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This paper investigates synchronization problem of switched delay networks with interval parameters uncertainty, based on the
theories of the switched systems and drive-response technique, a mathematical model of the switched interval drive-response
error system is established.Without constructing Lyapunov-Krasovskii functions, introducing matrix measure method for the first
time to switched time-varying delay networks, combining Halanay inequality technique, synchronization criteria are derived for
switched interval networks under the arbitrary switching rule, which are easy to verify in practice. Moreover, as an application,
the proposed scheme is then applied to chaotic neural networks. Finally, numerical simulations are provided to illustrate the
effectiveness of the theoretical results.

1. Introduction

It is well known that switched system, as a special class
of hybrid system [1], is a dynamical system that consists
of a finite number of subsystems and a logical rule that
orchestrates switching between these subsystems [2–4] has
attracted significant attention and successfully been applied
to many fields such as artificial intelligence, high speed
signal processing, and gene selection in a DNA microarray
analysis. Recently, the stability and synchronization problem
of switched networks have gained much attention [5–7]. In
[6], based on switching analysis techniques and the compari-
son principle, the exponential synchronization criteria were
derived for coupled switched neural networks with mode-
dependent impulsive effects and delay. Authors considered
the problems of passivity and pacification for a class of
uncertain switched systems with stochastic disturbance and
time-varying delay, based on average dwell time approach,
free-weighting matrix method, and Jensen’s integral inequal-
ity, delay-dependent sufficient conditions were obtained to
guarantee that the proposed switched systems were robustly
mean-square exponentially stable and stochastically passive
in terms of linear matrix inequalities [7]. Most of these
works results on switched system are based on the Lyapunov

theory; however, as we all know, it is difficult to construct
a proper common or multiple Lyapunov function for a
switched system; hence, in this paper, we will adopt matrix
measure theory and Halanay inequality technique instead of
constructing Lyapunov function to study the global exponen-
tial synchronization of switched networks, what is more, it is
easy to verify the proposed conditions.

On the other hand, time delay often exists in nature,
which may lead to instability, and it should be considered
in mathematical model. Due to unavoidable factors, such
as bifurcation and chaos, the networks model certainly
involved uncertainties such as perturbations and component
variations, which can greatly affect the dynamical behaviors
of networks. Robust stability analysis of delayed networks
with parameter uncertainties have been widely studied [8–
10]. In [8], authors investigated switched recurrent neural
networks (SRNNs) with time-varying norm bounded uncer-
tainties, global asymptotic stability of periodic solution for
all admissible parametric uncertainties are derived by taking
the relationship between the terms in the Leibniz-Newton
formula into account. It should be emphasized that almost all
results treated of the robust stability for switched networks
with norm-bounded uncertainty in the existing literature.
To the best of our knowledge, few researchers deal with
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robust synchronization of switched networks with intervals
parameters despite its potential and practical importance.
Therefore, it is of great importance to study the global
exponential synchronization of switched delay networks with
interval parameters uncertainty.

Chaos implies extreme sensitivity to initial conditions;
it can be observed in many real-world and has been widely
application in secure communication, telecommunications,
biological networks, artificial neural networks, and so forth
[11, 12]. To synchronize two chaotic systems were mistakenly
considered to be impossible before the pioneer work of
Pecora and Carrol [13] on chaos control, and they proposed
the drive-response concept to reach the synchronization
of coupled chaotic systems. Recently, chaos control and
synchronization attract more and more researchers’ atten-
tions from various fields [14–18]. So far, kinds of effective
approaches and techniques have been proposed for synchro-
nization of chaotic systems including adaptive control [14],
feedback control [15], switching control [16], impulsive con-
trol [17, 18], and others. In [18], global exponential synchro-
nization stability in an array of linearly diffusively coupled
reaction-diffusion neural networks with time-varying delays
is investigated by adding impulsive controller to a small
fraction of nodes, and a new analysis method is developed
to overcome the difficulty resulting from the fact that the
impulsive controller affects only the dynamical behaviors of
the controlled nodes; the proposed results show that design-
ing an appropriate pinning-impulsive controller to realize the
synchronization goal as long as a conventional state feedback
pinning controller or an adaptive pinning controller can
achieve the synchronization goal by controlling the same
nodes. In spite of these advances in studying synchronization
of chaotic system, synchronization of switched systems with
chaotic system as its subsystemunder arbitrary switching rule
has not been investigated in the literature.

Motivated by the preceding discussion, the aim of this
paper is to study the global exponential drive-response
synchronization problem for a class of switched interval
networks with time-varying delay, instead of Lyapunov-
Krasovskii methods, based on matrix measure theory,
Halanay inequality technique, designing the coupling control
gain matrix, several synchronization criteria are presented
for switched interval networks under the arbitrary switching
rule, which are easy to verify in practice. Simulations are
given to demonstrate the validity of proposed results. The
main contributions of this paper can be highlighted as
follows. (1) Consider the interval parameters fluctuation; a
new mathematical model of the switched coupled networks
with parameters in interval is established, which presents
more practical significance of our current research. (2)
Introducing matrix measure method and Halanay inequality
technique to switched system, without constructing Lya-
punov function, the proposed results can easily be verified.
(3) The proposed results can be applied to chaotic system;
an interesting example shows that the switched networks can
reach synchronization even if each subsystem of switched
systems is a chaotic system; this furthermeans that our results
can generalize the previous results. (4) When 𝑁 = 1, the
switched interval networks change as interval networks and

the synchronization criteria of interval networks can be seen
as a by-product.

The rest of this paper is organized as follows. In Section 2,
the model description and preliminaries are given. Section 3
treats global exponential synchronization problems for
switched interval networks with discrete time-varying delay.
In Section 4, exponential synchronization criteria for interval
networks are developed. An example is presented to demon-
strate that the proposed results can be applied to chaotic
system in Section 5. Some conclusions are drawn in Section 6.

Notations. Throughout this paper, for any matrix 𝐴, 𝐴 >

0 (𝐴 < 0)means that𝐴 is positive definite (negative definite),
and 𝐴

𝑇 denotes the transpose of 𝐴. 𝜆max(𝐴) and 𝜆min(𝐴)
denote the maximum andminimum eigenvalue of𝐴, respec-
tively. 𝐼 is the identity matrix. 𝑃𝐶([𝑡

0
− 𝜏, 𝑡
0
]; 𝑅𝑛) denote the

class of piecewise right continuous function 𝜂 : [𝑡
0
−𝜏, 𝑡
0
] →

𝑅𝑛 with 𝑝-norm ‖𝜂‖
𝑝
= sup

𝑡0−𝜏≤𝑠≤𝑡0
‖𝜂(𝑠)‖

𝑝
. Matrices, if their

dimensions are not explicitly stated, are assumed to have
compatible dimensions for algebraic operations.

