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This paper investigates the exponential synchronization problem of stochastic complex dynamical networks with impulsive
perturbation and Markovian switching. The complex dynamical networks consist of 𝜅 modes, and the networks switch from one
mode to another according to a Markovian chain with known transition probability. Based on the Lyapunov function method
and stochastic analysis, by employing M-matrix approach, some sufficient conditions are presented to ensure the exponential
synchronization of stochastic complex dynamical networks with impulsive perturbation and Markovian switching, and the upper
bound of impulsive gain is evaluated. At the end of this paper, two numerical examples are included to show the effectiveness of
our results.

1. Introduction

Since Watts and Strogatz wrote their pioneering work [1],
complex dynamical networks have received a lot of research
attention. One of the most important research topics in com-
plex dynamical networks is synchronization which is studied
as a common phenomenon of a population of dynamical
interacting units [2, 3]. Moreover, many different regimes
of synchronization have been investigated, such as complete
synchronization, phase synchronization, exponential syn-
chronization, cluster synchronization, lag synchronization,
and generalized synchronization [4–12].

Exponential synchronization is a more favorite property
since it gives a fast convergence rate to the synchronous
solution. In [7], exponential synchronization strategy for
complex dynamical networks is proposed by using sampled-
data control. Mean square exponential synchronization in
Lagrange sense for uncertain complex dynamical networks is
proposed in [12]. In [13], the adaptive synchronization issue of
stochastic delayed neural networks with Markovian switch-
ing is considered and several sufficient conditions to ensure
adaptive exponential synchronization in 𝑝th moment of

stochastic delayed neural networks with Markovian switch-
ing are derived.

It has been widely reported that networks have finite
modes which switch from one mode to another at different
times, and such a switching signal can be governed by a
Markovian chain. Markovian jump networks are of great
significance in modeling a class of complex networks with
finite network modes, and many relevant results have been
reported in the literature (see, e.g., [13–17], and the references
therein). In [18], it has been revealed that a class of neural
networks has finite modes that switch from one to another
according to a Markovian chain with known transition
probability. In [19], the exponential synchronization problem
for an array of 𝑁 linearly coupled complex networks with
Markovian switching and mixed time-delays is investigated.
In [20], a sensor network has been shown to have jumping
behavior due to the network’s working environment and the
mobility of sensor node. In [21], the exponential stability
problem of stochastic neural networks with both Markovian
jump parameters and mixed time delays is investigated
and some sufficient conditions are derived by linear matrix
inequality approach. In [22], the problem of sampled-data
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synchronization for Markovian jump neural networks with
time-varying delay and variable samplings is considered,
where the model-independent controller has been proposed
via the LMI technique. In [23], the passivity analysis has
been conducted for discrete-time stochastic neural networks
with both Markovian jumping parameters and mixed time
delays, and a delay-dependent passivity condition is derived
by introducing a Lyapunov functional that accounts for the
mixed time delays.

In the real world, there exist a number of networks in
which the state of nodes is usually subject to instantaneous
perturbations and experiences abrupt change at certain
instants which may be caused by switching phenomena,
frequent change, and other sudden noise. Such networks are
described by impulsive differential networks [24, 25]. Stability
and synchronization problems of impulsive differential net-
works have sparked the interest of many researchers. In [26],
the authors’ concern with the issues of synchronization of
complex delayed dynamical networks with impulsive effects
and several criteria to ensure the exponential synchronization
of the complex delayed dynamical networks are established.
The average consensus in delayed networks of dynamic
agents with impulsive effects is investigated [27]. What is
more, impulsive control as a special impulsive effect with
the impulsive gain 𝑏𝑘 ∈ (−2, 0) has been widely applied
to ecosystems, financial systems, mechanical systems with
impacts, and orbital transfer of satellite. In [28], the robust
impulsive synchronization of coupled delayed neural net-
works with uncertainties is considered, and several criteria to
ensure the robust synchronization of coupled networks are
obtained by employing impulsive controller. Two different
types of pinning impulsive control strategy are proposed in
[29, 30]. These literatures all consider a special case: the
network impulses are generated simultaneously, whichmeans
that all nodes engender impulse at some certain time while in
reality; there may be only some nodes that engender impulse
at some certain time. In addition, the impulse generation
may be provided by the network model switching and noise
perturbations, but few literatures focus on network model
switching, noise perturbations, and impulse perturbations
together. If a network model contains random switching,
noise, and impulse perturbations, how to realize exponential
synchronization for the class of complex networks is very
interesting.What ismore, it is very important for us to under-
stand exponential synchronization dynamical evolution for
this class of networks.

In this paper, we are concerned with the analysis issue for
exponential synchronization of stochastic complex dynam-
ical networks with impulsive perturbations and Marko-
vian switching. According to two different cases of com-
plex dynamical networks, synchronous networks and asyn-
chronous networks, some sufficient conditions are presented
to ensure the exponential synchronization of stochastic com-
plex dynamical network with impulsive perturbations and
Markovian switching, and the upper bound of impulsive gain
is evaluated. Two numerical examples are included to show
the effectiveness of our results.Themain contributions of this
paper can be highlighted as follows.

(1) Impulsive effects, noise perturbations, and switchings
are considered formodeling the coupled complex net-
works simultaneously, which has been rarely investi-
gated.

(2) By using the average dwell time approach, M-matrix
approach, Lyapunov theory, and stochastic analysis,
some sufficient conditions are presented to ensure the
exponential synchronization of stochastic complex
dynamical networks with impulsive perturbations
and Markovian switching.

The notations are quite standard. Throughout this paper,
𝑅+, 𝑅
𝑛, and 𝑅𝑛×𝑛 denote the set of nonnegative real numbers,

𝑛 dimensional Euclidean space, and the set of all 𝑛 × 𝑛

real matrices, respectively. The superscript 𝑇 denotes matrix
transposition, trace(⋅) denotes the trace of the corresponding
matrix, and 𝐼 denotes the identity matrix. | ⋅ | stands for
the Euclidean norm in 𝑅

𝑛. diag{⋅ ⋅ ⋅ } stands for the block
diagonal matrix, and 𝜆max(𝐴) denote the largest eigenvalue
of symmetric matrix 𝐴.

2. Model and Preliminaries

Let {𝑟(𝑡), 𝑡 ≥ 0} be a right continuous Markovian chain in a
complete probability space (Ω,F, 𝑃) taking values in a finite
state set 𝑆 = {1, 2, . . . , 𝜅} with generatorΠ = (𝜋𝑖𝑗)𝜅×𝜅 given by

𝑃 {𝑟 (𝑡 + 𝛿) = 𝑗 | 𝑟 (𝑡) = 𝑖} = {

𝜋𝑖𝑗𝛿 + 𝑜 (𝛿) , 𝑖 ̸= 𝑗

1 + 𝜋𝑖𝑖𝛿 + 𝑜 (𝛿) , 𝑖 = 𝑗,

(1)

where 𝛿 > 0 and 𝜋𝑖𝑗 ≥ 0 are the transition rate from 𝑖 to 𝑗 if
𝑖 ̸= 𝑗, while 𝜋𝑖𝑖 = −∑

𝑗 ̸= 𝑖
𝜋𝑖𝑗.

