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Abstract. In hardware-aware high performance computing, block- asyn-
chronous iteration and mixed precision iterative refinement are two tech-
niques that may be used to leverage the computing power of SIMD ac-
celerators like GPUs in the iterative solution of linear equation systems.
Although they use a very different approach for this purpose, they share
the basic idea of compensating the convergence properties of an inferior
numerical algorithm by a more efficient usage of the provided computing
power. In this paper, we analyze the potential of combining both tech-
niques. Therefore, we derive a mixed precision iterative refinement algo-
rithm using a block-asynchronous iteration as an error correction solver,
and compare its performance with a pure implementation of a block-
asynchronous iteration and an iterative refinement method using double
precision for the error correction solver. For matrices from the University
of Florida Matrix collection, we report the convergence behaviour and
provide the total solver runtime using different GPU architectures.

Keywords: mixed precision iterative refinement, block-asynchronous it-
eration, GPU, linear system, relaxation

1 Introduction

Classical relaxation methods such as Gauss-Seidel and Jacobi usually require
data transfer between each iteration which constitutes a synchronization point.
This implies a severe restriction for parallel implementations. Block-asynchronous
iteration removes this synchronization barrier, updating components using the
latest available values. It allows a large freedom in the update order and the
number of updates per component, while every component update uses the lat-
est available values for the other components. In the end, the obtained algorithm
is neither deterministic nor does it imply convergence for all systems that can
be solved by the classical Jacobi approach, in fact it requires the linear equation
system to fulfill additional conditions. While, due to the poor convergence rate,
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they may seem to be very unattractive from the mathematical point of view,
the block-asynchronous iteration is, in contrast to most other iterative methods,
usually able to exploit the high computational power of modern hardware plat-
forms that are often accelerated by GPUs. Another well-known technique that
may be used to leverage the potential of accelerators is mixed precision iterative
refinement. The basic idea is to use a lower precision format for the error cor-
rection solver inside an iterative refinement method at full precision. Without
impacting the accuracy of the final solution approximation, the acceleration of
the solving process is possible since the computations in the less complex floating
point format can be conducted faster on the respective device. While the time
for computations in the usually implemented single and double precision for-
mats differs by a factor of two for most devices, additional acceleration may be
possible since using single precision reduces the pressure on the memory band-
width, that is often crucial in scientific computing on hybrid hardware. An open
question is how a combination of these two techniques impacts the convergence
and properties and the performance. On the one hand the methods are similar:
they both compensate their low complexity by leveraging the high computa-
tional power of GPUs. But on the other hand, they are contradictory since the
iterative refinement artificially introduces synchronization points that we try to
avoid in asynchronous iteration methods. For the latter ones, the most suitable
applications are linear systems with condition numbers which require high iter-
ation counts of the error correction solver. The mixed precision approach may
suffer from these, since the error correction is impacted by them. The paper is
organized as follows. First, we provide some mathematical background by out-
lining the algorithms for iterative refinement and the mixed precision variant,
and block-asynchronous iteration. We then introduce the hardware platforms
used for the experiments and give details about the linear equation systems we
target. Additionally, we outline the GPU implementation we use for the tests.
In the numerical experiment section, we compare the convergence behaviour of
iterative refinement using a double-precision and a single-precision error correc-
tion solver. We report the total solver runtimes and compare it with a plain
implementation of the block-asynchronous iteration for various GPUs. In the
last section we conclude and provide ideas for further optimization.

2 Mathematical Background

Block-Asynchronous Iteration. A possible motivation for asynchronous it-
eration is modern hardware, which provides a large number of cores that achieve
excellent performance when running in parallel, but suffer when synchronizing
or exchanging data. Therefore, algorithms that lack any synchronization would
achieve outstanding performance on these devices, while most of the numerical
algorithms are poorly parallel and require regular data exchange. For computing
the next iteration in relaxation methods, one usually requires the latest val-
ues of all components. For some algorithms, e.g., Gauss-Seidel [16], even the
already computed values of the current iteration step are used. This requires a
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strict order of the component updates, limiting the parallelization potential to a
stage, where a component cannot be updated several times before all the other
components are updated.