2. Model Description and Preliminaries

Consider a general class of interval networks with time-
varying delay described as follows:

�̇� (𝑡) = −𝐴𝑥 (𝑡) + 𝐵1𝑔1 (𝑥 (𝑡)) + 𝐵2𝑔2 (𝑥 (𝑡 − 𝜏 (𝑡))) + 𝐽,

𝐴 ∈ 𝐴
𝑙
, 𝐵
𝑘
∈ 𝐵
(𝑘)

𝑙
, 𝑘 = 1, 2,

(1)

where 𝑥(𝑡) = (𝑥
1
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇
∈ 𝑅𝑛 is the vector of neuron

states; 𝑔
𝑖
(𝑥) = (𝑔

𝑖1
(𝑥
1
), . . . , 𝑔

𝑖𝑛
(𝑥
𝑛
))
𝑇

: 𝑅𝑛 → 𝑅𝑛, 𝑖 =

1, 2, are the vector-valued neuron activation functions; 𝜏(𝑡)
is the transmission time-varying delay; 𝐽 = (𝐽

1
, . . . , 𝐽

𝑛
)
𝑇 is a

constant external input vector. 𝐴 = diag(𝑎
1
, . . . , 𝑎

𝑛
) is 𝑛 × 𝑛

constant diagonal matrices, 𝑎
𝑖
> 0, 𝑖 = 1, . . . , 𝑛, are the

neural self-inhibitions; 𝐵
𝑘
= (𝑏
(𝑘)

𝑖𝑗
) ∈ 𝑅𝑛×𝑛, 𝑘 = 1, 2, are

the connection weight matrices, and 𝐴
𝑙
= [𝐴, 𝐴] = {𝐴 =

diag(𝑎
𝑖
) : 0 < 𝑎

𝑖
≤ 𝑎
𝑖
≤ 𝑎
𝑖
, 𝑖 = 1, 2, . . . , 𝑛}, 𝐵(𝑘)

𝑙
=

[𝐵
𝑘
, 𝐵
𝑘
] = {𝐵

𝑘
= (𝑏
(𝑘)

𝑖𝑗
) : 𝑏
(𝑘)

𝑖𝑗
≤ 𝑏
(𝑘)

𝑖𝑗
≤ 𝑏
(𝑘)

𝑖𝑗
, 𝑖, 𝑗 = 1, 2, . . . , 𝑛}

with 𝐴 = diag(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
), 𝐴 = diag(𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
), 𝐵
𝑘
=

(𝑏
(𝑘)

𝑖𝑗
)
𝑛×𝑛

, 𝐵
𝑘
= (𝑏
(𝑘)

𝑖𝑗
)
𝑛×𝑛

.
Throughout this paper, the following assumptions are

made on 𝑔
𝑖
(⋅), 𝑖 = 1, 2, and 𝜏(𝑡).

(H
1
): For any two different 𝑠, 𝑡 ∈ 𝑅, there exist constants
𝑙
𝑖𝑗
> 0, 𝑖 = 1, 2, 𝑗 = 1, 2, . . . , 𝑛, such that


𝑔
𝑖𝑗 (𝑠) − 𝑔𝑖𝑗 (𝑡)


≤ 𝑙
𝑖𝑗 |𝑠 − 𝑡| , 𝑖 = 1, 2, 𝑗 = 1, . . . , 𝑛. (2)

(H
2
): For any two different 𝑠, 𝑡 ∈ 𝑅, there exist constants
𝑙
𝑖𝑗
> 0, 𝑖 = 1, 2, 𝑗 = 1, 2, . . . , 𝑛, such that

0 ≤
𝑔
𝑖𝑗 (𝑠) − 𝑔𝑖𝑗 (𝑡)

𝑠 − 𝑡
≤ 𝑙
𝑖𝑗
, 𝑖 = 1, 2, 𝑗 = 1, . . . , 𝑛. (3)
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(H
3
): Time-varying delay 𝜏(𝑡) satisfies

0 ≤ 𝜏 (𝑡) ≤ 𝜏, (4)

where 𝜏 is a positive constant.
Using the coupling feedback control to synchronize

system (1), the response (slave) system can be designed as

̇𝑦 (𝑡) = −𝐴𝑦 (𝑡) + 𝐵1𝑔1 (𝑦 (𝑡))

+ 𝐵
2
𝑔
2
(𝑦 (𝑡 − 𝜏 (𝑡))) + 𝐽 + 𝑈 (𝑡) ,

𝐴 ∈ 𝐴
𝑙
, 𝐵
𝑘
∈ 𝐵
(𝑘)

𝑙
, 𝑘 = 1, 2,

(5)

where 𝑦(𝑡) = (𝑦
1
(𝑡), . . . , 𝑦

𝑛
(𝑡))
𝑇 is the neuron state of

response system; we choose coupling controller as follows:

𝑈 (𝑡) = 𝐾 (𝑦 (𝑡) − 𝑥 (𝑡)) , (6)

where the matrix 𝐾 ∈ 𝑅𝑛×𝑛 is the control gain matrix to be
designed.

Let error state be 𝑒(𝑡) = 𝑦(𝑡) − 𝑥(𝑡); then error dynamical
system between the states of drive system (1) and response
system (5) can be derived:

̇𝑒 (𝑡) = −𝐴𝑒 (𝑡) + 𝐵1𝑓1 (𝑒 (𝑡)) + 𝐵2𝑓2 (𝑒 (𝑡 − 𝜏 (𝑡))) + 𝐾𝑒 (𝑡) ,

𝐴 ∈ 𝐴
𝑙
, 𝐵
𝑘
∈ 𝐵
(𝑘)

𝑙
, 𝑘 = 1, 2,

(7)

where 𝑒(𝑡) = (𝑒
1
(𝑡), . . . , 𝑒

𝑛
(𝑡))
𝑇, 𝑓
1
(𝑒(𝑡)) = 𝑔

1
(𝑒(𝑡) + 𝑥(𝑡)) −

𝑔
1
(𝑥(𝑡)), 𝑓

2
(𝑒(𝑡)) = 𝑔

2
(𝑒(𝑡) + 𝑥(𝑡)) − 𝑔

2
(𝑥(𝑡)).

Based on some transformations [19], the interval error
system (7) can be equivalently written as

̇𝑒 (𝑡) = − [𝐴0 + 𝐸𝐴Σ𝐴𝐹𝐴] 𝑒 (𝑡) + [𝐵10 + 𝐸1Σ1𝐹1] 𝑓1 (𝑒 (𝑡))

+ [𝐵
20
+ 𝐸
2
Σ
2
𝐹
2
] 𝑓
2 (𝑥 (𝑒 (𝑡 − 𝜏 (𝑡)))) + 𝐾𝑒 (𝑡) ,

(8)

where Σ
𝐴
∈ Σ, Σ

𝑘
∈ Σ, 𝑘 = 1, 2.

Consider the following:

Σ = { diag [𝛿
11
, . . . , 𝛿

1𝑛
, . . . , 𝛿

𝑛1
, . . . , 𝛿

𝑛𝑛
] ∈ 𝑅
𝑛
2
×𝑛
2

:

𝛿
𝑖𝑗


≤ 1, 𝑖, 𝑗 = 1, 2, . . . , 𝑛} ,

𝐴
0
=
𝐴 + 𝐴

2
, 𝐻

𝐴
= [𝛼
𝑖𝑗
]
𝑛×𝑛

=
𝐴 − 𝐴

2

𝐵
𝑘0
=
𝐵
𝑘
+ 𝐵
𝑘

2
, 𝐻

(𝑘)

𝐵
= [𝛽
𝑖𝑗
]
𝑛×𝑛

=
𝐵
𝑘
− 𝐵
𝑘

2
,

𝐸
𝐴

= [√𝛼11𝑒1, . . . , √𝛼1𝑛𝑒1, . . . , √𝛼𝑛1𝑒𝑛, . . . , √𝛼𝑛𝑛𝑒𝑛]𝑛×𝑛2 ,

𝐹
𝐴

= [√𝛼11𝑒1, . . . , √𝛼1𝑛𝑒𝑛, . . . , √𝛼𝑛1𝑒1, . . . , √𝛼𝑛𝑛𝑒𝑛]
𝑇

𝑛
2
×𝑛
,

𝐸
𝑘

= [√𝛽
(𝑘)

11
𝑒
1
, . . . , √𝛽

(𝑘)

1𝑛
𝑒
1
, . . . , √𝛽

(𝑘)

𝑛1
𝑒
𝑛
, . . . , √𝛽

(𝑘)