In this paper, we consider a class of stochastic complex
dynamical networks, which is described as follows:

𝑑𝑥𝑖 (𝑡)

=
[

[

̃
𝑓 (𝑥𝑖 (𝑡) , 𝑟 (𝑡)) + 𝑐 (𝑟 (𝑡))

𝑁

∑

𝑗=1

𝑎𝑖𝑗 (𝑟 (𝑡)) Γ (𝑟 (𝑡)) 𝑥𝑗 (𝑡)
]

]

𝑑𝑡

+ 𝑔 (𝑡, 𝑥𝑖 (𝑡) , 𝑟 (𝑡)) 𝑑𝜔 (𝑡) , 𝑖 = 1, 2, . . . , 𝑁,

(2)

where {𝑟(𝑡), 𝑡 > 0} is the continuous time Markov
process, 𝑥𝑖(𝑡) = [𝑥𝑖1(𝑡), 𝑥𝑖2(𝑡), . . . , 𝑥𝑖𝑛(𝑡)]

𝑇
∈ 𝑅

𝑛 is
the state vector of node 𝑖 at time 𝑡, ̃

𝑓(𝑥𝑖(𝑡), 𝑟(𝑡)) =

[
̃
𝑓1(𝑥𝑖1(𝑡), 𝑟(𝑡)),

̃
𝑓2(𝑥𝑖2(𝑡), 𝑟(𝑡)), . . . ,

̃
𝑓𝑛(𝑥𝑖𝑛(𝑡), 𝑟(𝑡))]

𝑇 is con-
tinuous vector value functions, the noise perturbation
𝑔(⋅, ⋅, ⋅) : 𝑅 × 𝑅

𝑛
× 𝑆 → 𝑅

𝑛×𝑚 is a Borel measurable
matrix function, 𝜔(𝑡) ∈ 𝑅

𝑚 is an 𝑚-dimensional Brownian
motion, Γ(𝑟(𝑡)) = diag(𝛾1,𝑟(𝑡), 𝛾2,𝑟(𝑡), . . . , 𝛾𝑛,𝑟(𝑡)) is an inner
coupling matrix between two connected nodes, 𝑐(𝑟(𝑡)) is the
coupling strength, and 𝐴(𝑟(𝑡)) = (𝑎𝑖𝑗(𝑟(𝑡))) ∈ 𝑅

𝑁×𝑁 is
coupling matrix which represents the topological structure
of the whole network, where the entries 𝑎𝑖𝑗(𝑟(𝑡)) are defined
as follows: if nodes 𝑖 and 𝑗 (𝑖 ̸= 𝑗) are connected, then
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𝑎𝑖𝑗(𝑟(𝑡)) = 𝑎𝑗𝑖(𝑟(𝑡)) > 0; otherwise 𝑎𝑖𝑗(𝑟(𝑡)) = 0, and the
diagonal entries of coupling matrix 𝐴(𝑟(𝑡)) are defined by

𝑎𝑖𝑖 (𝑟 (𝑡)) = −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎𝑖𝑗 (𝑟 (𝑡)) = −

𝑁

∑

𝑗=1,𝑗 ̸= 𝑖

𝑎𝑗𝑖 (𝑟 (𝑡)) . (3)

One important consideration in practical networks is the
existence of impulsive perturbations and the impulse of each
node which does not emerge at the same time. Hence, the
impulsive perturbations network is described by

𝑑𝑥𝑖 (𝑡) =
[

[

̃
𝑓 (𝑥𝑖 (𝑡) , 𝑟 (𝑡)) + 𝑐 (𝑟 (𝑡))

×

𝑁

∑

𝑗=1

𝑎𝑖𝑗 (𝑟 (𝑡)) Γ (𝑟 (𝑡)) 𝑥𝑗 (𝑡) + 𝑢𝑖 (𝑡)
]

]

𝑑𝑡

+ 𝑔 (𝑡, 𝑥𝑖 (𝑡) , 𝑟 (𝑡)) 𝑑𝜔 (𝑡) ,

(4)

where

𝑢𝑖 (𝑡) =

∞

∑

𝑘=1

𝑏𝑖𝑘 (𝑥𝑖 (𝑡
−

𝑘
) − 𝑠 (𝑡)) 𝛿 (𝑡 − 𝑡

𝑖

𝑘
) , (5)

where 𝑏𝑖𝑘 is the 𝑖th node impulsive gain at 𝑡 = 𝑡
𝑖

𝑘
, 𝛿(𝑡) is the

Dirac delta function, and 𝑠(𝑡) is a solution of an isolated node
described by

𝑑𝑠 (𝑡) =
̃
𝑓 (𝑠 (𝑡) , 𝑟 (𝑡)) 𝑑𝑡 + 𝑔 (𝑡, 𝑠 (𝑡) , 𝑟 (𝑡)) 𝑑𝜔 (𝑡) . (6)

For each 𝑖, the discrete set {𝑡𝑖
𝑘
} satisfies 0 ≤ 𝑡

𝑖

0
< 𝑡
𝑖

1
< ⋅ ⋅ ⋅ <

𝑡
𝑖

𝑘
< ⋅ ⋅ ⋅ , 𝑡𝑖

𝑘
→ +∞ as 𝑘 → +∞, 𝑥𝑖(𝑡

𝑖−

𝑘
) = lim𝑡→ 𝑡𝑖−

𝑘


𝑥(𝑡),
and 𝑥𝑖(𝑡

𝑖+

𝑘
) = lim𝑡→ 𝑡𝑖+

𝑘


𝑥(𝑡) = 𝑥𝑖(𝑡
𝑖

𝑘
).

For all 𝑖 and 𝑘, rearrange {𝑡𝑖
𝑘
}, with sequence from small

to large, and pick out the same elements, getting a new
sequence {𝑡𝑘}, such that 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑘 < ⋅ ⋅ ⋅ . Equivalently,
the network (4) can be rewritten as

𝑑𝑥𝑖 (𝑡)

=
[

[

̃
𝑓 (𝑥𝑖 (𝑡) , 𝑟 (𝑡)) + 𝑐 (𝑟 (𝑡))

𝑁

∑

𝑗=1

𝑎𝑖𝑗 (𝑟 (𝑡)) Γ (𝑟 (𝑡)) 𝑥𝑗 (𝑡)
]

]

𝑑𝑡

+ 𝑔 (𝑡, 𝑥𝑖 (𝑡) , 𝑟 (𝑡)) 𝑑𝜔 (𝑡) , 𝑡 ̸= 𝑡𝑘

Δ𝑥𝑖 (𝑡𝑘) = 𝑥𝑖 (𝑡
+

𝑘
) − 𝑥𝑖 (𝑡

−

𝑘
) = 𝑏𝑖𝑘 (𝑥𝑖 (𝑡

−

𝑘
) − 𝑠 (𝑡)) ,

𝑡 = 𝑡𝑘, 𝑘 ∈ 𝑍
+
, 𝑖 = 1, 2, . . . , 𝑁,

(7)

where 𝑏𝑖𝑘 = 𝑏𝑖𝑘 , when 𝑡𝑘 = 𝑡
𝑖

𝑘
; otherwise, 𝑏𝑖𝑘 = 0. For each 𝑡𝑘,

there exists at least 𝑡𝑖
𝑘
such that 𝑡𝑖

𝑘
= 𝑡𝑘.

