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This paper is concerned with the exponential synchronization for a class of 𝑁-coupled complex partial differential systems (PDSs)
with time-varying delay.The synchronization error dynamic of the PDSs is defined in the 𝑞-dimensional spatial domain. To achieve
synchronization, we added a linear feedback controller. A sufficient condition is derived to ensure the exponential synchronization
of the proposed networks using the Lyapunov–Krasovskii stability approach andmatrix inequality technology.Theproposed system
has broad applications. Two example applications are presented in the final section of this paper to verify the proposed theoretical
result.

1. Introduction

Over the last few years, complex dynamical networks have
been used to describe numerous large-scale systems in differ-
ent fields, such as natural and human societies. A complex
dynamical network is a large set of interconnected nodes;
each node represents an individual in the system, whereas the
edges denote the relations between them. Typical examples
include physical systems, biological neural networks, the
Internet, electrical power grids, and social networks. Many
interesting and important studies have been previously con-
ducted on various complex dynamical networks [1–5].

Synchronization, a common phenomenon in real sys-
tems, occurs within widespread fields such as flushing
fireflies, brain web, distributed computing systems, sensor
networks, and applause and ranges from natural to artificial
networks. The present experiment proves the following: the
flicker frequency of a firefly is affected by the flicker frequency
of its surrounding luminescence; heart muscle cells can relax
and contract the heart valve through synchronous oscilla-
tions. Synchronizations are vital in our daily life. Thus, we
must find conditions to guarantee that the nodes in a network
converge on the same desired trajectory; that is, the network
achieves synchronization. Therefore, the synchronization

problem of complex networks has attracted great attention
in the past and is becoming an important topic. Many
important results on synchronization have been obtained for
various complex dynamical networks [3–6]. External force
controllers usually need to be designed and applied to ensure
the synchronization of networks. Several control schemes,
such as adaptive, impulsive, and pinning control, have been
reported [7–10]. Scholars have used variousmethods to study
asymptotical synchronization, exponential synchronization,
passivity synchronization, and 𝐻∞ synchronization, for dif-
ferent complex networks, and have achieved fruitful results
[11–24].

Many phenomena exist in practice, such as the ones in
chemical engineering, neurophysiology, and biodynamics,
where state variables depend not only on time but also on
spatial position. These phenomena are generally modeled
in partial differential systems (PDSs). Therefore, increasing
concerns have risen on the study of PDSs [25–43]. A signif-
icant part of research is based on reaction–diffusion neural
network models, such as [25, 34–38]. Multiple intercoupled
reaction–diffusion neural networks can generate complex
networks, as shown in the following example: the author
of [25] discusses the passivity-based synchronization of a
complex delayed dynamical network consisting of 𝑁 linearly
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and diffusively coupled identical reaction–diffusion neural
networks. In practice, the nodes of a complex network are not
necessarily neurons. For example, in [26], Yang et al. address a
class of complex spatiotemporal networks with space-varying
coefficients, where node dynamics are described by coupled
partial differential equations (PDEs); in [27], Wang et al.
study a class of networked linear spatiotemporal networks
consisting of 𝑁 identical nodes, where the spatiotemporal
behavior of each node is described by parabolic PDEs.
Complex network systems with a partial differential term are
generally studied more.

The synchronization of complex partial differential sys-
tems has also yielded fruitful research results [25–29, 39–
43]. Some of the studies have been based on networks
without time delay, in which the spatial variables are one-
dimensional, such as [26–28]. However, the spatial variable𝑥 is not always one-dimensional. Thus, the authors expand
spatial variables into the 𝑞-dimensional (𝑞 ≥ 2) spatial
domain to discuss asymptotical [39],𝐻∞ [39], and finite-time
synchronizations [40] for two PDSs. No delay exists in the
networks in the literature mentioned earlier.

Time delays are often encountered in practical cases,
and their existence is often one of the key factors that
cause system shock and instability. Hence, the problem of
considering time delay in the PDSs has aroused the interest
of researchers. In [29], sufficient conditions on asymptotical
synchronization for a class of coupled time-delay PDSs via
boundary control have been obtained; Wu et al. address the
robust𝐻∞ synchronization of PDSs with time delay [41, 42];
Wang et al. focus on the passivity problemof a class of delayed
reaction–diffusion networks [43].

To date, some studies have been conducted on the expo-
nential synchronization of PDSs, where spatial variables are
one-dimensional and the networks have no time lag [26, 27].
However, no literature on the exponential synchronization of
time-delay PDS in 𝑞-dimensional space variables has been
published.