𝑛𝑛 𝑒𝑛]
𝑛×𝑛
2

,

𝐹
𝑘

= [√𝛽
(𝑘)

11
𝑒
1
, . . . , √𝛽

(𝑘)

1𝑛
𝑒
𝑛
, . . . , √𝛽

(𝑘)

𝑛1
𝑒
1
, . . . , √𝛽

(𝑘)

𝑛𝑛 𝑒𝑛]
𝑇

𝑛
2
×𝑛

,

(9)

where 𝑒
𝑖
∈ 𝑅𝑛 denotes the column vector with 𝑖th element to

be 1 and others to be 0.
System (8) has an equivalent form by the following:

̇𝑒 (𝑡) = −𝐴0𝑒 (𝑡) + 𝐵10𝑓1 (𝑒 (𝑡)) + 𝐵20𝑓2 (𝑒 (𝑡 − 𝜏 (𝑡)))

+ 𝐸Δ (𝑡) + 𝐾𝑒 (𝑡) ,
(10)

where 𝐸 = [𝐸
𝐴
, 𝐸
1
, 𝐸
2
],

Δ (𝑡) =
[
[

[

−Σ
𝐴
𝐹
𝐴
𝑒 (𝑡)

Σ
1
𝐹
1
𝑓
1 (𝑒 (𝑡))

Σ
2
𝐹
2
𝑓
2 (𝑒 (𝑡 − 𝜏 (𝑡)))

]
]

]

= diag {Σ
𝐴
, Σ
1
, Σ
2
}
[
[

[

−𝐹
𝐴
𝑒 (𝑡)

𝐹
1
𝑓
1 (𝑒 (𝑡))

𝐹
2
𝑓
2 (𝑒 (𝑡 − 𝜏 (𝑡)))

]
]

]

,

(11)

and Δ(𝑡) satisfies the following matrix quadratic inequality:

Δ𝑇 (𝑡) Δ (𝑡) ≤
[
[

[

𝑒(𝑡)

𝑓
1
(𝑒(𝑡))

𝑓
2
(𝑒(𝑡 − 𝜏(𝑡)))

]
]

]

𝑇

[
[

[

𝐹𝑇
𝐴

𝐹𝑇
1

𝐹𝑇
2

]
]

]

×
[
[

[

𝐹𝑇
𝐴

𝐹𝑇
1

𝐹𝑇
2

]
]

]

𝑇

[
[

[

𝑒 (𝑡)

𝑓
1 (𝑒 (𝑡))

𝑓
2 (𝑒 (𝑡 − 𝜏 (𝑡)))

]
]

]

.

(12)

The switched interval networks with time-varying delay
consist of a set of interval networks with discrete time-
varying delay and a switching rule [20]. Each of the inter-
val networks is regarded as an individual subsystem. The
operation mode of the switched networks is determined by
the switching signal. According to (1), the switched interval
networks with discrete time-varying delay can be represented
as follows:
�̇� (𝑡) = −𝐴𝜎(𝑡)𝑥 (𝑡) + 𝐵1𝜎(𝑡)𝑔1 (𝑥 (𝑡)) + 𝐵2𝜎(𝑡)𝑔2 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝐽, 𝐴
𝜎(𝑡)

∈ 𝐴
𝑙𝜎(𝑡)
, 𝐵
𝑘𝜎(𝑡)

∈ 𝐵
(𝑘)

𝑙𝜎(𝑡)
, 𝑘 = 1, 2,

(13)
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where 𝐴
𝑙𝜎(𝑡)

= [𝐴
𝜎(𝑡)

, 𝐴
𝜎(𝑡)

] = {𝐴
𝜎(𝑡)

= diag(𝑎
𝑖𝜎(𝑡)
) : 0 < 𝑎

𝑖𝜎(𝑡)
≤

𝑎
𝑖𝜎(𝑡)

≤ 𝑎
𝑖𝜎(𝑡)
, 𝑖 = 1, 2, . . . , 𝑛}, 𝐵(𝑘)

𝑙𝜎(𝑡)
= [𝐵
𝑘𝜎(𝑡)

, 𝐵
𝑘𝜎(𝑡)

] = {𝐵
𝑘𝜎(𝑡)

=

[𝑏
(𝑘)

𝑖𝑗𝜎(𝑡)
] : 𝑏
(𝑘)

𝑖𝑗𝜎(𝑡)
≤ 𝑏
(𝑘)

𝑖𝑗𝜎(𝑡)
≤ 𝑏
(𝑘)

𝑖𝑗𝜎(𝑡)
, 𝑖, 𝑗 = 1, 2, . . . , 𝑛} with 𝐴

𝜎(𝑡)
=

diag(𝑎
1𝜎(𝑡)

, 𝑎
2𝜎(𝑡)

, . . . , 𝑎
𝑛𝜎(𝑡)

), 𝐴
𝜎(𝑡)

= diag(𝑎
1𝜎(𝑡)

, 𝑎
2𝜎(𝑡)

, . . . , 𝑎
𝑛𝜎(𝑡)

),

𝐵
𝑘𝜎(𝑡)

= [𝑏
(𝑘)

𝑖𝑗𝜎(𝑡)
]
𝑛×𝑛

, 𝐵
𝑘𝜎(𝑡)

= [𝑏
(𝑘)

𝑖𝑗𝜎(𝑡)
]
𝑛×𝑛

.
Consider the following:

𝐴
0𝜎(𝑡)

=
𝐴
𝜎(𝑡)

+ 𝐴
𝜎(𝑡)

2
,

𝐻
𝐴𝜎(𝑡)

= [𝛼
𝑖𝑗𝜎(𝑡)

]
𝑛×𝑛

=
𝐴
𝜎(𝑡)

− 𝐴
𝜎(𝑡)

2
,

𝐵
𝑘0𝜎(𝑡)

=
𝐵
𝑘𝜎(𝑡)

+ 𝐵
𝑘𝜎(𝑡)

2
,

𝐻
(𝑘)

𝐵𝜎(𝑡)
= [𝛽
𝑖𝑗𝜎(𝑡)

]
𝑛×𝑛

=
𝐵
𝑘𝜎(𝑡)

− 𝐵
𝑘𝜎(𝑡)

2
,

𝐸
𝐴𝜎(𝑡)

= [√𝛼11𝜎(𝑡)𝑒1, . . . , √𝛼1𝑛𝜎(𝑡)𝑒1, . . . ,

√𝛼𝑛1𝜎(𝑡)𝑒𝑛, . . . , √𝛼𝑛𝑛𝜎(𝑡)𝑒𝑛]
𝑛×𝑛
2

,

𝐹
𝐴𝜎(𝑡)

= [√𝛼11𝜎(𝑡)𝑒1, . . . , √𝛼1𝑛𝜎(𝑡)𝑒𝑛, . . . ,

√𝛼𝑛1𝜎(𝑡)𝑒1, . . . , √𝛼𝑛𝑛𝜎(𝑡)𝑒𝑛]
𝑇

𝑛
2
×𝑛

,

𝐸
𝑘𝜎(𝑡)

= [√𝛽
(𝑘)

11𝜎(𝑡)
𝑒
1
, . . . , √𝛽

(𝑘)

1𝑛𝜎(𝑡)
𝑒
1
, . . . ,

√𝛽
(𝑘)

𝑛1𝜎(𝑡)
𝑒
𝑛
, . . . , √𝛽

(𝑘)

𝑛𝑛𝜎(𝑡)
𝑒
𝑛
]
𝑛×𝑛
2

,

𝐹
𝑘𝜎(𝑡)

= [√𝛽
(𝑘)

11𝜎(𝑡)
𝑒
1
, . . . , √𝛽

(𝑘)

1𝑛𝜎(𝑡)
𝑒
𝑛
, . . . ,

√𝛽
(𝑘)

𝑛1𝜎(𝑡)
𝑒
1
, . . . , √𝛽

(𝑘)

𝑛𝑛𝜎(𝑡)
𝑒
𝑛
]

𝑇

𝑛
2
×𝑛

.

