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Abstract

This paper solves the event-triggered passivity problem for multiple-weighted

coupled delayed reaction-diffusion memristive neural networks (MWCDRD-

MNNs) with fixed and switching topologies. On the one side, by designing

appropriate event-triggered controllers, several passivity criteria for MWC-

DRDMNNs with fixed topology are derived based on the Lyapunov functional

method and some inequality techniques. Moreover, some adequate conditions

for ensuring asymptotical stability of the event-triggered passive network are

presented. On the other side, we take the switching topology in network

model into consideration, and investigate the event-triggered passivity and

passivity-based synchronization for MWCDRDMNNs with switching topol-

ogy. Finally, two examples with numerical simulation results are provided to

illustrate the effectiveness of the obtained theoretical results.
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1. Introduction

Recently, a lager number of scholars have paid extensive attention to com-

plex networks (CNs) since they are ubiquitous in our daily life. Examples

include food webs, communication networks, social networks, metabolic sys-

tems, etc. As a peculiar case of CNs, coupled neural networks (CNNs) have

been put to use availably in various fields, for instance, harmonic oscillation

generation, secure communication and chaos generators design [1, 2]. As we

know, these applications are heavily relying on some dynamical behaviors of

CNNs, e.g., synchronization. So far, some significant results on the synchro-

nization of CNNs have been reported in recent years [3–7]. In [3], several

adequate conditions were derived for randomly delayed CNNs to reach syn-

chronization by employing the properties of random variables. Zhang and

Gao [5] dealt with synchronization problem for delayed CNNs based on Lya-

punov stability theory. Besides synchronization, passivity is also one of the

most significant dynamical behaviors in CNNs because the internal stability

of a complex system can be ensured by passive property in system theory.

In the past few decades, the passivity analysis for CNNs has attracted in-

creasing research interests because of their widespread applications in plenty

of fields such as fuzzy control and sliding mode control [8]. Up to now, some

significant results about the passivity of CNNs have been obtained [9–11].

In [9], Li and Cao investigated CNNs with time delay based on Lyapunov

stability theory, and proposed several passivity criteria.

However, most of results in above-mentioned works [3–7, 9–11] ignore the
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reaction-diffusion phenomena (RDP). As we all know, the RDP is inevitable

for many CNs such as cellular networks, neural networks, etc. [12, 13], es-

pecially when they are implemented through electric circuits in practical

systems. Thus, it is necessary to investigate the coupled reaction-diffusion

neural networks (CRDNNs). Recently, many meaningful results on the syn-

chronization of CRDNNs have been obtained [14–18]. In [14], the authors

established some synchronization conditions for CRDNNs. Some conditions

were obtained for CRDNNs to make sure of the synchronization by design-

ing suitable pinning controllers in [17]. Furthermore, some scholars have

investigated the passivity for CRDNNs [19–22]. Several (pinning) passivity

conditions were derived for CRDNNs in [20]. Huang et al. [21] addressed

passivity problem for CRDNNs with nonlinear coupling, and some passivity

criteria were presented. Nevertheless, in the above mentioned literatures [9–

11, 19–22], the derived passivity results are based on the situation that the

output has the same dimension as input. To our knowledge, the passivity of

networks with different dimensional input and output only has been consid-

ered by a few scholars until now [23, 24]. In [23], the authors investigated

the passivity for CRDNNs with the output and input in different dimensions,

and some passivity criteria were established. Therefore, it is meaningful to

further investigate the passivity of CRDNNs with different dimensional input

and output.

It is well known that Chua first proposed the concept of memristor in

1970s. The memristor in neural networks can be exploited instead of re-

sistor to better comprehend the neural processes of the human brain. Until

now, many worthwhile and meaningful results on the research for memristive
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neural networks (MNNs) have been acquired [25–28]. In [26], the authors ad-

dressed the Lagrange stability of MNNs, and some conditions were derived

based on nonsmooth analysis and control theory. Wu and Zeng [28] investi-

gated the exponential stabilization for MNNs with time delays, and several

exponential stabilization criteria were established on accordance of the Lya-

punov stability theory. Nevertheless, only a few authors have investigated

the synchronization of coupled memristive neural networks (CMNNs) [29–31].

Several sufficient conditions were acquired for CMNNs to make sure of the

exponential synchronization in [30]. In [31], Wan and Cao dealt with the syn-

chronization problem for CMNNs with supremums, and several synchroniza-

tion criteria were obtained. It should be pointed out that there is no research

results reported on passivity and passivity-based synchronization for coupled

delayed reaction-diffusion memristive neural networks (CDRDMNNs).

To the best of our knowledge, many networks in the real-world should be

modeled by multi-weighted complex networks (MWCNs), for instance, the

World Web, transportation networks and social networks, in which the net-

work nodes are coupled by multiple coupling forms. Over the past years, some

results on the passivity and synchronization for MWCNs have been obtained

[32–35]. In [33], several synchronization criteria for MWCNs were derived

by designing appropriate pinning controllers based on Lyapunov functional

method. Some synchronization conditions in a finite time were established

for MWCNs in [34]. At present, only a few authors have investigated the

passivity and synchronization problems for multi-weighted coupled neural

networks (MWCNNs) [36–38]. Tang et al. [36] dealt with the passivity and

exponential synchronization problems for MWCNNs by designing suitable
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impulsive controllers. Unfortunately, the passivity and passivity-based syn-

chronization problems for multi-weighted CDRDMNNs (MWCDRDMNNs)

have rarely been addressed.

As far as we know, many CNs couldn’t realize passivity and synchroniza-

tion by themselves in practical situation. Therefore, it is indispensable and

significant for CNs to design suitable controllers that ensuring them achieve

passivity and synchronization. Currently, the event-triggered control has

become more and more popular. With the intensive research of CNs, event-

triggered control strategy has been proven to be an effective method, which

can overcome the shortcomings of the continuous control scheme and reduce

the unnecessary transmission of the communication media in the process

of information exchanging. Thus, some authors have investigated the syn-

chronization of CNs under event-triggered control schemes [42–45]. In [43],

the authors discussed synchronization problem for CNs with event-triggered

control, and several event-triggered synchronization criteria were established.

By designing suitable event-triggered controllers, some conditions were ac-

quired to guarantee CNs achieve synchronization in [44]. However, only a

few scholars have studied event-triggered synchronization of CNNs [46–49].

In [46], Huang et al. addressed synchronization-based passivity for partially

CNNs with event-triggered communication by combining Lyapunov stabil-

ity theory with some matrix inequality techniques. As far as we know, the

problems of event-triggered passivity and passivity-based synchronization for

MWCDRDMNNs with fixed and switching topologies have not yet been in-

vestigated.

According to the points discussed above, we investigate event-triggered

5



passivity for MWCDRDMNNs with fixed and switching topologies. The

primary contribution of the presented work lies on the following aspects.

(1) First, we propose two models that one is MWCDRDMNNs with fixed

topology and the other is MWCDRDMNNs with switching topology

based on event-triggered control. Compared with the CMNNs in [29–31],

the presented network model in this paper is more complicated and gen-

eral, which includes multi-weighted and reaction-diffusion terms (named

as MWCDRDMNNs), and can reflect many real-world networks in a

more accurate sense.

(2) Several event-triggered passivity criteria for MWCDRDMNNs with fixed

topology are proposed. As we know, most of the existing works studied

the traditional passivity of CNs [9–11, 19–24]. However, the obtained

passivity results in our present work are based on the strategy of dis-

tributed triggering event, which can exploit the advantage of the dis-

continuous control scheme and reduce some unnecessary communication

among neural networks when information exchanging.

(3) Some conditions are obtained for ensuring event-triggered passivity-based

synchronization of the considered MWCDRDMNNs. Different from the

traditional synchronization and event-triggered synchronization strate-

gies in the previous works [3–7, 14–18, 46–49], we establish some passivity-

based synchronization criteria under event-triggered condition by estab-

lishing the relationship between the obtained event-triggered output-

strict passivity condition and asymptotical stability of the considered

networks in this paper. Actually, these synchronization conditions are

acquired based on the deducted passivity criteria, which are not derived
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from the networks themselves.

(4) The event-triggered passivity are discussed for switched MWCDRDMNNs.

In contrast to the event-triggered synchronization results of CNs in [42–

49], we investigate the event-triggered passivity of MWCDRDMNNs with

switching topology in this paper. Moreover, compared with the event-

triggered conditions in [42–49], a distributed event-triggered conditions

with switches is firstly designed in this paper. Therefore, the obtained

event-triggered passivity results has more generalization and less conser-

vatism in our present work.

The following shows the organization of this remaining paper. In Section

2, some mathematical notations, several related definitions of passivity and

necessary lemmas are introduced. In Section 3, we firstly propose the net-

work model of MWCDRDMNNs with fixed topology. Then, event-triggered

passivity and passivity-based synchronization are studied for this kind of

network. Section 4 is devoted to investigating event-triggered passivity and

passivity-based synchronization for MWCDRDMNNs with switching topol-

ogy. Two simulation examples are given in Section 5 to illustrate the validity

of these obtained event-triggered passivity and synchronization results. Fi-

nally, we conclude our paper in Section 6 with summary of our work and

some future works.

2. Preliminaries

2.1. Notations

Let W = (ν,Σ,M) be a weighted connected digraph, in which ν =

{1, 2, · · · , N} denotes a set of nodes and Σ ⊆ ν × ν means a set of edges.
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(q, p) ∈ Σ is a directed edge from q to p. Nq = {p ∈ ν|(q, p) ∈ Σ} represents

a set of neighbors of node q and p 6= q. M = (Mqp)N×N with Mqq = 0,Mqp >

0 ⇐⇒ p ∈ Nq is the connection adjacency matrix of the graph W. For

the matrix K ∈ R
n×n, the representation K 6 0 (K > 0, K < 0, K > 0)

means K is symmetric and semi-negative (semi-positive, negative, positive)

definite. ⊗ stands for the Kronecker product. λM(·)(λm(·)) is the largest

(smallest) eigenvalue of the matrix. Φ = {s = (s1, s2, · · · , sρ)T ||sκ| < µκ, κ =

1, 2, · · · , ρ} signifies a bounded compact set with smooth boundary ∂Φ. For

the vector ε(s, t) = (ε1(s, t), ε2(s, t), · · · , εψ(s, t))T ∈ R
ψ, we have

||ε(·, t)|| =
(

∫

Φ

ψ
∑

j=1

ε2j(s, t)ds
)

1

2

.

2.2. Definition and lemmas

Definition 2.1. (See [50]) If there is a nonnegative storage function Q :

[0,+∞) −→ [0,+∞) satisfying

∫ tp

tr

Θ(y(s, t), u(s, t))dt > Q(tm)−Q(tr)

for any tr, tp ∈ [0,+∞) and tr 6 tp, where Θ(y, u) is supply rate, then

the system with output y(s, t) ∈ R
nN and input u(s, t) ∈ R

lN is said to be

dissipative. Especially, if a system is dissipative and

Θ(y(s, t), u(s, t)) =

∫

Φ

yT (s, t)Pu(s, t)ds,

then the system is called to be passive, where P ∈ R
nN×lN is a constant

matrix. In addition, if a system is dissipative and

Θ(y(s, t), u(s, t)) =

∫

Φ

yT (s, t)Pu(s, t)ds−
∫

Φ

uT (s, t)J1u(s, t)ds
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−
∫

Φ

yT (s, t)J2y(s, t)ds,

where J1 ∈ R
lN×lN > 0, J2 ∈ R

nN×nN > 0, λm(J1) + λm(J2) > 0 and P ∈
R
nN×lN , then the system is called to be strictly passive. Moreover, the system

is said to be input-strictly passive if J1 > 0 and output-strictly passive if

J2 > 0.

Lemma 2.1. (See [51]) Let Φ be a cube |sκ| < µκ(κ = 1, 2, · · · , ρ) and

real-valued function z(s) ∈ C1(Φ) satisfy z(s)|∂Φ = 0. Then
∫

Φ

z2(s)ds 6 µ2
κ

∫

Φ

(∂z(s)

∂sκ

)2

ds,

where s = (s1, s2, · · · , sρ)T .

Lemma 2.2. (See [52]) For ∀℘1, ℘2 ∈ R
n and G ∈ R

n×n > 0, we have

2℘T1 ℘2 6 ℘T1G℘1 + ℘T2G
−1℘2.