Remark 1. In [24], the authors divide impulses into three
forms: synchronizing impulses, desynchronizing impulses,
and inactive impulses. When impulsive gain 𝑏𝑖𝑘 ∈ (−2, 0),

these impulses belong to synchronizing impulses,
which means that the impulses are beneficial to
synchronization of impulsive dynamical network. When
𝑏𝑖𝑘 ∈ (−∞, −2) ⋃ (0, +∞), these impulses attribute to desyn-
chronizing impulses; that is, the impulsive effects can
suppress the synchronization of the impulsive dynamical
network. When 𝑏𝑖𝑘 = −2 or 𝑏𝑖𝑘 = 0, these impulses pertain to
inactive impulses, which is neither harmful nor beneficial to
the synchronization of impulsive dynamical network.

Remark 2. In [25], authors consider the synchronization
problem of coupled neural networks with Markovian switch-
ing and impulsive effects, in which the impulsive effects can
occur not only at the instants coinciding with the system
switching but also at the instants when there is no system
switching. The model in this paper is similar to the one in
[25], but it also has some differences when comparing both
of them; that is, the model in this paper also considers the
following situations which are not considered in [25]. First,
impulses may not happen at the same time, that is, only a
part of nodes possesses impulse at time 𝑡𝑘.Then, impulsemay
be synchronizing impulses, desynchronizing impulses, and
inactive impulses.

The primary object here is to deal with the exponential
synchronization problem of the stochastic complex dynami-
cal network (7) and derive sufficient conditions such that the
network (7) will synchronize into the desired trajectory 𝑠(𝑡).

Define 𝑒𝑖(𝑡) = 𝑥𝑖(𝑡) − 𝑠(𝑡) (𝑖 = 1, 2, . . . , 𝑁) as the
synchronization error; then the error system can be described
by the following differential equations:

𝑑𝑒𝑖 (𝑡)

=
[

[

𝑓 (𝑒𝑖 (𝑡) , 𝑟 (𝑡)) + 𝑐 (𝑟 (𝑡))

𝑁

∑

𝑗=1

𝑎𝑖𝑗 (𝑟 (𝑡)) Γ (𝑟 (𝑡)) 𝑒𝑗 (𝑡)
]

]

𝑑𝑡

+ 𝑔 (𝑡, 𝑒𝑖 (𝑡) , 𝑟 (𝑡)) 𝑑𝜔 (𝑡) , 𝑡 ̸= 𝑡𝑘

Δ𝑒𝑖 (𝑡𝑘) = 𝑒𝑖 (𝑡
+

𝑘
) − 𝑒𝑖 (𝑡

−

𝑘
) = 𝑏𝑖𝑘𝑒𝑖 (𝑡

−

𝑘
) ,

𝑡 = 𝑡𝑘, 𝑘 ∈ 𝑍
+
, 𝑖 = 1, 2, . . . , 𝑁,

(8)

where 𝑓(𝑒𝑖(𝑡), 𝑟(𝑡)) =
̃
𝑓(𝑥𝑖(𝑡), 𝑟(𝑡)) −

̃
𝑓(𝑠(𝑡), 𝑟(𝑡)) and

𝑔(𝑡, 𝑒(𝑡), 𝑟(𝑡)) = 𝑔(𝑡, 𝑥𝑖(𝑡), 𝑟(𝑡)) − 𝑔(𝑡, 𝑠(𝑡), 𝑟(𝑡)).
For the purpose of the exponential synchronization of

the stochastic complex dynamical network (7), we need the
following assumptions.

Assumption 3. The function ̃
𝑓(𝑥(𝑡), 𝑟(𝑡)) can be divided into

two parts as follows:

̃
𝑓 (𝑥 (𝑡) , 𝑟 (𝑡)) = 𝐶 (𝑟 (𝑡)) 𝑥 (𝑡) +

̃
𝑓1 (𝑥 (𝑡) , 𝑟 (𝑡)) ,

(9)

where 𝐶(𝑟(𝑡)) ∈ 𝑅𝑛×𝑛 is a constant matrix and ̃
𝑓1(𝑥(𝑡), 𝑟(𝑡)) is

a nonlinear function satisfying the Lipschitz condition. That
is, for any 𝑖 ∈ 𝑆, there exists a constant 𝑙𝑖 > 0 such that







̃
𝑓1 (𝑥, 𝑖) −

̃
𝑓1 (𝑦, 𝑖)






≤ 𝑙𝑖





𝑥 − 𝑦





, ∀𝑥, 𝑦 ∈ 𝑅

𝑛
. (10)
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Assumption 4. Thenoise intensitymatrix 𝑔(𝑡, 𝑥(𝑡), 𝑟(𝑡)) satis-
fies the bounded condition. That is, for any 𝑖 ∈ 𝑆, there exists
a constant ℎ𝑖 > 0 such that

trace [(𝑔 (𝑡, 𝑥, 𝑖) − 𝑔 (𝑡, 𝑦, 𝑖))𝑇 (𝑔 (𝑡, 𝑥, 𝑖) − 𝑔 (𝑡, 𝑦, 𝑖))]

≤ ℎ𝑖





𝑥 − 𝑦






2
, ∀𝑥, 𝑦 ∈ 𝑅

𝑛
.

(11)

In order to derive the main results, the following defini-
tions and lemmas are necessary in this paper.

Consider a stochastic differential equation with Marko-
vian switching of the form

𝑑𝑥 (𝑡) = 𝑓 (𝑡, 𝑟 (𝑡) , 𝑥 (𝑡)) 𝑑𝑡 + 𝑔 (𝑡, 𝑟 (𝑡) , 𝑥 (𝑡)) 𝑑𝜔 (𝑡) (12)

on 𝑡 ∈ [0, +∞) with the initial data given by 𝑥(0) ∈ 𝑅𝑛.

Definition 5 (see [31]). System (12) is said to be exponentially
stable in mean square if there exist two constants𝑀0 > 0 and
𝜂 > 0 such that

𝐸 {|𝑥 (𝑡)|
2
} ≤ 𝑀0𝑒

−𝜂𝑡
, 𝑖 = 1, 2, . . . , 𝑁, (13)

for all initial conditions 𝑥(0) ∈ 𝑅𝑛.

Definition 6 (see [11]). The dynamical network (7) is said to
be exponential synchronization inmean square if network (8)
is exponentially stable in mean square.

Definition 7 (see [24], average impulsive interval). The aver-
age impulsive interval of the impulsive sequence 𝜁 =

{𝑡1, 𝑡2, . . .} is equal to 𝑇𝑎 if there exists a positive integer 𝑁0
and a positive number 𝑇𝑎, such that

𝑇 − 𝑡

𝑇𝑎

− 𝑁0 ≤ 𝑁𝜁 (𝑇, 𝑡) ≤

𝑇 − 𝑡

𝑇𝑎

+ 𝑁0, ∀𝑇 ≥ 𝑡 ≥ 0, (14)

where𝑁𝜁(𝑇, 𝑡) denotes the number of impulsive times of the
impulsive sequence 𝜁 on the interval (𝑡, 𝑇).

Lemma 8 (see [31], Dynkin formula). Let 𝑉 ∈ 𝐶
2,1
(𝑅+ ×

𝑆 × 𝑅
𝑛
, 𝑅+) and 0 ≤ 𝜏1 ≤ 𝜏2 be bounded stopping times. If

𝑉(𝑡, 𝑖, 𝑥(𝑡)) andL𝑉(𝑡, 𝑖, 𝑥(𝑡)) are bounded on 𝑡 ∈ [𝜏1, 𝜏2]with
probability 1, then

𝐸𝑉 (𝜏2, 𝑟 (𝜏2) , 𝑥 (𝜏2)) = 𝐸𝑉 (𝜏1, 𝑟 (𝜏1) , 𝑥 (𝜏1))

+ 𝐸∫

𝜏
2

𝜏
1

L𝑉 (s, 𝑟 (𝑠) , 𝑥 (𝑠)) 𝑑𝑠.
(15)

3. Main Result

In this section, we propose some criteria of exponential syn-
chronization in mean square for stochastic complex dynam-
ical networks with impulsive perturbations and Markovian
switching.

