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ABSTRACT

HIGH PERFORMANCE QUEUEING AND SCHEDULING IN 

SUPPORT OF MULTICASTING IN INPUT-QUEUED SWITCHES

Weiying Zhu 
Old Dominion University, 2006 

Director: Dr. Min Song

Due to its mild requirement on the bandwidth of switching fabric and internal 

memory, the input-queued architecture is a practical solution for today’s very high-speed 

switches. One of the notoriously difficult problems in the design of input-queued 

switches with very high link rates is the high performance queueing and scheduling of 

multicast traffic. This dissertation focuses on proposing novel solutions for this problem. 

The design challenge stems from the nature of multicast traffic, i.e., a multicast packet 

typically has multiple destinations. On the one hand, this nature makes queueing and 

scheduling of multicast traffic much more difficult than that of unicast traffic. For 

example, virtual output queueing is widely used to completely avoid the head-of-line 

blocking and achieve 100% throughput for unicast traffic. Nevertheless, the exhaustive 

multicast virtual output queueing is impractical and results in out-of-order delivery. On 

the other hand, in spite of extensive studies in the context of either pure unicast traffic or 

pure multicast traffic, the results from a study in one context are not applicable to the 

other context due to the difference between the natures of unicast and multicast traffic. 

The design of integrated scheduling for both types of traffic remains an open issue.

The main contribution of this dissertation is twofold: firstly, the performance of an 

interesting approach to efficiently mitigate head-of-line blocking for multicast traffic is 

theoretically analyzed; secondly, two novel algorithms are proposed to efficiently 

integrate unicast and multicast scheduling within one switching fabric.

The research work presented in this dissertation concludes that (1) a small number of 

queues are sufficient to maximize the saturation throughput and delay performances of a 

large multicast switch with multiple first-in-first-out queues per input port; (2) the 

theoretical analysis results are indeed valid for practical large-sized switches; (3) for a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



largeM x  N multicast switch, the final achievable saturation throughput decreases as the 

ratio of MIN decreases; (4) and the two proposed integration algorithms exhibit promising 

performances in terms of saturation throughput, delay, and packet loss ratio under both 

uniform Bernoulli and uniform bursty traffic.
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CHAPTER I 

INTRODUCTION

One of the notoriously difficult problems for today’s switches and routers with very 

high link rates is to support multicasting with high performance. This dissertation 

focuses on proposing practical solutions on this topic. System performance is evaluated 

through both theoretical analysis and simulation study. This chapter introduces the 

background, motivation, research goals and outline of this dissertation.

This chapter is organized as follows. Section 1.1 discusses the background and 

motivation of the research work. Section 1.2 defines three common metrics (saturation 

throughput, delay, and packet loss ratio) that are used to evaluate the performance of an 

input-queued packet switch. Section 1.3 states the main goals that are going to be 

achieved. Finally, the outline of this dissertation is given in Section 1.4.

1.1 Background and Motivation

As a platform for conducting research, education, and business, the Internet needs to 

provide efficient support for the rapidly increasing multicast applications such as 

distributed interactive simulations, distance learning, digital video libraries, video-on- 

demand, and video conference. Since the support of multicasting is notoriously difficult 

[8], in today’s Internet, the dominant model of communication is “unicast”, i.e., the 

sender must create a separate copy of the data for each recipient. A major advantage of 

using multicasting is the decrease of network load, especially for the applications with 

many recipients and a large amount of data, e.g., streaming video. Possessing a very fast 

input/output link rate is another character of switches and routers in today’s Internet. For 

example, Cisco 12000 GSR [31], MGR [42], both of which are 50-Gb/s IP routers, and 

Tiny Tera [33], which is a 0.5-Tb/s MPLS switch, have been designed. As a result, there

In this dissertation, IEEE/ACM Transactions on Networking is used as the journal model for 
formatting.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2

is an increasing demand for high speed switches and routers that support multicasting 

with high performance.

Most multicast applications are also multimedia streaming applications such as live 

video broadcasts, distance learning, and corporate telecasts. Web sites today offer 

streaming audio and video of news broadcasts, music television, live sporting events and 

more [10, 23]. Pulled by market demand and pushed by technology, multimedia 

streaming traffic increases dramatically [7]. At the beginning of the 21st century, audio 

and video streaming traffic has already become an important ingredient of Internet traffic. 

Plonka found that 23% of the traffic at the University of Wisconsin-Madison was due to 

digital audio in March 2000 [43], A 1999 study by Wolman et al. showed that 18-24% of 

Web-related traffic entering the University of Washington was multimedia streaming 

traffic [52]. An industry study in September 2000 [11] showed that 60 million people 

listened to or watched streaming media each month, 58 US TV stations performed live 

web-casting, 34 programs offered on-demand streaming media, and 69 international TV 

web-casters existed [37]. On the other hand, it is observed that live streams have diverse 

clients. A live stream generally spans hundreds of AS domains and tens of countries. A 

2004 study [48] showed that most of the streams reached 11 or more different time zones, 

10 or more different countries, and 100 or more different AS domains. Due to the large 

number of multicast applications and the diversity of clients accessing live streams, the 

incoming traffic at an input port of a switch is a combination of multicast flows coming 

from a large number of different sources and spanning more different destinations. 

Consequently the assumption that the traffic is uniformly distributed among input ports 

and output ports is reasonable and does not lose generalization. Uniform traffic is widely 

used to evaluate multicast switch performance [4, 6,14,40,44].

Before further discussion, the difference between the natures of unicast and multicast 

packets needs to be clarified: one unicast input packet generates one output packet; one 

multicast input packet with a fanout size o f F  generates F  output packets. The input load 

is defined as the number of input packets arriving in a time slot at an input port. The 

output load is defined as the number of output packets arriving in a time slot with a 

destination to an output port.
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From the switch architecture point of view, input-queued architectures have received 

considerable research attention [9, 30, 49], This is due to the fact that the speed of 

switching fabric and internal memory of an input-queued switch is only required to be the 

same as the link rate, which is very promising for large-sized routers and switches with 

extremely fast link rates. Instead, for an N x N  output-queued unicast switch, the speed 

of switching fabric and output buffer is required to be up to N  times the link rate; for an 

N x N  output-queued multicast switch, the speed of switching fabric and output buffer is 

required to be up to N2 times the link rate. This is not practical for switches and routers 

in very high-speed networks [20]. Therefore, this dissertation focuses on input-queued 

architectures.

The switching fabric, queueing policy, and scheduling algorithm are three essential 

components of input-queued switches. In the past decade, a number of switching fabric 

architectures have been proposed and deployed to support multicasting [3,16, 17, 18, 24, 

27, 28, 45, 53]. Assuming that a multicast switch fabric with a speedup of one has been 

well-designed, this dissertation focuses on the study of high performance queueing and 

scheduling of multicast traffic. Within a multicast switch fabric with a speedup of one, in 

each time slot, no more than one input packet can be sent from an input port; and no more 

than one output packet can be delivered to an output port; yet multiple output packets 

belonging to the same input packet can be delivered to the corresponding output ports.

An assumption in this dissertation is that the packets transmitted by the switching 

fabric are assumed to have equal length. The time slot coincides with the time needed to 

transfer one packet across the switching fabric. The incoming variable-sized packets are 

segmented into fixed-sized packets (cells) before entering input queues and segments are 

put back together before departing from output ports. This assumption does not lose 

generality because almost all practical IP switches and routers currently use a cell-based 

fabric [1, 8, 30, 31, 33, 42, 44, 46, 47, 49].

1.2 Performance Metrics for Input-Queued Switches

Generally speaking, saturation throughput, delay, and packet loss ratio are three 

common metrics used to evaluate the performance of an input-queued packet switch. 

Their definitions are clarified as follows.
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In each time slot, for every output packet scheduled to be transmitted, a match is set 

up between the input port where it arrives and the output port where it is destined after 

performing the scheduling algorithm. Throughput is defined as the number of matches 

over the number of output ports in a time slot. For a given switch, there is a threshold 

value of throughput that is called saturation throughput. Assuming that the input buffer is 

big enough to avoid packet loss, throughput equals to the output load in a switch with a 

speedup of one when the output load is less than the saturation throughput. Once the 

output load exceeds the saturation throughput, the switch is saturated and its throughput 

equals to the saturation throughput no matter how much the output load is increased. 

Saturation throughput indicates the switching capacity of a given switch. If the saturation 

throughput of a switch with a given scheduling algorithm equals to one, which is the 

maximum value due to the speedup of one, it is said that the given scheduling algorithm 

can achieve 100% throughput.

The second performance measurement, delay, is defined as the number of time slots 

spent by an output packet in the switching system, i.e., the difference between the 

moment when an output packet is delivered to the output link and the moment when its 

corresponding input packet enters the input queue.

The third performance measurement, packet loss ratio, is defined as the number of 

dropped output packets over the total number of output packets in a certain number of 

time slots.

For a switch with a scheduling algorithm that can achieve 100% throughput, there 

exists a finite input buffer size such that no incoming packet will be dropped, no matter 

how heavy the output load is. The switch is guaranteed to be stable under any admissible 

traffic. If the scheduling algorithm cannot achieve 100% throughput, once the output 

load exceeds the saturation throughput, no matter how big the input buffer size is, some 

incoming packets will be dropped. In other words, no matter how big the input buffer is, 

the scheduling algorithm can only potentially work within a subset of the whole 

admissible interval of output load. Therefore, saturation throughput is the first and most 

important measurement used to evaluate scheduling algorithms. Compared with a 

scheduling algorithm without 100% throughput, a scheduling algorithm with 100% 

throughput is preferred. However, saturation throughput is not the only standard.
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Comparing two scheduling algorithms, both of which can achieve 100% throughput, the 

one with smaller delay and smaller packet loss ratio is preferred.

1.3 Problem Statement

The main goals of this dissertation are as follows:

1. To theoretically analyze the saturation throughput and delay performances of 

multicast switches with multiple queues per input port. The multicast traffic is 

evenly distributed among all input ports. The analysis model is built for N  x N  

switches.

2. To generalize the analysis in goal 1 to the case that the multicast traffic is 

gathered among fewer input ports and engages more output ports. The analysis 

model is built for M  x N  switches.

3. To validate the theoretical results achieved in goals 1 and 2 using extensive 

experimental data obtained through simulations.

4. To propose novel integration algorithms to integrate unicast and multicast 

scheduling within one switching fabric. The promising performance of the 

proposed algorithms is demonstrated through both analysis and simulations.

1.4 Dissertation Outline

The remaining part of this dissertation is organized as follows. Chapter II reviews the 

recent literature on state-of-the-art queueing and scheduling techniques for input-queued 

switches and identifies the open issues on the support of multicasting in input-queued 

switches. In Chapter III the closed-form expressions of saturation throughput, average 

service time, and average delay are theoretically derived for large multicast switches with 

multiple queues per input port. The incoming multicast traffic follows Poisson 

distribution and is evenly distributed among all input ports. Random queueing and 

scheduling policies are adopted. Extensive simulations are also performed to validate the 

theoretical analysis and infer further conclusions. Chapter IV generalizes both the 

theoretical analysis and the simulation study to the case that the incoming multicast 

traffic gathers among fewer input ports and engages more output ports. The integrated 

unicast and multicast scheduling within one switching fabric is presented in Chapter V.
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It is shown that the proposed integration algorithms exhibit a promising performance. 

Finally, concluding remarks and future research are given in Chapter VI.
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CHAPTER II 

RELATED WORK

This chapter reviews the recent literature on state-of-the-art queueing and scheduling 

techniques for input-queued switches. Instead of attempting to give a comprehensive 

survey of the field, the review focuses on the techniques related to the work presented in 

this dissertation. The open issues on queueing and scheduling in support of multicasting 

in input-queued switches are identified.

This chapter is organized as follows. Section 2.1 examines the virtual output 

queueing (VOQ) [1, 50] technique and the suitable schedulers such as PIM [1], LQF [34], 

OCF [34], LPF [36], and i'SLIP [32], which are designed to completely avoid head-of-line 

(HOL) blocking and achieve 100% throughput for unicast traffic. Queueing policies and 

scheduling algorithms to mitigate HOL blocking for multicast traffic in input-queued 

switches are discussed in Section 2.2. Section 2.3 summarizes relevant work in 

integrating unicast and multicast scheduling within one switching fabric and points out 

the weakness of current solutions.

2.1 VOQ and Schedulers for VOQ-Based Unicast Switches

Two critical components in an input-queued switch, queueing and scheduling, have 

been extensively studied for unicast traffic. It is well known that HOL blocking limits 

the saturation throughput of an input-queued switch with single first in first out (FIFO) 

queue per input port. In each time slot, at an input port, only the packet at the HOL 

position, called the HOL packet, is eligible for being transmitted. When the HOL packet 

is blocked, all the packets behind it in the queue are prevented from being transmitted 

even if the output port they need is idle. Even with benign traffic, saturation throughput

is limited by HOL blocking to just (2 -  4 l ) « 58.6% [19].

To completely avoid HOL blocking, VOQ is first designed in [50] by Tamir et al. for 

an N x N  input-queued unicast switch. At each input port, the input buffer is organized as
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N  FIFO queues with each corresponding to an output port. The incoming packets with 

the same destined output port are buffered into the corresponding queue according to its 

destined output port. All the HOL packets are eligible for transmission in a time slot. In 

[1], adopting VOQ, an algorithm, named parallel iterative matching (PIM), is proposed 

by Anderson et al. to find a maximal matching between input and output ports by using 

parallelism, randomness, and iteration. Maximal matching [1, 39] is a matching in which 

no unmatched input port has a queued packet destined for an unmatched output port. 

PEM iterates three steps (Request, Grant, and Accept) until a maximal matching is found 

or a fixed number of iterations are performed: each unmatched input port sends a request 

to every output port for which it has a queued packet; if an unmatched output receives 

any requests, it randomly grants one of the requests; if  an input receives any grants, it 

randomly accepts one of the grants and is matched with the output port who issues that 

grant. Through simulations, the throughput and delay performances are evaluated. It is 

shown that PIM can achieve a nearly ideal match in an average of 0(log N) iterations. 

