37 research outputs found

    Event-triggered communication for passivity and synchronisation of multi-weighted coupled neural networks with and without parameter uncertainties

    Get PDF
    A multi-weighted coupled neural networks (MWCNNs) model with event-triggered communication is studied here. On the one hand, the passivity of the presented network model is studied by utilising Lyapunov stability theory and some inequality techniques, and a synchronisation criterion based on the obtained output-strict passivity condition of MWCNNs with eventtriggered communication is derived. On the other hand, some robust passivity and robust synchronisation criteria based on output-strict passivity of the proposed network with uncertain parameters are presented. At last, two numerical examples are provided to testify the effectiveness of the output-strict passivity and robust synchronisation results

    General decay lag anti-synchronization of multi-weighted delayed coupled neural networks with reaction–diffusion terms

    Get PDF
    We propose a new anti-synchronization concept, called general decay lag anti-synchronization, by combining the definitions of decay synchronization and lag synchronization. Novel criteria for the decay lag anti-synchronization of multi-weighted delayed coupled reaction–diffusion neural networks (MWDCRDNNs) with and without bounded distributed delays are derived by constructing an appropriate nonlinear controller and using the Lyapunov functional method. Moreover, the robust decay lag anti-synchronization of MWDCRDNNs with and without bounded distributed delays is considered. Finally, two numerical simulations are performed to validate the obtained results

    Exponential Synchronization of a Class of N

    Get PDF

    Event-triggered passivity of multi-weighted coupled delayed reaction-diffusion memristive neural networks with fixed and switching topologies

    Get PDF
    This paper solves the event-triggered passivity problem for multiple-weighted coupled delayed reaction-diffusion memristive neural networks (MWCDRDMNNs) with fixed and switching topologies. On the one side, by designing appropriate event-triggered controllers, several passivity criteria for MWCDRDMNNs with fixed topology are derived based on the Lyapunov functional method and some inequality techniques. Moreover, some adequate conditions for ensuring asymptotical stability of the event-triggered passive network are presented. On the other side, we take the switching topology in network model into consideration, and investigate the event-triggered passivity and passivity-based synchronization for MWCDRDMNNs with switching topology. Finally, two examples with numerical simulation results are provided to illustrate the effectiveness of the obtained theoretical results

    Multi-weighted complex structure on fractional order coupled neural networks with linear coupling delay: a robust synchronization problem

    Get PDF
    This sequel is concerned with the analysis of robust synchronization for a multi-weighted complex structure on fractional-order coupled neural networks (MWCFCNNs) with linear coupling delays via state feedback controller. Firstly, by means of fractional order comparison principle, suitable Lyapunov method, Kronecker product technique, some famous inequality techniques about fractional order calculus and the basis of interval parameter method, two improved robust asymptotical synchronization analysis, both algebraic method and LMI method, respectively are established via state feedback controller. Secondly, when the parameter uncertainties are ignored, several synchronization criterion are also given to ensure the global asymptotical synchronization of considered MWCFCNNs. Moreover, two type of special cases for global asymptotical synchronization MWCFCNNs with and without linear coupling delays, respectively are investigated. Ultimately, the accuracy and feasibility of obtained synchronization criteria are supported by the given two numerical computer simulations.This article has been written with the joint financial support of RUSA-Phase 2.0 grant sanctioned vide letter No.F 24-51/2014-U, Policy (TN Multi-Gen), Dept. of Edn. Govt. of India, UGC-SAP (DRS-I) vide letter No.F.510/8/DRSI/2016(SAP-I) and DST (FIST - level I) 657876570 vide letter No.SR/FIST/MS-I/2018/17

    Synchronization analysis of coupled fractional-order neural networks with time-varying delays

    Get PDF
    In this paper, the complete synchronization and Mittag-Leffler synchronization problems of a kind of coupled fractional-order neural networks with time-varying delays are introduced and studied. First, the sufficient conditions for a controlled system to reach complete synchronization are established by using the Kronecker product technique and Lyapunov direct method under pinning control. Here the pinning controller only needs to control part of the nodes, which can save more resources. To make the system achieve complete synchronization, only the error system is stable. Next, a new adaptive feedback controller is designed, which combines the Razumikhin-type method and Mittag-Leffler stability theory to make the controlled system realize Mittag-Leffler synchronization. The controller has time delays, and the calculation can be simplified by constructing an appropriate auxiliary function. Finally, two numerical examples are given. The simulation process shows that the conditions of the main theorems are not difficult to obtain, and the simulation results confirm the feasibility of the theorems

    New results on finite-/fixed-time synchronization of delayed memristive neural networks with diffusion effects

    Get PDF
    In this paper, we further investigate the finite-/fixed-time synchronization (FFTS) problem for a class of delayed memristive reaction-diffusion neural networks (MRDNNs). By utilizing the state-feedback control techniques, and constructing a general Lyapunov functional, with the help of inequality techniques and the finite-time stability theory, novel criteria are established to realize the FFTS of the considered delayed MRDNNs, which generalize and complement previously known results. Finally, a numerical example is provided to support the obtained theoretical results

    Weighted Sum Synchronization of Memristive Coupled Neural Networks

    Get PDF
    Funding Information: This work is supported by the National Natural Science Foundation of China (No. 61971185) and the Open Fund Project of Key Laboratory in Hunan Universities (No. 18K010). Publisher Copyright: © 2020 Elsevier B.V.It is well known that weighted sum of node states plays an essential role in function implementation of neural networks. Therefore, this paper proposes a new weighted sum synchronization model for memristive neural networks. Unlike the existing synchronization models of memristive neural networks which control each network node to reach synchronization, the proposed model treats the networks as dynamic entireties by weighted sum of node states and makes the entireties instead of each node reach expected synchronization. In this paper, weighted sum complete synchronization and quasi-synchronization are both investigated by designing feedback controller and aperiodically intermittent controller, respectively. Meanwhile, a flexible control scheme is designed for the proposed model by utilizing some switching parameters and can improve anti-interference ability of control system. By applying Lyapunov method and some differential inequalities, some effective criteria are derived to ensure the synchronizations of memristive neural networks. Moreover, the error level of the quasi-synchronization is given. Finally, numerical simulation examples are used to certify the effectiveness of the derived results.Peer reviewe

    Synchronization of Switched Interval Networks and Applications to Chaotic Neural Networks

    Get PDF
    This paper investigates synchronization problem of switched delay networks with interval parameters uncertainty, based on the theories of the switched systems and drive-response technique, a mathematical model of the switched interval drive-response error system is established. Without constructing Lyapunov-Krasovskii functions, introducing matrix measure method for the first time to switched time-varying delay networks, combining Halanay inequality technique, synchronization criteria are derived for switched interval networks under the arbitrary switching rule, which are easy to verify in practice. Moreover, as an application, the proposed scheme is then applied to chaotic neural networks. Finally, numerical simulations are provided to illustrate the effectiveness of the theoretical results
    corecore