Theorem 9. Let Assumptions 3 and 4 hold, and the average
impulsive interval of the impulsive sequence 𝜁 = {𝑡1, 𝑡2, . . .}

is no less than 𝑇𝑎. Then, the coupled network (8) is globally
exponentially stable in mean square with the convergence rate
𝜀 if the following conditions are satisfied.

(1) 𝑀 = − diag{𝜂1, 𝜂2, . . . , 𝜂𝜅} − Π is a nonsingular 𝑀-
matrix where 𝜂𝑖 = 𝜆max{𝐶

𝑇

𝑖
+ 𝐶𝑖 + (2𝑙𝑖 + ℎ𝑖)𝐼𝑛}.

In this case, there exists a positive constant 𝛼 ≫ 0

such that (𝑞1, 𝑞2, . . . , 𝑞𝜅)
𝑇
= 𝑀
−1
�⃗� ≫ 0, where �⃗� =

(𝛼, 𝛼, . . . , 𝛼)
𝑇.

(2) |1 + 𝑏𝑖𝑘| ≤ √𝑞/𝑞𝑒
(1/2)(𝛼/𝑞−𝜀)𝑇

𝑎 , where 𝑞 = min{𝑞𝑖, 𝑖 ∈ 𝑆}
and 𝑞 = max{𝑞𝑖, 𝑖 ∈ 𝑆}.

Proof. Choose a nonnegative Lyapunov function as follows:

𝑉 (𝑡, 𝑟 (𝑡) , 𝑒 (𝑡)) =

𝑞𝑟(𝑡)

2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡) , 𝑟 (𝑡) ∈ 𝑆. (16)

For [𝑡𝑘, 𝑡𝑘+1), note that almost every sample path 𝑟(𝑡) is a
right-continuous step functionwith a finite number of simple
jumps on [𝑡𝑘, 𝑡𝑘+1).

Without any loss of generality, we assume that there are 𝑙
jump points; that is, 𝑡𝑘 = 𝑡𝑘,0 < 𝑡𝑘,1 < ⋅ ⋅ ⋅ < 𝑡𝑘,𝑙 < 𝑡𝑘,𝑙+1 = 𝑡𝑘+1

(notice that 𝑡𝑘 and 𝑡𝑘+1 may not be jump points). It means
that 𝑟(𝑡) takes unique values in 𝑆 when 𝑡 ∈ [𝑡𝑘,𝑠, 𝑡𝑘,𝑠+1), 𝑠 =

0, 1, . . . , 𝑙.
Fix 𝑠 and assume that 𝑟(𝑡) = 𝜎; then the Lyapunov

function can be rewritten as

𝑉 (𝑡, 𝜎, 𝑒 (𝑡)) =

𝑞𝜎

2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡) , 𝑡 ∈ [𝑡𝑘,𝑠, 𝑡𝑘,𝑠+1) .

(17)

For each 𝜎, computingL𝑉(𝑡, 𝜎, 𝑒(𝑡)) along the trajectory
of error system (8), one can obtain that

L𝑉 (𝑡, 𝜎, 𝑒 (𝑡)) = 𝑞𝜎

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡)

[

[

𝑓 (𝑒𝑖 (𝑡) , 𝜎) + 𝑐𝜎

𝑁

∑

𝑗=1

𝑎
𝜎

𝑖𝑗
Γ𝜎𝑒𝑗 (𝑡)

]

]

+

𝜅

∑

𝑗=1

𝜋𝜎𝑗𝑉 (𝑡, 𝑗, 𝑒 (𝑡))

+𝑞𝜎

𝑁

∑

𝑖=1

1

2

trace [𝑔𝑇(𝑡, 𝑒𝑖 (𝑡) , 𝜎) 𝑔 (𝑡, 𝑒𝑖 (𝑡), 𝜎)]

= 𝑞𝜎

𝑁

∑

𝑖=1

[

[

𝑒
𝑇

𝑖
(𝑡) (𝐶𝜎𝑒𝑖 (𝑡) + 𝑓1 (𝑒𝑖 (𝑡) , 𝜎))

+𝑐𝜎

𝑁

∑

𝑗=1

𝑎
𝜎

𝑖𝑗
𝑒
𝑇

𝑖
(𝑡) Γ𝜎𝑒𝑗 (𝑡)

]

]

+

𝜅

∑

𝑗=1

𝜋𝜎𝑗𝑞𝑗

2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡)

+

𝑞𝜎

2

𝑁

∑

𝑖=1

trace[𝑔𝑇(𝑡, 𝑒𝑖 (𝑡) , 𝜎)𝑔 (𝑡, 𝑒𝑖 (𝑡) , 𝜎)] .

(18)
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According to Assumptions 3 and 4, we have

L𝑉 (𝑡, 𝜎, 𝑒 (𝑡))

≤ 𝑞𝜎

𝑁

∑

𝑖=1

[

[

𝑒
𝑇

𝑖
(𝑡) (

1

2

(𝐶
𝑇

𝜎
+ 𝐶𝜎) + (𝑙𝜎 +

1

2

ℎ𝜎) 𝐼𝑛)𝑒𝑖 (𝑡)

+𝑐𝜎

𝑁

∑

𝑗=1

𝑎
𝜎

𝑖𝑗
𝑒
𝑇

𝑖
(𝑡) Γ𝜎𝑒𝑗 (𝑡)

]

]

+

1

2

𝜅

∑

𝑗=1

𝜋𝜎𝑗𝑞𝑗

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡)

≤

𝑁

∑

𝑖=1

1

2

(𝑞𝜎𝜂𝜎 +

𝜅

∑

𝑗=1

𝜋𝜎𝑗𝑞𝑗)𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡)

+ 𝑞𝜎𝑐𝜎

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑎
𝜎

𝑖𝑗
𝑒
𝑇

𝑖
(𝑡) Γ𝜎𝑒𝑗 (𝑡)

=

𝑛

∑

𝑗=1

𝑒
𝑇

𝑗
(𝑡) [

1

2

(𝜂𝜎𝑞𝜎 +

𝜅

∑

𝑘=1

𝜋𝜎𝑘𝑞𝑘)𝐼𝑁 + 𝑞𝜎𝑐𝜎𝛾𝑗,𝜎𝐴𝜎]𝑒𝑗 (𝑡) ,

(19)

where 𝑒𝑗(𝑡) = (𝑒1𝑗(𝑡), 𝑒2𝑗(𝑡), . . . , 𝑒𝑁𝑗(𝑡))
𝑇, 𝑓1(𝑒𝑖(𝑡), 𝜎) =

̃
𝑓1(𝑥𝑖(𝑡), 𝜎)−

̃
𝑓1(𝑠(𝑡), 𝜎), and 𝜂𝜎 = 𝜆max(𝐶

𝑇

𝜎
+𝐶𝜎+(2𝑙𝜎+ℎ𝜎)𝐼𝑛).