Motivated by the above analysis, this paper considers
the exponential synchronization for a class of time-varying
delay 𝑁-coupled PDSs in the 𝑞-dimensional spatial domain.
The innovation points of this paper can be summarized as
follows:

(1) We propose a method that studies exponential
synchronization for the time-delay partial differen-
tial complex network model with reaction–diffusion
term presented in this paper. That is, the sufficient
condition of delay-dependent exponential synchro-
nization is obtained by constructing the appropri-
ate Lyapunov–Krasovskii function and using matrix
inequality analysis technology. The sufficient con-
dition is presented in the form of a linear matrix
inequality and can reflect the influence of time
delay on system exponential synchronization, hence
becoming a less conservative method than the exist-
ing models. To the best of our knowledge, the
exponential synchronization of the time-delay partial
differential complex network model with multidi-
mensional spatial variables has not yet been studied.

(2) We reveal the influence of a diffusion coefficient
on the exponential synchronization of the proposed
system. The sufficient condition obtained reveals an
interesting conclusion: if 𝐷 is sufficiently large, then
condition (16) of Theorem 8 will always be satisfied.
Hence, a given system will always reach exponential
synchronization if the diffusion coefficient is large
enough.

(3) For the proposed system, we can use the obtained
sufficient condition of exponential synchronization
and the LMI Control Toolbox in MATLAB to easily
calculate the estimated values of the maximum delay
margin 𝛿 andmaximum exponential synchronization
decay rate 𝜇0.

The rest of this paper is organized as follows. In Section 2,
a class of 𝑁-coupled complex PDSs with time-varying delay
is presented and some preliminaries are given. In Section 3,
we analyze the synchronization of the addressed network
based on the Lyapunov–Krasovskii stability theorem and
linear matrix inequalities (LMIs) technology. Two numerical
examples are provided to verify the effectiveness of the theo-
retical results in Section 4. Section 5 presents the concluding
remarks.

2. Network Model and Preliminaries

2.1. Notations. Throughout this paper, 𝑅𝑛 and 𝑅𝑛×𝑚 denote
the 𝑛-dimensional Euclidean space and the set of all 𝑛 ×𝑚 real matrices, respectively. For symmetric matrix 𝐴, the
notation 𝐴 > 0 means that 𝐴 is a positive-definite matrix.𝜆min(⋅) and 𝜆max(⋅) represent the minimum and maximum
eigenvalues, respectively, of the matrix. 𝐶𝑠(Ω) refers to the
space of functions with continuous partial derivatives of an
order less than or equal to 𝑠 in Ω. The symbol ⊗ denotes the
Kronecker product.

2.2. Model Description. Consider the following 𝑁-coupled
complex PDSs with time-varying delay, in which each node
is an 𝑛-dimensional dynamical subsystem:𝜕𝑧𝑖 (𝑥, 𝑡)𝜕𝑡 = 𝐷Δ𝑧𝑖 (𝑥, 𝑡) + 𝐴𝑓 (𝑧𝑖 (𝑥, 𝑡))

+ 𝐶1 𝑁∑
𝑗=1

𝑅1𝑖𝑗Γ1𝑧𝑗 (𝑥, 𝑡)
+ 𝐶2 𝑁∑
𝑗=1

𝑅2𝑖𝑗Γ2𝑧𝑗 (𝑥, 𝑡 − ℎ (𝑡)) .
(1)

The boundary conditions and initial values are given as
follows: 𝑧𝑖 (𝑥, 𝑡) = Φ𝑖 (𝑥, 𝑡) (𝑥, 𝑡) ∈ Ω × [−ℎ0, 0]𝑧𝑖 (𝑥, 𝑡) = 0 (𝑥, 𝑡) ∈ 𝜕Ω × [−ℎ0, +∞] , (2)

where Φ𝑖(𝑥, 𝑡) is bounded and continuous on Ω, 𝑖 =1, 2, . . . , 𝑁; 𝑁 is the number of nodes in the network;
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𝑥 ∈ (𝑥1, 𝑥2, . . . , 𝑥𝑞)𝑇 ∈ Ω ⊂ 𝑅𝑞 is the space vari-
able; 𝑧𝑖(𝑥, 𝑡) = (𝑧𝑖1(𝑥, 𝑡), 𝑧𝑖2(𝑥, 𝑡), . . . , 𝑧𝑖𝑛(𝑥, 𝑡))𝑇 ∈ 𝑅𝑛 is
the state vector of the 𝑖th node; 𝑡 is the time variable;𝑓(𝑧𝑖) = (𝑓1(𝑧𝑖1⋅), 𝑓2(𝑧𝑖2⋅), . . . , 𝑓𝑛(𝑧𝑖𝑛⋅))𝑇 is the smooth non-
linear vector-valued function; 𝐶1 and 𝐶2 are the positive
real numbers for the coupling strength for nondelayed and
delayed configurations, respectively;𝐷 = diag(𝑑1, 𝑑2, . . . , 𝑑𝑛)
is the positive-definite matrix; 𝑑𝑖 > 0, 𝑖 = 1, 2, . . . , 𝑛, is
diffusion reaction coefficients; 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛 is the real matrix;Γ1 = diag(𝛾11, 𝛾21, . . . , 𝛾𝑛1) and Γ2 = diag(𝛾12, 𝛾22, . . . , 𝛾𝑛2)
are the positive-definite matrices describing the individual
coupling between twonodes for nondelayed and delayed con-
figurations, respectively; 𝑅1 = (𝑅1𝑖𝑗)𝑁×𝑁 and 𝑅2 = (𝑅2𝑖𝑗)𝑁×𝑁
are the topological network structure and coupling strength
between nodes for nondelayed and delayed configurations,
respectively; if a connection exists between nodes 𝑖 and 𝑗 (𝑗 ̸=𝑖), then 𝑅1𝑖𝑗 = 𝑅1𝑗𝑖 > 0; else, 𝑅1𝑖𝑗 = 𝑅1𝑗𝑖 = 0; and the elements of
the coupling matrix 𝑅1 = (𝑅1𝑖𝑗)𝑁×𝑁 satisfy

