36 research outputs found

    On-board B-ISDN fast packet switching architectures. Phase 1: Study

    Get PDF
    The broadband integrate services digital network (B-ISDN) is an emerging telecommunications technology that will meet most of the telecommunications networking needs in the mid-1990's to early next century. The satellite-based system is well positioned for providing B-ISDN service with its inherent capabilities of point-to-multipoint and broadcast transmission, virtually unlimited connectivity between any two points within a beam coverage, short deployment time of communications facility, flexible and dynamic reallocation of space segment capacity, and distance insensitive cost. On-board processing satellites, particularly in a multiple spot beam environment, will provide enhanced connectivity, better performance, optimized access and transmission link design, and lower user service cost. The following are described: the user and network aspects of broadband services; the current development status in broadband services; various satellite network architectures including system design issues; and various fast packet switch architectures and their detail designs

    Performance analysis of virtual path over large-scale ATM switches.

    Get PDF
    by Tang Oo.Thesis submitted in: December 1997.Thesis (M.Phil.)--Chinese University of Hong Kong, 1998.Includes bibliographical references (leaves 68-[75]).Abstract also in Chinese.Chapter 1 --- Introduction --- p.1Chapter 1.1 --- Background --- p.1Chapter 1.2 --- The Concept of Cross-Path Switching --- p.8Chapter 1.3 --- Contribution and Organization of Thesis --- p.12Chapter 2 --- The Virtual Path Scheduling Scheme --- p.14Chapter 2.1 --- The Trade-off Between Throughput and Concentration Loss --- p.14Chapter 2.2 --- Partition of Virtual Paths --- p.19Chapter 2.3 --- The Capacity and Route Assignment of Virtual Paths --- p.21Chapter 3 --- Performance Analysis and Simulation Results --- p.28Chapter 3.1 --- The Improvement of Concentration Loss --- p.28Chapter 3.2 --- The Throughput with Look-ahead Scheme --- p.30Chapter 3.3 --- The Throughput with Input Smoothing Scheme --- p.34Chapter 3.4 --- The Throughput with Bursty Source --- p.37Chapter 3.5 --- Buffer Dimensioning and The Cell Loss Probability Due to Buffer Overflow --- p.38Chapter 4 --- Capacity Assignment and Evaluation of Multiplexing Gain --- p.47Chapter 4.1 --- Principle of Capacity Assignment --- p.47Chapter 4.2 --- The Model of Virtual Path --- p.49Chapter 4.3 --- Capacity Assignment for CBR Service --- p.51Chapter 4.4 --- Capacity Assignment for Real-time VBR Service --- p.53Chapter 4.5 --- Capacity Assignment for Non Real-time VBR Service --- p.55Chapter 4.6 --- Capacity Matrix --- p.56Chapter 4.7 --- The Evaluation of Multiplexing Gain of Input Stage --- p.58Chapter 5 --- Discussions and Conclusions --- p.64Bibliography --- p.6

    An Aggregate Scalable Scheme for Expanding the Crossbar Switch Network; Design and Performance Analysis

    Get PDF
    New computer network topology, called Penta-S, is simulated. This network is built of cross bar switch modules. Each module connects 32 computer nodes. Each node has two ports, one connects the node to the crossbar switch module and the other connects the node to a correspondent client node in another module through a shuffle link. The performance of this network is simulated under various network sizes, packet lengths and loads. The results are compared with those obtained from Macramé project for Clos multistage interconnection network and 2D-Grid network. The throughput of Penta-S falls between the throughput of Clos and the throughput of 2D-Grid networks. The maximum throughput of Penta-S was obtained at packet length of 128 bytes. Also the throughput grows linearly with the network size. On the opposite of Clos and 2D-Grid networks, the per-node throughput of Penta-S improves as the network size grows. The per-packet latency proved to be better than that of Clos network for large packet lengths and high loads. Also the packet latency proved to be nearly constant against various loads. The cost-efficiency of Penta-S proved to be better than those of 2D-Grid and Clos networks for large number of nodes (>200 nodes in the case of 2D-Grid and >350 nodes in the case of Clos).On the opposite of other networks, the cost-efficiency of Penta-S grows as its size grows. So this topology suits large networks and high traffic loads