Consider that the coupling matrix 𝐴𝜎 is symmetric; then
it is not difficult to verify that

𝑒
𝑇

𝑗
(𝑡) 𝐴𝜎𝑒𝑗 (𝑡) ≤ 𝜆max (𝐴𝜎) 𝑒

𝑇

𝑗
(𝑡) 𝑒𝑗 (𝑡) = 0. (20)

According to condition (2) of Theorem 9, we have

L𝑉 (𝑡, 𝜎, 𝑒 (𝑡)) ≤ −

𝛼

2

𝑛

∑

𝑗=1

𝑒
𝑇

𝑗
(𝑡) 𝑒𝑗 (𝑡) ≤ −𝑝𝑉 (𝑡, 𝜎, 𝑒 (𝑡)) , (21)

where 𝑝 = 𝛼/𝑞 and 𝑞 = max{𝑞𝑖, 𝑖 ∈ 𝑆}.
Let𝑊(𝑡, 𝑟(𝑡), 𝑒(𝑡)) = 𝑒

𝑝𝑡
𝑉(𝑡, 𝑟(𝑡), 𝑒(𝑡)); then

L𝑊(𝑡, 𝑟 (𝑡) , 𝑒 (𝑡))

= 𝑝𝑒
𝑝𝑡V (𝑡, 𝑟 (𝑡) , 𝑒 (𝑡)) + 𝑒𝑝𝑡L𝑉 (𝑡, 𝑟 (𝑡) , 𝑒 (𝑡))

≤ 𝑝𝑒
𝑝𝑡V (𝑡, 𝑟 (𝑡) , 𝑒 (𝑡)) − 𝑝𝑒𝑝𝑡V (𝑡, 𝑟 (𝑡) , 𝑒 (𝑡)) = 0.

(22)

Based on Lemma 8, we have

𝐸𝑊(𝑡, 𝑟 (𝑡) , 𝑒 (𝑡)) = 𝐸𝑊(𝑡𝑘, 𝑟 (𝑡𝑘) , 𝑒 (𝑡𝑘))

+ 𝐸∫

𝑡

𝑡
𝑘

L𝑊(𝑠, 𝑟 (𝑠) , 𝑒 (𝑠)) 𝑑𝑠

≤ 𝐸𝑉 (𝑡𝑘, 𝑟 (𝑡𝑘) , 𝑒 (𝑡𝑘)) .

(23)

It is easy to get

𝐸𝑉 (𝑡, 𝑟 (𝑡) , 𝑒 (𝑡)) ≤ 𝐸𝑉 (𝑡𝑘, 𝑟 (𝑡𝑘) , 𝑒 (𝑡𝑘)) 𝑒
−𝑝(𝑡−𝑡

𝑘
)
, 𝑘 ∈ 𝑍

+
.

(24)

On the other hand, from the construction of
𝑉(𝑡, 𝑟(𝑡), 𝑒(𝑡)), we have

𝑉 (𝑡𝑘, 𝑟 (𝑡𝑘) , 𝑒 (𝑡𝑘)) =

𝑞𝑟(𝑡
𝑘
)

2

𝑁

∑

𝑖=1

(1 + 𝑏𝑖𝑘)
2
𝑒
𝑇

𝑖
(𝑡
−

𝑘
) 𝑒𝑖 (𝑡
−

𝑘
)

=

𝑞𝑟(𝑡
𝑘
)

2𝑞𝑟(𝑡
−

𝑘
)

𝑞𝑟(𝑡
−

𝑘
)

𝑁

∑

𝑖=1

(1 + 𝑏𝑖𝑘)
2
𝑒
𝑇

𝑖
(𝑡
−

𝑘
) 𝑒𝑖 (𝑡
−

𝑘
)

≤ 𝜌𝑉 (𝑡
−

𝑘
) , ∀𝑘 ∈ 𝑍

+
,

(25)

where 𝜌 = max{(𝑞/𝑞)(1 + 𝑏𝑖𝑘)
2
, 𝑖 = 1, 2, . . . , 𝑁, 𝑘 ∈ 𝑍

+
}.

For 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), 𝑘 ∈ 𝑍
+, combining (14) and condition

(4) of Theorem 9, we get

𝐸𝑉 (𝑡, 𝑟 (𝑠) , 𝑒 (𝑡)) ≤ 𝜌𝐸𝑉 (𝑡
−

𝑘
, 𝑟 (𝑡
−

𝑘
) , 𝑒 (𝑡

−

𝑘
)) 𝑒
−𝑝(𝑡−𝑡

𝑘
)

≤ ⋅ ⋅ ⋅ ≤ 𝐸𝑉 (𝑡0, 𝑟 (𝑡0) , 𝑒 (𝑡0)) 𝜌
𝑘
𝑒
−𝑝(𝑡−𝑡

0
)

= 𝐸𝑉 (𝑡0, 𝑟 (𝑡0) , 𝑒 (𝑡0)) 𝑒
−𝑝(𝑡−𝑡

0
)+𝑘 ln 𝜌

≤ 𝐸𝑉 (𝑡0, 𝑟 (𝑡0) , 𝑒 (𝑡0))

× 𝑒
−(𝑝−ln 𝜌/𝑇

𝑎
)(𝑡−𝑡
0
)+𝑁
0
ln 𝜌

≤ �̃�𝑒
−𝜀(𝑡−𝑡

0
)
,

(26)

where �̃� = 𝐸𝑉(𝑡0, 𝑟(𝑡0), 𝑒(𝑡0))𝑒
𝑁
0
ln 𝜌.

It is easy to see that

𝐸𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡) ≤

1

𝑞

𝐸𝑉 (𝑡, 𝜎, 𝑒 (𝑡)) ≤

�̃�

𝑞

𝑒
−𝜀(𝑡−𝑡

0
)
. (27)

The proof is completed.

Remark 10. We assume that there exist infinite time points
𝑡𝑘 at which both impulses and Markovian switches happen.
InTheorem 9, we have derived a sufficient condition to guar-
anteeMarkovian switching and impulse interference network
to achieve exponential mean-square synchronization, and we
have evaluated the upper bound of impulsive gain. What
is more, the proof of Theorem 9Π𝑘

𝑖=1
(𝑞𝑡
𝑖

/𝑞𝑡
−

𝑖

) is magnified
into (𝑞/𝑞)

𝑘, which is not essential for Π𝑘
𝑖=1
(𝑞𝑡
𝑖

/𝑞𝑡
−

𝑖

) ≤ 𝑀0,
where𝑀0 is a positive constant. For example, the time points
are finite numbers when impulses and Markovian switches
happen at the same time, so it is easy to get Π𝑘

𝑖=1
(𝑞𝑡
𝑖

/𝑞𝑡
−

𝑖

) ≤

𝑀0. It will engender impulse every time when network mode
changes; thus, Π𝑘

𝑖=1
(𝑞𝑡
𝑘

/𝑞𝑡
−

𝑘

) = 𝑞𝑟(𝑡
𝑘
)/𝑞𝑟(𝑡

−

1
) ≤ 𝑀0. If 𝑞𝑡

𝑘

≥

𝑞𝑡
−

𝑘

, when impulse and switch happen at the same time,
then Π

𝑘

𝑖=1
(𝑞𝑡
𝑘

/𝑞𝑡
−

𝑘

) ≤ 1. So, for Π𝑘
𝑖=1
(𝑞𝑡
𝑖

/𝑞𝑡
−

𝑖

) ≤ 𝑀0, the
conditions of Theorem 9 can be weakened, which is shown
in Corollary 11.