3. Event-triggered passivity of MWCDRDMNNs with fixed topol-

ogy

In this section, we discuss the event-triggered passivity problem for MWC-

DRDMNNs with fixed topology based on the designed event-triggered condi-

tion and Lyapunov functional method. First, the considered network model

of MWCDRDMNNs with fixed topology is proposed in Subsection 3.1. Then,

by designing a suitable even-triggered controller, several even-triggered pas-

sivity criteria are established in Subsection 3.2. After that, we study asymp-

totical stability of event-triggered passivity for the considered network, and

obtain an event-triggered synchronization criterion based on the stability

result in Subsection 3.3.
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3.1. Network model

Consider the following MWCDRDMNNs model in this section:










































∂δq(s,t)
∂t

=
∑ρ

κ=1 Lκ
∂2δq(s,t)
∂s2κ

− Zδq(s, t) + E(δq(s, t))f(δq(s, t))

+B(δq(s, t))g(δq(s, t)) +O +Kuq(s, t) + ηq(s, t)

+
∑η

r=1

∑N
p=1 ξrC

r
qpΓ

rδp(s, t) + vq(s, t),

δq(s, t) = ̺q(s, t), (s, t) ∈ Φ× [−γ, 0],
δq(s, t) = 0, (s, t) ∈ ∂Φ× [−γ,+∞),

(1)

where q = 1, 2, · · · , N, δq(s, t) = (δq1(s, t), δq2(s, t), · · · , δqψ(s, t))T ∈ R
ψ de-

notes the state vector of qth neuron; Lκ = diag(ℓ1κ, ℓ2κ, · · · , ℓψκ) > 0;Z =

diag(z1, z2, · · · , zψ) > 0; γj(t)(j = 1, 2, · · · , ψ) means the time varying delays,

and γj(t) satisfies 0 6 γj(t) 6 γj, γ = maxj=1,2,··· ,ψ{γj} and γ̇j(t) 6 ζj < 1;

f(δq(s, t)) = (f1(δq1(s, t)), f2(δq2(s, t)), · · · , fψ(δqψ(s, t)))T , g(δq(s, t)) = (g1(δq1

(s, t − γ1(t))), g2(δq2(s, t − γ2(t))), · · · , gψ(δqψ(s, t − γψ(t))))
T stand for the

activation functions in neural network q; O = (O1, O2, · · · , Oψ)
T ∈ R

ψ

represents the constant external input; K ∈ R
ψ×l signifies a known ma-

trix; uq(s, t) ∈ R
l is the input vector of the neural network q; ξr > 0 de-

notes the overall coupling strength; Γr ∈ R
ψ×ψ > 0 stands for the inner

coupling matrix; Cr = (Cr
qp)N×N means the coupling configuration matrix,

which satisfies Cr
qp = Cr

pq > 0(q 6= p) if node q and node p are connected,

or else Cr
qp = 0, and Cr

qq = −∑N
p=1

p 6=q
Cr
qp; ̺q(s, t) is bounded and contin-

uous on Φ × [−γ, 0]; ηq(s, t) ∈ R
ψ, vq(s, t) ∈ R

ψ signify the controllers;

E(δq(s, t)) = (egh(δqg(s, t)))ψ×ψ, B(δq(s, t)) = (bgh(δqg(s, t)))ψ×ψ stand for

memristors synaptic connection weights, where egh(δqg(s, t)) and bgh(δqg(s, t))

are defined by

egh(δqg(s, t)) =
Egh
Ig

× signgh,
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bgh(δqg(s, t)) =
Bgh
Ig

× signgh,

signgh =







1, g 6= h,

−1, g = h,

where g, h = 1, 2, · · · , ψ, Egh,Bgh represent the memductances of memristors

Egh,Bgh, andEgh means the memristor between fh(δqh(s, t)) and δqg(s, t),Bgh

means the memristor between gh(δqh(s, t−γh(t))) and δqg(s, t). Based on the

voltage-current characteristic of memristor, the following memristive connec-

tion weights are described by:

egh(δqg(s, t)) =







êgh, |δqg(s, t)| 6 mqg,

ěgh, |δqg(s, t)| > mqg,

bgh(δqg(s, t)) =







b̂gh, |δqg(s, t)| 6 mqg,

b̌gh, |δqg(s, t)| > mqg,

where the switching jumps mqg > 0, êgh, ěgh, b̂gh, b̌gh are constants and g, h =

1, 2, · · · , ψ.
Throughout this paper, we define

ēgh = max{|ěgh|, |êgh|}, Ē = diag(

ψ
∑

h=1

ē21h,

ψ
∑

h=1

ē22h, · · · ,
ψ
∑

h=1

ē2ψh),

b̄gh = max{|b̌gh|, |b̂gh|}, B̄ = diag(

ψ
∑

h=1

b̄21h,

ψ
∑

h=1

b̄22h, · · · ,
ψ
∑

h=1

b̄2ψh),

ẽgh = |êgh − ěgh|, Ẽ = (ẽgh)ψ×ψ, b̃gh = |b̂gh − b̌gh|, B̃ = (b̃gh)ψ×ψ.

Assume that there exist some positive numbers ϕj, ωj, ϕ̆j, ω̆j such that

|fj(χ1)− fj(χ2)| 6 ϕj |χ1 − χ2|, |fj(χ)| 6 ϕ̆j,
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|gj(χ1)− gj(χ2)| 6 ωj|χ1 − χ2|, |gj(χ)| 6 ω̆j ,

holds for all χ, χ1, χ2,∈ R, j = 1, 2, · · · , ψ.
Suppose that δ∗(s) = (δ∗1(s), δ

∗
2(s), · · · , δ∗ψ(s))T is an equilibrium solution

of the network (1). Then

ρ
∑

κ=1

Lκ
∂2δ∗(s)

∂s2κ
− Zδ∗(s) + E(δ∗(s))f(δ∗(s)) +B(δ∗(s))g(δ∗(s)) +O = 0.

For network (1), we design the following state feedback controller ηq(s, t) and

event-triggered controller vq(s, t):







ηq(s, t) = −sign(δq(s, t)− δ∗(s))(Ẽϕ̆+ B̃ω̆),

vq(s, t) =
∑η

r=1

∑

p∈Nq
βrM

r
qp(δq(s, t)− δp(s, t)),

where βr > 0, ϕ̆ = (ϕ̆1, ϕ̆2, · · · , ϕ̆ψ)T , ω̆ = (ω̆1, ω̆2, · · · , ω̆ψ)T and sign(δq(s, t)−
δ∗(s)) = diag(sign(δq1(s, t)−δ∗1(s)), sign(δq2(s, t)−δ∗2(s)), · · · , sign(δqψ(s, t)−
δ∗ψ(s))).

Let {tqm}∞m=1 signifies the sequence of increasing event-triggered time,

where tqm < t
q
m+1 for all q = 1, 2, · · · , N. According to the event-triggered

strategy and sample data, vq(s, t) can be rewritten as follows:

vq(s, t) =

η
∑

r=1

∑

p∈Nq

βrM
r
qp(δq(s, t

q
m)− δp(s, t

p
m)), (2)

where M r = (M r
qp)N×N stands for the coupling configuration matrix, which

satisfies M r
qq = 0,M r

qp > 0 when p ∈ Nq, t
q
m means the event-triggered time

instant of node q, δq(s, t
q
m) is the state of node q at tqm. Obviously, tqm ∈ T .

As in [48, 49], the Zeno behavior can be naturally excluded as tqm+1− tqm > 0.

From (2), the sampler samples the node state at a random sample instant.
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Define the event-triggered measure error φq(s, t) = δq(s, t
q
m)−δq(s, t). For

t ∈ [tqm, t
q
m+1), we design the distributed triggering event as follows:

t
q
m+1 = inf

{

t : t > tqm, θq(s, t) > 0
}

and

θq(s, t) = ||φq(s, t)|| − ϑ
∣

∣

∣

∣

∣

∣

η
∑

r=1

∑

p∈Nq

M r
qp(δq(s, t

q
m)− δp(s, t

p
m))

∣

∣

∣

∣

∣

∣
, (3)

where ϑ > 0.

For the error vector εq(s, t) = (εq1(s, t), εq2(s, t), · · · , εqψ(s, t))T = δq(s, t)−
δ∗(s), we have

∂εq(s, t)

∂t
=

ρ
∑

κ=1

Lκ
∂2εq(s, t)

∂s2κ
+ E(δq(s, t))F(εq(s, t)) +B(δq(s, t))G(εq(s, t))

+ [E(δq(s, t))−E(δ∗(s))]f(δ∗(s))− Zεq(s, t) + [B(δq(s, t))

− B(δ∗(s))]g(δ∗(s)) +

η
∑

r=1

N
∑

p=1

ξrC
r
qpΓ

rεp(s, t) +Kuq(s, t)

+

η
∑

r=1

∑

p∈Nq

βrM
r
qp(εq(s, t

q
m)− εp(s, t

p
m))

− sign(εq(s, t))(Ẽϕ̆+ B̃ω̆), (4)

where t ∈ [tqm, t
q
m+1),F(εq(s, t)) = f(δq(s, t))−f(δ∗(s)),G(εq(s, t)) = g(δq(s, t))

− g(δ∗(s)), εq(s, t) = (εq1(s, t− γ1(t)), εq2(s, t− γ2(t)), · · · , εqψ(s, t− γψ(t)))
T

and q = 1, 2, · · · , N .

As φq(s, t) = δq(s, t
q
m)− δq(s, t), we can derive from (4) that

∂εq(s, t)

∂t
=

ρ
∑

κ=1

Lκ
∂2εq(s, t)

∂s2κ
+ E(δq(s, t))F(εq(s, t)) +B(δq(s, t))G(εq(s, t))

+ [E(δq(s, t))−E(δ∗(s))]f(δ∗(s))− Zεq(s, t) + [B(δq(s, t))

− B(δ∗(s))]g(δ∗(s)) +

η
∑

r=1

N
∑

p=1

ξrC
r
qpΓ

rεp(s, t) +Kuq(s, t)
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+

η
∑

r=1

∑

p∈Nq

βrM
r
qp(εq(s, t)− εp(s, t) + φq(s, t)− φp(s, t))

− sign(εq(s, t))(Ẽϕ̆+ B̃ω̆). (5)

According to event-triggered condition (3), we can obtain

||φq(s, t)|| 6ϑ
∣

∣

∣

∣

∣

∣

η
∑

r=1

∑

p∈Nq

M r
qp(δq(s, t

q
m)− δp(s, t

p
m))

∣

∣

∣

∣

∣

∣

=ϑ
∣

∣

∣

∣

∣

∣

η
∑

r=1

∑

p∈Nq

M r
qp(φq(s, t) + εq(s, t)− φp(s, t)− εp(s, t))

∣

∣

∣

∣

∣

∣

6ϑ
[∣

∣

∣

∣

∣

∣

η
∑

r=1

∑

p∈Nq

M r
qp(εq(s, t)− εp(s, t))

∣

∣

∣

∣

∣

∣

+
∣

∣

∣

∣

∣

∣

η
∑

r=1

∑

p∈Nq

M r
qp(φq(s, t)− φp(s, t)

∣

∣

∣

∣

∣

∣

]

6ϑ
[

η
∑

r=1

∑

p∈Nq

M r
qp||εq(s, t)||+

η
∑

r=1

∑

p∈Nq

M r
qp||εp(s, t)||

+

η
∑

r=1

∑

p∈Nq

M r
qp||φq(s, t)||+

η
∑

r=1

∑

p∈Nq

M r
qp||φp(s, t)||

]

62ϑ

η
∑

r=1

mr(||ε(s, t)||+ ||φ(s, t)||), (6)

wheremr = max{∑p∈Nq
M r

qp}, r = 1, 2, · · · , η, ε(s, t) = (εT1 (s, t), ε
T
2 (s, t), · · · ,

εTN(s, t))
T and φ(s, t) = (φT1 (s, t), φ

T
2 (s, t), · · · , φTN(s, t))T . Then,

||φ(s, t)|| 6 2ϑN

η
∑

r=1

mr(||ε(s, t)||+ ||φ(s, t)||).