(14)

𝜎(𝑡) : [0, +∞) → Γ = {1, 2, . . . , 𝑁} is the
switching signal, which is a piecewise constant function of
time. For any 𝑖 ∈ {1, 2, . . . , 𝑁}, 𝐴

𝑖
= 𝐴
0𝑖
+ 𝐸
𝐴𝑖
Σ
𝐴𝑖
𝐹
𝐴𝑖
,

𝐵
𝑘𝑖

= 𝐵
𝑘0𝑖

+ 𝐸
𝑘𝑖
Σ
𝑘𝑖
𝐹
𝑘𝑖
, and Σ

𝐴𝑖
∈ Σ, Σ

𝑘𝑖
∈ Σ, 𝑘 =

1, 2. This means that the matrices (𝐴
𝜎(𝑡)

, 𝐵
1𝜎(𝑡)

, 𝐵
2𝜎(𝑡)

) are
allowed to take values, at an arbitrary time, in the finite
set {(𝐴

1
, 𝐵
11
, 𝐵
21
), (𝐴
2
, 𝐵
12
, 𝐵
22
), . . . , (𝐴

𝑁
, 𝐵
1𝑁
, 𝐵
2𝑁
)}. In this

paper, it is assumed that the switching rule 𝜎 is not known
a priori and its instantaneous value is available in real time.

The initial value associated with the switched interval
networks is assumed to be 𝑥(𝑠) = 𝜑(𝑠), 𝜑(𝑠) ∈ 𝐶([𝑡

0
−

𝜏, 𝑡
0
]; 𝑅𝑛).

Analogously, slave (response) system [21] of switched
interval networks should be defined as

̇𝑦 (𝑡) = −𝐴𝜎(𝑡)𝑦 (𝑡) + 𝐵1𝜎(𝑡)𝑔1 (𝑦 (𝑡))

+ 𝐵
2𝜎(𝑡)

𝑔
2
(𝑦 (𝑡 − 𝜏 (𝑡))) + 𝐽 + 𝑈 (𝑡) ,

𝐴
𝜎(𝑡)

∈ 𝐴
𝑙𝜎(𝑡)
, 𝐵
𝑘𝜎(𝑡)

∈ 𝐵
(𝑘)

𝑙𝜎(𝑡)
, 𝑘 = 1, 2.

(15)

The initial value associated with switched response sys-
tem is assumed to be 𝑦(𝑠) = 𝜓(𝑠), 𝜓(𝑠) ∈ 𝐶([𝑡

0
− 𝜏, 𝑡
0
]; 𝑅𝑛).

From (10), we have the switched interval drive-response
error dynamical system as follows:

̇𝑒 (𝑡) = −𝐴0𝜎(𝑡)𝑒 (𝑡) + 𝐵10𝜎(𝑡)𝑓1 (𝑒 (𝑡)) + 𝐵20𝜎(𝑡)𝑓2 (𝑒 (𝑡 − 𝜏 (𝑡)))

+ 𝐸
𝜎(𝑡)

Δ
𝜎(𝑡) (𝑡) + 𝐾𝜎(𝑡)𝑒 (𝑡) ,

(16)

where 𝐸
𝜎
(𝑡) = [𝐸

𝐴𝜎(𝑡)
, 𝐸
1𝜎(𝑡)

, 𝐸
2𝜎(𝑡)

] and Δ
𝜎
(𝑡) satisfies the

following quadratic inequality:

Δ
𝑇

𝜎
(𝑡) Δ 𝜎 (𝑡) ≤

[
[

[

𝑒(𝑡)

𝑓
1
(𝑒(𝑡))

𝑓
2
(𝑒(𝑡 − 𝜏(𝑡)))

]
]

]

𝑇

[
[

[

𝐹𝑇
𝐴𝜎(𝑡)

𝐹𝑇
1𝜎(𝑡)

𝐹𝑇
2𝜎(𝑡)

]
]

]

×
[
[

[

𝐹𝑇
𝐴𝜎(𝑡)

𝐹𝑇
1𝜎(𝑡)

𝐹𝑇
2𝜎(𝑡)

]
]

]

𝑇

[
[

[

𝑒 (𝑡)

𝑓
1 (𝑒 (𝑡))

𝑓
2 (𝑒 (𝑡 − 𝜏 (𝑡)))

]
]

]

.

(17)

Define the indicator function 𝜉(𝑡) =

[𝜉
1
(𝑡), 𝜉
2
(𝑡), . . . , 𝜉

𝑁
(𝑡)]
𝑇, where

𝜉
𝑖 (𝑡) =

{{{{

{{{{

{

1, when the switched system is
described by the 𝑖th mode
𝐴
0𝑖
, 𝐵
𝑘0𝑖
, 𝑘 = 1, 2, 𝐸

𝑖
, 𝐾
𝑖

0, otherwise,

(18)

where 𝑖 = 1, 2, . . . , 𝑁. Therefore, the switched interval error
system (16) can also be represented as

̇𝑒 (𝑡) =

𝑁

∑
𝑖=1

𝜉
𝑖 (𝑡) {−𝐴0𝑖𝑒 (𝑡) + 𝐵10𝑖𝑓1 (𝑒 (𝑡))

+ 𝐵
20𝑖
𝑓
2 (𝑒 (𝑡 − 𝜏 (𝑡)))

+ 𝐸
𝑖
Δ
𝑖 (𝑡) + 𝐾𝑖𝑒 (𝑡) } ,

(19)

where ∑𝑁
𝑖=1

𝜉
𝑖
(𝑡) = 1 is satisfied under any switching rules.

To obtain the main results of this paper, the following
definitions and lemmas are introduced.

Definition 1. The switched interval system (13) and the
corresponding response system (15) are said to be globally
exponentially synchronized if there exist scalars 𝑀 > 0 and
𝛼 > 0, such that

𝑦(𝑡) − 𝑥(𝑡)
𝑝 ≤ 𝑀

𝜓 − 𝜑
 𝑒
−𝛼(𝑡−𝑡0), 𝑡 > 𝑡

0
. (20)
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Definition 2 (see [22]). The matrix measure of a real square
matrix 𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

is denoted as follows:

𝜇
𝑝 (𝐴) = lim

𝜀→0
+

𝐼𝑛 + 𝜀𝐴
𝑝 − 1

𝜀
, (21)

where ‖ ⋅ ‖
𝑝
is an induced matrix norm and 𝑝 = 1, 2,∞.

Remark 3. The matrix norm ‖𝐴‖
1
= max

𝑗
∑
𝑛

𝑖=1
|𝑎
𝑖𝑗
|, ‖𝐴‖

2
=

√𝜆max(𝐴
𝑇𝐴), ‖𝐴‖

∞
= max

𝑖
∑
𝑛

𝑖=1
|𝑎
𝑖𝑗
|, the corresponding

matrix measure 𝜇
1
(𝐴) = max

𝑗
{𝑎
𝑗𝑗
+ ∑
𝑛

𝑖=1,𝑖 ̸= 𝑗
|𝑎
𝑖𝑗
|}, 𝜇
2
(𝐴) =

(1/2)𝜆max(𝐴
𝑇 + 𝐴), 𝜇

∞
(𝐴) = max

𝑖
{𝑎
𝑖𝑖
+ ∑
𝑛

𝑗=1,𝑗 ̸= 𝑖
|𝑎
𝑖𝑗
|}.

