705 research outputs found

    Multi-objective optimization of power electronic converters

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    SiC-Based 1.5-kV Photovoltaic Inverter:Switching Behavior, Thermal Modeling, and Reliability Assessment

    Get PDF

    Optocoupler Integration of LTCC-based Gate Driver in a SiC Power Module

    Get PDF
    The growing demand for electrical energy in today’s industrialized economy has driven the need for innovative approaches to meet diverse application requirements. Notably, advancements have been made in the field of power electronic systems, as reliable power electronic converters are essential for managing multiple power sources and loads. However, the development of these systems poses challenges related to power device switching speed, system weight and size, and power losses. The integration of a gate driver into a SiC power module offers a solution to many of these challenges, thereby driving the advancement of electrical power density expansion. An LTCC-based gate driver with an LTCC-based optical isolator was developed and integrated into a fabricated 1.2kV SiC power module. This development was done specifically for high temperature applications as part of a wider research on the reliability of the integrated power module at higher temperatures. Therefore, this high temperature gate driver integrated SiC power module was tested from 25oC to 200oC. Double pulse testing of the fabricated integrated SiC power module was done to characterize the switching performance of the power module. The test results indicate a minimal voltage overshoot of approximately 3.5V during both the turn-on and turn-off periods. Additionally, the current overshoot ranges from ~5A to ~8A as the temperature increases from 25oC to 200oC. The results show good switching performance resulting in minimal losses over higher temperatures. Therefore, with these results, the integrated SiC power module can enhance better power density, and lower losses even in high temperature applications

    Optocoupler Integration of LTCC-based Gate Driver in a SiC Power Module

    Get PDF
    The growing demand for electrical energy in today’s industrialized economy has driven the need for innovative approaches to meet diverse application requirements. Notably, advancements have been made in the field of power electronic systems, as reliable power electronic converters are essential for managing multiple power sources and loads. However, the development of these systems poses challenges related to power device switching speed, system weight and size, and power losses. The integration of a gate driver into a SiC power module offers a solution to many of these challenges, thereby driving the advancement of electrical power density expansion. An LTCC-based gate driver with an LTCC-based optical isolator was developed and integrated into a fabricated 1.2kV SiC power module. This development was done specifically for high temperature applications as part of a wider research on the reliability of the integrated power module at higher temperatures. Therefore, this high temperature gate driver integrated SiC power module was tested from 25oC to 200oC. Double pulse testing of the fabricated integrated SiC power module was done to characterize the switching performance of the power module. The test results indicate a minimal voltage overshoot of approximately 3.5V during both the turn-on and turn-off periods. Additionally, the current overshoot ranges from ~5A to ~8A as the temperature increases from 25oC to 200oC. The results show good switching performance resulting in minimal losses over higher temperatures. Therefore, with these results, the integrated SiC power module can enhance better power density, and lower losses even in high temperature applications

    Grid Integration of DC Buildings: Standards, Requirements and Power Converter Topologies

    Get PDF
    Residential dc microgrids and nanogrids are the emerging technology that is aimed to promote the transition to energy-efficient buildings and provide simple, highly flexible integration of renewables, storages, and loads. At the same time, the mass acceptance of dc buildings is slowed down by the relative immaturity of the dc technology, lack of standardization and general awareness about its potential. Additional efforts from multiple directions are necessary to promote this technology and increase its market attractiveness. In the near-term, it is highly likely that the dc buildings will be connected to the conventional ac distribution grid by a front-end ac-dc converter that provides all the necessary protection and desired functionality. At the same time, the corresponding requirements for this converter have not been yet consolidated. To address this, present paper focuses on various aspects of the integration of dc buildings and includes analysis of related standards, directives, operational and compatibility requirements as well as classification of voltage levels. In addition, power converter configurations and modulation methods are analyzed and compared. A classification of topologies that can provide the required functionality for the application is proposed. Finally, future trends and remaining challenges pointed out to motivate new contributions to this topic

