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In dieser Arbeit wird eine Untersuchung des Verhaltens von großen Multiprozessor
Computerfarmen für die on-line Datenverarbeitung des Compact Muon Solenoid (C
Experiments vorgestellt. CMS ist einer der großen Teichendetektoren am Large H
Collider (LHC) am Europäischen Laboratorium für Teilchenphysik (CERN) in Genf,
im Jahre 2005 den Betrieb aufnehmen wird.

Die CMS Computerfarm soll aus 1,000 MP Computersystemen und einem 1,000× 1,000
Schaltnetzwerk bestehen. Thema der vorliegenden Arbeit ist es mit Hilfe von Sim
onsstudien und durch das Erstellen von kleinen Prototypensystemen das Verhalten
Computerfarm zu untersuchen.

Für die Simulationsstudien wurde ein einzelereignisgetriebenes Simulationsprog
entwickelt, welches eine Beschreibung der ‘high-level’ Architektur der Farm, sowie
Leistungsabschätzung derselben ermöglicht. Die modulare Struktur des Simulatio
gramms erleichtert die Entwicklung verschiedener Module, die das Verhalten der E
bausteine in einem gewünschten Detail zu modellieren erlauben. Mit Hilfe d
Simulationsprogrammes wird eine spezielle Untersuchung über das ‘scheduling
Farmknoten durchgeführt, die nachweist, daß ein vorausschauendes ‘schedulin
Leistungsfähigkeit der Computerfarm erhöht.

Ein Prototyp eines Farmknotens wurde entwickelt (‘event filter unit’ EFU). Ein Sys
bestehend aus einem hochleistungs-MP System (dem Farmknoten), verbund
einem zweiten Computersystem (die Datenquelle emulierend) über ein ATM Netz
wurde erstellt. Das Leistungsverhalten des Anwendungsprogramms im Farmk
betreffend die Benutzung eines Netzwerk Schnittstellencontrollers (‘network inte
controller’ NIC) wird untersucht. Es wird gezeigt, daß ein speziell gebautes Modul
schen dem Schaltnetzwerk und einem Farmknoten (‘switch-to-farm interface’ SFI
mieden werden kann durch die Emulation der Funktionen in Software. Darüber h
wird ausgeführt, daß eher Aufmerksamkeit erfordert wird für die NIC Hardware, S
ware und Schnittstelle zum Anwendungsprogramm, als dem Erstellen eines sp
gebauten Moduls für den Aufbau der Ereignisdaten.

Außerdem wird das Erweiterungsverhalten der Farm untersucht. Es wird versuch
gegebenen Farm Konfigurationen mögliche Arbeitsbereiche in Abhängigkeit von
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 wird
n der
schiedenen Netzwerkgeschwindigkeiten zu ermitteln. Analytische Ergebnisse werden
vorgestellt, die durch das Simulationsprogramm überprüft wurden. Schlußendlich
die Abhängigkeit der Anforderungen an die einzelnen Bausteine der Farm von de
Farm eigenen Parametern aufgezeigt.
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The topic of this thesis is the design-phase performance evaluation of a large multi-pro-
cessor (MP) computer farm intended for the on-line data processing of the Compact
Muon Solenoid (CMS) experiment. CMS is a high energy Physics experiment, planned
to operate at CERN (Geneva, Switzerland) during the year 2005. 

The CMS computer farm is consisting of 1,000 MP computer systems and a
1,000 × 1,000 communications switch. The followed approach to the farm performance
evaluation is through simulation studies and evaluation of small prototype syste
building blocks of the farm.

For the purposes of the simulation studies, we have developed a discrete-event,
driven simulator that is capable to describe the high-level architecture of the farm
give estimates of the farm’s performance. The simulator is designed in a modular w
facilitate the development of various modules that model the behavior of the farm 
ing blocks in the desired level of detail. With the aid of this simulator, we make a p
ular study on the scheduling of the nodes of the farm, showing that a preem
scheduling can increase farm’s throughput.

We have developed a prototype setup of a farm node —an event filter unit. The
consists of a high performance MP system (the farm node) connected to a secon
puter system (used to emulate the data sources) through an ATM network. The p
mance issues of interfacing a network interface controller (NIC) to the applica
running in the farm node, are explored. It is shown with the aid of this setup, tha
switch-to-farm interface (SFI) —a device used to put together the incoming data
ments into a single entity— can be entirely avoided by emulating its function in 
ware. We show that in order to meet the required event assembly performance
filter node inputs, the development effort has to concentrate on the NIC hardware
ware and its interface to the application, rather than building a custom designed 
specialized to perform the task of event assembly.

Finally, the farm scaling issues are investigated. Our aim is to obtain an “opera
region” inside the farm configuration space, when the various networking speed
taken into account. Analytically obtained results that have been confirmed with
above mentioned simulator, are discussed. We present also results showing the in
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of the inherent to the farm parameters (like the algorithm rejection factor) on the require-
ments for the farm building blocks (sustained I/O bandwidth). 
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The quest of the elementary building blocks of matter and their interactions is the
research topic of high energy physics (HEP). To find new particles and prove existing
theories, one has to collide particles at higher and higher energies. To increase the proba-
bility of observing new phenomena, high interaction rates of particles are required. Any
evidence of new particles has to be picked out of an extremely large amount of data,
recorded during the operation of the physics experiments.

A new generation of HEP experiments at the future Large Hadron Collider (LHC) at the
European Laboratory for Particle Physics (CERN), is currently designed and expected to
start operating in the year 2005. The LHC is designed to collide protons with interaction
energy of 14 TeV, every 25 ns. The LHC experiments have set the objective of investi-
gating the Higgs sector of the Standard Model —the today’s theory describing be
microcosm’s particles behavior. The Higgs particle according to the Standard Mo
the missing piece of the puzzle that explain how particles acquire their mass.

The Compact Muon Solenoid (CMS) experiment at the LHC, besides its many ph
and construction challenges, has also an immense on-line data processing challen
data acquisition system (DAQ) of CMS is designed to be able to process quick
detector data produced by the approximately 100 million detector channels after
particle collision, discarding less interesting events and analyzing the most inter
ones. This event selection is achieved by different selection mechanisms, called tr
The first level trigger selection is expected to reduce the data rate, down to 100 tho
events per second, with an event size of 1 MB. After that first selection, the data
event must be collected together from the 1,000 read-out units to a single location
further selection will take place. At that high event data rate, many locations wher
ther processing can take place simultaneously, are required. A 1000 × 1000 switching
communication network with an aggregate bandwidth of 500 Gb/s is foreseen fo
purpose. It will interconnect the 1,000 read-out units with a computer farm consisti
1,000 multi-processor (MP) computer systems.

In the event filter farm (EFF) of the CMS DAQ system, the final steps of the event s
tion will take place before the data can be recorded to permanent storage. For th
pose, the EFF has to provide an estimated total processing capacity of approxi
5 TIPS (5 million MIPS), so that sufficient processing can be done before an ev
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accepted or rejected. Each of the farm nodes, the event filter unit (EFU), is designed to
process an independent stream of events with an average arrival rate of 100 events per
second. After a two level processing, the resulting average output rate will be approxi-
mately 0,1 events per second. To achieve this high reduction of the event rate, a novel
idea of a two-steps data selection has been adopted. At the first step of the selection,
called Level-2 (LV2) trigger, only a small part of the processed event (~ 25% of the full
event) is forwarded through the switch to an EFU. If the selection algorithm decides that
it is an interesting event, the rest of the event will be forwarded to the same EFU for
additional processing, the Level-3 (LV3) trigger. This two-steps event selection results
in decreased bandwidth requirements for the switch and makes more economic use of
both the switch and EFF resources.

Today’s computer performance is not sufficient to build such a farm in an econ
way. It is expected however, that prior to the start of operation of the experiment 
year 2005, it will become affordable to build a farm whose performance is very clo
the requirements. In that respect a farm approach for the on-line data processing
CMS experiment, has the advantage of easily adjusting the farm performance, eit
selecting more powerful nodes, or by adding more nodes to it. This flexibility offere
a farm design, will ease the building, tuning and upgrade of the CMS on-line event
farm.

Motivation and Problem Statement

The advent of powerful, yet affordable computer systems, has a tremendous impa
in the data processing required by modern HEP experiments. Building a farm of MP
tems for the on-line filtering purposes of CMS is a very challenging task. Design is
as the number of the event filter units (EFU), the number of processors in each
must be well understood for the various scenarios of the farm operation. These iss
a function of many parameters of the data acquisition system, e.g., the arrival rate of data
from the detector, the processing time needed for deciding whether an event w
recorded or not, etc. All that suggests, that a thorough understanding of the farm 
ior under many different assumptions is required, before important design decisio
taken.

Specific characteristics of the EFU like their I/O bandwidth and throughput, need
special attention. They are important in order to ensure that the communication re
ments with the event builder switch through the switch–to–farm interface (SFI) are 
fied for the given event rates. Given an MP system for the EFU, the available proce
capacity must be accommodated with sufficient memory and I/O bandwidth in ord
sustain an incoming events stream up to 100 MB/s. More powerful MP systems
require even higher I/O bandwidth, hence a balance of the computing with the I/O c
ity is required. Therefore, the impact of MP systems on the total farm size (i.e. the
ber of EFU) and the ability of MP systems to deliver sufficient I/O bandwidth to
event filtering applications are very important design issues.
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Therefore, it is crucial to study in the above context, the functional behavior of the event
filter farm foreseen by the CMS DAQ system. In particular, the relations of the farm size
with the required processing time relatively to the computer performance, the event filter
unit scheduling for the two-steps event selection and the I/O requirements relatively to
the farm size.

Thesis approach 

In this thesis the above problems are studied in a twofold way. Firstly, for the investiga-
tion of the farm behavior under the different assumptions, simulations are used. A simu-
lation tool is developed for that purpose that is able to describe the behavior of the major
parts of the DAQ system related to the EFF. With the aid of this tool, a wide variety of
scaling scenarios of the farm can be investigated. A particular study of the scheduling
behavior of the EFU is done, in order to improve system performance.

Secondly, a study of the performance of an MP system used for an EFU, is done using a
prototype setup. A small EFU prototype environment is built using a modern symmetric
multiprocessor system and an asynchronous transfer mode (ATM) communication net-
work. An emulation environment of an EFU is developed. With the aid of the setup, the
aspects of MP-based EFU can be analyzed.

Thesis layout

In Chapter 1 the concepts of the high energy physics and the modern experimental
approach, are introduced. Chapter 2 introduces the domain of this work, describing the
various parts of the currently designed data acquisition system of the CMS experiment.

In Chapter 3 we describe the principles of modern MP computer system architectures. In
Chapter 4 we analyze the MP performance issues related to the MP architecture, proces-
sor-memory interconnection, I/O and the operating system, in order to identify corollar-
ies to the farm performance. A description of the methods used for the MP systems
performance analysis and evaluation, is following. We focus on the method of event-
driven simulations as the tool for the performance evaluation of the event filter farm.

In Chapter 5 the development of a simulation tool used for the design and evaluation of
the CMS event filter farm is described. Based on a simple behavioral simulation model
and a set of identified parameters describing the farm, it is able to give the performance
parameters of the various components of the farm and of the data acquisition system. The
results of a preemptive scheduling are discussed.

Chapter 6 contains a case study of using a modern high-end commercial computer sys-
tem as the event filter farm node. The interaction between the computer hardware, the
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emulator running into the system.

In Chapter 7, we investigate various scaling scenarios of the farm. An assessment of the
farm performance scaling is done, for a farm with many but less powerful processing
nodes and a farm with more powerful, but fewer processing nodes. The merits of these
two possible approaches are studied and compared.

Finally, in Chapter 8 the conclusions of this work are presented. Prospects and future
work are discussed at the end.

Achievements of the Presented Work

With the aid of the event filter farm simulator, it is shown that when scheduling of the
event filtering jobs is done, the throughput of the farm can be improved. In particular, if
preemption of LV3 jobs is adopted when LV2 jobs arrive and the EFU processors are
busy processing LV3 jobs, the farm throughput is increased. 

The developed simulator also sets the framework for further, more detailed, investiga-
tions on the farm architecture. In particular, it can be very useful to extrapolate the per-
formance of prototype systems built during the design phase of the farm, up to the
expected performance of a full sized farm.

The EFU prototype setup has given valuable insight on the usability of MP systems for
the EFU. In particular, it is shown that an MP system can also be used to perform the
functions of the last stage of the event assembly, prior to the event processing. This task,
done by the SFI in the original DAQ design, can be effectively emulated in an MP-based
EFU. It is shown that the potential performance bottlenecks might appear in the I/O sub-
system of an MP system and not related to any limitations of the SFI-emulator’s 
assembly throughput. While a custom designed SFI may guarantee the necessar
assembly throughput, the possible I/O performance bottlenecks are still not addr
The experience gained with this EFU prototype, suggests that in both cases of a c
designed SFI system, or an emulated one, the available application interfacing to t
through the operating system, requires a significant improvement. Possible ways o
this could be done are proposed.
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1 Physics Experiments and Data Acquisition
The mankind endeavor to understand the fundamental laws and principles of Nature
dates back to the days of Democritus, Aristotle and Pythagoras. The dramatic evolution
of technology and the remarkable intellectual progress of Science, especially in the last
century, still suggest that Nature is governed by simple laws, even though the complexity
of the observed phenomena might imply the opposite.

The modern science of elementary particles is concerned with the identification of the
fundamental building blocks of matter and their interactions. In numerous achievements
it has revealed a fascinating harmony of Nature, is it at the macrocosm or at the micro-
cosm, which today is very well described by the Standard Model (SM) of elementary
particles and their interactions.

1.1 Elementary Particles and Their Interactions

The different forces of Nature as described by the field theory, are four: the electromag-
netic, the weak, the strong and the gravitational force. Each fundamental interaction has
its own field and one or more mediator particles, responsible for the exchange of the
interaction. These fundamental forces and their mediator particles are summarized in
Table 1.1, together with their relative strength and effective range.

Force Mediator Relative Strength Range

Electromagnetic γ 1 ∞

Strong g ∼ 20 ~ 10-15 m

Weak W±, Z0 10-7 ~ 10-18 m

Gravity graviton? 10-36 ∞

Table 1.1: Fundamental forces and their characteristics
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The remarkable success of the SM is that it can describe the interactions of the various
particles discovered in the numerous physics experiments during the last century, making
use of only three families of pairs of elementary particles (leptons and quarks) and their
anti-particles, by unifying the electromagnetic and weak forces into the electroweak
force. Those two groups of three families of particles are summarized in Table 1.2.

In order to explain the spontaneous symmetry breaking in the electroweak force, into
what is observed today as electromagnetic and weak forces, the SM introduces a mecha-
nism which also gave masses to the light and heavy particles and to the vector bosons
W± and Z0. This mechanism requires the introduction of another particle; the Higgs
boson. In further extensions of the SM as in the Minimal Supersymmetric SM, the Higgs
boson is replaced by a set of five bosons H±, h, H0 and A.

1.2 Particle Physics Experiments

The SM has successfully predicted the existence of the W± and Z0 intermediate bosons,
with a remarkable precision of their masses. For their discovery, the collision products of
protons p and anti-protons  had to be registered, identified and analyzed. In 1981 at the
European Center for Particle Physics (CERN) in Geneva, Switzerland, the Super proton
anti-proton collider (Sp S) was constructed, and the detectors UA1 and UA2 built
around it confirmed the SM predictions.

To study further the properties of the intermediate bosons W± and Z0, another generation
of physics experiments were constructed at CERN at the beginning of 90’s. Four w
wide collaborations were formed and a new collider of electrons and positrons (
was built, together with four experiments (L3, ALEPH, OPAL and DELPHI) aroun
Other experiments (CDF, D0) have been setup at the Tevatron collider at Fermilab,
United States.

Family

Leptons

Quarks

Table 1.2: Fundamental elementary particles

e
νe 

  µ
νµ 

  τ
ντ 

 

u
d 

  c
s 

  t
b 

 

p

p
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It was the LEP experiments that confirmed the assumption of the SM that the leptonic
families are exactly three. Also, the CDF experiment [CDF96] at Fermilab, has recently
provided evidence of the existence of the last quark remained not detected; the t-quark.

All these searches of rare interactions of particles, able to prove the existence of one or
another particle, are not only major scientific and engineering challenges, but also enor-
mous data processing and analysis projects. High-speed electronics hardware and sophis-
ticated physics software, are all put together to select only the interesting candidates of
the registered interactions (from now on referred to as events), out of a huge number of
background and uninteresting events. There is an immense need in High Energy Physics
experiments, of high performance computing resources and communication systems.

1.3 The Large Hadron Collider (LHC)

The existence of the Higgs boson still remains unconfirmed in the theory of the SM. For
that purpose, at CERN, the physics community has proposed to build the Large Hadron
Collider (LHC) [LHC95].

Figure 1.1: CERN accelerator complex
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The LHC will accelerate two beams of protons in opposite directions and collide them at
a center of mass energy of 14 TeV/c2. The construction of LHC was approved in 1994
and it will be operational in 2005.

Two general purpose experiments, CMS [CMS94] and ATLAS [ATLA94], have been pro-
posed to be built at the LHC, to search for the Higgs boson and any other interesting
physics phenomena that might emerge at the unprecedented energy levels of LHC. Two
other more specialized experiments, LHC-B and ALICE are also proposed.

The LHC will be built in the same tunnel where the LEP collider is located now. It will
have a circumference of 27.5 km. In order to achieve the required collision energy at
LHC, the existing accelerator complex of CERN consisting of the LINAC, the Booster,
the Proton Synchrotron (PS) and the Super Proton Synchrotron (SPS), will be utilized to
gradually accelerate the collision particles and finally inject them into LHC (Figure 1.1).

Figure 1.2: Cross-section of the LHC dipole

The maximum energy that LHC can achieve, depends on how strong the magnetic field
that holds on trajectory the collision particles can be made. In order to achieve the
required energy of 7 TeV for each beam, some 1300 dipoles (Figure 1.2) with supercon-
ductive magnets generating a magnetic field of 8.4 T strength, will be utilized.
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At normal operation, LHC will collide bunches of protons every 25 ns, each bunch cross-
ing producing approximately 20 proton interactions. Two periods of operation are fore-
seen for LHC. LHC will provide also the capability of colliding heavy-ions at lower
energies, and the ALICE experiment is specially designed to observe these collisions.

1.4 The CMS Detector

The Compact Muon Solenoid (CMS) detector, depicted in Figure 1.3, was first proposed
in 1990. Its basic concept for detecting the Higgs boson, is a compact detector with opti-
mized muon identification and the best possible electromagnetic calorimeter.

The CMS detector consists of the pixel detector, the inner tracker, the electromagnetic
and hadron calorimeters and the muon detectors. A solenoidal magnet generating a field
of 4 T intensity, surrounds the central detectors and the calorimeters.

Figure 1.3: Perspective view of the CMS detector

The CMS detector has a total length of 21.60 m, a diameter of 14.60 m and it weighs
14,500 tons.

Until the beginning of construction of CMS, several research and development projects
on detector technology are taking place, in order to evaluate the different choices for
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each sub-detector system. In addition, the requirement for an affordable detector will
lead to two designs, a full-fledged and a staged design, with the option of future
upgrades. The CMS detector performance and objectives are such, that it can provide a
rich physics research program for at least 15 years.

Today the CMS project is supported by a world-wide collaboration, consisting of 1760
scientists in 145 universities and research organizations, from 31 countries. The CMS
project was approved in December 1996, with a construction budget not exceeding 475
million swiss francs. Its targeted completion date is in year 2005.

1.5 The CMS Trigger and DAQ System

The LHC experiments’ objective of detecting the Higgs boson, raises the requirem
operating the LHC at high luminosity i.e., the LHC provides a high number of intera
tions per unit of time, so that rare phenomena can be detected.

With bunch collisions occurring every 25 ns, the CMS detector will record the trac
approximately 20 proton–proton interactions at a frequency of 40.8 MHz. A large 
ber of sub-detector channels are therefore required, to keep the number of “fired” 
tor channels (referred here as occupancy) at a reasonable level. For every oc
proton collision, the particles produced will be detected by the individual sub-det
systems. The output data of each sub-detector, after a collision has taken place, w
up to the full event describing the results of the interaction. In Table 1.3 are summa
the contributions of each sub-detector system to the full event, together with thei
mated occupancy. The total size of one event is expected to be around 1 MB o
pressed (zero suppressed) data.

If we assume that each one of the detector channels carries binary information and
ply the interaction rate by the resulting (from the detector channels) number of byte

Detector Channels Occupancy Event Size [KB]

Pixel 80,000,000 0.01 100

Inner tracker 16,000,000 3.0 700

Preshower 512,000 10.0 50

Calorimeters 125,000 5.0 50

Muons 1,000,000 0.1 10

Trigger data 10

Table 1.3: CMS detector channels and event sizes
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reach to an estimate value of 400 TB/s for the required data throughput. The effect of
using an event size of 1 MB reduces the above figure by an order of magnitude only (40
TB/s). Therefore, before the event rate can be handled for storage, a multi-stage event
selection and rate reduction mechanism is required to reduce the data rate to reasonably
lower figures. This selection however, must not compromise the interesting physics
events that can occur. These event selection mechanisms are commonly referred to in the
physics experiments, as triggers. Their implementation is usually based on specialized,
custom-made hardware.

The CMS DAQ system implements three logical levels of triggering. The first data selec-
tion is carried out from the LV1 trigger devices. Two additional stages of event selection
will be implemented by the LV2 and LV3 triggers respectively, before the resulting event
rate becomes low enough for data storage.

1.5.1 The Level-1 Trigger (LV1)

The LV1 trigger [Lack95] consists of specialized hardware, able to process each sub-
detector’s data in a very limited time interval (few bunch-crossing periods each of 2
and provide an indication if the occurred event is interesting or not. Every sub-de
participating in the LV1-trigger has its own trigger devices because of the peculiar
their signals and the different logic needed for a trigger decision. Because the v
response time of the different sub-detectors, not all of them are suitable for LV1 tri
ing. There are also specialized sub-detectors that have a fast response time and 
only for triggering.

When the various LV1 trigger devices have finished processing, a global decision
be taken to forward the event for further processing or not, according to the result 
individual LV1 triggers. This decision is taken by the Global Trigger System (G
[Neum97]. Among its tasks of combining the triggers, the GTS must be able to pac
resulting event rate. The average rate of events accepted from LV1 is fixed toda
maximum value of 100 kHz. The exact characteristics of this event rate are not cur
well known. The regional LV1 triggers may result to accepted events in subse
bunch-crossings i.e., 25 ns. The GTS is expected to minimize such cases to not m
than three triggers in consecutive bunch-crossings.

The GTS is designed to be programmable in order to accommodate unforeseen p
rates and to operate in a pipeline mode due to the high speed and data-flow require
The acceptance of an event by the GTS, will be communicated by the timing, trigge
control (TTC) system [Tayl95] to the front-end detector electronics, to initiate the detec
read-out.

The identification of the event that a Higgs boson might have occurred, is done th
the various signatures of the typical Higgs production decays. Each decay, leaves
sub-detectors distinct signatures that can be identified. These signatures are summ
in Table 1.4 together with their contribution to the total LV1-trigger event rate.



21THE CMS TRIGGER AND DAQ SYSTEM
Each trigger condition might occur not only due to a Higgs boson decay, but also from
other uninteresting interactions. In a 25 ns time interval, not enough processing can be
done to decide whether a Higgs boson was present or not. Therefore, the LV1 trigger will
fire only when a particular trigger condition has been detected, while detailed processing
that might reveal interesting physics events will be done at the later LV2 and LV3 trigger
stages. This way, fast selection of potentially interesting events can be done, resulting in
highly reduced selected event rates.

The detector front-end electronics, the LV1 trigger and the event readout units, are
designed for parallel and pipeline operation. The TTC system is used for their synchroni-
zation. It provides a reliable means of signal and short message distribution, between the
various stages of the front-end electronics and the LV1-trigger devices.

The TTC system employs a time division multiplexing of two data channels at 160.32
MBaud. One channel is used to communicate the LV1 trigger acceptance and the other
for broadcasts and individually addressed commands. TTC offers a high precision clock
of 160.32 MHz (four times the LHC bunch-crossing rate), distributed to the various
detector destinations with an output jitter of less than 10 ps RMS.

Trigger
Condition

Et cut-off
[GeV]

Rate
[kHz]

Et sum

Et miss

400

80

6

4

e single

e double

25

12

6.84

1.45

1 jet

2 jet

3 jet

4 jet

100

60

30

20

2.06

2.17

3.16

2.96

jet + e 50 + 12 1.35

Single µ

Double µ

20

4

7.8

1.6

µ + e

µ + jet

µ + Et miss

µ + Et sum

4 + 8

4 + 40

4 + 60

4 + 250

5.5

0.3

1.0

0.2

SUM 20

Table 1.4: LV1 trigger rate break-down
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1.5.2 Data Acquisition Architecture 

The GTS acceptance of an event starts the read-out of the detectors into some 1,000
front-end buffers. The task of the data acquisition system (DAQ) is to move the data
fragments from these front-end buffers, to a single location in the event filter farm (EFF),
where the LV2 and LV3 triggers will be executed.