Lemma 4 (see [22]). The matrix measure 𝜇
𝑝
(⋅) has the

following basic properties:

(i) −‖𝐴‖
𝑝
≤ 𝜇
𝑝
(𝐴) ≤ ‖𝐴‖

𝑝
, ∀𝐴 ∈ 𝑅𝑛×𝑛;

(ii) 𝜇
𝑝
(𝛼𝐴) = 𝛼𝜇

𝑝
(𝐴), ∀𝛼 > 0, 𝐴 ∈ 𝑅𝑛×𝑛;

(iii) 𝜇
𝑝
(𝐴 + 𝐵) ≤ 𝜇

𝑝
(𝐴) + 𝜇

𝑝
(𝐵), ∀𝐴, 𝐵 ∈ 𝑅𝑛×𝑛.

Lemma 5 (see [23]). Let 𝑠(𝑡) : [𝑡
0
− 𝜏,∞) → [0,∞) be a

continuous function, and, for all 𝑡 ≥ 𝑡
0
, we have

𝐷
+
𝑠 (𝑡) ≤ −𝑎𝑠 (𝑡) + 𝑏 sup

𝑡−𝜏≤𝜃≤𝑡

𝑠 (𝜃) . (22)

If 𝑎 > 𝑏 > 0, then

𝑠 (𝑡) ≤ sup
𝑡0−𝜏≤𝜃≤𝑡0

𝑠 (𝜃) 𝑒
−𝜆(𝑡−𝑡0), 𝑡 ≥ 𝑡

0
, (23)

where 𝜆 > 0 is the unique positive solution of the equation 𝜆 −
𝑎 + 𝑏𝑒𝜆𝜏 = 0.

Lemma6 (see [24]). Under assumption (H
2
), for anymatrix

𝐴 ∈ 𝑅𝑛×𝑛 we have the following inequality:

𝜇
𝑝 (𝐴𝐹 (𝑒 (𝑡))) ≤ 𝜇𝑝 (𝐴

∗
𝐿) , (24)

where 𝐹(𝑒(𝑡)) = diag(𝑓
11
(𝑒
1
(𝑡))/𝑒
1
(𝑡), . . . , 𝑓

1𝑛
(𝑒
𝑛
(𝑡))/𝑒
𝑛
(𝑡)),

𝐿 = diag(𝑙
11
, 𝑙
12
, . . . , 𝑙
1𝑛
), 𝑝 = 1,∞,

𝐴
∗
= (𝑎
∗

𝑖𝑗
)
𝑛×𝑛

{
max (0, 𝑎

𝑖𝑖
) , 𝑖 = 𝑗

𝑎
𝑖𝑗
, 𝑖 ̸= 𝑗.

(25)

3. Synchronization Criteria for Switched
Interval Networks

In this section, we will consider the global exponential
synchronization of switched interval networks (13), with-
out constructing Lyapunov-Krasovskii functional, by using
matrix measure and Halanay inequality, designing suitable
control gainmatrix𝐾

𝑖
, global exponential stability criteria are

derived for switched interval drive-response error system (16)
under any arbitrary switched rule; that is to say, the switched
interval networks (13) synchronize with the response system
(15).

Theorem 7. Under the assumptions (H
1
) and (H

3
), the

switched interval networks (13) will globally exponentially
synchronize with the response system (15) under arbitrary
switched rule, if control gain matrix 𝐾

𝑖
satisfies

− 𝜇
𝑝
(−𝐴
0𝑖
+ 𝐾
𝑖
) − 𝑙


𝐵
10𝑖

𝑝
− 𝑙
𝐸𝑖

𝑝

𝐹
𝐴𝑖

𝑝
− 𝑙
𝐸𝑖

𝑝

𝐹
1𝑖

𝑝

≥ 𝑙

𝐵
20𝑖

𝑝
+ 𝑙
𝐸𝑖

𝑝

𝐹
2𝑖

𝑝
> 0,

(26)

where 𝑖 = 1, 2, . . . , 𝑁, 𝑝 = 1, 2,∞, 𝑙 = max
1≤𝑗≤𝑛

{𝑙
𝑘𝑗
}, 𝑘 = 1, 2.

Proof. Calculating the time derivative of ‖𝑒(𝑡)‖
𝑝
along the

solution of the system (19), it can follow that

lim
ℎ→0

+

‖𝑒(𝑡 + ℎ)‖𝑝 − ‖𝑒(𝑡)‖𝑝

ℎ

= lim
ℎ→0

+

‖𝑒(𝑡) + ℎ ̇𝑒(𝑡) + 𝑜(ℎ)‖𝑝 − ‖𝑒(𝑡)‖𝑝

ℎ

= lim
ℎ→0

+

1

ℎ

{

{

{



𝑒 (𝑡)

+ ℎ(

𝑁

∑
𝑖=1

𝜉
𝑖 (𝑡) [−𝐴0𝑖𝑒 (𝑡) + 𝐵10𝑖𝑓1 (𝑒 (𝑡))

+ 𝐵
20𝑖
𝑓
2 (𝑒 (𝑡 − 𝜏 (𝑡)))

+ 𝐸
𝑖
Δ
𝑖 (𝑡) + 𝐾𝑖𝑒 (𝑡) ])

+ 𝑜 (ℎ)

𝑝

− ‖𝑒 (𝑡)‖𝑝
}

}

}

≤ lim
ℎ→0

+

𝑁

∑
𝑖=1

𝜉
𝑖 (𝑡)

{

{

{


𝐼 + ℎ (−𝐴

0𝑖
+ 𝐾
𝑖
)
𝑝
− 1

ℎ

× ‖𝑒 (𝑡)‖𝑝 +

𝐵
10𝑖

𝑝

×
𝑓1 (𝑒 (𝑡))

𝑝 +

𝐵
20𝑖

𝑝

×
𝑓2(𝑒(𝑡 − 𝜏(𝑡)))

𝑝

+
𝐸𝑖

𝑝
Δ 𝑖 (𝑡)

𝑝

}

}

}

.

(27)

Using assumption (H
1
), we yield

𝑓1(𝑒(𝑡))
𝑝 ≤ 𝑙‖𝑒(𝑡)‖𝑝,

𝑓2(𝑒(𝑡 − 𝜏(𝑡)))
𝑝 ≤ 𝑙‖𝑒(𝑡 − 𝜏(𝑡))‖𝑝

Δ 𝑖(𝑡)
𝑝 ≤


𝐹
𝐴𝑖

𝑝
‖𝑒(𝑡)‖𝑝 +


𝐹
1𝑖

𝑝
𝑓1(𝑒(𝑡))

𝑝

+

𝐹
2𝑖

𝑝
𝑓2(𝑒(𝑡 − 𝜏(𝑡)))

𝑝
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≤

𝐹
𝐴𝑖

𝑝
‖𝑒(𝑡)‖𝑝 + 𝑙


𝐹
1𝑖

𝑝
‖𝑒(𝑡)‖𝑝

+ 𝑙

𝐹
2𝑖

𝑝
‖𝑒 (𝑡 − 𝜏 (𝑡))‖𝑝.

