation.
SIGPLAN Not., 35(11):105–116, Nov. 2000. ISSN 0362-1340. doi: http:
//doi.acm.org/10.1145/356989.356999. URL http://doi.acm.org/10.

1145/356989.356999.

D. D. LEE. Algorithms for nonnegative matrix factorization. Advances in
Neural Information Processing Systems, 13:556–562, 2001. URL http:

//ci.nii.ac.jp/naid/10020951848/.

228 BIBLIOGRAPHY

L. Lefvre and A.-C. Orgerie. Designing and evaluating an energy effi-
cient Cloud. J. Supercomput., 51(3):352–373, Mar. 2010. ISSN 0920-
8542. doi: http://dx.doi.org/10.1007/s11227-010-0414-2. URL http:

//dx.doi.org/10.1007/s11227-010-0414-2.

K. Li. Energy efficient scheduling of parallel tasks on multiprocessor com-
puters. The Journal of Supercomputing, 60(2):223–247, 2012. URL
http://link.springer.com/article/10.1007/s11227-010-0416-0.

T. Li and L. K. John. Run-time modeling and estimation of operating
system power consumption. ACM SIGMETRICS Performance Evaluation
Review, 31(1):160–171, 2003. URL http://dl.acm.org/citation.cfm?

id=781048.

D. J. Lilja. Measuring computer performance: a practitioner’s
guide. Cambridge University Press, 2005. URL http://books.

google.it/books?hl=en&lr=&id=R8RLniX5DNQC&oi=fnd&pg=PR11&

dq=Measuring+computer+performance:+a+practitioner%27s+guide&

ots=irGuTxFwtx&sig=Vuq9DQCE_oUdzkijHmv3ItWjry0.

M. Lindner, F. Galn, C. Chapman, S. Clayman, D. Henriksson, and E. Elm-
roth. The cloud supply chain: A framework for information, monitoring,
accounting and billing. In 2nd International ICST Conference on Cloud
Computing (CloudComp 2010), 2010. URL https://www.ee.ucl.ac.uk/

~sclayman/docs/CloudComp2010.pdf.

H. Liu, C.-Z. Xu, H. Jin, J. Gong, and X. Liao. Performance and energy
modeling for live migration of virtual machines. In Proceedings of the
20th international symposium on High performance distributed computing,
HPDC ’11, pages 171–182, New York, NY, USA, 2011. ACM. ISBN 978-
1-4503-0552-5. doi: http://doi.acm.org/10.1145/1996130.1996154. URL
http://doi.acm.org/10.1145/1996130.1996154.

X. Ma, M. Dong, L. Zhong, and Z. Deng. Statistical power consumption
analysis and modeling for GPU-based computing. In Proceeding of ACM
SOSP Workshop on Power Aware Computing and Systems (HotPower),
2009. URL http://www.sigops.org/sosp/sosp09/papers/hotpower_

6_ma.pdf.

J. L. Marchini, C. Heaton, and B. D. Ripley. fastICA: FastICA algorithms
to perform ICA and Projection Pursuit. R package version, pages 1–2,
2013.

BIBLIOGRAPHY 229

A. D. Martin, K. M. Quinn, and J. H. Park. Mcmcpack: Markov chain
monte carlo in r. Journal of Statistical Software, 42(9):1–21, 2011. URL
https://www.law.berkeley.edu/files/jstatsoftMCMCpack.pdf.

A. J. Martin. Towards an energy complexity of computation. Inf. Pro-
cess. Lett., 77(2-4):181–187, Feb. 2001. ISSN 0020-0190. doi: 10.1016/
S0020-0190(00)00214-3. URL http://dl.acm.org/citation.cfm?id=

375434.375482.

J. R. Mashey. War of the benchmark means: time for a truce. ACM
SIGARCH Computer Architecture News, 32(4):1–14, 2004. URL http:

//dl.acm.org/citation.cfm?id=1040137.