𝑅1𝑖𝑖 = − 𝑁∑
𝑗=1,𝑗 ̸=𝑖

𝑅1𝑖𝑗 < 0, 𝑖 = 1, 2, . . . , 𝑁. (3)

𝑅2 = (𝑅2𝑖𝑗)𝑁×𝑁 can be defined similarly as 𝑅1 = (𝑅1𝑖𝑗)𝑁×𝑁.
The network in this paper is undirected and weighted.

2.3. Preliminaries

Lemma 1 (see [44]). LetΩ be a cube |𝑥𝑘| < 𝑙𝑘 (𝑘 = 1, 2, . . . , 𝑞)
and let 𝑔(𝑥) be a real-valued function belonging to 𝐶1(Ω)
which vanishes on the boundary 𝜕Ω of Ω (i.e., 𝑔(𝑥)|𝜕Ω = 0).
Then,

∫
Ω

𝑔2 (𝑥) 𝑑𝑥 ≤ 𝑙2𝑘 ∫
Ω

(𝜕𝑔 (𝑥)𝜕𝑥𝑘 )2 𝑑𝑥,
where 𝑥 ∈ (𝑥1, 𝑥2, . . . , 𝑥𝑞)𝑇 . (4)

Lemma 2 (see [16]). For any vector 𝑥, 𝑦 ∈ 𝑅𝑛, scalar 𝜇 > 0,
and positive-definite matrix𝑄 ∈ 𝑅𝑛×𝑛, the following inequality
holds: 2𝑥𝑇𝑦 ≤ 𝜇𝑥𝑇𝑄𝑥 + 1𝜇𝑦𝑇𝑄−1𝑦. (5)

Lemma 3 (Schur complement). Suppose 𝐸1 and 𝐸2 are
symmetric matrices; the linear matrix inequality (LMI)

( 𝐸1 𝐸3𝐸3𝑇 𝐸2) < 0 (6)

is equivalent to one of the following conditions:

(1) 𝐸1 < 0, 𝐸2 − 𝐸3𝑇𝐸1−1𝐸3 < 0,
(2) 𝐸2 < 0, 𝐸1 − 𝐸3𝐸2−1𝐸3𝑇 < 0,

where 𝐸3 is a matrix with suitable dimensions.

Assumption 4. For any vector𝑥, 𝑦 ∈ 𝑅𝑛, there exists a positive
constant 𝜌𝑗 ∈ 𝑅 such that the function 𝑓𝑗(∙) satisfies the
Lipschitz condition𝑓𝑗 (𝑥) − 𝑓𝑗 (𝑦) ≤ 𝜌𝑗 𝑥 − 𝑦 . (7)

Assumption 5. There exist real positive constants ℎ0 such that
the time delay ℎ(𝑡) satisfies ℎ̇(𝑡) ≤ ℎ0 < 1.

Let 𝑠(𝑥, 𝑡) = (𝑠1(𝑥, 𝑡), 𝑠2(𝑥, 𝑡), . . . , 𝑠𝑛(𝑥, 𝑡))𝑇 be the func-
tion to which all 𝑧𝑖 (𝑖 = 1, 2, . . . , 𝑁) are expected to
synchronize and 𝑠(𝑥, 𝑡) satisfies the following equation:𝜕𝑠𝜕𝑡 = 𝐷Δ𝑠 (𝑥, 𝑡) + 𝐴𝑓 (𝑠 (𝑥, 𝑡)) ,𝑠 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω,𝑠 (𝑥, 𝑡) = Φ (𝑥, 𝑡) , (𝑥, 𝑡) ∈ Ω × [−ℎ0, 0] , (8)

where 𝑠(𝑥, 𝑡)may be an equilibrium point, a periodic orbit, or
a chaotic orbit in the phase space andΦ(𝑥, 𝑡) is bounded and
continuous on Ω.

Definition 6. The complex network (1) with initial condition
(2) is said to achieve exponential synchronization if there
exist constants 𝜇 > 0, 𝑀 > 0 such that𝑧𝑖 (𝑥, 𝑡) − 𝑠 (𝑥, 𝑡)2 = 𝑀 exp {−𝜇𝑡} ∀, 𝑖 = 1, 2, . . . , 𝑁, (9)

where ‖ ⋅ ‖2 stands for the Euclidean vector norm and 𝑠(𝑥, 𝑡)
is synchronous evolution of network (1).