(28)

In the light of (27)-(28), for any 𝑖 = 1, 2, . . . , 𝑁, we obtain

lim
ℎ→0

+

‖𝑒(𝑡 + ℎ)‖𝑝 − ‖𝑒(𝑡)‖𝑝

ℎ

≤ lim
ℎ→0

+

𝑁

∑
𝑖=1

𝜉
𝑖 (𝑡)

{

{

{


𝐼 + ℎ(−𝐴

0𝑖
+ 𝐾
𝑖
)
𝑝
− 1

ℎ
‖𝑒(𝑡)‖𝑝

+

𝐵
10𝑖

𝑝
𝑓1 (𝑒 (𝑡))

𝑝

+

𝐵
20𝑖

𝑝
𝑓2(𝑒(𝑡 − 𝜏(𝑡)))

𝑝

+
𝐸𝑖

𝑝
Δ 𝑖(𝑡)

𝑝

}

}

}

≤

𝑁

∑
𝑖=1

𝜉
𝑖 (𝑡) {𝜇𝑝 (−𝐴0𝑖 + 𝐾𝑖) ‖𝑒(𝑡)‖𝑝

+ 𝑙

𝐵
10𝑖

𝑝
‖𝑒 (𝑡)‖𝑝

+ 𝑙

𝐵
20𝑖

𝑝
‖𝑒(𝑡 − 𝜏(𝑡))‖𝑝

+
𝐸𝑖

𝑝

𝐹
𝐴𝑖

𝑝
‖𝑒(𝑡)‖𝑝

+ 𝑙
𝐸𝑖

𝑝

𝐹
1𝑖

𝑝
‖𝑒(𝑡)‖𝑝

+ 𝑙
𝐸𝑖

𝑝

𝐹
2𝑖

𝑝
‖𝑒(𝑡 − 𝜏(𝑡))‖𝑝}

≤

𝑁

∑
𝑖=1

𝜉
𝑖 (𝑡) {(𝜇𝑝 (−𝐴0𝑖 + 𝐾𝑖) + 𝑙


𝐵
10𝑖

𝑝

+
𝐸𝑖

𝑝

𝐹
𝐴𝑖

𝑝
+ 𝑙
𝐸𝑖

𝑝

𝐹
1𝑖

𝑝
)

× ‖𝑒 (𝑡)‖𝑝 + (𝑙

𝐵
20𝑖

𝑝
+ 𝑙
𝐸𝑖

𝑝

𝐹
2𝑖

𝑝
)

× ‖𝑒(𝑡 − 𝜏(𝑡))‖𝑝}

≤ (𝜇
𝑝
(−𝐴
0𝑖
+ 𝐾
𝑖
) + 𝑙


𝐵
10𝑖

𝑝

+
𝐸𝑖

𝑝

𝐹
𝐴𝑖

𝑝
+ 𝑙
𝐸𝑖

𝑝

𝐹
1𝑖

𝑝
) ‖𝑒(𝑡)‖𝑝

+ (𝑙

𝐵
20𝑖

𝑝
+ 𝑙
𝐸𝑖

𝑝

𝐹
2𝑖

𝑝
) ‖𝑒 (𝑡 − 𝜏 (𝑡))‖𝑝.

(29)

According to definition of upper-right Dini derivative, we
have

𝐷
+
‖𝑒 (𝑡)‖𝑝 ≤ (𝜇𝑝 (−𝐴0𝑖 + 𝐾𝑖) + 𝑙


𝐵
10𝑖

𝑝

+
𝐸𝑖

𝑝

𝐹
𝐴𝑖

𝑝
+ 𝑙
𝐸𝑖

𝑝

𝐹
1𝑖

𝑝
)

× ‖𝑒(𝑡)‖𝑝 + (𝑙

𝐵
20𝑖

𝑝
+ 𝑙
𝐸𝑖

𝑝

𝐹
2𝑖

𝑝
)

× sup
𝑡−𝜏≤𝑠≤𝑡

‖𝑒 (𝑠)‖𝑝.

(30)

Let 𝑎 = −𝜇
𝑝
(−𝐴
0𝑖
+𝐾
𝑖
)−𝑙‖𝐵

10𝑖
‖
𝑝
−‖𝐸
𝑖
‖
𝑝
‖𝐹
𝐴𝑖
‖
𝑝
−𝑙‖𝐸
𝑖
‖
𝑝
‖𝐹
1𝑖
‖
𝑝

and 𝑏 = 𝑙‖𝐵
20𝑖
‖
𝑝
+ 𝑙‖𝐸

𝑖
‖
𝑝
‖𝐹
2𝑖
‖
𝑝
, from condition (26) and

Lemma 5, one can obtain

‖𝑒(𝑡)‖𝑝 ≤ sup
𝑡0−𝜏≤𝑠≤𝑡0

‖𝑒 (𝑠)‖𝑝𝑒
−𝑟(𝑡−𝑡0), 𝑡 ≥ 𝑡

0
, (31)

where 𝑟 > 0 is the unique positive solution of the equation
𝑟 − 𝑎 + 𝑏𝑒𝑟𝜏 = 0.

Therefore, 𝑒(𝑡) converges exponentially to zero with a
convergence rate of 𝑟, and the formula (31) is equiva-
lent to ‖𝑦(𝑡) − 𝑥(𝑡)‖

𝑝
≤ sup

𝑡0−𝜏≤𝑠≤𝑡0
‖𝜓 − 𝜑‖

𝑝
𝑒−𝑟(𝑡−𝑡0), from

Definition 1; this completes the proof of the theorem.

Theorem 8. Under assumptions (H
2
) and (H

3
), global syn-

chronization of the switched interval networks (13) can be
achieved under arbitrary switched rule, if designing suitable
control gain matrix 𝐾

𝑖
satisfies

− 𝜇
𝑝
(−𝐴
0𝑖
+ 𝐾
𝑖
) − 𝜇
𝑝
(𝐵
∗

10𝑖
𝐿) − 𝑙

𝐸𝑖
𝑝

𝐹
𝐴𝑖

𝑝
− 𝑙
𝐸𝑖

𝑝

𝐹
1𝑖

𝑝

≥ 𝑙

𝐵
20𝑖

𝑝
+ 𝑙
𝐸𝑖

𝑝

𝐹
2𝑖

𝑝
> 0,

(32)

where 𝑖 = 1, 2, . . . , 𝑁, 𝑝 = 1,∞, 𝑙 = max
1≤𝑗≤𝑛

{𝑙
𝑘𝑗
} (𝑘 = 1, 2),

and 𝐿 = diag(𝑙
11
, 𝑙
12
, . . . , 𝑙
1𝑛
),

𝐵
∗

10𝑖
= (𝑏
(10)
∗

𝑚𝑛𝑖
)
𝑛×𝑛

{
max (0, 𝑏(10)

𝑚𝑛𝑖
) , 𝑚 = 𝑛,

𝑏(10)
𝑚𝑛𝑖

, 𝑚 ̸= 𝑛.
(33)

Proof. Differentiating ‖𝑒(𝑡)‖
𝑝
with respect to time along the

solution of (19), one has

lim
ℎ→0

+

‖𝑒(𝑡 + ℎ)‖𝑝 − ‖𝑒(𝑡)‖𝑝

ℎ

= lim
ℎ→0

+

‖𝑒(𝑡) + ℎ ̇𝑒(𝑡) + 𝑜(ℎ)‖𝑝 − ‖𝑒(𝑡)‖𝑝

ℎ



Abstract and Applied Analysis 7

= lim
ℎ→0

+

1

ℎ
{



𝑒 (𝑡)

+ ℎ(

𝑁

∑
𝑖=1

𝜉
𝑖 (𝑡) [−𝐴0𝑖𝑒 (𝑡) + 𝐵10𝑖𝑓1 (𝑒 (𝑡))

+ 𝐵
20𝑖
𝑓
2 (𝑒 (𝑡 − 𝜏 (𝑡)))

+ 𝐸
𝑖
Δ
𝑖 (𝑡)+𝐾𝑖𝑒 (𝑡) ])+𝑜 (ℎ)

𝑝

− ‖𝑒 (𝑡)‖𝑝}

≤ lim
ℎ→0

+

𝑁

∑
𝑖=1

𝜉
𝑖 (𝑡) { (


𝑒 (𝑡) + ℎ (−𝐴0𝑖 + 𝐾𝑖) 𝑒 (𝑡)

+ ℎ𝐵
10𝑖
𝑓
1 (𝑒 (𝑡))

𝑝
−‖𝑒 (𝑡)‖𝑝) × (ℎ)

−1

+

𝐵
20𝑖

𝑝
𝑓2(𝑒(𝑡 − 𝜏(𝑡)))

𝑝

+
𝐸𝑖

𝑝
Δ 𝑖(𝑡)

𝑝}

≤ 𝜇
𝑝
(−𝐴
0𝑖
+ 𝐾
𝑖
+ 𝐵
10𝑖
𝐹 (𝑒 (𝑡))) ‖𝑒(𝑡)‖𝑝

+

𝐵
20𝑖

𝑝
𝑓2 (𝑒 (𝑡 − 𝜏 (𝑡)))

𝑝 +
𝐸𝑖

𝑝
Δ 𝑖 (𝑡)

𝑝.