Figure 1.4: Architecture of the CMS DAQ system

The management of the readout buffers is done by the read-out units (RU) which com-
prise a set of front-end drivers (FED) connected to a read-out dual port memory (RDPM)
[Citt95]. The RU will be coordinated by the event manager (EVM) in order to send the
data fragments of an event to a single event filter unit (EFU). The task of putting together
event data fragments into full events is called event building. 

This architecture of the CMS DAQ system is shown in Figure 1.4. It is estimated that
some 1,000 EFU will be required to handle the LV1 event rate, providing sufficient com-
puting resources to execute the physics algorithms of the LV2 and LV3 triggers.

1.5.3 Event Builder Architecture

The crucial part of the CMS DAQ system is its event building architecture. It is foreseen
to incorporate a high performance communication network of 1,000 inputs and 1,000
outputs. However, the bandwidth requirements for such a communications network are
very high due to the LV1-trigger data rate and the average event size. The product of the
event size times the LV1-trigger rate, gives the bandwidth that the event builder will
have to sustain. With a LV1 trigger rate of 100 kHz and an event size of 1 MB (as shown
in Figure 1.4), one can see that an aggregate bandwidth around 800 Gb/s will have to be
sustained by the event builder.
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To require the existence of such a high performance for the event builder, well in
advance of the start-up of the CMS experiment, is a very risky assumption. Therefore, in
order to reduce the required bandwidth, the event builder architecture is based on a two
steps event building, otherwise called virtual-LV2 trigger strategy. For the LV2 trigger,
the physics algorithms will be given to process only a fraction (~ 25%) of the full event.
Only in the case of an event accepted by the LV2 trigger the rest of the event (~ 75%)
will be forwarded to the same destination, so that the LV3 trigger processing can start.
The LV3-trigger will have available the full event for processing.

Given a relatively high rejection rate of the LV2 trigger, significant bandwidth reduction
can be achieved. For instance, given that the rate of events accepted by the LV2-trigger
will be on average 2,000 events per second, for the above mentioned event fractions the
resulting bandwidth that the event builder will have to sustain is around 250 Gb/s. With a
safety factor of two the required bandwidth is set to be around 500 Gb/s (Table 1.5). The
virtual-LV2 strategy assumes that with the data of the muon detectors and the calorime-
ters, an efficient decision (without missing interesting events) can be taken by the LV2
trigger. 

Constructing a switched, non-blocking and a packet-loss free communication network of
the size required by the CMS DAQ architecture is a difficult task. The required perfor-
mance and the cost considerations suggest that widely-available, highly-scalable com-
mercial solutions are the best candidates for the event builder. Standardized
communication technologies as Asynchronous Transfer Mode (ATM), Fibre Channel
(FC), Scalable Coherent Interface (SCI) are among the candidates considered today. It
remains to be seen which technology will be the market’s choice, eventually offerin
best price performance, before a decision is taken for the implementation of the
builder in CMS.

1.5.4 High-level Triggers 

In addition to the LV1 trigger, CMS foresees two more levels of event processing
LV2 and LV3 triggers) in order to select only the interesting physics candidates
high-level triggers will not be executed in specialized hardware devices as in the
trigger case, but in one of the EFU of the event filter farm which consists of com
systems made of general purpose processors. 

The LV2 trigger, in more time-relaxed conditions, will be able to refine the LV1 deci
identifying the interesting physics events and discarding the less interesting. The
trigger must have bounded execution time, because a timely decision for each eve
be required to release the pending event part in the RDPM.

The LV3 trigger, will make an even narrower event selection based on data from a
sub-detectors. The origins of the tracks left by particles that so far have trigger
interesting event, will be identified among the tracks of many thousand other partic
there is still an indication that an interesting event has happened, the full event to
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with the individual trigger data will be stored into permanent storage for later detailed
analysis.

The flexibility of general purpose computer systems in the EFF, will help for the tuning
of the high-level trigger algorithms. The algorithms’ performance and efficiency wil
crucial for the operation of the detector. It is not desired that interesting events w
rejected, due to any algorithm inefficiencies. On the other hand, the limitations o
storage devices will set an upper limit to the amount of data that will be possible 
stored.

Today’s estimates of the combined processor performance that will be available 
CMS will start operating and the amount of processor time needed for the high leve
gers, suggest that around 10ms for LV2 and around 1s for LV3 will be sufficient.

1.5.5 On-line Computing Services

At the endpoint of the DAQ system, the events that passed all the triggering stag
be recorded to permanent storage, so that later can be carefully analyzed and the u
ing physics interaction studied. The output event streams from all the EFU will term
at a buffering device. Estimates show that with an output event rate around 100
minimum of 10 TB buffer storage capacity will be required. A short quasi on-line pro-
cessing will follow immediately after and prior to the recording [CMS96]. The task of the
quasi on-line processing will be to tag the events in the event database used for t
line analysis. 

Other tasks performed by the on-line computing services are the DAQ control and 
toring and detector calibration. The control system supervises the operation of the
trigger hierarchy and the DAQ system. It will monitor and record the configuration
operation parameters, including initialization and dynamic reconfiguration, and ac
ingly launch and terminate the DAQ tasks. Failure detection is a crucial task of the
trol system. Some additional monitoring will be also provided sampling the det
physics performance and detecting error conditions.

1.6 Summary of CMS DAQ Parameters

In Table 1.5 we summarize the main parameters of the CMS DAQ system, as th
assumed today. The value for the bandwidth of the event builder switch is calcula
adding the needed bandwidths for LV2 and LV3, in order to sustain the transfers
LV2 (LV3) event at a LV2 (LV3) rate and taking into account a 50% switch efficien
The assumed value for the LV2 rejection rate is set to be 50. One could argue that
a rather optimistic value. For the performance evaluation studies of Chapter 6 and
ter 7 we consider worst cases of the LV2 rejection factor value.
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Number of RDPM 1,000

Number of EFU 1,000

Maximum LV1 trigger rate 100 kHz

Average total event size 1 MB

Size of data used in LV2 250 KB

Size of data used in LV3 750 KB

LV2 trigger rejection rate 20 to 100

 LV3 trigger rate 2 kHz

Aggregate switch bandwidth 250 Gb/s

Accepted events output rate 100 Hz

Typical LV2 processing time 1 ms

Typical LV3 processing time 1 s

Table 1.5: Summary of the CMS DAQ parameters
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2 Event Building and Filtering Systems
event
The event filtering and the event building are the main tasks of the CMS DAQ system in
order to accomplish the acquisition of the detector data at a reasonably low rate. Both
together, set the domain of this work.

In this chapter, the functionality of the various units comprising the event building and
filtering system is described. The basic concepts guiding the design of the CMS event
builder and event filter are analyzed. Similarities of the DAQ sub-systems with those
used in computer and communication industry, are identified.

2.1 Event Builder

The event builder (EVB) has to assemble the data fragments constituting an event, as
recorded by the different sub-detectors, into a single destination—location— in the 
filter farm (EFF). This functionality is depicted in Figure 2.1.

Figure 2.1: Event building using a switch network
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The pieces with different shades at the switch inputs (the top side), are representing frag-
ments belonging to different events. The fragments of each event (those with the same
shade and spread over the switch sources), will have to be forwarded to a previously
defined destination in the EFF.

The event builder has always been the principle component in most DAQ systems of
HEP experiments, due to the nature of the data produced by the particle detectors. The
generation of the LHC experiments however, due to the high interaction rates and mas-
sive data flows, has requirements on the EVB that have not been previously met. A large
number of EVB input sources (~1,000) are required for reading-out the detector data. A
similar number of destinations or event filter units are needed to handle the resulting
event rate.

2.1.1 Read-out Dual Port Memories (RDPM)

The RDPM [Citt95] are hardware devices that interface the EVB with the detector read-
out electronics and their front-end drivers (FED). They have as their task the read-out of
FED connected to each of them and on request inject the fragments of an event into the
EVB switch.

Figure 2.2: RDPM functional diagram
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The RDPM essentially represents a large storage device with two simultaneously
accessed ports, one used for input and the other for output. The RDPM it is connected
also to the LV1-trigger signal distribution network (TTC) and the event manager (EVM).
Figure 2.2 shows a block diagram of an RDPM based on FPGA logic [Fucc95].

The RDPM data memory is partitioned into fixed-size pages. A list of pointers to the free
memory pages is maintained in the free pointer queue (FPq). The input part of the data
stream is handled by the input sequencer (SeqIN) and the output part, by the output
sequencer (SeqOUT).

The LV1-trigger sends to the RDPM the event numbers of the accepted events. The
RDPM store the incoming event numbers in the input event number queue (IENq). Once
data are available in the FED, the RDPM will be notified and the SeqIN will pick an
entry from the IENq. The FPq FIFO-organized queue is read to obtain a pointer to a free
memory page. The read-out of the FED is then initiated and the incoming data are stored
into one or more memory pages. At the end of the read-out an event descriptor consisting
of the pointer to the first memory page, the event number and the total word count, is
written to the input event queue (IEq). Finally, the SeqIN writes into the pointer buffer
table (PBT) a linked list of pointers to the memory pages occupied by the event frag-
ment.

The RDPM output is driven by the EVM. The EVM sends to each of the RDPM event
filter requests (EFR). An EFR consists of a filter resource (FRS), the event number
assigned to it and a command specifying the action to be performed for that event. Each
RDPM will store incoming EFR in its farm request queue (FRq).

When an EFR becomes available, the task scheduler (TS) copies an available event
descriptor from the IEq to a free location in the output event descriptor (OED). The TS
will also decode the command contained in the EFR and will initiate an action taken by
the SeqOUT, depending on the decoded command.

The commands that are envisaged to be encoded in an EFR are READ-data, CLEAR-
data or both READ and CLEAR. The CLEAR-only command will be executed immedi-
ately, while the other two commands will be written to the filter request buffer (FRB).
The SeqOUT on a reception of a command will read the pointer to the first memory page
and the word count from the event descriptor contained in the OED. It will then initiate
the transfer of the data referenced by the pointers, to the data-link device.

The presence of the FRB is to allow for a higher level of traffic-shaping of the RDPM
output data stream to the EVB switch. We will examine how this might be implemented
in the next paragraph.
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The characteristics of the RDPM as included in their current specifications, are summa-
rized in Table 2.1 The maximum figures for the I/O bandwidth are set to enable the
RDPM to operate in event builder environments with eventually smaller switch configu-
rations e.g., 512 × 512 ports.

Similarly to the FPGA based RDPM, there exist proposals of building it with specialized
processor boards built around the TMS 320C80 digital signal processor. Such a system is
VORTEX [Bran95]. Prototypes of such systems are already built, which come very close
to meeting the RDPM requirements.

For the purposes of the virtual-LV2 trigger operation, the RDPM will be grouped in
those holding event fragments to be used for the LV2 trigger and those that hold event
fragments that will be requested in the case of LV3 trigger. Both groups will get data
from their attached FED simultaneously and at a maximum rate of 100 kHz.

The LV2 group of RDPM will receive EVM requests to send data at an average rate of
100 kHz. The LV3 group will receive the read requests from the EVM at an average rate
which will be determined, by the average number of accepted events at the LV2 trigger
stage in one unit of time. On the other hand, the RDPM of both types (LV2 and LV3) are
designed with a predefined memory size. Hence, the amount of time that an event frag-
ment is kept in the RDPM is very critical for their stable operation. Evidently, this hold
time is even more crucial for the LV3 group of the RDPM, as it in addition includes the
time necessary for the LV2 trigger processing.

The RDPM need to be monitored to ensure their normal operation. This will be done
through a VME interface. The same interface will be used for their control and initializa-
tion, as well as for any other signalling, required by the DAQ architecture.

2.1.2 Event Builder Communication Network

The heart of the event building task is the communication network that interconnects the
read-out units with the event filter units. The CMS DAQ architecture, foresees a large
switching network to accomplish this task. However, the number of needed ports, the

Total number of RDPM up to 1,000

FED per RDPM up to 6

Minimum I/O bandwidth 100 MB/s

Maximum I/O bandwidth 400 MB/s

Average event-fragment size 1024 ÷ 4096 bytes

Number of buffered event fragments ≈ 100,000

Internal memory size ≈ 100 MB

Table 2.1: RDPM main characteristics
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LV1-trigger rate and the average event size, result in non-trivial requirements on the
EVB network.

Preliminary estimates indicate that around 1,000 input ports will need to be connected to
a 1,000 output ports. The number of the input ports is determined by the number of the
read-out units that are necessary to handle the detector data. Consequently, the number of
the output ports is determined by the number of the required EFU, in order to provide
sufficient event processing resources, to handle the LV1 and LV2 event streams and
rates. As was discussed in paragraph 1.5.3, the EVB switch will have to sustain an aggre-
gate bandwidth of 500 Gb/s.

There are many similarities between an EVB switch and those used in telecommunica-
tions and high-speed networking [Bars90]. The switch design will benefit a lot if commer-
cially available equipment can be used. This will lead to much more economical
solutions than in the case of a custom design. The main differences between a switch
suitable for event building and a telecommunication switch, are on the assumed patterns
of traffic. In telecommunications, random input–output interconnection patterns
assumed usually. Traffic models for high-speed data networking assume random 
or data arriving in packet trains. In event building however, the interconnection pa
are a sequence of input-output combinations that might be known beforehand or 
calculated. This is because, consecutive events will be destined to different outpu
predetermined way, so that the load of the EFU can be balanced.

Figure 2.3: Barrel shift network

All the fragments of an event will always be addressed to the same destination
events, will be forwarded to different destinations, depending on the way the EFU s
uling is done. This rather simple traffic pattern may lead to serious competition fo

1A

1A

1B

1C

1D

2A

2B

2C

3A

3B 1B

1C

1D

2A

2B

2C

3A

3B

1A

1C

1D

2B

2C

3A

3B

1A1B

2A 1D

2C 3A

3B

1B

2A

1C

2B

3A

4A

4A 4A

4A

Event #1 Event #2

Event #3 Event #4



31EVENT BUILDER

 unused
other

 sys-
etwork
y with

work is
 can
s, but
 switch
same output of the switch, commonly referred to as output blocking. Because of this high
traffic predictability, techniques like barrel shifting or more generally, input traffic shap-
ing [Bars90] can be implemented to minimize the output-port blocking.

Figure 2.3 illustrates the operation of a simple barrel shift network. Each of the sources
transmits event fragments to different destinations in each time slot. After a full cycle of
input-output interconnections has taken place, all the fragments of the first event will
have arrived to a destination and so on. The barrel shift network of Figure 2.3 assumes
event fragments of equal size. Its operation can be further extended to the more general
case when the event fragments are of non-equal size. The barrel shift network requires an
external control to synchronize the transmission of the sources (or the connection config-
uration of the switch) in isochronous intervals. Building such a control for a switch with
a relatively high number of ports can be a difficult task and be a potential bottleneck in
the overall event builder performance. The barrel shift networks have been successfully
deployed in event building systems with a relatively small number of switch ports.

Another possible way to reduce the output blocking is traffic shaping of the sources. The
RDPM are designed to have the capability to randomize the order of injecting event frag-
ments to the EVB network, relatively to the arrival order of requests from the EVM. This
can be achieved by some logic built into the RDPM that will implement a randomization
algorithm to selectively pick entries from the FRB and transmit the appropriate fragment.

Common to telecommunications and data networking, the event builder sources can
implement the rate division technique, for traffic shaping. Using rate division, each
source will transmit to a destination only a fraction of the link bandwidth, so that the sum
of the individual rates reaching a destination is less or equal to the full link bandwidth.
Rate division is mostly applicable to ATM networks, were each virtual connection can
have its own specified sending rate. A survey of representative ATM switching tech-
niques, is done in [Pryc94]. Recent work with 4 × 4 and 8 × 8 ATM event builders for the
CDF experiment, has shown superior performance when rate division is implemented
[Baue96].

The approach of rate division is particularly interesting, when parallel event building is
adopted—the destinations assemble several events simultaneously—because the
bandwidth during a fragment transmission is used for transmitting fragments to 
destinations.

To construct a switch network with the number of ports envisaged in the CMS DAQ
tem, smaller switches can be connected together. The switches comprising the n
can be arranged in a single or in multiple stages. A simple interconnection topolog
a single stage is that of the cross-bar switch. 

One major issue when smaller switches are cascaded together to form a larger net
the potential internal blocking that may occur under certain load conditions. This
happen when two different sources send to two different (or the same) destination
the messages must cross the same internal node of the network. The cross-bar
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offers several paths between two different end-points, hence internally has non-blocking
properties. Output port contention can still occur, in particular when they are used for
event building without any traffic shaping.

The cross-bar network fully interconnects N sources to N destinations and therefore it
scales as  when new nodes are added. This scaling property of the cross-bar net-
work makes it impractical for constructing large scale networks.

Better scaling behavior can be achieved with multi-stage interconnection networks
(MIN). In a MIN, the path from a source to a destination can traverse one or several
intermediate switches, assembled into stages. For that reason, a MIN can be more prone
to internal blocking than a cross-bar switch. MIN interconnection topologies and their
properties have been investigated since very early for telecommunications and data net-
working purposes [Ahma89]. Their blocking properties and scaling characteristics are
very well understood today [Fahm95] [Turn97].

The main advantage of MIN that makes them more attractive than cross-bars, despite
their inherent complexity, is their scaling behavior. They can be constructed with less
crossing points than the cross-bar network and provide essentially the same non-block-
ing characteristics. The Clos network illustrated in Figure 2.4, has a third stage that pro-
vides at least one more path between any source and destination. A three-stage, N-port
Clos network can be built by smaller switching elements of size n × m for the first switch
stage, p × p for the second stage and m × n for the third stage, where the values for p, m
and n are given as p = , m = 2n-1 and n ≈ 

Figure 2.4: Clos network with 3 stages

O N2( )
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The Clos network scales as , hence for large number of input–output ports N, the
total number of crossing points can be several times smaller than in a cross-bar 
From the connectivity point of view, it can be seen that when  the Clos net
can be internally non-blocking. However, it is much more difficult to obtain a sim
non-blocking condition in cases like the ATM networks, where the individual vir
channels may vary their bandwidth requirements with time. More relaxed non-bloc
conditions can be obtained by limiting the blocking probability to a sufficiently 
value. Those types of networks are referred to as rearrangeably non-blocking.

Other types of MIN like Banyan [Goke73] and Benes [Turn97] have been investigated
Although they are internally blocking, they have a considerably better scaling beh
e.g., . An enormous amount of research work in the MIN area, has provid
lot of insight in their blocking characteristics. Under certain assumptions on the 
traffic and the switch organization, Benes networks can have very low congestion p
bility [Bian93]. There is evidence that this non-blocking behavior can be expected
when the switch size reaches the size of the switch needed by the CMS DAQ s
[Chan96].

Inherently blocking networks can be made non-blocking with appropriate time-ord
of the data entering the network. This is more difficult to achieve in a telecommu
tions or data network, were the traffic is assumed to be of random nature. It is ho
much easier in the event building case where the connection patterns are well defi

The fault tolerance of the switch fabric is another important issue in the event b
design. Depending on the switch architecture, a single link failure in the switch ma
able several destinations in the EFF. A switch with a large number of ports, as it is
sidered here, can be particularly prone to failures. Careful selection of the s
interconnection topology and its technology can minimize the effects of possible
ures.

2.1.3 The Switch-to-Farm Interface (SFI)

The SFI is the connection point between the EVB switch fabric and the EFU. Th
stage of the event building is carried out by the SFI. Each switch output has its ow
which is attached to one EFU. Each SFI has to assemble the incoming fragments b
ing to the same event into separate entities of sub-events (for the LV2-trigger) o
events (for the LV3-trigger).

The SFI operation has many similarities with that of the RDPM. Its function can be
ceived as that of an inverted RDPM. It has a network interface to connect to the s
fabric and an I/O bus to connect to the EFU. Its internals are essentially the sam
the RDPM, with the main difference that its output is not driven by the EVM. Instea
is driven from the EFU that sends requests for the next assembled event to be pro

O N N( )

m 2n 1–>

O N Nlog( )
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The current design of the CMS DAQ architecture, foresees a slightly modified version of
the RDPM to be used for the SFI. It will be enhanced with the necessary logic to commu-
nicate to the EVM the EFU requests for reading a new event, clearing a processed event
or discarding a LV3-part of an event.

Alternative ways to implement the SFI functionality are considered also. One is the use
of a modified version of the DSP-based RDPM (VORTEX) [Bran95]. This alternative is
attractive mostly because of the simplicity and versatility of the VORTEX design, that
makes it more easy to adapt from operating as RDPM, to the SFI operation. It also
requires additional logic to interface to the EVM network.

A second alternative is to emulate the operation of the SFI, in software that is running on
the EFU. This idea of an emulated SFI is particularly attractive, because it eliminates any
hardware design, construction and maintenance as required for a custom designed sys-
tem. An emulated SFI is much simpler to build, provided that the EFU that can have the
required additional resources to assemble the incoming event-fragments into events. As
the previous SFI candidates, the interface to the EVM is not addressed either. It can be
thought however that this task can be easily handled from the EFU itself because very
few additional resources will be required. The software emulated alternative is exten-
sively studied in Chapter 6. 

The SFI has to be capable to handle the incoming event-fragment rate, resulting from the
requests of its attached EFU. The same requirement is valid also for the network inter-
face controller that connects to the switch fabric. Estimated values of the incoming event
rate are approximately 100 new events per second for a farm of 1,000 EFU. The arrival
rate of individual fragments however, is much higher. The bursty nature of the incoming
traffic of the SFI, can have severe implications on the SFI performance. The effects of
this on the network interface controller will be studied in Chapter 6, together with the
implications on the overall SFI performance.

2.1.4 Event Manager (EVM)

The event manager is the key component for the synchronization of the event builder. It
is a custom made hardware device that has the necessary logic to associate each LV1-
trigger event to a destination in the EFF.

The EVM is notified by the different EFU for their availability, by messages containing
filter resources (FRS). Each FRS, points to an available buffer in one EFU. It is expected
that the EFU independently from the occurrence of the LV1 triggers, will send to the
EVM such messages. The EVM will hold the FRS in a queue or a table. At a LV1-trig-
ger, occurrence, the EVM will pick an FRS, it will assign to it an event number and
broadcast it to the LV2 or the LV3 group of RDPM. Another function of the EVM is to
forward to the LV3 group of RDPM, the CLEAR messages for the sub-events that failed
to pass the LV2 trigger.
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The functionality of the EVM is rather simple. However, in order to minimize the event
building latency, the requirements on its response time are quite high. Ideally the EVM
could provide an FRS to the RDPM in a time interval equal to the FED read-out latency
of the RDPM. The EVM is also the place where the EFF scheduling can be done. With
some intelligence added to the EVM, it can order the broadcasts of FRS according to a
given scheduling policy. Such scheduling policy could be based for instance on the fre-
quency of arrivals of the FRS from each of the EFU. This can be particularly useful in
the case of a heterogeneous EFF i.e., not all the EFU have the same capacity.

The communication media used between the EVM with the RDPM and between the
EVM and the EFU, is an important design issue. Between the EVM and the RDPM, a
multicast type of communications seems appropriate. It has relatively modest bandwidth
requirements but the type of the expected traffic will be very bursty. More complicated is
the case of the network utilized between the EFU and the EVM. It will also have modest
bandwidth requirements, but it may be severely congested due to the high number of
sources sending to a single destination.

Equally important to the functional design of the EVM, is its tolerance to failures. The
EVM, in the current event building architecture has a prominent function from the reli-
ability point of view. Failures of the EVM, will prohibit any event building to take place.
A redundant design seems appropriate to reduce to a minimum the time that the DAQ
system is unavailable due to EVM failures.

2.2 The Event Filter Farm (EFF)

The concept of using a farm of computer systems for the event selection and processing,
is a common practice in HEP experiments. With the advent of powerful workstations and
personal computers, farms of commodity equipment have become very attractive solu-
tions for the on-line purposes of HEP experiments like in HERA-B [Gell95]. The main
reason for that is to provide enough capacity to cope with the LV1-trigger rates. The dif-
ferent events accepted from the LV1-trigger, are not correlated by each other. Hence, the
idea of filtering events into several independent nodes, that do not require any kind of
interaction seems appropriate. To satisfy the physics requirements of the LHC experi-
ments, a high LV1-trigger rate must be accommodated. The CMS DAQ system is
designed to be able to operate at a maximum sustained LV1-trigger rate of 100,000
events per second (Table 1.5).

2.2.1 Architecture

The CMS EFF, consists of some 1,000 EFU connected to the EVB switch through the
SFI. It must provide a sufficient amount of processing power to accommodate the maxi-
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mum LV1-trigger rate and the load of the LV2 and LV3 filtering processes. Such a design
of the event filtering part of the DAQ system, has the advantage of a very flexible scaling
behavior. Depending on the processing power of the EFU deployed in the EFF, their
number can be reduced or increased. Also, due to the nature of the event filtering —
related events— multiprocessor systems can be easily assumed. Again the ag
computing power required by the EFF can be achieved by adding more processin
in the EFU, given sufficient expansion capability.

The current construction schedule of LHC, envisages a period of a few years of ope
at lower luminosity. During that period, the expected physics event rate will be m
lower than that of nominal luminosity operation. A flexible EFF, can be initially b
with either less powerful EFU or with a smaller number of EFU that will be sufficien
the low-luminosity period and later can be upgraded to its nominal power.