F. H. McMahon. The Livermore Fortran Kernels: A computer test of the
numerical performance range. Technical report, Lawrence Livermore Na-
tional Lab., CA (USA), 1986. URL http://www.osti.gov/scitech/

biblio/6574702.

E. Metz and R. Lencevicius. Performance Data Collection: Hy-
brid Approach. In Proceedings of the 2nd International Work-
shop on Dynamic Analysis, pages 48–51. Citeseer, 2004. URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

137.3951&rep=rep1&type=pdf#page=52.

D. Meyer, F. Leisch, and K. Hornik. The support vector machine un-
der test. Neurocomputing, 55(1):169–186, 2003. URL http://www.

sciencedirect.com/science/article/pii/S0925231203004314.

R. Mishra, N. Rastogi, D. Zhu, D. Moss, and R. Melhem. Energy aware
scheduling for distributed real-time systems. In Parallel and Distributed
Processing Symposium, 2003. Proceedings. International, pages 9–pp.
IEEE, 2003. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=1213099.

D. Morelli and A. Cisternino. A compositional model to characterize soft-
ware and hardware from their resource usage. In A. V. Jones, editor,
2012 Imperial College Computing Student Workshop, volume 28 of Ope-
nAccess Series in Informatics (OASIcs), pages 95–101, Dagstuhl, Ger-
many, 2012. Schloss DagstuhlLeibniz-Zentrum fuer Informatik. ISBN 978-
3-939897-48-4. doi: http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.95.
URL http://drops.dagstuhl.de/opus/volltexte/2012/3771.

230 BIBLIOGRAPHY

D. Morelli and A. Cisternino. Accurate Blind Predictions of Open-
FOAM Energy Consumption Using the LBM Prediction Model.
In Euro-Par 2014: Parallel Processing Workshops, pages 400–411.
Springer, 2014. URL http://link.springer.com/chapter/10.1007/

978-3-319-14313-2_34.

T. Mudge. Power: A first-class architectural design constraint. Computer, 34
(4):52–58, 2001. URL http://www.computer.org/csdl/mags/co/2001/

04/r4052.pdf.

S. S. Mukherjee, S. V. Adve, T. Austin, J. Emer, and P. S. Magnusson.
Performance simulation tools. Computer, (2):38–39, 2002. URL http:

//www.computer.org/csdl/mags/co/2002/02/r2038.pdf.

K. G. Murty. Linear programming, volume 57. Wiley New York, 1983.

T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney. Producing
wrong data without doing anything obviously wrong. In In Proc. of Intl
Conf. on Architectural Support for Programming Languages and Operating
Systems, pages 265–276. ACM, 2009.

A. Nair and R. Lysecky. Non-intrusive dynamic application profiler for de-
tailed loop execution characterization. In Proceedings of the 2008 interna-
tional conference on Compilers, architectures and synthesis for embedded
systems, pages 23–30. ACM, 2008. URL http://dl.acm.org/citation.

cfm?id=1450102.

D. Nellans, V. K. Kadaru, and E. Brunvand. ASIM-An asynchronous
architectural level simulator. In Proceedings of GLSVLSI. Citeseer,
2004. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.131.6213&rep=rep1&type=pdf.

N. Nethercote and J. Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In ACM Sigplan notices, volume 42,
pages 89–100. ACM, 2007. URL http://dl.acm.org/citation.cfm?

id=1250746.

R. Neugebauer and D. Mcauley. Energy is just another resource: energy
accounting and energy pricing in the Nemesis OS. In Hot Topics in Op-
erating Systems, 2001. Proceedings of the Eighth Workshop on, pages 67
– 72, May 2001. doi: 10.1109/HOTOS.2001.990063.