If this order is not adhered to, i.e., the individual components are updated
independently and without consideration of the current state of the other com-
ponents, the resulting algorithm is called a chaotic or asynchronous iteration
method. In the past, the convergence behaviour and performance of these meth-
ods were analyzed in several papers [13, 12, 4, 10]. Due to the superior conver-
gence properties of synchronized iteration methods, they came out of the main
focus of high performance computing, while research was put on investigating
the convergence properties [20, 5]. Today, due to the complexity of heterogeneous
hardware platforms and the large number of computing units in parallel devices
like GPUs, these schemes may become interesting again for applications like
multigrid methods, where highly parallel smoothers are required on the distinct
grid levels [9]. While traditional relaxation methods like the sequential Gauss-
Seidel obtain their efficiency from their fast convergence, an asynchronous iter-
ation scheme may compensate for its inferior convergence behavior by superior
scalability [3]. We proposed [2] a block-asynchronous iteration, that, in addition
to the global iterations, iterates on the subdomains determined by the iteration
components that are handled by the same stream in the GPU implementation.
The motivation for this is due to the design of graphics processing units and the
CUDA programming language. As the subdomains are relatively small and the
data needed largely fits into the multiprocessor’s cache, these additional itera-
tions on the subdomains come for almost free. During these local iterations, the
iteration values used from outside the block are kept constant, equal to their
values at the beginning of the global iteration. After the local iterations, the
updated values are communicated. This approach is inspired by the well known
hybrid relaxation schemes [9, 8]. The obtained algorithm, visualized in Figure 1,
can be written as a component-wise update of the solution approximation to

form x
(m+1)
k :

x
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k +

bk
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akjx
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,

(1)
where TS and TE denote the starting and the ending indexes of the ma-

trix/vector part in the thread block. Furthermore, for the local components, the
antecedent values are always used, while for the global part, the values from the
beginning of the iteration are used. The shift function ν(m + 1, j) denotes the
iteration shift for the component j – this can be positive or negative, depending
on whether the respective other thread block has already conducted more or
less iterations. Note that this gives a block Gauss-Seidel flavor to the updates. It
should also be mentioned that the shift function may not be the same in different
thread blocks. While the GPU hardware encourages this approach, the idea is
similar to a two-staged asynchronous iteration [7].
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Fig. 1: Visualizing the asynchronous iteration in block description used for the
GPU implementation.

Mixed Precision Iterative Refinement.

The motivation for the iterative refinement method can be obtained from
Newton’s method. Newton developed a method for finding successively better
approximations to the zeros of a function f(·) by updating the solution approx-
imation xi through

xi+1 = xi − (∇f(xi))
−1f(xi). (2)

We may now apply Newton’s method (2) to the function f(x) = b−Ax with
∇f(x) = −A. By defining the residual ri := b−Axi, we obtain

xi+1 = xi − (∇f(xi))
−1f(xi)

= xi +A−1(b−Axi)

= xi +A−1ri.

Denoting the solution update with ci := A−1ri, we can obtain:

1: initial guess as starting vector: x0

2: compute initial residual: r0 = b−Ax0

3: while (‖ Axi − b ‖2> ε ‖ r0 ‖) do
4: ri = b−Axi

5: solve: Aci = ri
6: update solution: xi+1 = xi + ci
7: end while

Algorithm 1: Error Correction Method

The underlying idea of mixed precision error correction methods is to use
different precision formats within the algorithm of the error correction method,
updating the solution approximation in high precision, but computing the error
correction term in lower precision which has been suggested before [15, 14, 6, 11].
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Fig. 2: Visualizing the mixed precision approach to an iterative refinement
method.