Moreover, the hardware requirements are modest enough to make VOQ and PIM 

practical for high-speed switching. Due to its promising performance, VOQ attracts 

researchers’ attention and is widely adopted in the design of unicast switches. A number 

of further research efforts have been made for VOQ-based switches.

In [39], Nong et al. theoretically analyze the input-queued unicast switch using VOQ 

as the queueing policy and PIM as the scheduling algorithm. A closed-form solution for 

saturation throughput as a function of switch size and number of iterations is derived. It 

is found that four iterations are sufficient for achieving a saturation throughput of about 

99% for a switch of any size. Using the tagged input queue approach, an analytical 

model is developed for switches under an independent identically distributed Bernoulli 

traffic, whose destinations are uniformly distributed among output ports. Throughput, 

average packet delay, and packet loss ratio are computed from the analytical model. The 

study given in [39] provides the theoretical support to the conclusions that HOL blocking 

is completely avoided by the VOQ technique and 100% throughput can be achieved by 

PIM.

The theoretical performance analysis on unicast switches with a certain number m of 

FIFO queues per input port and a speedup of one is given in [22] by Kim et al. The
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output ports are participated into m groups. At an input port, each of the m queues is 

dedicated to buffering packets destined to a particular group of output ports. The 

scheduling algorithm is essentially based on PIM. Assuming that the switch size is very 

large, Kim et al. derive the closed formulas for throughput bound, average packet delay, 

average queue length, and packet loss bound as the function of m. The theoretical 

numerical results prove that the HOL blocking probability decreases as m increases. 

When m equals to the number of output ports, the switch discussed in [22] is a VOQ- 

based switch and the probability that HOL blocking occurs becomes zero.

It is proved that maximum weight matching scheduling algorithms can provide the 

best performance for VOQ-based switches [34, 51]. In [26], Leonardi et al. theoretically 

derive upper bounds on average delay, average queue length, and variance of queue 

length for unicast input-queued switches that adopt VOQ for queueing and maximum 

weight matching [51] for scheduling. Two maximum weight matching algorithms, 

longest queue first (LQF) and oldest cell first (OCF), are proposed in [34]. It is 

concluded that both LQF and OCF can lead to a saturation throughput of 100% for 

independent and either uniform or non-uniform traffic. However, the complexity of the 

most efficient maximum weight matching algorithms is 0 (V 3 log A ) . This is too 

complex to be practical for high speed switches. On the contrary, another class of 

algorithms, named maximum size matching algorithms [34, 51], attempt to maximize the 

number of matches between input and output ports in each time slot. Generally speaking, 

maximum size matching algorithms are simpler than maximum weight matching 

algorithms and perform well when the incoming traffic is uniformly distributed among 

output ports. Unfortunately, maximum size matching algorithms perform poorly when 

the incoming traffic is non-uniform. Longest port first (LPF) is designed in [36] to take 

the advantage of both maximum size matching and maximum weight matching. The 

complexity of LPF is 0 ( N 2 5), lower than LQF and OCF. Meanwhile, LPF can also 

achieve 100% throughput for both uniform and non-uniform traffic.

An iterative round-robin algorithm, /'SLIP, is studied in [32]. As a high throughput, 

starvation free, fast, and simple to implement in hardware algorithm, together with VOQ, 

/SLIP is a practical unicast scheduling solution for high-performance switches and 

routers. /'SLIP can achieve 100% throughput for uniform traffic. For non-uniform traffic,
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/SLIP adapts to a fair scheduling policy that never starves an input queue. Due to the 

simplicity of hardware implementation, the scheduler of a 32-port switch can be built on 

single chip and make approximately 100 million scheduling decisions per second. More 

details of /SLIP are given in Chapter V.

2.2 Mitigating HOL Blocking for Multicast Traffic in Input-Queued Switches

The design challenge of multicast scheduling and queueing stems from its nature, i.e., 

a multicast packet typically has multiple destinations. The vector of destinations is 

named as fanout set. The number of destinations is named as fanout size. Only after 

every destination output port receives the respective output packet generated by the input 

multicast packet, can that input packet be removed from the input queue. There are two 

kinds of service disciplines: fanout splitting and no fanout splitting. With no fanout 

splitting, all the output packets of an input multicast packet must be sent to the 

corresponding output ports in one time slot. With fanout splitting, a multicast packet 

could be delivered to its destination output ports in more than one time slots and maybe 

only partial destinations are served. At the end of a time slot, for a multicast packet, the 

vector of the unserved destinations is denoted as residue and the number of the unserved 

destinations is named as residue size.

In the design of multicast switches, it is straightforward to allocate single FIFO queue 

at each input port, which has been studied in different context. In [5], two input access 

mechanisms, cyclic priority reservation and neural-network-based access, are compared 

for the multicast switch with a service discipline of no fanout splitting. The saturation 

throughput and delay performances are evaluated through simulations. Under the 

assumptions of no fanout splitting and random packet selection policy, the throughput, 

delay, and packet loss probability performances of large-sized multicast switches are 

theoretically analyzed in [35]. The delay performance of small-sized multicast switches 

is theoretically studied in [13]. In [14], Hui et al. theoretically analyzes the performance 

of large-sized multicast switches in terms of saturation throughput and average waiting 

time at the HOL position. The analysis in both [13] and [14] is under the assumptions of 

fanout splitting, random selection policy for settling output port contention, and the 

traffic that is uniformly distributed among input ports and output ports. Three fanout
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splitting multicast scheduling algorithms are presented in [44], the Concentrate algorithm, 

TATRA, and WBA. Their performances are studied through simulations. The 

Concentrate algorithm always concentrates the residue onto as few inputs as possible, 

which leads to high throughput and low delay. However, it can starve some input ports 

indefinitely. TATRA avoids starvation by using a strict definition of fairness, while 

comparing well to the Concentrate algorithm. Both the Concentrate algorithm and 

TATRA are difficult to be implemented using hardware. In WBA, weights are assigned 

to HOL packets based on their age and residue size. While more than one HOL packets 

contend for an output port, the one with the heaviest weight is selected. WBA is very 

simple to be implemented using hardware and allows the designer to balance the tradeoff 

between fairness and throughput. All the above studies demonstrate that the saturation 

throughput of multicast switches with single FIFO queue per input is compromised by the 

HOL blocking.

Multiple slot cell scheduling algorithms are proposed to mitigate HOL blocking [6, 

21]. Packets behind the HOL packet are allowed to be transmitted prior to the HOL one. 

Based on simulations, it is shown that the increased scheduling space results in the 

increase of both throughput and delay performances. However, two major prices are paid 

for this increment. One is that the packet delivery is out-of-order; the other is that input 

queues need to have random access capability, which is much more complex than FIFO 

queues.

In [40], Pan et al propose a multicast queueing scheme for an N  x N  switch by 

utilizing the VOQ structure for unicast traffic, which is similar to the one proposed in 

[38]. A multicast packet with a fanout size of F  is separately stored as (F + 1) packets: 

one data packet and F  address packets. At each input port, a shared data queue buffering 

data packets and N  VOQs buffering address packets are designed. This scheme can avoid 

HOL blocking and achieve 100% throughput for uniform traffic together with a suitable 

scheduling algorithm. However, this scheme requires that the writing bandwidth o f input 

buffer is up to (N + 1) times the bandwidth of input link. In addition, the input buffer 

needs to support random access. Hence, the hardware implementation of this scheme is 

much more expensive than that of pure FIFO queueing policies.

Marsan et al. discuss the maximum throughput of an N x N  multicast switch with
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exhaustive multicast virtual output queueing (MC-VOQ) [30]. At each input port, (2N -

1) FIFO queues are provided with each for a possible fanout set. A partially served HOL 

packet is re-enqueued into another FIFO queue according to its residue. Although this 

scheme can completely avoid HOL blocking, it leads to out-of-order delivery of packets 

and is not practical since the number of queues per input port increases exponentially as 

the switch size increases.

A queueing scheme, called per-multicast-flow queueing, is proposed in [29] to 

mitigate HOL blocking. At an input port, a FIFO queue is allocated for each multicast 

flow. The complexity of the scheduling algorithm depends on the maximum number of 

queued multicast flows and the performance highly depends on traffic patterns. Thus, it 

is not practical for the traffic that contains a number of multicast flows.

One interesting approach to alleviate HOL blocking is to allocate a certain number 

(K) of FIFO queues per input port. Although all the HOL packets in an input port’s local 

queues are eligible for transmission, only one of them will be selected. This queueing 

scheme can assure in-order delivery of packets and is practical to be implemented. 

Simulation studies are given in [12] and [4]. Gupta et al. experiment with two queueing 

schemes, Split and Majority, and two scheduling algorithms, Max Weight and 

MaxService, in [12]. The set of output ports is partitioned into K  subsets with each being 

represented by a bit-mask and belonging to one of the K  queues at an input port. In the 

Split scheme, if the fanout set of an incoming packet completely fits into one queue, it 

gets into that queue; otherwise, it gets split into multiple queues. In the Majority scheme, 

the incoming packet is put into the queue whose bit-mask is the most in common with the 

packet’s fanout set. In the MaxWeight algorithm, each input port prioritizes the HOL 

packet with the highest weight. The weight is assigned according to age and fanout size 

of the packet. In the MaxService algorithm, each input port prioritizes the HOL packet 

with the highest discharge percentage. The discharge percentage of a HOL packet is 

defined as the number of grants for transmission issued by output ports over the residue 

size of that packet. The simulation results on the average packet delay given in [12] 

indicate that Majority performs much better than Split and MaxService performs much 

better than MaxWeight. The difficulty of the Majority scheme is the way to design bit

masks for the queues. In [12], no clear solution is given on this issue. When the number
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of queues is close to or even bigger than the number of output ports, the assignment of 

bit-masks does not adequately capture fanout sets of multicast packets. The fanout set of 

a packet is the same in common with the bit-masks of a number of queues. In [4], three 

queueing policies and three scheduling algorithms with fanout splitting are discussed. 

With the Random Queueing (RQ) policy, a multicast flow is associated randomly with 

one of the K  queues. With the Minimum-Distance Queueing (MDQ) policy, each queue 

is associated with a representative fanout set. A multicast flow is allocated to a queue 

such that the Hamming distance between the representative fanout set of the queue and 

the fanout set of the multicast flow is minimized. With the Load-Balanced Queueing 

(LBQ) policy, multicast flows are partitioned into the K  queues according to their fanout 

sets such that the output loads for queues are equalized. With the Random Scheduler 

(RS), both input port contention and output port contention are settled by random 

selection among the candidates. With the Greedy Scheduler (GS), according to queue 

length and residue size, a weight is assigned to every HOL packet. Matches are set up 

between input and output ports in several iterations with priority being given to HOL 

packets with heavier weights. The Greedy Min-Split Scheduler (GMSS) also matches 

input and output ports in multiple iterations and gives priority to the HOL packets with 

larger residue size for service. Saturation throughput is evaluated through simulations for 

different combinations of scheduler and queueing policy. It is shown that GMSS 

performs the best among schedulers and LBQ is the best queueing policy. They also 

conclude that a small number of queues (for example, twice the number of output ports) 

are sufficient to achieve the highest saturation throughput. However, both GS and GMSS 

are centralized schedulers, i.e., all HOL packets across all input ports need be examined 

in sequence in several iterations in order to make the scheduling decision. This is not 

scalable for large-sized switches. Furthermore, neither [4] nor [12] provides theoretical 

analysis on multicast switches with multiple FIFO queues per input port to support their 

conclusions.

2.3 Queueing and Scheduling in Input-Queued Switches for Hybrid Traffic

Both unicast and multicast queueing and scheduling aim to achieve high throughput, 

small delay, low packet loss ratio, starvation free, etc. However, multicast queueing and
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scheduling are totally different from unicast queueing and scheduling. An incoming 

unicast packet only has one destined output port; on the contrary, an incoming multicast 

packet has more than one destined output ports. Due to the different characteristics of 

traffic, typically queueing policies and scheduling algorithms are studied and proposed 

for unicast traffic and multicast traffic separately. Unicast queueing policies and 

scheduling algorithms could not handle the case that incoming packets have more than 

one destined output ports. In addition, multicast queueing policies and scheduling 

algorithms do not perform well for unicast traffic. One approach of integration is to use 

isolated switching fabrics for unicast and multicast traffic such that different algorithms 

can be used respectively. This approach does not fully utilize the resource of switching 

fabrics [2]. The other alternative approach is to coordinate unicast scheduling and 

multicast scheduling together within one switching fabric so that the switching fabric can 

be fully utilized.

Andrews et al. proposed an integrated scheduling procedure that packs unicast 

packets into idle slots left by the multicast schedule [2]. They successfully showed that 

(1) theoretically, both the optimal unicast integration problem and the optimal multicast 

scheduling problem are NP-hard; and (2) an alternate on-line algorithm for unicast 

integration can find a match within a factor of a  of optimal and achieve 2a-competitive. 

Their simulation results indicated that the integration procedure is efficient for small 

multicast rates while the overall throughput (sum of unicast and multicast throughputs) 

drops significantly for higher multicast rates. When multicast output load is greater than 

0.4, the system becomes unstable since multicast queues become unstable. The overall 

throughput only can achieve approximately 50% when multicast output load approaches 

to 0.4. This is because only one multicast queue is provided at each input port and the 

multicast scheduling is not efficient enough to achieve a higher multicast throughput. 

Another issue of this integration procedure is that unicast traffic is always scheduled with 

lower priority in each time slot by using the available input/output ports left by multicast 

scheduling. Hence, fair resource allocation is not guaranteed for unicast traffic and more 

efficient multicast scheduling may reduce the space available to unicast.

In the multicast split/merge (MSM) algorithm presented by Minkenberg [38], at each 

input port, a shared memory and N  VOQs are designed. An incoming packet is put into
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the shared memory and its memory address is duplicated to each of its destination VOQs 

with each copy being scheduled independently using unicast scheduling algorithm. Such 

a scheme requires that the writing bandwidth of input buffer is twice the bandwidth of 

input link. In addition, besides FIFO buffers, a memory with random access is needed. 

By logically splitting multicast packets into unicast packets, multicast scheduling is 

integrated with unicast scheduling naturally, and 100% throughput can be achieved. 