I. Newton. Philosophi Naturalis Principia Mathematica. Henry Pemberton,
3rd edition, 2011. ISBN 978-1-60386-435-0.

BIBLIOGRAPHY 231

A. Pascual-Montano, J. M. Carazo, K. Kochi, D. Lehmann, and R. D.
Pascual-Marqui. Nonsmooth nonnegative matrix factorization (nsNMF).
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 28
(3):403–415, 2006. URL http://ieeexplore.ieee.org/xpls/abs_all.

jsp?arnumber=1580485.

R. Patel and A. Rajwat. A survey of embedded software profiling method-
ologies. arXiv preprint arXiv:1312.2949, 2013. URL http://arxiv.org/

abs/1312.2949.

D. A. Patterson and J. L. Hennessy. Computer Organization and Design:
the hardware/software interface. Morgan Kaufman, 2008.

E. Perelman, G. Hamerly, and B. Calder. Picking statistically valid and early
simulation points. In Parallel Architectures and Compilation Techniques,
2003. PACT 2003. Proceedings. 12th International Conference on, pages
244–255. IEEE, 2003. URL http://ieeexplore.ieee.org/xpls/abs_

all.jsp?arnumber=1238020.

A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John. Measuring Program
Similarity: Experiments with SPEC CPU Benchmark Suites. In Proceed-
ings of the IEEE International Symposium on Performance Analysis of
Systems and Software, 2005, pages 10–20, Washington, DC, USA, 2005.
IEEE Computer Society. ISBN 0-7803-8965-4. doi: 10.1109/ISPASS.
2005.1430555. URL http://dl.acm.org/citation.cfm?id=1317536.

1318392.

A. S. Phansalkar. Measuring program similarity for efficient benchmarking
and performance analysis of computer systems. PhD thesis, University of
Texas at Austin, Austin, TX, USA, 2007. AAI3285977.

K. Popper. The logic of scientific discovery. Routledge, 2014. URL
http://books.google.it/books?hl=en&lr=&id=LWSBAgAAQBAJ&

oi=fnd&pg=PP1&dq=The+Logic+of+Scientific+Discovery+&ots=

pyDi-Z1EeM&sig=d1sUegeiMYbpJbNBO7-o71PPnnQ.

W. J. Price. A benchmark tutorial. Micro, IEEE, 9(5):28–43, 1989. URL
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=45825.

R. Raghavendra, P. Ranganathan, V. Talwar, Z. Wang, and X. Zhu. No
”power” struggles: coordinated multi-level power management for the
data center. SIGARCH Comput. Archit. News, 36(1):48–59, Mar. 2008.

232 BIBLIOGRAPHY

ISSN 0163-5964. doi: http://doi.acm.org/10.1145/1353534.1346289. URL
http://doi.acm.org/10.1145/1353534.1346289.

K. K. Rangan, G.-Y. Wei, and D. Brooks. Thread motion: fine-grained
power management for multi-core systems. In Proceedings of the 36th
annual international symposium on Computer architecture, ISCA ’09,
pages 302–313, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-
526-0. doi: http://doi.acm.org/10.1145/1555754.1555793. URL http:

//doi.acm.org/10.1145/1555754.1555793.

S. Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis. JouleSort: a
balanced energy-efficiency benchmark. In Proceedings of the 2007 ACM
SIGMOD international conference on Management of data, SIGMOD ’07,
pages 365–376, New York, NY, USA, 2007a. ACM. ISBN 978-1-59593-
686-8. doi: http://doi.acm.org/10.1145/1247480.1247522. URL http:

//doi.acm.org/10.1145/1247480.1247522.

S. Rivoire, M. A. Shah, P. Ranganathan, C. Kozyrakis, and J. Meza. Models
and Metrics to Enable Energy-Efficiency Optimizations. Computer, 40
(12):39–48, Dec. 2007b. ISSN 0018-9162. doi: 10.1109/MC.2007.436.
URL http://dl.acm.org/citation.cfm?id=1339817.1339896.