Remark 7. Notice that ‖𝑔𝑖(𝑥, 𝑡)‖2 = (∫
Ω

|𝑔𝑖(𝑥, 𝑡)|2𝑑𝑥)1/2,
where 𝑔(𝑥, 𝑡) = (𝑔1(𝑥, 𝑡), 𝑔2(𝑥, 𝑡), . . . , 𝑔𝑛(𝑥, 𝑡))𝑇; then,𝑔 (𝑥, 𝑡)22 = 𝑛∑

𝑖=1

𝑔𝑖 (𝑥, 𝑡)22 = 𝑛∑
𝑖=1

(∫
Ω

𝑔𝑖 (𝑥, 𝑡)2 𝑑𝑥)
= ∫
Ω

𝑔𝑇𝑔𝑑𝑥. (10)

We add linear state feedback controllers to nodes in
network (1); the controlled network is then described by𝜕𝑧𝑖 (𝑥, 𝑡)𝜕𝑡 = 𝐷Δ𝑧𝑖 (𝑥, 𝑡) + 𝐴𝑓 (𝑧𝑖 (𝑥, 𝑡))

+ 𝐶1 𝑁∑
𝑗=1

𝑅1𝑖𝑗Γ1𝑧𝑗 (𝑥, 𝑡)
+ 𝐶2 𝑁∑
𝑗=1

𝑅2𝑖𝑗Γ2𝑧𝑗 (𝑥, 𝑡 − ℎ (𝑡)) + 𝑢𝑖 (𝑥, 𝑡) ,
𝑖 = 1, 2, . . . , 𝑁,

(11)

where 𝑢𝑖(𝑥, 𝑡), 𝑖 = 1, 2, . . . , 𝑁, are the linear state feedback
controllers. And 𝑢(𝑥, 𝑡) = (𝑢1𝑇(𝑥, 𝑡), 𝑢2𝑇(𝑥, 𝑡), . . . , 𝑢𝑛𝑇(𝑥, 𝑡))𝑇
is defined by𝑢 (𝑥, 𝑡) = −𝐶1𝐾(𝑧 (𝑥, 𝑡) − 𝑠∗ (𝑥, 𝑡)) , (12)
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where 𝑠∗(𝑥, 𝑡) = (𝑠𝑇(𝑥, 𝑡), 𝑠𝑇(𝑥, 𝑡), . . . , 𝑠𝑇(𝑥, 𝑡))𝑇, 𝐾 ∈𝑅𝑛𝑁×𝑛𝑁.
Let 𝑒𝑖(𝑥, 𝑡) = 𝑧𝑖(𝑥, 𝑡) − 𝑠(𝑥, 𝑡), and error dynamics can be

described as follows:𝜕𝑒𝑖 (𝑥, 𝑡)𝜕𝑡 = 𝐷Δ𝑒𝑖 (𝑥, 𝑡) + 𝐴𝑓 (𝑧𝑖 (𝑥, 𝑡)) − 𝐴𝑓 (𝑠 (𝑥, 𝑡))
+ 𝐶1 𝑁∑
𝑗=1

𝑅1𝑖𝑗Γ1𝑒𝑗 (𝑥, 𝑡)
+ 𝐶2 𝑁∑
𝑗=1

𝑅2𝑖𝑗Γ2𝑒𝑗 (𝑥, 𝑡 − ℎ (𝑡)) + 𝑢𝑖 (𝑥, 𝑡) .
(13)

The synchronization problem of PDSs in (11) becomes the
stabilization problem in (13) of the corresponding synchro-
nization.

We can rewrite system (13) in a compact form by𝜕𝑒 (𝑥, 𝑡)𝜕𝑡 = 𝐷Δ𝑒 (𝑥, 𝑡) + 𝐴𝑓 (𝑧 (𝑥, 𝑡)) − 𝐴𝑓 (𝑠 (𝑥))
+ 𝐶1 (𝑅1 ⊗ Γ1) 𝑒 (𝑥, 𝑡)+ 𝐶2 (𝑅2 ⊗ Γ2) 𝑒 (𝑥, 𝑡 − ℎ (𝑡))− 𝐶1𝐾𝑒 (𝑥, 𝑡) ,

(14)

where 𝑓(𝑧(𝑥, 𝑡)) = (𝑓𝑇(𝑧1(𝑥, 𝑡)), 𝑓𝑇(𝑧2(𝑥, 𝑡)), . . . , 𝑓𝑇(𝑧𝑁(𝑥,𝑡))) 𝑇, 𝑒(𝑥, 𝑡) = (𝑒1𝑇(𝑥, 𝑡), 𝑒2𝑇(𝑥, 𝑡), . . . , 𝑒𝑁𝑇(𝑥, 𝑡))𝑇.
Denote Θ = diag (𝜌12, 𝜌22, . . . , 𝜌𝑛2) ,Θ = 𝐼𝑁 ⊗ Θ,𝐷 = diag (𝐷,𝐷, . . . , 𝐷) = 𝐼𝑁 ⊗ 𝐷,𝐴 = diag (𝐴, 𝐴, . . . , 𝐴) = 𝐼𝑁 ⊗ 𝐴.