    Architecture, Design, Simulation and Performance Evaluation for Implementing ALAX -- The ATM LAN Access Switch Integrating the IEEE 1355 Serial Bus

    Get PDF
    IEEE 1355 is a serial bus standard for Heterogeneous Inter Connect (HIC) developed for "enabling high-performance, scalable, modular and parallel systems to be built with low system integration cost." However to date, few systems have been built around this standard specification. In this thesis, we propose ALAX -- an internetworking switching device based on IEEE 1355. The aim of the thesis is two-fold. First, we discuss and summarize research works leading to the architecture, design and simulation development for ALAX; we synthesize and analyze relevant data collected from the simulation experiments of the 4- port model of ALAX (i.e., 4-by-4 with four input and output queues) -- these activities were conducted during the 2-year length of the project. Secondly, we expand the original 4-by-4 size of the ALAX simulation model into 8-, 12- and 16-port models and present and interpret the outcomes. Thus, overall we establish a performance assessment of the ALAX switch, and also identify several critical design measurements to support the ALAX prototype implementation. We review progresses made in Local Area Networks (LANs) where traditional software-enabled bridges or routers are being replaced in many instances by hardware-enabled switches to enhance network performance. Within that context, ATM (Asynchronous Transfer Mode) technology emerges as an alternative for the next generation of high-speed LANs. Hence, ALAX incarnates our effective approach to build an ATM-LAN interface using a suitable switching platform. ALAX currently provides the capability to conveniently interconnect legacy Ethernet and ATM- based networks. Its distributed architecture features a multi- processor environment of T9000 transputers with parallel processing capability, a 32-by-32 way non-blocking crossbar fabric (C104 chipset) partitioned into Transport (i.e., Data) and Control planes, and many other modules interlaced with IEEE 1355- based connectors. It also employs existing and emerging protocols such as LANE (LAN Emulation), IEEE 802.3 and SNMP (Simple Network Management Protocol). We provide the component breakdown of the ALAX simulation model based on Optimized Network Engineering Tools (OPNET). The critical parameters for the study are acceptable processor speeds and queuing sizes of shared memory buffer at each switch port. The performance metric used is the end-to-end packet delay. Finally, we end the thesis with conclusive recommendations pertaining to performance and design measurement, and a brief summary of areas for further research study

    A hybrid queueing model for fast broadband networking simulation

    Get PDF
    PhDThis research focuses on the investigation of a fast simulation method for broadband telecommunication networks, such as ATM networks and IP networks. As a result of this research, a hybrid simulation model is proposed, which combines the analytical modelling and event-driven simulation modelling to speeding up the overall simulation. The division between foreground and background traffic and the way of dealing with these different types of traffic to achieve improvement in simulation time is the major contribution reported in this thesis. Background traffic is present to ensure that proper buffering behaviour is included during the course of the simulation experiments, but only the foreground traffic of interest is simulated, unlike traditional simulation techniques. Foreground and background traffic are dealt with in a different way. To avoid the need for extra events on the event list, and the processing overhead, associated with the background traffic, the novel technique investigated in this research is to remove the background traffic completely, adjusting the service time of the queues for the background traffic to compensate (in most cases, the service time for the foreground traffic will increase). By removing the background traffic from the event-driven simulator the number of cell processing events dealt with is reduced drastically. Validation of this approach shows that, overall, the method works well, but the simulation using this method does have some differences compared with experimental results on a testbed. The reason for this is mainly because of the assumptions behind the analytical model that make the modelling tractable. Hence, the analytical model needs to be adjusted. This is done by having a neural network trained to learn the relationship between the input traffic parameters and the output difference between the proposed model and the testbed. Following this training, simulations can be run using the output of the neural network to adjust the analytical model for those particular traffic conditions. The approach is applied to cell scale and burst scale queueing to simulate an ATM switch, and it is also used to simulate an IP router. In all the applications, the method ensures a fast simulation as well as an accurate result