Corollary 11. Let Assumptions 3 and 4 be true, and also
assume that for each 𝑘 ∈ 𝑍

+, Π𝑘
𝑖=1
(𝑞𝑡
𝑖

/𝑞𝑡
−

𝑖

) ≤ 𝑀0 holds.
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And the average impulsive interval of the impulsive sequence
𝜁 = {𝑡1, 𝑡2, . . .} is no less than 𝑇𝑎. Then, the network
(8) is globally exponentially stable in mean square with the
convergence rate 𝜀 if the following conditions are satisfied.

(1) 𝑀 = − diag{𝜂1, 𝜂2, . . . , 𝜂𝜅} − Π is a nonsingular 𝑀-
matrix where 𝜂𝑖 = 𝜆max{𝐶

𝑇

𝑖
+ 𝐶𝑖 + (2𝑙𝑖 + ℎ𝑖)𝐼𝑛}.

In this case, there exists a positive constant 𝛼 ≫ 0

such that (𝑞1, 𝑞2, . . . , 𝑞𝜅)
𝑇
= 𝑀
−1
�⃗� ≫ 0, where �⃗� =

(𝛼, 𝛼, . . . , 𝛼)
𝑇.

(2) |1 + 𝑏𝑖𝑘| ≤ 𝑒
(1/2)(𝛼/𝑞−𝜀)𝑇

𝑎 , where 𝑞 = min{𝑞𝑖, 𝑖 ∈ 𝑆} and
𝑞 = max{𝑞𝑖, 𝑖 ∈ 𝑆}.

Remark 12. InTheorem 9, there is a rigorous requirement on
networks that the condition 𝑀 = − diag{𝜂1, 𝜂2, . . . , 𝜂𝜅} − Π

is a nonsingular 𝑀-matrix. There are some cases such that
𝑀 unsatisfies the above condition. For example, if 𝜂𝑖 > 0,
for all 𝑖 ∈ 𝑆, then 𝑀 is not a nonsingular 𝑀-matrix. In this
case, the network (8) may be not stable even without impulse
interference (desynchronizing impulses). In this condition,
it will be interesting and significant to achieve network
synchronization via the design of impulsive controller.

Assume that 𝑏𝑖𝑘 = 𝑏𝑘 and 𝑡
𝑖

𝑘
= 𝑡𝑘 for all 𝑖, we can derive

the synchronization criteria of the network (2) via impulsive
control, which is given as follows.

Theorem 13. Let Assumptions 3 and 4 hold, and the average
impulsive interval of the impulsive sequence 𝜁 = {𝑡1, 𝑡2, . . .}

is no more than 𝑇𝑎. Then, the network (8) via impulsive
control is globally exponentially stable in mean square with the
convergence rate 𝜀 if the following conditions are satisfied.

(1) 𝑀 = diag{𝜂1, 𝜂2, . . . , 𝜂𝜅} + Π is a nonsingular 𝑀-
matrix where 𝜂𝑖 = 𝜆max{𝐶

𝑇

𝑖
+ 𝐶𝑖 + (2𝑙𝑖 + ℎ𝑖)𝐼𝑛} > 0.

Hence, there exists a positive constant 𝛼 ≫ 0 such
that (𝑞1, 𝑞2, . . . , 𝑞𝜅)

𝑇
= 𝑀

−1
�⃗� ≫ 0, where �⃗� =

(𝛼, 𝛼, . . . , 𝛼)
𝑇.

(2) |1+𝑏𝑖𝑘| ≤ √𝑞/𝑞𝑒
−(1/2)(𝛼/𝑞+𝜀)𝑇

𝑎 , where 𝑞 = min{𝑞𝑖, 𝑖 ∈ 𝑆}
and 𝑞 = max{𝑞𝑖, 𝑖 ∈ 𝑆}.

Proof. The Lyapunov function is the same as that in Theo-
rem 9. Computing 𝐿𝑉(𝑡, 𝜎, 𝑒(𝑡)) along the trajectory of error
system (8), similar to the process in Theorem 9, we can get

𝐿𝑉 (𝑡, 𝜎, 𝑒 (𝑡))

≤ 𝑞𝜎

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) [

1

2

(𝐶
𝑇

𝜎
+ 𝐶𝜎) + (𝑙𝜎 +

1

2

ℎ𝜎) 𝐼𝑛] 𝑒𝑖 (𝑡)

+ 𝑞𝜎𝑐𝜎

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

𝑎
𝜎

𝑖𝑗
𝑒
𝑇

𝑖
(𝑡) Γ𝜎𝑒𝑗 (𝑡)

+

𝜅

∑

𝑗=1

𝜋𝜎𝑗𝑞𝑗

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡)

≤

𝑛

∑

𝑗=1

𝑒
𝑇

𝑗
(𝑡) [

1

2

(𝜂𝜎𝑞𝜎 +

𝜅

∑

𝑘=1

𝜋𝜎𝑘𝑞𝑘)𝐼𝑁 + 𝑞𝜎𝑐𝜎𝛾𝑗,𝜎𝐴𝜎] 𝑒𝑗 (𝑡)

≤

𝛼

2

𝑁

∑

𝑗=1

𝑒
𝑇

𝑗
(𝑡) 𝑒𝑗 (𝑡) =

𝛼

2

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡) ,

(28)

where 𝜂𝜎 = 𝜆max{𝐶
𝑇

𝜎
+ 𝐶𝜎 + (2𝑙𝜎 + ℎ𝜎)𝐼𝑛}.

Based on Lemma 8, we have

𝐸𝑉 (𝑡, 𝑟 (𝑡) , 𝑒 (𝑡)) = 𝐸𝑉 (𝑡𝑘, 𝑟 (𝑡𝑘) , 𝑒 (𝑡𝑘))

+ 𝐸∫

𝑡

𝑡
𝑘

L𝑉 (𝑠, 𝑟 (𝑠) , 𝑒 (𝑠)) 𝑑𝑠

≤ 𝐸𝑉 (𝑡𝑘, 𝑟 (𝑡𝑘) , 𝑒 (𝑡𝑘))

+ ∫

𝑡

𝑡
𝑘

𝛼

2

𝐸

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑠) 𝑒𝑖 (𝑠) 𝑑𝑠.

(29)

Because of (𝑞/2)∑𝑁
𝑖=1

𝑒
𝑇

𝑖
(𝑡)𝑒𝑖(𝑡) ≤ 𝑉(𝑡, 𝑟(𝑡), 𝑒(𝑡)), we have

𝐸(

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡)) ≤

2

𝑞

𝐸𝑉 (𝑡𝑘, 𝑟 (𝑡𝑘) , 𝑒 (𝑡𝑘))

+ ∫

𝑡

𝑡
𝑘

𝛼

𝑞

𝐸

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑠) 𝑒𝑖 (𝑠) 𝑑𝑠.

(30)

It follows from the Gronwall’s inequality that

𝐸(

𝑁

∑

𝑖=1

𝑒
𝑇

𝑖
(𝑡) 𝑒𝑖 (𝑡)) ≤

2

𝑞

𝐸𝑉 (𝑡𝑘, 𝑟 (𝑡𝑘) , 𝑒 (𝑡𝑘)) 𝑒
(𝛼/𝑞)(𝑡−𝑡

𝑘
)
,

∀𝑘 ∈ 𝑍
+
.