S. M. Rivoire. Models and metrics for energy-efficient computer systems.
PhD thesis, Stanford University, Stanford, CA, USA, 2008. AAI3313649.

P. E. Roundy and W. M. Frank. Applications of a Multiple Linear Regression
Model to the Analysis of Relationships between Eastward- and Westward-
Moving Intraseasonal Modes. Journal of the Atmospheric Sciences, 61
(24):3041–3048, Dec. 2004. ISSN 0022-4928. doi: 10.1175/JAS-3349.1.
URL http://journals.ametsoc.org/doi/abs/10.1175/JAS-3349.1.

J. Russell and M. Jacome. Software power estimation and optimization
for high performance, 32-bit embedded processors. In Computer De-
sign: VLSI in Computers and Processors, 1998. ICCD ’98. Proceed-
ings. International Conference on, pages 328 –333, Oct. 1998. doi:
10.1109/ICCD.1998.727070.

R. H. Saavedra and A. J. Smith. Analysis of benchmark characteristics and
benchmark performance prediction. ACM Trans. Comput. Syst., 14(4):
344–384, Nov. 1996. ISSN 0734-2071. doi: http://doi.acm.org/10.1145/
235543.235545. URL http://doi.acm.org/10.1145/235543.235545.

BIBLIOGRAPHY 233

V. Salapura, R. Bickford, M. Blumrich, A. A. Bright, D. Chen, P. Coteus,
A. Gara, M. Giampapa, M. Gschwind, M. Gupta, S. Hall, R. A. Haring,
P. Heidelberger, D. Hoenicke, G. V. Kopcsay, M. Ohmacht, R. A. Rand,
T. Takken, and P. Vranas. Power and performance optimization at the
system level. In Proceedings of the 2nd conference on Computing frontiers,
CF ’05, pages 125–132, New York, NY, USA, 2005. ACM. ISBN 1-59593-
019-1. doi: http://doi.acm.org/10.1145/1062261.1062262. URL http:

//doi.acm.org/10.1145/1062261.1062262.

V. Sekar and P. Maniatis. Verifiable resource accounting for cloud computing
services. In Proceedings of the 3rd ACM workshop on Cloud computing
security workshop, pages 21–26. ACM, 2011. URL http://dl.acm.org/

citation.cfm?id=2046666.

C. Seo, G. Edwards, D. Popescu, S. Malek, and N. Medvidovic. A framework
for estimating the energy consumption induced by a distributed system’s
architectural style. In Proceedings of the 8th international workshop on
Specification and verification of component-based systems, SAVCBS ’09,
pages 27–34, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-680-
9. doi: http://doi.acm.org/10.1145/1596486.1596493. URL http://doi.

acm.org/10.1145/1596486.1596493.

G. Sevitsky, W. De Pauw, and R. Konuru. An information exploration
tool for performance analysis of Java programs. In Technology of Object-
Oriented Languages and Systems, 2001. TOOLS 38. Proceedings, pages
85–101. IEEE, 2001. URL http://ieeexplore.ieee.org/xpls/abs_

all.jsp?arnumber=911758.

L. Shannon and P. Chow. Using reconfigurability to achieve real-time
profiling for hardware/software codesign. In Proceedings of the 2004
ACM/SIGDA 12th international symposium on Field programmable gate
arrays, pages 190–199. ACM, 2004. URL http://dl.acm.org/citation.

cfm?id=968308.

S. Sharkawi, D. DeSota, R. Panda, R. Indukuru, S. Stevens, V. Taylor,
and X. Wu. Performance projection of HPC applications using SPEC
CFP2006 benchmarks. In IEEE International Symposium on Parallel
Distributed Processing, 2009. IPDPS 2009, pages 1–12, 2009. doi: 10.
1109/IPDPS.2009.5161057.