Through simulation study, it is shown that in a combined input- and output-queued 

switch, MSM exhibits a better performance than the Concentrate algorithm [44] designed 

for an input-queued switch with only one multicast queue per input port. However, in an 

input-queued switch, MSM’s delay performance is even significantly worse than 

Concentrate at medium multicast output loads.

The integrated scheduling algorithm offered by Lee et al. in [25] handles both unicast 

and multicast traffic concurrently using two buffers at each input port with one for 

unicast packets and the other for multicast packets. Even with uniform Bernoulli traffic, 

their simulation reveals that the saturation throughput is less than 80%. This result is not 

surprising considering that the switch is an input-queued switch with only one unicast 

FIFO queue and one multicast FIFO queue, because of the HOL blocking.

To our best knowledge, so far none of the solutions to the integration problem has 

achieved the following goals simultaneously.

1) To exhibit a promising performance with an architecture requiring low memory 

bandwidth and less implementation price, for example, input-queued switch with 

FIFO buffers and a speed up of one.

2) To achieve a 100% throughput under different traffic compositions with various 

percentages of multicast traffic.

3) To utilize the research advances gained for unicast and multicast scheduling, 

respectively. High-performance queueing policies and scheduling algorithms 

have been proposed in the context of pure unicast traffic and pure multicast 

traffic, respectively. Those research results should be utilized.

In a word, the integration of unicast and multicast scheduling is still an open issue. 

All the above goals are fulfilled by the integration methods presented in Chapter V, 

which offer an improved performance using an easy to implement architecture.
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CHAPTER III

PERFORMANCE ANALYSIS OF LARGE MULTICAST SWITCHES WITH 

MULTIPLE QUEUES PER INPUT PORT UNDER NON-GATHERED TRAFFIC

HOL blocking compromises the performance of input-queued switches with single 

FIFO queue per input port. VOQ is used to completely avoid HOL blocking for unicast 

traffic. Since a multicast packet typically has multiple destined output ports, the 

exhaustive multicast virtual output queueing is impractical for implementation and results 

in out-of-order packet delivery. One interesting approach to mitigate HOL blocking for 

multicast traffic is to allocate a certain number of FIFO queues at each input port. The 

main concern is how the performance is improved as the number of queues increases.

This chapter theoretically analyzes the performance of large multicast packet switches 

with multiple FIFO queues per input port under non-gathered Poisson-distributed uniform 

traffic. The non-gathered traffic comes from all input ports and engages to all output 

ports. Closed-form expressions are deduced for saturation throughput, average service 

time, and average delay. Extensive simulations are preformed to verify the theoretical 

analysis and infer further conclusions. It is shown that a small number of multicast 

queues (less than ten) are sufficient to maximize saturation throughput and delay 

performances.

This chapter is organized as follows. Section 3.1 describes the multicast switch 

architecture used in this chapter. Section 3.2 introduces the initial model and a modified 

equivalent model. The saturation throughput analysis is given in Section 3.3. In Section 

3.4, the average delay and average service time are derived. The theoretical and 

experimental results are jointly presented in Section 3.5. Finally, Section 3.6 briefly 

summarizes the content of this chapter.

3.1 Switch Architecture under Non-Gathered Traffic: an N  x N  Switch

The architecture of the multicast switch studied in this chapter is shown in Figure 1.
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There are N  inputs and N  outputs with the same link speed. The switch size, N, is 

assumed to be a large number. At each input port, there are a certain number K  of FIFO 

queues dedicated to multicast traffic. A multicast packet arriving at the input interface is 

first queued into one of the K  multicast queues and then switched from the input port to 

its target output ports. To preserve the order of packet delivery on the output links, 

packets of the same flow get queued at the same multicast queue. The switching fabric is 

an N x  N  multicast switch fabric with a speedup of one. In essence, the service discipline 

is based on fanout splitting [44]. The random scheduling policy [4] resolves contention 

at the outputs. When more than one HOL packet contend for the same output, one of 

them is selected randomly with equal probability.

output linput 1

input N output N

N x  N  
multicast 

switch fabric 
(speedup = 1)

Figure 1. An N x N multicast switch with K multicast queues per input port.

3.2 Modeling for aniVxiV Switch

Some assumptions need to be made before further discussions. The incoming 

multicast traffic at each input link consists of a mix of multicast flows that follow Poisson 

distribution. The traffic is uniformly distributed among all inputs. The fanout size of a 

packet,/, is a random variable with a probability of >y. The maximal value o f / is  denoted 

as F. It is assumed that F «  N. The /  destinations are assumed to be uniformly
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distributed among the N  output ports. As discussed in Chapter I, this assumption is 

reasonable and does not lose generalization.

3.2.1 Initial Model

The input multicast queues are organized into K  groups: all the m-th queues across all 

input ports belong to group £T” (1 < m < K). At an input port, a multicast flow is 

randomly associated with one of the K  queues with equal probability. Packets of a 

multicast flow get queued to its associated queue. This queueing scheme assures in-order 

delivery of packets. Since the destinations of a packet are assumed to be uniformly 

distributed among the N  output ports, the Poisson characterization and the uniform 

distribution properties still apply to each queue.

More than one HOL packets are likely to be available at a single input port. Due to 

the assumption of a speedup of one, only one of them can be selected for transmission in 

one time slot. Input contention occurs in this case. It is solved by matching input and 

output ports in K  subsequent rounds within each time slot. In the &-th (1 < k < K )  round, 

one of the groups that are still unserved is randomly chosen with equal probability. The 

HOL packets in queues of the selected group are considered for service during this round. 

The HOL packets of the selected group at the available inputs send requests to all its 

residual destinations. Once an available output receives the requests, it randomly grants 

one of them. As a result, the input receiving the grant and the output initiating the grant 

get matched. An input (output) port is considered available if  it was not matched during 

the previous rounds within the same time slot. A HOL packet is removed from the input 

queue when its copies are transmitted to all its target output ports. The number of time 

slots spent by a packet at the head of its queue is called the service time of the HOL 

packet.

In the initial model above, assuming that an observer samples the state of the N  x K  

queues at the beginning of each time slot, he sees N  x K  M/G/l queues with identical 

statistical properties. Because all the input queues served in the &-th round are subject to 

statistically identical arrival and service processes, the number of packets counted by the 

observer in any one of the queues has identical statistical properties as in all other queues. 

This number is defined as the queue length of the &-th round, L*. Similarly, all the queues
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in (/* are also statistically identical. The number of packets counted by the observer in

any one of the £7" queues is defined as the queue length of the m-th group, rm. In the

initial model, there is no fixed relationship between the queues served in the k-th round 

and the queues in group £/”. Because o f the adoption of the random queueing and 

random serving policies, all groups have identical statistical properties. We have

E [ r i] = E [ r j ] = r , \ / i j <=[ \ , K] ,  (i)

Pr {group Qm is served in the k-th round} = — . (2)
K

Consequently, we have
K

E[Lk ] = ^(Pr{G roup Qm is served in the k-th round} x E [/"m ]} = /" .  (3)
m=1

Thus, the average queue lengths during any two rounds are always identical.

3.2.2 Modified Model

We now define a model that is logically equivalent to the initial one but easier to be 

analyzed. In this modified model, we set a fixed relationship between the queues that are 

served in the k-th round and the queues in group £/: the queues in are always served 

in the k-th round. As a result, the frequency at which queues in group Q  are served is 

obviously higher than the frequency of service of queues in group Q  if i < j.  In order for 

the queue statistics to remain identical over all groups, the arrival rates of multicast 

packets to queues of different groups must be adjusted accordingly. However, the 

explicit derivation of the rates of the new Poisson arrival processes is not required, 

because such rates are irrelevant to the completion of the analysis. The main element of 

relevance remains the statistical identity and independence of the N  x K  M/G/l queues 

that compose the model.

The analysis on the saturation throughput and delay performances is based on the 

modified model. The analytical results will be validated through simulations o f the initial 

model.

3.3 Saturation Throughput Analysis for an N  x N  Switch

The following notations hold for the k-th round:
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Ak'. Packet arrival rate for a queue in

N j : Number of HOL packets from the available inputs in whose residue contains

outputy;

N ' kj : Value of N* in the next time slot;

qk : Probability that one destination of the HOL packet in is serviced in a time slot;

qck : Conditional probability that one destination of the HOL packet in is serviced in

a time slot given that this input port is available for the &-th round;

Xk’. Service time of the HOL packet in £ /;

Tk'. Delay of a packet that transits in a queue of ( / ;

Ak : Number of HOL packets arriving in $  at the current time slot from the available

inputs whose residue contains output j .  For a large N, the distribution of Ak

converges to a Poisson distribution.

3.3.1 Scheduling in the First Round

Each destination of the HOL packets in Ql is served independently with an identical 

probability of qx, across the inputs as well as from slot to slot. The throughput in the first 

round (//i) is defined as the average number of packets delivered to an output per time 

slot in the first round. Therefore, = E[€(N\)], where the indicator function £(x) = 1 if 

x > 0 and £(jc) = 0 if*  = 0.

In the first round, the system behavior is exactly the same as the behavior of a

multicast switch with single input queue. Therefore, according to [44], the following

three equations hold:

2 ~ Mi

£ r a = E ( ' > x ( £ f / ] ——̂ — r))» (5>

= (6)
/ = i

where M\-sat *s the saturation throughput in the first round. Invoking (4), (5), and (6),
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can be expressed by substituting fi\ with /^_sat in (4) and (5).

3.3.2 Scheduling in the Second Round

The destinations of the new arriving HOL packets at the current time slot from the 

available inputs are randomly distributed over all the output ports. The distributions are 

uniform and independent of one another. For a large N, the distribution of A2j converges

to a Poisson distribution. The throughput in the second round (jui) coincides with the 

average number of packets delivered to an output per time slot in the second round. 

Notice that output j  is matched in the second round if  and only if  it is not matched in the 

first round and there is at least one HOL packet in available queues of Q2 that are 

destined for it. Therefore, /ui = E[[\ -  e(N\ )] x €'(Â J2)]. The dynamic equation for output j

is

N') = N]  -  [1 -  6{N) )] x €(Nj ) +A2. (7)

The first objective is to find the expression for q2. To this end, the expression for q°2 

need be deduced. In the second round of the scheduling during a particular time slot,

there are N 2 destinations at HOL positions of the available input ports, out of which
j

((1 -  6 ( N \)) x € ( N j )) will be served. Hence, under the assumption of large N,
j

2 f l l - £ ( t f J ) ] x f f ( ^ ) ]

92 = e (n )]  ■ ( )

For the steady state system, through normalization of both sides of (7):

E[A2] = E[[ 1 -  e(N)  )] X e ( N 2 )] = v 2. (9)

Recalling the definition of e'(jc), we have (C(jc))2 = £"(x) and xx€(x )  = x . Then,

([l-e(N *)]xe(7V 2))2 = [ l - e ( N \ ) ] x e ( N 2) ,  (10)

N 2 X [1 -  )]X e ( N 2) = [l -  e ( N) ) ] x N2. (11)

Because of the assumption of Poisson distribution of A2, we also obtain

E[{A2)2] = {E[A2})2 +E[A2}. (12)

By squaring both sides of (7), substituting (9), (10), (11) and (12), and normalizing both
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sides, we have

E[N]]= (13)
2(1 —/i, —/fz)

Substituting (9) and (13) into (8), q2 can be expressed as follows:

(14)
(2 -/* 2)

Also,

/ ’{the input is available for the 2nd round}

_ Average number of available inputs for the 2nd round 
Number of inputs

 _______M _______
N

N - N x E [ e ( N ) ) ]
N

= (15)

Based on the relationship between un-conditional probability and conditional probability, 

q2 = / ’{the input is available for the second round} x qc2. Together with (14) and (15), 

we have

2 0 - A X l - r t - f t ) . (16)
(2 - f i 2)

According to the analysis result in [14], the average service time of the HOL packet 

served in the second round is given as below:

7'
F_ J _ (  f \  (_1)*+1

£ K ]  = S ( '> x ( 2 ]
f= \  k=\ \ k j

r ) ) -  (17)
1-(1  ~q2)k

According to the P-K formula [14, 15], the average delay for a packet being transiting in 

a queue of ( f  can be expressed as

£ K ]  = £[Jf2]+ ,,.K*E[XJl  (18)2(1 -  x E[X2 ])

From (18), we can see that the average delay becomes infinite when 1 = /I, E[X2 ].
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Considering that //2 = /L, x y  ( /  x Ay) and (17), for the saturation throughput in the
/ = i

second round, fi2_sat, we have:

Using (19) together with (16), where ju\ and juz are substituted with jû _sal and ju2_sal, 

respectively, fi2-sat can be calculated. As an example, the theoretical results of the 

saturation throughput ( jusal) for a multicast switch with two queues and a constant fanout 

size of F  (rf = 0, V / g  [1, F  -  1]; and rF = 1) are listed in Table 1, where

F s a t  ~  F l - s a t  +  F l - s a t  •

Table 1. Saturation throughput for switches with two queues per input port.