Finally,

||φ(s, t)|| 6 2ϑN
∑η

r=1mr

1− 2ϑN
∑η

r=1mr

||ε(s, t)||, (7)

14



where 0 < ϑ < 1
2N

∑η
r=1

mr
.

The output vector yq(s, t) ∈ R
n for the network (5) is given as follows:

yq(s, t) = Q1εq(s, t) +Q2uq(s, t), (8)

where Q1 ∈ R
n×ψ and Q2 ∈ R

n×l.

Throughout this paper, we define

Ξ = diag(ϕ2
1, ϕ

2
2, · · · , ϕ2

ψ), W = diag(ω2
1, ω

2
2, · · · , ω2

ψ),

u(s, t) = (uT1 (s, t), u
T
2 (s, t), · · · , uTN(s, t))T ,

y(s, t) = (yT1 (s, t), y
T
2 (s, t), · · · , yTN(s, t))T ,

H = diag(
1

1− ζ1
,

1

1− ζ2
, · · · , 1

1− ζψ
).

Remark 1. As is well known, Chua first proposed the concept of memris-

tor in 1970s. Actually, the memristor in neural networks can be exploited

instead of resistor to better comprehend the neural processes of the human

brain. Until now, many worthwhile and meaningful results on the research

for memristive neural networks (MNNs) have been acquired [25–28]. Never-

theless, only a few authors have investigated the synchronization of coupled

memristive neural networks (CMNNs) [29–31]. It should be pointed out that

there is no research results reported on the dynamical behaviors of coupled

delayed reaction-diffusion memristive neural networks (CDRDMNNs). To

the best of our knowledge , this paper is the first step toward to dealing with

passivity and passivity-based synchronization problems of MWCDRDMNNs.
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3.2. Event-triggered passivity

Theorem 3.1. If there exist matrices F = diag(f1, f2, · · · , fψ) > 0, P ∈
R
nN×lN and a constant 0 < ϑ < 1

2N
∑η

r=1
mr

such that





D1 Π1

ΠT
1 H1



 6 0, (9)

where D1 = IN⊗[−∑ρ

κ=1
2
µ2κ
FLκ−2FZ+WH+Ξ+F 2(Ē+B̄)+2

∑η

r=1 βrF
2+

4N
∑η

r=1 βrm
2
r((

2ϑN
∑η

r=1
mr

1−2ϑN
∑η

r=1
mr

)2 + 1)Iψ] +
∑η

r=1 ξrC
r ⊗ (FΓr + ΓrF ),Π1 =

IN ⊗ (FK) − (IN ⊗ QT
1 )P,H1 = −(IN ⊗ QT

2 )P − P T (IN ⊗ Q2) and mr =

max{∑p∈Nq
M r

qp}, r = 1, 2, · · · , η, then the system (5) realizes passivity under

the event-triggered condition (3).

Proof. Construct the following Lyapunov functional for system (5):

V (t) =
N
∑

q=1

ψ
∑

j=1

ω2
j

1− ζj

∫ t

t−γj(t)

∫

Φ

ε2qj(s, h)dsdh

+
N
∑

q=1

∫

Φ

εTq (s, t)Fεq(s, t)ds. (10)

Taking the upper right Dini derivative of V (t) with respect to t ∈ [tqm, t
q
m+1),

we have

D+V (t) =2
N
∑

q=1

∫

Φ

εTq (s, t)Fq
∂εq(s, t)

∂t
ds+

N
∑

q=1

ψ
∑

j=1

ω2
j

1− ζj

∫

Φ

ε2qj(s, t)ds

−
N
∑

q=1

ψ
∑

j=1

ω2
j (1− γ̇j(t))

1− ζj

∫

Φ

ε2qj(s, t− γj(t))ds

6

N
∑

q=1

∫

Φ

εTq (s, t)WHεq(s, t)ds+ 2

N
∑

q=1

∫

Φ

εTq (s, t)F
(

ρ
∑

κ=1

Lκ
∂2εq(s, t)

∂s2κ

+ E(δq(s, t))F(εq(s, t)) +B(δq(s, t))G(εq(s, t)) + [E(δq(s, t))
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−E(δ∗(s))]f(δ∗(s)) + [B(δq(s, t))−B(δ∗(s))]g(δ∗(s))

+

η
∑

r=1

N
∑

p=1

ξrC
r
qpΓ

rεp(s, t) +

η
∑

r=1

∑

p∈Nq

βrM
r
qp(εq(s, t)

− εp(s, t) + φq(s, t)− φp(s, t)) +Kuq(s, t)

− sign(εq(s, t))(Ẽϕ̆+ B̃ω̆)− Zεq(s, t)
)

ds

−
N
∑

q=1

∫

Φ

εq(s, t)
T
Wεq(s, t)ds.

From Green’s formula and the Dirichlet boundary condition, one has

ρ
∑

κ=1

∫

Φ

εqǫ(s, t)
∂2εqǫ(s, t)

∂s2κ
ds = −

ρ
∑

κ=1

∫

Φ

(∂εqǫ(s, t)

∂sκ

)2

ds,

where ǫ = 1, 2, · · · , ψ, q = 1, 2, · · · , N . Then,

N
∑

q=1

∫

Φ

εTq (s, t)F

ρ
∑

κ=1

Lκ
∂2εq(s, t)

∂s2κ
ds

=

ρ
∑

κ=1

N
∑

q=1

ψ
∑

ǫ=1

fǫℓǫκ

∫

Φ

εqǫ(s, t)
∂2εqǫ(s, t)

∂s2κ
ds

=−
ρ

∑

κ=1

N
∑

q=1

ψ
∑

ǫ=1

fǫℓǫκ

∫

Φ

(∂εqǫ(s, t)

∂sκ

)2

ds

=−
ρ

∑

κ=1

N
∑

q=1

∫

Φ

(∂εq(s, t)

∂sκ

)T

FLκ
∂εq(s, t)

∂sκ
ds.

Then, we obtain

2
N
∑

q=1

∫

Φ

εTq (s, t)FLκ

ρ
∑

κ=1

∂2εq(s, t)

∂s2κ
ds

=−
ρ

∑

κ=1

∫

Φ

(∂ε(s, t)

∂sκ

)T

(IN ⊗ 2FLκ)
∂ε(s, t)

∂sκ
ds.

17



Obviously, there is a real matrix Ω ∈ R
ψN×ψN satisfying

IN ⊗ 2FLκ = ΩTΩ.

Thus,

(∂ε(s, t)

∂sκ

)T

(IN ⊗ 2FLκ)
∂ε(s, t)

∂sκ
=

(∂(Ωε(s, t))

∂sκ

)T ∂(Ωε(s, t))

∂sκ
.

Let π(s, t) = Ωε(s, t), for (s, t) ∈ ∂Φ × [−γ,+∞). From the boundary

condition of model (1), we get π(s, t) = Ωε(s, t) = 0. By Lemma 2.1, one has

ρ
∑

κ=1

∫

Φ

(∂π(s, t)

∂sκ

)T ∂π(s, t)

∂sκ
ds

>

ρ
∑

κ=1

1

µ2
κ

∫

Φ

πT (s, t)π(s, t)ds

=

ρ
∑

κ=1

2

µ2
κ

∫

Φ

εT (s, t)(IN ⊗ FLκ)ε(s, t)ds.

Therefore,

2

N
∑

q=1

∫

Φ

εTq (s, t)FLκ

ρ
∑

κ=1

∂2εq(s, t)

∂s2κ
ds

6−
ρ

∑

κ=1

2

µ2
κ

∫

Φ

εT (s, t)(IN ⊗ FLκ)ε(s, t)ds. (11)

In addition, according to Lemma 2.2, we can derive that

2

N
∑

q=1

∫

Φ

εTq (s, t)FEF(εq(s, t))ds

=2
N
∑

q=1

ψ
∑

g=1

ψ
∑

h=1

fg

∫

Φ

εqg(s, t)egh(δqg(s, t))(fh(δqh(s, t))− fh(δ
∗
h(s)))ds

62
N
∑

q=1

ψ
∑

g=1

ψ
∑

h=1

fgēgh

∫

Φ

|εqg(s, t)||fh(δqh(s, t))− fh(δ
∗
h(s))|ds

18



6

N
∑

q=1

ψ
∑

g=1

ψ
∑

h=1

∫

Φ

f2gē
2
ghε

2
qg(s, t)ds+

N
∑

q=1

ψ
∑

h=1

∫

Φ

ϕ2
hε

2
qh(s, t)ds

6

N
∑

q=1

∫

Φ

εTq (s, t)F
2Ēεq(s, t)ds+

N
∑

q=1

∫

Φ

εTq (s, t)Ξεq(s, t)ds

=

∫

Φ

εT (s, t)[IN ⊗ (F 2Ē + Ξ)]ε(s, t)ds. (12)

Similarly, we have

2
N
∑

q=1

∫

Φ

εTq (s, t)FB(δq(s, t))G(εq(s, t))ds

=2
N
∑

q=1

ψ
∑

g=1

ψ
∑

h=1

fg

∫

Φ

εqg(s, t)bgh(δqg(s, t))(gh(δqh(s, t− γh(t)))− gh(δ
∗
h(s)))ds

62

N
∑

q=1

ψ
∑

g=1

ψ
∑

h=1

fgb̄gh

∫

Φ

|εqg(s, t)||gh(δqh(s, t− γh(t)))− gh(δ
∗
h(s))|ds

6

N
∑

q=1

ψ
∑

g=1

ψ
∑

h=1

∫

Φ

f2g b̄
2
ghε

2
qg(s, t)ds+

N
∑

q=1

ψ
∑

h=1

∫

Φ

ω2
hε

2
qh(s, t− γh(t))ds

6

N
∑

q=1

∫

Φ

εTq (s, t)F
2B̄εq(s, t)ds+

N
∑

q=1

∫

Φ

εq(s, t)
T
Wεq(s, t)ds

=
N
∑

q=1

∫

Φ

εq(s, t)
T
Wεq(s, t)ds+

∫

Φ

εT (s, t)[IN ⊗ (F 2B̄)]ε(s, t)ds. (13)

Furthermore,

2

N
∑

q=1

∫

Φ

εTq (s, t)F [E(δq(s, t))−E(δ∗(s))]f(δ∗(s))ds

=2
N
∑

q=1

ψ
∑

g=1

ψ
∑

h=1

fg

∫

Φ

εqg(s, t)(egh(δqg(s, t))− egh(δ
∗
g(s)))fh(δ

∗
h(s))ds

62
N
∑

q=1

ψ
∑

g=1

ψ
∑

h=1

fg|êgh − ěgh|ϕ̆h
∫

Φ

|εqg(s, t)|ds
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62
N
∑

q=1

∫

Φ

|εq(s, t)|FẼϕ̆ds. (14)

Similarly, one has

2
N
∑

q=1

∫

Φ

εTq (s, t)F [B(δq(s, t))− B(δ∗(s))]g(δ∗(s))ds

=2

N
∑

q=1

ψ
∑

g=1

ψ
∑

h=1

fg

∫

Φ

εqg(s, t)(bgh(δqg(s, t))− bgh(δ
∗
g(s)))gh(δ

∗
h(s))ds

62

N
∑

q=1

ψ
∑

g=1

ψ
∑

h=1

fg|b̂gh − b̌gh|ω̆h
∫

Φ

|εqg(s, t)|ds

62
N
∑

q=1

∫

Φ

|εq(s, t)|FB̃ω̆ds. (15)

Furthermore,

2

N
∑

q=1

∫

Φ

εTq (s, t)F

η
∑

r=1

N
∑

p=1

ξrC
r
qpΓ

rεp(s, t)ds

=2

∫

Φ

εT (s, t)F

η
∑

r=1

ξr(C
r ⊗ Γr)ε(s, t)ds

6

∫

Φ

εT (s, t)

η
∑

r=1

ξrC
r ⊗ (FΓr + ΓrF )ε(s, t)ds. (16)

In addition, we have

2
N
∑

q=1

∫

Φ

εTq (s, t)F

η
∑

r=1

∑

p∈Nq

βrM
r
qp(εq(s, t)− εp(s, t))ds

6

N
∑

q=1

η
∑

r=1

βr

∫

Φ

εTq (s, t)F
2εq(s, t)ds+

N
∑

q=1

η
∑

r=1

βr

∣

∣

∣

∣

∣

∣

∑

p∈Nq

M r
qp(εq(s, t)