(34)

According to (28), Lemmas 4 and 6, we have

lim
ℎ→0

+

‖𝑒(𝑡 + ℎ)‖𝑝 − ‖𝑒(𝑡)‖𝑝

ℎ

≤ 𝜇
𝑝
(−𝐴
0𝑖
+ 𝐾
𝑖
+ 𝐵
10𝑖
𝐹 (𝑒 (𝑡))) ‖𝑒(𝑡)‖𝑝

+

𝐵
20𝑖

𝑝
𝑓2(𝑒(𝑡 − 𝜏(𝑡)))

𝑝 +
𝐸𝑖

𝑝
Δ 𝑖(𝑡)

𝑝

≤ (𝜇
𝑝
(−𝐴
0𝑖
+ 𝐾
𝑖
) + 𝜇
𝑝
(𝐵
∗

10𝑖
𝐿)) ‖𝑒(𝑡)‖𝑝

+ 𝑙

𝐵
20𝑖

𝑝
‖𝑒(𝑡 − 𝜏(𝑡))‖𝑝 +

𝐸𝑖
𝑝

𝐹
𝐴𝑖

𝑝
‖𝑒(𝑡)‖𝑝

+ 𝑙
𝐸𝑖

𝑝

𝐹
1𝑖

𝑝
‖𝑒(𝑡)‖𝑝 + 𝑙

𝐸𝑖
𝑝

𝐹
2𝑖

𝑝
‖𝑒(𝑡 − 𝜏(𝑡))‖𝑝

≤ (𝜇
𝑝
(−𝐴
0𝑖
+ 𝐾
𝑖
) + 𝜇
𝑝
(𝐵
∗

10𝑖
𝐿)

+
𝐸𝑖

𝑝

𝐹
𝐴𝑖

𝑝
+ 𝑙
𝐸𝑖

𝑝

𝐹
1𝑖

𝑝
) ‖𝑒(𝑡)‖𝑝

+ (𝑙

𝐵
20𝑖

𝑝
+ 𝑙
𝐸𝑖

𝑝

𝐹
2𝑖

𝑝
) ‖𝑒 (𝑡 − 𝜏 (𝑡))‖𝑝;

(35)

then we get the upper-right Dini derivative of ‖𝑒(𝑡)‖
𝑝
along

the solution of system (19) as follows:

𝐷
+
‖𝑒(𝑡)‖𝑝

≤ (𝜇
𝑝
(−𝐴
0𝑖
+ 𝐾
𝑖
)

+ 𝜇
𝑝
(𝐵
∗

10𝑖
𝐿) +

𝐸𝑖
𝑝

𝐹
𝐴𝑖

𝑝

+ 𝑙
𝐸𝑖

𝑝

𝐹
1𝑖

𝑝
) ‖𝑒(𝑡)‖𝑝

+ (𝑙

𝐵
20𝑖

𝑝
+ 𝑙
𝐸𝑖

𝑝

𝐹
2𝑖

𝑝
) sup
𝑡−𝜏≤𝑠≤𝑡

‖𝑒 (𝑠)‖𝑝.

(36)

Let 𝑎 = −𝜇
𝑝
(−𝐴
0𝑖
+ 𝐾
𝑖
) − 𝜇
𝑝
(𝐵∗
10𝑖
𝐿) − ‖𝐸

𝑖
‖
𝑝
‖𝐹
𝐴𝑖
‖
𝑝
−

𝑙‖𝐸
𝑖
‖
𝑝
‖𝐹
1𝑖
‖
𝑝
and 𝑏 = 𝑙‖𝐵

20𝑖
‖
𝑝
+ 𝑙‖𝐸

𝑖
‖
𝑝
‖𝐹
2𝑖
‖
𝑝
, from the

condition inTheorem 8 and Lemma 5, we get the following:

‖𝑒(𝑡)‖𝑝 ≤ sup
𝑡0−𝜏≤𝑠≤𝑡0

‖𝑒 (𝑠)‖𝑝𝑒
−𝑟(𝑡−𝑡0), 𝑡 ≥ 𝑡

0
, (37)

where 𝑟 > 0 is the unique positive solution of the equation
𝑟 = 𝑎 − 𝑏𝑒

𝑟𝜏.
Therefore, from Definition 1, switched interval networks

(13) globally exponentially synchronize to its respond system
(15).

4. Synchronization Criteria of
Interval Networks

It can be observed that only one subsystem is activated when
𝑁 = 1, the switched interval networks (13) and corresponding
response system (15) degenerate interval networks (1) and its
response system (5), respectively. It should be noted that the
global exponential synchronization of interval networks can
be a by-product; that is, global exponential synchronization
criteria for interval networks (1) can be easily derived from
Theorems 7 and 8; then we have the following corollaries.

Corollary 9. Under assumptions (H
1
) and (H

2
), when con-

trol gain matrix 𝐾 satisfies

− 𝜇
𝑝
(−𝐴
0
+ 𝐾) − 𝑙

𝐵10
𝑝 − 𝑙‖𝐸‖𝑝

𝐹𝐴
𝑝 − 𝑙‖𝐸‖𝑝

𝐹1
𝑝

≥ 𝑙
𝐵20

𝑝 + 𝑙‖𝐸‖𝑝
𝐹2

𝑝,
(38)

where 𝑝 = 1, 2,∞, 𝑙 = max
1≤𝑗≤𝑛

{𝑙
𝑖𝑗
}, 𝑖 = 1, 2.

Then the interval networks (1) will globally exponentially
synchronize with the response system (5).

Proof. Similar toTheorem 7, it is not difficult to get the proof
of Corollary 9.
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Corollary 10. Under assumptions (H
2
) and (H

3
), global

synchronization of the interval networks (1) can be achieved,
if designing suitable control gain matrix𝐾 satisfies

− 𝜇
𝑝
(−𝐴
0
+ 𝐾) − 𝜇

𝑝
(𝐵
∗

10
𝐿)

− 𝑙‖𝐸‖𝑝
𝐹𝐴

𝑝 − 𝑙‖𝐸‖𝑝
𝐹1

𝑝

≥ 𝑙
𝐵20

𝑝 + 𝑙‖𝐸‖𝑝
𝐹2

𝑝 > 0,

(39)

where 𝑝 = 1,∞, 𝑙 = max
1≤𝑗≤𝑛

{𝑙
𝑘𝑗
} (𝑘 = 1, 2), and 𝐿 =

diag(𝑙
11
, 𝑙
12
, . . . , 𝑙
1𝑛
),

𝐵
∗

10
= (𝑏
(10)
∗

𝑚𝑛
)
𝑛×𝑛

{
max (0, 𝑏(10)

𝑚𝑛
) , 𝑚 = 𝑛,

𝑏(10)
𝑚𝑛

, 𝑚 ̸= 𝑛.
(40)

Proof. The proof of Corollary 10 can be easily obtained from
Theorem 8, omitted here.

