7,186 research outputs found

    Computer Architectures to Close the Loop in Real-time Optimization

    Get PDF
    © 2015 IEEE.Many modern control, automation, signal processing and machine learning applications rely on solving a sequence of optimization problems, which are updated with measurements of a real system that evolves in time. The solutions of each of these optimization problems are then used to make decisions, which may be followed by changing some parameters of the physical system, thereby resulting in a feedback loop between the computing and the physical system. Real-time optimization is not the same as fast optimization, due to the fact that the computation is affected by an uncertain system that evolves in time. The suitability of a design should therefore not be judged from the optimality of a single optimization problem, but based on the evolution of the entire cyber-physical system. The algorithms and hardware used for solving a single optimization problem in the office might therefore be far from ideal when solving a sequence of real-time optimization problems. Instead of there being a single, optimal design, one has to trade-off a number of objectives, including performance, robustness, energy usage, size and cost. We therefore provide here a tutorial introduction to some of the questions and implementation issues that arise in real-time optimization applications. We will concentrate on some of the decisions that have to be made when designing the computing architecture and algorithm and argue that the choice of one informs the other

    Energy-Aware High Performance Computing

    Get PDF
    High performance computing centres consume substantial amounts of energy to power large-scale supercomputers and the necessary building and cooling infrastructure. Recently, considerable performance gains resulted predominantly from developments in multi-core, many-core and accelerator technology. Computing centres rapidly adopted this hardware to serve the increasing demand for computational power. However, further performance increases in large-scale computing systems are limited by the aggregate energy budget required to operate them. Power consumption has become a major cost factor for computing centres. Furthermore, energy consumption results in carbon dioxide emissions, a hazard for the environment and public health; and heat, which reduces the reliability and lifetime of hardware components. Energy efficiency is therefore crucial in high performance computing

    Exploiting hybrid parallelism in the kinematic analysis of multibody systems based on group equations

    Get PDF
    Computational kinematics is a fundamental tool for the design, simulation, control, optimization and dynamic analysis of multibody systems. The analysis of complex multibody systems and the need for real time solutions requires the development of kinematic and dynamic formulations that reduces computational cost, the selection and efficient use of the most appropriated solvers and the exploiting of all the computer resources using parallel computing techniques. The topological approach based on group equations and natural coordinates reduces the computation time in comparison with well-known global formulations and enables the use of parallelism techniques which can be applied at different levels: simultaneous solution of equations, use of multithreading routines, or a combination of both. This paper studies and compares these topological formulation and parallel techniques to ascertain which combination performs better in two applications. The first application uses dedicated systems for the real time control of small multibody systems, defined by a few number of equations and small linear systems, so shared-memory parallelism in combination with linear algebra routines is analyzed in a small multicore and in Raspberry Pi. The control of a Stewart platform is used as a case study. The second application studies large multibody systems in which the kinematic analysis must be performed several times during the design of multibody systems. A simulator which allows us to control the formulation, the solver, the parallel techniques and size of the problem has been developed and tested in more powerful computational systems with larger multicores and GPU.This work was supported by the Spanish MINECO, as well as European Commission FEDER funds, under grant TIN2015-66972-C5-3-

    Fronthaul-Constrained Cloud Radio Access Networks: Insights and Challenges

    Full text link
    As a promising paradigm for fifth generation (5G) wireless communication systems, cloud radio access networks (C-RANs) have been shown to reduce both capital and operating expenditures, as well as to provide high spectral efficiency (SE) and energy efficiency (EE). The fronthaul in such networks, defined as the transmission link between a baseband unit (BBU) and a remote radio head (RRH), requires high capacity, but is often constrained. This article comprehensively surveys recent advances in fronthaul-constrained C-RANs, including system architectures and key techniques. In particular, key techniques for alleviating the impact of constrained fronthaul on SE/EE and quality of service for users, including compression and quantization, large-scale coordinated processing and clustering, and resource allocation optimization, are discussed. Open issues in terms of software-defined networking, network function virtualization, and partial centralization are also identified.Comment: 5 Figures, accepted by IEEE Wireless Communications. arXiv admin note: text overlap with arXiv:1407.3855 by other author

    Enhancing Energy Production with Exascale HPC Methods

    Get PDF
    High Performance Computing (HPC) resources have become the key actor for achieving more ambitious challenges in many disciplines. In this step beyond, an explosion on the available parallelism and the use of special purpose processors are crucial. With such a goal, the HPC4E project applies new exascale HPC techniques to energy industry simulations, customizing them if necessary, and going beyond the state-of-the-art in the required HPC exascale simulations for different energy sources. In this paper, a general overview of these methods is presented as well as some specific preliminary results.The research leading to these results has received funding from the European Union's Horizon 2020 Programme (2014-2020) under the HPC4E Project (www.hpc4e.eu), grant agreement n° 689772, the Spanish Ministry of Economy and Competitiveness under the CODEC2 project (TIN2015-63562-R), and from the Brazilian Ministry of Science, Technology and Innovation through Rede Nacional de Pesquisa (RNP). Computer time on Endeavour cluster is provided by the Intel Corporation, which enabled us to obtain the presented experimental results in uncertainty quantification in seismic imagingPostprint (author's final draft
    • …
    corecore