− εp(s, t))
∣

∣

∣

∣

∣

∣

2

6

N
∑

q=1

η
∑

r=1

βr

∫

Φ

εTq (s, t)F
2εq(s, t)ds+

N
∑

q=1

η
∑

r=1

βr

[

∑

p∈Nq

M r
qp||εq(s, t)||
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+
∑

p∈Nq

M r
qp||εp(s, t))||

]2

6

η
∑

r=1

βr

∫

Φ

εT (s, t)IN ⊗ F 2ε(s, t)ds+ 4

η
∑

r=1

βrm
2
rN ||ε(s, t)||2

=

η
∑

r=1

βr

∫

Φ

εT (s, t)IN ⊗ (F 2 + 4Nm2
rIψ)ε(s, t)ds. (17)

From (7), one has

2
N
∑

q=1

∫

Φ

εTq (s, t)F

η
∑

r=1

∑

p∈Nq

βrM
r
qp(φq(s, t)− φp(s, t))ds

6

η
∑

r=1

βr

∫

Φ

εT (s, t)IN ⊗ F 2ε(s, t)ds+

η
∑

r=1

βr

∫

Φ

4m2
rNφ

T (s, t)φ(s, t)ds

6

η
∑

r=1

βr

∫

Φ

εT (s, t)IN⊗
(

F 2+4Nm2
r

( 2ϑN
∑η

r=1mr

1− 2ϑN
∑η

r=1mr

)2

Iψ

)

ε(s, t)ds. (18)

From (11)-(18), we can derive that

D+V (t) 6

∫

Φ

εT (s, t)
{

IN ⊗
[

−
ρ

∑

κ=1

2

µ2
κ

FLκ − 2FZ + F 2(Ē + B̄) + 2

η
∑

r=1

βrF
2

+ Ξ +WH + 4N

η
∑

r=1

βrm
2
r

(

1 +
( 2ϑN

∑η
r=1mr

1− 2ϑN
∑η

r=1mr

)2)

Iψ

]

+

η
∑

r=1

ξrC
r ⊗ (FΓr + ΓrF )

}

ε(s, t)ds

+ 2

∫

Φ

εT (s, t)(IN ⊗ FK)u(s, t)ds. (19)

From (19), one gets

D+V (t)− 2

∫

Φ

yT (s, t)Pu(s, t)ds

6

∫

Φ

uT (s, t)(−(IN ⊗QT
2 )P − P T (IN ⊗Q2))u(s, t)ds+

∫

Φ

εT (s, t)
{

IN ⊗ [WH
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+ Ξ + F 2(Ē + B̄)−
ρ

∑

κ=1

2

µ2
κ

FLκ + 4N

η
∑

r=1

βrm
2
r

(( 2ϑN
∑η

r=1mr

1− 2ϑN
∑η

r=1mr

)2

+ 1
)

Iψ − 2FZ + 2

η
∑

r=1

βrF
2] +

η
∑

r=1

ξrC
r ⊗ (FΓr + ΓrF )

}

ε(s, t)ds

+ 2

∫

Φ

εT (s, t)(IN ⊗ (FK)− (IN ⊗QT
1 )P )u(s, t)ds

=

∫

Φ

̟T (s, t)





D1 Π1

ΠT
1 H1



̟(s, t)ds,

where ̟(s, t) = (εT (s, t), uT (s, t))T . From (9), we have

2

∫

Φ

yT (s, t)Pu(s, t)ds > D+V (t).

2

∫ tp

tr

∫

Φ

yT (s, t)Pu(s, t)dsdt >

∫ tp

tr

D+V (t)dt

=

∫ tk+1

tr

D+V (t)dt+

∫ tk+2

tk+1

D+V (t)dt

+ · · ·+
∫ tn

tn−1

D+V (t)dt+

∫ tp

tn

D+V (t)dt

=V (tk+1)− V (tr) + V (tk+2)− V (tk+1)

+ · · ·+ V (tn)− V (tn−1) + V (tp)− V (tn)

=V (tp)− V (tr)

for any tr, tp ∈ [0,+∞) and tp > tr, tk+1, tk+2, · · · , tn−1, tn are event-triggered

times between tr and tp if any, i.e., tk < tr 6 tk+1, tn < tp 6 tn+1. In other

words,
∫ tp

tr

∫

Φ

yT (s, t)Pu(s, t)dsdt > Q(tp)−Q(tr),

where Q(t) = V (t)
2
.

Similarly, we can derive the following results.
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Theorem 3.2. If there exist matrices F = diag(f1, f2, · · · , fψ) > 0, P ∈
R
nN×lN , 0 < J1 ∈ R

lN×lN and a constant 0 < ϑ < 1
2N

∑η
r=1

mr
such that





D1 Π1

ΠT
1 H2



 6 0, (20)

where D1 = IN⊗[−∑ρ

κ=1
2
µ2κ
FLκ−2FZ+WH+Ξ+F 2(Ē+B̄)+2

∑η

r=1 βrF
2+

4N
∑η

r=1 βrm
2
r((

2ϑN
∑η

r=1
mr

1−2ϑN
∑η

r=1
mr

)2 + 1)Iψ] +
∑η

r=1 ξrC
r ⊗ (FΓr + ΓrF ),Π1 =

IN ⊗ (FK)− (IN ⊗QT
1 )P,H2 = J1 − (IN ⊗QT

2 )P − P T (IN ⊗Q2) and mr =

max{∑p∈Nq
M r

qp}, r = 1, 2, · · · , η, then the system (5) realizes input-strict

passivity under the event-triggered condition (3).

Proof. According to (19), we have

D+V (t)− 2

∫

Φ

yT (s, t)Pu(s, t)ds+

∫

Φ

uT (s, t)J1u(s, t)ds

62

∫

Φ

εT (s, t)(IN ⊗ (FK)− (IN ⊗QT
1 )P )u(s, t)ds+

∫

Φ

εT (s, t)
{

IN ⊗ [WH

+ Ξ + F 2(Ē + B̄)−
ρ

∑

κ=1

2

µ2
κ

FLκ + 4N

η
∑

r=1

βrm
2
r

(( 2ϑN
∑η

r=1mr

1− 2ϑN
∑η

r=1mr

)2

+ 1
)

Iψ − 2FZ + 2

η
∑

r=1

βrF
2] +

η
∑

r=1

ξrC
r ⊗ (FΓr + ΓrF )

}

ε(s, t)ds

+

∫

Φ

uT (s, t)(J1 − (IN ⊗QT
2 )P − P T (IN ⊗Q2))u(s, t)ds

=

∫

Φ

̟T (s, t)





D1 Π1

ΠT
1 H2



̟(s, t)ds,

where H2 = J1 − (IN ⊗QT
2 )P − P T (IN ⊗Q2). From (20), we can obtain

2

∫

Φ

yT (s, t)Pu(s, t)ds−
∫

Φ

uT (s, t)J1u(s, t)ds > D+V (t).
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Then

2

∫ tp

tr

∫

Φ

yT (s, t)Pu(s, t)dsdt >

∫ tp

tr

D+V (t)dt+

∫ tp

tr

∫

Φ

uT (s, t)J1u(s, t)dsdt

=V (tp)− V (tr) +

∫ tp

tr

∫

Φ

uT (s, t)J1u(s, t)dsdt

for any tr, tp ∈ [0,+∞) and tp > tr. In other words,
∫ tp

tr

∫

Φ

(

yT (s, t)Pu(s, t)− uT (s, t)
J1

2
u(s, t)

)

dsdt > Q(tp)−Q(tr),

where Q(t) = V (t)
2
.

Theorem 3.3. If there exist matrices F = diag(f1, f2, · · · , fψ) > 0, P ∈
R
nN×lN , 0 < J2 ∈ R

nN×nN and a constant 0 < ϑ < 1
2N

∑η
r=1

mr
such that





D2 Π2

ΠT
2 H3



 6 0, (21)

where D2 = IN⊗[−∑ρ

κ=1
2
µ2κ
FLκ−2FZ+WH+Ξ+F 2(Ē+B̄)+2

∑η

r=1 βrF
2+

4N
∑η

r=1 βrm
2
r((

2ϑN
∑η

r=1
mr

1−2ϑN
∑η

r=1
mr

)2 +1)Iψ] +
∑η

r=1 ξrC
r ⊗ (FΓr +ΓrF ) + (IN ⊗

QT
1 )J2(IN⊗Q1),Π2 = IN⊗(FK)+(IN⊗QT

1 )J2(IN⊗Q2)−(IN⊗QT
1 )P,H3 =

(IN⊗QT
2 )J2(IN⊗Q2)−(IN⊗QT

2 )P−P T (IN⊗Q2) and mr = max{∑p∈Nq
M r

qp},
r = 1, 2, · · · , η, then the system (5) is output-strictly passive under the event-

triggered condition (3).

Proof. From (19), we can obtain

D+V (t)− 2

∫

Φ

yT (s, t)Pu(s, t)ds+

∫

Φ

yT (s, t)J2y(s, t)ds

62

∫

Φ

εT (s, t)(IN ⊗ (FK) + (IN ⊗QT
1 )J2(IN ⊗Q2)− (IN ⊗QT

1 )P )u(s, t)ds

+

∫

Φ

εT (s, t)
{

IN ⊗ [4N

η
∑

r=1

βrm
2
r

(( 2ϑN
∑η

r=1mr

1− 2ϑN
∑η

r=1mr

)2

+ 1
)

Iψ
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+ Ξ +WH + F 2(Ē + B̄)−
ρ

∑

κ=1

2

µ2
κ

FLκ + 2

η
∑

r=1

βrF
2 − 2FZ]

+ (IN ⊗QT
1 )J2(IN ⊗Q1) +

η
∑

r=1

ξrC
r ⊗ (FΓr + ΓrF )

}

ε(s, t)ds

+

∫

Φ

uT (s, t)((IN ⊗QT
2 )J2(IN ⊗Q2)− (IN ⊗QT

2 )P

− P T (IN ⊗Q2))u(s, t)ds

=

∫

Φ

̟T (s, t)





D2 Π2

ΠT
2 H3



̟(s, t)ds,

where H3 = (IN ⊗QT
2 )J2(IN ⊗Q2)− (IN ⊗QT

2 )P −P T (IN ⊗Q2). From (21),

one has

2

∫

Φ

yT (s, t)Pu(s, t)ds−
∫

Φ

yT (s, t)J2y(s, t)ds > D+V (t).

Then

2

∫ tp

tr

∫

Φ

yT (s, t)Pu(s, t)dsdt >

∫ tp

tr

D+V (t)dt+

∫ tp

tr

∫

Φ

yT (s, t)J2y(s, t)dsdt

=V (tp)− V (tr) +

∫ tp

tr

∫

Φ

yT (s, t)J2y(s, t)dsdt

for any tr, tp ∈ [0,+∞) and tp > tr. In other words,

∫ tp

tr

∫

Φ

(

yT (s, t)Pu(s, t)− yT (s, t)
J2

2
y(s, t)

)

dsdt > Q(tp)−Q(tr),

where Q(t) = V (t)
2
.

Remark 2. As a matter of fact, a system’s internal stability can be ensured

by the passive property in system theory. Moreover, passivity has revealed

comprehensive applications in a large number of domains. Thus, it is very

necessary to conduct the research on the passivity of neural networks. In
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the past several years, many meaningful results about passivity of CNNs and

CRDNNs have been derived [9–11, 19–22]. However, the derived passivity

results on the aforementioned studies [9–11, 19–22] are based on the situation

that the output has the same dimension as input. In addition, the networks

discussed in these works coupled by single weight. Moreover, these networks

did not include the memristive term. To our knowledge, the event-triggered

passivity problem of MWCDRDMNNs with non-identical dimensional input

and output has not been yet discussed, which motivates our research work in

this paper. Due to the introduction of multi-weighted term and memristive

term in our network model, the problem for achieving the event-triggered

passivity of the considered network in our paper becomes more complicated,

which cannot be dealt with by using the existing event-triggered control

techniques for CNNs with single weights or without memristive term. For

overcoming this difficulty, a novel event-triggered condition (3) is designed

by utilizing the own characteristics of our network model, which is an im-

provement of some existing event-triggered conditions. Moreover, some new

inequality techniques need to be employed in (6) and the proof of our theo-

retical results because of the memristive term, multi-weighted coupling term,

and the new designed event-triggered condition.