Hence, one regards the inner correction solver as a black box, computing a
solution update in lower precision. The term high precision refers to the precision
format that is necessary to display the accuracy of the final solution, and we can
obtain the following algorithm where xhigh denotes the high precision value and
xlow denotes the value in low precision for the variable x. The conversion between
the formats will be left abstract throughout this paper. Because the conversion
of the matrix A is especially expensive, it should be stored in both precision
formats, high and low precision. This leads to the drawback of a higher memory
need.

Using the displayed algorithm, we obtain a mixed precision solver. If the
final accuracy does not exceed the smallest number εlow that can be represented
in the lower precision, it may generate the same approximation quality as if
the solver was performed in the high precision format. It should be mentioned,
that the solution update of the error correction solver is usually not optimal for
the outer system, since the representation of the problem in the lower precision
format contains rounding errors, and it therefore solves a perturbed problem.
When comparing the algorithm of an error correction solver to a plain solver, it
is obvious, that the error correction method has more computations to execute.
Each outer loop consists of the computation of the residual error term, a typecast,
a vector update, the scaling process, the inner solver for the correction term,
the reconversion of the data and the solution update. The computation of the
residual error itself consists of a matrix-vector multiplication, a vector addition
and a scalar product. The mixed precision refinement approach to a certain solver
is superior to the plain solver in high precision, if the additional computations
and typecasts are overcompensated by the cheaper inner correction solver using
a lower precision format [1, 11].

3 Experiment Setup

Linear Equation Systems. In our experiments, we search for the approximate
solutions of linear systems of equations, where the respective matrices are taken
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Matrix name #n #nnz cond(A) cond(D−1A) ρ(M)

Chem97ZtZ 2,541 7,361 1.3e+03 7.2e+03 0.7889

fv1 9,604 85,264 9.3e+04 12.76 0.8541

fv3 9,801 87,025 3.6e+07 4.4e+03 0.9993

Trefethen 2000 2,000 41,906 5.1e+04 6.1579 0.8601

Table 1: Dimension and characteristics of the SPD test matrices and the corre-
sponding iteration matrices.

from the University of Florida Matrix Collection (UFMC; see http://www.cise.
ufl.edu/research/sparse/matrices/).

Due to the convergence properties of the iterative methods we analyze, the
experiment matrices have to be chosen properly, fulfilling the necessary and
sufficient convergence condition [12].

The matrix properties and sparsity plots are in Table 1. and Figure 3.
The first matrix, Chem97ZtZ, comes from statistics 5. Matrices fv1 and

fv3 are finite element discretizations of the Laplace equation on a 2D mesh.
Therefore, they share a common sparsity structure, but differ in dimension
and condition number. The matrix Trefethen 2000 [21] is a 2000 × 2000
matrix where all entries are zero except for the ones at the positions (i, j)
where |i − j| = 2, 4, 8, 16 . . . . Furthermore, the main diagonal is filled with the
primes 2, 3, 5, 7, 11 . . . 17389. Hence, this matrix has many off-diagonal entries
distributed over the diagonals that are by a power of 2 distant to the main
diagonal.

Implementation Issues. The GPU implementations of the block-asynchronous
iteration is based on CUDA [18], while the respective libraries used are from
CUDA 2.3 for the C1060 and the GTX280, and CUDA 4.0.17 [19] for the C2070
and GTX580 implementation. The kernels updating the respective components,
launched through different streams, use thread blocks of size 512. The thread
block size, the number of streams, along with other parameters, were determined

5 For more details see http://www.cise.ufl.edu/research/sparse/mat/Bates/README.txt

(a) Chem97ZtZ (b) fv1, fv3 (c) Trefethen 2000

Fig. 3: Sparsity plots of test matrices.
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Name Tesla C2070 Tesla C1060 GTX 580 GTX280a