(31)

On the other hand, from the construction of
𝑉(𝑡, 𝑟(𝑡), 𝑒(𝑡)), we have

𝑉 (𝑡𝑘, 𝑟 (𝑡𝑘) , 𝑒 (𝑡𝑘)) =

𝑞𝑟(𝑡
𝑘
)

2

𝑁

∑

𝑖=1

(1 + 𝑏𝑖𝑘)
2
𝑒
𝑇

𝑖
(𝑡
−

𝑘
) 𝑒𝑖 (𝑡
−

𝑘
)

=

𝑞𝑟(𝑡
𝑘
)

2𝑞𝑟(𝑡
−

𝑘
)

𝑞𝑟(𝑡
−

𝑘
)

𝑁

∑

𝑖=1

(1 + 𝑏𝑖𝑘)
2
𝑒
𝑇

𝑖
(𝑡
−

𝑘
) 𝑒𝑖 (𝑡
−

𝑘
)

≤ 𝜌𝑉 (𝑡
−

𝑘
) , ∀𝑘 ∈ 𝑍

+
,

(32)

where 𝜌 = max{(𝑞/𝑞)(1 + 𝑏𝑖𝑘)
2
, 𝑖 = 1, 2, . . . , 𝑁, 𝑘 ∈ 𝑍

+
}.

The proof can be completed by following the same steps
as that in Theorem 9.

For each 𝑘 ∈ 𝑍+, if Π𝑘
𝑖=1
(𝑞𝑡
𝑖

/𝑞𝑡
−

𝑖

) ≤ 𝑀0 holds, we have the
following corollary.
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Corollary 14. Let Assumptions 3 and 4 be true, and the
average impulsive interval of the impulsive sequence 𝜁 =

{𝑡1, 𝑡2, . . .} is no more than 𝑇𝑎. Then, the network (8) via
impulsive control is globally exponentially stable in mean
square with the convergence rate 𝜀 if the following conditions
are satisfied.

(1) 𝑀 = diag{𝜂1, 𝜂2, . . . , 𝜂𝜅} + Π is a nonsingular 𝑀-
matrix where 𝜂𝑖 = 𝜆max{𝐶

𝑇

𝑖
+ 𝐶𝑖 + (2𝑙𝑖 + ℎ𝑖)𝐼𝑛}.

Hence, there exists a positive constant 𝛼 ≫ 0 such
that (𝑞1, 𝑞2, . . . , 𝑞𝜅)

𝑇
= 𝑀

−1
�⃗� ≫ 0, where �⃗� =

(𝛼, 𝛼, . . . , 𝛼)
𝑇.

(2) |1 + 𝑏𝑖𝑘| ≤ 𝑒
−(1/2)((𝛼/𝑞)+𝜀)𝑇

𝑎 , where 𝑞 = min{𝑞𝑖, 𝑖 ∈ 𝑆}

and 𝑞 = max{𝑞𝑖, 𝑖 ∈ 𝑆}.

4. Numerical Simulation

In this section, we present two numerical simulations to
illustrate the feasibility and effectiveness of our results.

4.1. Example 1. Consider that a stochastic complex network
model consists of five nodes and two modes, which is
described as follows:

𝑑𝑥𝑖 (𝑡) =
[

[

𝐶 (𝑟 (𝑡)) 𝑥𝑖 (𝑡) + 𝐵 (𝑟 (𝑡)) 𝑓 (𝑥𝑖 (𝑡)) + 𝑐 (𝑟 (𝑡))

×

5

∑

𝑗=1

𝑎𝑖𝑗 (𝑟 (𝑡)) Γ (𝑟 (𝑡)) 𝑥𝑗 (𝑡)
]

]

𝑑𝑡

+ 𝑔 (𝑡, 𝑥𝑖 (𝑡) , 𝑟 (𝑡)) 𝑑𝜔 (𝑡) , 𝑡 ̸= 𝑡𝑘

𝑥𝑖 (𝑡𝑘) − 𝑥𝑖 (𝑡
−

𝑘
) = 𝑏𝑖𝑘 (𝑥𝑖 (𝑡) − 𝑠 (𝑡)) , 𝑡 = 𝑡𝑘, 𝑖 = 1, 2, . . . , 5,

(33)

where 𝑟(𝑡) is a Markov chain in the state space 𝑆 = {1, 2}

with the generator Π1 = [
−10 10
2 −2

], 𝑥𝑖(𝑡) = [𝑥𝑖1(𝑡), 𝑥𝑖2(𝑡)]
𝑇,

𝑓(𝑥) = tanh(𝑥), 𝑐1 = 2, 𝑐2 = 1, Γ1 = 𝐼2, Γ2 = 0.8𝐼2, 𝐶1 =
[
−3.1 0.5
0.5 −3.8

], 𝐶2 = [
−3.5 0.5
0.5 −3.6

], 𝐵1 = [
1.2 −0.6
−0.6 −1.2

], 𝐵2 = [
1.1 −0.8
−0.8 1.2

],
𝑔1(𝑥𝑖(𝑡)) = 0.5𝑥𝑖(𝑡), 𝑔2(𝑥𝑖(𝑡)) = 0.8𝑥𝑖(𝑡), and the coupled
matrix is chosen as

𝐴1 = (𝑎
1

𝑖𝑗
) =

[

[

[

[

[

[

−1 1 0 0 0

0 −1 1 0 0

0 0 −1 1 0

0 0 0 −1 1

1 0 0 0 −1

]

]

]

]

]

]

,

𝐴2 = (𝑎
2

𝑖𝑗
) =

[

[

[

[

[

[

−1 0 1 0 0

1 −1 0 0 0

0 1 −2 1 0

0 0 0 −1 1

0 1 0 0 −1

]

]

]

]

]

]

.

(34)

The synchronization state 𝑠(𝑡) satisfies

𝑑𝑠 (𝑡) = [𝐶 (𝑟 (𝑡)) 𝑠 (𝑡) + 𝐵 (𝑟 (𝑡)) 𝑓 (𝑠 (𝑡))] 𝑑𝑡

+ 𝑔 (𝑡, 𝑠 (𝑡) , 𝑟 (𝑡)) 𝑑𝜔 (𝑡) .

(35)
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Figure 1: Markov chain generated by the probability transition
matrix Π1.
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Figure 2: Desynchronizing impulsive sequence.