    Challenges and New Trends in Power Electronic Devices Reliability

    Get PDF
    The rapid increase in new power electronic devices and converters for electric transportation and smart grid technologies requires a deepanalysis of their component performances, considering all of the different environmental scenarios, overload conditions, and high stressoperations. Therefore, evaluation of the reliability and availability of these devices becomes fundamental both from technical and economicalpoints of view. The rapid evolution of technologies and the high reliability level offered by these components have shown that estimating reliability through the traditional approaches is difficult, as historical failure data and/or past observed scenarios demonstrate. With the aim topropose new approaches for the evaluation of reliability, in this book, eleven innovative contributions are collected, all focusedon the reliability assessment of power electronic devices and related components

    THERMAL AND ELECTRO-THERMAL MODELING OF COMPONENTS AND SYSTEMS: A REVIEW OF THE RESEARCH AT THE UNIVERSITY OF PARMA

    Get PDF
    This paper reviews the activity carried out at the Department of Information Engineering of the University of Parma, Italy, in the field of thermal and electro-thermal modeling of devices, device and package assemblies, circuits, and systems encompassing active boards and heat-sinking elements. This activity includes: (i) Finite-Element 3D simulation for the thermal analysis of a hierarchy of structures ranging from bare device dies to complex systems including active and passive devices, boards, metallizations, and air- and water-cooled heat-sinks, and (ii) Lumped-Element thermal or electro-thermal models of bare and packaged devices, ranging from purely empirical to strictly physics- and geometry-based

