31 research outputs found

    Analysis and modeling of jitter and frequency tolerance in gated oscillator based CDRs

    Get PDF
    This paper presents an approach for analyzing and modeling of gated-oscillator (GO) -based CDRs and predicting their performance aspects such as jitter tolerance (JTOL) and frequency tolerance (FTOL). It is shown that high JTOL of this topology in addition to its acceptable FTOL and flexible topology, have made it very suitable for short-haul multi-rate applications

    Tradeoffs in Design of Low-Power Gated-Oscillator CDR Circuits

    Get PDF
    This article describes some techniques for implementing low- power clock and data recovery (CDR) circuits based on gated- oscillator (GO) topology for short distance applications. Here, the main tradeoffs in design of a high performance and power-efficient GO CDR are studied and based on that a top-down design methodology is introduced such that the jitter tolerance (JTOL) and frequency tolerance (FTOL) requirements of the system are simultaneously satisfied. A test chip has been implemented in standard digital 0.18 μm CMOS while the proposed CDR circuit consumes only 10.5 mW and occupies 0.045 mm2 silicon area in 2.5 Gbps data bit rate. Measurement results show a good agreement to analyses proofs the capabilities of the proposed approach for implementing low-power GO CDRs

    A Power-Efficient Clock and Data Recovery Circuit in 0.18-um CMOS Technology for Multi-Channel Short-Haul Optical Data Communication

    Get PDF
    This paper studies the specifications of gated-oscillator-based clock and data recovery circuits (GO CDRs) designed for short haul optical data communication systems. Jitter tolerance (JTOL) and frequency tolerance (FTOL) are analyzed and modeled as two main design parameters for the proposed topology to explore the main tradeoffs in design of low-power GO CDRs. Based on this, a top-down design methodology is presented to implement a low-power CDR unit while the JTOL and FTOL requirements of the system are simultaneously satisfied. Using standard digital 0.18 um CMOS technology, an 8-channel CDR system has been realized consuming 4.2 mW/Gbps/channel and occupying a silicon area of 0.045 mm2/channel, with the total aggregate data bit rate of 20 Gbps. The measured FTOL is 3.5% and no error was detected for a 231-1 PRBS (pseudo-random bit stream) input data for 30 minutes meaning that the bit error rate (BER) is smaller than 10-12. Meanwhile, a shared-PLL (phase-locked loop) with a wide tuning-range and compensated loop-gain has been applied to tune the center frequency of all CDR channels on desired frequency

    Design of energy-efficient high-speed wireline transceiver

    Get PDF
    Energy efficiency has become the most important performance metric of integrated circuits used in many applications ranging from mobile devices to high-performance processors. The power problem permeates both computing and communication systems alike. Especially in the era of Big Data, continuously growing demand for higher communication bandwidth is driving the need for energy-efficient high-speed I/O serial links. However, the rate at which the energy efficiency of serial links is improving is much slower than the rate at which the required data transfer bandwidth is increasing. This dissertation explores two design approaches for energy-efficient communication systems. The first design approach maximizes the energy efficiency of a transceiver without any performance loss, and as a prototype, a source-synchronous multi-Gb/s transceiver that achieves excellent energy efficiency lower than 0.3pJ/bit is presented. To this end, the proposed transceiver employs aggressive supply voltage scaling, and multiplexed transmitter and receiver synchronized by low-rate multi-phase clocks are adopted to achieve high data rate even at a supply voltage close to the device threshold voltage. Phase spacing errors resulting from device mismatches are corrected using a self-calibration scheme. The proposed phase calibration method uses a single digital delay-locked loop (DLL) for calibrating all the phases, which makes the calibration process insensitive to the supply voltage level. Thanks to this technique, the proposed multi-Gb/s transceiver operates robustly and energy-efficiently at a very low supply voltage. Fabricated in a 65nm CMOS process, the energy efficiency and data rate of the prototype transceiver vary from 0.29pJ/bit to 0.58pJ/bit and 1Gb/s to 6Gb/s, respectively, as the supply voltage is varied from 0.45V to 0.7V. In the second approach, observing that the data traffic in a real system is bursty, a full-rate burst-mode transceiver that achieves rapid on/off operation needed for energy-proportional systems is presented. By injecting input data edges into the oscillator embedded in a classical type-II digital clock and data recovery (CDR) circuit, the proposed receiver achieves instantaneous phase-locking and input jitter filtering simultaneously. In other words, the proposed CDR combines the advantages of conventional feed-forward and feedback architectures to achieve energy-proportional operation. By controlling the number of data edges injected into the oscillator, both the jitter transfer bandwidth and the jitter tolerance corner are accurately controlled. The feedback loop also corrects for any frequency error and helps improve the CDR's immunity to oscillator frequency drift during the power-on and -off states. This also improves the CDR's tolerance to consecutive identical digits present in the input data. Fabricated in a 90nm CMOS process, the prototype receiver instantaneously locks onto the very first data edge and consumes 6.1mW at 2.2Gb/s. Owing to its short power-on time, the overall transceiver's energy efficiency varies only from 5.4pJ/bit to 10.7pJ/bit when the effective data rate is varied from 2.2Gb/s to 0.22Gb/s