(15)

3. Main Results

Theorem 8. Suppose Assumptions 4 and 5 hold for the
complex dynamical network (1) with initial condition (2), 0 <ℎ(𝑡) ≤ 𝛿, if the following matrices exist: 𝐾 ∈ 𝑅𝑛𝑁×𝑛𝑁, 𝑃 =
diag{𝑃1, 𝑃2, . . . , 𝑃𝑁} (∈ 𝑅𝑛𝑁×𝑛𝑁) > 0, 𝑃𝑖 = (𝑝𝑖𝑗𝑙)𝑛×𝑛, 𝑄 (∈𝑅𝑛𝑁×𝑛𝑁) > 0, and 𝑖 = 1, 2, . . . , 𝑁,

( 𝐸1 𝐸3𝐸3𝑇 −𝑄) < 0, (16)

where 𝐸3𝑇 = exp {−𝜇𝛿} 𝐶2𝑃 (𝑅2 ⊗ Γ2) ,
𝐸1 = exp {−2𝜇𝛿} [− 𝑞∑

𝑘=1

1𝑙𝑘2 (𝑃𝐷 + 𝐷𝑃) + Θ

+ 𝑃𝐴𝐴𝑇𝑃 + 𝐶1𝑃 (𝑅1 ⊗ Γ1) + 𝐶1 (𝑅1 ⊗ Γ1) 𝑃
+ 𝑄 exp {2𝜇𝛿}1 − ℎ0 − (𝐾𝑇𝑃 + 𝑃𝐾) + 2𝜇𝑃] ,

(17)

and network (1) is then exponentially synchronized under
controllers (12) in Definition 6.

Proof. Construct the following Lyapunov functional:𝑉 (𝑡) = 𝑉1 + 𝑉2, (18)𝑉1 = exp {−2𝜇𝛿}∫
Ω

𝑒𝑇 (𝑥, 𝑡) 𝑃𝑒 (𝑥, 𝑡) 𝑑𝑥, (19)

𝑉2 = 11 − ℎ0 ∫𝑡𝑡−ℎ(𝑡) ∫Ω 𝑒𝑇 (𝑥, 𝑠) 𝑄𝑒 (𝑥, 𝑠)⋅ exp {−2𝜇 (𝑡 − 𝑠)} 𝑑𝑥 𝑑𝑠. (20)

From Assumption 5, the time derivative of 𝑉(𝑡) along the
trajectory of system (13) is as follows:�̇� (𝑡) = exp {−2𝜇𝛿}∫

Ω
(𝜕𝑒𝑇 (𝑥, 𝑡)𝜕𝑡 𝑃𝑒 (𝑥, 𝑡) + 𝑒𝑇 (𝑥, 𝑡)

⋅ 𝑃𝜕𝑒 (𝑥, 𝑡)𝜕𝑡 ) 𝑑𝑥 + 11 − ℎ0 ∫Ω 𝑒𝑇 (𝑥, 𝑡) 𝑄𝑒 (𝑥,
𝑡) 𝑑𝑥 − 1 − ℎ̇ (𝑡)1 − ℎ0 exp {−2𝜇ℎ (𝑡)} ∫

Ω
𝑒𝑇 (𝑥, 𝑡− ℎ (𝑡)) 𝑄𝑒 (𝑥, 𝑡 − ℎ (𝑡)) 𝑑𝑥 − 2𝜇𝑉2 ≤ exp {−2𝜇𝛿}⋅ ∫

Ω
[𝑒𝑇 (𝑥, 𝑡) 𝑃𝐷Δ𝑒 (𝑥, 𝑡) + (Δ𝑒 (𝑥, 𝑡))𝑇𝐷𝑃𝑒 (𝑥, 𝑡)

+ 𝑒𝑇 (𝑥, 𝑡) (𝐶1𝑃 (𝑅1 ⊗ Γ1) + 𝑄 exp {2𝜇𝛿}1 − ℎ0+ 𝐶1 (𝑅1 ⊗ Γ1) 𝑃) 𝑒 (𝑥, 𝑡) + 2𝑒𝑇 (𝑥, 𝑡)
⋅ 𝑃𝐴 (𝑓 (𝑧 (𝑥, 𝑡)) − 𝑓 (𝑠 (𝑥))) − 𝑒𝑇 (𝑥, 𝑡) (𝐾𝑇𝑃+ 𝑃𝐾) 𝑒 (𝑥, 𝑡) + 2𝐶2𝑒𝑇 (𝑥, 𝑡) 𝑃 (𝑅2 ⊗ Γ2) 𝑒 (𝑥, 𝑡
− ℎ (𝑡))] 𝑑𝑥 − exp {−2𝜇𝛿}∫

Ω
𝑒𝑇 (𝑥, 𝑡 − ℎ (𝑡))⋅ 𝑄𝑒 (𝑥, 𝑡 − ℎ (𝑡)) 𝑑𝑥 − 2𝜇𝑉2.