F 1 2 4 8 10
X\ 0.586 0.695 0.779 0.849 0.868

0.127 0.092 0.068 0.047 0.041
X 0.713 0.787 0.847 0.896 0.910

3.3.3 Scheduling in the k-th Round

In this subsection, analysis is focused on the throughput and service time at the fc-th 

round (2 < k < K). The throughput in the k-th round (//*) is defined as the average number 

of packets delivered to an output per time slot in the &-th round. During each round, the 

switch could be modeled as N  identical and independent M/G/l  queues, where each 

queue is associated with a distinct switch output. The total switch throughput is the sum
K

of the respective throughputs achieved in K  rounds: /j = ^ j u k . Notice that output j  is
*=i

matched in the &-th round if  and only if it is not matched in the previous rounds and at 

least one HOL packet in available queues o f ( f  is destined for it. Therefore,
k-1

Hk = £[]”[ (1 -  e(Nj )) x e(Nj )]. The dynamic equation for output j  is
i=1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

n )  = n ) - H d - e ( N j  »  x  e ( N j  )  +  A j -  ( 2 0 >

k-1n1=1
At first, the expression for qk need be found. To this end, the expression for q\ need 

be deduced. In the &-th round of the scheduling during a particular time slot, there are 

^  Nj destinations at HOL positions of the available input ports, out of which
j

k-\
-  €{N'j)) x e ( N j )) will be served. Hence, for a large N , we have

j  <=i

k-l

<7*=— ^ ------------1-------------- • (21)
* e [n U

Taking the average of both sides of (20) and considering that for the steady-state 

system E[N * ] = E[Nj ], we have

k-\
EiA) ] = £[n  (1 -  e (N ‘j))  x e (N ‘ )] = n . (22)

1=1

Similar to (12), we have

£ [ ( 4 ) 2] = ( £ [ 4 ] ) 2 + £ [ 4  ]. (23)

Taking into account the definition of 6 , we have

A) X n  (1 -  e (N ‘)) X €( N kj ) = n  (1 -  €(N‘ ))xJV‘ . (24)
;=i /=i

Since k «  N, the Nj  values (1 < / < k )  are independent of each other. We can then 

derive the following equation:
k-1 k-1

1=1 1=1

Proof for (25): When k = 2, (25) is E[ 1 -  £(N\)] = 1 -  ̂ , which is correct according 

to the analysis given in Section 3.3.1. Assuming that (25) is correct when k  = /, i.e.,

^n<l-<r(AT'))] = l - § > , .
1=1 1=1

Since /i, = £ [n ( l- f (w ; ) )x e (H l') ]  = £ [n (l-e (lV '))]x £ [e (M ')],th en
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i -  y ]  /ut
£[l-<r(W ')] = l  ^  = 1------ ^  =

' - s «  ’ - E f t
i= i  i= i  1=1

z + i - i  i - i  i

Therefore, £ t n  a  - e ( ^ » ]  - £ [ n « l -  f(lv;))]K £[1 -e (W ')] = 1 - 2 f t , i.e., (25)
i= l  i= l  1=1

is also correct when k = I + 1.

In sum, (25) was proved for 2 < k < K  and the proof is complete. □
t - i  k - 1

In addition, d i d  - e i N ^ x e i N j ))2 - n o  -  £(Nj )) x e ( N j ). Combining this result
i= i  i= i

with (22), (23), (24), and (25), and squaring and normalizing both sides of (20), we 

obtain: 

= (26)

2 ( 1 - 1 > ,)
/=1

Substituting (22) and (26) into (21), we reach the following result:

2 x ( 1 - £ a )

Ql= n  “  • (27)
(2 ~Mk)

Given the assumption of randomly granting to one of the requests at each output, 

P{the input is available for the A>th round} 

_ Average number of available inputs for the Ar-th round 
Number of inputs

m -  2  ( j r  f i  (1 -  e  ( N j )) x e ( N ) ))]
_  1=1 7=1 <=1_________________

N
k - 1 i - l

N -  N  x X  £ [ n  (1 -  ■W , )):*e ( N ' )])
i-\ 1=1

N
k-l

= l - 2 > .  (28)
i=i

Also, qk = P{the input is available for the A-th round} x q°k . Combining this result
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together with (27) and (28), we obtain
k-1 k

2 x ( 1 - X a ) x (1- E a )
9* = ----------- — r - * 3— • (29)( 2 - / 0

Similar to (17), the average service time in the &-th round is given by

(30)

Based on the P-K formula [14, 15], the average delay for a packet transiting in a queue of 

can be expressed as

= y , ]+  <31)2 x ( l - A k x E[ Xk])

We can see that the average delay for a queue in the fc-th round becomes infinite when
F

1 = AkE[Xk], where /uk = Ak x ^ ( / x rf ).  Hence, recalling (30), the saturation
M

throughput in the k-th round, juk_sat, satisfies the following equation:

f f f  ( /iv'+i
Z ( / Xr, ) = M,.„ X Z (r, X( Z  , „  ’ v» ■ (32)

i - a - g j/=1 /=1 1=1 

Together with (29), where ju. is substituted with /u^sat (1 < i < k ) and (1 < i < k -  1 

) are calculated during previous rounds, juk_sat can be calculated.

As an example, the theoretical results of the saturation throughput (jusat) for a 

multicast switch with three queues and a constant fanout size of F  are listed in Table 2,

w h e r e  M sa, =  +  t * 2 -s a t  +  ^ 3- s a t  ■

Table 2. Saturation throughput for switches with three queues per input port.

F 1 2 4 8 10
Msat 0.586 0.695 0.779 0.849 0.868
h 0.127 0.092 0.068 0.047 0.041
X3 0.066 0.048 0.035 0.024 0.021
X 0.779 0.835 0.882 0.921 0.931
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3.4 Delay Analysis for an N  x N  Switch

The following notations are used in the analysis of the delay performance: 

ju: The output load at an output link;

T: The delay of a packet in any queue;

N  k : The queue length of the queue in

When the overall packet arrival rate is less than the saturation packet arrival rate, i.e., 

before the system delay becomes infinite, the queueing system is stable and the following 

condition holds:

= (33)k=\

According to [14], we have
F  f  f

£ [ * ? ] = 2 > / x ( Z/=1 ;=1
/

Kl J

(_ !)«  2(1 q j  +
( l - d  ~ q j f

where qk and E[Xk ] are given by (29) and (30), respectively.

According to Little’s theorem [15], we obtain

E[Lk] = Ak xE[Tk]. (35)

As stated earlier, due to the equivalence between the initial and modified models, the 

average queue lengths of any two queues in the modified model are all identical:

E[L,\ = E[L2\ = ... = E[Lk ]. (36)

F

We also have juk = \  x ^ ( /  xrf ). Combining this relationship with (29), (30), (31),
/ = i

and (33) through (36), /ik and E[Tk ] can be calculated for a given output load, //. The 

resulting average system delay is as follows:

i > * x £ [ r 4]
£ [ j]  = -*=!_---------- . (37)

k=1

As an example, let us consider a multicast switch with three queues per input buffer 

(K  = 3). Assuming that all multicast packets have a constant fanout size of four, we 

substitute different values of // (0 < // < 1) into the derived equations. E[Tk ] (k = 1, 2, 3)
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and the average system delay E[T] are calculated and plotted in Figure 2. As we 

expected, E[TX ] < E[T2 ] < E[TS ] follows for all admissible output load. The validity of 

the delay analysis will be further verified by simulations.

E 5 0

> 4 0

O)
§20

0.6 0.8 10 0.2 0.4

Output Load

Figure 2. Average delay as a function of normalized output 

load with K =  3 and a constant fanout size of four.

3.5 Numerical Results of Theoretical Analysis and Simulations

Extensive simulations were performed for different switch sizes and fanout sizes to 

verify the analysis results and to infer further conclusions. Based on both theoretical and 

simulated results, the performance characteristics of large multicast packet switches with 

multiple FIFO queues per input port are discussed in this subsection. The duration of all 

simulation runs is one million time slots. Data are collected for statistical elaboration 

during the last half million time slots. Infinite queue size is assumed to avoid packet loss. 

The fanout size is a constant of F, i.e., r /=  0, V /e  [1 ,F -  1]; and rF = \. The simulation 

results are obtained on a system that reflects the initial model of a multicast switch, which 

is implemented in a switch simulator SIM++ [54].
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3.5.1 Verification to Analytical Results via Simulations

Figure 3 shows the theoretical and simulation saturation throughput as a function of 

fanout size for multicast switches with K  queues (K -  2, 3, and 4) per input port. The 

simulation saturation throughput is determined as follows. The throughput is kept 

increasing until achieving a maximal match size, which remain constant regardless how 

big the output load is. The maximal match size divided by N  is then the saturation 

throughput for the given N  and F. The discrepancy between analysis and simulation 

results is always far below 2%, which confirms the accuracy of the analysis.

O)
P0.85

S  0 . 8 ”

</> 0.75 Simulation 2-queue o 
Analysis 2-queue —i— 

Simulation 3-queue □ 
Analysis 3-queue —x- 

Simulation 4-queue v  
Analysis 4-queue ■

4 5 6 7
Fanout Size

10

Figure 3. Saturation throughput as a function of fanout size. 

(The switch size used in these simulations is 1024 x 1024.)

Figures 4 and 5 show the simulation results for the saturation throughput as a function 

of switch size in the presence of two and three queues per input port. The dash lines 

show the corresponding theoretical saturation throughputs. The purpose of these two 

plots is to highlight the convergence of the saturation throughput to its asymptotic value 

as the switch size increases, for different fanout sizes. One can see that the convergence 

is faster for smaller fanout sizes. The saturation throughput remains fairly constant for N  

> 80 in all scenarios. For N  > 80 and bigger fanout sizes, the difference between
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simulation results and respective theoretical results under the assumption of a very big N  

becomes indistinguishable, hinting that the analytical results are indeed valid for practical 

switches that lie in the upper end (N  > 80) of the size scale. It should be noticed that we 

can only claim that the difference between the simulation saturation throughputs and 

theoretical saturation throughputs is very close to each other. It is hard to justify which 

one is bigger than the other.

0.95

-3  0.9
Q.JZO)
20.85

F = 4

F = 2

W0.75

0.7

0.65
20 60 100 120 1400 40 80

Switch Size

Figure 4. Saturation throughput as a function of switch size with K  = 2.

0.95

£  0.9 a>
F = 2

0.8

0.75

0.7
0 20 40 60 80 100 120 140

Switch Size

Figure 5. Saturation throughput as a function of switch size with K  = 3.
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Simulated and analytical average delays are plotted in Figures 6, 7, and 8, as a 

function of the output load offered to a 256 x 256 switch with K  = 2, 3, and 4, 

respectively. Each plot corresponds to a different value of F  (F = 2, 4, 8). Simulation 

results and theoretical results always agree well.

45 Simulation: 2-queue o
Analysis: 2-queue-----

Simulation: 3-queue +
Analysis: 3-queue-----

Simulation: 4-queue □ 
Analysis: 4-queue-----

=  30

>,25

0  20<uO)
2 15

0 0.2 0.4 0.6 0.8 1
Output Load

Figure 6. Average delay as a function of normalized output load with 

F  = 2. (The switch size used in these simulations is 256 x 256.)

Simulation: 2-queue o 
Analysis: 2-queue —  

Simulation: 3-queue + 
Analysis: 3-queue —  

Simulation: 4-queue □ 
Analysis: 4-queue —

70

E 50

o>

S 20

10

0 0.2 0.4 0.6 0.8 1
Output Load

Figure 7. Average delay as a function of normalized output load with F — 4. 

(The switch size used in these simulations is 256 x 256.)
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Simulation: 2-queue o
Analysis: 2-queue-----

Simulation: 3-queue +
Analysis: 3-queue-----

Simulation: 4-queue □ 
Analysis: 4-queue-----

>.40

o>

% 20

0 0.2 0.4 0.6 0.8 1
Output Load

Figure 8. Average delay as a function of normalized output load with F  = 8. 

(The switch size used in these simulations is 256 x 256.)

The match between the simulation data and the theoretical data shown in Figures 3 

through 8 testifies to the correctness of the analysis under the assumptions of the 

modified model. In addition, based on the results shown in Figures 6, 7, and 8, a number 

of interesting conclusions can be drawn. When the output load is much less than the 

saturation throughput, which indicates the switch capacity, there is no obvious difference 

among the average delay of multicast switches with two queues, three queues and four 

queues per input port. However, as the output load increases and approaches the 

saturation throughput, the average delay difference between multicast switches with 

different numbers of queues per input port becomes more and more obvious. 

Furthermore, using the equations derived in the previous part of this chapter, it is possible 

to calculate the number of queues per input port needed in order to meet specific delay 

requirements for a multicast switch where no prior knowledge of the input and output 

distribution of multicast traffic is available. Under the same conditions, when the number 

of queues per input port exceeds a certain threshold the gain in delay performance 

guaranteed by additional queues is not obvious.
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3.5.2 Performance Improvement Gained by Adding More Queues per Input Port

Figure 9(a) shows the increment o f saturation throughput /4  (k = 2, ..., 10) by adding 

the A:-th queue at every input as a function of F. Figure 9(b) illustrates the saturation 

throughput ju\ of a multicast switch with one queue per input port. One can see that the 

bigger the value of F, the bigger the value of fi\. This is because a big value of F  

alleviates the HOL blocking and thus increases the throughput. Meanwhile an increasing 

value of ju\ results in a decreasing space in the subsequent iterations. Thus, the bigger the 

value of ju\, the smaller the value of (k = 2,..., 10).

It is also observed that while the saturation throughput of a multicast switch increases 

with the number of queues per input port, the benefit of additional queues becomes less 

and less sensible as new queues get added. In the particular case o f Figure 9, the 

throughput contribution of the tenth queue approaches zero when the overall saturation 

throughput with nine queues is already above the 90% mark. For clarity, the analytical
9

values of j u - ^ p k and jum under different fanout sizes are listed in Table 3.
k=l
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Iambda2 
Iambda3 
Iambda4 
!ambda5 
Iambda6 
Iambda7 
Iambda8 
Iambda9 

lambda 10

1 0.04

4 5 6 7
Fanout Size

9 10

(a)
0.95

o>

I- 0.75

lambda 1
0.55

2 3 6 101 4 5 7 8 9
Fanout Size

(b)
Figure 9. Increment of saturation throughput by adding the &-th 

(k = 2 , . . 1 0 )  queue as a function of fanout sizes.

Table 3. Theoretical saturation throughput of a switch with K  = 9 

and the increment by adding the tenth queue.

/ 2 4 6 8 9 10
X 0.930 0.950 0.961 0.967 0.969 0.972

Xio 0.006 0.004 0.003 0.003 0.003 0.003
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Therefore, it can be concluded that high throughput can be achieved in a large 

multicast switch with a few queues (less than 10) per input port if multicast traffic is 

uniformly distributed over all inputs and outputs. To corroborate this conclusion, Figure 

10 plots the theoretical values of saturation throughput as the number of queues per input 

port ranges from 1 to 10. The benefit of using multiple queues per input port is initially 

obvious, but fades as the number of queues per input port grows larger.

0.95

Q.
O)

0.75

0.55

1 2 3 4 5 6 8 9 107
Number of input queues

Figure 10. Saturation throughput as a function of the number of queues per input port.