The ability to design a flexible event filtering system is of utmost importance for the
cess of the CMS DAQ system. With a relatively long design and construction phase
the year 2005, and the immense progress of the computer industry, it is very diffic
make precise predictions of the technology and the computing power that will be
nomically available at that time. Additionally, unexpected physics phenomena may
to be studied, resulting in event rates higher than what the current physics simu
suggest.

2.2.2 Scheduling

A farm with the size needed by the CMS DAQ architecture, must also employ a fle
scheduling of its resources. A simple approach could be the EVM to allocate EFU t
LV2 and LV3 triggers in a round-robin manner. However, a more sophisticated 
scheduling seems to have some obvious advantages. Firstly, EFU fault isolation w
straightforward. The faulty EFU can be removed immediately from the list of avail
destinations, thus preventing events to be forwarded to a non-functioning EFU.
ondly, during the lifetime of the CMS experiment, several upgrades of the EFU may
place. This will result into a non-homogeneous EFF consisting of EFU with very d
ent performance and capacity. A dynamically scheduled farm, can better balan
event filtering load amongst different EFU. A possible way to implement dynamic 
scheduling could be based on monitoring the rate of requests arriving from each 
EFU. The EFF scheduling policies can be implemented by the EVM.

2.2.3 Control and Management

Besides the main control exercised by the EVM for scheduling purposes of the
functions like EFU initialization and restart, status monitoring and alarm cond
detection must also be carried out. This type of control, will be part of the general d
tor control system (DCS) that will command all crucial DAQ sub-systems.
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Alarm conditions and EFU failures together with diagnostics information will be com-
municated to the operators, so that the necessary actions can be taken. Data collected
from the EFU status monitors, will be analyzed continuously to ensure the correct EFF
operation.

The initialization of the EFF and management of its resources into smaller partitions is
also relevant. This can be particularly useful for testing new event selection algorithms,
or during periods of lower luminosity, some of the EFF resources can be allocated for
tasks related to the off-line data analysis.

2.2.4 Alternative Solutions

There are also several alternative ways to build the EFF. They can be more generally
classified into custom and commercial alternatives. For the purposes of the CMS DAQ
system, building a custom designed EFF may have a tremendous financial impact. The
design, construction and maintenance costs of an EFF consisting of custom made EFU
(e.g., based on DSP) may quickly become dominant to any advantages gained by such a
design.

From the commercially available alternatives, the massive parallel processing (MPP)
systems seem very close to the EFF and EVB architectures. The high speed communica-
tion network, the large amount of computing power and sometimes the scaling flexibility
are their more prominent resemblances. The MPP systems are not considered because
most of them are proprietary products and their integration (even though sometimes it is
based on commercially available systems) follows a different and slower path than that
of the widely commercialized systems. For the lifetime of the CMS experiment, the MPP
market is considered too small to offer economical solutions and upgrades.

Another possible alternative could be the use of embedded systems, adapted to the EFF
requirements. For instance, a farm consisting of digital signal processors could be con-
structed to offer the required performance. This possibility is not considered for the same
arguments of wide commercial availability and proprietary origins. In addition, the adop-
tion of an on-line computing system used for event filtering that is entirely different from
that used for the off-line analysis, is not very attractive as it will make more difficult the
development of the event filtering algorithms.

2.3 The Event Filter Unit (EFU)

The EFU is a computer system, where assembled sub-events or full events will be pro-
cessed by the LV2 and LV3 filtering processes, respectively. It has to provide sufficient
computing power to ensure that the rate of filtering events is higher than the rate of event
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arrivals. Also it must have the necessary memory and I/O bandwidth to handle the
incoming (and to a less extent the outgoing) event data-stream and also the needs of the
filtering processes themselves.

The EFU interfaces to the EVB network through the SFI. It also has a connection to the
computing services network, which will collect the events accepted by LV2 and LV3
triggers for permanent storage. A service network for monitoring and control will also
connect to the EFU.

2.3.1 Architecture

The main requirement of the EFU is to provide the necessary computing power needed
by the LV2 and LV3 filters. At the current early design phase of the experiment it is diffi-
cult to quantify this requirement. Rough estimates based on extrapolations of similar
physics experiments, indicate that some five million MIPS in total will be required by
the filter algorithms. This estimate is well ahead of what current processor performance
can offer to build a farm, but it is still in the limits of the processor extrapolated perfor-
mance by the time when the CMS experiment will start.

In the next years to come until the start-up of the experiment, the computer systems
architecture is believed to undergo significant changes apart from improving processor
performance. The potential of such changes is to overcome today’s difficulties as
main memory performance. In this context, the advantages of using off-the-shelf
mercially available systems for the EFU, are very important. It is also the most econ
way to fulfill the DAQ requirements. Today, a trivial and economic way to increase
capacity of a computer system is to add more processors to it. It is believed th
approach will continue to apply for future computer systems.

Given the flexibility of the EFF to adapt to a wide range of processor performance e
tion scenarios, we suggest that it is appropriate to use multiprocessor computer
architectures for the EFU. Our main assumption here is that the DAQ performanc
profit by the increased processing capacity. That will avoid more expensive solutio
adding more switch output ports and EFU to the system. The non-parallel and co
intensive nature of the filtering software as it is conceived today, relaxes the sc
requirements of MP systems, compared to the case of highly parallel filtering algori

2.3.2 I/O Interfaces

During the EFU operation, significant amounts of data will need to be transferred 
EFU despite of the numerous EFU. For example, let us consider a system that has
tain a LV1 trigger rate of 100 kHz and consists of 1,000 EFU, as was define
Table 1.5. If we divide the LV1 trigger rate with the number of the EFU, we arrive a
average input rate of LV2 sub-events in the EFU, that is 100 LV2 sub-events per s



39FILTERING SOFTWARE

 of the
 high-
ssing
on average will be transferred to each of the EFU. This results to a sustained I/O band-
width of approximately 30 MB/s . This figure is a function of the LV2 sub-event size, the
number of the EFU in the EFF and the number of events accepted by the LV2-trigger in a
unit of time.

An EFU that is based on a commercial computer system with a full-fledged operating
system may have difficulties to ensure that the needed bandwidth is delivered to the fil-
tering applications. It is worth noting that independent of the SFI implementation (soft-
ware or hardware) the I/O subsystem of the EFU is in a very critical performance path
and must be carefully studied. This problem of interfacing to the operating system,
together with its implications is investigated in detail in Chapter 6.

The I/O interface of the EFU with the computing services network, has modest require-
ments of approximately 100 KB/s i.e., one full event to be accepted every ten seconds.
Very little bandwidth is required by the service network used for the control and monitor-
ing of the EFU.

2.4 Filtering Software

The LV2 and LV3 trigger algorithms are the last two stages of the on-line processing of
the events recorded by the CMS detector. They must be able to efficiently distinguish the
interesting physics events, in a short time interval. The filtering software is tightly cou-
pled to the software that will be used for the full event analysis, at the off-line processing
stage. It is required therefore, that a similar to the off-line software approach is used also
for the on-line. Modern techniques of software engineering need to be adopted to guaran-
tee the quality of the filtering software. Therefore, the presence of a software environ-
ment similar to the off-line software is important for the on-line. This will significantly
ease the development, maintenance and improvement of the filtering software.

In order to quantify what is the computing power needed in an EFU, we need to be able
to characterize and quantify what will be the workload of the LV2 and LV3 trigger algo-
rithms. This is particularly difficult in the current early design phase of the high-level
triggers, as most of the software components related to it are currently under design.
Experience from previous similar experiments indicates that it is safe to assume that the
filtering software is mostly CPU bound. It demonstrates significant locality of references
to main memory and in most of the cases can fit into today’s processor caches.

For the purposes of this work, it seems that is only possible to know an estimate
needed time by the LV2 and LV3 trigger software. The average execution time of a
level trigger will be used instead, which essentially describes the ratio of the proce
path length over the processor performance.
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An important characteristic of the high level triggers is their rejection ability of the
events they process. This property is entirely determined by the behavior of the trigger
algorithm. The rejection ability of the LV2-trigger is of crucial importance, because it
determines the incurring rate of the LV3-triggers. The ratio of the LV1-trigger rate over
the resulting rate of the accepted events by LV2-trigger, is called the LV2-trigger rejec-
tion factor —R. A similar characteristic can be formulated for the LV3-trigger algorith
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In this chapter, we introduce the basic building blocks and operation principles of the MP
computer systems.

Multiprocessor (MP) computer systems make their appearance in the 1970s. Most of
them were research projects, like the pioneering c.mmp [Mash82] and cm* projects at Car-
negie–Mellon University, while very few were successful enough to be commercia
Commercial MP systems start to become available in the mid 1980s. As the dra
evolution of microprocessors made available computing power in affordable price
sizes, a clear trend for MP systems is created in the 1990s.

3.1 Multiprocessor Architectures

A very popular classification of MP systems according to Flynn [Flyn66] can be done
based on the number of data and instruction streams they can process simultaneo

• Single Instruction, Single Data streams (SISD)

• Single Instruction, Multiple Data streams (SIMD)

• Multiple Instruction, Single Data streams (MISD)

• Multiple Instruction, Multiple Data streams (MIMD)

In the first category, SISD, fall the uniprocessor (UP) systems. In the MISD category,
only a few experimental systems have been implemented, but none of them did appear as
a commercial product.

In a SIMD architecture environment, the processors are synchronized from a global
clock and execute the same instructions on different data streams. SIMD architectures
are known to perform very well for a rather specialized subset of applications with
repeated calculations over large array data structures.

Systems with a MIMD architecture consist of nodes with UP or MP systems connected
to a high speed communication network. Some of these nodes act as disk, or more gen-
eral as I/O servers. The interconnection network consists of high performance and scal-
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able switching systems, often offering the possibility of including additional nodes to the
system.

Figure 3.1: Multiprocessor classification

As depicted in Figure 3.1, further classification of MIMD architectures to shared mem-
ory and message passing systems can be done, based on the way data can be shared.
Shared memory systems make available the memory resources to all nodes, no matter if
the memory is local to a node or not. When the memory is directly connected to the com-
munication network of a shared memory system, these systems are called uniform mem-
ory access time (UMA) systems, while systems having the memory modules distributed
to each node are called non-uniform memory access time (NUMA) systems. In message
passing systems, memory is not physically shared, instead, short messages are
exchanged between the nodes through the communication system, containing either data
or synchronization primitives.

Systems in the general MIMD category are often referred to as loosely coupled systems
as every node is a rather autonomous entity with its own memory and I/O channels.
Their counterparts, tightly coupled systems, consist of shared memory systems with pro-
cessors sharing the main memory and the I/O devices. Examples of systems falling into
the most common categories are summarized in Table 3.1.

MP

SIMD MIMD

Message Passing

Shared Memory

NUMA UMA

ASMP SMP
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3.1.1 Symmetric Multiprocessors

Symmetric multiprocessor (SMP) systems are basically tightly coupled shared memory
systems. As depicted in Figure 3.2, typical SMP systems have processors, memory mod-
ules and I/O devices connected to a common high performance bus system. They are
symmetric in the sense that processors and I/O devices have equal access to memory.
Additionally, any processor can access independently the I/O devices. There are no priv-
ileged processors on the system for any operations, like access to the I/O sub-system or
execution of the operating system code.

In contrast to the SMP systems, there is a smaller category of asymmetric MP systems
(ASMP), where one of the system’s processors handles operations like access to 
devices. They are less popular than the SMP systems, due to the obviously less 
mance they can offer due to the bottleneck of the privileged processor. However, th
simpler to design.

Figure 3.2: SMP Architecture

SMP systems are a recent and a rather successful addition to the high-performanc
puter marketplace. There are many reasons for that, amongst them:

System NUMA UMA Message 
Passing

Shared 
Memory

Intel Paragon •

Stanford DASH • •

SUN UE-6000 •

Thinking Machines CM-5 •

Table 3.1: MP Systems

CPUs

Local Memory

System Bus(es)

System Memory

Local bus



44MICROPROCESSORS

 quite

ch pro-
mput-
 than
in that

ated
. This
 to the
me of
 archi-

on, as
on of
 
cycle
 called
• Utilization of traditional uniprocessor components

• Small scale systems with very high computing capacity

• Possibility to rightsize the system to the application, by adding more proces-
sor and memory modules.

One important parameter of an SMP system is scalability, i.e., the ability to increase the
total performance of the system by adding more processors. Every system has an upper
limit of scalability, which usually depends on the characteristics of the interconnection
(bandwidth, arbitration policy, latency, etc.), the memory bandwidth, the I/O bandwidth,
and the applications running on the system. More sophisticated systems, come with mul-
tiple buses and few of them, with crossbar interconnects in order to increase scalability.

In an SMP system different applications can run on different processors, without inter-
ference between them. However, applications may share the same memory. Different
synchronization techniques are offered by the operating systems, to ensure data integrity.
At the hardware level though, if more than one processor reference the same memory
location, then arbitration will be done at the bus level to serialize the memory request. In
conjunction with the system’s memory model, the arbitration techniques could be
complex.

On SMP systems, applications do not necessarily run faster. As we saw above, ea
cessor may execute different applications, hence an SMP will offer at least more co
ing capacity. However, it is possible for specially built applications to run on more
one processor, resulting in lower total execution time. It has to be noted that even 
case processor instructions will be executed at the same speed.

3.2 Microprocessors

The microprocessor technology is probably the fastest evolving one. It is estim
[Henn90] [Henn91] that microprocessor speed increases by 50% to 100% every year
increase rate is mostly attributed to the developments in architecture design and
dramatic increase of semiconductor integration in VLSI chips. Table 3.2 shows so
the microprocessors of the last decade and the evolution of their clock speed and
tectural characteristics.

Modern microprocessors adopt techniques like caching, pipelining, branch predicti
well as multiple functional units to increase performance. Using pipelines, executi
instructions can be overlapped. Processors with more than one pipeline are calledsuper-
scalar. The depth of the pipeline also has permitted significant reduction of the 
time of processors. Processors incorporating pipelines deeper than 5 stages, are
superpipelined.
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Branch prediction algorithms were implemented to predict the resulting address of con-
ditional branches met in programs’ code. If a branch is correctly predicted, the pip
will continue to work without disruption. Otherwise, the pipeline will have to be flus
and many processors cycles spent until is filled again. The algorithm of branch p
tion maintains historical records of the code branches into special buffers built int
processor’s chip.

Almost all processors today incorporate cache memories in their chips, in order to
to a minimum the main memory access latency. Some of them like the Alpha 2116
have a secondary level cache on-chip.

Further increase of the speed of microprocessors was achieved with the appear
RISC (Reduced Instruction Set Computer) processors. In contrast to their CISC (
plex Instruction Set Computers) counterparts, lesser and simpler processor instru
were used in order to get close to the desired target of one cycle per instruction.
ever, the elimination of the more powerful and cycle-consuming instructions of the C
generation, resulted into longer program codes.

RISC processors today are highly pipelined implementations, as this is the easiest
achieve the goal of one instruction per cycle. As Stone [Ston87] notes, chip area can b
used instead to decrease instruction and data traffic. An example of such impleme
is the SPARC processor [SPAR90], a spin-off from the Berkeley RISC II project [Patt82],
where registers are grouped in so-called register windows. Programs running on such

Processor Year Type Clock
(MHz)

Issue Stages Units On-chip Cache
(i-d) KB

Silicon 
(µm)

i486 89 CISC 33 1 5 2 8 1.0

68040 89 CISC 25 1 6 2 4-4 0.8

Micro-SPARC 91 RISC 50 1 ? 1 4 - 2 0.8

Super-SPARC 92 RISC 60 3 4 - 5 5 20 - 16 0.6

Alpha 21064 92 RISC 200 2 7 - 10 4 8 - 8 0.75

MIPS R4000 92 RISC 100 1 8 - 10 2 8 - 8 1.0

Intel P5 93 CISC 99 2 5 - 8 3 8 - 8 0.8

HPPA 7200 94 RISC 120 2 5 - 6 3 ? - 2 0.55

SPARC Ultra I+ 95 RISC 200 4 9 9 16 - 16 0.42

Power PC 601 95 RISC 66 2 4 - 6 4 4 - 4 0.5

MIPS R10000 95 RISC 200 5 5 - 7 5 32 - 32 0.35

HPPA 8000 95 RISC 180 4 7 - 9 10 ? 0.5

Power PC 604e 96 RISC 225 4 4 - 6 6 32 - 32 0.35

Alpha 21164 96 RISC 500 4 7 - 9 4 8 - 8

+ 96KB L2

0.35

Table 3.2: Processor architecture evolution
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processors are using overlapping register windows to pass arguments between proce-
dures. 

The dramatic improvement of microprocessors, led to workstation systems with comput-
ing power equivalent to that of mainframes and the replacement of supercomputers by
massive parallel processors (MPP). As examples of future directions in processor archi-
tecture, one could mention multi threaded architectures as well as the more specialized
very large instruction width (VLIW) processors and digital signal processors.

3.3 Memories

Computer systems incorporate different kinds of memory modules, usually distinguished
by their capacity, access time (latency) and cycle time. The latency and the cycle time
(which fixes the data transfer speed of a memory module), are important performance
characteristics. The technology used for their constructions usually determines the above
characteristics.

3.3.1 Virtual Memory

The memory size of a computer system is a very important resource and design parame-
ter. Already from the UP system generation, techniques like virtual memory were intro-
duced to give the illusion of almost infinite physical memory to application programs.
Additional hardware, the memory management unit (MMU), was added to systems in
order to make more efficient the memory management. Its task is to map dynamically the
physical memory addresses to virtual memory ones. 

Figure 3.3: Virtual Memory layout

offsetpage number Virtual Address

Physical Memory space

Virtual Memory space

MMU
CPU
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The physical memory is split into equally sized segments called pages and one transla-
tion is done for each page. Figure 3.3 shows the way this translation is done and how
individual memory locations are accessed.

During the execution time of a program, virtual addresses are referenced. When a virtual
address with no physical mapping is referenced, a page fault occurs. This results to a
processor trap, which is handled by the operating system. An attempt to find a free page
from the physical address space will be made. If there is no free physical page, a used
one will be replaced and its old contents, if modified will be stored to disk, otherwise
will be discarded. At that stage, the memory translation can be established.

The virtual memory mechanism is handled by the OS, in order to make more efficient
utilization of the memory resources between different applications. Some pages can be
locked in physical memory permanently, avoiding the overheads of fetching them from
the disk. This is particularly useful for high performance applications and it is always
used by the kernel of the OS. A very important performance factor is the page replace-
ment policy adopted by the OS. Many algorithms are implementing different page
replacement policies. The least recent used (LRU) policy is one of the most commonly
met.

The MMU design determines important system parameters as the access protection
mechanism of memory pages, the page size, as well as the size of the virtual and physical
address spaces. The choice of the page size is an important trade-off between overheads
and management of the memory resources. Common page sizes are 4 KB, while some
systems like the UltraSparc have page sizes of 8 KB. Systems built from modern proces-
sors of the ALPHA, MIPS and SPARC families, may have variable page size for better
management of large code segments.

The address translation time can be further reduced if the MMU caches the address trans-
lations. This cache is called translation look-aside buffer (TLB) and has essentially the
same structure as cache memories.

3.3.2 Memory Hierarchies

During the last decades, the main memory of computer systems evolved from a single
module to a multi-level hierarchy of memory modules with different characteristics. The
reason for that is to optimize the needed capacity, the data transfer speed, the access time,
as well as the cost of the system and match the speed of the processor modules. Less per-
forming memory devices e.g., disks, are cheaper and can be afforded in larger quantities,
while faster and high performance devices are much more expensive and can be afforded
for few only parts of a memory hierarchy.

On the other hand, the evolution of microprocessor technology produced processors far
much faster than common memory modules could stand. In any system, there is very lit-
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The size of each of the building blocks of a memory hierarchy are important parameters
in the design of a system and play an important role in the overall performance. A typical
memory hierarchy is depicted in Figure 3.4. As a general rule, the higher the level in a
memory hierarchy is, the faster and smaller sizes of memory modules are used. At the
lowest level of the memory hierarchy are placed devices with the additional property of
being capable to keep data even across power-off periods.

Figure 3.4: Memory Hierarchy

This model works well due to the principle of locality of reference, that is, at any given
time of a program’s execution only small segments of its address space are acces
keeping any time during program’s execution short segments of its code in faster 
ory modules (and thus hiding the time consuming access to slower memory mod
the execution speed increases significantly. One may distinguish two kinds of loca
reference; the spatial and the temporal. In spatial locality of reference, adjacent memory
segments are likely to be accessed soon, while in temporal locality of reference, accessed
memory locations are very likely to be accessed again soon. 

Starting from the top level of the memory hierarchy, the processor’s registers offe
fastest (1 clock cycle) but smallest (few hundreds of bytes) storage space. Some
processor registers are used to store operating system data during the execution o
gram, while most of the registers have the property of direct arithmetic manipulatio
their contents.

The primary cache memory is the next level. Some systems can have an additiona
memory level, the secondary cache. The primary and secondary cache memori

CPU
Registers

I/D caches

Caches

Memory

Disks
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often referred to as Level-1 and Level-2 cache, respectively. Typically, the primary cache
is in processor’s chip, while the secondary is not. Primary caches come with sizes 
tens of KB, while secondary caches can reach even 4 MB. Modern designs incor
split primary caches for the processor’s instruction and data streams. This is due
different locality of reference behavior for code and data segments.

Next to the cache memory is the main memory system which can have any size b
limit, determined by the design of the system and limited by the width of the addres
of the processor. The access time to the main memory can reach even few hund
clock cycles depending on the operation that it is been executed. At the bottom 
hierarchy, are the storage devices, usually magnetic disks, with capacity reachin
GB and access times usually below 10 ms. The transfer speed of disks to main m
is substantially lower than that achieved between other levels of the hierarchy, with
cal values below 50 MB/s.

3.3.3 Cache Memory Systems

As was described above, the cache memory is called to abridge the performan
between the main memory and the processor. The management of the cache me
transparent to the user application and it is handled by the hardware or the operati
tem itself. That way, portability between systems with different cache organization
be ensured.

The principle of cache operation can be summarized as follows. The portions of
memory referenced by a program at a given time are stored into cache locations
cache lines. The identification of the memory portions which are resident into the 
is done by tagging the data (or instructions in an instruction cache) with its address
main memory. When the processor references a main memory address, this add
forwarded to the cache where the hardware makes a search of the cache tags an
mines if the data is resident or not. If the data is found, then we have a cache hit, other-
wise a cache miss. In the case of a hit, the data is passed back to the processor, oth
a bus request is started to fetch the data from its main memory location. In the last 
copy of the main memory location will be stored into the cache to take advantage 
temporal locality. Systems with secondary cache memory, operate in a similar man

The cache entry replacement policies are simpler than those of the virtual memor
tems. Usual algorithms are LRU, as well as random replacement. 

Different techniques are used to search the contents of a cache memory. The mos
lar one is hashing the addresses and searching the cache with the hash index
memory contents can be organized in different ways. Some of them are:

One-way set associative. The correspondence of memory locations and cache mem
entries is one-to-one. They are also called direct mapped cache memories. They are su
ject to thrashing i.e., cache lines are continuously replaced before any hit occurs.
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Two-way set associative. The hashing algorithm will index a set of two lines in the
cache. Their main advantage is that cache thrashing can be reduced. They are more com-
plex to build.

Fully associative. Any cache line can be accessed, hence no hashing algorithm is used
for indexing. They minimize the cache thrashing, while are more expensive to build.
They are used for rather specialized cache memories like the TLB cache of the MMU.

Cache memories can be accessed either by virtual or physical addresses. The virtually
indexed cache memories are faster to access, as no MMU translation is required. Their
entries are subject to ambiguities i.e., the same virtual address can be used by different
processes, thus requiring often flushing from the OS. Physically indexed cache memo-
ries instead, are no subject to ambiguities, need less OS support, but require MMU trans-
lations on every access.

The policy of updating the cache contents (also known as write policy) influences the
behavior and performance of the cache. The write policy determines how data is stored
into the cache and the main memory. There are two possible write policies. With write -
through policy, once the processor writes into the cache, the new values will be trans-
ferred immediately to the main memory. Write-through has the obvious disadvantage of
slowing down the cache accesses in order to keep the main memory consistent with the
cache contents. With the alternate write -back policy, the new contents of the cache will
not be forwarded to the main memory except if the corresponding cache line is replaced
or the OS forces that. A special bit in the cache line called the dirty bit is used to keep
track of modified entries. In contrast to the write-through policy, write-back leaves main
memory inconsistent, requiring the frequent intervention of the OS. However, it speeds
up the access to the cache because updates to the same cache entry will be forwarded
only once to the main memory.

The current trend on multi-level cache systems is to have the primary cache virtually
indexed directly mapped and write-through in order to increase the processor clock
speed, while secondary caches are usually write-back.

3.3.4 Memory Models

The memory model of a computer system defines how memory is accessed during load
and store operations. In particular for SMP systems, it also defines how are handled
simultaneous accesses to memory.

The most common memory model is the sequential model. In that model, also called
strong ordering, all program’s instructions are executed in the order they appear i
gram’s code. In SMP systems using that model, any load and store instruction
defined to be atomic. Atomicity means that operations executed by one processo
guaranteed to not interfere with those executed in other processors. This memory
is used by the majority of the systems.
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Other memory models, mostly met in SPARC processors, are the total store ordering
(TSO) and the partial store ordering models (PSO). Their main purpose is to increase
processor’s performance during write operations. For that, a store buffer (also 
write behind buffer) is added to the processor, which actually represents an add
level of the memory hierarchy.