Remark 11. Matrix measure method has been introduced to
switched system, and it is a very useful tool to deal with the
stability and synchronization problems of networks and avoid
constructing a proper Lyapunov function, which sometimes
cannot be found. Moreover, most of the previous results on
stability or synchronization are in form of algebra or norm,
which limit the scope of nonnegative constants, however,
from the definition of matrix measure, one easily knows that
matrix measure can balance the effect of positive values and
negative values of the matrix. Therefore, method based on
matrix measure can obtain the more general synchronization
criteria.

5. An Illustrative Example

In this section, an example is presented to prove the effec-
tiveness of the theoretical results obtained in Theorem 7. In
addition, it shows that the obtained synchronization criteria
can be applied to chaotic neural networks, and even when
each subsystem is chaotic neural networks, the switched
networks can be reached to synchronization.

Example 1. Consider the second-order switched interval
networks with discrete delay in (13) described by

�̇�
𝑖 (𝑡) = −𝑎𝑖𝜎(𝑡)𝑥𝑖 (𝑡) +

2

∑
𝑗=1

𝑏
(1)

𝑖𝑗𝜎(𝑡)
𝑔
1𝑗
(𝑥
𝑗 (𝑡))

+

2

∑
𝑗=1

𝑏
(2)

𝑖𝑗𝜎(𝑡)
𝑔
2𝑗
(𝑥
𝑗
(𝑡 − 𝜏(𝑡)) 𝑎

𝑖𝜎(𝑡)

∈ [𝑎
𝑖𝜎(𝑡)
, 𝑎
𝑖𝜎(𝑡)
] ,

𝑏
(𝑘)

𝑖𝑗𝜎(𝑡)
∈ [𝑏
(𝑘)

𝑖𝑗𝜎(𝑡)
, 𝑏
(𝑘)

𝑖𝑗𝜎(𝑡)
] , 𝑘 = 1, 2,

𝑥
𝑖 (𝑡) = 𝜑𝑖 (𝑡) , 𝑡 ∈ [−𝜏, 0] , 𝑖, 𝑗 = 1, 2.

(41)

Consider 𝜎(𝑡) : [0, +∞) → Γ = {1, 2}, 𝑔
𝑖
(𝑥) = tan ℎ(𝑥),

𝑖 = 1, 2, 𝜏(𝑡) = 1, 𝐽 = (0, 0)
𝑇. Obviously, the assumptions

H
1
and H

3
are satisfied with 𝑙 = 1. The networks system

parameters are defined as

𝐴
1
= (

1.00 0.00

0.00 1.00
) , 𝐴

1
= (

1.02 0.00

0.00 1.02
) ,

𝐵
11
= (

2.00 −0.10

−5.00 4.50
) , 𝐵

11
= (

2.02 −0.98

−4.98 4.52
) ,

𝐵
21
= (

−1.50 −0.10

−0.20 −4.00
) , 𝐵

21
= (

−1.48 −0.98

−0.18 −3.98
) ,

𝐴
2
= (

1.00 0.00

0.00 1.00
) , 𝐴

2
= (

1.02 0.00

0.00 1.02
) ,

𝐵
12
= (

3.00 5.00

0.10 2.00
) , 𝐵

12
= (

3.02 5.02

0.12 2.02
) ,

𝐵
22
= (

−2.50 0.20

0.10 −1.50
) , 𝐵

22
= (

−2.48 0.22

0.12 −1.48
) .

(42)

In the following, we will design control gain matrices
𝐾
𝑖
(𝑖 = 1, 2) for the switched interval networks in this

example, chosen as follows:

𝐾
1
= (

−12 4

4 −20
) , 𝐾

2
= (

−14 6

6 −26
) . (43)

By calculating, we have −𝜇
𝑝
(−𝐴
01
+ 𝐾
1
) − 𝑙‖𝐵

101
‖
𝑝
−

𝑙‖𝐸
1
‖
𝑝
‖𝐹
𝐴1
‖
𝑝
− 𝑙‖𝐸

1
‖
𝑝
‖𝐹
11
‖
𝑝

= 4.3132 ≥ 𝑙‖𝐵
201
‖
𝑝
+

𝑙‖𝐸
1
‖
𝑝
‖𝐹
21
‖
𝑝

= 4.0694, −𝜇
𝑝
(−𝐴
02

+ 𝐾
2
) − 𝑙‖𝐵

102
‖
𝑝
−

𝑙‖𝐸
2
‖
𝑝
‖𝐹
𝐴2
‖
𝑝
− 𝑙‖𝐸

2
‖
𝑝
‖𝐹
12
‖
𝑝

= 6.2811 ≥ 𝑙‖𝐵
202
‖
𝑝
+

𝑙‖𝐸
2
‖
𝑝
‖𝐹
22
‖
𝑝
= 5.0638, all the assumptions of Theorem 7

hold; therefore, switched drive system (13) can synchronize
exponentially toward with response system (15) under any
switching rules.

For numerical simulation, let 𝐴
1
= 𝐴
1
, 𝐵
11
= 𝐵
11
, 𝐵
21
=

𝐵
21
, 𝐴
2
= 𝐴
2
, 𝐵
12

= 𝐵
12
, and 𝐵

22
= 𝐵
22
. In this case, the

two subsystems are all chaotic neural networks [25]; Figure 1
displays two chaotic attractors with the initial conditions
(𝑥
11
(𝑡), 𝑥
12
(𝑡))
𝑇
= (0.1, 0.1)

𝑇, (𝑥
21
(𝑡), 𝑥
22
(𝑡))
𝑇
= (2.3, 0.3)

𝑇,
respectively; Figure 2 shows the state trajectories of each
variable of the first subsystem, and Figure 3 depicts the
temporal evolution of each variable of the second subsystem.

For making numerical simulation of the switched drive-
response error-state system, Figure 4 depicts the time
responses of state variables 𝑒

1
(𝑡) and 𝑒

2
(𝑡) from the 30 random

constant initial states in the set [−2, 4] × [−2, 4] with step
ℎ = 0.01; it reveals that the trajectory of the switched
interval error-state system globally exponentially converges
to a unique equilibrium 𝑒

∗ = (0, 0)
𝑇. This is in accordance

with the conclusion of Theorem 7.
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Figure 1: Chaotic attractor of two subsystems of switched networks.
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Figure 2: The state trajectories 𝑥
11
and 𝑥

12
of the first subsystem.
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Figure 3: The state trajectories 𝑥
21
and 𝑥

22
of the second subsystem.
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Figure 4: Time responses of state variables 𝑒
1
and 𝑒

2
of switched error-state system.

6. Conclusion

In this paper, without constructing complex Lyapunov-
Krasovskii functions, we have proposed a new method to
study the global exponential synchronization of switched
interval delayed networks and designed the coupling control
gain matrices 𝐾

𝑖
; the derived synchronization criteria for

switched interval networks under the arbitrary switching
rule are easy to verify in practice. The synchronization
criteria for delayed networks with uncertain parameters can
be a special case. Additionally, synchronization criteria can
be applied to chaotic systems. An interesting example has
shown that switched drive systems can synchronize with its
response systems even if each subsystem is chaotic neural
networks; this further shows that our results improve and
extend the existing works. In the near future, we will discuss
quasi-synchronization control, dissipativity, and finite-time
stochastic stabilization of the switched interval delayed net-
works [26, 27].
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