The last set of simulation experiments are run on a 256 x 256 multicast switch with K  

equals to 1, 2, 3, 9, and 10, respectively. Figures 11, 12, and 13 show the delay as a 

function of the output load with F  = 2, 4, and 8, respectively. Since the log-scale for the 

y-axis is adopted in order to show the result clearly, these curves are slightly 5-shaped. 

The delay difference is obvious between the cases with one, two, and three queues. 

Conversely, the difference of delay performance becomes indistinguishable between 

switches with nine and ten multicast queues per input port buffer.
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1 -queue —e—
2-queue —i—
3-queue - s -  
9-queue —

10-queue£  100

o>
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Output Load

Figure 11. Delay as a function of normalized output load with F  = 2. 

(The switch size used in these simulations is 256 x 256.)

1000
1-queue - e -
2-queue —I—
3-queue - B -  
9-queue

10-queue -£  100
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0 0.2 0.4 0.6 0.8 1
Output Load

Figure 12. Delay as a function of normalized output load with F  = 4. 

(The switch size used in these simulations is 256 x 256.)
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1-queue —
2-queue —t—
3-queue - b-  
9-queue

10-queueS" 100
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Figure 13. Delay as a function of normalized output load with F  = 8. 

(The switch size used in these simulations is 256 x 256.)

3.6 Summary

Using the M / G / l  model and the queueing theory, this chapter analyzed the 

performance of multicast switches with multiple queues per input port under the 

assumption of uniform traffic distribution over all inputs and outputs. The closed-form 

expressions for the saturation throughput, the average service time, and the average delay 

were provided. Extensive simulations were performed. The results show that the 

throughput and delay performance of the multicast switch improves as the number of 

queues per input buffer increases. In a large multicast switch, the performance indices 

converge to their asymptotic values when the number of input queues is relatively small. 

Thus, a small number of input queues per input buffer (no more than 10) are sufficient to 

achieve sub-optimal performance in large switches with uniformly distributed multicast 

traffic.
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CHAPTER IV

PERFORMANCE ANALYSIS OF LARGE MULTICAST SWITCHES WITH

MULTIPLE QUEUES PER INPUT PORT UNDER GATHERED TRAFFIC

In Chapter III, the saturation throughput and delay performances of a large N  x N  

multicast switch with multiple FIFO queues per input port are theoretically analyzed. 

This chapter generalizes the theoretical analysis to a large M  x N  multicast switch, i.e., 

the number of input ports may be different from the number of output ports. This 

generalization is motivated by the importance of the gathered-traffic scenario. Multicast 

applications often generate sustained and long-lasting flows, which may gather among 

fewer input ports and engage more output ports at a given router or switch [4]. 

Therefore, the gathered-traffic scenario is widely adopted in the simulation studies on 

multicast queueing and scheduling [4,12,13, 44].

This chapter presents the theoretical analysis on the saturation throughput and delay 

performances of a large M  x N  multicast switch with multiple FIFO queues per input 

port, and extensive simulation studies for validation. A Markov chain model is proposed 

to deduce the probability distribution function of residue size at the beginning of a time 

slot and analyze the availability of an input after a certain number of iterations’ 

competition for service. It is shown that firstly a small number of queues, which is much 

less than 1N -  1, is a reasonable choice for the tradeoff between the saturation throughput 

and delay performances and the scheduling overhead; secondly, the final achievable 

saturation throughput decreases as the ratio of MIN decreases; and thirdly, the analysis 

results are indeed valid for practical large-sized switches.

This chapter is organized as follows. Section 4.1 describes switch architecture and 

modeling. The availability of an input in the k-th round is analyzed based on a model of 

Markov chain in Section 4.2. Saturation throughput analysis and delay analysis are given 

in Sections 4.3 and 4.4, respectively. Section 4.5 presents both theoretical and 

experimental results. Finally, this chapter is briefly summarized in Section 4.6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



39

4.1 Generalization to an M x N  Switch; Switch Architecture and Modeling

The architecture of an M  x N  multicast packet switches considered in this chapter is 

shown in Figure 14. There are M  inputs and N  outputs with the same link speed. Both M  

and N  are assumed to be large numbers with MIN being a certain value. At each input 

port, there are K  FIFO queues dedicated to multicast traffic. The switching fabric is an M  

x N  multicast switch fabric with a speedup of one. The service discipline is based on 

fanout splitting.

input 1
output 1

input M output N

queue 1

queue K

queue 1

queue K

M x N  
multicast 

switch fabric 
(speedup = 1)

Figure 14. An M  x N  switch with K  multicast FIFO queues per input port.

While the switch architecture is generalized from an N  x N  switch to an M  x N  

switch, other assumptions, the random queueing policy, and the random scheduling 

algorithm that are adopted in the performance analysis on the N  x N  switch still holds. 

To make it clear, they are briefly restated as following:

• The incoming multicast traffic follows Poisson distribution.

• The traffic is uniformly distributed among all inputs.

• The fanout size of a packet, f  is a random variable with a probability of /y. The 

maximal value of /  is denoted as F. F  « N  and the /  destinations are uniformly 

distributed among the N  output ports.

• Random queueing policy: At an input port, a multicast flow is randomly
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associated with one of the K  queues with equal probability. Packets of a multicast 

flow get queued to its associated queue.

• Random scheduling algorithm: All the m-th queues across all input ports form the 

group ( f 1 (1 < m < K). Input and output ports are matched in K  subsequent 

rounds within each time slot. In the &-th (1 <k < K )  round, one of the groups that 

are still unserved is randomly chosen to be served with equal probability. The 

HOL packets of the selected group at the available inputs send requests to all its 

residual destinations. In each round, when more than one HOL packets compete 

for an available output port, one of them are granted randomly. An input (output) 

port is considered available if it was not matched during the previous rounds 

within the same time slot. The number of time slots spent by a packet at the head 

of its queue is called the service time of the HOL packet.

In the modified model, a fixed relationship is set up between the queues that are 

served in the k-th round and the queues in group ( / :  the queues in ( /  are always served 

in the k-th round. Similarly to the result about the average queue length in the &-th round, 

Lk, given in Chapter III, the average queue lengths during any two rounds are always 

identical, i.e.,

E[L,] = E[L2] = ... = E[Lk ]. (38)

4.2 Availability of an Input Port in the &-th Round

The following notations hold for the k-th round.

Xk‘. The packet arrival rate for a queue in

qk'. The probability that one destination of the HOL packet in $  is serviced in each

time slot.

Xk‘. The service time of the HOL packet in

u°k : The probability that a queue in ( f  is empty when a HOL packet leaves that queue.

In this subsection, the main objective is to discuss the probability that an input is not 

matched in the previous rounds of the A>th round, i.e., the probability that an input is 

available for the k-th round.

Considering that a queue belonging to $  is an M/G/l  queue, based on the analysis to
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a model named “Imbedded Markov Chain” in [41], we have

u l = \ - X kE[Xk}. (39)

Let R (k) = R^k\t„) represent the residue size of the HOL packet at the beginning of the

w-th time slot in a given input queue during the &-th round. The matching decision in 

each round is made according to the output packets competing in current time slot. The 

past of the residue size has no influence on the future if the present is specified, i.e.,

Therefore, R(k) is a discrete Markov chain with finite states. The set of states is {0, 1,2,

..., F}, where state 0 represents the case that the queue is empty and state i (1 < i < F) 

represents the case that the residue size of the HOL packet equals to i. This Markov 

chain is homogenous and its one step transition matrix, Pk, is given by

For a given HOL packet with R {k) equaling to i, r destinations may be served in the 

w-th time slot. If r < i, the remaining (/ -  r) destinations continue competing for service 

in the (n+l)-th time slot and R(nk+\ = r — I. If r = i, all residue destinations of the HOL 

packet are served and this packet is removed from the input queue at the end of n-th time 

slot. At the beginning of (n+l)-th time slot, if the queue is empty, R(nk+\ = 0; otherwise a

new HOL packet is waiting for service and R{nk+\ equals to its fanout,/ The arrival of a

packet in a time slot is independent of the number of packets stored in the queue. Also, 

the number of destinations of a HOL packet that are served in a time slot is also 

independent of the number of packets stored in a queue when a HOL packet leaves. 

Therefore, the values of p ikj  are calculated as following.

(40)

(41)

where pFj 4 P{R(nk+\ = j  \ R ik) = i}.

1. i =  0:

Pok,o = ^*{no packet arrives in a time slot | queue is empty}
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= P{no packet arrives in a time slot} = l - A k;

Poj = packet arrives in a time slot | queue is empty} x P { f  = j )  

= P{a packet arrives in a time slot} x r.

= V y . V/e[ l ,F] ;

2. 1 < i < F:

F; o} = destinations of a HOL packet are served} 

x P{queue is empty when a HOL packet leaves}

0
x ( l - g * ) ° X 0 t, XK°

Pu = ^*{0 "  i  ) destinations of a HOL packet are served}

+ P{i destinations of a HOL packet are served and queue is not empty 

when a HOL packet leaves} x P { f  = j )

Pi ■ -  P{i destinations of a HOL packet are served and

queue is not empty when a HOL packet leaves} x P { f  = j} 

= (1 -« S° W 0 ’ Y/ e [ /  + l,F ].

Then the one-step transition function is as follows:

Pk =

l - \

uUk
0 2 

Wk

uUk

0 F - l
W k

0 F
W k

V i h r F

vly
{ l - qk)qk +{\-ul )qk2rx

V 1 /

f F - P

/ F X

v ly

{ l - q k)qkF-2 +{\~ul)qkF\

(1
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where u°k is given by (39).

According to Perron’s theorem [41], we have

lim P{R(nk) = i} = v ', V/ e [0, F ] . (43)
rt-> oo

v°k,v\ ,  ..., and vf are called as limiting probabilities and they can be calculated by 

solving the following equations:

vk =vt *Pk, (44)

£ v / = l ,  (45)
i=o

where Pk is given by (42), and vk = [v° v} • • • vk ].

If and only if  none of the destinations of an HOL packet at a given input is served in 

the ft-th round, it is said that this input is not matched during the &-th round. The 

probability that an input is not matched during the A>th round is denoted as cr*, We have
F

<7k = V (P{N one of i destinations is served in &-th round} x limP{i?^) = i})

r f , '

1=0

F

vO/

= Z ( l - < 7 j v ; .  (46)
i=0

If and only if  an input is not matched during all the previous rounds, this input is 

available for the &-th round. Therefore, we have 

P{input is available for the Mi round}

k - 1

= 1 -  ̂  P{an input is matched in the ith round}
i=i

i=i

= f Jcri - k  + 2. (47)
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4.3 Saturation Throughput Analysis for anMxi V Switch

The following notations are used in further discussions of this chapter.

qck : The conditional probability that one destination of the HOL packet in Qf is

serviced in each time slot given that this input port is available for the &-th round. 

7*: The delay of the packet transited in a queue of $ .

A j : The number of HOL packets arriving in at the current time slot from the

available inputs whose set of destinations contains output j .  For a large N, the 

distribution of A* converges to a Poisson distribution.

/jk : The throughput in the &-th round.

4.3.1 Scheduling in the First Round

In a stable M x N Switch, the following relationship is satisfied:

M F
A = —  x V Z ( / xr / ) '  (48)N /=i

In terms of the throughput in the first round, the system behavior is exactly the same 

as the behavior o f a multicast switch with single input queue that was discussed in [14]. 

Therefore, according to [14], the following three equations hold:

* = ^ 1 .  (49)2 -//,

£[-r,] = 2 > / x < L
/=! k=1

n r

\ k ; i - a - 9 , y
» ,  (50)

M F
~.7 * £ ( / * > >  ) = « -_ , * £ [* ,] .  (51)
JS /=1

where îUmt is the saturation throughput in the first round. Combining (49) through (51) 

together, where //, is substituted with ^_sal, ^_sal can be calculated.

4.3.2 Scheduling in the k-th Round

Similarly to (48), in a stable M x N  Switch, we have

M F
= ^ xAk x H ( f  xrf ) -  (52>

4V /= 1
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Given that this input port is available for the k-th round, the conditional probability 

(qk) that one destination of the HOL packet in £7* is served in a time slot is expressed as

2 x ( l - i > )
9 l =  n  V ' ,  (53)

the deduction of which is the same as that of (27) given in Chapter III and hence is 

omitted here. Combining (46) with (47), we have
k - \  F

Pr {the input is available for the k-th round} = ^ ( ^ T  (1 -  qt )Wh) - k  + 2. (54)
h=1 f=0

Since qk = P{the input is available for the k-th round} x qck , together with (53) and (54), 

we obtain

gt = ( E ( Z ( 1-?»>'v» ) - * + 2 ) , ,  1=1, • <55)t t  to (2 ~Mk)

where v°h, v \ ,... and vf are expressed by solving (44) and (45) with k = h.

According to the analysis results in [14], the average service time in the k-th round is 

given by

F f /  r\
f

\ l J
£ [ * 4] = 2 > / x < £  y , (n iy v ))- (56)

1+1

/ = 1  1=1

Based on the P-K formula [14, 15], the average delay for a packet transiting in the 

k-th round can be expressed as

E[Tl ] = E [ X J +  n . (57)
2(1 - \ x E [ X k})

We can see that the average delay for a queue in the k-th round becomes infinite if 

1 = XkE[Xk] . Then, recalling (52) and (56), for the saturation throughput in the k-th 

round, juk_sat, we have 

M—  x 
N t v * ' , y - » i > /  * ( £ ( (  l r o ’r y »• (58)/ = i /= i  i=i v 1

Together with (55), where jut is substituted with ju._sal (1 < i < k) and /u^sal (1 < / < k -  1) 

are calculated during previous rounds, juk_sat can be calculated.
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As an example, the numeric theoretical results o f the saturation throughput (jusat) f°r 

a multicast switch with four queues, a given value MIN, and a constant fanout size of F  

are listed in Table 4, where jusat = ju,_mt + ju2_sat + ju3_sat + n A_sat.

Table 4. Saturation throughput for switches with four queues per input port.