In the TSO model, data of store operations will not be forwarded to the cache me
immediately, but it will be placed into the store buffer. Load operations will check 
the contents of the store buffer and if a hit occurs they will return the value found a
ated to the most recent store, otherwise the rest of the memory hierarchy is used
TSO the contents of the store buffer are send to the cache memory in first-in fir
(FIFO) order. 

The PSO model is similar to the TSO, except that only the stores to the same m
location in the store buffer will be carried out in FIFO order, leaving the order of o
stores non-deterministic.

Non-strong ordering memory models allow processors to continue execution while
memory updates are taking place. However, they are not transparent to all program
ten for strong ordering models and additionally they have increased requirements 
way atomic operations in an SMP system are ensured.

3.4 System Networks

Several types of interconnection networks exist between MP nodes, as well as be
processors, memory modules and I/O devices. Usually they are classified by their 
sic topology. One can distinguish between buses, crossbars, fat trees, as well a
hypercubes etc. based systems. The choice of the type of interconnection is usually
on the architecture of the computer system they are deployed. For instance, in SIM
tems where point to point communication is essential, hypercubes are often m
MIMD architectures the cache coherency requirement and the memory access m
influence the choice of the interconnection. In NUMA systems such as the IBM SP-
Meiko CS-2, multistage networks are used. In shared memory systems, where
coherency is essential, bus based interconnects are very common.

Computer systems often deploy more than one type of interconnect at different lev
their design. I/O devices are usually connected to the system through an I/O bu
processor to memory interconnects are usually proprietary designs, while I/O buse
to be more standard. Using standardized I/O buses, I/O interfaces can operate in d
systems implementing the same I/O bus.
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3.4.1 Bus Interconnections

Buses are used for processor to memory and I/O interconnections. They are traditionally
classified [Henn90] as processor to memory buses (or just system buses) and I/O buses.
Both consist of sets of electrical wires, except in the case of the active bus, where in
addition to that, other electronic components are used to enhance their functionality.
Buses have varying lengths, limited to few tens of centimeters. This limitation comes
from the number of devices connected to the bus and from the speed at which signals can
traverse it.

Figure 3.5: Bus based SMP system

Bus designs have to accommodate the speed of the processor and memories. Depending
on the number of the devices connected to a bus and the electrical limitations, it is diffi-
cult to design buses with arbitrarily high speeds. Consequently, SMP systems utilizing
buses as their interconnect may not easily scale, or in the worst case, may be limited in
performance even with few processors only.

As depicted in Figure 3.5, SMP systems may have more than one bus connected in paral-
lel. This is usually done to overcome the performance limitations of the single bus, but
results in a more expensive design. An example of a twin bus based system is the SUN
SPARC Server 2000.

I/O buses are usually connected to the system bus through a bridge device. Some systems
may have the same system and I/O bus in order to reduce costs.

3.4.2 Cross-bar Interconnections

As was discussed in 3.4.1, the bus of an SMP system may easily become the perfor-
mance bottleneck if the number of processors increases. For that, different interconnects
have been designed. One of them is the cross-bar (Figure 3.6). In a cross-bar based sys-
tem the interconnect resembles a grid, with processors, memories and I/O devices con-
nected to its edge-nodes. Every cross-point has a switching circuit that is turned on,

CPUs

Local Memory

System Bus(es)

System Memory

Local bus
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when a path between a memory and a processor has to be established. Often in systems
with a cross-bar the memory is interleaved, that is, consecutive memory locations are
stored in different memory modules. This is done to overlap the memory access time.

Figure 3.6: Cross-bar based SMP system

The cross-bar architecture qualifies as an SMP system, because memories, processors
and I/O are tightly coupled and accesses to memory are still symmetric.

Cross-bar based systems have the advantage that accesses to memory and I/O can be
done through many and independent paths, increasing the bandwidth and reducing the
probability of contention. They offer higher system performance, than the bus based sys-
tems. Their disadvantage is the higher cost, due to the increased complexity of their cir-
cuits. One could argue also that the scaling behavior of a cross-bar system may prove
expensive, as it scales as  and requires  new switching elements for every new
processor added to the system. However, this is rather a technological limitation. Cross-
bar systems require also different techniques to maintain the caches consistent to mem-
ory, than those used in bus based systems.

O n2( ) 2n 1–
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4 Performance Aspects and Evaluation Methods
 to
Usually
Symmetric multiprocessor systems (SMP), offer a high capacity computing environment
that applications can benefit from. In some particular cases additional performance with
respect to uniprocessor systems (UP) can be achieved. In an SMP system, significant
support from the side of the operating system is also required to ensure its own correct
operation and offer to the applications a minimum set of the necessary primitives to uti-
lize the parallel resources.

In this chapter we analyze the performance issues of SMP systems and their operating
systems, in order to identify their relevance in the CMS DAQ architecture. The perfor-
mance evaluation methods applied to computer systems and in particular for the CMS
event filter farm, are discussed at the end.

4.1 Performance of SMP Systems

The performance of applications executed in MP and particularly in SMP systems, is not
only determined by the performance of each building module of the system (e.g., proces-
sors), but also from numerous other factors that emerge from the concurrent execution
environment.

SMP systems offer larger computing capacity than the UP systems. At any time, differ-
ent processors may execute unrelated applications. This kind of parallelism is very often
referred to as independent parallelism. This is the minimum gain one can have from an
SMP system. Very often it is met in large scale interactive systems. For independent or
job level parallelism, usually little performance is required from the interconnection net-
work apart from the typical needs of memory accesses. 

Finer grained parallelism can be achieved by letting processes to have more than one
threads of control, executing concurrently on different processors. This kind of applica-
tions are called multi–threaded (MT) and the type of parallelism is referred to as
medium–grained parallelism. A thread of control is a programmer’s abstraction, used
represent a program’s code entity that can be scheduled for execution separately. 
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the first MT program running on an SMP system is the operating system (OS) kernel
itself. MT applications, often require the exchange of synchronization messages between
their threads. In MT applications, the explicit specification of the different threads is
done by the programmer, thus making more complex their development.

The various applications running in CMS event filter unit (EFU) are expected to benefit
from both independent and multiple thread parallelism. The independent parallelism is
trivially satisfied by the number of applications. On the other hand, both event filtering
algorithms and the software specific to interface with the external world of the EFU
(switch or computing services) can be easily designed to make use of multiple threads.
The MT programming paradigm, is the choice for the design of the switch-to-farm (SFI)
emulator described in Chapter 6.

The additional to memory access traffic that is emerging from the thread synchroniza-
tion, indicates that a high performing system interconnection is needed. The interconnect
must accommodate also the synchronization traffic generated by the processors in order
to keep their caches consistent.

4.1.1 Interconnection Performance

The choice of the interconnection topology and technology constrains the performance
characteristics of an SMP systems. For instance, a bus based system can electrically
accommodate only a limited number of processors and memories. As the number of pro-
cessors increases, apart from the possible electrical limitations, contention due to the
many bus transactions will occur causing the processors to stall. Consequently, this will
reduce the processor utilization and the performance of the applications running on the
system.

The amount of cache synchronization traffic may take away a substantial fraction of the
available bandwidth of the interconnection. Consequently, this will limit the scalability
of the system. Typical bus based SMP systems have six to eight processors, while few of
them by utilizing multiple buses can reach up to 30 processors. Non-broadcast type of
interconnections like crossbars can be much less exposed to contention. Overheads will
still exist and a wide-span of parallel applications may run on SMP systems with cross-
bars, however the many independent connections offered by such topology minimize
contention.

As Patterson and Hennessy note [Henn90], Input/Output (I/O) has been the orphan of
computer science. Modern systems can accommodate a variety of I/O devices, from a
keyboard, or a mouse, to high performance disk arrays and network interfaces. Perhaps,
this is the main difficulty having a general solution for interfacing I/O devices to a com-
puter system. I/O devices are usually connected to a system through an I/O bus and I/O
to system bus controller. There are also cases like the MBus [Kell91], where I/O devices
are connected directly to the system bus.
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There are two ways of doing I/O transfers: programmed I/O (PIO) and direct memory
access (DMA). With PIO, the processor is directly involved in moving data between the
memory and the I/O device. In other words, the processor is accessing the device the
same way it does with any memory location. Compared to the processor cycle, PIO oper-
ations are expensive and will stall the processor until the transfer has finished. With
DMA, additional devices—the DMA controllers—are in charge of making the trans
between memory and the I/O device. This is achieved by stealing bus cycles fro
processor. DMA transfers are initiated and finished by the processor without any
processor involvement during the data transfer. If the processor is making at the
time with the DMA transfer many memory accesses, it can stall until it is granted t
the memory bus. DMA transfer speeds are much higher than those achieved wit
and more effective because of the minimal processor involvement.

The I/O performance of a system can be characterized by the throughput (or band
and the latency. I/O throughput refers to how much data can be moved in a unit o
while latency refers to the time interval between the initiation of an I/O request an
completion.

A high performance SMP system, is very likely to have high I/O demands due t
number of applications running concurrently. Factors limiting I/O performance ma
anywhere in the path between the I/O device and the memory modules. The s
device in that path, will determine the upper limit of I/O performance.

Most common throughput limitations, emerge from the I/O device itself and the I/O
Buffering the data stream to the I/O device can increase bandwidth, however i
degrade the latency of the device. Split-transaction bus designs can be used, to i
the bandwidth of an I/O bus. Buses supporting split transactions (also called p
based), can accommodate more than one I/O operation and thus not blocking durin
operations. However, such buses have higher latency time, because of the m
packet nature of every request.

Some of the systems in order to have consistent the I/O transfers, implement a s
MMU to be shared by the I/O device controllers. That way, DMA transfers are 
from and to virtual addresses. In addition to the MMU, they may have separate 
dedicated to the I/O devices. In such cases, the I/O coherency is solved with the
methods of cache coherency, as they will be discussed in the following paragraph.

The I/O performance is of crucial importance for the EFU. The sustained bandwid
the SFI must be sufficiently high to accommodate the needs of a particular farm co
ration. I/O Latency is also relevant to the SFI performance, because of the high r
messages send to the event manager (EVM).

SMP systems with processors that have private cache memories connected to the
a mechanism to maintain their caches consistent during the application execution. 
usually accomplished by a variety of techniques implemented in hardware tha
transparent to the applications.
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Data that are only read by the system’s processors do not need any special handli
cache consistency mechanism will be needed once a processor decides to mod
shared contents of its cache. In that case, other processors’ cache contents w
either to be updated or invalidated. Also, if a processor references stale memor
(cache miss), the cache with the valid data has to be able to supply it. The unit o
that caches exchange between each other is a cache line and this is done using ca
sistency protocols over the system bus, or interconnect in general.

We will distinguish two major categories of cache consistency protocols, the sno
and directory based protocols. Snooping protocols are based on the ability of each cac
to snoop the transactions of other cache memories and thus they imply the existen
broadcast type interconnect e.g., a bus. Many snooping protocols have been propos
but in general all fall into two main categories: the write-invalidate and write-upd
The write-invalidate protocols imply that a cache will broadcast to the other cache
invalidation once it modifies shared data. Caches implementing write-update protocols
will broadcast to the other caches the new value of the shared data.

Common write-invalidate protocols are the write-through invalidate, write-once an
MESI protocols. The first two are variations of the write-through and write-back c
update policies. The MESI protocol derives its name from the first letters of its s
Modified, Exclusive, Shared and Invalid. By adding the additional information of ow
ship of a cache line, MESI protocols can be more efficient than other protocols as th
no invalidate broadcast when a processor loads data in the exclusive state.

Directory-based cache consistency is used in SMP systems with crossbar interc
tions, where snooping cannot take place as there is no broadcast. The information 
to maintain cache consistency is instead stored to the main memory modules intodirec-
tories. Every directory contains information on which cache has which memory line
the state of the cache. A disadvantage of directory-based cache consistency pr
(also often attributed to crossbar based systems) is that additional memory is requ
store the directories. Typical values of the directory size are around 10% of the
memory. 

The hardware consistency protocols add significant complexity to an SMP system
quently resulting in higher cost. Other solutions could be that the compilers or th
take care of the cache consistency. This will result into SMP systems with much
latency of memory operations. However, it seems that the transparency gained with
ware maintained cache consistency is such a big advantage, that is enough to ov
the additional cost.

The cache consistency protocols, will add more traffic on a bus based system. A
application, apart from the explicit synchronization that it may require betwee
threads, it will generate additional traffic on the interconnection, to keep consiste
data shared by the processors it runs. Some of this traffic can be just overhead
false sharing of cache lines putting additional load to the interconnection. False s
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will occur when two processors store data into different memory locations, but happen to
be in the same cache line.

Cache coherency might be also relevant to the I/O performance. On output requests, the
I/O device may access stale data from memory and conversely during input requests the
CPU may get stale data. In the case of a write-through secondary cache, the I/O transfers
are transparent. With write-back caches, either the OS has to flush the cached data or the
hardware.

Cache performance is very important for the EFU. At a first glance, the fact that the
cache system is transparent to the user level application, leaves the impression that very
little can be done in order to have a cache performance aware application. There are two
areas of concern of the cache performance. The first is the path of data between the SFI
and the main memory. The SFI is essentially an I/O device of the EFU that could be
thought of doing DMA transfers to main memory locations and one memory copy (or in
the worst case more than one). The second is the performance effect of the cache for the
particular set of LV2 and LV3 algorithms. The data received by the SFI is expected to
generate some synchronization traffic as it will access a closed set of buffers. However,
this traffic is expected to be minimal (will not trigger expensive memory update cycles)
as the event filtering algorithms are not expected to modify the LV2 or LV3 data received
by the SFI. The result of LV2 and LV3 filters will be a set of new data structures,
appended to the original data. On the other hand, the LV2 and LV3 filtering applications
will also occupy cache locations. It is not known as of today any estimates of their sizes.
Due to the nature of event processing, we can see that a processor cache that can hold
both the event under processing and the active part of the event processing algorithm will
be a good choice. From the total size of an event (1 MB) we can estimate that caches
with size larger than 1 MB will be needed.

4.1.2 SMP Operating Systems Aspects

The design of an OS for an SMP system has to take advantage of the additional perfor-
mance offered by SMP systems. Many of the OS services can be executed in parallel,
while some of them can be conflicting and special care must be taken to ensure the cor-
rect operation of the system. In the trivial case of a UP OS running on an SMP system,
not only it will not be able to exploit the parallel environment of an SMP, but also it will
inhibit the performance of applications running independently. This is because a single
copy of the OS is available to all applications.

An OS designed for SMP systems has to offer the necessary services to its applications,
so that they can also benefit from the parallel environment. In that respect, if the OS
itself is viewed as a special kind of a process, it has to implement techniques similar to
those met in parallel processes, in order to take advantage of the parallel environment. 

The existence of a carefully designed MT kernel is a very important requirement for a
high performance SMP system. In such kernels their system calls are re-entrant and
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hence, many applications running on different processors can make calls to them without
being blocked. System functions like interrupts are also re-entrant and many of them can
also be served by the system’s processors. The design of (or conversion of a
threaded to) an MT kernel needs new abstractions for synchronization and data lo
that require some minimum support from the underlying hardware. This additional 
tionality is required to resolve the points of conflict between concurrent calls of the 
OS function. Independent of the internal concurrency that can be achieved by th
accesses to several data structures e.g., the process table, cannot be concurrent and m
be serialized.

Different threads during their execution need to access shared data. In an SMP e
ment, even with sequential memory model, the ordering of simultaneous accesses
same memory location cannot be deterministic. The lack of determinism results in
conditions. The code segment that operate with data that race conditions may o
called critical section. Avoidance of race conditions is usually done by instrumenting
critical section with mutual exclusion (or mutex) artifacts. Similar race conditions o
even in UP systems, when asynchronous events like interrupts may cause the mo
tion of data structures used by the interrupted code. However, such cases can b
avoided in UP systems, by rasing the processor interrupt level when critical data 
tures are modified. This technique is not applicable in SMP systems, where mor
one processor can alter the critical section.

The underlying hardware mechanism that supports the mutual exclusions is usuall
of special processor instructions for atomic read-modify-write operations. Such ins
tions guarantee that a read and a modify step can be done atomically i.e., without inter-
ruption from another processor. An example of such instruction is the ldstub instruction
of the SPARC processor.

Other types of locking techniques are the so called spin locks (or busy wait), cond
locks and condition variables. A spin lock is acquired by a processor before entering
critical section. If a second processor tries to access the locked resource, it will sp
loop (or busy wait), until the lock from the first processor is released. Using a condi-
tional lock instead, a processor will attempt once to acquire the lock and if it fails it 
continue execution, rather than spinning. The conditional variables are used to suspen
execution until a particular condition becomes true. The execution of threads with
cal sections that attempt to access the shared resource will be suspended if the res
not available. Once the resource becomes available, a broadcast signal will be sen
threads previously blocked, in order to resume execution. Conditional variables 
very powerful abstraction. They are used in conjunction with mutex locks.

The simplest type of synchronization is the Dijkstra semaphore [Dijk68]. It is represented
by an integer number, on which two atomic operations are defined, and a queue h
information of blocked threads. The P operation will decrement by one the value of t
semaphore and will block the execution of a thread if the resulting value is less than
otherwise the execution is continued. The V operation will increment by one the value o
the semaphore and will resume the execution of a thread previously blocked, 
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resulting value is less or equal to zero. Semaphores are the basis of many implementa-
tions of mutual exclusions and spin locks today.

The choice of the right primitive is a very important performance consideration. For
instance, spin locks on large critical sections or when slow operations like I/O take place,
may degrade systems performance, because useful processor cycles are wasted. As the
amount of synchronization and locking primitives increases in a program, additional
overheads will occur, degrading its performance. Conversely, at the design stage of a par-
allel program, the choice of shared data structures and their implementation, may play an
important role. A mutual exclusion on a heavily used shared data structure, will result in
contention (or a hot spot) inhibiting performance. 

Another effect that may appear in a concurrent environment is that thread A holds locks
of resources required by thread B, while B holds locks required by A. If one thread
attempts to acquire a lock on resource locked by the other thread, a deadlock situation
will occur. Deadlock situations are never resolved and if they occur in the OS kernel any
activity of the system will cease. If there is activity on the system, then we have a live-
lock. Livelock will occur if an event expected to happen, never happens but other threads
are running on the system.

Careful design of MT applications, to order correctly their resource locking, seems to be
the only way for deadlock avoidance. There exist methods for deadlock detection and
prevention, but not all possible cases can be handled by them. Deadlock prevention
mechanisms are usually expensive in terms of resources and contribute to overheads. 

In an SMP system, it is possible to schedule not only entire processes, but also individual
threads. The OS maintains different priority queues, all of them fed to a common pool of
system’s processors. Tasks scheduled for execution are placed into one of the q
depending on their assigned priority. Different methods have been proposed for 
scheduling. Amongst them are self-scheduling, dedicated processor assignment an
scheduling.

With self-scheduling, ready to run threads are placed in a global queue from which 
cessors select one thread when they become idle. Obvious advantage of self sch
is the even load distribution among processors. However, the global queue will pos
ous contention problems, when more than one processor attempts to select a 
Also, MT processes with many threads that communicate frequently, will not per
well as the probability of having many threads running is relatively low.

With dedicated processor assignment, each process is assigned to one processor for 
cution. Such scheduling policy has the advantage that switching between the dif
threads of a process will add very little switching overheads. The gained perform
comes from the fact that very little or no processor time is wasted for thread switc
Also the processor’s caches will already contain data of the same process when 
thread will run and expensive cache flushes and fills will be avoided. However, in s
tions where processes block on I/O operations, processor starvation may occur b
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the scheduler’s queue has tasks ready to run and processors are idling. A variation
scheduling method is the gang scheduling, where all threads of a process are simul
neously scheduled to run.

The performance of different scheduling methods, heavily depend on the type a
number of the processes running on the system. What may be fair for one type of
cations may not be for another.

Relevant to scheduling, are the real-time characteristics of an OS. Various definitio
real-time exist, depending on the performance needs of the applications. We wil
the definition of real time behavior of an OS, only to its ability to respond to exte
events in as much as possibly known time intervals. Better real time behavior will 
lower response time to an event (e.g., an I/O interrupt) occurring to the system.

The scheduling policies used in a system will influence its real time behavior. In a
environment (both the applications and the OS kernel), the flexibility of the schedu
decide to which tasks to assign higher priorities, plays a major role. As an example
sider a thread A with high priority accessing an I/O device, which is busy for a thre
of lower priority. The execution of thread A will be suspended and even worse, it m
delayed unnecessarily if a third thread C with priority higher than that of B exists,
will preempt B. This problem is known as priority inversion. A common solution to c
with priority inversion situations is priority inheritance, i.e., in the previous example, the
lowest priority thread B will be given the priority of thread A, so it can release as so
possible the resource blocking thread A.

Real time behavior of a system, will be limited by the granularity of the system c
The number of clock ticks in one second in the best case will set the lower limit o
clock granularity. The clock granularity will limit the precision of events happening 
the system. Modern SMP systems have clock granularity of few hundreds of nan
onds and some of them, like the Silicon Graphics systems even have 21ns.

The performance issues related to the concurrency of an OS that were described
are crucial if an SMP system will be used for the EFU. High performance interfaci
the SFI will require the presence of efficient (low-overhead) synchronization primi
as we will discuss in Chapter 6.

4.2 Performance Modeling and Evaluation

During the design phase of computer systems, a wide variety of technological ch
are available to the systems designers. The decisions of which options will be use
computer system, can result in systems with very different characteristics. Among
most important characteristics are the performance and the cost of the final produc
performance evaluation of computer systems during their design phase is today a 
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part of their design. It can lead the evolution of a computer system through the shortest
path towards the desired performance and cost.

Performance evaluation is equally applicable after the design of a computer system. The
various alternative systems can be compared and decisions on the suitability of one or
another system can be taken on scientific grounds.

The performance evaluation techniques that are a common practice today, can be classi-
fied in two major areas. These are modeling and measurements. The modeling tech-
niques are mostly applicable to systems that are under design and hence not physically
available. Measurements imply that the system under study is available and its perfor-
mance under different types of workload can be evaluated.

4.2.1 Mathematical Modeling

A model of a computer system is an abstract representation of its functionality in terms
of mathematical relations. The performance of a computer system is described through a
model containing a set of parameters describing the system and their values for a partic-
ular study.

Depending on the desired level of abstraction, a mathematical model can be able to
describe a wide variety of systems in a general way. Hence mathematical models are a
very powerful tool for the performance evaluation, as the results from them can be appli-
cable to a more general class of computer systems.

A model can be deterministic or probabilistic. A deterministic model can always repro-
duce exactly the same behavior of a system for the same set of input parameters. In a
probabilistic model, the system behavior is described in terms of probabilistic macro-
scopic phenomena that take place inside the system. Therefore, a probabilistic model can
give different results in successive solutions for the same set of parameters. Probabilistic
or stochastic models are very advantageous, because of their ability to describe a system
with much less details built into them. More details of the system may be impossible to
know and hence difficult to construct a model for it.

An important consideration when choosing an analytical model is its complexity. The
solution of a model for a desired set of its parameters, can be obtained analytically for
simple models. However, for more complex models, analytical representation of the
results might be impossible to obtain. In that case numerical solutions can only be
obtained, making the model cumbersome and difficult to use.

A class of stochastic models that are very popular in performance evaluation are the
Markov models. They are named after the russian mathematician A. A. Markov, who
defined them in 1907. Their popularity is mainly due to their limited mathematical com-
plexity. A model is called Markovian when the next state of a system it describes,
depends only on its current state. Markovian models can describe stochastic processes
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places
place is
that their states can be either discrete or continuous. Also, their dependence on the time
of the system evolution, can be either discrete time or continuous. A discrete-state
Markov processes is called Markov chain and the values of its states are either finite or
countable. A sub-category of the Markov chains are the birth-death processes, where the
next state of a system can be only one from its neighboring states. A discrete-time
Markov chain can be described through a transition matrix that give the transition proba-
bilities of between the different possible states.

Another class of mathematical models are based on queueing theory [Klei75] [Klei76]. A
queue is a system that customers or jobs are arriving to receive service from one or more
servers. When the queueing system servers are busy servicing incoming jobs, newly
arrived jobs before they can receive service, they must wait until a server becomes free.
A queueing model has as parameters those related to the job arrivals and servicing. The
job arrivals are described by the interarrival time τ and the mean arrival rate λ. Simi-
larly the job service is described by the per job service time s and the mean service rate
per server µ. In a probabilistic queue model the above variables are randomly distributed
variables. Queueing models are classified according to the combinations of their interar-
rival and service time distributions, and their service characteristics i.e., the policy of
selecting the next job to be serviced.

Queueing models have received an extensive attention over the past years. They ele-
gantly can provide analytic expressions of the various performance variables for a wide
variety of queue types.

Many independent queues can be connected together to form a queueing network. In a
queueing network, jobs that finished service from one queue are forwarded to the next,
queue according to the network connection. A queueing network can be open or closed,
depending on whether the jobs that finish service from the last queue of the network are
entering the network again or they leave the network.

Queueing networks are very well suited to describe computer systems. Based on them,
very simple models can be constructed and easily evaluated. Their main advantage are
related to the easiness that computer system models can be constructed out of the indi-
vidual functional units of such systems. 