Chip T20 T10 GF110 GT200

Transistors 3 · 109 1.4 · 109 3 · 109 1, 4 · 109

Core frequency 1.15 GHz 1.3 GHz 1.5 GHz 1.3 GHz

Thread Processors 448 240 512 240

GFLOPS (single) 1030 933 1580 933

GFLOPS (double) 515 78 790 78

Shared Memory/L1 64 KB 16 K 64 K 16 KB

L2 Cache 768 KB - 768 KB -

Memory 6 GB GDDR5 4 GB GDDR3 1.5 GB GDDR5 1 GB GDDR3

Memory Frequency 1.5 GHz 0.8 GHz 2 GHz 1.1 GHz

Memory Bandwidth 144 GB/s 102 GB/s 192.4 GB/s 141 GB/s

ECC Memory yes no yes no

Power Consumption 190 W 200 W 244 W 236 W

IEEE double/single yes/yes yes/partial yes/yes yes/partial

Table 2: Key system characteristics of the four GPUs used. Computation rate
and memory bandwidth are theoretical peak values [17].

through empirically based tuning. For the iterative refinement implementation
we use a first outer iteration to analyze the residual improvement and then adapt
the number of inner iterations such that the residual improvement equals the
accuracy of floating point precision in every outer update. Hence, while the first
error correction loop may provide different improvement for the distinct test
cases, the further loops all decrease the residual by 6 to 8 digits.

In case of the mixed precision implementations, the error correction solver is
implemented using single precision. Hence, due to the low precision representa-
tion of the linear equation system, additional rounding errors may be expected,
slowing down the convergence of the iterative refinement. To analyze this issue,
we compare in a first experiment the convergence behaviour of the iterative re-
finement method using a double- and a single- precision error correction solver,
respectively. Using different precision formats, the vectors and the linear system
have to be converted from double to single precision. This typecast, handled by
the GPU, triggers some overhead and may be crucial for problems where only
very few iterations of the error correction solver are executed.

To analyze the impact of the overhead of iterative refinement and the use of
different precision formats we provide the solver runtimes for the different linear
equation systems for the plain block-asynchronous iteration in double precision,
the iterative refinement in double precision and the mixed precision iterative
refinement, whereas the latter ones use the block-asynchronous iteration as an
error correction solver.

Hardware Platforms. We target four GPU architectures located at the
Engineering Mathematics and Computing Lab (EMCL)6 at the Karlsruhe Insti-

6 Supported by NVIDIA as Cuda Research Center
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Fig. 4: Iterative refinement convergence, solid lines are double-precision error
correction, dashed lines are single-precision error correction.

tute of Technology, Germany, to analyze the potential of mixed precision block-
asynchronous iteration. They are taken from the Fermi and the Tesla line of
Nvidia. The C2070 and the C1060 are the server versions of the line, the GTX580
and the GTX280 are the consumer version, respectively. While the chip and on-
board memory specifications are given in table 2, the host system may have
minor influence on the performance, since all computations are exclusively han-
dled by the graphics. Note that the price for the larger (ECC protected) memory
in the server versions is a lower memory bandwidth.

4 Numerical Experiments

In the first experiment, we analyze how using lower precision for the block-
asynchronous iteration error correction solver impacts the iterative refinement
convergence rate. Therefore, we report the relative residual depending on the
iteration number for the different linear equation systems introduced in Section 3.
Note that due to the implementation, the first outer loop is used to determine the
residual improvement, while the further iterations improve the approximation
iterate by 6 to 8 digits, depending on the rounding error.

The results show that for the test matrices Chem97ZtZ, fv1, and
Trefethen 2000, using single precision for the error correction solver has a
nearly negligible impact on the convergence of the iterative refinement. Only for
the fv3 test case, does the convergence rate suffer. This was expected since the
high condition number triggers representation errors in the low precision format
that make the approximation updates less beneficial.

But while the convergence behaviour is interesting from the theoretical point
of view, the next experiment is dedicated to analyzing how handling the error
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Fig. 5: Iterative refinement performance, time-dependent relative residual.

correction equation in single precision impacts the performance. The motivation
is that using single instead of double as working precision, triggers at least a
speedup of two, and may potentially overcompensate for the overhead associated
with the typecast between the formats.