A. Shenoy, J. Hiner, S. Lysecky, R. Lysecky, and A. Gordon-Ross. Eval-
uation of dynamic profiling methodologies for optimization of sensor

234 BIBLIOGRAPHY

networks. Embedded Systems Letters, IEEE, 2(1):10–13, 2010. URL
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5430950.

T. Sherwood, E. Perelman, and B. Calder. Basic Block Distribution Analysis
to Find Periodic Behavior and Simulation Points in Applications. Tech-
nical report, University of California at San Diego, La Jolla, CA, USA,
2001.

T. Sherwood, E. Perelman, a. G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. SIGOPS Oper. Syst. Rev., 36
(5):45–57, Oct. 2002. ISSN 0163-5980. doi: http://doi.acm.org/10.1145/
635508.605403. URL http://doi.acm.org/10.1145/635508.605403.

Y. Shin and K. Choi. Power conscious fixed priority scheduling for hard
real-time systems. In Design Automation Conference, 1999. Proceedings.
36th, pages 134–139. IEEE, 1999. URL http://ieeexplore.ieee.org/

xpls/abs_all.jsp?arnumber=781298.

A. Sinha and A. P. Chandrakasan. JouleTrack - A web based tool for software
energy profiling. In In Design Automation Conference, pages 220–225,
2001.

P. Smaragdis and J. C. Brown. Non-negative matrix factorization for
polyphonic music transcription. In Applications of Signal Processing
to Audio and Acoustics, 2003 IEEE Workshop on., pages 177–180.
IEEE, 2003. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=1285860.

A. F. Smith and G. O. Roberts. Bayesian computation via the Gibbs sampler
and related Markov chain Monte Carlo methods. Journal of the Royal
Statistical Society. Series B (Methodological), pages 3–23, 1993. URL
http://www.jstor.org/stable/2346063.

J. E. Smith. Characterizing computer performance with a single number.
Communications of the ACM, 31(10):1202–1206, 1988. URL http://dl.

acm.org/citation.cfm?id=63043.

S. Srikantaiah, A. Kansal, and F. Zhao. Energy aware consolidation for
cloud computing. In Proceedings of the 2008 conference on Power aware
computing and systems, HotPower’08, pages 10–10, Berkeley, CA, USA,
2008. USENIX Association. URL http://dl.acm.org/citation.cfm?

id=1855610.1855620.

BIBLIOGRAPHY 235

S. P. T. Srinivasan and U. Bellur. Novel Power and Completion Time Models
for Virtualized Environments. arXiv:1411.3201 [cs], Nov. 2014. URL
http://arxiv.org/abs/1411.3201. arXiv: 1411.3201.

S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel. An accurate and fine
grain instruction-level energy model supporting software optimizations.
In in Proc. Int. Wkshp Power and Timing Modeling, Optimization and
Simulation (PATMOS, 2001.

V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded software: a
first step towards software power minimization. In Proceedings of the 1994
IEEE/ACM international conference on Computer-aided design, ICCAD
’94, pages 384–390, Los Alamitos, CA, USA, 1994. IEEE Computer So-
ciety Press. ISBN 0-89791-690-5. URL http://dl.acm.org/citation.

cfm?id=191326.191500.

J. G. Tong and M. A. Khalid. Profiling tools for FPGA-based embedded
systems: Survey and quantitative comparison. Journal of Computers, 3
(6):1–14, 2008. URL http://www.academypublisher.com/ojs/index.

php/jcp/article/viewArticle/03060114.

N. Vijaykrishnan, M. J. Irwin, H. S. Kim, and W. Ye. Energy-driven inte-
grated hardware-software optimizations using SimplePower. pages 95–106,
2000.

L. Wang, G. Von Laszewski, J. Dayal, and F. Wang. Towards energy
aware scheduling for precedence constrained parallel tasks in a clus-
ter with DVFS. In Cluster, Cloud and Grid Computing (CCGrid),
2010 10th IEEE/ACM International Conference on, pages 368–377.
IEEE, 2010. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=5493462.