    A Specific Network Link and Path Likelihood Prediction Tool

    Get PDF
    Communications have always been a crucial part of any military operation. As the pace of warfare and the technological complexity of weaponry have increased, so has the need for rapid information to assess battlefield conditions. Message passing across a network of communication nodes allowed commanders to communicate with their forces. It is clear that an accurate prediction of communication usage through a network will provide commanders with useful intelligence of friendly and unfriendly activities. Providing a specific network link and path likelihood prediction tool gives strategic military commanders additional intelligence information and enables them to manage their limited resources more efficiently. In this study, Dijkstra\u27s algorithm has been modified to allow the Queueing Network Analyzer\u27s (QNA) analysis output to act as a node\u27s goodness metric. QNA\u27s calculation of the expected Total Sojourn Time for the completion of queueing and service in a node provides accurate measurement of expected congestion. The modified Dijkstra\u27s algorithm in the Generalized Network Analyzer (GNA) is verified and empirically validated to properly deliver traffic. It appropriately generates the fastest traffic path from a start node to a destination node. This implementation includes notification if input parameters exceed the network\u27s processing capability. GNA\u27s Congestion Control displays notification and informs the user certain network input parameters must be lowered (PTR or BSTR) or where certain nodes must be improved to maintain node stability. With this unstable node identification, users can determine which node needs attention and improvements. Once this instability is removed, a good QoS is achieved and analysis proceeds

    A Slotted Ring Test Bed for the Study of ATM Network Congestion Management

    Get PDF
    This thesis addresses issues raised by the proposed Broadband Integrated Services Digital Network which will provide a flexible combination of integrated services traffic through its cell-based Asynchronbus Transport Mode (ATM). The introduction of a cell-based, connection-oriented, transport mode brings with it new technical challenges for network management. The routing of cells, their service at switching centres, and problems of cell congestion not encountered in the existing network, are some of the key issues. The thesis describes the development of a hardware slotted ring testbed for the investigation of congestion management in an ATM network. The testbed is designed to incorporate a modified form of the ORWELL protocol to control media access. The media access protocol is analysed to give a model for maximum throughput and reset interval under various traffic distributions. The results from the models are compared with measurements carried out on the testbed, where cell arrival statistics are also varied. It is shown that the maximum throughput of the testbed is dependent on both traffic distribution and cell arrival statistics. The testbed is used for investigations in a heterogeneous traffic environment where two classes of traffic with different cell arrival statistics and quality of service requirements are defined. The effect of prioritisation, media access protocol, traffic intensity, and traffic source statistics were investigated by determining an Admissible Load Region (ALR) for a network station. Conclusions drawn from this work suggest that there are many problems associated with the reliable definition of an ALR because of the number of variable parameters which could shift the ALR boundary. A suggested direction for further work is to explore bandwidth reservation and the concept of equivalent capacity of a connection, and how this can be linked to source control parameters

    High Performance Queueing and Scheduling in Support of Multicasting in Input-Queued Switches