While the convergence, with respect to iteration number, is independent of
the hardware used, the performance depends on the architecture. We use the
C2070 for this experiment, as this ’Fermi’ generation is the state of the art from
the Nvidia GPUmanufacturer. In addition to the convergence performance of the
iterative refinement, using a double or single precision error correction solver, we
report the results for the plain block-asynchronous iteration in double precision.
We observe, that for all test cases, the overhead is negligible when embedding
the block-asynchronous iteration in double precision into the iterative refine-
ment framework. For the small test cases Chem97ZtZ and Trefethen 2000,
switching to the mixed precision iterative refinement approach gives no improve-
ment. For the larger matrices e.g. fv1, the improvement by using low precision
for the error correction solver is relevant. The mixed precision implementation
converges almost twice as fast. Even for the test case fv3, where we observed a
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Fig. 6: Total solver runtime.

slower convergence rate for the mixed precision approach in Figure 4, we benefit
in terms of performance.

For the test cases fv1 and fv3, despite the performance difference between
single and double precision of around 10 on the Tesla line, the mixed preci-
sion iterative refinement performs inferior to the plain double implementation of
async-(5). The reason is, that for these systems, the memory bandwidth is the
limiting factor and the overhead, due to the iterative refinement framework, can
not be compensated for by the single precision performance. For the small ma-
trices, things are different. Since the size of Chem97ZtZ and Trefethen 2000

allows for the caching of the iteration vector as well as the right-hand side, the
C1060 and the GTX280 are able to leverage the single precision performance
more efficiently. Still, the bandwidth remains the limiting factor, since the com-
plete matrix cannot be loaded into cache, and the higher memory bandwidth of
the consumer version explains the better performance for the mixed precision
approach. Using double precision, the server version is superior, probably due to
the more sophisticated memory structure. Unfortunately, the very limited main
memory on the GTX280 does not allow for the handling of the large systems.
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Note that the total solver runtime for Trefethen 2000 is on the GTX280
even smaller than on the server version of the Fermi line. An explanation may
be that the overall runtime also includes the initialization process, which has to
be taken into account for this system, and is longer for systems using CUDA in
version 4.0 and equipped with more memory.

Targeting the Fermi generation, we observe that, especially for the large sys-
tems, we benefit from the mixed precision framework. Although we may only
expect a factor of two concerning the floating point performance, the sophisti-
cated memory hierarchy enables even higher speedups.

This speedup stems from the fact that, not only are we able to keep the
iteration vector and the right-hand side local due to the larger L1 cache, but also
because the L2 cache allows for the efficient data access of the iteration matrix.
Note that for the test case fv3, the iterative refinement in double precision fulfills
the critical stopping criterion after 4 iterations, while we could observe in Figure
4 that it is already very close after 3 iterations. Hence, the double precision
iterative refinement runtime would benefit from choosing a smaller number of
inner iterations for the last global iteration.

5 Conclusions

We were able to show that embedding block-asynchronous iteration into a mixed
precision iterative refinement method not only retains its convergence properties,
but may even be beneficial with respect to the runtime performance. Depending
on the GPU architecture, we were able to achieve a performance increase of up to
a factor of two for linear equation systems taken from the University of Florida
Matrix Collection. The trade-off between the synchronization points introduced
by iterative refinement and the desired asynchronism is not necessarily crucial,
and for problems fulfilling the constraints, given by an upper and lower bound
for the condition number of the linear system, the performance increase may be
considerable. Concerning the hardware, the potential lies within systems that
have large differences in the double–single precision performance, and a sophis-
ticated memory hierarchy enabling them to transfer this performance factor to
speedups of the asynchronous iteration solver.

While our analysis focused on the typically used single- and double preci-
sion formats, especially when targeting artificially created extended formats, the
mixed precision iterative refinement approach is inevitable.

Aside from this, further research should focus on determining a priori, whether
embedding the block-asynchronous iteration into the mixed precision iterative
refinement framework is beneficial for a given problem. This may depend not
only on the problem characteristics, i.e. the condition number, but also on the
hardware platform used.
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