3.3. Asymptotical stability of event-triggered passivity

Definition 3.1. The network (1) under the event-triggered condition (3) is

called to be synchronized if for all q = 1, 2, · · · , N ,

lim
t→+∞

||δq(·, t)− δ∗(s)|| = 0

under the condition uq(s, t) = 0.
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Theorem 3.4. Assume that Q : [0,+∞) −→ [0,+∞) is continuously differ-

entiable satisfying

σ1(||ε(s, t)||) 6 Q(t) 6 σ2(||ε(s, t)||), (22)

where σ1, σ2 : [0,+∞) −→ [0,+∞) are continuous and strict increased func-

tions, σ1(x) > 0, σ2(x) > 0 for x > 0 with σ1(0) = 0, σ2(0) = 0, then network

(1) realizes asymptotical stability if the system (5) is output-strictly passive

under the event-triggered condition (3) with respect to Q(t) and Q1 ∈ R
n×ψ

is a nonsingular matrix.

Proof. If the system (5) achieves event-triggered output-strict passivity,

then there exist matrices P ∈ R
nN×lN and 0 < J2 ∈ R

nN×nN such that

Q(t + θ)−Q(t) 6

∫ t+θ

t

∫

Φ

(

yT (s, t)Pu(s, t)− yT (s, t)J2y(s, t)
)

dsdt,

where θ > 0 and t ∈ [0,+∞). Then, it is easy to derive that

Q(t+ θ)−Q(t)

θ
6

1

θ

∫ t+θ

t

∫

Φ

(

yT (s, t)Pu(s, t)− yT (s, t)J2y(s, t)
)

dsdt.

(23)

From (23), we take θ → 0, one has
∫

Φ

yT (s, t)Pu(s, t)ds−
∫

Φ

yT (s, t)J2y(s, t)ds > D+Q(t).

Let u(s, t) = 0, we can derive

D+Q(t) 6 −
∫

Φ

εT (s, t)(IN ⊗QT
1 )J2(IN ⊗Q1)ε(s, t)ds

6 −λm((IN ⊗QT
1 )J2(IN ⊗Q1))||ε(s, t)||2. (24)

According to (22) and (24), then the system (5) is asymptotically stable.

From Theorems 3.3 and 3.4, the following conclusion can be easily derived.
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Corollary 3.1. If there exist matrices F = diag(f1, f2, · · · , fψ) > 0, P ∈
R
nN×lN , 0 < J2 ∈ R

nN×nN and a constant 0 < ϑ < 1
2N

∑η
r=1

mr
such that





D2 Π2

ΠT
2 H3



 6 0, (25)

where Q1 ∈ R
n×ψ is a nonsingular matrix, D2 = IN⊗[−∑ρ

κ=1
2
µ2κ
FLκ−2FZ+

WH + Ξ + F 2(Ē + B̄) + 2
∑η

r=1 βrF
2 + 4N

∑η
r=1 βrm

2
r((

2ϑN
∑η

r=1
mr

1−2ϑN
∑η

r=1
mr

)2 +

1)Iψ]+
∑η

r=1 ξrC
r⊗ (FΓr+ΓrF )+(IN ⊗QT

1 )J2(IN ⊗Q1),Π2 = IN ⊗ (FK)+

(IN ⊗ QT
1 )J2(IN ⊗Q2) − (IN ⊗ QT

1 )P,H3 = (IN ⊗ QT
2 )J2(IN ⊗ Q2) − (IN ⊗

QT
2 )P − P T (IN ⊗ Q2) and mr = max{∑p∈Nq

M r
qp}, r = 1, 2, · · · , η, then the

network (1) is synchronized under the event-triggered condition (3).

Remark 3. Strictly speaking, most of CNs in practical situations can not

achieve synchronization and passivity by means of themselves. Hence, some

effective control methods can be employed in this case in order to reach net-

work’s synchronization and passivity. Recently, event-triggered control, as a

popular discrete control method, has been well adopted to realizing synchro-

nization and passivity for CNs and CNNs [42–49] because it can cut down

some redundant transmission of communication media when data informa-

tion is exchanging. However, the event-triggered passivity and passivity-

based synchronization of MWCDRDMNNs has not been discussed before,

which prompts our research work in this paper. By mean of selecting an

appropriate Lyapunov functional and designing a suitable event-triggered

condition, several event-triggered passivity criteria are established in Theo-

rems 3.1-3.3, and an asymptotical stability criterion and a passivity-based

synchronization criterion under event-triggered condition are derived in The-

orem 3.4 and Corollary 3.1 respectively.
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4. Event-triggered passivity of MWCDRDMNNs with switching

topology

In many real-world networks, the connection topology may change very

quickly by switches. Therefore, we further address the event-triggered passiv-

ity of MWCDRDMNNs with switching topology in Section 4. First, we intro-

duce the network model of MWCDRDMNNs with switching topology in Sub-

section 4.1. Then, by designing appropriate even-triggered condition, some

sufficient conditions are derived for ensuring the considered network realize

even-triggered passivity in Subsection 4.2. Furthermore, the event-triggered

passivity-based synchronization criterion is acquired for MWCDRDMNNs

with switching topology in Subsection 4.3.

4.1. Network model

In this section, we take the switching topology into account, the following

MWCDRDMNNs is described by:











































∂δq(s,t)

∂t
=

∑ρ
κ=1 Lκ

∂2δq(s,t)

∂s2κ
− Zδq(s, t) + E(δq(s, t))f(δq(s, t))

+B(δq(s, t))g(δq(s, t)) +O +Kuq(s, t) + ηq(s, t)

+
∑η

r=1

∑N

p=1 ξrC
r,ℓ(t)
qp Γrδp(s, t) + vq(s, t),

δq(s, t) = ̺q(s, t), (s, t) ∈ Φ× [−γ, 0],
δq(s, t) = 0, (s, t) ∈ ∂Φ× [−γ,+∞),

(26)

where q = 1, 2, · · · , N, δq(s, t), E(δq(s, t)), f(δq(s, t)), B(δq(s, t)), g(δq(s, t)), Z,

Lκ, O,K, uq(s, t), ξr,Γ
r, ηq(s, t), ̺q(s, t) denote the same meanings as those

in model (1); vq(s, t) =
∑η

r=1

∑

p∈Nq
βrM

r,ℓ(t)
qp (δq(s, t

q
m) − δp(s, t

p
m)); ℓ(t) :

[0,+∞) → V = {1, 2, · · · , υ} stands for switching signal that is defined
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by a serial of switching sequence:

W = {(ς0, t0), (ς1, t1), . . . , (ςα, tα), . . . |ςα ∈ V, α ∈ N},

where the initial time is t0, and ςα represents the serial number of the ac-

tivated subsystem at tα; C
r,ℑ = (Cr,ℑ

qp )N×N for each ℑ ∈ V, Cr,ℑ satisfies

Cr,ℑ
qp = Cr,ℑ

pq > 0(q 6= p) if node q and node p for the ℑth topology are con-

nected, or else Cr,ℑ
qp = 0, and Cr,ℑ

qq = −∑N
p=1

p 6=q
Cr,ℑ
qp ; M r,ℑ = (M r,ℑ

qp )N×N , which

satisfies M r,ℑ
qq = 0,M r,ℑ

qp > 0.

Suppose that δ∗(s) = (δ∗1(s), δ
∗
2(s), · · · , δ∗ψ(s))T is an equilibrium solution

of the network (26). Then

ρ
∑

κ=1

Lκ
∂2δ∗(s)

∂s2κ
− Zδ∗(s) + E(δ∗(s))f(δ∗(s)) +B(δ∗(s))g(δ∗(s)) +O = 0.

Let φq(s, t) = δq(s, t
q
m)−δq(s, t). For t ∈ [tqm, t

q
m+1), we design the distributed

triggering event as follows:

t
q
m+1 = inf

{

t : t > tqm, θ̃q(s, t) > 0
}

and

θ̃q(s, t) = ||φq(s, t)|| − ϑℑ

∣

∣

∣

∣

∣

∣

η
∑

r=1

∑

p∈Nq

M r,ℑ
qp (δq(s, t

q
m)− δp(s, t

p
m))

∣

∣

∣

∣

∣

∣
, (27)

for all ℑ = 1, 2, · · · , υ, and ϑℑ > 0.

Let εq(s, t) = δq(s, t)− δ∗(s). From the distributed triggering event (27),

the error system of network (26) is stated by:

∂εq(s, t)

∂t
=

ρ
∑

κ=1

Lκ
∂2εq(s, t)

∂s2κ
+ E(δq(s, t))F(εq(s, t)) +B(δq(s, t))G(εq(s, t))

+ [E(δq(s, t))−E(δ∗(s))]f(δ∗(s))− Zεq(s, t) + [B(δq(s, t))

− B(δ∗(s))]g(δ∗(s)) +

η
∑

r=1

N
∑

p=1

ξrC
r,ℑ
qp Γrεp(s, t) +Kuq(s, t)
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+

η
∑

r=1

∑

p∈Nq

βrM
r,ℑ
qp (εq(s, t)− εp(s, t) + φq(s, t)− φp(s, t))

− sign(εq(s, t))(Ẽϕ̆+ B̃ω̆). (28)

where t ∈ [tqm, t
q
m+1), q = 1, 2, · · · , N,F(eq(m, t)) and G(eq(m, t)) have the

same meanings as those in system (5).

From event-triggered condition (27), one has

||φq(s, t)|| 6ϑℑ
∣

∣

∣

∣

∣

∣

η
∑

r=1

∑

p∈Nq

M r,ℑ
qp (δq(s, t

q
m)− δp(s, t

p
m))

∣

∣

∣

∣

∣

∣

6ϑℑ

[

η
∑

r=1

∑

p∈Nq

M r,ℑ
qp ||εq(s, t)||+

η
∑

r=1

∑

p∈Nq

M r,ℑ
qp ||εp(s, t)||

+

η
∑

r=1

∑

p∈Nq

M r,ℑ
qp ||φq(s, t)||+

η
∑

r=1

∑

p∈Nq

M r,ℑ
qp ||φp(s, t)||

]

62ϑℑ

η
∑

r=1

mr,ℑ(||ε(s, t)||+ ||φ(s, t)||),

where mr,ℑ = max{∑p∈Nq
M r,ℑ

qp }, r = 1, 2, · · · , η,ℑ = 1, 2, · · · , υ. Then,

||φ(s, t)|| 6 2ϑℑN

η
∑

r=1

mr,ℑ(||ε(s, t)||+ ||φ(s, t)||).

Finally,

||φ(s, t)|| 6 2ϑℑN
∑η

r=1mr,ℑ

1− 2ϑℑN
∑η

r=1mr,ℑ
||ε(s, t)||, (29)

where 0 < ϑℑ <
1

2N
∑η

r=1
mr,ℑ

.

Similarly, the output vector yq(s, t) for system (28) can be defined as (8).
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4.2. Event-triggered passivity

Theorem 4.1. If there exist matrices F = diag(f1, f2, · · · , fψ) > 0, P ∈
R
nN×lN and a constant 0 < ϑℑ <

1
2N

∑η
r=1

mr,ℑ
such that





Dℑ
3 Π1

ΠT
1 H1



 6 0, (30)

where Dℑ
3 = IN⊗[−∑ρ

κ=1
2
µ2κ
FLκ−2FZ+WH+Ξ+F 2(Ē+B̄)+2

∑η

r=1 βrF
2+

4N
∑η

r=1 βrm
2
r,ℑ((

2ϑℑN
∑η

r=1
mr,ℑ

1−2ϑℑN
∑η

r=1
mr,ℑ

)2+1)Iψ]+
∑η

r=1 ξrC
r,ℑ⊗ (FΓr+ΓrF ),Π1

= IN ⊗ (FK) − (IN ⊗ QT
1 )P,H1 = −(IN ⊗ QT

2 )P − P T (IN ⊗ Q2) and

mr,ℑ = max{∑p∈Nq
M r,ℑ

qp }, r = 1, 2, · · · , η,ℑ = 1, 2, · · · , υ, then the system

(28) realizes passivity under the event-triggered condition (27).