S. Wang, H. Chen, and W. Shi. SPAN: A software power analyzer
for multicore computer systems. Sustainable Computing: Informatics
and Systems, 1(1):23–34, 2011. URL http://www.sciencedirect.com/

science/article/pii/S221053791000003X.

R. P. Weicker. Dhrystone: a synthetic systems programming benchmark.
Communications of the ACM, 27(10):1013–1030, 1984. URL http://dl.

acm.org/citation.cfm?id=358283.

Y. Wen. Smart Multi-Task Scheduling for OpenCL Programs on CPU/GPU
Heterogeneous Platforms. 2014.

236 BIBLIOGRAPHY

D. H. Woo and H.-H. S. Lee. Extending Amdahl’s Law for Energy-Efficient
Computing in the Many-Core Era. Computer, 41(12):24–31, Dec. 2008.
ISSN 0018-9162. doi: 10.1109/MC.2008.494. URL http://dl.acm.org/

citation.cfm?id=1495784.1495841.

R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe. SMARTS: Ac-
celerating microarchitecture simulation via rigorous statistical sampling.
In Computer Architecture, 2003. Proceedings. 30th Annual International
Symposium on, pages 84–95. IEEE, 2003. URL http://ieeexplore.

ieee.org/xpls/abs_all.jsp?arnumber=1206991.

W. Xu, X. Liu, and Y. Gong. Document clustering based on non-negative
matrix factorization. In Proceedings of the 26th annual international ACM
SIGIR conference on Research and development in informaion retrieval,
pages 267–273. ACM, 2003. URL http://dl.acm.org/citation.cfm?

id=860485.

T. Yamamoto, M. Matsushita, T. Kamiya, and K. Inoue. Measuring Similar-
ity of Large Software Systems Based on Source Code Correspondence. In
F. Bomarius and S. Komi-Sirvi, editors, Product Focused Software Process
Improvement, volume 3547 of Lecture Notes in Computer Science, pages
179–208. Springer Berlin / Heidelberg, 2005. ISBN 978-3-540-26200-8.
URL http://dx.doi.org/10.1007/11497455_41.

C.-Y. Yang, J.-J. Chen, and T.-W. Kuo. An approximation algorithm for
energy-efficient scheduling on a chip multiprocessor. In Proceedings of
the conference on Design, Automation and Test in Europe-Volume 1,
pages 468–473. IEEE Computer Society, 2005. URL http://dl.acm.

org/citation.cfm?id=1049151.

F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced
CPU energy. In Foundations of Computer Science, 1995. Proceedings.,
36th Annual Symposium on, pages 374–382. IEEE, 1995. URL http:

//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=492493.

L. Ye, G. Lu, S. Kumar, C. Gniady, and J. H. Hartman. Energy-efficient
storage in virtual machine environments. In Proceedings of the 6th ACM
SIGPLAN/SIGOPS international conference on Virtual execution envi-
ronments, VEE ’10, pages 75–84, New York, NY, USA, 2010. ACM. ISBN
978-1-60558-910-7. doi: http://doi.acm.org/10.1145/1735997.1736009.
URL http://doi.acm.org/10.1145/1735997.1736009.

BIBLIOGRAPHY 237

H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. ECOSystem: manag-
ing energy as a first class operating system resource. SIGOPS Oper.
Syst. Rev., 36(5):123–132, Oct. 2002. ISSN 0163-5980. doi: http:
//doi.acm.org/10.1145/635508.605411. URL http://doi.acm.org/10.

1145/635508.605411.

Y. Zhang, Y. Hu, B. Li, and L. Peng. Performance and power analysis
of ATI GPU: A statistical approach. In Networking, Architecture and
Storage (NAS), 2011 6th IEEE International Conference on, pages 149–
158. IEEE, 2011. URL http://ieeexplore.ieee.org/xpls/abs_all.

jsp?arnumber=6005434.