Simplicity advantages equal to the queueing networks, are offered by the Petri nets.
They were initially introduced by C. A. Petri in 1962. The inherent generality of Petri
nets makes them applicable in a wide range of modeling problems, spanning from per-
formance evaluation and communication protocols up to human factors modeling
[Mura89].

A model based on a Petri net describes a system in terms of its possible states and the
transitions between them. A Petri net is a graph consisting of two kinds of nodes; the
places and the transitions. Arcs are used to connect places to transitions and vice versa. A
particular state of the net is called marking. A marking assigns to each of the net’s 
a number of tokens. Tokens are used to represent that the condition assigned to a 



64PERFORMANCE MODELING AND EVALUATION
true. A transition can fire only if the places connected through arcs have tokens. This is a
necessary but not sufficient condition for a transition to fire. Once a transition fires, the
number of needed tokens to fire are removed from the input places and assigned to its
output places.

Petri nets are very well suited for the study of problems associated to concurrent systems
[Pete81]. Stochastic extensions of Petri nets have been used for studying the properties
and problems of multi-processor systems [Mars88]. 

Among the most important studies of Petri nets are those related to their reachability,
boundedness and liveness. Reachability refers to the possibility to identify if a certain
marking of net belongs to its set of possible markings. Boundedness refers to the prop-
erty of net that the tokens found in each of its places do not exceed a certain number for
any reachable marking. A Petri net is said to be live, when any of its transitions can fire
independent of its current marking. More relaxed conditions of liveness are also com-
mon.

4.2.2 Simulations

Besides the mathematical models, the simulation models are also particularly popular in
performance evaluation studies of computer systems. A simulation model is a computer
program that describes the behavior of a system and the workload under study, with the
aid of algorithms [Fish95]. The various performance indices of the model are obtained by
sampling the simulation program execution.

Similarly to the mathematical models, simulation models are classified as deterministic
and probabilistic. The systems they describe, can have states that take discrete or contin-
uous values. Also, the time dependence of the model can take discrete or continuous val-
ues. Computer system models are usually discrete-state, continuous or discrete time.
They are built using either high-level programming languages like C++, C and FOR-
TRAN or specialized simulation languages as SIMULA and SIMSCRIPT.

The discrete-event simulation models are usually built by small modules, each represent-
ing the functions of a sub-system in the model. Each module interact with the other mod-
ules by means of simulation events. These events are scheduled to occur in various
points of the simulation time and their occurrence triggers an action in the respective
module. Discrete-event simulations, require the existence (or the implementation) of an
event scheduler and a simulation clock.

The event scheduler manages a linked list of the various events waiting to happen. It
receives events from the individual modules of the simulation and schedules them to
occur at a given simulation time. The simulation clock is usually a global variable of the
simulation program representing the elapsed simulation time and it is advanced by the
event scheduler. There are two approaches to advance the simulation clock. With the
unit-time approach, the simulation clock is advanced by one predefined unit and then the
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event scheduler checks for any events that might occur. With the event-driven approach,
the scheduler advances the simulation clock to the time of the next earliest occurring
event. The event-driven approach is the mostly used in simulations of computer systems.

Every module of the simulation that may accept simulation events, requires an event-
handler routine. The event-handler performs various actions depending on the type of the
incurring event and the current state of the module. In response to the events, the event
handler may generate other events to one or more simulation modules.

The event scheduler of a discrete-event simulation is the most often executed part of the
simulation. Its implementation must ensure that incoming events are properly ordered in
time. A large number of simulation events may require a significant amount of computa-
tions to be performed when a new event arrives or the next event to occur is searched.
The efficiency of the different data structure types that hold the simulation events,
depends on the number of events held in the data structure. 

Throughout the simulation, the performance indices specified by the simulation model
are sampled. Their values are reported at the end of the simulation. The sampling nature
of the those results, requires that proper confidence intervals are computed for each of
the performance estimates. The width of the desired confidence interval of a perfor-
mance index, is also relevant to the simulation length. Methods like the batch means can
be used for the estimate of variance and also the removal of the transient part of a perfor-
mance estimate.

Probabilistic simulation models require the generation of random variates according to a
specified random distribution, for the different model variables. Random variates are
generated with the aid of random number generators. The choice of a random number
generator is crucial for the correctness of the simulation results. A random number gen-
erator, must provide independent and uniformly distributed random numbers. The period
of the random number generator must be chosen to be long enough, so that the generated
numbers during a simulation are unique.

Once a simulation model has been built, the results obtained by it must be validated and
verified. Model validation refers to whether the assumptions used to build the simulation
model are reasonable representatives of the system under study. Model verification is the
procedure to prove that those assumptions are correctly implemented in the model. Both
validation and verification are probably the hardest part of simulations projects. Several
techniques for validation and verification exist [Jain91]. They all require thorough under-
standing of the simulated system, the simulation program and the data analysis methods.

The popularity of the simulations in performance evaluation is mostly due to the offered
ability to describe systems in various levels of detail. Also, they can advance indepen-
dent from the availability of the real system and provided that they can become available
early enough, various design alternatives can be evaluated and trade-offs resolved. How-
ever, they are often attributed the disadvantages of requiring a long development time,
difficult validation and verification and sometimes a lot of processing power to run them.
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The method that we have chosen for the performance evaluation of the CMS even filter
farm (EFF) is using system models and discrete event simulations. The main arguments
justifying our choice are: (a) the flexibility that simulations offer to model a system
depending on the desired level of detail, (b) and the mode of operation of a device, and
(c) the ability to describe the system scaling for various EFF implementation scenarios.
As an illustration of (a), we can consider the case of the RDPM. The RDPM is a custom
designed device, that its operation must be reproduced as close to the real system as pos-
sible. Precise simulations of the RDPM are very useful for the RDPM development. A
simpler model of the RDPM can be also useful to understand the behavior of the rest of
the EFF system. Similar arguments to (b) are valid for the event manager (EVM). At the
early stage of design, only the main concepts of the EVM operation are known. Particu-
lar implementations of its operation can be tried out using simulated models of the EVM.
Once the design is finalized, different EFF implementation options can be evaluated with
regard to their scaling ability (c).

The analytical formalism is not excluded but it is expected to complement the evaluation
studies where it is possible. Simulation verification is an example of a case where analyt-
ically obtained results can be compared with the results obtained by the simulation.

A simulation tool built on the grounds of reproducing the system behavior in parallel to
the design phase, has the additional advantage that it will be capable to describe the real
system after its construction. This feature can be very useful in situations where the
effect of system changes must be first evaluated before the system is modified.

4.2.3 Benchmarks and Measurements

Measurements performed on real systems, provide an accurate means of comparing per-
formance under various workload and system operating conditions. Various types of
workload can be used for measurements, exposing the performance of the system under
study in respect to one or more performance indices. For the comparison of computer
systems with different characteristics, the same workload must be used. The workloads
chosen for this task are called benchmarks.

There are several benchmarking suites available today. Some of them measure the over-
all system throughput relatively to a previously system, for a mixture of various kinds of
typical workloads met in computer applications. Others, often called micro-benchmarks,
are well suited to expose the performance of the individual sub-systems like the memory
hierarchy, the I/O units etc., or even individual services of the operating systems as are
the system calls and context switching. An example of a micro-benchmark is lmbench
[McVo96]. It focuses on latency and bandwidth measurements, that the various building
blocks of a wide range of applications are using. More specialized benchmarks focus
only on one subsystem, as is the STREAM benchmark [McCa95]. STREAM measures the
memory bandwidth for four different patterns of memory references.
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Memory bandwidth measurements are very useful for the SFI emulator evaluation that
will be performed in Chapter 6. Results obtained by the STREAM benchmark will help
us to determine the available memory bandwidth of the system under study.

The choice of an appropriate benchmark is an important consideration when the perfor-
mance of computer systems is compared. The results of comparisons using an inappro-
priate benchmark may be misleading for the actual performance of the systems in a real
operation environment. This has resulted to less common benchmarks but much more
representative of the anticipated workload. An example of such specialized benchmark
suite is the Cern Unit benchmark. It is a collection of typical high energy physics pro-
cessing and analysis applications, which involve a mixture of heavy floating-point and
integer computations and memory references, but with very little I/O.

The results of measurements with benchmarks are very sensitive to many parameters of
the system under study and the benchmark itself. Meaningful results require that the
measured system is well understood e.g., memory cache effects, compiler optimizations,
configuration of the measured system etc. Also the internals of the benchmark need to be
well known, as for instance the effects of sampling and monitoring that might be used to
obtain the performance figures, may affect the final results.
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4.3 Summary

We discussed the performance issues that are typical to MP systems. Amongst them, we
distinguished the architectural related issues and the impact of the OS. In the case of an
EFU based on an MP system, the factors affecting the performance of the I/O sub-system
and the memory sub-system are crucial. The architecture of the interconnect is also
important in order to provide the necessary performance scalability. The impact of the
OS can be characterized as the means it provides for the exploitation of the SMP archi-
tecture (threads, synchronization primitives, etc.) and its own design taking advantage of
the parallel architecture.

We discussed also the performance evaluation methods commonly applied to computer
systems. For the purposes of the performance evaluation of the EFF, we believe it is
appropriate to use a discrete-event simulation tool. Our choice is justified because of the
needs of system and model design flexibility during the design phase of CMS, and the
possibility to have a working model of the EFF during its operation.
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5 Farm Simulations
A full design of the CMS DAQ system, requires that several farm configurations and
setup conditions are studied and evaluated. Also, until the construction of the DAQ sys-
tem itself, its design has to be flexible enough to handle any changes of the requirements,
as well as the appearance of new technologies that will influence it. A possible approach
to achieve this is through the study of prototype systems. We propose system simulations
to be used as a complement to prototyping. System simulations can give invaluable
insight on the studied systems in cases when prototyping is either not possible or not eco-
nomical. Another important issue is that under certain circumstances, simulations can
also describe the overall system scaling behavior.

In this chapter, a simulation tool of the event filter farm (EFF) is introduced. It imple-
ments a relatively general model of the functionality of the major DAQ components and
has the ability to describe their behavior at different levels of detail.

5.1 DAQ Simulation Model Description

The modular design of the CMS DAQ system, easily permits a functional decomposition
into, either separate subsystems or replicated subsystems. For instance, the RDPM used
for LV2 and LV3 event fragments are essentially providing the same functionality. They
can be modeled once, and instances of that model can be used into the overall simulation
model. That observation gives great flexibility in the design of a farm simulation model,
as the different components can be implemented at different levels of detail and at differ-
ent times. Figure 5.1 illustrates this module decomposition. Based on that observation,
we build the model of the DAQ system using a set fundamental functional units i.e., the
EVM, the RDPM, the switch, the SFI and the EFU, that interact with each other by
exchanging action messages. Those messages shown in Figure 5.2, trigger an appropri-
ate action (eventually another message) in the device they are destined to.

The LV1 trigger, it is described as a generator of DAQ events. It sends LV1 trigger mes-
sages to the LV2 and LV3 RDPM and to the EVM, with a distribution of the interarrival
time τLV1 defined at the beginning of the simulation. The LV1 trigger messages signal to
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the RDPM a front-end read and in the EVM the presence of a new DAQ task. They are
also tagged with a serial number that identifies them uniquely during a simulation run.

Figure 5.1: Functional decomposition of the DAQ system

The RDPM are modeled (according to the diagram of Figure 2.2) as a set of FIFO queues
for the IEq, IENq, FRq, FRB and OED. They contain the necessary event generators and
event handlers for the SeqIN, TS and SeqOUT. The PBT and the Memory are linked lists
of the input events. The readout system (i.e., the RU and FED) is not modeled, as it is
considered to be outside of the scope of this simulator. We assume that the input from the
FED to the RDPM occurs with little or negligible dead time. This dead time is accounted
for in the readout time, simulated by the RDPM.

Because of the need of a detailed description of the RDPM devices, an implementation
of a simulator using 1,000 instances of RDPM described in detail, could be very complex
and very resource-demanding. Therefore, we have decided to implement the simulator
using only two instances of the RDPM. Each instance represents an RDPM group serv-
ing either the LV2 or the LV3 event parts. In order to be consistent with the DAQ system
operation, a LV1 trigger arriving into an RDPM will start the readout of an event frag-
ment and not of an event part (LV2 or LV3). However, outgoing messages from the
RDPM to the switch will represent the sending of a LV2 or LV3 event part, depending on
the sending RDPM instance. We believe that this simplification is reasonable because
without compromising the simulated functionality of the DAQ system, the results
obtained for the RDPM itself are still valid.

In the same context of the RDPM simplification, we have chosen also not to fully simu-
late the event builder switch. The switch is modeled as a simple delay server with param-
eters that have been obtained from a separate detailed simulation [RD3195]. Incoming
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messages from the LV2 or LV3 RDPM will be forwarded to the requested destination in
EFF with a delay proportional to the event part size, as given by the detailed simulation
results. With the above two simplifications, the complexity of the simulator is signifi-
cantly limited. Obviously the price to pay for those simplifications is that we will not be
able to study the switch behavior in the simulated systems.

Figure 5.2: Overview of the DAQ simulation model

The EVM is modeled as an event handler of LV1 trigger messages and messages arriving
from the EFU requesting to process a new LV2 event or a LV3 event. It contains two
queues, one holds the requests for LV2 event parts and the other requests for LV3 parts.
Its operation consists of assigning LV1 triggers to LV2 requests from the EFU, and for-
warding requests for LV3 event parts to the RU. Also in case of a rejected LV2 event, it
sends a clear message to the LV3 RDPM (Figure 5.2).

5.1.1 Farm Model

In the studied simulation model, we have introduced an abstraction of the overall EFF
which is used for the coordination of the individual EFU. It is convenient for routing
messages received from the switch module to the EFU, and collect global statistics. On
every new LV2 or a LV3 event, the farm will examine it and forward it to the SFI which
has requested it.
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Each farm node models an SFI connected to an EFU. During the initialization phase of
the simulator, the farm object will construct as many SFI and EFU pairs as specified by
the studied configuration.

The SFI are modeled as a collection of buffers (Figure 5.3) each representing an avail-
able filter resource (FRS). In the EFU model, a DMA engine is foreseen to simulate the
transfer of the incoming event part from an SFI buffer to a local to the EFU memory
buffer. LV2 and LV3 event parts arriving from the SFI, are placed into separate queues
(LV2q and LV3q respectively) into the EFU memory. An additional queue (not shown in
Figure 5.3) is used to hold pointers to available processors.

Figure 5.3: SFI and EFU model

The main idea of having buffers in the SFI and queues in the EFU, is to be able to unload
the RDPM from pending LV2 requests and have the flexibility in the EFU to schedule its
resources depending on the number of the outstanding LV2 and LV3 jobs. As it is shown
in Figure 5.2, once an SFI buffer has been emptied by the DMA engine, it is considered
free and a FRS request will be sent immediately to the EVM to get the next job. This has
the effect that RDPM will always be stable (i.e., memory will not overflow) given that
enough FRS are available. Having the two queues in the EFU, instabilities can be
detected by monitoring their length and corrective actions (i.e., additional constrains on
the filtering algorithm execution time) can be applied. The number of the FRS each SFI
will initially communicate to the EVM, reflects the capacity of the EFU to handle incom-
ing events. Less buffers per SFI are expected to result into increased memory size used in
the RDPM and vice-versa.

This EFU model is designed to give higher priority to the LV2-trigger jobs than the LV3-
trigger jobs. It has also the option to preempt LV3 jobs in favor of LV2 jobs when there
are no free processors. With LV3 preemption enabled, the execution of the suspended
LV3 job will be resumed immediately after the LV2 job that caused the LV3 preemption
has finished. LV3 preemption is an interesting way to minimize the time a LV2 decision
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is taken. Less time to take a LV2 decision is expected to increase the system’s th
put. 

The effect of LV3 preemption can be characterized to be proportional to the ratios3
(the LV3 processing time) over s2 (the LV2 processing time). When this ratio is close
one, queued LV2 jobs will wait time proportional to their service time. In that case
system will appear like more LV2 jobs are present in it. In that case, eventual LV3
emption might not be a good choice, if a possible preemption overhead is take
account. However, when the ratio of the service times is around 100 (see Table 1.5
the case of the CMS DAQ system, queued LV2 jobs may have to wait before the
serviced, a time up to the LV3 service time. Additional waiting time will increase
LV2 decision latency. If LV3 preemption is enabled in that case, the LV2 latency wi
minimized, but the LV3 latency will be increased by the number of times a LV3 jo
interrupted on average, multiplied by the LV2 service time s2.

Another factor to understand the impact of LV3 preemption is the LV2 rejection fa
R2. When R2 is low (e.g., in the order of ten) the number of LV3 jobs is high and vic
versa. This observation is very important as it points to the system stability con
when LV3 jobs are preempted. This can be expressed by the following relation.

(F 5.1)

Where N —the number of EFU, r2 —the resulting LV2 trigger rate (i.e., the rate of LV3
jobs creation), ni —the number of times a LV3 job is interrupted on average, s2 —the
LV2 jobs service time. The left term of the Formula 5.1 essentially represents the a
time of LV3 jobs in each of the EFU i.e.,  while the second term represents the av
age service time of LV3 jobs i.e., . In other words, Formula 5.1 represents the sta
ity condition for the traffic intensity of LV3 jobs.

With LV3 preemption, the LV2q is expected to have only a few entries, resulting
minimum LV2 decision latency (i.e., the time from the LV1 event occurred, until th
time the LV2 filter reached a decision). On the other hand, the LV3 decision laten
expected to be much higher than the real time needed by the LV3 filter to execute. 
sufficient memory resources and that suspended LV3 jobs do not accumulat
increased LV3 decision latency is not considered as a problem.

5.2 Input Parameters

Some 20 different input parameters are used to describe the simulation model 
DAQ system. They can be divided into two categories: those that are directly rela
the physics requirements and those that are used to describe the specifications a
figuration of the utilized components in the simulated system.

N
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Into the first category fall the LV1-trigger interarrival time, the event size distribution,
the execution time of the LV2 and LV3 filtering algorithms and their respective accep-
tances.

Into the second category, fall the ratio S2/3 which is defined to be size the LV2 sub-event
over the size of its corresponding LV3 part, the RDPM parameters and the characteristics
of the switch, the SFI and the EFU.

For the simulations described in this chapter, some of their input parameters are fixed to
the today’s assumed values. These fixed input parameters are shown in Table 5.1.

5.2.1 LV1-Trigger Characteristics

The LV1-trigger can be described by a distribution function which models the exp
physics interaction probabilities and the related to the readout and triggering har
implementation. Precise information of the LV1-trigger distribution function is 
known yet. However, it is reasonable to assume that LV1 triggers arrive in exponen
distributed time intervals, mostly because of the Poisson nature of the physics in
tions. Another possible assumption could be a geometric distribution, which mig
more realistic from the point of view of how the LV1-trigger and the global trigger h
ware will operate. As a working assumption during the current design phase are co
two cases of the τLV1. One were it is fixed at 10µs as it is the design maximum of the sy
tem, and a second with a negative exponential distribution with mean at 30µs (a value
slightly higher than that pointed by the current physics results, as shown in Table 1

5.2.2 Event Size Distribution

A full event accepted by the LV1 trigger is expected to have an average size of 1
The various sub-detectors contributions to that figure are shown in Table 1.4. The

Parameter Value

LV2-RDPM block size 1024 Bytes

LV3-RDPM block size 1024 Bytes

LV2-RDPM memory size 128 MB

LV3-RDPM memory size 128 MB

SFI DMA speed 100 MB/s

LV3-part relative size 0.75

Table 5.1: Fixed simulation parameters
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acteristics of the distribution of the event size can be obtained from detailed physics sim-
ulations of the different sub-detectors. The mean value and variance of the event size are
parameters that are related to the luminosity  (i.e., the amount of interactions per unit of
time) of the LHC accelerator besides the number of channels of each subdetector. The
value of  during the operation of the experiment will decrease as protons are colliding
and increase again to its nominal value, when new protons are injected into the collider.
That change of  over time, will affect the event size as the amount of particle interac-
tions and hence the number of fired detector channels varies.

The farm simulation model itself takes very little into account the event size. It is only in
the RDPM model where in combination with the average event fragment size and the
block size of the RDPM memory, it has a significant effect on the total amount of mem-
ory that is in use. In any other sub-system of the DAQ the event size might contribute to
the transfer latency (DMA transfer etc.). This contribution is very small compared to the
latency of the switch. However for the detailed switch simulations it is crucial to have
more precise figures of the event size.

5.2.3 High-Level Triggers Workload

The workload characteristics of the filtering algorithms are even harder to specify,
mostly because they are not yet developed. It is known that the LV2 filter algorithm must
have a bounded execution time so that the LV3 RDPM memory or the LV3q queues in
the EFU have a reasonable size (below 100 MB). One possibility is to characterize the
high-level triggers with a distribution function of the execution time (s2 or s3) needed to
reach a decision (accept or reject). This seems convenient as it inherently describes the
performance of the EFU. On the other hand, shapes of that distribution cannot be easily
guessed as they are strongly dependent on the actual implementation of the filtering
algorithms. One possible model could be that as the execution time elapses the probabil-
ity to reach a decision increases. However, successive values of s2 may be related to each
other if the algorithms get biased from the LV2q or LV3q queue sizes in the EFU.

We will consider s2 and s3 with fixed values to 9ms and 900ms respectively. The choice
of those values is based on rough assumptions on what they might be at the beginning of
the experiment, for today’s preliminary LV2 and LV3 filtering algorithms.

Another important characteristic of the filter algorithms is the rejection (or accepta
efficiency they achieve on they incoming data. We will characterize that effect with
rejection factor of a filter algorithm — R2 or R3 defined as the ratio of the input eve
rate over the output rate. It is obvious that R2 is a crucial parameter of the LV2 filter algo
rithm as it directly determines the input rate of the LV3 jobs in an EFU. R3 determines
the output rate of the farm to the computing services and storage media. In the re
tem it is possible that R2 or R3 will not have a fixed value; instead they might va
according to the load condition of the farm. For instance, if the EFU output capacity
mits, the LV3 trigger algorithm can be instructed to be more relaxed in its selectio
that more processing resources become available to LV2 triggers.
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A general model of the workload characterization of the high-level trigger algorithms
should also take into account the fact that during the operation of the experiment, newer
versions of the algorithms may be developed resulting into either better algorithms and
therefore more efficient (lower s), or into more detailed and slower ones (higher s).

5.2.4 Parameters of the RDPM

The set of parameters (Table 5.2) describing each of the LV2 or LV3 RDPM, includes the
internal memory size and its block size, and the speed at which the RDPM is sending
data to the switch. The internal queues of the RDPM are without a specified size (i.e.,
infinite number of entries) and their occupancies are monitored during the simulation.
The parameters used in that model of the RDPM are not directly related to the rest of the
simulated system. Eventually, a simpler representation of the RDPM functionality e.g.,
as a single queue could require a smaller parameter set to be defined. Using a detailed
functionality model for the RDPM despite the simplified model of the switch, has the
advantage of evaluating the required size of the various internal queues of the RDPM.
Those results specific to the RDPM, after some further refinement, would be used for the
construction of the RDPM hardware.

5.2.5 Event Builder Latency

This simulation model assumes a switch for the event builder that it is modeled as a
delay center, as it was discussed in 5.1. This simplification assumes that no internal or
output congestion occurs and the switch has reached already a steady state at the maxi-
mum LV1 trigger rate of 100kHz.

The switch we take into account is a 1,000 × 1,000 ATM switch fabric that it built from
8 × 8 switching elements of 622 Mb/s (OC-12) speed. Such a switch has been simulated
in detail for an environment similar to the CMS DAQ system and it is described in
[RD3195] and [Teth95].

Parameter Typical Value

LV2-RDPM Memory block size 1024 Bytes

LV3-RDPM Memory block size 1024 Bytes

LV2-RDPM memory size 128 MB

LV3-RDPM memory size 128 MB

DMA speed 100 MB/s

Table 5.2: RDPM parameters
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The latency distributions for the LV2 and LV3 event parts we will use, are shown in
Figure 5.4 and Figure 5.5 respectively. It is shown, that the average switch latency to
transfer a LV2-part equal to 250KB (17 ms) is almost 4,600 times higher than the physi-
cal media transmission time (3.6 ms).

Figure 5.4: Simulated switch LV2 latency

Figure 5.5: Simulated switch LV3 latency

The simulator may accept as input either a particular distribution for the LV2 and LV3
event parts latencies or it can interpolate from a given set of data-points that have been
obtained from a separate simulation. The advantage of this approach is that as other
switching technologies are considered, results from their simulations can easily be
included into this simulation.
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5.2.6 EFU Parameters

The EFU model requires only one configuration parameter, the number of processors.
The EFU performance is not directly defined, but only through the average service time
of the LV2 and LV3 filter algorithms. Another parameter is used to specify whether the
for interrupting the LV3 trigger by the LV2 trigger.

5.3 Simulation Program

Originally the simulation tool was developed for the design of the RDPM with a rela-
tively simple implementation of the rest of the system. Later it was expanded to a more
detailed description of the rest of the system. 

From the very beginning, a discrete-event, discrete-time object oriented model was used
in the simulation tool, using the C++ language. The object design naturally fits into the
functional decomposition of the farm shown in Figure 5.1. The individual functional
units (shown in gray boxes) are once implemented in classes and then instantiated as
many times as they appear in the system to be simulated.