Proof. Choose the same Lyapunov functional as (10) for system (28).

Then, we have

D+V (t) 6
N
∑

q=1

∫

Φ

εTq (s, t)WHεq(s, t)ds+ 2
N
∑

q=1

∫

Φ

εTq (s, t)F
(

ρ
∑

κ=1

Lκ
∂2εq(s, t)

∂s2κ

+ E(δq(s, t))F(εq(s, t)) +B(δq(s, t))G(εq(s, t)) + [E(δq(s, t))

− E(δ∗(s))]f(δ∗(s)) + [B(δq(s, t))− B(δ∗(s))]g(δ∗(s))

+

η
∑

r=1

N
∑

p=1

ξrC
r,ℑ
qp Γrεp(s, t) +

η
∑

r=1

∑

p∈Nq

βrM
r,ℑ
qp (εq(s, t)

− εp(s, t) + φq(s, t)− φp(s, t)) +Kuq(s, t)

− sign(εq(s, t))(Ẽϕ̆+ B̃ω̆)− Zεq(s, t)
)

ds

−
N
∑

q=1

∫

Φ

εq(s, t)
T
Wεq(s, t)ds.
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Obviously,

2
N
∑

q=1

∫

Φ

εTq (s, t)F

η
∑

r=1

N
∑

p=1

ξrC
r,ℑ
qp Γrεp(s, t)ds

6

∫

Φ

εT (s, t)

η
∑

r=1

ξrC
r,ℑ ⊗ (FΓr + ΓrF )ε(s, t)ds. (31)

Similar as the deduction of (17), we have

2
N
∑

q=1

∫

Φ

εTq (s, t)F

η
∑

r=1

∑

p∈Nq

βrM
r,ℑ
qp (εq(s, t)− εp(s, t))ds

6

N
∑

q=1

η
∑

r=1

βr

∫

Φ

εTq (s, t)F
2εq(s, t)ds+

N
∑

q=1

η
∑

r=1

βr

∣

∣

∣

∣

∣

∣

∑

p∈Nq

M r,ℑ
qp (εq(s, t)

− εp(s, t))
∣

∣

∣

∣

∣

∣

2

6

N
∑

q=1

η
∑

r=1

βr

∫

Φ

εTq (s, t)F
2εq(s, t)ds+

N
∑

q=1

η
∑

r=1

βr

[

∑

p∈Nq

M r,ℑ
qp ||εq(s, t)||

+
∑

p∈Nq

M r,ℑ
qp ||εp(s, t))||

]2

6

η
∑

r=1

βr

∫

Φ

εT (s, t)IN ⊗ F 2ε(s, t)ds+ 4

η
∑

r=1

βrm
2
r,ℑN ||ε(s, t)||2

=

η
∑

r=1

βr

∫

Φ

εT (s, t)IN ⊗ (F 2 + 4Nm2
r,ℑIψ)ε(s, t)ds. (32)

From (29), one has

2
N
∑

q=1

∫

Φ

εTq (s, t)F

η
∑

r=1

∑

p∈Nq

βrM
r,ℑ
qp (φq(s, t)− φp(s, t))ds

6

η
∑

r=1

βr

∫

Φ

εT (s, t)IN ⊗ F 2ε(s, t)ds+

η
∑

r=1

βr

∫

Φ

4m2
r,ℑNφ

T (s, t)φ(s, t)ds

6

η
∑

r=1

βr

∫

Φ

εT (s, t)IN⊗
(

F 2+4Nm2
r,ℑ

( 2ϑℑN
∑η

r=1mr,ℑ

1− 2ϑℑN
∑η

r=1mr,ℑ

)2

Iψ

)

ε(s, t)ds. (33)
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In terms of (11)-(15) and (31)-(33), one gets

D+V (t) 6

∫

Φ

εT (s, t)
{

IN ⊗
[

−
ρ

∑

κ=1

2

µ2
κ

FLκ − 2FZ + F 2(Ē + B̄) + 2

η
∑

r=1

βrF
2

+ Ξ +WH + 4N

η
∑

r=1

βrm
2
r,ℑ

(

1 +
( 2ϑℑN

∑η

r=1mr,ℑ

1− 2ϑℑN
∑η

r=1mr,ℑ

)2)

Iψ

]

+

η
∑

r=1

ξrC
r,ℑ ⊗ (FΓr + ΓrF )

}

ε(s, t)ds

+ 2

∫

Φ

εT (s, t)(IN ⊗ FK)u(s, t)ds. (34)

From (34), one gets

D+V (t)− 2

∫

Φ

yT (s, t)Pu(s, t)ds

6

∫

Φ

uT (s, t)(−(IN ⊗QT
2 )P − P T (IN ⊗Q2))u(s, t)ds+

∫

Φ

εT (s, t)
{

IN ⊗ [WH

+ Ξ + F 2(Ē + B̄)−
ρ

∑

κ=1

2

µ2
κ

FLκ + 4N

η
∑

r=1

βrm
2
r,ℑ

(( 2ϑℑN
∑η

r=1mr,ℑ

1− 2ϑℑN
∑η

r=1mr,ℑ

)2

+ 1
)

Iψ − 2FZ + 2

η
∑

r=1

βrF
2] +

η
∑

r=1

ξrC
r,ℑ ⊗ (FΓr + ΓrF )

}

ε(s, t)ds

+ 2

∫

Φ

εT (s, t)(IN ⊗ (FK)− (IN ⊗QT
1 )P )u(s, t)ds

=

∫

Φ

̟T (s, t)





Dℑ
3 Π1

ΠT
1 H1



̟(s, t)ds.

From (30), we have

2

∫

Φ

yT (s, t)Pu(s, t)ds > D+V (t).

Then

2

∫ tp

tr

∫

Φ

yT (s, t)Pu(s, t)dsdt >

∫ tp

tr

D+V (t)dt = V (tp)− V (tr)

34



for any tr, tp ∈ [0,+∞) and tp > tr. In other words,

∫ tp

tr

∫

Φ

yT (s, t)Pu(s, t)dsdt > Q(tp)−Q(tr),

where Q(t) = V (t)
2
.

Similarly, we can derive the following results.

Theorem 4.2. If there exist matrices F = diag(f1, f2, · · · , fψ) > 0, P ∈
R
nN×lN , 0 < J1 ∈ R

lN×lN and a constant 0 < ϑℑ <
1

2N
∑η

r=1
mr,ℑ

such that





Dℑ
3 Π1

ΠT
1 H2



 6 0, (35)

where Dℑ
3 = IN⊗[−∑ρ

κ=1
2
µ2κ
FLκ−2FZ+WH+Ξ+F 2(Ē+B̄)+2

∑η
r=1 βrF

2+

4N
∑η

r=1 βrm
2
r,ℑ((

2ϑℑN
∑η

r=1
mr,ℑ

1−2ϑℑN
∑η

r=1
mr,ℑ

)2+1)Iψ]+
∑η

r=1 ξrC
r,ℑ⊗ (FΓr+ΓrF ),Π1

= IN ⊗ (FK) − (IN ⊗ QT
1 )P,H2 = J1 − (IN ⊗ QT

2 )P − P T (IN ⊗ Q2) and

mr,ℑ = max{∑p∈Nq
M r,ℑ

qp }, r = 1, 2, · · · , η,ℑ = 1, 2, · · · , υ, then the system

(28) realizes input-strict passivity under the event-triggered condition (27).

Proof. From (34), one gets

D+V (t)− 2

∫

Φ

yT (s, t)Pu(s, t)ds+

∫

Φ

uT (s, t)J1u(s, t)ds

62

∫

Φ

εT (s, t)(IN ⊗ (FK)− (IN ⊗QT
1 )P )u(s, t)ds+

∫

Φ

εT (s, t)
{

IN ⊗ [WH + Ξ

+ F 2(Ē + B̄)−
ρ

∑

κ=1

2

µ2
κ

FLκ + 4N

η
∑

r=1

βrm
2
r,ℑ

(( 2ϑℑN
∑η

r=1mr,ℑ

1− 2ϑℑN
∑η

r=1mr,ℑ

)2

+ 1
)

Iψ − 2FZ + 2

η
∑

r=1

βrF
2] +

η
∑

r=1

ξrC
r,ℑ ⊗ (FΓr + ΓrF )

}

ε(s, t)ds

+

∫

Φ

uT (s, t)(J1 − (IN ⊗QT
2 )P − P T (IN ⊗Q2))u(s, t)ds
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=

∫

Φ

̟T (s, t)





Dℑ
3 Π1

ΠT
1 H2



̟(s, t)ds.

From (35), we can obtain

2

∫

Φ

yT (s, t)Pu(s, t)ds−
∫

Φ

uT (s, t)J1u(s, t)ds > D+V (t).

Then

2

∫ tp

tr

∫

Φ

yT (s, t)Pu(s, t)dsdt >

∫ tp

tr

D+V (t)dt+

∫ tp

tr

∫

Φ

uT (s, t)J1u(s, t)dsdt

=V (tp)− V (tr) +

∫ tp

tr

∫

Φ

uT (s, t)J1u(s, t)dsdt

for any tr, tp ∈ [0,+∞) and tp > tr. In other words,

∫ tp

tr

∫

Φ

(

yT (s, t)Pu(s, t)− uT (s, t)
J1

2
u(s, t)

)

dsdt > Q(tp)−Q(tr),

where Q(t) = V (t)
2
.

Theorem 4.3. If there exist matrices F = diag(f1, f2, · · · , fψ) > 0, P ∈
R
nN×lN , 0 < J2 ∈ R

nN×nN and a constant 0 < ϑℑ <
1

2N
∑η

r=1
mr,ℑ

such that





Dℑ
4 Π2

ΠT
2 H3



 6 0, (36)

where Dℑ
4 = IN⊗[−∑ρ

κ=1
2
µ2κ
FLκ−2FZ+WH+Ξ+F 2(Ē+B̄)+2

∑η
r=1 βrF

2+

4N
∑η

r=1 βrm
2
r,ℑ((

2ϑℑN
∑η

r=1
mr,ℑ

1−2ϑℑN
∑η

r=1
mr,ℑ

)2 + 1)Iψ] +
∑η

r=1 ξrC
r,ℑ ⊗ (FΓr +ΓrF ) +

(IN ⊗ QT
1 )J2(IN ⊗ Q1),Π2 = IN ⊗ (FK) + (IN ⊗ QT

1 )J2(IN ⊗ Q2) − (IN ⊗
QT

1 )P,H3 = (IN ⊗ QT
2 )J2(IN ⊗ Q2) − (IN ⊗ QT

2 )P − P T (IN ⊗ Q2) and

mr,ℑ = max{∑p∈Nq
M r,ℑ

qp }, r = 1, 2, · · · , η,ℑ = 1, 2, · · · , υ, then the system

(28) is output-strictly passive under the event-triggered condition (27).

36



Proof. From (34), we can obtain

D+V (t)− 2

∫

Φ

yT (s, t)Pu(s, t)ds+

∫

Φ

yT (s, t)J2y(s, t)ds

62

∫

Φ

εT (s, t)(IN ⊗ (FK) + (IN ⊗QT
1 )J2(IN ⊗Q2)− (IN ⊗QT

1 )P )u(s, t)ds

+

∫

Φ

εT (s, t)
{

IN ⊗ [4N

η
∑

r=1

βrm
2
r,ℑ

(( 2ϑℑN
∑η

r=1mr,ℑ

1− 2ϑℑN
∑η

r=1mr,ℑ

)2

+ 1
)

Iψ

+ Ξ +WH + F 2(Ē + B̄)−
ρ

∑

κ=1

2

µ2
κ

FLκ + 2

η
∑

r=1

βrF
2 − 2FZ]

+ (IN ⊗QT
1 )J2(IN ⊗Q1) +

η
∑

r=1

ξrC
r,ℑ ⊗ (FΓr + ΓrF )

}

ε(s, t)ds

+

∫

Φ

uT (s, t)((IN ⊗QT
2 )J2(IN ⊗Q2)− (IN ⊗QT

2 )P

− P T (IN ⊗Q2))u(s, t)ds

=

∫

Φ

̟T (s, t)





Dℑ
4 Π2

ΠT
2 H3



̟(s, t)ds.