(21)

By using Green’s formula and the boundary condition (2),
from Lemma 1, we can obtain the following:∫

Ω
𝑒𝑇 (𝑥, 𝑡) 𝑃𝐷Δ𝑒 (𝑥, 𝑡) 𝑑𝑥
= 𝑁∑
𝑖=1

∫
Ω

𝑒𝑖𝑇 (𝑥, 𝑡) 𝑃𝑖𝐷Δ𝑒 𝑖(𝑥, 𝑡) 𝑑𝑥



Complexity 5

= 𝑁∑
𝑖=1

𝑛∑
𝑗=1

𝑛∑
𝑙=1

𝑝𝑖𝑗𝑙𝑑𝑙 ∫
Ω

𝑒𝑖𝑗𝑇 (𝑥, 𝑡) Δ𝑒𝑖𝑙 (𝑥, 𝑡) 𝑑𝑥
= − 𝑞∑
𝑘=1

𝑁∑
𝑖=1

𝑛∑
𝑗=1

𝑛∑
𝑙=1

𝑝𝑖𝑗𝑙𝑑𝑙 ∫
Ω

𝜕𝑒𝑖𝑗 (𝑥, 𝑡)𝜕𝑥𝑘 𝜕𝑒𝑖𝑙 (𝑥, 𝑡)𝜕𝑥𝑘 𝑑𝑥
= − 𝑞∑
𝑘=1

∫
Ω

(𝜕𝑒 (𝑥, 𝑡)𝜕𝑥𝑘 )𝑇 𝑃𝐷(𝜕𝑒 (𝑥, 𝑡)𝜕𝑥𝑘 )𝑑𝑥.
(22)

Similarly,∫
Ω

(Δ𝑒 (𝑥, 𝑡))𝑇𝐷𝑃𝑒 (𝑥, 𝑡) 𝑑𝑥
= − 𝑞∑
𝑘=1

∫
Ω

(𝜕𝑒 (𝑥, 𝑡)𝜕𝑥𝑘 )𝑇𝐷𝑃(𝜕𝑒 (𝑥, 𝑡)𝜕𝑥𝑘 )𝑑𝑥. (23)

We can then obtain∫
Ω

[𝑒𝑇 (𝑥, 𝑡) 𝑃𝐷Δ𝑒 (𝑥, 𝑡) + (Δ𝑒 (𝑥, 𝑡))𝑇𝐷𝑃𝑒 (𝑥, 𝑡)] 𝑑𝑥
= − 𝑞∑
𝑘=1

∫
Ω

(𝜕𝑒 (𝑥, 𝑡)𝜕𝑥𝑘 )𝑇 (𝑃𝐷 + 𝐷𝑃)(𝜕𝑒 (𝑥, 𝑡)𝜕𝑥𝑘 )𝑑𝑥
≤ ∫
Ω

𝑒𝑇 (𝑥, 𝑡) [− 𝑞∑
𝑘=1

1𝑙𝑘2 (𝑃𝐷 + 𝐷𝑃)] 𝑒 (𝑥, 𝑡) 𝑑𝑥,
(24)

where a real matrix 𝐻 exists, such that 𝑃𝐷 + 𝐷𝑃 = 𝐻𝑇𝐻.
By using Assumption 4 and Lemma 2, we can derive2𝑒𝑇 (𝑥, 𝑡) 𝑃𝐴 (𝑓 (𝑧 (𝑥, 𝑡)) − 𝑓 (𝑠 (𝑥)))

= 2 𝑁∑
𝑖=1

𝑒𝑖𝑇 (𝑥, 𝑡) 𝑃𝑖𝐴 (𝑓 (𝑧𝑖 (𝑥, 𝑡)) − 𝑓 (𝑠 (𝑥)))
≤ 𝑁∑
𝑖=1

𝑒𝑖𝑇 (𝑥, 𝑡) 𝑃𝑖𝐴𝐴𝑇𝑃𝑖𝑒𝑖 (𝑥, 𝑡)
+ 𝑁∑
𝑖=1

𝑒𝑖𝑇 (𝑥, 𝑡) Θ𝑒𝑖 (𝑥, 𝑡)
= 𝑒𝑇 (𝑥, 𝑡) (𝑃𝐴𝐴𝑇𝑃 + Θ) 𝑒 (𝑥, 𝑡) ,

(25)