The simulator engine, implements all the needed event handling mechanisms (i.e., simu-
lation clock, event lists etc.) into a separate library. The integration of the simulator
engine and the classes describing the DAQ system is done by simply inheriting from the
simulation library classes. Every class that might receive simulation events, has to inherit
from an abstract message-handler class of the simulator engine. Additional function
methods, are implementing the different functions required by the simulator. 

5.3.1 CNCL Class Library

The core of the DAQ simulation tool is based on the Communication Networks Class
Library (CNCL) [Steppl] [CNCL], developed by the COMNETS group at RWTH Aachen.
CNCL was designed for the performance evaluation of communication protocols
through discrete stochastic simulations. The design of CNCL itself is based on the
NIHCL (National Institute of Health Class Library), GNU libg++ and the SIC (Simula-
tion on C++) class libraries. Besides its OO features as tree-like class structure, run-time
type information (RTTI) and object persistency, it has classes for efficiently generating
random numbers, various probability density functions, statistical evaluation and pure
event driven simulation. The random number generator classes that are included, support
a wide variety of discrete and continuous probability distributions.
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The simulation part of CNCL consists of classes for simulation events, event handlers,
event lists and a scheduler. It is providing also a tool for the integration of new classes
into the CNCL class hierarchy.

The statistical part of the library, contains evaluation methods as is the simple moments
LRE (Limited Relative Error) and the Batch Means. The simulator has the option of
using the batch means method to determine the end of the simulation run.

5.3.2 Simulator Implementation

An occurring LV1 trigger event, will actually create two new data structures, one repre-
senting the LV2 and one the LV3 part of an event. Each data structure will be time
stamped at each point of the RDPM to the EFU path, it passes. The latencies of occur-
rence of the different simulation events are implemented as sending to the appropriate
subsystem delayed events. For instance, the end of the LV2 filter is simulated as sending
to the EVM an event with delay equal to the service time of the filter algorithm. 

The current implementation of the simulator, is approximately 8,000 lines of C++ code
managed with the aid of CVS [Cede93]. The interface between the different simulation
classes (event types and their public accessible methods) is kept relatively simple and
organized in such a way, such that any new additional development of a simulation class
doesn’t affect the rest of the classes. The individual objects of the RDPM, the switc
the EFU, can be initialized to function in either simple mode or more complex if 
implemented.

5.3.3 Output Data Format

The different performance quantities of the simulated system that are desired as t
put of the simulation, are declared at the beginning of the simulation and stored d
the run. The choice of the data representation is based on Histoscope [Ferm97], a histo-
gramming tool developed at Fermi National Accelerator Laboratory. Histoscope
rather simple but powerful data-series histogramming tool that easily integrates
other applications. It provides several plotting options for the representation of the o
data. It has a very useful client-server monitoring capability through a simple API. A
simulator initialization, the performance variables, are declared and initialized. D
the simulation runs, when new values of those variables are becoming available
will be plotted and stored in the Histoscope data structures. At the end of the simu
the values of the individual variables are stored into a file for later analysis.

Using a tool like Histoscope for data monitoring, we are able to monitor closely the
lution of the system until it reaches a steady state. The explanation of the transien
of the different values monitored, can be very helpful in understanding better and e
ally debugging the simulated system.



80SIMULATION RUNS
As the average values and the distribution of the output values can be strongly affected
by the transient phase, we have included in the simulator the possibility of transient
removal.

5.3.4 Model Validation and Verification

Operational laws like the LV2 and LV3 traffic intensity dependence on the arrival rate
and service rate are used for the verification of the simulated systems results. The same
laws are useful in the choice of the initial values of the simulation parameters, in order to
have a stable system. As the level of modeling of the DAQ subsystems is kept relatively
rough, any precision requirements of the output values of the simulation will be limited. 

By using simple input parameter distributions (i.e., removing any stochastic effects that
might appear) and capturing the behavior of the simulated system at various places, the
different output variables are expected to be predictable and hence it must be possible to
explain.

Other ways of validating the results obtained by the simulator include selective message
tracing and step-by-step execution of messages. Although these are ways that can pro-
duce conclusive knowledge of a possible unexpected behavior of the simulator, they are
very hard to use due to the amount of information produced. Their use was limited to a
few cases that was not possible to understand otherwise.

5.4 Simulation Runs

We will demonstrate the operation of the simulator, in particular the behavior of each of
the simulated modules in two considered EFU scheduling cases. In the first case, the
results of a simulated system consisting of EFU that favors LV2-trigger jobs over LV3-
trigger jobs in the EFU are presented and analyzed. In the second case, we simulate a
system that its EFU implement the LV3 preemption for the same set of configuration
parameters of the first case. 

Input Parameter Value

LV1 Interarrival time τLV1 10 µs

LV2-filter service time s2 9 ms

LV3-filter service time s3 900 ms

LV2-filter rejection factor R2 30

Table 5.3: Variable simulation input parameters
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The input parameters that are used in both simulation runs, are shown in Table 5.1 and
Table 5.3. 

5.4.1 RDPM Behavior

The state of the LV2 and LV3 type RDPM can be examined by the occupancy of their
Pointer Buffer Tables (PBT in Figure 2.2). When more memory is used in the RDPM, the
number of PBT entries in use will be higher. We can obtain the PBT occupancy by plot-
ting the PBT size each time an event fragment enters or leaves the LV2 and LV3 RDPM.
Figure 5.6 shows the PBT occupancy of the LV2 and LV3 RDPM for the two simulated
systems. 

Figure 5.6: Pointer Buffer Table Usage

We observe that more PBT entries are needed in the LV3 RDPM than in the LV2. As can
be seen from the figure, approximately three times more PBT entries are required in a
LV3 RDPM, compared to a LV2 RDPM. This result matches the expected value which is
equal to the ratio of the LV3 event part over the LV2 part i.e., 750KB/250KB when both
LV2 and LV3 RDPM have the same memory page size.

LV3-filter rejection factor R3 20

Number of farm nodes nbEFU 1,000

Processors per EFU nbCPU 5

Input Parameter Value

Table 5.3: Variable simulation input parameters
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The LV3 histogram entries with values lower than the peak, is the transient part of the
histogram. This transient can be explained if we take into account that the number of
PBT entries during the start-up of the simulation will increase as more LV3 jobs will
arrive, until a steady state is reached (that of the peak). Because of the intermediate LV2-
trigger processing, stability of the LV3 RDPM occurs slightly later compared to the LV2
RDPM.

We notice also when LV3 can be preempted, the PBT entries required for both LV2 and
LV3 are slightly less than in the non-preempted LV3 case. This is an indication that the
throughput of the simulated system increases when LV3 is preempted. The throughput
increase for the LV2 is obviously because LV2 events will be serviced faster when LV3
is preempted. One the other hand, servicing faster LV2 jobs will result is less waiting
time in the LV3 RDPM, before the event is sent for LV3 processing or cleared from the
RDPM memory.

5.4.2 Event Manager

The characteristics of the EVM can be captured by the arrival rate of LV2 and LV3
requests from the event filter units and the average number of queued free requests
(number of entries in its FRq queue) of the farm.

Figure 5.7: Farm Request (FRQ) length

With a stable system, we expected the FRq to have a stable size, less than the total num-
ber of FRS (i.e., the number of EFU multiplied by the number of the SFI buffers). How-
ever, the average size of FRq not necessarily reflects the number of idle processors. The
farm resources communicated to the EVM are considered the SFI buffers of the EFU.
The model of the SFI and EFU, considers an SFI buffer free when either a LV2 event-
part has been serviced or a LV3 event-part has been received. In other words, having sig-
nificant amount of entries in the FRq is not alone a sufficient condition for a not loaded
farm. It is also the average number of the queued jobs in the EFU that is important, as it
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will be discussed later. Such a situation of many entries in FRq may occur if the number
of buffers in the SFI is set to be larger than the number of processors in the correspond-
ing EFU.

Figure 5.7, shows that when LV3 can be preempted, FRq contains more entries. This is
an expected result, again related to the increased throughput of LV2 jobs.

Figure 5.8: Arrival rate of LV2-read and LV3-read requests

Estimates of the arrival rate of requests to the EVM, are also useful to know. These rates
are indicative for the bandwidth and latency requirements of the network connection
between the EFU nodes and the EVM. The simulator obtains these rates by plotting the
elapsed time between successive arrivals of LV2-read and LV3-read requests in the
EVM. Figure 5.8, shows the instantaneous distributions of the LV2-read and the LV3-
read rates for the two simulated systems. There is no apparent difference between the
two simulated system. This is because those two rates depend on the service times of
LV2 and LV3 filters as well as on the total number of processors, which are the same for
the two simulated systems.

5.4.3 SFI and EFU

The SFI model, assumes a system which tries to maximize the utilization of the SFI buff-
ers. SFI buffers hold either LV2 or LV3 event parts. After the event assembly of a LV2
part the respective SFI buffer is kept busy until LV2 processing has finished. However,
after the event assembly of LV3 event part, the SFI buffer is marked free and a request to
the EVM for a new LV2 event is immediately sent. In Figure 5.9 is depicted the occu-
pancy of the SFI buffers (i.e., how many of them were on average busy during a simula-
tion run) for the two simulated systems. The data of the two figures have been obtained
by plotting the number of busy buffers every time a buffer was marked as busy. The two
plots show that indeed, the number of busy SFI buffers tends to be high, as was expected
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from SFI buffer management. Simulation runs with more buffers per SFI, have shown
also high buffer occupancies.

Figure 5.9: SFI buffer occupancy

As it is assumed in the simulation model, event buffering occurs at both the RDPM and
the SFI. Therefore, the stability of the simulated system will not be determined only by
the RDPM memory size or the number of SFI buffers, but also from the size (or more
precisely the growth behavior) of the LV2q and LV3q queues in the EFU.

By plotting the number of entries already present in the LV2q or LV3q when a new job
arrives, we can get the distribution of the number of entries in the LV2q and LV3q
respectively. Figure 5.10 and Figure 5.11 show the probability that each of LV2q and
LV3q has a certain size.

Figure 5.10: LV2q queue length
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The two queues in both simulation cases are bounded (there are no long tails), indicating
a stable system. Additionally, the LV2q maximum observed size in the preemtable LV3
case, is smaller than in the non-preemtable LV3 case. This behavior of the LV2q is the
main reason to have the LV3 filter preempted. A short LV2q (together with a limited s2)
will result in limited LV2 decision latency and consequently lower LV3-RDPM occu-
pancy.

Figure 5.11: LV3q queue length

As a result of the preemption, the LV3q maximum size increases, resulting in increased
LV3 decision latency. This is not a problem in a stable farm, as it is only the farm output
that depends on the LV3 decision latency. However, the relatively longer tail of the LV3q
size when LV3 is preempted, indicates that further steps might need to be taken to con-
fine how many times a LV3 job can be interrupted, according to Formula 5.1.

Figure 5.12: LV2 decision latency
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The effects of the LV3 preemption are also demonstrated in the distribution of the LV2
decision latency. The LV2 decision latency (Figure 5.12) is defined to be the time inter-
val between the occurrence of a LV1 trigger and the time of arrival at the EVM of the
LV2 filter decision. 

Figure 5.13: LV3 decision latency

Both plots in Figure 5.12 have a peak at ~ 28ms, which corresponds to the sum of the s2,
the average switch latency, the DMA transfer time and the eventual waiting time in
LV2q. The plot of the non-preemtable LV3 case, has an additional peak at ~ 33ms. This
is explained as the waiting time in LV2q when more than one LV2 jobs are queued.

The LV3 decision latency for the two simulated cases is depicted in Figure 5.13. The
peak of the non-preemtable case is much sharper, as the s3 is much higher from the aver-
age switch latency. The effect of the waiting time in LV3q is the tail at the right of the
plot. When LV3 is preempted, the LV3 decision latency increases, too.

The shape of the LV3 decision latency distribution is related to the average number of
interrupts occurred during the execution of a LV3 job. 

We can deduce the average number of LV3 interrupts, by plotting how many times a LV3
job was interrupted at the end of its execution. This is depicted in Figure 5.14.

The number of 25 interrupts on average per LV3 job, as shown in Figure 5.14, is consis-
tent with that obtained by Formula 5.1, which is less than 34.
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Figure 5.14: Number of interrupts per LV3 job

The overall utilization of the farm is shown in the time-series plot of Figure 5.15. This
plot is obtained by sampling the number of LV2 and LV3 jobs running in all the EFU.
The vertical axis of each plot is the percentage of the total number of processors occu-
pied by a LV2 or LV3 job, and the horizontal axis is the number of the sample during the
simulation run. 

Figure 5.15: Farm CPU utilization

The steep part at the left of each plot, is the transient phase of the simulation, and as it is
expected, the LV2 transient is steeper than the LV3. This is because of the time needed
for a sufficient number of LV2 jobs to complete and eventually generate a LV3 job
before the number of LV3 jobs becomes balanced. If the rejection factor of the LV2 fil-
ters R2 is increased, this transient time is increased also.

The average utilization values of the farm in the two simulated cases are not different.
The total load of the farm is approximately 77%. In particular, the load generated by the
LV2 jobs is around 18% which matches well what we could predict by multiplying the
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LV1 trigger arrival rate with the average LV2 service time. The same is true for the LV3
jobs’ load which is approximately 59%. 

The instantaneous rate of jobs finished the LV3 processing and were accepted (
rejection factor R3) are plotted in Figure 5.16. Their shape is that of a Poisson dist
tions. When LV3 is preempted, the instantaneous output rate becomes lower. This
can be explained in terms of the increased time interval between successive jobs,
the LV3 trigger.

Figure 5.16: Farm instantaneous output rate
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5.5 Summary

In this chapter it was described a simulation tool for the CMS event filter farm. It is
based on a discrete-time event-driven model of the individual units of the DAQ system.
The simulator provides sufficient flexibility for modeling the individual DAQ units with
various levels of detail.

This simulator is aimed to assist in the design phase of the event filter farm, by studying
different EFU configurations and farm node scheduling policies. It provides several mea-
sures in order to evaluate the EFF performance, amongst them are the overall CPU utili-
zation, the decision latencies of LV2 and LV3 jobs and the rate of messages arriving to
the EVM.

With that tool, we have performed a simulation study of the impact of preempted LV3
jobs by LV2 jobs. The performed simulations, show that it is appropriate to have the LV3
filters preemtable because as it was discussed in 5.1.1 decreases the LV2 decision latency
and therefore increase the system throughput for the critical LV2 jobs. The LV3 preemp-
tion option is expected to be even more useful in increasing system throughput when the
farm load is close to its maximum. It could be also mentioned that it seems appropriate
for the EFU to batch their requests to the EVM in order to reduce the high rate of farm
requests arriving at the EVM. This strongly depends on the type of the network connec-
tion between the EFU and the EVM and the capability of the EVM to handle high rates.
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In this chapter we look into a prototype setup that emulates the EFU operating environ-
ment utilizing a high performance SMP workstation connected to an ATM OC-3 net-
work. Despite the fact that the performances of the individual components that can be
used today are by far inferior to those required by CMS, we can study the problems that
appear when commercial state-of-the-art SMP systems are used for the EFU. 

In this prototype setup we study the performance of a software emulated SFI. Our objec-
tive is to prove that already with today’s technology, the required SFI performanc
be achieved by an emulated SFI in an SMP EFU. The performances of the ATM
work, the network controller and the SFI emulator itself will be individually evaluate

6.1 SFI Emulation

The possibility to build an a SFI emulator arises from the observation that the funct
ity of the SFI is mostly a memory management problem. That is, the SFI must be a
manage all fragments of each different event, transmitted by the RDPM in an unor
manner. The task of assembling event fragments into one event entity, can be tr
achieved in software by simple memory copying into previously allocated event bu
Although this may not be the most performing solution, it provides an initial framew
sufficiently flexible for experimenting.

Figure 6.1: Model of the SFI emulator

Network

Filter API

Fragment
Management
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We model the functionality of the SFI emulator in three layers (Figure 6.1). A network
layer to provide the interface to the networking device, a fragment management layer
where the fragment assembly takes place, and an API layer to provide the necessary
interface to the filtering application running at the EFU.

This decomposition of the SFI emulator, summarizes the independent areas of its func-
tionality. There are no strict boundaries between the three layers, because the implemen-
tation of each layer is not entirely independent from the rest of the layers.

6.1.1 Network layer

The network layer provides the interface to the network interface controller (NIC) and
the link to the fragment management layer. Depending on the implementation of the SFI
emulator, the network layer comprises functions to receive the incoming data and com-
municate the free buffer resources to the NIC.

The interface to the NIC can be implemented by utilizing standard OS system calls to the
device driver. The OS system calls are usually costly in time and therefore may limit the
receiving performance of the emulator. Also, depending on the implementations of the
NIC driver and the OS kernel buffer management, data may need to be copied multiple
times before they are finally delivered to the emulator’s buffers. It is obvious that un
essary data copying will additionally degrade the performance of the emulator. How
using the OS provided system calls the emulator portability is ensured, as these c
in most of the cases part of standards as POSIX of PASC/IEEE.

A user level driver can avoid entering the kernel of the OS at least for the data tra
and also reduce the number of data copies during the transfers. Depending on th
ware of the NIC, it may be possible to achieve even true zero copying i.e., the data pack-
ets are directly delivered to the application’s buffers. These performance advanta
user level drivers make them very attractive solutions. However, they are more co
to implement, imply deep knowledge of the NIC internals, and are very much depe
on the actual OS and the NIC they do interface. The complexity may be additio
increased if the cross-domain protection mechanisms required in a multiuser en
ment have to be taken into account.

6.1.2 Fragment Management Layer

In the fragment management layer, the actual assembly of fragments of different i
ing events takes place. Every fragment has a header containing the fragment num
the event number it belongs to. This header has to be processed and then the dat
the fragment to be placed into the memory location allocated for that event. Als
fragment management layer has to manage the buffers of events that are under as
the fully assembled events, as well as the free event buffers. It has to keep track
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events under assembly, for which some of their fragments were lost and therefore their
assembly will never complete.

The fragment management layer has to previously allocate sufficient number of event
buffers to handle the maximum number of simultaneously assembled events plus the
number of events being processed by the filtering processes.

In a more advanced implementation of the SFI emulator, the fragment management layer
could handle the processing of an event building protocol, if this is implemented. The
use of a specialized protocol layer for the event building and event assembly, has the
advantages of potentially lossless data transfers and flexibility for transmitting more than
one sub-event in a data packet. It can be also a means of detecting when the assembly of
a sub-event has completed. However, such protocols will also introduce additional pro-
cessing overheads that will affect the event assembly performance. Examples of such
protocols are given in [Mand94]. For simplicity, the SFI emulator implementation
described here does not make use of event building protocols.

6.1.3 Filter API Layer

The filter API layer contains the set of functions necessary to communicate with the fil-
tering processes running in the EFU. This set of functions is required to be independent
of the implementation of the SFI emulator and also must hide the emulator’s archite
from the filtering processes.

In a full implementation of this layer, it will be required also to interface to an additi
layer which will connect through a separate NIC to the EVM. Such functionality o
ously is of very high importance for the full operation of the SFI, but as it require
presence of the EVM it will not be considered.

The set of functions that the API layer is assumed to support, are requests for the 
LV3 sub-events and requests for the buffer release of a processed event.

6.2 Setup Description

The test setup comprises the RDPM and the SFI emulation hosts (Figure 6.2
RDPM host (RDPMh) is emulating a data source of event fragments and the SF
(SFIh) is running the SFI emulator.

The RDPMh is used only to provide the necessary event fragment stream to the SF
does not emulate the functionality of a complete RDPM.
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Figure 6.2: Prototype setup

Every node has attached to it an ATM OC-3 (155 Mb/s) Interphase 4615 adapter [Inter94],
which may connect the hosts directly (point to point) or through an ATM switch, if more
than one RDPMh is to be used.

A SUN SPARC Station 5 workstation with 32 MB of memory and a microSparc proces-
sor running at 85 MHz, is used as the RDPMh. A SUN Ultra Enterprise 3000 SMP server
with 512 MB of memory and six UltraSparc processors running at 167 Mhz is providing
the EFU environment that runs the SFI emulator. Both systems are running Solaris 2.5.1,
a proprietary OS based on UNIX System V Release 4. Some relevant performances of
the systems used in the setup are summarized in Table 6.1.

6.2.1 Event Fragment Data Model

In order to emulate a realistic case of the event fragment flow to the EFU, the RDPMh
must be able to send an interleaved sequence of randomly ordered fragments belonging
to different events. This way, the ability of the fragment layer of the SFI emulator to
assemble in parallel multiple LV2 and LV3 sub-events, can be tested.

CPU Speed

[MHz]

Memory Bandwidth 
(Copy operations)

[MB/s]

SPARC Station 5 85 71

Ultra Enterprise 3000 167 395

Table 6.1: Performance of the workstations used in the setup

OC-3 Link

DPM Traffic Emulator EFU and SFI Emulator
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An event is modeled to have two parts, an LV2 and an LV3, each of them with adjustable
size. Every event-part consists of several fragments, like in the real case when many
RDPM are used for the data sending. The number of fragments contained in an event-
part, can be adjusted. Before an event fragment is transmitted to the ATM network, a
header is prepended to it. This header contains the event and fragment sequence num-
bers, the size of the data included in the fragment and eight additional bytes to be used by
the ATM layer of the device driver for the destination assignment. Those eight bytes are
an inevitable overhead, required by the device driver itself.

For that purpose, a RDPMh emulator has been developed. It is able to send the fragments
of an event in a random order and interleave them with the fragments of k other events.
The parameter k defines the number of events that the SFI emulator will have to assem-
ble in parallel, and it can be modified between different tests.

In order to emulate the data traffic of both LV2 and LV3 fragments, the RDPMh emula-
tor randomly chooses events for which the LV3 part will be also sent to the EFU. The
rate of that random choice corresponds to the estimated LV2 trigger acceptance factor.
That way, in the flow of the interleaved LV2 fragments are also added LV3 fragments in
a similar way to the real case. The exact profile of the fragment flow in a realistic event
building system is difficult to determine, as it strongly depends on the traffic shaping
function implemented into the RDPM randomizers and the impact of the event building
switch. 

In Table 6.2, it is shown the percentage of LV2 and LV3 fragments contained in the data
stream generated by the RDPMh emulator. With the gray background are denoted the
parameters used in the measurements. Although it seems more realistic to use LV2 rejec-
tion rates higher than 20, a worst case was chosen that can give the lower limit of event
assembly performance of the emulator. 

The RDPMh emulator is designed such that it can run on more than one host, when a
switch is used between the RDPMh and the SFIh. In that case, each of the RDPMh will
hold only a part of the fragments comprising an event and will send to the SFIh only

LV2 
Rejection

Factor

LV3-part
size

[% of event size]

LV2
Fragments

%

LV3
Fragments

%

10

85 63 37

75 77 23

65 84 16

20

85 77 23

75 87 13

65 91 9

Table 6.2: Structure of the emulated stream of LV2 and LV3 fragments
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those fragments. The decision which fragments are owned by each RDPMh is done dur-
ing the RDPMh start-up, using a unique identifier.

6.2.2 SFI Emulator Implementation

In the design phase of the SFI emulator, it was early recognized that the NIC flexibility
available to the network layer of the emulator, may influence significantly the way of
assembling events in the fragment management layer. In this implementation of the three
layers of the SFI emulator (Figure 6.3) we have adopted the simplest possible solutions
mainly because of the restriction to use the software driver supplied with the NIC.

During the emulator initialization, a fixed amount of event buffers is allocated. They are
all placed into the Free Event Queue (FEQ). Another event queue is created (ERQ) to
hold the buffers of assembled events and it is initialized to be empty. To keep track of the
events under assembly, a hash table is also created. This hash table is indexed by the
event number of a fragment and it has a sufficiently large number of entries to avoid col-
lisions.

The UNIX System V streams mechanism [Ritc84] was used in the network layer, to
receive the incoming data stream from the NIC. Streams provide a bidirectional data and
control path between the NIC device driver and the user application and they are very
well suited to accommodate network protocol stacks. Most parts of the communications
of the used OS are based on streams. 

Figure 6.3: Architecture of the SFI emulator

ERQFEQ

main

eb_thr

event_consumer

ATM NIC

Fragment Buffer

Hash Table
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A streams-based device driver was the only option available from the manufacturer of
the NIC. For that reason, the main thread of execution of the emulator is implementing a
fast loop of getmsg() calls to the file descriptor of the NIC device driver in order to
receive the data. The incoming data are placed at the tail of a circular buffer, denoted as
Fragment Buffer in Figure 6.3.

At the initialization of the emulator, a second thread (eb_thr in Figure 6.3) is created. The
eb_thr will detect a non-empty Fragment Buffer condition and consequently will start to
retrieve entries from it. For every fragment that eb_thr processes, it first compares its
event number with that pointed by the hash index. If no other fragments of this event
have been received, it will retrieve a new event entry from the FEQ and place it into the
hash table. If the event number of the fragment and the one in the hash index match, it
will copy the contents of the fragment to the appropriate memory location and increase
the event’s received fragments counters. If a fragment is the last one of an ev
removes it from the hash table and places it into the ERQ. Without the use of highe
protocols, a sub-event is defined to be completed when a predefined number o
ments has been received.