According to (36), one has

2

∫

Φ

yT (s, t)Pu(s, t)ds−
∫

Φ

yT (s, t)J2y(s, t)ds > D+V (t).

Then

2

∫ tp

tr

∫

Φ

yT (s, t)Pu(s, t)dsdt >

∫ tp

tr

D+V (t)dt+

∫ tp

tr

∫

Φ

yT (s, t)J2y(s, t)dsdt

=V (tp)− V (tr) +

∫ tp

tr

∫

Φ

yT (s, t)J2y(s, t)dsdt

for any tr, tp ∈ [0,+∞) and tp > tr. In other words,
∫ tp

tr

∫

Φ

(

yT (s, t)Pu(s, t)− yT (s, t)
J2

2
y(s, t)

)

dsdt > Q(tp)−Q(tr),

where Q(t) = V (t)
2
.
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4.3. Asymptotical stability of event-triggered passivity

Theorem 4.4. Assume that Q : [0,+∞) −→ [0,+∞) is continuously differ-

entiable satisfying

σ1(||ε(s, t)||) 6 Q(t) 6 σ2(||ε(s, t)||), (37)

where σ1, σ2 : [0,+∞) −→ [0,+∞) are continuous and strict increased func-

tions, σ1(x) > 0, σ2(x) > 0 for x > 0 with σ1(0) = 0, σ2(0) = 0, then network

(26) realizes asymptotical stability if the system (28) is output-strictly passive

under the event-triggered condition (27) with respect to Q(t) and Q1 ∈ R
n×ψ

is a nonsingular matrix.

Proof. If the system (28) achieves event-triggered output-strict passivity,

then there exist matrices P ∈ R
nN×lN and 0 < J2 ∈ R

nN×nN such that

Q(t + θ)−Q(t) 6

∫ t+θ

t

∫

Φ

(

yT (s, t)Pu(s, t)− yT (s, t)J2y(s, t)
)

dsdt,

where θ > 0 and t ∈ [0,+∞). Then, it is easy to derive that

Q(t+ θ)−Q(t)

θ
6

1

θ

∫ t+θ

t

∫

Φ

(

yT (s, t)Pu(s, t)− yT (s, t)J2y(s, t)
)

dsdt.

(38)

From (38), we take θ → 0, one has

∫

Φ

yT (s, t)Pu(s, t)ds−
∫

Φ

yT (s, t)J2y(s, t)ds > D+Q(t).

Let u(s, t) = 0, we can derive

D+Q(t) 6 −
∫

Φ

εT (s, t)(IN ⊗QT
1 )J2(IN ⊗Q1)ε(s, t)ds

6 −λm((IN ⊗QT
1 )J2(IN ⊗Q1))||ε(s, t)||2. (39)
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From (37) and (39), then the system (28) is asymptotically stable.

According to Theorems 4.3 and 4.4, the following conclusion can be easily

derived.

Corollary 4.1. If there exist matrices F = diag(f1, f2, · · · , fψ) > 0, P ∈
R
nN×lN , 0 < J2 ∈ R

nN×nN and a constant 0 < ϑℑ <
1

2N
∑η

r=1
mr,ℑ

such that





Dℑ
4 Π2

ΠT
2 H3



 6 0, (40)

where Q1 ∈ R
n×ψ is a nonsingular matrix, Dℑ

4 = IN ⊗ [−∑ρ
κ=1

2
µ2κ
FLκ −

2FZ+WH+Ξ+F 2(Ē+B̄)+2
∑η

r=1 βrF
2+4N

∑η

r=1 βrm
2
r,ℑ((

2ϑℑN
∑η

r=1
mr,ℑ

1−2ϑℑN
∑η

r=1
mr,ℑ

)2+

1)Iψ]+
∑η

r=1 ξrC
r,ℑ⊗(FΓr+ΓrF )+(IN⊗QT

1 )J2(IN⊗Q1),Π2 = IN⊗(FK)+

(IN ⊗ QT
1 )J2(IN ⊗Q2) − (IN ⊗ QT

1 )P,H3 = (IN ⊗ QT
2 )J2(IN ⊗ Q2) − (IN ⊗

QT
2 )P − P T (IN ⊗ Q2) and mr,ℑ = max{∑p∈Nq

M r,ℑ
qp }, r = 1, 2, · · · , η, then

the network (26) is synchronized under the event-triggered condition (27).

Remark 4. Note that the coupling configuration matrices Cr
qp,M

r
qp in the

considered MWCDRDMNNs (1) are certain, which means the topology of

network (1) are entirely fixed. Nevertheless, it is utterly general that the con-

nection topology in real networks changes very quickly by switches because of

stochastic disturbances and link failure. Consequently, it is necessary to dis-

cuss the dynamical properties of MWCDRDMNNs with switching topology.

In this section, we derive some event-triggered passivity and passivity-based

synchronization conditions for MWCDRDMNNs with switching topology in

Theorems 4.1-4.4 and Corollary 4.1, respectively.
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5. Numerical examples

In this section, two examples are given to illustrate the obtained theoret-

ical results in Sections 3 and 4. More precisely, the event-triggered passivity

and synchronization results for MWCDRDMNNs with fixed topology in The-

orem 3.1 and Corollary 3.1 are demonstrated in Case 1 and Case 2 of Example

5.1 respectively. Similarly, the results for the network of MWCDRDMNNs

with switching topology is validated in Example 5.2. In addition, some sim-

ulation figures are also provided for better understanding the effectiveness of

our results.

Example 5.1. Considering MWCDRDMNNs with fixed topology under

event-triggered control as follows:

∂δq(s, t)

∂t
=L

∂2δq(s, t)

∂s2
− Zδq(s, t) + E(δq(s, t))f(δq(s, t)) +O +Kuq(s, t)

+B(δq(s, t))g(δq(s, t)) + ηq(s, t) +

η
∑

r=1

5
∑

p=1

ξrC
r
qpΓ

rδp(s, t)

+ vq(s, t), (41)

where q = 1, 2, 3, 4, 5, ψ = 3,Φ = {s|−0.5 < s < 0.5}, fι(χ) = |χ+1|−|χ−1|
8

, gι(χ)

= |χ+1|−|χ−1|
4

, ι = 1, 2, 3;L = diag(1.2, 1.6, 1.5), Z = diag(6, 7, 8); γj(t) =

1 − 1
j+4

e−t, ζj =
1
j+4

, j = 1, 2, 3;O = (0, 0, 0)T ,Γ1 = diag(1.2, 0.8, 1.8),Γ2 =

diag(0.9, 0.6, 1.5); ξ1 = 0.08, ξ2 = 0.4, vq(s, t) =
∑2

r=1 βr
∑

p∈Nq
M r

qp(δq(s, t
q
m)−

δp(s, t
p
m)); ηq(s, t) = −sign(δq(s, t))(Ẽϕ̆ + B̃ω̆), β1 = 0.05, β2 = 0.2; uq(s, t) =

(1.2q
√
t cos(πs), 1.5q

√
t cos(πs))T . The following matrices Cr = (Cr

qp)5×5,M
r

= (M r
qp)5×5, E(δq(s, t)), B(δq(s, t)), K,Q1, Q2 are chosen respectively:

e11(δq1(s, t)) =







−0.24, |δq1(s, t)| 6 2,

0.28, |δq1(s, t)| > 2,
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e12(δq1(s, t)) =







−0.18, |δq1(s, t)| 6 2,

0.35, |δq1(s, t)| > 2,

e13(δq1(s, t)) =







−0.32, |δq1(s, t)| 6 2,

0.36, |δq1(s, t)| > 2,

e21(δq2(s, t)) =







0.38, |δq2(s, t)| 6 2,

−0.56, |δq2(s, t)| > 2,

e22(δq2(s, t)) =







−0.24, |δq2(s, t)| 6 2,

0.32, |δq2(s, t)| > 2,

e23(δq2(s, t)) =







0.43, |δq2(s, t)| 6 2,

−0.52, |δq2(s, t)| > 2,

e31(δq3(s, t)) =







0.32, |δq3(s, t)| 6 2,

−0.45, |δq3(s, t)| > 2,

e32(δq3(s, t)) =







0.27, |δq3(s, t)| 6 2,

−0.53, |δq3(s, t)| > 2,

e33(δq3(s, t)) =







−0.18, |δq3(s, t)| 6 2,

−0.36, |δq3(s, t)| > 2,

b11(δq1(s, t)) =







0.42, |δq1(s, t)| 6 2,

−0.45, |δq1(s, t)| > 2,

b12(δq1(s, t)) =







−0.32, |δq1(s, t)| 6 2,

0.26, |δq1(s, t)| > 2,
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b13(δq1(s, t)) =







−0.46, |δq1(s, t)| 6 2,

0.29, |δq1(s, t)| > 2,

b21(δq2(s, t)) =







−0.23, |δq2(s, t)| 6 2,

−0.36, |δq2(s, t)| > 2,

b22(δq2(s, t)) =







0.32, |δq2(s, t)| 6 2,

−0.47, |δq2(s, t)| > 2,

b23(δq2(s, t)) =







−0.18, |δq2(s, t)| 6 2,

0.35, |δq2(s, t)| > 2,

b31(δq3(s, t)) =







0.34, |δq3(s, t)| 6 2,

−0.42, |δq3(s, t)| > 2,

b32(δq3(s, t)) =







0.36, |δq3(s, t)| 6 2,

−0.25, |δq3(s, t)| > 2,

b33(δq3(s, t)) =







−0.31, |δq3(s, t)| 6 2,

0.29, |δq3(s, t)| > 2,

Q1 =











0.4 0.5 0.2

0.2 0.8 0.4

0.3 0.4 0.2











, Q2 =











0.6 0.3

0.3 0.4

0.5 0.3











,

C1 =























−0.5 0.1 0 0.3 0.1

0.1 −0.6 0.1 0.2 0.2

0 0.1 −0.3 0 0.2

0.3 0.2 0 −0.7 0.2

0.1 0.2 0.2 0.2 −0.7























,
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C2 =























−0.7 0.2 0 0.2 0.3

0.2 −0.6 0.2 0.1 0.1

0 0.2 −0.6 0 0.4

0.2 0.1 0 −0.5 0.2

0.3 0.1 0.4 0.2 −1























,

M1 =























0 0.02 0.03 0.02 0.04

0.1 0 0.4 0.2 0.3

0.02 0.02 0 0.05 0.02

0.2 0.5 0.3 0 0.3

0.03 0.02 0.03 0.06 0























,

M2 =























0 0.04 0.01 0.02 0.03

0.02 0 0.02 0.02 0.3

0.03 0.02 0 0.05 0.02

0.06 0.05 0.01 0 0.03

0.03 0.02 0.03 0.02 0























,

K =











0.2 0.3

0.3 0.2

0.4 0.6











.

Hence,

Ẽ =











0.52 0.53 0.68

0.94 0.56 0.95

0.77 0.8 0.18











, B̃ =











0.87 0.58 0.75

0.13 0.79 0.53

0.76 0.61 0.6











.

Case 1 : Obviously, the equilibrium solution of the isolated nodes of net-

work (41) is δ∗(s) = (0, 0, 0)T , ϕj = ϕ̆j = 0.25, ωj = ω̆j = 0.5. Take ϑ = 0.036
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Figure 1: The norms of the state vectors δq(s, t), output vectors yq(s, t) and output vectors

uq(s, t) in network (41), where q = 1, 2, · · · , 5.

Figure 2: The event-triggered time instants tq
m

in network (41), where q = 1, 2, · · · , 5.
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Figure 3: The norms of the state vectors δq(s, t) in network (41),where q = 1, 2, · · · , 5.

in the event-triggered condition (3), we can easily compute the following ma-

trices F, P satisfying (9):

F =











0.7268 0 0

0 0.5585 0

0 0 0.5366











, P = I5 ⊗











4.8964 −38.4809

−4.9820 0.9163

3.2910 46.5522











.

Base on Theorem 3.1, the network (41) realizes event-triggered passivity.

Figure 1 shows the norms of the state vectors, output vectors and output

vectors when the network (41) is passive. In addition, the event-triggered

time instants tqm(q = 1, 2, · · · , 5) are displayed in Figure 2.