    통계적 주파수 검출기 기반 기준 주파수를 사용하지 않는 클록 및 데이터 복원 회로의 설계 방법론

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 공과대학 전기·정보공학부, 2022. 8. 정덕균.In this thesis, a design of a high-speed, power-efficient, wide-range clock and data recovery (CDR) without a reference clock is proposed. A frequency acquisition scheme using a stochastic frequency detector (SFD) based on the Alexander phase detector (PD) is utilized for the referenceless operation. Pat-tern histogram analysis is presented to analyze the frequency acquisition behavior of the SFD and verified by simulation. Based on the information obtained by pattern histogram analysis, SFD using autocovariance is proposed. With a direct-proportional path and a digital integral path, the proposed referenceless CDR achieves frequency lock at all measurable conditions, and the measured frequency acquisition time is within 7μs. The prototype chip has been fabricated in a 40-nm CMOS process and occupies an active area of 0.032 mm2. The proposed referenceless CDR achieves the BER of less than 10-12 at 32 Gb/s and exhibits an energy efficiency of 1.15 pJ/b at 32 Gb/s with a 1.0 V supply.본 논문은 기준 클럭이 없는 고속, 저전력, 광대역으로 동작하는 클럭 및 데이터 복원회로의 설계를 제안한다. 기준 클럭이 없는 동작을 위해서 알렉산더 위상 검출기에 기반한 통계적 주파수 검출기를 사용하는 주파수 획득 방식이 사용된다. 통계적 주파수 검출기의 주파수 추적 양상을 분석하기 위해 패턴 히스토그램 분석 방법론을 제시하였고 시뮬레이션을 통해 검증하였다. 패턴 히스토그램 분석을 통해 얻은 정보를 바탕으로 자기공분산을 이용한 통계적 주파수 검출기를 제안한다. 직접 비례 경로와 디지털 적분 경로를 통해 제안된 기준 클럭이 없는 클럭 및 데이터 복원회로는 모든 측정 가능한 조건에서 주파수 잠금을 달성하는 데 성공하였고, 모든 경우에서 측정된 주파수 추적 시간은 7μs 이내이다. 40-nm CMOS 공정을 이용하여 만들어진 칩은 0.032 mm2의 면적을 차지한다. 제안하는 클럭 및 데이터 복원회로는 32 Gb/s의 속도에서 비트에러율 10-12 이하로 동작하였고, 에너지 효율은 32Gb/s의 속도에서 1.0V 공급전압을 사용하여 1.15 pJ/b을 달성하였다.CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 13 CHAPTER 2 BACKGROUNDS 14 2.1 CLOCKING ARCHITECTURES IN SERIAL LINK INTERFACE 14 2.2 GENERAL CONSIDERATIONS FOR CLOCK AND DATA RECOVERY 24 2.2.1 OVERVIEW 24 2.2.2 JITTER 26 2.2.3 CDR JITTER CHARACTERISTICS 33 2.3 CDR ARCHITECTURES 39 2.3.1 PLL-BASED CDR – WITH EXTERNAL REFERENCE CLOCK 39 2.3.2 DLL/PI-BASED CDR 44 2.3.3 PLL-BASED CDR – WITHOUT EXTERNAL REFERENCE CLOCK 47 2.4 FREQUENCY ACQUISITION SCHEME 50 2.4.1 TYPICAL FREQUENCY DETECTORS 50 2.4.1.1 DIGITAL QUADRICORRELATOR FREQUENCY DETECTOR 50 2.4.1.2 ROTATIONAL FREQUENCY DETECTOR 54 2.4.2 PRIOR WORKS 56 CHAPTER 3 DESIGN OF THE REFERENCELESS CDR USING SFD 58 3.1 OVERVIEW 58 3.2 PROPOSED FREQUENCY DETECTOR 62 3.2.1 MOTIVATION 62 3.2.2 PATTERN HISTOGRAM ANALYSIS 68 3.2.3 INTRODUCTION OF AUTOCOVARIANCE TO STOCHASTIC FREQUENCY DETECTOR 75 3.3 CIRCUIT IMPLEMENTATION 83 3.3.1 IMPLEMENTATION OF THE PROPOSED REFERENCELESS CDR 83 3.3.2 CONTINUOUS-TIME LINEAR EQUALIZER (CTLE) 85 3.3.3 DIGITALLY-CONTROLLED OSCILLATOR (DCO) 87 3.4 MEASUREMENT RESULTS 89 CHAPTER 4 CONCLUSION 99 APPENDIX A DETAILED FREQUENCY ACQUISITION WAVEFORMS OF THE PROPOSED SFD 100 BIBLIOGRAPHY 108 초 록 122박