To emulate the event filtering taking place in the EFU, one or more additional threa
started (event_consumer in Figure 6.3). The event_consumer threads will be n
once the ERQ is not empty, to process incoming assembled events. The notifica
done through conditional variables and mutexes placed around the ERQ access 
ensure the data integrity of the ERQ. The same functionality of the event_cons
threads can also be achieved if a separate process is started.

In that implementation, the event processing functionality is substituted by a s
delay of a specified amount of time. Once this delay time has elapsed, the event is
back into the FEQ and the next available event from the ERQ is retrieved. In ord
have a more realistic estimate on the synchronization overheads involved, the FEQ
and all the event buffers are placed into a shared memory segment, marked with th
background in Figure 6.3. That way, independent of the use of threads or separa
cess for the event_consumer function, the synchronization overheads are equally 
sive.

6.3 ATM Performance

Before evaluating the performance of the SFI emulator, a series of measurements
data transfer throughput and receive latency in a point to point ATM network were
formed. The setup was the same as that in Figure 6.2. The application to appli
bandwidth was measured for different sizes of data packets, using the same set o
mit and receive system calls, as in the SFI emulator.

For every measurement, the transmitting host was sending 200,000 AAL5 data pa
The time to receive all the packets at the receiving end was measured. The AAL5
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can encapsulate in an AAL5 packet, data packets (PDU) of size up to 64 KB [Hein93]. A
trailer is appended to the PDU containing a CRC-32 checksum and a padding part to
make the total size of the packet multiple of an ATM cell size. The AAL5 packet is seg-
mented into ATM cells of size 53 bytes before it is send to the network. The layout of an
AAL5 packet is shown in Figure 6.4 and the segmentation into ATM cells in Figure 6.5. 

Figure 6.4: AAL5 packet layout

It has to be noted that in all measurements, no packets were lost in the network and none
dropped by the hosts. Figure 6.6 shows the theoretical, the maximum possible and the
measured throughput, for the OC-3 type of ATM links. The theoretical curve is an
expression of the bandwidth that an application is expected to receive, when all ATM-
cell and AAL5 related overheads are substracted from the maximum possible bandwidth
of the physical layer.

Figure 6.5: AAL5 segmentation into ATM cells

From the theoretical performance curve, it is seen that already for packets larger than 500
bytes, the bandwidth is very close to the maximum value (134 Mb/s). The saw-tooth
shape of the theoretical curve is due to the effect of the padding trailer in AAL5 packets.
The padding can be as large as almost an ATM cell payload, and as it is expected, it has a
higher impact on the measurements where smaller packet sizes are used.

CRC
(4 octets)

Length
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PAD (0 ÷ 47 octets)

CPCS-PDU Trailer
8 octets
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The measured throughput however, is much lower than the theoretically predicted. In
particular, for packet sizes of 1 KB, the measured value was around 33 Mb/s, while it
was expected to exceed 100 Mb/s. It has a smooth shape because the measurements were
performed with packet sizes of powers of two, which gives a constant padding length of
24 bytes.

Figure 6.6: ATM AAL5 Theoretical and measured performance

Measurements with packet sizes larger than 9188 bytes could not be performed. The NIC
has been optimized to operate in a TCP/IP network and the maximum packet value built-
in the NIC design, corresponds to the default MTU for IP over ATM [Atki94]. Similar
point-to-point ATM measurements performed over TCP/IP, have not shown different
results for the obtained bandwidth [Fouquet]. Answers to the question where the perfor-
mance is getting lost, must be inquired in the NIC itself, the host hardware and software,
or in a combination of both [Drus93].

6.3.1 NIC Performance

The NIC used in the measurements, implements a two stage transmission scheme. The
data packet to be transmitted, is first copied from the OS kernel buffers into the device
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driver’s buffers. From there it is copied to the NIC adapter buffers using a DMA tran
where the AAL5 packet is formed and segmented into ATM cells before it is transm
to the network. In that scheme, the NIC must issue at least two interrupts, one wh
DMA has finished and the NIC front-end must be programmed to inject the data in
network and a second when the transmission has finished and the allocated res
have to be freed. It is designed however in such a way, that both interrupts are e
avoided, except in the case of an error.

When the driver receives data, the opposite to the transmit sequence of events is
place. The incoming packets are first copied into the NIC buffers, then transf
through DMA to the NIC device driver buffers and finally are copied into the OS ke
streams buffer. The last copy may be avoided by loaning the driver’s buffers t
streams sub-system. Buffers holding packets of size larger than 2 KB are loaned
the extended streams buffer mechanism (esballoc()). When the NIC receives dat
from the network, it generates two interrupts for every AAL5 packet. One interrupt w
the packet is in the on-board memory and a second one when the packet is receiv
the system memory.

In order to study the performance of the NIC and its associated driver, we can mod
time it takes for a data transfer to and from the network, using two distinguished typ
overheads. A constant overhead, referring to the overhead that does not depend on
size of the transferred packets, and a variable overhead that is proportional to the packe
size.

The constant overhead is due to operations that have to take place in each data 
(for both receive and transmit) and result in a determined time delay. Typically, con
overheads are determined by the number of interrupts required per data packet, th
ber of slave accesses to the NIC from the device driver and the protocol header p
ing time. Usually, interrupt handlers do not have processing time that is dependent
packet size. The slave accesses are performed in order to program the NIC re
before and after the data is transferred and also to obtain NIC status information
device driver that was used in the setup, performs a relatively high number of 
accesses per data transfer. To reduce the slave accesses a local copy of the 
whose state does not change often it is cached in the device driver. Even with this
ing mechanism, the number of slave accesses remains high.

The variable overhead is due to the DMA speed of the transfers between the NIC a
memory sub-system, and the number of copies that are performed for each pack
segmentation, reassembly and checksumming times of AAL5 packets, could be als
ing to the variable overhead. They are carried out during the time the packet is injec
the network by specialized ASIC in the NIC and therefore have no significant con
tion to the variable overhead.

This performance model is a simple way to evaluate the performance of an I/O d
Its simplicity is its advantage but also its drawback. It is not a precise description of
takes place during a data transfer between the NIC and the user application. There
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cannot provide sufficient insight on the timing of each of the tasks needed for a data
transfer. Despite that drawback it is useful to understand which are the limitations of the
studied setup. More sophisticated models, for example LogP [Cull93], can provide more
information, but in a much wider scope including the network, machine and the commu-
nications application.

Using the above described model of the data transfers between the NIC and the host sys-
tem, we can evaluate the NIC performance by measuring the time it takes to receive a
series of packets of various data sizes. We can then fit the obtained data with a straight
line , the coefficients of which correspond to the transfer latency (a) and the
inverse of the effective transfer speed (b).

Figure 6.7: Packet receive latency

Figure 6.7 shows the measured latency of packet transfers with different sizes. The con-
stant overhead is approximately 170 µs. This is a relatively high value and as it is shown
in Figure 6.6, it makes small packets extremely costly. For comparison, we can mention
that sophisticated drivers made specifically to reduce to a minimum the transfer latency
have a constant overhead below 20 µs [Wels97]. The cause of such a high overhead is the
number of the slave accesses to the NIC during the DMA setup cycle and the two inter-
rupts that take place in each transfer.

The effective data transfer speed as it is obtained by the linear fit is around 12MB/s. This
is a very low value for the bandwidth of the data transfers between the NIC and a user
application. It is well below of the DMA transfer speed which is expected to be in the
order of 60 MB/s (32 byte I/O bus at 20 MHz). Contrary to the constant overhead, it is
more difficult to explain the breakdown of the variable overhead, because of the OS
influence. The measurement of the transfer time is influenced by the process scheduling
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and the memory (buffer) management of the OS. The above figure of the effective band-
width between the NIC and the application, shows clearly that traditional I/O interfaces
are not always suitable for high performance I/O transfers.

6.3.2 Host Hardware and Software Performance

The implementation of the SFI emulator relies on sufficient memory bandwidth to be
available on the host running as an EFU, because of the necessary fragment copy. The
memory bandwidth available on the host must also be sufficient to accommodate the
eventual needs of the filtering algorithms and must scale by the number of processors
and the active processes in the system.

Figure 6.8: Memory bandwidth and scaling

In order to evaluate the above behavior on the studied system, we used a modified ver-
sion of the STREAMS benchmark [McCa95]. The original benchmark was modified to
spawn multiple “copying” threads in one process and eventually start multiple proce
The results of that benchmark when the number of threads per process is vari
shown in Figure 6.8, for one, two and three concurrent benchmarking processes. T
gle-thread, single-process result is the relevant one to SFI emulator because the
designed to do the fragment copy in a single thread (eb_thr in Figure 6.3).

It is interesting to note that the machine can sustain an effective aggregate memory
width which is very close to its peek aggregate bandwidth 2.6 GB/s [Char97]. From the
results of the benchmark we can conclude that the memory bandwidth (~395 MB
the emulator case) is not limiting the performance of the SFI emulator. It is shown
sufficient resources are available not only to the emulator but also to other applica

The same ATM bandwidth measurements as in 6.3.1 were performed using the
host (UE-3000) for transmitting and the slower host (SS-5) for receiving. The 
throughput improved significantly, but frequent loss of data packets at the receivin
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was observed. An analysis of the NIC device driver statistics, revealed that all sent pack-
ets were received by the NIC front-end hardware at the destination host. It turned out that
it was the OS streams buffer management between the device driver and the network
layer of the emulator, that could not cope with the high data rate and for that reason the
streams flow control mechanism was activated. Consequently, the NIC device driver was
disabling the adapter interrupts, hence dropping incoming packets. This performance
problem cannot be attributed to any memory bandwidth limitations of the receiving host,
which could be due to excessive packet data copying. The bandwidth required for packet
transfers at 155 Mb/s ATM speeds is more than ten times lower than the memory band-
width available at the receiving host. The most probable cause is the streams buffer man-
agement complexity. Despite the fact that streams are not copying the buffer contents, it
seems that due to overheads the buffer processing rate is lower than the packet arrival
rate.

The above observation suggests that standard OS provided mechanisms of accessing
data from network devices like streams, may easily reach their performance limits if they
are used with NIC with more demanding network speeds. Otherwise, they may perform
well in legacy networking speeds as that of Ethernet.

6.4 SFI Emulator Performance Measurements

From the ATM performance measurements on the test setup, it became clear that the
evaluation of the SFI emulator performance can be obscured by the poor network layer
performance. For that reason, the emulator was modified to operate in two different
modes. In the first mode, the emulator receives fragments from the ATM network and
assembles the fragments into events simultaneously. We will call this mode simultaneous
assembly (SA).

In the second mode, the network layer will first fill the Fragment Buffer (Figure 6.3) and
only after that, the fragment assembly thread (eb_thr) will be started. We will call this
mode deferred assembly (DA) — the event assembly is deferred until the fragments to
assembled have arrived. The performance of the fragment assembly will be me
during the execution of eb_thr and thus will not include any network activity. When
emulator is operating in the DA mode, the size of the Fragment Buffer is increas
accommodate a sufficiently large number of fragments for the different measureme
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Figure 6.9: Event Assembly Performance

As it is depicted in Figure 6.9, in the SA mode, the event assembly time is entirely lim-
ited by the ATM network performance. Indeed, for a sequential (one event at a time)
event stream, the event assembly time is corresponding to the 35 Mb/s limit of the ATM
network.

Operating the emulator in DA mode, we measure the assembly time of one event for
three different ratios of LV3-part sizes over the total event size. As it is expected, the per-
event assembly time is much shorter than in the previous measurements of simultaneous
receives and assemblies.

In the case of the smallest LV2 event part (15% of the total event size), we observe the
maximum event assembly throughput of the emulator, while in the case of the biggest
LV2 part (35% of the total event size), the lowest throughput. This is an indication that
the throughput is entirely dominated by the speed of the copy operation required for the
event assembly. In Table 6.3 is summarized the emulator’s performance in the ca
one and 100 parallel events, for the three cases of the LV3 part size. The last c
gives the assembly throughput for 100 parallel events.
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The emulator’s throughput in all measured cases is well above the 100 Hz thre
required at each EFU port for an EVB of 1000 × 1000 ports. This is a very encouragin
result, as it shows that a rather simple implementation of the SFI in software ma
form equally to a separate SFI unit. Evidently the emulator’s performance can be f
improved by using more sophisticated fragment assembly algorithms and OS interf

6.4.1 Contention Analysis

In a concurrent application as this simple SFI emulator, the resource contentio
occurs in critical code segments like in the fragment layer, may significantly limit
performance. An assessment of whether the synchronization primitives used betwe
three different threads of the emulator could be a bottleneck, may help to avoid d
pitfalls and potentially assist to the improvement of the emulator.

For that purpose, a commercial thread analysis tool THA [Sun95] was used to sample th
execution of the SFI emulator and provide performance measures for each thread a
execution time, mutex and conditional variable waiting times. THA can sample the
cution of a compiler instrumented executable and generate trace output files, whic
be later analyzed.

The following contention analysis study is done with the emulator running in the
mode. If the DA mode was used, the tracing output would have been dominated by
heads generated by the Fragment Buffer locking mutexes, used to avoid underflow
circular buffer. This is because the fragment assembly runs much faster than the b
filled. In the DA mode, all mutexes are still entered, but those related to the Frag
Buffer are not expected to block. Also, the size of the Fragment Buffer is intentio
smaller than that used in the throughput measurements, in order to produce mor
able trace output. Otherwise, the scale of the time axis could have been much high
the shape of the curves smoother, hiding the different phases of emulator’s execut

In the output produced by THA it is displayed the CPU time, mutex and conditional 
able waiting times of the main thread (Figure 6.10) the event assembly th
(Figure 6.11) and the event consumer thread (Figure 6.12). All figures have at thei

LV3-part
size

[% of event size]

LV2 Assembly 
Time

(1 event)
[ms]

LV2 Assembly
Time

(100 parallel events)
[ms]

LV2 Assembly
Rate

(100 parallel events)
[Hz]

85 3.0 345 289

75 4.3 485 206

65 5.5 619 161

Table 6.3: Performance of the emulator in DA mode
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zontal axis the absolute time since the start of the emulator execution and at the vertical
axis the amount of processor time in percentage, for each of the performance metrics.
Examining the THA output for the emulator, we can distinguish the following four dif-
ferent phases.

Figure 6.10: Profile of the main thread

Start → A. We have activity only in the main thread as the other two are not yet created.
This is the emulator initialization, where all the memory allocation of the resident event
buffers takes place. This accounts to a very little (~ 6%) CPU time for almost 5.5 sec-
onds. 

A → B. Immediately after, the event consumer thread is created, which in turn suspends
execution, waiting for the condition ERQ to become non-empty.

After the main thread creates the event consumer thread, it enters the receiving loop to
fill the Fragment Buffer. The filling of the buffer seems to require very little CPU user
time, as most of the elapsed time is accounted as system time.

B → C. After the Fragment Buffer is filled, the main thread will continue waiting to be
signalled that the rest of the threads have terminated and then exit.

The event assembly thread is created and started. It goes through the Fragment Buffer,
pulls entries from the FEQ for every fragment of a new event it encounters or copy the

A B
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fragment data if it is of an already received event. As it is depicted in Figure 6.11, alter-
nating peaks of CPU execution and mutex waiting, dominate the fragment assembly
phase. The alternate nature of the CPU and mutex peaks is due to the way the event
assembly is done. For every fragment retrieved from the Fragment Buffer, a synchro-
nized check for a buffer overflow or underflow is performed. The exact number of peaks
shown in the same figure, has to do with the sampling granularity of the THA and not
with any peculiarity of the event assembly thread.

No events are still fully assembled, the ERQ is still empty and the event consumer thread
continues to be suspended.

Figure 6.11: Profile of the event building thread

C → End. This is the time when the first assembled events are placed in the ERQ. There
is very little left for the rest of the events to become ready and the CPU time of the event
assembly thread is reduced. The mutex waiting time is reduced also and the condition
variable waiting time is dominant, because the event assembly and consumer threads,
synchronize accessing the ERQ and FEQ. This is the phase denoted with the D arrow in
Figure 6.11.

B C

D
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Figure 6.12: Profile of the event consumer thread

The conclusion from that analysis is that thread synchronization with mutexes and condi-
tion variables, must be used very carefully. The case of the event consumer and event
assembly threads accessing the ERQ and FRQ, points to a potential bottleneck that may
occur, especially if it is taken into account that more than one consumer thread (or pro-
cess) may run in parallel in an EFU.

6.5 Performance Considerations

With this small prototype setup, it became possible to identify most of the potential prob-
lematic areas that can appear when off-the-shelf commercial computer systems are used
for the EFU and the SFI. It became evident that the main performance burden falls onto
the networking subsystem and much less to the specific event assembly problem. A more
detailed discussion of these two issues follows.

6.5.1 NIC and Host Related

The performance characteristics of an NIC, can be divided into three categories. Those
related to the physical media and network protocol which the adapter is interfacing to

CA
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(e.g., ATM, FDDI, etc.) those related to the host attachment point at the I/O bus and
finally those related to the application interfacing.

Relevant to the first category of performance characteristics are the network’s p
size and the packet processing.

In the case of an ATM adapter, the transmitted or received data unit is an ATM cell
bytes. The front-end circuits of an ATM adapter can start to transmit with only a
ATM cells initially available into the NIC buffers. This is relatively a very little amou
of data as compared to Ethernet for instance, where the packet size is 1518 by
even bigger in the case of FDDI. This property of ATM and in general of cell-based
works, is one of the reasons why ATM has the potential to provide low-latency com
nications. For the current early generation of ATM NIC however, this is not alway
case.

The data segmentation/reassembly into and from cells is a typical function perform
the adapter itself and not by the host processor. Additionally, transport protocol (A
checksumming is also performed by the hardware. Some of the adapters available
can be instructed also to do protocol processing which may further facilitate the p
ment of the incoming data into the host’s buffers. Such built-in functionality is expe
to be very interesting for our event assembly task. It can reduce further the multipl
copying and eventually compensate the additional overheads when adding an
building protocol.

Some ATM NIC available today, like the Fore SBA-200, incorporate an on-board 
munications processor. In the SBA-200 case, it is mostly used for the fragment
reassembly and checksumming of the AAL5 packets, as well as for transferring d
and from the host memory. Adding a processor in the NIC, increases flexibility 
most of the cases it reduces the presence of specialized hardware in the adapt
flexibility is very useful in the early stages of the NIC prototype and development. 

The existence of a communication processors (CP) will off-load the host process
network transfers. CP are often used to add bus master functionality to the NIC. In
cases, the overheads of data transfers from and to the adapter are much higher an
quently increase the network latency. The SBA-200 board has to make several m
accesses when receiving or sending AAL5 packets in order to access the lists of
descriptors in the host memory. Replacing the DMA engine with a CP, may simplif
NIC design, but it may also reduce its performance. Conversely, the presence o
instrumented with a DMA engine to access the host’s main memory will offer 
advantages of host processor off-loading and onboard early processing of packe
could argue on that point that it is cost-unjustifiable to have both a communication
cessor and DMA engines available in an adapter. 

Another important NIC design issue is the amount and type of buffering availab
board. In particular the amount of NIC buffering is often playing an important role in
flow control behavior of various network protocols. The onboard buffering is comm
treated as a trade-off between the adapter’s cost and performance. Sufficient on
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buffering, may reduce or even eliminate the need of host buffering and consequently
reduce the number of times that data is copied. This can be achieved when DMA trans-
fers are used to move data from the application’s to the NIC buffers. An ATM NIC 
need lots of memory in order to buffer several full-sized (64 KB) AAL5 packets, bec
of the maximum AAL5-packet size. The type of the memory used can inhibit the ad
tages of on-board buffering. Dual-ported memories that allow simultaneous acc
from the NIC front-ends and the I/O bus controllers, will perform best. Otherwise
serialized memory accesses will limit the adapter’s performance. The above proble
designing high performance NIC has been in-depth investigated by many resea
[Davi93] [Drus94] [Stee94].

A key performance issue in small-message, low-latency communications turn to b
relative merits of DMA and PIO transfers. DMA is very efficient in relatively large d
transfers (in the order of one KB and higher), however it usually takes several 
accesses to program the DMA engine. It is very often the case that for small packe
than a few bus burst-sizes i.e., typically less than 100 bytes) PIO is performing bet
than DMA. The device driver of the NIC must provide the flexibility of using PIO
DMA transfers, depending on the packet size and the transfer performance. 

The number of interrupts generated by the NIC hardware during the reception or 
mission of data packets is a crucial performance factor. Each generated interrupt i
at least a context switching and usually a processor’s cache flushing. Depending o
the OS handles interrupts, in its interrupt context, it may search several interrupt ha
before the NIC interrupt processing is started. When an interrupt occurs, a cach
modified data will need several main memory cycles before it is flushed. The total 
rupt processing time times the number of interrupts generated when the NIC is rec
or sending, will determine the maximum packet rate the NIC can handle.

The question of the NIC attachment point into the host system is frequently raised i
eral research projects and it is commonly referred to as an important requirem
achieve high performance in networking [Davie]. The general tendency (Table 6.41) is
that MPP systems have attached their NIC closer to the memory subsystem, while

Controller
Embedded
Processor

Full-blown
Processor

I/O Bus
IPhase 4615

SUNATM

Myrinet

Fore SBA-200

Memory Bus
TMC CM-5

Cray T3D
Meiko CS-2

IBM SP-2

Intel Paragon

Table 6.4: NIC Attachment points in commercial computer systems

1. Part of the data are from [Henn90]



110PERFORMANCE CONSIDERATIONS
workstations and servers the I/O bus is used instead. The memory bus attachment pro-
vides lower latency than on an I/O bus. On the other hand, I/O buses are more standard
among different computer systems and cheaper adapters can be manufactured for them
as they can be targeted to many different systems. The increase of bandwidth require-
ments and eventually a wider acknowledgment of the importance of communication
latency, is expected to lead to the appearance of more NIC attaching to the memory bus.

A rather old technique to minimize the impact of buffer copying, is page re-mapping. It
can be particularly useful when is used in hosts that support DMA to virtual memory
locations (DVMA). Page re-mapping can be very advantageous if the host system can
make the TLB updates (several entries may needed to be updated) and memory locking/
unlocking, faster than copying the data. This is a function of the transferred packet size.

In our prototype it became evident that the OS intervention in the path between the NIC
and the SFI emulator, was not favoring data transfer performance. OS have been often
found not following the performance of faster hardware [Oust90]. In particular the issue of
the OS presence in high performance networking has received significant attention and is
commonly acknowledged in gigabit networking research projects [Chio96] [Eick93] that an
effort should be made so that data between the NIC and the application are moved with
minimal OS intervention. It has been shown that user-level DMA (UDMA) has superior
advantages over the traditional ways of making data transfers [Mark97]. 

Although our setup is not limited by memory bandwidth performance, sufficient
resources must exist not only to accommodate the needs of the SFI emulator but also the
needs of the filtering applications supposedly running in the EFU. Lower-end computer
systems may be particularly prone to insufficient memory bandwidth. The networking
performance also strongly depends on the available memory bandwidth [Alme95]

[Ande91].

All above issues of NIC hardware and software design, as well as its interaction with the
OS, are crucial to achieve high performance. From the point of view of an SFI emulator
and EFU that are based on commercially available computer systems, we can conclude
that the above described issues become indispensable requirements.

6.5.2 SFI Emulator

The performance of the fragment layer of this SFI emulator, regardless of its simple
implementation, is quite satisfactory. It can be improved further if the number of frag-
ment copying can be reduced. The obvious way to do that could be to eliminate the Frag-
ment Buffer as an intermediate fragment storage. To achieve that, some sort of fragment
processing will be required to be done in the NIC. Only few commercially available
ATM NIC offer today such possibilities. It is believed however, that they will become
more available in the future, as the on-board protocol processing may alleviate the spe-
cific to ATM overheads due to the multiple network layers. It is also not clear, if for
instance IP protocol processing can be useful to event assembly.
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Another way to increase the event assembly performance is to increase concurrency. The
possibility to have more than one execution thread in the fragment management layer,
was also considered in the initial design phase of this emulator. However, for simplicity
reasons and also to have a clearer view of the worst case performance, it was not imple-
mented. One possibility is the fragments of different events to be sent to the ATM VC
equal to the event number modulo the highest supported VC. In addition, the device
driver can be modified to store incoming data in different buffers for each VC. That way,
several event-assembly threads can be started, each one accessing different incoming
fragment and event data buffers and thus, minimizing also the synchronization overhead.
The obvious disadvantage of that possibility is that it heavily relies on the ATM protocol
internals.

From the ATM measurements we performed, it was clearly shown that utilizing larger
AAL5 packets, the effective bandwidth can be increased. The choice of the AAL5 pack-
ets with size equal to the event fragment size plus a short header, avoids the additional
layer of an event building protocol and also the possibility of having multiple fragments
in one AAL5 packet. A non-reliable version of such protocol may not perform well,
because a single cell loss will result to several lost events. A reliable event building pro-
tocol e.g., TCP/IP, could be one choice. However, the experience with TCP/IP over ATM
so far [Fouquet], has not been encouraging enough to make such a solution attractive.
Also, TCP/IP implies retransmissions and acknowledgments, something that is not cur-
rently considered in the design of the RDPM and SFI.
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6.6 Summary

We have considered an EFU prototype setup, based on a commercial SMP computer sys-
tem, connected to an ATM network. A software emulator of the SFI has been developed
and tested in this setup. The performance issues of the ATM network, NIC adapter and
the SFI emulator have been extensively studied. It has been shown that a simple imple-
mentation of a software SFI emulator, can easily meet and even exceed the currently
required performance. It was shown that the throughput achieved by this emulator was
limited by the effective performance of a high speed network and by the available mem-
ory bandwidth, as seen from a user application.