    On-chip adaptive power management for WPT-Enabled IoT

    Get PDF
    Internet of Things (IoT), as broadband network connecting every physical objects, is becoming more widely available in various industrial, medical, home and automotive applications. In such network, the physical devices, vehicles, medical assistance, and home appliances among others are supposed to be embedded by sensors, actuators, radio frequency (RF) antennas, memory, and microprocessors, such that these devices are able to exchange data and connect with other devices in the network. Among other IoT’s pillars, wireless sensor network (WSN) is one of the main parts comprising massive clusters of spatially distributed sensor nodes dedicated for sensing and monitoring environmental conditions. The lifetime of a WSN is greatly dependent on the lifetime of the small sensor nodes, which, in turn, is primarily dependent on energy availability within every sensor node. Predominantly, the main energy source for a sensor node is supplied by a small battery attached to it. In a large WSN with massive number of deployed sensor nodes, it becomes a challenge to replace the batteries of every single sensor node especially for sensor nodes deployed in harsh environments. Consequently, powering the sensor nodes becomes a key limiting issue, which poses important challenges for their practicality and cost. Therefore, in this thesis we propose enabling WSN, as the main pillar of IoT, by means of resonant inductive coupling (RIC) wireless power transfer (WPT). In order to enable efficient energy delivery at higher range, high quality factor RIC-WPT system is required in order to boost the magnetic flux generated at the transmitting coil. However, an adaptive front-end is essential for self-tuning the resonant tank against any mismatch in the components values, distance variation, and interference from close metallic objects. Consequently, the purpose of the thesis is to develop and design an adaptive efficient switch-mode front-end for self-tuning in WPT receivers in multiple receiver system. The thesis start by giving background about the IoT system and the technical bottleneck followed by the problem statement and thesis scope. Then, Chapter 2 provides detailed backgrounds about the RIC-WPT system. Specifically, Chapter 2 analyzes the characteristics of different compensation topologies in RIC-WPT followed by the implications of mistuning on efficiency and power transfer capability. Chapter 3 discusses the concept of switch-mode gyrators as a potential candidate for generic variable reactive element synthesis while different potential applications and design cases are provided. Chapter 4 proposes two different self-tuning control for WPT receivers that utilize switch-mode gyrators as variable reactive element synthesis. The performance aspects of control approaches are discussed and evaluated as well in Chapter 4. The development and exploration of more compact front-end for self-tuned WPT receiver is investigated in Chapter 5 by proposing a phase-controlled switched inductor converter. The operation and design details of different switch-mode phase-controlled topologies are given and evaluated in the same chapter. Finally, Chapter 6 provides the conclusions and highlight the contribution of the thesis, in addition to suggesting the related future research topics.Internet de las cosas (IoT), como red de banda ancha que interconecta cualquier cosa, se está estableciendo como una tecnología valiosa en varias aplicaciones industriales, médicas, domóticas y en el sector del automóvil. En dicha red, los dispositivos físicos, los vehículos, los sistemas de asistencia médica y los electrodomésticos, entre otros, incluyen sensores, actuadores, subsistemas de comunicación, memoria y microprocesadores, de modo que son capaces de intercambiar datos e interconectarse con otros elementos de la red. Entre otros pilares que posibilitan IoT, la red de sensores inalámbricos (WSN), que es una de las partes cruciales del sistema, está formada por un conjunto masivo de nodos de sensado distribuidos espacialmente, y dedicados a sensar y monitorizar las condiciones del contexto de las cosas interconectadas. El tiempo de vida útil de una red WSN depende estrechamente del tiempo de vida de los pequeños nodos sensores, los cuales, a su vez, dependen primordialmente de la disponibilidad de energía en cada nodo sensor. La fuente principal de energía para un nodo sensor suele ser una pequeña batería integrada en él. En una red WSN con muchos nodos y con una alta densidad, es un desafío el reemplazar las baterías de cada nodo sensor, especialmente en entornos hostiles, como puedan ser en escenarios de Industria 4.0. En consecuencia, la alimentación de los nodos sensores constituye uno de los cuellos de botella que limitan un despliegue masivo práctico y de bajo coste. A tenor de estas circunstancias, en esta tesis doctoral se propone habilitar las redes WSN, como pilar principal de sistemas IoT, mediante sistemas de transferencia inalámbrica de energía (WPT) basados en acoplamiento inductivo resonante (RIC). Con objeto de posibilitar el suministro eficiente de energía a mayores distancias, deben aumentarse los factores de calidad de los elementos inductivos resonantes del sistema RIC-WPT, especialmente con el propósito de aumentar el flujo magnético generado por el inductor transmisor de energía y su acoplamiento resonante en recepción. Sin embargo, dotar al cabezal electrónico que gestiona y condicionada el flujo de energía de capacidad adaptativa es esencial para conseguir la autosintonía automática del sistema acoplado y resonante RIC-WPT, que es muy propenso a la desintonía ante desajustes en los parámetros nominales de los componentes, variaciones de distancia entre transmisor y receptores, así como debido a la interferencia de objetos metálicos. Es por tanto el objetivo central de esta tesis doctoral el concebir, proponer, diseñar y validar un sistema de WPT para múltiples receptores que incluya funciones adaptativas de autosintonía mediante circuitos conmutados de alto rendimiento energético, y susceptible de ser integrado en un chip para el condicionamiento de energía en cada receptor de forma miniaturizada y desplegable de forma masiva. La tesis empieza proporcionando una revisión del estado del arte en sistemas de IoT destacando el reto tecnológico de la alimentación energética de los nodos sensores distribuidos y planteando así el foco de la tesis doctoral. El capítulo 2 sigue con una revisión crítica del statu quo de los sistemas de transferencia inalámbrica de energía RIC-WPT. Específicamente, el capítulo 2 analiza las características de diferentes estructuras circuitales de compensación en RIC-WPT seguido de una descripción crítica de las implicaciones de la desintonía en la eficiencia y la capacidad de transferencia energética del sistema. El capítulo 3 propone y explora el concepto de utilizar circuitos conmutados con función de girador como potenciales candidatos para la síntesis de propósito general de elementos reactivos variables sintonizables electrónicamente, incluyendo varias aplicaciones y casos de uso. El capítulo 4 propone dos alternativas para métodos y circuitos de control para la autosintonía de receptores de energíaPostprint (published version
    corecore