MIN 5/8 3/4
F 2 4 6 8 2 4 6 8

/fl-sat 0.58 0.68 0.74 0.78 0.62 0.72 0.77 0.81
/̂ 2-sat 0.08 0.09 0.09 0.09 0.10 0.10 0.10 0.09
/6-sat 0.04 0.04 0.04 0.04 0.05 0.05 0.04 0.04
fM-sat 0.02 0.02 0.02 0.02 0.03 0.03 0.02 0.02
Fszx 0.72 0.83 0.89 0.93 0.80 0.90 0.93 0.96

4.4 Delay Analysis for anMxJV Switch

The following notations are used in the analysis on the delay performance. 

ju: The output load at an output link.

T: The delay of a packet in any queue.

Lk'. The queue length of the queue in

When the overall packet arrival rate is less than the saturation packet arrival rate, the 

queueing system is stable and the following relationship holds:

M = (59)
*=i

According to [14], we have

1 = I (r, X( £ [ 0 ( - 1 ) “  + £ [* » ] . (60)/=1 ;=1 \  l J I* I1

where qk and E[Xk ] are given by (55) and (56), respectively. Based on Little’s theorem 

[15], we obtain

E[Lk] = \ x E [ T k]. (61)

Combining (38), (52), (55) through (57), and (59) through (61), juk and E[Tk] can be
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calculated for a given output load. The average system delay is expressed as follows:

E[T] = ^ - k---------- . (62)

k=1

0.8
Theoretical, k = 1 —e— 
Simulation, k = 1 +

Theoretical, k = 2 - b— 
Simulation, k = 2 x

0.7

0.6

^  0.5

0.4

0.2

0.1

0.3 0.4 0.5 0.6 0.7 0.80 0.1 0.2
Output load

Figure 15. Throughput in the Ar-th round as a function of normalized 

output load with MIN = 5/8, F  = 4 , K  = 2.

0.8
Theoretical, k = 1 —e— 
Simulation, k = 1 +

Theoretical, k = 2 —B— 
Simulation, k = 2 x 

Theoretical, k = 3 -
Simulation, k = 3 *

0.7

0.6

0.4

0.2

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90
Output load

Figure 16. Throughput in the k-th round as a function of normalized 

output load with MIN = 5/8, F  = 4, K  = 3.
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From (62), we can see that the delay analysis relies on the prediction on the 

throughput in the k-th round, juk {k = 1, 2, K), under a given output load. The

relationship given in (38) determines the distribution of the overall output load among K  

rounds. To double check this formula, simulations are performed for a 640 x 1024 

multicast switch with a constant fanout size of F. Figures 15 and 16 plot the theoretical 

and simulated throughput in the £-th round, juk, as a function of the output load for K  = 2 

and 3, respectively. We can see that the simulated results agree with the theoretical 

results well.

4.5 Numerical Results of Theoretical Analysis and Simulations

Extensive simulations were performed for different switch sizes, values of MIN, and 

fanout sizes to verify the analysis results and to infer further conclusions. Based on both 

theoretical and simulated results, the performance characteristics of large multicast 

packet switches with multiple FIFO queues per input are discussed. The duration of all 

simulation runs is one million time slots. Data are collected for statistical elaboration 

during the last half million time slots. Infinite queue size is assumed to avoid packet loss. 

The fanout size is a constant of F  (r/=  0, V / e [1, F  -  1]; and rF = 1). The simulation 

results are obtained on a system that reflects the initial model of a multicast switch, which 

is implemented in a switch simulator SIM++ [54].

4.5.1 Simulation Verification

In order to verify the theoretical analysis, simulations are performed for switches with 

N  = 1024. Figure 17 shows the theoretical and simulated saturation throughput as a 

function of K  under different values of MIN and F. The discrepancy between analysis 

and simulation results is always below 2% under all scenarios, which confirms the 

accuracy of the analysis. Figures 18 and 19 plot the theoretical and simulated average 

delay as a function of output load for switches with K  FIFO queues per input port (K  = 2, 

3, 4, and 5) for the case that MIN = 3/4 and F  = 3 and the case that MIN = 5/8 and F  = 4, 

respectively. We can see that the simulated average delays always agree well with the 

theoretical results. The match between the simulation data and the theoretical data
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testifies to the equivalence between the modified model and the initial model, and the 

correctness of the theoretical analysis. In addition, based on both theoretical and 

simulated numerical results, some interesting performance characteristics are going to be 

discussed in the following subsections.

Saturation throughput

Theoretical, M/N-314, F-2 
Simulttion, M/N-3/4, F=2 
Theoretical, M/N-S8, F=4 
Simulation, M/N-5/8, F-4 
Theoretical, MJN-314, F=3 
SimuWion, M/N-3/4, F-3 
Theoretical, M/N-3/4, F-4 
'Slm.uMion, M/N-3/4, F=4 
TVieoretfc"st,-MJN; 7/8, F-4 
SimuWion, M/N=7/8',T-.-4

Number of queues (K)

Figure 17. Saturation throughput as a function of AT.

Average delay (in time slot)

100

10

Theoretical, K = 2 
Simulation, K = 2 

Theoretical, K = 3 
Simulation, K = 3 

Theoretical. K = 4 
Simulation, K = 4 

Theoretical, K = S 
Simulation, K = 5

Number of queues (K) . - - '  0.4
0.2

o.e
Output load

Figure 18. Delay as a function of normalized output load with MIN = 3/4 and F=  3.
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Average delay (in time slot)

100

10

Theoretical, K = 2 
Simulation, K = 2 

Theoretical, K = 3 
Simulation, K = 3 

Theoretical, K = 4 
Simulation, K = 4 

Theoretical, K = 5 
Simulation, K = 5

Number of queues (K) Output load

Figure 19. Delay as a function of normalized output load with MIN = 5/8, F  = 4.

4.5.2 Convergence o f Saturation Throughput as N  Increases

During the theoretical analysis, it is assumed that both N  and M  are very big numbers. 

Then the question is how big the value of N  should be so that the theoretical analysis is 

valid. Figures 20 and 21 illustrate the convergence of the saturation throughput as the 

increment of N  under different values of MIN and F  for switches with two and four FIFO 

multicast queues per input port, respectively. The dash lines show the corresponding 

theoretical saturation throughput. One can see that the saturation throughput converges 

to its asymptotic value as N  increases and it remains fairly constant for N  > 80 in all 

scenarios. This result indicates that the analytical results are indeed valid for practical 

switches that lie in the upper end (N  > 80) of the size scale. It should be noticed that we 

can only claim that the theoretical and simulated saturation throughputs are very close to 

each other. It is hard to justify which one is bigger.
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Figure 20. Saturation throughput as a function of //w ith  K  = 2.

0.95

M/N = 3/4, F = 4
0.9

3Q. M/N = 5/8, F = 4.c

8n
0.85

M/N = 3/4, F = 2co
8

M/N = 1/2, F = 4

0.75

0.7
100 120 1400 20 40 60 80

N

Figure 21. Saturation throughput as a function of N  with K = 4.

4.5.3 Performance Improvement by Increasing K

In high-speed packet switches, high performance is pursued twofold. From the 

packet transmission point of view, the packets arriving at their input ports should be 

delivered to the corresponding output ports as efficiently as possible, i.e., high throughput 

and small delay are expected. On the other hand, from the scheduling overhead point of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52

view, the time used to make scheduling decisions should be as short as possible, 

especially for very high-speed switches with very short time slots. By increasing K, the 

throughput and delay performance can be improved. However, as the increment of K, the 

scheduling overhead increases since each queue needs to be scanned. The number of 

queues per input port should be a trade-off between the throughput and delay 

performances and the scheduling overhead. Therefore, this subsection is going to 

investigate how the throughput and delay performance is improved by increasing K.

0.9

K 0.8

0.7

S  0.6

M/N = 5/8, F = 2 
M/N = 5/8, F = 4 
M/N = 3/4, F = 4 
M/N = 3/4, F = 6

0.5

0.4
8 9 101 2 3 4 5 6 7

Number of queues (K)

Figure 22. Saturation throughput as a function of K.

0.1
M/N = 5/8, F = 2 
M/N = 5/8, F = 4 
M/N = 3/4, F = 4 
M/N = 3/4, F = 6■3 0.08

0.06

»  0.04

2nd 3rd 4th 5th 6 th 7th 8th 9th 10th
The k-th queue

Figure 23. Saturation throughput increment by adding the k-th queue.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



53

The theoretical saturation throughput as a function o f K ( K  = 1, 2 , 1 0 )  is shown in 

Figure 22. The increased saturation throughput by adding the fc-th (k  = 2, 3, 10)

queue is illustrated in Figure 23. One can see that the increment of saturation throughput 

by adding the &-th queue is significant when k  is small. The performance improvement 

introduced by addition queues becomes less and less sensible as new queues are added 

although the saturation throughput keeps increasing as K  increases. This observation is 

further confirmed by the simulation study to the delay performance. Figures 24 and 25 

plot the average delay as a function of output load for an 80 x 128 switch under a 

constant fanout size of two and a 96 x 128 switch under a constant fanout size of six, 

respectively. The curve of average delay shifts to right as the increment of K, which 

indicates the improvement of the delay performance. Similar to the saturation throughput 

performance, the delay performance is improved significantly by adding new queues 

when K  is small, and the benefit becomes less and less as K  increases. Considering the 

scheduling overhead, the reasonable number of queues would be a small number, which 

is much less than 2N -  Using the equations given in the previous part of this chapter, 

the necessary number of queues can be calculated based on saturation throughput and/or 

delay requirements.

1000

K = 2 -H— 
K = 4 -H— 
K = 8 — 

K= 16 - v -

■o
o>

0 0.2 0.4 0.6 0.8 1
Output load

Figure 24. Delay as a function of normalized output load 

for an 80 x 128 switch with F  = 2.
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Figure 25. Delay as a function of normalized output load 

for a 96 x 128 switch with F  = 6.

4.5.4 Contention at the Input Ports

The performance of a switch is also impacted by how much the traffic gathers among 

input ports, i.e., the ratio of M to N. The theoretical saturation throughput as a function of 

K  under different values of M/N  is illustrated in Figure 26. With a given number of 

queues, the saturation throughput decreases as the ratio of M  to N  decreases. The 

simulated average delay as a function of output load is plotted in Figure 27. The delay 

performance is also degraded as the ratio of M  to N  decreases, which is consistent with 

the degradation of the saturation throughput performance. This result can be explained as 

follows. With a given N, the number of available inputs in each round is smaller when 

the traffic gathers at fewer input ports. Considering that one packet at most can be 

scheduled for transmission at an input port in each time slot, it is not surprising that the 

performance is degraded as the ratio of M  to N  decreases.
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Figure 26. Saturation throughput as a function of K  with F=  4.
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Figure 27. Delay as a function of normalized output load with N  = 128, F = 4, and K  = 8.

4.6 Summary

In this chapter, using the model of M/G/l  and queueing theory, the performance of a 

large M x N multicast switch with multiple FIFO queues per input port were theoretically 

analyzed. A model of Markov chain was proposed to analyze the availability of an input 

after a certain number of iterations’ competition for service. The closed-form 

expressions for saturation throughput, average service time, and average delay were
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deduced. Extensive simulations were performed to further verify the theoretical analysis. 

These closed-form expressions can be used to decide the necessary number of queues per 

input port according to the design requirements on saturation throughput and/or delay.

Based on both theoretical and simulated numerical results, several observations were 

concluded. Firstly, in terms of the saturation throughput and the average delay, the 

performance of a multicast switch can be significantly improved by increasing the 

number of queues per input port when the number of queues is small. However, the 

improvement drops quickly as the increment of the number of queues. Therefore, a small 

number of queues, which is much less than 1N -  1, are a reasonable choice for the 

tradeoff between the saturation throughput and delay performances and the scheduling 

overhead. Secondly, due to the input contention, the performance of a multicast switch 

decreases when the traffic gathers among fewer input ports. Thirdly, the analytical 

results are indeed valid for practical large-sized switches.
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CHAPTERV

INTEGRATION OF UNICAST AND MULTICAST SCHEDULING 

WITHIN ONE SWITCHING FABRIC

Packet queueing and scheduling have been extensively studied in the context of either 

pure unicast traffic or pure multicast traffic. Unfortunately, the results from a study in 

one context are not applicable to the other context. The design of integrated scheduling 

for both types of traffic remains an open issue. This chapter deals with the problem of 

integrating unicast and multicast scheduling in an N  x N  input-queued packet switch with 

first in first out buffers. Instead of using isolated switching fabrics for unicast and 

multicast traffic respectively, one switching fabric is efficiently utilized for both unicast 

and multicast traffic by a careful design. In the design, each input port maintains a set of 

unicast queues based on virtual output queueing technique and a set of multicast queues 

based on a load-balance policy [4]. Two practical integration algorithms, loosely slot- 

coupled integration algorithm (/SCIA) and fully slot-coupled integration algorithm 

(/SCIA) are proposed. Both theoretical analysis and simulation studies suggest that the 

proposed integrated scheduling algorithms exhibit a promising performance in terms of 

throughput, delay and packet loss ratio, at different traffic compositions.

This chapter is organized as follows. Section 5.1 specifies the switch architecture, the 

traffic models, and the performance metrics. /SCIA and /SCIA are proposed and their 

properties are discussed in Section 5.2. The theoretical analysis on the selection of 

multicast service ratio is presented in Section 5.3. Section 5.4 provides the simulated 

performance analysis. Finally, a brief summary is given in Section 5.5.

5.1 Switch Architecture and Traffic Models

5.1.1 The Switch Architecture

The proposed switch model is an input-queued switch shown in Figure 28. Two sets
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of queues are organized separately at each input port. For unicast traffic, VOQ technique 

is deployed; for multicast traffic, a small number of FIFO queues are allocated at each 

input port, which is based on the research results achieved in Chapter III. Unicast 

packets are assigned to the proper queue according to their destinations. The task of 

assigning multicast packets to the appropriate queues is not straightforward since the 

number of multicast queues (K) is much smaller than the number of possible destination 

vectors. In this paper, possible destination vectors are partitioned into K  groups based on 

the load-balance policy [4] such that output load is equalized across groups. Each group 

is associated with a multicast queue. An incoming multicast packet is assigned to one of 

the multicast queues according to its destination vector. Such an assigning policy assures 

in-order packet deliver. The input buffer size is a finite. Once the input buffer is full, the 

new incoming packet will be dropped. The switching fabric is an N  x N  multicast switch 

fabric with a speedup of one.
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Figure 28. Switch architecture for hybrid traffic.
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5.1.2 Traffic Models

The input traffic consists of both unicast and multicast traffic, which are mixed 

together with a certain arrival rate ratio. Given an input i, the link arrival rate is denoted 

as At; the arrival rates of unicast and multicast traffic are denoted as Aj.u and /t,.m, 

respectively. We have

where Pu represents the probability that an arrival packet is a unicast packet.