It is appropriate to suggest that an emulated SFI can meet the performance requirements
settled by the CMS DAQ architecture. A hardware based SFI may provide better perfor-
mance, than the emulated SFI. However in addition to the higher development and main-
tenance costs, a hardware SFI still will depend on the network performance.The I/O
performance turns out to be a major problem that will also hinder the performance of a
custom SFI built in hardware. In order to achieve the I/O performance required by the
EFU, new and simpler host interfacing to the NIC is required.
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For an optimum design of the CMS DAQ system many configurations of the event
builder and the event filter farm will have to be studied and evaluated, either by simula-
tions or prototypes or both. The aim of this optimization is to find the best trade-off
between construction cost and system performance, taking into account the actual or
extrapolated technological evolution. An interesting aspect of this optimization problem
is the matching of the number of event filter units (EFU) and consequently the event
builder (EVB) switch ports, with the number of processors in each of the EFU.

In this chapter the scaling considerations of the EVB and event filter farm (EFF) are laid
out, together with the resulting consequences taking into account today’s extrapo
of the computer and communications technology evolution.

7.1 Scaling Parameters

Building the optimum system of the EVB and EFF, a number of configuration par
ters can be assumed to vary, when specific sets of system requirements, techno
solutions and available funds have to be matched. A major obstacle in this optimi
is the little knowledge on a targeted technology for the EVB and the EFU. However
tain performance properties of those systems can be exposed when some of those
uration parameters are varied.

Two approaches to build the EVB and EFF can be distinguished. With the large-farm
approach, relatively many switch ports and EFU can be used with each of the EFU
taining a small number of processors (one to three). Conversely, with the small-farm
approach, less switch ports and EFU can be used with more processors in each
EFU. Both approaches must be based on the assumption that the necessary E
switch technologies are available to in order to accommodate the increased band
event rate and processing power requirements. An interesting question to answer 
are the relative merits of those two approaches. An answer to this can be given by
ining the consequences of these two approaches on the individual requirements
EVB and the EFF.



114SCALING PARAMETERS
7.1.1 Event Builder Size

The EVB switch has to interconnect an unusually high number of input and output ports
and offer a total bandwidth of several hundreds of gigabits per second. These two
requirements of the EVB switch are also addressed by projects in the gigabit networking
research world [Part94] but also fit well into what the modern networking research is aim-
ing at [Part94a]. The high number of switch ports issue is typical to a series of recent
research projects that have successfully built networks of workstations (NOW) of up to
100 nodes with close to supercomputer performance [Ande95] [Chio96] [Mark96]. The
appearance of fast switched network architectures like ATM, Myrinet [Myri95] and Fast
Ethernet, have made the above possible. The quest of higher bandwidth switches
receives significant attention by many research proposals an prototypes. Amongst them,
projects like TORUS [Gend97] and S-Connect [Nowa95] [Nowa95a] are addressing a Terabit
per second ATM switch and optical crossbar interconnect respectively.

According to [Chan96] and [Fing96] large size, high bandwidth switches with very good
internal blocking behavior, are becoming feasible to build. Large switches are very inter-
esting choices for big local or campus area networks, hence it is possible that commer-
cially available and yet affordable products appear in the near future.

The current understanding of the event building utilizing large switches, suggests that an
equal number Ni of input and No output ports might perform best, assuming some input
traffic shaping. Higher link bandwidth could result into switches of smaller size i.e., less
number of ports. It is interesting to know what determines the lower limit of number of
switch ports when Ni = No.

The Ni, has a lower limit posed by the capabilities of the RDPM. The RDPM internal
data-transfer speed must be higher than their input and output link speeds. The internal
speed consequently is limited by the actual implementation of the RDPM (currently
based on PCI). The No is expected to be less limited than the Ni, because it does not
depend on any built-in limitations, like in the case of RDPM. No is actually determined
by the available networking capability of computer systems. As the need for higher net-
working speeds increase, it seems reasonable to assume that I/O speeds at the gigabit
range in computer systems will become available.

Given a lower value of Ni, one could consider the case where No can be smaller than Ni.
This case although cannot be excluded, might have serious implications in the event
building latency. Those implications have yet to be understood for each of the communi-
cation technologies considered for the switch and the various traffic shaping mecha-
nisms.

Technically, it seems possible that smaller square switch configurations will become fea-
sible with the advances of the networking industry. What remains to be seen is the effect
on the cost choosing a higher bandwidth and smaller size switch, instead of lower band-
width and larger switch. In [Witt92] an attempt is done to characterize the per-port scaling
of the switch cost for various ATM network architectures, based on an assumed model
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for the chip package count. It is shown that there is a significant disparity across the stud-
ied switch architectures and sizes, with the most competitive architectures keeping
almost constant the per port chip count for both small and large sizes.

7.1.2 Number of EFU and Processors

From the performance point of view, a small and a large EFF, with the same total number
of processors, are not expected to result into systems with different processing capaci-
ties. We have performed simulations of such systems using the simulator described in
Chapter 5, confirming that. The two systems however, pose different requirements on the
individual EFU.

As an illustration, let us consider the case of a total 3,000 processors required in the EFF.
We can build then a large EFF system of 1,000 EFU and 3 CPU each and a small EFF
system with 500 EFU and 6 CPU each, or even 375 EFU with 8 CPU each. Obviously, in
the case of smaller EFF configurations, it is required that SMP systems scale well in the
three to ten CPU range. Even in the conservative case of a triggering software that bene-
fits very little from a parallel architecture, a significant scaling of the memory bandwidth
will be needed, just because of the increased I/O bandwidth.

If we take into account widely available commercial systems and eventually commodity
systems, it is important to see up to how many processors such systems are typically
marketed. Most of the today’s mid-range systems have two to four CPU. The c
edge between mid-range and high-range systems seems to be around six CPU 
tem, where larger configurations can accommodate up to 36 or even 64 CPU. In
words, even in the case of a linear system scaling in the three to ten CPU range, t
will not scale linearly, but instead it will grow in steps, determined by the current ma
ing trends.

It is therefore essential to know such limits (which eventually may grow in the nex
years) because adding more CPU per EFU may result into the purchase of more 
sive systems than actually needed.

An eventual variation of the small-large approaches is the middle choice, to have
than one switch ports connected to each of the EFU. This possibility can be conside
the case that the EVB and EFF are scalable but the input part of the EVB i.e., the RDPM
cannot scale. Obviously, the demands on the memory and I/O bandwidth will be h
in that case. Such a possibility however, could make smoother the scaling to large
tems as was discussed above.

From the reliability point of view, it is more economic to increase the fault toleranc
using less EFU (e.g., an additional power supply to each node). An additional consi
ation here is the impact of occurring faults. On one hand, less EFU mean lower f
probability and more EFU will result in increased number of failures. On the other h
failures of EFU with more CPU will have a much higher impact as the number of e
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queued for or being under processing will be larger. The failure impact will clearly be
much higher in the case of EFU connected to more than one switch ports, rendering more
than one destinations unusable at the same time.

7.1.3 I/O Bandwidth

The most obvious difference between a small and a large EFF system, is the I/O band-
width needed by the SFI and the EFU. In the small EFF system, the input data rate per
EFU will be higher than in the large system. This is probably the most important perfor-
mance consideration when trying to understand which system is better.

We have seen in Chapter 6 that getting the I/O bandwidth to the LV2 and LV3 trigger
software, is a difficult task mostly due to the presence of the OS limitations. Therefore,
in the case of a small EFF system, where larger EFU systems are used, more effort will
be required to guarantee that the required I/O bandwidth can be delivered.

The same I/O performance problems are expected to appear also when custom designed
SFI are used. The SFI internal bandwidth is also limited, the same way as it is in the
RDPM. Therefore, an EFF system built with custom designed SFI, is expected to be less
flexible to operate in a large EFF configuration.

7.1.4 Processor Performance

Throughout this work we have assumed the simplification of including the CPU perfor-
mance into the service time of a LV2 and LV3 trigger process. This simplification was
mostly justified because of the very limited current knowledge of the characteristics of
the trigger software.

There is another reason why the detailed analysis of the trigger algorithms might not lead
to realistic results. The triggering software will be developed not only prior to the start of
the experiment, but also during its operation. Newer versions of the triggering algo-
rithms, may add to the workload of the EFU. Therefore, an uncertainty factor of the
needed processing capacity is needed to be taken into account.

The average LV1-trigger rate is another parameter determining the needed CPU capacity.
So far, it was considered for it only the 100 kHz design maximum value. The actual LV1-
trigger rate is expected to vary, from lower values at the initial running period of the
experiment, to higher values when the LHC luminosity reaches its nominal value. At the
lower luminosity operation phase of LHC, the processing requirements on the EFF will
be lower. A later upgrade of the EFF, to accommodate the needs of the high luminosity
period, may result in a heterogeneous farm if different EFU are added. The architecture
of the EFF permits such heterogeneous configurations, although they were not consid-
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ered in the simulations. This is a convenient and economic way to scale the EFF as new
needs arise.

Regarding the farm scaling as the processor speed is increased, the same performance
considerations apply for uniprocessor (UP) and multiprocessor (MP) systems. That is, an
increase of the processor speed makes both MP and UP systems with better performance,
while making bigger MP systems does not improve the UP performance. Apparently
there is no evidence that the ultimate processor speed one day will be reached, it is only
the different technologies that are limited. The CPU speed increase is a continuous chal-
lenge.

Estimates of the processor performance growth, show an 80% yearly increase [Bask91].
The memory speeds are estimated to have a much lower increase rate of 7% [Henn90]

every year. From those two performance evolution figures, the question of well balanced
systems arises. As described in [Wulf95] such a discrepancy of the increase rates will lead
into average cache access times equal to the main memory access cost, which conse-
quently might result into no performance improvement when the processor speed is
increased. Such a problem could appear by the starting date of the CMS experiment, if
the technology does not change. Those arguments however, are probably pointing to that
the edge of the current technology has been reached and an indication of an eminent leap
in computer evolution.

7.2 Scaling Scenarios

Varying the number of EFU in the EFF, it will result in farm configurations with different
requirements on the EFU I/O bandwidth, but also in different requirements on the net-
work speed of the EVB switch. To evaluate the I/O requirements of the EFU when the
EFF is changed from smaller to larger configurations, we need also to take into account
the EVB switch bandwidth.

The network speeds offered by the considered technologies (ATM, FC) are in the 100
Mb/s to 10 Gb/s range. In both ATM and FC technologies the increase of speed is done
in steps, for instance in ATM, OC-3, OC-12, OC-48, etc. link speeds are today possible.
Changing from OC-12 to OC-48 apart from the additional capacity it will offer, it will
also have significant financial consequences. 

7.2.1 LV1-trigger Maximum Rate

We can obtain a figure of the maximum LV1-trigger rate  that a particular farm con-
figuration can handle, if we take into account the sustained bandwidth of the EFU input

λLV1
max
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as given by (F 7.1), which essentially represents the sum of the bandwidth of each of the
LV2 and LV3 data streams to the EFU.

(F 7.1)

With the aid of (F 7.1) and taking into account (F 7.2) how the LV2 rate  relates to the
LV1 rate  and the rejection factor R,

(F 7.2)

as well as the relation of the total event size S with the LV2 event size  and LV3 event
size  and

(F 7.3)

the relative size p of the LV3 event part  given by (F 7.4),

(F 7.4)

we arrive to a relation (F 7.5) for the maximum sustainable LV1 trigger rate.

(F 7.5)

It should be noted that (F 7.5) does not take into account any processing time for LV2 or
LV3. It simply shows an upper limit to the maximum LV1 trigger rate set by system lim-
itations.

Using (F 7.5) we will study several cases of communication technologies and identify
where the limits fall.

Two values of R are considered, 10 and 20. Although they are less than what is expected
to be the real case, they give a worst case result for the maximum LV1-trigger rate. The
ratio p takes three values, the current assumption of 75% of the total event, one lower
(65%) and one higher (85%).

In the following figures, the horizontal axis represents the bandwidth needed to sustain
both LV2 and LV3 event-part streams at the SFI input (the EVB switch output port).
They gray area of each figure represents the limits set by the 100 kHz LV1-trigger rate
and the maximum effective bandwidth that can be delivered by a given network link

B
λ2S2 λ3S3+

k
-----------------------------≥

λ2

λ1

λ2

λ1

R
-----=

S2

S3

S3 S S2–=

S3

p
S3

S
-----=

λLV1
max kB

S
------ 1

p
R
--- p– 1+
----------------------⋅≤



119SCALING SCENARIOS
speed. An ATM network is assumed, that can operate at OC-12 (622 Mb/s) or OC-48
(2.4 Gb/s) link speeds.

The effects of traffic shaping on the resulting output data-stream are not taken into con-
sideration. No protocol above the ATM adaptation layer is considered and consequently
a non-congested EVB switch is assumed. 

In Figure 7.1 the case of a switch with a 1,000 ports is shown. Each port runs at an OC-
12 link speed, resulting in a 430 Mb/s maximum effective bandwidth. It is shown that for
all considered values of R and p, the needed I/O bandwidth at the EFU is well below the
maximum effective bandwidth for the maximum LV1-trigger rate.

Figure 7.1: 1000 switch ports at OC-12 speed

Figure 7.2: 500 switch ports at OC-12 speed
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In Figure 7.2 and Figure 7.3, a 500 port and a 384 port switch are shown, respectively. In
the 500 port case, only when p is 0.85 the maximum LV1-trigger rate can be sustained,
although marginally. In the case of 384 ports, p has to be equal to or more than 0.85 and
the rejection factor R equal to or more than 20. Both cases are marginal if a 100 kHz
LV1-trigger rate has to be sustained.

Figure 7.3: 384 switch ports at OC-12 speed

Similarly, Figure 7.4 shows the case of a 256 port EVB switch, this time using an OC-48
link speed. All combinations of R and p are well below the maximum effective link
bandwidth, which is approximately 1.8 Gb/s.

Figure 7.4: 256 switch ports at OC-48 speed
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Those results are independent of the LV2 and LV3 trigger service times, as they simply
reflect the effect of the individual LV2 and LV3 rates. Clearly there is a limit of the OC-
12 technology to build systems of around 500 ports. Smaller configurations of the EVB
and EFF will require an OC-48 technology to be used, if the maximum LV1-trigger rate
of 100 kHz has to be respected. Otherwise, the maximum sustained LV1-trigger rate
could be reduced to a values lower than 100 kHz, which might result to lower physics
performance of the detector.

7.2.2 Effect of the LV2 Rejection Factor

Apart of the required CPU power to run a particular set of the LV2 and LV3 trigger algo-
rithms, there is the LV2-trigger rejection factor R that also determines the load of the
EFF. The LV2 rejection factor determines the frequency of incurring LV3 jobs, which are
expected to have service times of several times more than that of the LV2 jobs.

It is useful to know what is the effect in the EFF when R is varied. As it was shown in the
previous paragraph, EFF configurations with approximately 500 nodes, may not be able
to sustain the maximum LV1 trigger rate. Therefore other parameters as the trigger ser-
vice time and rates may needed to be reduced.

The bandwidth required at the SFI/EFU input can be modeled as a function of the LV2
rejection factor R as shown in the relation (F 7.6) which is obtained by (F 7.5).

(F 7.6)

Similar to (F 7.5) we denote with  the LV1-trigger arrival rate, S the full event size, p
the ratio of the LV3-part event size over the full event size S and k is the number of EFU
nodes in the farm.

The dependency of the  from R, is inversely proportional. In Figure 7.5, we have
plotted few values of k (384, 500, 625 and 1,000 nodes) when p is equal to 0.75 and 
is equal to 100 kHz.

BEFU

λLV1 S⋅
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Figure 7.5: The SFI input bandwidth dependence from the rejection factor

We can see that with that set of values, the range of the rejection factor values that we are
interested on (from 20 to 100) are lying on the asymptotic part of the plots. If we increase
the rejection factor from 50 to 100, the SFI/EFU input bandwidth will be reduced in
average by one MB/s only. It will be reduced by another MB/s if we additionally increase
R from 100 to 150.

The EFU/SFI input bandwidth is much more variable, when R takes values less than 10.
This range of R however, is excluded as the LV2 trigger is expected to have higher rejec-
tion rates. 

The dependency of the SFI/EFU input bandwidth from the rejection factor of the LV2
trigger algorithms, is actually indicating that in situations as that shown in Figure 7.2,
very little can be gained in terms of resulting SFI/EFU input bandwidth, if R is increased.
Therefore, at either the LV1 trigger rate has to become lower than 100 kHz or faster net-
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7.3 Conclusion

In this chapter we tried to illustrate the problems related to the performance of the EVB
and EFF when their sizes are varied. The case of a small and a large farm were consid-
ered as two possible approaches to build the EFF of the CMS DAQ system. From the
performance point of view, given that the necessary communication technology is avail-
able, the farm performance can meet the requirements. It was shown that for the cur-
rently considered LV1-trigger rate and LV2-trigger rejection factors, smaller sizes of the
EFF will require the use of at least OC-12 ATM network technology. A quantitative eval-
uation of the LV2-trigger rejection factor effects on the resulting network bandwidth,
was done. It was shown that the required switch output bandwidth is very little affected
when the rejection factor of the LV2-trigger is varied, in the range of values (> 20) con-
sidered in the current EFF design.

The cost factor in the small and large EFF configurations, depends mostly on the switch
ports and the number of EFU. It seems appropriate to suggest that a choice between a
small and a large farm will have to be based more on the per EFU costs and less on the
switch per port costs.
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8 Conclusions and Prospects
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The aim of this work was to expose the aspects of constructing a large scale computer
farm based on MP systems, for the on-line data processing purposes of the CMS experi-
ment. Two approaches were followed. One using a discrete-event simulation model of
the farm and a second using a prototype environment for the EFU. Both approaches
together, were used to set a framework for the performance evaluation of different design
options of the farm. The conclusions from the presented work influence not only the
overall DAQ architecture of CMS, but also that of the event filter unit (EFU).

8.1 Impact on the CMS DAQ Architecture

From the simulations shown in Chapter 5, it was shown that the modular design of the
event filter farm (EFF) can easily adapt to different assumptions for the EFU perfor-
mance and respectively to the LV2 and LV3 filter processing loads. The simulation
model was assuming an aggressive way of requesting new events to be processed by the
EFU. That way, the read-out units (RU) can be easily off-loaded, given that enough buff-
ering of events is available in the EFU. This method can offer the possibility of a feed-
back to the LV2 or LV3 trigger algorithms depending on the current size of the LV2q
and LV3q, which consequently can modify their rejection factor.

The simulation model that was described, assumes a simple representation of the net-
work connection between the EFU and the event manager (EVM). A relatively high
throughput of messages sent by all the EFU must be able to be sustained at the EVM
end-point and by the transport network itself.

The current DAQ architecture assumes a separate device for the switch–to–farm
face (SFI). The prototype studies shown in Chapter 6, give a good evidence that its
tionality can be emulated by software in each of the EFU. It was shown tha
maximum throughput achieved by the emulator is well above the required 100 even
second, in the worst case of input parameters. When more realistic input paramet
used, the event assembly throughput is increased sufficiently to accommodate s
farm configurations consisting of 512 EFU.
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The event assembly throughput of the presented SFI emulator, was essentially limited by
two factors. These are the number of event fragment copies that are required by the emu-
lator implementation and the available memory bandwidth of the EFU.

Taking into account the evolution of computer systems performance, it is safe to assume
that the memory bandwidth of future computer systems is going to improve significantly.
This is because main memory access times are already today lagging behind the proces-
sor speed and any further improvement of the last will have very little total effect if the
memory bandwidth stays the same.

In Chapter 5 were described also alternative ways to reduce the number of data copies
required for the assembly of a LV2 or a LV3 sub-event. This is an obvious optimization
that requires a better design of the network layer of the SFI emulator, according to the
available capabilities of the utilized network interface controller (NIC).

The results of the SFI emulation, indicate that a significant simplification of the DAQ
architecture could be done. The construction of a separate device for the SFI can be
avoided. Such a simplification will result not only into reduced construction costs, but
also into minimum maintenance during the operation of the DAQ system. It will also
increase the portability, as there will be almost no dependence on the EFU hardware
architecture. The flexibility offered by an SFI emulator running into the EFU, must also
be accounted. Optimizations of the event building system and particularly of the event
assembly into sub-events, can be done much easier in the emulator than in a hardware
device. The SFI emulator also does not depend on a particular network technology,
hence it enables prototypes of the DAQ system to be built with a little effort.

In Chapter 7, were outlined the different factors influencing the EFF size. Two possible
ways to build the EFF were identified. A small farm using less but powerful EFU and a
large farm with many but less powerful EFU. It was shown that in order to satisfy the
requirement that the EFF can handle an input rate of 100 kHz, smaller configurations
will require faster networking technology to be available. In particular, EFF configura-
tions smaller than what is considered today (1000 EFU), will be at the limits of the avail-
able speed of the OC-12 ATM networks. A quantitative evaluation of the resulting
bandwidth at the inputs of the EFU was done, when the LV2-trigger rejection factor is
varied. It was shown that there is very little reduction of the required bandwidth when the
rejection factor is increased more than 10.

The economics of the EFF scaling can be expressed by the effects of the EVB switch
technology and per port costs and by the EFU cost itself. The cost associated with the
switch technology may become large if the speed requirements are at the limits of a
lower speed technology and a faster communication network has to be used. The switch
per port costs can be as low as constant when its size is varied. Finally the EFU costs, are
increasing as the EFF becomes smaller, with the costs of more sophisticated network
adapters adding to it.
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8.2 Impact on the EFU

The EFU that was considered throughout this work, was an SMP computer system. From
its architecture point of view, an SMP–based EFU was represented as a system 
throughput of finishing LV2 and LV3 jobs increases when more processors are ad
it. Also, the job scheduling can take place with equal probability on any of its proces

Two issues were distinguished as being of paramount importance for the EFU. Fir
was the way that the LV2 and LV3 filtering jobs are scheduled, and secondly, the
interfacing with the event builder (EVB) network.

In Chapter 5, a simple model of an SMP–based EFU was used, to study the EFU 
ior. The LV2 and LV3 filter workloads were modeled as a flow of arriving jobs at e
EFU. The handshaking that was used between the EFU and the RU, was aggre
requesting new LV2 jobs in order to off-load as much as possible the RU. With
assumptions for the LV3 processing time to be on average 100 times the LV2 proc
time, and the rejection factor of the LV2 trigger to be a factor of 30, the preemptio
LV3 jobs by the LV2 jobs turns to be a sensible choice for the EFU scheduling. The
preemption can increase the service rate of LV2 jobs, by increasing the response 
the LV3 jobs. A response time longer than the service time for the LV3 jobs can be
ated, given sufficient memory resources in the EFU. However, under heavier lo
LV3 jobs, there must be a way to limit how many times a LV3 job can be preem
This stability condition was identified analytically but it was not accounted by the m
used for the EFU. The EFU model can be trivially modified to take account of that.

With the prototype setup described in Chapter 6, issues arising from the use of m
SMP computer systems as an EFU, were studied. In particular, with the aid of th
emulator, the issues of interfacing a user application with a network interface cont
(NIC), became apparent. For the purposes of the SFI emulator, the traditional w
interfacing an NIC through the operating system was used. This turned to be inapp
ate, as it could not satisfy the needs of bandwidth and data transfer latency requi
the fragment assembly into events. The throughput of data transfers that are expe
take place in an EFU with SFI emulation, is particularly important for small data pac
It is important to note that similar performance requirements are also needed in th
of a custom-made SFI device connected to the EFU.

Therefore it seems that a way of receiving data packets from the NIC directly int
user application data buffers, can offer much better performance. From the archit
point of view, the receiving latency can be improved if the NIC can be attached clo
the processor. There are many proposals in the direction of making the NIC less p
eral, like making it cache-coherent and attaching it on the memory bus. 

Modern research in high speed network interface architectures has identified the l
and bandwidth performance issues as crucial performance parameters and sig
improvements of future systems can be expected. Such architecture improvements
absolute necessity for the operation of the EFF foreseen in the CMS experiment.
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8.3 Future Work

This work has been started at the very early design phase of the CMS experimen
acquisition system. The evolution of the CMS DAQ design during the coming year
until it is finalized, requires more studies to be done for the EFF and the EFU in 
directions. In particular the technology evolution in the areas of communication
computing systems must be closely followed. 

It seems appropriate that a detailed simulation of the EVB switch for a variety of 
munication technologies and in the simulation framework of Chapter 5, is necess
order to prove that a large scale switch can operate successfully. In particular the
of output blocking, bandwidth efficiency and the switch fabric scalability, require de
understanding for each of the considered communication technologies. Results
such studies will also provide additional information on the profile of the input 
streams to the EFF.

The problems appearing in the high performance I/O interfacing of computer sys
require an evaluation methodology to be developed, as the demands for higher com
cation speeds increase, the computer hardware evolves and the operating system
new I/O interface facilities. The I/O issue receives continuously more attention am
researchers, with many new ideas developing.

The evaluation of MP systems for the EFU, will require also more precise informatio
the characteristics of the filtering algorithms. This will enable studies in both direc
of evaluating systems and improving the algorithms themselves.
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