    Modelização em MatLab® de interfaces de comunicação de alto débito

    Get PDF
    Mestrado em Engenharia Electrónica e TelecomunicaçõesNow-a-days, high-speed digital data transmission is under continuous development. The constant increasing on the bitrates has been lead to the need of more sophisticated and complex receivers, systems that provide the recovering of the transmitted data over a dispersive channel that degrades the transmitted signal quality. Therefore, the receiver shall compensate the distortion introduced by the channel as well as synchronize the received signal that in addition to distortion, is also affected by jitter. The distortion derived from the channel is attenuated by means of equalization circuits that offset the channel frequency response at the transmission rate, making it as flat as possible for the desired frequency. On the other hand, the synchronization of the received signal is achieved by means of clock and data recovery circuits that usually recover the clock signal through the data transitions for sampling the received data. The main focus of this thesis concerns the modeling of a data receiver for a high-speed interface. The simulation of the data receiver block implies the modeling of a transmission channel depending on its characteristics. The proposed transmission system, from the transmitter to the output of the data recovery block, includes equalization filters for signal conditioning, of which several distinct architectures are studied. It’s proposed two architectures for the clock and data recovery circuit. The first one is a 2x oversampling clock and data recovery circuit based on a Phase Tracking architecture. The second one, is a 3x oversampling clock and data recovery based on a Blind Sampling architecture. By modeling both of the architectures of the clock and data recovery circuit, it’s intended to analyze the respective jitter tolerance results. It is crucial to know the amount of jitter that can be tolerated by these circuits in order to recover the data with a satisfying bit error ratio. The obtained results show a very close match to the theoretical values, where the 2x and 3x oversampling architecture presents a jitter tolerance of, approximately, 12UI and 23UI respectively for low jitter frequencies.Hoje em dia, a transmissão de dados digital de alto débito binário encontra-se em constante evolução. O contínuo aumento das taxas de transmissão tem vindo a exigir sistemas de receção cada vez mais sofisticados e complexos, que facultem a recuperação dos dados transmitidos ao longo de um canal dispersivo que degrada a qualidade do sinal transmitido. Consequentemente, cabe ao recetor compensar a distorção introduzida pelo canal bem como a sincronização do sinal recebido que, para além de sofrer distorção, vem também afetado por jitter. A distorção introduzida pelo canal é atenuada através de circuitos de igualização, que compensam a resposta em frequência do canal à frequência de transmissão, de maneira a tornar a mesma o mais plana possível para a frequência desejada. Por sua vez, a sincronização do sinal recebido é conseguida através de circuitos de recuperação de dados e relógio, que, geralmente, geram um sinal de relógio a partir das transições do sinal de dados que é posteriormente utilizado para fazer a amostragem dos dados recebidos. O principal foco desta tese incide na modelação de um sistema de receção de dados de uma interface de alta velocidade. A simulação do bloco de receção de dados implica a modelação de um canal de