If Ai = Aj, V /,/' e [1, N], the traffic is uniform traffic and the average input arrival

1 Nrate, A, equals to Ai. Otherwise, the input traffic is non-uniform traffic and A — — ^ A (. .
N  ,-=i

Let Au and Am be the average unicast and multicast arrival rates, respectively, then

The fanout size of a multicast packet, F, is a random variable uniformly distributed 

within [Fmin, Fmax]. The F  destined output ports of a multicast packet are randomly 

selected among all output ports with equal probability. The total number of possible

chosen among all possible fanout sets. Let E[F] be the average fanout size, then

Output load is proportional to the corresponding traffic arrival rate. Due to the 

uniform distribution of packet destinations, there is no need to distinguish which output 

port it is. The output load is denoted as ju, and the unicast and multicast output loads are 

denoted as jUu and jum, respectively. The following relations hold:

(63)

fanout sets, Nfv, equals to ^  . The fanout set of a multicast packet is randomly
f=Fnm \ f  )

(64)

Pu = K*

Pm =AmxE[F],

P = Pu +Pm = A x p« + A x ( l - P u)xE[F] .  

Only admissible traffic is considered, i.e., 0 < A < 1 and 0 < / / < ! .

(65)

(66)

(67)
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Two traffic scenarios are used to evaluate system performance:

• Bernoulli (uncorrelated) arrival: At an input port i, in each time slot, the 

probability that a new packet arrives is equal to which is independent of any 

other time slot.

• Bursty (correlated) arrival: At each input link, busy burst and idle burst occur in 

turn. A busy burst is a sequence of consecutive busy time slots (with packets 

arriving). An idle burst is a sequence of consecutive idle time slots (without a 

packet arriving). As a random variable, the length of a busy burst, b, follows 

geometrical distribution with a mean of E[b]; the length of an idle burst follows 

geometrical distribution with a mean of (1 / 2, -  1) x E[b] at an input port i.

5.2 Integrated Scheduling within One Switching Fabric

The integrated scheduling algorithm logically includes unicast scheduling, multicast 

scheduling, and the integration strategy.

5.2.1 Unicast Scheduling and Multicast Scheduling

With the proposed integrated scheduling algorithms, unicast and multicast scheduling 

utilize the advances in the research of unicast and multicast scheduling algorithms, 

respectively. In order to achieve a good performance, there are two standards in selecting 

unicast and multicast scheduling algorithms. Firstly, both unicast and multicast 

scheduling algorithms need to achieve an effective performance in their own scheduling 

domain. Secondly, the selected unicast and multicast scheduling algorithms can be 

integrated smoothly. The well-known unicast scheduling algorithm /SLIP [32] achieves 

100% throughput and exhibits a solid delay performance for uniform Bernoulli and 

bursty unicast traffic. Therefore, /'SLIP is chosen as the base of unicast scheduling. 

Unicast scheduling consists of multiple iterations, each of which includes three steps:

Step 1: Unicast request. Each unicast VOQ at each unmatched input port sends a 

request to the corresponding output port if  there is a HOL packet.

Step 2: Unicast grant. At each unmatched output port, if  one or more requests are 

received, the one originated from the input port that is closest to the highest priority 

pointer of a round-robin schedule is granted and a grant is sent to the corresponding input
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port. Its highest priority pointer is moved to one location beyond the granted input port if 

and only if  the grant is accepted by that input port in the next step of the first iteration.

Step 3: Unicast accept. At each unmatched input port, if one or more grants are 

received, the one issued by the output port that is closest to the highest priority pointer of 

a round-robin schedule is accepted and the corresponding output port is notified. The 

highest priority pointer is moved to one location beyond the accepted output port. This 

input port is matched with the accepted output port.

Regarding multicast scheduling, WBA performs well and is simple to implement in 

hardware [44]. However, WBA only works for switches with one multicast queue and 

therefore suffers HOL blocking. A variation of WBA, weight based algorithm for  

multiple multicast queues (WBA-MQ), is adopted as the base of multicast scheduling. 

Multicast scheduling consists of multiple iterations, each of which has three steps:

Step 1: Multicast request. At each unmatched input port, the weight of the HOL 

packet in each non-empty multicast queue is sent together with multicast request to all its 

destined output ports.

Step 2: Multicast grant. At each unmatched output port, if one or more requests are 

received, the one with the maximal weight is granted and a grant is sent to the 

corresponding input port. Ties are solved randomly.

Step 3: Multicast accept. At each unmatched input port, if one or more grants are 

received, all the grants belonging to the HOL packet with the highest granting percentage 

are accepted. The granting percentage is a ratio of the number of grants to the remaining 

fanout size. This input port is matched with all the output ports that issue the accepted 

grants.

5.2.2 Loosely and Fully Slot-Coupled Integration Algorithms: ISCIA and fSCIA

Briefly speaking, the integrated scheduling procedure proposed in this chapter works 

as follows:

1) Decide the multicast service ratio (,Sm), which is indicated by the probability that a 

time slot is identified to schedule multicast traffic first. Such a time slot is called 

a multicast slot. A time slot identified to schedule unicast traffic first is called a 

unicast slot.
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2) At the beginning of each time slot, tag the time slot as either a multicast slot or 

unicast slot with the following probabilities:

Pr {unicast slot} = 1 -  Sm,

Pr {multicast slot} = Sm.

3) In a unicast (multicast) slot, unicast scheduling and multicast scheduling are 

coordinated together while unicast (multicast) scheduling has higher priority.

Tag current slot. 
done = - l ;
if current slot is a unicast slot, then

while (there is unmatched input/output ports) and (done != 0)
Unicast request 
Unicast grant 
Unicast accept
done = number of matches in this iteration 

end
done = -1;
while (there is unmatched input/output ports) and (done != 0)

Multicast request 
Multicast grant 
Multicast accept
done = number of matches in this iteration 

end 
else

while (there is unmatched input/output ports) and (done != 0)
Multiast request 
Multicast grant 
Multicast accept
done = number of matches in this iteration 

end
done = - l ;
while (there is unmatched input/output ports) and (done != 0)

Unicast request 
Unicast grant 
Unicast accept
done = number of matches in this iteration 

end 
end

Figure 29. The pseudo codes of /SCIA.

Assuming that the traffic pattern is stable for a switch during a specific period, Sm can 

be determined before scheduling. The value of Sm is chosen within [0, 1] where different
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values result in different performance. The selection of Sm and its impact on the 

performance are going to be discussed in Section 5.3. Here, we assume that Sm has been 

properly chosen.

The way to implement the coordination between unicast and multicast scheduling is 

called integration strategy. One intuitive way is the loosely coupled integration strategy. 

In unicast (multicast) slots, firstly finish all unicast (multicast) iterations; and secondly 

perform multicast (unicast) iterations to use the unmatched input ports and output ports. 

Based on this strategy, we propose /SCIA. Its detail procedures are shown in Figure 29.

Considering that both unicast and multicast scheduling consist of multiple iterations 

and both unicast and multicast iterations consist of three steps: request, grant, and accept, 

an alternative way to implement the third step is the fully coupled integration strategy. 

During each iteration, unicast and multicast requests, grants, and accepts are performed 

together. Based on this strategy, we propose /SCIA, which includes the following steps:

Step 1: Tagging slot. Tag current time slot as either a unicast slot or a multicast slot 

randomly based on Sm.

Step 2\ Request. At each unmatched input port, every non-empty unicast VOQ sends 

a unicast request to the corresponding output port. Each non-empty multicast queue 

sends the weight of HOL packet together with multicast requests to all destined output 

ports of that HOL packet.

Step 3: Grant. At each unmatched output port, in a unicast (multicast) slot, one 

unicast (multicast) request is granted with higher priority. One multicast (unicast) 

request will be granted only if there is no unicast (multicast) request. If a unicast 

(multicast) request is granted, a unicast (multicast) grant is sent to the corresponding 

input port.

Step 4: Accept. At each unmatched input port, in a unicast (multicast) slot, unicast 

(multicast) grants belonging to a queue are accepted with higher priority. Multicast 

(unicast) grants are accepted only if  there is no unicast (multicast) request. Input port is 

matched with all the output ports that issue the accepted grants.

Step 5: Iterate step 2 ~ step 4 until there is no unmatched input/output ports, or the 

number of matches during the last iteration is zero.
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Figure 30. A snapshot of a 3x3 switch at the beginning of a time slot.

Table 5. Matches that are set up during a multicast slot with /SCIA.

Iterations Matched Input Matched Queue Matched Output
1st 0 MQ0 0

0 MQ0 1
2nd 2 u q 2 2

Table 6. Matches that are set up during a unicast slot with /SCIA.

Iterations Matched Input Matched Queue Matched Output
1st 1 UQi 1

2 u q 2 2
2nd 0 MQ0 0
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Table 7. Matches that are set up during a multicast slot with f  SCIA.

Iterations Matched Input Matched Queue Matched Output
1st 0 MQo 0

0 MQo 1
2 u q 2 2

Table 8. Matches that are set up during a unicast slot with /SCIA.

Iterations Matched Input Matched Queue Matched Output
1st 0 MQo 0

1 UQi 1
2 u q 2 2

An example o f the matches set up by running /SCIA and /SCIA is given as following. 

A snapshot of a 3x3 switch at the beginning of a time slot is shown in Figure 30. At each 

input, there are one multicast queue and three unicast queues. Assuming that the HOL 

packet at MQo of input 0 has a higher weight than the HOL packet at MQo of input 2, the 

matches that are set up during a multicast (unicast) slot with /SCIA (/SCIA) are shown in 

Tables 5, 6, 7, and 8, respectively.

5.2.3 Properties oflSCIA and fSCIA

In this subsection, we discuss some desirable properties of two slot-coupled 

integration algorithms, proposed in the previous subsection.

Property 1: Maximal match. A set of maximal matches between input ports and 

output ports is found, i.e., no more matches can be made without removing existed 

matches belonging to that set.

Property 2: Distributed scheduling. Both of them are distributed scheduling 

algorithms. Each input/output arbitrates independently of other inputs/outputs. So 

arbitrations can be made at different inputs/outputs in parallel. With /SCIA, in a unicast 

iteration, since an output/input receives at most A  unicast requests/grants, the complexity 

of unicast granting/accepting is 0(A). Therefore, the complexity of a unicast iteration is 

0(A). With /SCIA, in a multicast iteration, since an output receives at most K  multicast 

requests and an input needs to select a multicast HOL packet among at most K  multicast

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66

HOL packets, the complexity of multicast granting/accepting is 0(K). Therefore, the 

complexity of a multicast iteration is 0(K).  With /SCIA, in an iteration, an output 

receives at most (N + K) requests and an input needs to select one HOL packet among at 

most (N + K) HOL packets, the complexity of granting/accepting is 0 (N  + K). Therefore, 

the complexity of an iteration is O(N + K). Requests, grants and accepts can be 

performed in parallel so that the scheduling overhead is much less than the centralized 

scheduler.

Property 3: Convergence. Both of them converge in at most N  iterations. Because 

both unicast iteration and multicast iteration will stop when the number of matches in the 

last iteration is zero or there is no unmatched output port, the slowest convergence 

procedure is setting up one match per iteration. Considering that at most N  matches will 

be set up, the number of iterations will be no bigger than N. Specially, with /SCIA, 

unicast and multicast requests, grants, and accepts are integrated at the level of iteration 

and performed in parallel. Therefore, /SCIA is expected to converge faster than /SCIA.

Through extensive simulation study of various traffic patterns and switches with 

different sizes, we observed that (1) the average number of iterations in /SCIA is no 

bigger than log2(/V), and the average number of iterations in /SCLA is no bigger than 

2xlog2 (A); (2) /SCIA always converges faster than /SCIA. For instance, with /SCIA and 

/SCIA, we show the simulation results for a 16 x 16 switch under Bernoulli traffic and 

bursty traffic with E[b] = 32, respectively. With output load varying within (0, 1), the 

average numbers of iterations are shown in Figure 31, where multicast output load is 

fixed as 69.5% of the output load. For the given output load (0.9 for Bernoulli traffic and 

0.8 for bursty traffic), with jum/ju varying from 0.1 to 0.9, the average number of iterations 

are shown in Figure 32. We can see that under different traffic loads and different traffic 

compositions,/SCIA always converges approximately 50% faster than /SCIA.
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Figure 31. Average number of iterations as a function of normalized output load 

with uniform traffic, Pu = 70%, jum/ju = 69.5%, Fmin = 2, Fmax = 6, and K  = 4.
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Figure 32. Average number of iterations as a function of n J n  

with uniform traffic, Fmin = 2, Fmax = 6, andK=  16.

Property 4: Fair resource allocation. Unlike the scheme proposed in [2], which 

always gives higher priority to multicast scheduling, a parameter, Sm, is provided in the 

design to adjust the allocation of scheduling priority between unicast and multicast
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traffic. The larger the value of Sm, the more switching fabric resource is allocated to 

multicast scheduling. The switching fabric resource allocation between unicast and 

multicast traffic can be adjusted by adjusting the value of Sm. Considering that juJ ju 

represents the percentage of multicast traffic in terms of output packets, in /SCIA and 

/SCIA, the closer to juJ ju the value of Sm , the more fair. However, simply let Sm equal to 

/J.Jfi, 100% throughput cannot be assured. The selection of Sm is further discussed in 

Section 5.3.