    Get PDF
    Due to its mild requirement on the bandwidth of switching fabric and internal memory, the input-queued architecture is a practical solution for today\u27s very high-speed switches. One of the notoriously difficult problems in the design of input-queued switches with very high link rates is the high performance queueing and scheduling of multicast traffic. This dissertation focuses on proposing novel solutions for this problem. The design challenge stems from the nature of multicast traffic, i.e., a multicast packet typically has multiple destinations. On the one hand, this nature makes queueing and scheduling of multicast traffic much more difficult than that of unicast traffic. For example, virtual output queueing is widely used to completely avoid the head-of-line blocking and achieve 100% throughput for unicast traffic. Nevertheless, the exhaustive, multicast virtual output queueing is impractical and results in out-of-order delivery. On the other hand, in spite of extensive studies in the context of either pure unicast traffic or pure multicast traffic, the results from a study in one context are not applicable to the other context due to the difference between the natures of unicast and multicast traffic. The design of integrated scheduling for both types of traffic remains an open issue. The main contribution of this dissertation is twofold: firstly, the performance of an interesting approach to efficiently mitigate head-of-line blocking for multicast traffic is theoretically analyzed; secondly, two novel algorithms are proposed to efficiently integrate unicast and multicast scheduling within one switching fabric. The research work presented in this dissertation concludes that (1) a small number of queues are sufficient to maximize the saturation throughput and delay performances of a large multicast switch with multiple first-in-first-out queues per input port; (2) the theoretical analysis results are indeed valid for practical large-sized switches; (3) for a large M × N multicast switch, the final achievable saturation throughput decreases as the ratio of M/N decreases; (4) and the two proposed integration algorithms exhibit promising performances in terms of saturation throughput, delay, and packet loss ratio under both uniform Bernoulli and uniform bursty traffic

    Satellite Networks: Architectures, Applications, and Technologies

    Get PDF
    Since global satellite networks are moving to the forefront in enhancing the national and global information infrastructures due to communication satellites' unique networking characteristics, a workshop was organized to assess the progress made to date and chart the future. This workshop provided the forum to assess the current state-of-the-art, identify key issues, and highlight the emerging trends in the next-generation architectures, data protocol development, communication interoperability, and applications. Presentations on overview, state-of-the-art in research, development, deployment and applications and future trends on satellite networks are assembled

    On a Multiprocessor Computer Farm for Online Physics Data Processing

    Get PDF
    The topic of this thesis is the design-phase performance evaluation of a large multiprocessor (MP) computer farm intended for the on-line data processing of the Compact Muon Solenoid (CMS) experiment. CMS is a high energy Physics experiment, planned to operate at CERN (Geneva, Switzerland) during the year 2005. The CMS computer farm is consisting of 1,000 MP computer systems and a 1,000 X 1,000 communications switch. The followed approach to the farm performance evaluation is through simulation studies and evaluation of small prototype systems building blocks of the farm. For the purposes of the simulation studies, we have developed a discrete-event, event-driven simulator that is capable to describe the high-level architecture of the farm and give estimates of the farm's performance. The simulator is designed in a modular way to facilitate the development of various modules that model the behavior of the farm building blocks in the desired level of detail. With the aid of this simulator, we make a particular study on the scheduling of the nodes of the farm, showing that a preemptive scheduling can increase farm's throughput. We have developed a prototype setup of a farm node an event filter unit. The setup consists of a high performance MP system (the farm node) connected to a second computer system (used to emulate the data sources) through an ATM network. The performance issues of interfacing a network interface controller (NIC) to the application running in the farm node, are explored. It is shown with the aid of this setup, that the switch-to-farm interface (SFI) a device used to put together the incoming data fragments into a single entity can be entirely avoided by emulating its function in software. We show that in order to meet the required event assembly performance in the filter node inputs, the development effort has to concentrate on the NIC hardware, software and its interface to the application, rather than building a custom designed device specialized to perform the task of event assembly. Finally, the farm scaling issues are investigated. Our aim is to obtain an "operational region" inside the farm configuration space, when the various networking speeds are taken into account. Analytically obtained results that have been confirmed with the above mentioned simulator, are discussed. We present also results showing the influence 8 of the inherent to the farm parameters (like the algorithm rejection factor) on the requirements for the farm building blocks (sustained I/O bandwidth) of the inherent to the farm parameters (like the algorithm rejection factor) on the requirements for the farm building blocks (sustained I/O bandwidth)
    corecore