transmissão em função das características do mesmo. O sistema de transmissão proposto, desde o transmissor até à saída do bloco de recuperação de dados, inclui filtros de igualização para acondicionamento de sinal, dos quais várias arquiteturas distintas são estudadas. São propostas duas arquiteturas para o circuito de recuperação de dados e relógio. A primeira trata-se de um circuito de recuperação de dados e relógio com sobre-amostragem 2x, baseado numa arquitetura de Phase Tracking. A segunda arquitetura trata-se de um circuito de recuperação de dados e relógio com sobre-amostragem 3x, baseado num arquitetura Blind Sampling. A análise de resultados da modelação de ambas as arquiteturas do circuito de recuperação de dados e relógio é realizada através da aquisição das respetivas curvas de tolerância de jitter. É fundamental conhecer a quantidade de jitter tolerado por estes circuitos a fim de recuperar os dados com uma probabilidade de erro de bit satisfatória. Os resultados obtidos mostram uma correspondência bastante próxima dos valores teóricos, onde a arquitetura com sobre-amostragem 2x apresenta uma tolerância de jitter de, aproximadamente, 12UI e a arquitetura com sobre-amostragem 3x apresenta uma tolerância de, aproximadamente, 23UI para baixas frequências de jitter

    Clock Synchronisation Assisted Clock and Data Recovery for Sub-Nanosecond Data Centre Optical Switching

    Get PDF
    In current `Cloud' data centres, switching of data between servers is performed using deep hierarchies of interconnected electronic packet switches. Demand for network bandwidth from emerging data centre workloads, combined with the slowing of silicon transistor scaling, is leading to a widening gap between data centre traffic demand and electronically-switched data centre network capacity. All-optical switches could offer a future-proof alternative, with potentially under a third of the power consumption and cost of electronically-switched networks. However, the effective bandwidth of optical switches depends on their overall switching time. This is dominated by the clock and data recovery (CDR) locking time, which takes hundreds of nanoseconds in commercial receivers. Current data centre traffic is dominated by small packets that transmit in tens of nanoseconds, leading to low effective bandwidth, as a high proportion of receiver time is spent performing CDR locking instead of receiving data, removing the benefits of optical switching. High-performance optical switching requires sub-nanosecond CDR locking time to overcome this limitation. This thesis proposes, models, and demonstrates clock synchronisation assisted CDR, which can achieve this. This approach uses clock synchronisation to simplify the complexity of CDR versus previous asynchronous approaches. An analytical model of the technique is first derived that establishes its potential viability. Following this, two approaches to clock synchronisation assisted CDR are investigated: 1. Clock phase caching, which uses clock phase storage and regular updates in a 2km intra-building scale data centre network interconnected by single-mode optical fibre. 2. Single calibration clock synchronisation assisted CDR}, which leverages the 20 times lower thermal sensitivity of hollow core optical fibre versus single-mode fibre to synchronise a 100m cluster scale data centre network, with a single initial phase calibration step. Using a real-time FPGA-based optical switch testbed, sub-nanosecond CDR locking time was demonstrated for both approaches
    corecore