Case 2 : It is easy to know that |Q1| = 0.008. Therefore, Q1 is a nonsingular

matrix. In addition, ϕj, ϕ̆j, ωj, ω̆j, δ
∗(s) and ϑ denote the same meanings

as in Case 1. By employing the MATLAB, the following matrices F, P, J2
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satisfying (25) can be computed:

F =











0.7623 0 0

0 0.3427 0

0 0 0.5780











, P = I5 ⊗











17.7958 −42.8839

0.1994 5.4934

−12.8364 50.2961











,

J2 = I5 ⊗











8.6238 −125.1243 88.8230

−125.1243 −26.3285 172.8574

88.8230 172.8574 −234.2138











.

From Corollary 3.1, the network (41) achieves event-triggered synchroniza-

tion. Figure 3 displays network synchronization’s simulation results.

Example 5.2. The following MWCDRDMNNs with switching topology un-

der event-triggered control is considered:

∂δq(s, t)

∂t
=L

∂2δq(s, t)

∂s2
− Zδq(s, t) + E(δq(s, t))f(δq(s, t)) +O +Kuq(s, t)

+B(δq(s, t))g(δq(s, t)) + ηq(s, t) +

η
∑

r=1

6
∑

p=1

ξrC
r,ℑ
qp Γrδp(s, t)

+ vq(s, t), (42)

where q = 1, 2, 3, 4, 5, 6, ψ = 3,ℑ = 1, 2,Φ = {s| − 0.5 < s < 0.5}, fι(χ) =

|χ+1|−|χ−1|
4

, gι(χ) =
|χ+1|−|χ−1|

8
, ι = 1, 2, 3;L = diag(0.6, 1.2, 2), Z = diag(4, 2, 6);

γj(t) = 1− 1
j+3

e−t, ζj =
1
j+3

, j = 1, 2, 3;O = (0, 0, 0)T ,Γ1 = diag(0.6, 0.9, 1.4),Γ2

= diag(0.7, 0.5, 1.2); ξ1 = 3.56, ξ2 = 2.9, vq(s, t) =
∑2

r=1 βr
∑

p∈Nq
M r,ℑ

qp (δq(s, t
q
m)

−δp(s, tpm)); ηq(s, t) = −sign(δq(s, t))(Ẽϕ̆+B̃ω̆), β1 = 0.12, β2 = 1.8; uq(s, t) =

(0.8q
√
t cos(πs), 2q

√
t cos(πs))T . The following matricesQ1, Q2, E(δq(s, t)), K,

B(δq(s, t)) are chosen respectively:

e11(δq1(s, t)) =







−0.18, |δq1(s, t)| 6 3.5,

0.35, |δq1(s, t)| > 3.5,
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e12(δq1(s, t)) =







−0.25, |δq1(s, t)| 6 3.5,

0.46, |δq1(s, t)| > 3.5,

e13(δq1(s, t)) =







0.32, |δq1(s, t)| 6 3.5,

−0.23, |δq1(s, t)| > 3.5,

e21(δq2(s, t)) =







−0.29, |δq2(s, t)| 6 3.5,

0.46, |δq2(s, t)| > 3.5,

e22(δq2(s, t)) =







−0.34, |δq2(s, t)| 6 3.5,

0.26, |δq2(s, t)| > 3.5,

e23(δq2(s, t)) =







−0.42, |δq2(s, t)| 6 3.5,

0.38, |δq2(s, t)| > 3.5,

e31(δq3(s, t)) =







0.15, |δq3(s, t)| 6 3.5,

−0.38, |δq3(s, t)| > 3.5,

e32(δq3(s, t)) =







0.27, |δq3(s, t)| 6 3.5,

−0.47, |δq3(s, t)| > 3.5,

e33(δq3(s, t)) =







0.32, |δq3(s, t)| 6 3.5,

−0.46, |δq3(s, t)| > 3.5,

b11(δq1(s, t)) =







0.51, |δq1(s, t)| 6 3.5,

−0.25, |δq1(s, t)| > 3.5,

b12(δq1(s, t)) =







−0.46, |δq1(s, t)| 6 3.5,

0.34, |δq1(s, t)| > 3.5,
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b13(δq1(s, t)) =







−0.35, |δq1(s, t)| 6 3.5,

0.42, |δq1(s, t)| > 3.5,

b21(δq2(s, t)) =







0.37, |δq2(s, t)| 6 3.5,

−0.41, |δq2(s, t)| > 3.5,

b22(δq2(s, t)) =







0.27, |δq2(s, t)| 6 3.5,

−0.53, |δq2(s, t)| > 3.5,

b23(δq2(s, t)) =







0.54, |δq2(s, t)| 6 3.5,

−0.28, |δq2(s, t)| > 3.5,

b31(δq3(s, t)) =







−0.21, |δq3(s, t)| 6 3.5,

0.45, |δq3(s, t)| > 3.5,

b32(δq3(s, t)) =







0.62, |δq3(s, t)| 6 3.5,

−0.45, |δq3(s, t)| > 3.5,

b33(δq3(s, t)) =







0.38, |δq3(s, t)| 6 3.5,

−0.21, |δq3(s, t)| > 3.5,

Q1 =











0.5 0.7 0.9

0.4 0.6 0.3

0.1 0.2 0.4











, Q2 =











0.5 0.2

0.8 0.6

0.3 0.6











, K =











0.4 0.1

0.2 0.7

0.5 0.1











.

Hence,

Ẽ =











0.53 0.71 0.55

0.75 0.6 0.8

0.53 0.74 0.78











, B̃ =











0.76 0.8 0.77

0.78 0.8 0.82

0.66 1.07 0.59











.
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Figure 4: The norms of the state vectors δq(s, t), output vectors yq(s, t) and output vectors

uq(s, t) in network (42), where q = 1, 2, · · · , 6.

Figure 5: The event-triggered time instants tq
m

in network (42), where q = 1, 2, · · · , 6.
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Figure 6: The norms of the state vectors δq(s, t) in network (42), where q = 1, 2, · · · , 6.

Case 1 : Obviously, the equilibrium solution of the isolated nodes of net-

work (42) is δ∗(s) = (0, 0, 0)T , ϕj = ϕ̆j = 0.5 and ωj = ω̆j = 0.25. C1,1

and C1,2(C2,1 and C2,2;M1,1 and M1,2;M2,1 and M2,2) denote two possible

topologies which are switched as C1,1 → C1,2 → C1,1 → C1,2 · · · , and each

topology is active for 1s, the C2,1, C2,2,M1,1,M1,2,M2,1,M2,2 are switched

similarly. The coupling matrices C1,1 = (C1,1
qp )6×6, C

1,2 = (C1,2
qp )6×6, C

2,1 =

(C2,1
qp )6×6, C

2,2 = (C2,2
qp )6×6,M

1,1 = (M1,1
qp )6×6,M

1,2 = (M1,2
qp )6×6,M

2,1 =
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(M2,1
qp )6×6,M

2,2 = (M2,2
qp )6×6 are chosen as follows:

C1,1 =





























−0.7 0.2 0.3 0.1 0 0.1

0.2 −0.6 0.2 0 0.2 0

0.3 0.2 −0.8 0 0.1 0.2

0.1 0 0 −0.2 0.1 0

0 0.2 0.1 0.1 −0.6 0.2

0.1 0 0.2 0 0.2 −0.5





























,

C1,2 =





























−0.6 0 0.3 0 0.2 0.1

0 −0.4 0.2 0 0.2 0

0.3 0.2 −0.7 0 0 0.2

0 0 0 −0.1 0.1 0

0.2 0.2 0 0.1 −0.6 0.1

0.1 0 0.2 0 0.1 −0.4





























,

C2,1 =





























−0.6 0.1 0.3 0.1 0 0.1

0.1 −0.5 0.2 0 0.2 0

0.3 0.2 −0.7 0 0.1 0.1

0.1 0 0 −0.3 0.2 0

0 0.2 0.1 0.2 −0.7 0.2

0.1 0 0.1 0 0.2 −0.4





























,
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C2,2 =





























−0.5 0 0.1 0 0.2 0.2

0 −0.4 0.2 0 0.2 0

0.1 0.2 −0.4 0 0 0.1

0 0 0 −0.2 0.2 0

0.2 0.2 0 0.2 −0.8 0.2

0.2 0 0.1 0 0.2 −0.5





























,

M1,1 =





























0 0.02 0.02 0.03 0.4 0.05

0.03 0 0.05 0.02 0.03 0.04

0.01 0.6 0 0.1 0.02 0.3

0.003 0.07 0.02 0 0.003 0.04

0.04 0.02 0.03 0.004 0 0.001

0.01 0.02 0.03 0.02 0.05 0





























,

M1,2 =





























0 0.001 0.003 0.002 0.04 0.005

0.006 0 0.004 0.002 0.003 0.004

0.001 0.06 0 0.002 0.06 0.03

0.005 0.008 0.02 0 0.003 0.004

0.003 0.002 0.005 0.003 0 0.001

0.02 0.05 0.003 0.002 0.004 0





























,

M2,1 =





























0 0.06 0.2 0.05 0.011 0.04

0.02 0 0.004 0.01 0.05 0.002

0.01 0.06 0 0.021 0.02 0.025

0.001 0.09 0.005 0 0.008 0.001

0.01 0.03 0.05 0.006 0 0.003

0.025 0.01 0.02 0.04 0.005 0





























,
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M2,2 =





























0 0.03 0.06 0.02 0.001 0.003

0.08 0 0.005 0.004 0.007 0.002

0.003 0.05 0 0.006 0.002 0.05

0.07 0.09 0.005 0 0.001 0.002

0.008 0.004 0.03 0.06 0 0.02

0.002 0.06 0.001 0.005 0.009 0





























.

Take ϑ1 = 0.02, ϑ2 = 0.2 in the event-triggered condition (27), we can easily

compute the following matrix F, P satisfying (30):

F =











2.5553 0 0

0 2.7259 0

0 0 5.8855











, P = I6 ⊗











−165.9814 −290.3731

160.5884 226.1919

172.6068 478.4970











.

According to Theorem 4.1, the network (42) achieves event-triggered passiv-

ity. Figure 4 shows the norms of the state vectors, output vectors and output

vectors when the network (42) is passive. Moreover, the event-triggered time

instants tqm(q = 1, 2, · · · , 6) are displayed in Figure 5.

Case 2 : It is easy to know that |Q1| = 0.017. Therefore, Q1 is a nonsingular

matrix. In addition, ϕj , ϕ̆j, ωj, ω̆j, δ
∗(s) and ϑ1, ϑ2 denote the same mean-

ings as in Case 1. By making use of the MATLAB Toolbox, the following

matrices F, P, J2 satisfying (40) can be computed:

F =











2.5741 0 0

0 2.5097 0

0 0 2.4259











, P = I6 ⊗











−11.3600 5.1747

39.0468 22.3267

−48.1544 −36.0722











,

J2 = I6 ⊗











−71.1673 −9.0216 136.7154

−9.0216 −66.5516 86.7348

136.7154 86.7348 −416.6542











.
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From Corollary 4.1, the network (42) achieves event-triggered synchroniza-

tion. Figure 6 displays the simulation results.

6. Conclusion

In this paper, the event-triggered passivity problem for MWCDRDMNNs

with fixed and switching topologies has been investigated through designing

suitable event-triggered controllers. Firstly, several event-triggered passivity

and passivity-based synchronization conditions for MWCDRDMNNs with

fixed topology have been established by making use of Lyapunov stability

theory. Secondly, event-triggered passivity problem for MWCDRDMNNs

with switching topology have also been addressed, and a synchronization

criterion has been derived based on the obtained stability and output-strict

passivity conditions. Finally, two numerical examples have been given to

show the validity of these acquired results. In the future, it would be very

interesting to study event-triggered synchronization and H∞ synchronization

problems of MWCDRDMNNs. In addition, note that the considered topol-

ogy structure in this paper is undirected. Recently, there are some novel

results about fixed or time-varying unbalanced directed topologies [53, 54],

which motivates us to further apply the proposed event-triggered control

strategy in this paper into the MWCDRDMNNs under directed topology or

other directed networks. That would be another research topic in our future

works.
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[54] Lü QG., Liao XF, Li HQ, Huang T. A nesterov-like gradi-

ent tracking algorithm for distributed optimization over directed

networks. IEEE Trans. Syst. Man Cybern.: Syst. 2019; doi:

10.1109/TSMC.2019.2960770.

62