2𝑒𝑇 (𝑥, 𝑡) 𝑃 (𝑅2 ⊗ Γ2) 𝑒 (𝑥, 𝑡 − ℎ (𝑡))≤ 𝐶2𝑒𝑇 (𝑥, 𝑡) 𝑃 (𝑅2 ⊗ Γ2)𝑄−1 (𝑅2 ⊗ Γ2) 𝑃𝑒 (𝑥, 𝑡)+ 1𝐶2 𝑒𝑇 (𝑥, 𝑡 − ℎ (𝑡)) 𝑄𝑒 (𝑥, 𝑡 − ℎ (𝑡)) . (26)

Thus, substituting inequalities (22)–(26) in (21), we can
obtain�̇� (𝑡) ≤ exp {−2𝜇𝛿}∫

Ω
𝑒𝑇 (𝑥, 𝑡) [− 𝑞∑

𝑘=1

1𝑙𝑘2 (𝑃𝐷 + 𝐷𝑃)
+ Θ + 𝑃𝐴𝐴𝑇𝑃 + 𝐶1𝑃 (𝑅1 ⊗ Γ1) + 𝐶1 (𝑅1 ⊗ Γ1) 𝑃

+ 𝑄 exp {2𝜇𝛿}1 − ℎ0 + 𝐶22𝑃 (𝑅2 ⊗ Γ2)𝑄−1 (𝑅2 ⊗ Γ2) 𝑃
− (𝐾𝑇𝑃 + 𝑃𝐾)] 𝑒 (𝑥, 𝑡) 𝑑𝑥 − 2𝜇𝑉2.

(27)

Add 2𝜇𝑉(𝑡) to both sides of (27); then,�̇� (𝑡) + 2𝜇𝑉 (𝑡) ≤ exp {−2𝜇𝛿}∫
Ω

𝑒𝑇 (𝑥, 𝑡)
⋅ [− 𝑞∑
𝑘=1

1𝑙𝑘2 (𝑃𝐷 + 𝐷𝑃) + Θ + 𝑃𝐴𝐴𝑇𝑃
+ 𝐶1𝑃 (𝑅1 ⊗ Γ1) + 𝐶1 (𝑅1 ⊗ Γ1) 𝑃 + 𝑄 exp {2𝜇𝛿}1 − ℎ0+ 𝐶22𝑃 (𝑅2 ⊗ Γ2)𝑄−1 (𝑅2 ⊗ Γ2) 𝑃 − (𝐾𝑇𝑃 + 𝑃𝐾)
+ 2𝜇𝑃] 𝑒 (𝑥, 𝑡) 𝑑𝑥.

(28)

By using Lemma 3, from (16), we derive�̇� (𝑡) ≤ −2𝜇𝑉 (𝑡) . (29)

To integrate both sides of inequality (29), we can obtain𝑉 (𝑡) ≤ exp {−2𝜇𝑡} 𝑉 (0) . (30)

Given that 𝑃 > 0, 𝑉(𝑡), as given by (18), satisfies the
following inequality:

exp {−2𝜇𝛿} 𝜆min (𝑃) ‖𝑒 (𝑥, 𝑡)‖2 ≤ 𝑉 (𝑡) ≤ exp {−2𝜇𝑡}⋅ 𝑉 (0) ≤ exp {−2𝜇𝑡} [exp {−2𝜇𝛿} 𝜆max (𝑃)
+ 1 − exp {−2𝜇𝛿}2𝜇 (1 − ℎ0) 𝜆max (𝑄)] ‖Φ‖2 . (31)

Finally, we obtain‖𝑒 (𝑥, 𝑡)‖ ≤ exp {−𝜇𝑡}
⋅ √ 𝜆max (𝑃) + ((exp {2𝜇𝛿} − 1) /2𝜇 (1 − ℎ0)) 𝜆max (𝑄)𝜆min (𝑃) ‖Φ‖ , (32)

where ‖Φ‖ = sup−𝛿≤𝑡≤0[∫Ω |𝑒(𝑥, 𝑡)|2𝑑𝑥]1/2.
Therefore, by using Definition 6, the error dynamical

system (14) is globally exponentially stable at the equilibrium
set with the exponential rate 𝜇. Consequently, network (1) is
globally exponentially synchronized under controllers (12).
Thus, the proof is completed.

Remark 9. To date, some studies have been conducted on the
exponential synchronization of PDSs, where spatial variables
are one-dimensional and the networks have no time lag [26,
27]. However, no literature on the exponential synchroniza-
tion of time-delay PDS in 𝑞-dimensional space variables has
been published.
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Remark 10. We reveal the influence of a diffusion coefficient
on the exponential synchronization of the proposed system
in Theorem 8. The sufficient condition obtained reveals
an interesting conclusion: if 𝐷 is sufficiently large, then
condition (16) of Theorem 8 will always be satisfied. Hence,
a given systemwill always reach exponential synchronization
if the diffusion coefficient is large enough.

Remark 11. The criterion given in Theorem 8 is dependent
on the time delay. It is well known that the delay-dependent
criteria are less conservative than delay-independent criteria
when the delay is small.