The nonlinear function 𝑓(⋅) satisfies the Lipschitz con-
dition with 𝑙 = 1, so we get 𝜂1 = −0.9147 and 𝜂2 =

−0.7759. Hence, 𝑀 = − diag(𝜂1, 𝜂2) − Π1 is a nonsingular
𝑀-matrix. Let �⃗� = (0.2, 0.2)

𝑇; we have (𝑞1, 𝑞2)
𝑇

=

𝑀
−1
�⃗� = [0.2481, 0.2508]

𝑇. According to Theorem 9, if
𝑇𝑎 = 4, 𝑁0 = 12, and 𝜀 = 0.05, the stochastic complex
network (33) is globally exponential synchronization inmean
square when |1 + 𝑏𝑖𝑘| ≤ √0.2481/0.2508𝑒

(0.4/0.2508)−0.1
=

4.4347. For any 𝑖 and 𝑘, let 𝑏𝑖𝑘 = 3.4; it means that
all nodes have impulsive interference at the same time.
The initial conditions for this simulation are 𝑥(𝑡0) =

(1, 2; 3, 4; 5, 6; 1.5, 2.1; 3, 2.4) and 𝑠(𝑡0) = (8, 9). The sim-
ulation results are given in Figures 1–4. Figure 1 shows a
Markov chain generated by the probability transition matrix
Π1; Figure 2 shows the impulsive signal; the trajectories of
the stochastic complex network (33) are shown in Figures 3
and 4. It is clear that all nodes 𝑥𝑖(𝑡) tend to synchronization
state 𝑠(𝑡).
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4.2. Example 2. Let 𝑟(𝑡) be a Markovian chain in the state
space 𝑆 = {1, 2} with the generator Π2 = [

−1 1
2 −2

]. Consider
that a stochastic complex network consists of six nodes and
two modes, each node in the network is a three-order Lorenz
system if the Markov chain 𝑟(𝑡) = 1, while each node is a
three-order R ̈𝑜ssler system if 𝑟(𝑡) = 2.The stochastic complex
network is described as follows:

𝑑𝑥𝑖 (𝑡) =
[

[

𝐶 (𝑟 (𝑡)) 𝑥𝑖 (𝑡) + 𝑓 (𝑥𝑖 (𝑡) , 𝑟 (𝑡))

+ 𝑐 (𝑟 (𝑡))

6

∑

𝑗=1

𝑎𝑖𝑗 (𝑟 (𝑡)) Γ (𝑟 (𝑡)) 𝑥𝑗 (𝑡)
]

]

𝑑𝑡

+ 𝑔 (𝑡, 𝑥𝑖 (𝑡) , 𝑟 (𝑡)) 𝑑𝜔 (𝑡) , 𝑡 ̸= 𝑡𝑘

𝑥𝑖 (𝑡𝑘) − 𝑥𝑖 (𝑡
−

𝑘
) = 𝑏𝑖𝑘 (𝑥𝑖 (𝑡) − 𝑠 (𝑡)) , 𝑡 = 𝑡𝑘, 𝑖 = 1, 2, . . . , 6,

(36)

in which 𝑥𝑖(𝑡) = [𝑥𝑖1(𝑡), 𝑥𝑖2(𝑡), 𝑥𝑖3(𝑡)]
𝑇, 𝑓
1
(𝑥𝑖(𝑡)) =

0.1(0, −𝑥𝑖1(𝑡)𝑥𝑖3(𝑡), 𝑥𝑖1(𝑡)𝑥𝑖2(𝑡))
𝑇, 𝑓
2
(𝑥𝑖(𝑡)) = 0.5(0, 0, 0.2 +

𝑥𝑖1(𝑡)𝑥𝑖3(𝑡))
𝑇, 𝑐1 = 𝑐2 = 1, Γ1 = 0.5𝐼3, Γ2 = 0.8𝐼3,

𝐶1 = 0.1 [

−10 10 0
28 −1 0

0 0 −8/3
], 𝐶2 = 0.5 [

0 −1 −1
1 0.2 0
0 0 −5.7

], 𝑔1(𝑥𝑖(𝑡)) =

0.5𝑥𝑖(𝑡), 𝑔2(𝑥𝑖(𝑡)) = 0.2𝑥𝑖(𝑡), and the coupled matrix is
chosen as

𝐴1 = (𝑎
1

𝑖𝑗
) =

[

[

[

[

[

[

[

[

−5 1 1 1 1 1

1 −5 1 1 1 1

1 1 −5 1 1 1

1 1 1 −5 1 1

1 1 1 1 −5 1

1 1 1 1 1 −5

]

]

]

]

]

]

]

]

,

𝐴2 = (𝑎
2

𝑖𝑗
) =

[

[

[

[

[

[

[

[

−2 1 0 0 0 1

1 −2 1 0 0 0

0 1 −2 1 0 0

0 0 1 −2 1 0

0 0 0 1 −2 1

1 0 0 0 1 −2

]

]

]

]

]

]

]

]

.

(37)

The synchronization state 𝑠(𝑡) satisfies

𝑑𝑠 (𝑡) = [𝐶 (𝑟 (𝑡)) 𝑠 (𝑡) + 𝑓 (𝑠 (𝑡) , 𝑟 (𝑡))] 𝑑𝑡

+ 𝑔 (𝑡, 𝑠 (𝑡) , 𝑟 (𝑡)) 𝑑𝜔 (𝑡) .

(38)

The initial conditions for this simulation are 𝑥(𝑡0) =

(−2, 1, 2; 3, −1, 4; 3, −1, −2; 2.1, 3, 2.4; −1.2, 2, 2; 1, −1, −2) and
𝑠(𝑡0) = (−3, −2, 3). The nonlinear functions 𝑓

1
(⋅) and 𝑓

2
(⋅)

satisfy the Lipschitz condition with 𝑙1 = 4.4733 and 𝑙2 =

6.0104, so we get 𝜂1 = 12.0017 and 𝜂2 = 12.2608. Hence,
𝑀 = diag(𝜂, 𝜂) + Π2 is a nonsingular 𝑀-matrix. Let �⃗� =

(2, 2)
𝑇; we have (𝑞1, 𝑞2)

𝑇
= 𝑀

−1
�⃗� = (0.1670, 0.1624)

𝑇.
If 𝑇𝑎 = 0.1, 𝑁0 = 2, and 𝜀 = 0.1, according to
Theorem 13, the stochastic complex network (36) is globally
exponential synchronization in mean square when |1 +

𝑏𝑖𝑘| ≤
√0.1670/0.1624𝑒

−(1/2)((2/0.1624)+0.1)×0.1
= 0.5451. In this
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Figure 3: The trajectories of the state variables of 𝑥𝑖1(𝑡) and 𝑠1(𝑡) in
stochastic complex network (33) with desynchronizing impulses.
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Figure 4: The trajectories of the state variables of 𝑥𝑖2(𝑡) and 𝑠2(𝑡) in
stochastic complex network (33) with desynchronizing impulses.

simulation, let 𝑏𝑖𝑘 = −0.5. The simulation results are given
in Figures 5–9. Figure 5 shows a Markov chain generated
by the probability transition matrix Π2; Figure 6 shows the
impulsive signal. It can be seen clearly from Figures 7, 8, and
9 that all states of the stochastic complex network (36) tend
to synchronization state 𝑠(𝑡).

5. Conclusions

In this paper, we have dealt with the exponential synchroniza-
tion problem of complex dynamical networks with impul-
sive perturbations and Markovian switching. An 𝑀-matrix
approach has been developed to solve the problem addressed.
Some sufficient conditions are presented to guarantee the
exponential synchronization of stochastic complex dynam-
ical networks with impulsive perturbations and Markovian
switching, which are independent of the upper bound of
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Figure 5: Markov chain generated by the probability transition
matrix Π2.
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Figure 6: Synchronizing impulsive sequence.
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Figure 7:The trajectories of the error variables of 𝑒𝑖1(𝑡) in stochastic
complex network (36) with synchronizing impulses.
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Figure 8:The trajectories of the error variables of 𝑒
𝑖2
(𝑡) in stochastic

complex network (36) with synchronizing impulses.
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Figure 9:The trajectories of the error variables of 𝑒𝑖3(𝑡) in stochastic
complex network (36) with synchronizing impulses.

impulsive gain andMarkovian switch. Finally, two numerical
examples have been used to show the effectiveness of our
results.
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