187 research outputs found

    Passivity and synchronization of coupled different dimensional delayed reaction-diffusion neural networks with dirichlet boundary conditions

    Get PDF
    Two types of coupled different dimensional delayed reaction-diffusion neural network (CDDDRDNN) models without and with parametric uncertainties are analyzed in this paper. On the one hand, passivity and synchronization of the raised network model with certain parameters are studied through exploiting some inequality techniques and Lyapunov stability theory, and some adequate conditions are established. On the other hand, the problems of robust passivity and robust synchronization of CDDDRDNNs with parameter uncertainties are solved. Finally, two numerical examples are given to testify the effectiveness of the derived passivity and synchronization conditions

    Event-triggered communication for passivity and synchronisation of multi-weighted coupled neural networks with and without parameter uncertainties

    Get PDF
    A multi-weighted coupled neural networks (MWCNNs) model with event-triggered communication is studied here. On the one hand, the passivity of the presented network model is studied by utilising Lyapunov stability theory and some inequality techniques, and a synchronisation criterion based on the obtained output-strict passivity condition of MWCNNs with eventtriggered communication is derived. On the other hand, some robust passivity and robust synchronisation criteria based on output-strict passivity of the proposed network with uncertain parameters are presented. At last, two numerical examples are provided to testify the effectiveness of the output-strict passivity and robust synchronisation results

    Passivity and synchronization of coupled complex-valued memristive neural networks

    Get PDF
    The coupled complex-valued memristive neural networks (CCVMNNs) are investigated in this study. First, we analyze the passivity of the proposed network model by designing an appropriate controller and using certain inequalities as well as Lyapunov functional method, and provide a passivity condition for the considered CCVMNNs. In addition, a criterion for guaranteeing synchronization of this kind of network is established. Finally, the effectiveness and correctness of the acquired theoretical results are verified by a numerical example

    Exponential Synchronization of Stochastic Complex Dynamical Networks with Impulsive Perturbations and Markovian Switching

    Get PDF
    This paper investigates the exponential synchronization problem of stochastic complex dynamical networks with impulsive perturbation and Markovian switching. The complex dynamical networks consist of Îş modes, and the networks switch from one mode to another according to a Markovian chain with known transition probability. Based on the Lyapunov function method and stochastic analysis, by employing M-matrix approach, some sufficient conditions are presented to ensure the exponential synchronization of stochastic complex dynamical networks with impulsive perturbation and Markovian switching, and the upper bound of impulsive gain is evaluated. At the end of this paper, two numerical examples are included to show the effectiveness of our results

    Finite-time passivity for neutral-type neural networks with time-varying delays – via auxiliary function-based integral inequalities

    Get PDF
    In this paper, we investigated the problem of the finite-time boundedness and finitetime passivity for neural networks with time-varying delays. A triple, quadrable and five integral terms with the delay information are introduced in the new Lyapunov–Krasovskii functional (LKF). Based on the auxiliary integral inequality, Writinger integral inequality and Jensen’s inequality, several sufficient conditions are derived. Finally, numerical examples are provided to verify the effectiveness of the proposed criterion. There results are compared with the existing results.&nbsp

    Event-triggered passivity of multi-weighted coupled delayed reaction-diffusion memristive neural networks with fixed and switching topologies

    Get PDF
    This paper solves the event-triggered passivity problem for multiple-weighted coupled delayed reaction-diffusion memristive neural networks (MWCDRDMNNs) with fixed and switching topologies. On the one side, by designing appropriate event-triggered controllers, several passivity criteria for MWCDRDMNNs with fixed topology are derived based on the Lyapunov functional method and some inequality techniques. Moreover, some adequate conditions for ensuring asymptotical stability of the event-triggered passive network are presented. On the other side, we take the switching topology in network model into consideration, and investigate the event-triggered passivity and passivity-based synchronization for MWCDRDMNNs with switching topology. Finally, two examples with numerical simulation results are provided to illustrate the effectiveness of the obtained theoretical results

    Passivity and synchronization of coupled reaction-diffusion complex-valued memristive neural networks

    Get PDF
    This paper considers two types of coupled reaction-diffusion complex-valued memristive neural networks (CRDCVMNNs). The nodes of the first type CRDCVMNN are coupled through their state and the second one is coupled by spatial diffusion coupling term. For the former, some novel criteria for the passivity and synchronization are derived by constructing an appropriate controller and utilizing some inequality techniques as well as Lyapunov functional method. For the latter, we establish some sufficient conditions which guarantee that this type of CRDCVMNNs can realize passivity and synchronization. Finally, the effectiveness and correctness of the acquired theoretical results are verified by two numerical examples

    Multi-weighted complex structure on fractional order coupled neural networks with linear coupling delay: a robust synchronization problem

    Get PDF
    This sequel is concerned with the analysis of robust synchronization for a multi-weighted complex structure on fractional-order coupled neural networks (MWCFCNNs) with linear coupling delays via state feedback controller. Firstly, by means of fractional order comparison principle, suitable Lyapunov method, Kronecker product technique, some famous inequality techniques about fractional order calculus and the basis of interval parameter method, two improved robust asymptotical synchronization analysis, both algebraic method and LMI method, respectively are established via state feedback controller. Secondly, when the parameter uncertainties are ignored, several synchronization criterion are also given to ensure the global asymptotical synchronization of considered MWCFCNNs. Moreover, two type of special cases for global asymptotical synchronization MWCFCNNs with and without linear coupling delays, respectively are investigated. Ultimately, the accuracy and feasibility of obtained synchronization criteria are supported by the given two numerical computer simulations.This article has been written with the joint financial support of RUSA-Phase 2.0 grant sanctioned vide letter No.F 24-51/2014-U, Policy (TN Multi-Gen), Dept. of Edn. Govt. of India, UGC-SAP (DRS-I) vide letter No.F.510/8/DRSI/2016(SAP-I) and DST (FIST - level I) 657876570 vide letter No.SR/FIST/MS-I/2018/17
    • …
    corecore