Remark 12. From Theorem 8, one can determine an upper
bound of 𝜇 such that system (1) is exponentially syn-
chronized. This requires solving the following optimization
problem: maximize 𝜇 subject to LMI (16).

This means that system (1) under controllers (12) will
be exponentially synchronized if 𝜇 ≤ 𝜇0, where 𝜇0 is the
maximized value of 𝜇 of the optimization problem.

Remark 13. By iteratively solving the LMIs given in Theo-
rem 8 with respect to 𝛿 and ℎ0, one can find the maximum
allowable upper bound 𝛿, ℎ0 of ℎ(𝑡) and ℎ̇(𝑡), respectively, for
guaranteeing the exponential synchronization of system (1).

4. Illustrative Example

In this section, two numerical examples are provided to
illustrate the effectiveness of the proposed method.

Example 1. Consider the controlled delayed PDSs consisting
of four identical coupling nodes, wherein each node is a one-
dimensional value described by𝜕𝑧𝑖 (𝑥, 𝑡)𝜕𝑡 = 𝐷Δ𝑧𝑖 (𝑥, 𝑡) + 𝐴𝑓 (𝑧𝑖 (𝑥, 𝑡))

+ 𝐶1 4∑
𝑗=1

𝑅1𝑖𝑗Γ1𝑧𝑗 (𝑥, 𝑡)
+ 𝐶2 4∑
𝑗=1

𝑅2𝑖𝑗Γ2𝑧𝑗 (𝑥, 𝑡 − ℎ (𝑡)) + 𝑢𝑖 (𝑥, 𝑡)
(𝑗 = 1, 2, 3, 4)

(33)

with the initial values𝜙1 (𝑥, 0) = − exp {2 (−𝑥 + 1)} ,𝜙2 (𝑥, 0) = 0.5 sin 0.5𝑥,𝜙3 (𝑥, 0) = exp {1.1 ∗ (−𝑥 + 5)} ,𝜙3 (𝑥, 0) = 5 sin 2𝑥,Ω = {𝑥 | |𝑥| ≤ 0.5} ,
(34)

where 𝑓(𝜉) = (|𝜉 + 1| − |𝜉 − 1|)/4 satisfies the Lipschitz
condition with 𝜌 = 1/2.

Take Θ = 0.25,𝐷 = 0.3,𝐴 = 0.2,Γ1 = 0.4;Γ2 = 0.1,ℎ (𝑡) = 0.1 − 0.1𝑒−𝑡,𝐶1 = 0.2,𝐶2 = 0.1,
𝑅1 = (−0.5 0.2 0 0.30.2 −0.6 0.2 0.20 0.2 −0.2 00.3 0.2 0 −0.5) ,
𝑅2 = (−0.3 0.1 0 0.20.1 −0.4 0.2 0.10 0.2 −0.2 00.2 0.1 0 −0.3) .

(35)

Choosing the Lyapunov positive-definite matrices 𝑃 =1.7601 𝐼4 and 𝑄 = 1.901𝐼4, by iteratively solving the LMIs
given in Theorem 8 with respect to 𝐾, we can find controller
matrix 𝐾 = 4.1156𝐼4.

Moreover, we can get the maximum allowable upper
bound ℎ0 = 0.9496, 𝛿 = 16.18, and 𝜇0 = 0.85 of time
delay ℎ̇(𝑡), ℎ(𝑡) and exponential rate 𝜇 for guaranteeing the
exponential synchronization of system (33).

Example 2. If we take ℎ0 = 𝛿 = 0.1, 𝜇 = 0.1, with
the parameters given in Example 1 and by using the LMI
Toolbox in Matlab, we can find the controller matrix 𝐾 and
the Lyapunov positive-definite matrices 𝑃 and 𝑄 as follows:

𝐾 = (68.3649 0.1993 0.0003 0.29850.1993 68.2660 0.1983 0.19930.0003 0.1983 68.6641 0.00030.2985 0.1993 0.0003 68.3649) ,
𝑃 = (1.7601 0.0000 0.0000 0.00000.0000 1.7601 0.0000 0.00000.0000 0.0000 1.7601 0.00000.0000 0.0000 0.0000 1.7601) ,
𝑄 = (1.9010 0.0000 0.0000 0.00000.0000 1.9010 0.0000 0.00000.0000 0.0000 1.9010 0.00000.0000 0.0000 0.0000 1.9010) .

(36)
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Finally, Figures 1–4 show the error dynamical system
of the controlled delayed PDSs given by (33), which is
globally exponentially stabilized. Network (33) is globally
exponentially synchronized, which supports the proposed
methods.
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5. Conclusion

In this paper, we discuss the exponential synchronization for
a class of 𝑁-coupled complex PDSs with time-varying delay.
By using Lyapunov–Krasovskii stability approach and matrix
inequality technology, sufficient conditions are derived to
ensure the exponential synchronization of the proposed
networks. Simulations also verify our theoretical results.
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