5.2.4 Algorithms fo r  Performance Comparison

As what was discussed in Section 2.3, three integration schemes based on sharing one 

switching fabric have been proposed. The integration schemes proposed in [2] and [25] 

cannot achieve 100% throughput. With the scheme proposed in [2], the saturation 

throughput linearly decreases from 1 to 0.5 as jum increases from 0 to 0.4. When jum is 

bigger than 0.4, switch becomes unstable because multicast queues become unstable. 

With the scheme proposed in [25], under the Bernoulli traffic assumed by the authors, the 

saturation throughput is less than 0.8. In the following subsections, it is going to be 

shown that both /SCIA and /SCIA can achieve 100% throughput under different traffic 

compositions with various percentages of multicast traffic. Therefore, the performances 

of /SCIA and /SCIA are obviously better than those two schemes. By logically splitting a 

multicast packet into unicast copies and storing them in the corresponding virtual output 

queue at each input port, MSM [38] can achieve 100% throughput. Then, from the 

saturation throughput point of view, /SCIA and /SCIA perform the same as MSM. In the 

following subsections, it is going to be shown that /SCLA and /SCIA also perform better 

than MSM in terms of delay and packet loss ratio.

Besides MSM, a random integration algorithm (RIA) is introduced for performance 

comparison. RIA also consists of request, grant and accept. At each unmatched input 

port, every non-empty unicast VOQ sends a unicast request to the corresponding output 

port, and every non-empty multicast queue sends multicast requests to all destined output 

ports of the HOL packet. At each unmatched output port, if there are one or more 

requests, one of them is granted randomly and a grant is sent to the corresponding input 

port. At each unmatched input port, the received grants are associated with the
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corresponding unicast virtual output queues and multicast queues, respectively. One of 

those queues that have one or more than one grants is selected randomly. The grants 

belonging to the selected queue are accepted and this input port is matched with the 

corresponding output ports that issue those accepted grants. The above procedure iterates 

until there are no unmatched output/input ports, or the number of matches during the last 

iteration is zero. RIA is expected to have worse performance compared with /SCLA and 

/SCIA. By comparing their simulated performance, the performance improvement 

introduced by adopting /SLIP for unicast scheduling and WBA-MQ for multicast 

scheduling is illustrated.

In addition, in order to compare the performance of /SCIA and /SCIA with the 

scheme that separates unicast and multicast traffic in different fabrics, non-coupled 

integration algorithm (NCIA) is introduced. NCIA is a time-division variation of the 

integration approach using isolated switching fabric. One switching fabric is shared by 

unicast traffic and multicast traffic based on the traffic composition, i.e., Sm = jum / ju. In 

unicast (multicast) slots, the switching fabric is used to transmit unicast (multicast) 

packets only. At the beginning of each time slot, tag the current time slot as either a 

unicast slot or a multicast slot randomly. In a unicast (multicast) slot, perform iterations 

of unicast (multicast) request, unicast (multicast) grant, and unicast (multicast) accept 

repeatedly, until there is no unmatched output/input or the number of matches during the 

last iteration is zero. With the scheme that separates unicast and multicast traffic in 

different time slots, some outputs may be idle, since in unicast (multicast) slots, multicast 

(unicast) packets are not transmitted, even if  there are unmatched inputs and outputs after 

unicast (multicast) iterations. Its performance is expected to be worse than /SCIA and 

/SCIA. Through simulations, in Section 5.4, the performance improvement gained by 

coupling unicast and multicast scheduling in each time slot is demonstrated.

5.3 The Multicast Service Ratio in a Time Slot

In this subsection, the working interval of Sm is analyzed and the selection of Sm is 

discussed.
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5.3.1 Working Interval o f Sm

For a given traffic pattern, switching performance varies as the value of Sm varies 

from one to zero. Since multicast scheduling cannot achieve 100% throughput, the 

switching system may become unstable when Sm belongs to some interval, even if the 

incoming traffic is not overloaded. For a specific traffic pattern, the working interval of 

Sm is defined as a subset of [0, 1] such that the saturation throughput is no less than the 

output load when the value of Sm falls into this interval.

Before proceeding, we define the following notations:

• Mu,Mm The unicast matching rate and the multicast matching rate in

unicast (multicast) slots. The matching rate is defined as the number of unicast or 

multicast matches over the number of output ports, N.

* Hm-sat- The saturation throughput of a multicast scheduling algorithm for pure 

multicast traffic (Pu equals to 0).

Under the assumption of uniform input traffic, when the throughput of the switching 

system is not saturated, we have

(1 -  S J  x E[Mu ] + Sm x E[M'U ] = 4 ,  (68)

(1 - S m) x E [ M m] + x E[Mm] = Am x E[F]. (69)

Also, due to the assumption that the speedup of switching fabric equals to one, the four 

matching rates must follow the following inequalities.

E[MU]<\,  (70)

E [ M J < j u m_satx ( \ - E [ M u]), (71)

E[Mm] <Pm-sat, (72)

E[M'U] <1 -E [M 'J .  (73)

Recall that traffic is admissible. Thus,

Au +AmxE[F]<  1. (74)

In multicast slots, after finishing the multicast traffic scheduling, especially if 

multicast scheduling is concentrative [44], the number of unmatched input ports is more 

than the number of unmatched output ports. By employing VOQ, the remaining

unmatched output ports could be fully utilized by unicast scheduling. The throughput
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capacity of switching fabric indicates the maximum throughput that can be achieved for a 

given type of traffic. Considering that unicast scheduling algorithm, which is /SLIP in 

this paper, can achieve 100% throughput, the throughput capacity of switching fabric for 

unicast traffic in a multicast slot ( £ “ ) is given by

C = ( l  ~E[M'J) .  (75)

Similarly, in unicast slots, the throughput capacity o f switching fabric for unicast traffic 

in a unicast slot ( )  is given by

£ = 1 .  (76)

Therefore, as to the throughput capacity of switching fabric for unicast traffic (£«),

£  = ( l - S J x  g  +Smx C = l - S m+Smx ( l - E [ M m ]). (77)

Combining (68), (70), (73), and (77), we have Au < d;u. This means that the incoming 

unicast traffic can always be transmitted within a bounded number of time slots for any 

Sm e[0,l] .  Put another way, the switching system becomes unstable only when the 

multicast traffic load exceeds the throughput capacity of switching fabric for multicast 

traffic (&,).

Due to the HOL blocking in multicast scheduling, the throughput capacity of 

switching fabric for multicast traffic in a multicast slot ( )  is given by

C = / W  (78)

In unicast slots, although the number of unmatched input ports equals to the number of 

unmatched output ports, the random occupancy of output ports by unicast scheduling 

decreases the concentration of multicast scheduling. Accordingly, the throughput 

capacity of switching fabric for multicast traffic in a unicast slot ( £ “) follows the 

following relationship:

C < » m-saM  1 - £ [ M J ) .  (79)

Considering that = Sm x + 0  ~ Sm ) x , (78), and (79), we have

t . * S mx Mm-sat + (1 ~ S J x  Vm-sat x (1 -  E[Mu ]), (80)

(81)

Clearly, Thus, J;m is a non-decreasing function of Sm and it achieves its
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maximal value when Sm equals to 1. During the decrement of £m, the switching system is 

stable until the multicast output load exceeds £m. Consequently, the working interval of 

Sm could be expressed as (Smmin, 1], where Smjnin is determined by several factors, for 

instance, traffic pattern, multicast scheduling algorithm, and the interaction between 

unicast scheduling and multicast scheduling. Next, it is going to derive the upper bound 

and lower bound of Smjnin.

From (69) and (71), we have

AmxE[F]-SmxE[Mm]
o - s j

Similarly from (68) and (73), we have

1 -  E[MU ] < 1 Xu-  Sm x E M̂* 1. (83)
1 —

Considering that jum_sat e (0,1), (72), (82) and (83), we have

m -sa t V r*m -sa t

Therefore, the lower bound of Sm min, Sm mi„jow, is given by

c
m min low

o,
M m -sa t

*mxE[F]- jum_satx ( l - A J
(85)

otherwise.

As what was mentioned previously, the switch is stable if  multicast output load is no 

bigger than the throughput capacity of switching fabric for multicast traffic, i.e.,

AmxE[F]<4m. (86)

Considering (81), the switch must be stable when

*mx E [ F ]< Su x ^ sar (87)

Therefore, the upper bound of Sm min, Sm_mi„_up, is

1, K * E [ F ] > n m_sat\
A x E[F] , . (88)
— ---------- , otherwise.

F m  sat

In conclusion, as to the working interval of Sm, we have

m minjow ’ 1] — m_min * 1] — (*̂ m_min_up ’ ̂ 1 • (89)

C
m m i n u p
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where (Sm_mi„_Up, 1] is named as the working interval’s upper bound, and {Sm_minj ow, 1] is 

named as the working interval’s lower bound.

1

Analysis: Upper Bound — 
Simulation: ISCIA —I— 
Simulation: fSCIA - a -  

Analysis: Lower Bound —*—
0.8

0.6

\
0.4

0.2

0
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Output Load

Figure 33. Smjni„ as a function of normalized output load with uniform 

Bernoulli traffic, Pu = 70%, Fmin = 2, Fmax = 6, and K  = 4.
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Simulation: fSCIA —B— 
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Figure 34. Sm mi„ as a function of normalized output load with uniform 

bursty traffic, E[b] = 32, Pu = 70%, Fmin = 2, Fmax = 6, and K =  16.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



74

The above analysis on working interval’s upper and lower bounds only applies to 

uniform traffic, because /SLIP is assured to achieve 100% throughput only for uniform 

traffic. Both /SLIP and WBA are designed for uniform traffic and their performances are 

evaluated under the assumption of uniform traffic in [32] and [44], respectively. 

Therefore, /SCIA and /SCIA are mainly proposed for uniform traffic and 100% 

throughput is theoretically guaranteed only for uniform traffic. However, the idea of 

coupling unicast and multicast scheduling together in one time slot could be extended to 

design integration algorithms specifically for non-uniform traffic. In addition, for non- 

uniform traffic, the performances of /SCIA and /SCIA are evaluated through simulations 

and the results are given in Section 5.4.

For a given traffic pattern, by running simulations with Sm varying within [0, 1], 

Sm min can be identified. The simulation results for a 16 x 16 switch are collected. 

Figures 33 and 34 plot the theoretical upper and lower bounds of Smjni„, and the 

simulation values of Smmj„ for Bernoulli traffic and bursty traffic, respectively. The 

simulation values of Smjni„ for /SCIA and /SCIA are almost overlapped with each other. 

If Sm falls into areas I and II, switch is stable; if  Sm falls into areas III and IV, switch is 

unstable. We can observe that the simulated value of Sm mi„ is very close to the 

theoretical value of Sm_mi„_Up when output load equals to 1.

5.3.2 Selection o fS m

According to the aforementioned analysis, Sm_mi„_Up increases as A increases for a 

given traffic pattern, which includes the traffic scenario (Bernoulli or bursty), E[b\, Pu, 

Fmin, and Fmax. Recall that we only consider admissible traffic, /u equals to 1 when A 

reaches the maximal value, Amax. For a given traffic pattern, the intersection of working 

intervals’ upper bounds under different values of A equals to the working interval’s upper 

bound when A equals to Amax, i.e., (Sm_min Up(Amax), 1]. As long as the selected Sm falls 

within that intersection, with theoretical guarantee, the switch can achieve 100% 

throughput. Two examples of such an intersection as a function of /ujfj. are given in 

Tables 9 and 10. 100% throughput can be achieved for different traffic compositions 

with the percentage of multicast traffic varying from 0.1 to 0.9 through selecting an Sm 

within the corresponding intersection.
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Table 9. Intersection of working intervals’ upper bounds as a function of /um/ju 

with uniform Bernoulli traffic, Fmi„ = 2, Fmax = 6, K  = 4, = 0.956, tV= 16.

fJ f 0.1 0.3 0.5 0.7 0.9
Intersection (0.11,11 (0.32,11 (0.53,11 (0.73,1] (0.94,11

Table 10. Intersection of working intervals’ upper bounds as a function of /xJ/j, with 

uniform bursty traffic, E[b\ = 32 Fmin = 2, Fmax = 6 ,K =  16, jum.sat -  0.935, N =  16.

0.1 0.3 0.5 0.7 0.9
Intersection (0.11,11 (0.32,11 (0.54,11 (0.75,1] (0.96,1]

It is clear that the bigger the value of Sm, the better the performance of multicast 

scheduling, and the worse the performance of unicast scheduling. In order to achieve fair 

resource allocation, Sm should be as close to juJ ju, which equals to 

(1 -  Pu) x E[F] /(Pu + (1 -  Pu) x E[F]), as possible.

From (88) and considering that ju = 1 when X = Xmax, we have

^ m  min up (A n ax  )

'm-sat ’
Mn, ^ (90)otherwise.

As we know, fim.sat < 1. Then, n J f i  £ {Sm min_up{Xmax), 1]. Simply let Sm be juJ ju cannot 

assure the switch achieves 100% throughput. Instead, Sm should be a value a little bigger 

than Sm min_up(Xmax) to assure both 100% throughput and fair resource allocation.

Through running extensive simulations under different traffic compositions, as we 

expected, both /SCIA and /SCIA achieve 100% throughput and bounded delay 

performance with Sm within the intersection of working intervals’ upper bounds, while 

100% throughputs cannot be achieved with Sm outside the union of working intervals’ 

lower bounds. Figures 35 and 36 show the average delay as a function of output load 

under different values o f Sm for Bernoulli and bursty traffic, respectively. Increasing Sm 

from a value outside working interval to a value inside working interval improves the 

delay performance significantly. However, the difference between the average delays 

under two different Sms within working intervals is very small, although the average 

delay does decrease as Sm increases.
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Figure 35. Delay as a function of normalized output load with uniform Bernoulli traffic, 

Pu = 90%, fjJfj, = 37%, Fmin = 2, Fmax = 6 ,K  = A, intersection of working intervals’ upper 

bounds being (0.388,1], and union of working intervals’ lower bounds being (0.107,1].
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Figure 36. Delay as a function o f normalized output load with uniform bursty traffic, E[b] 

= 32, Pu = 90%, fijfj, = 37%, Fmin = 2, Fmax = 6 ,K =  16, intersection of working intervals’ 

upper bounds is (0.392, 1], union of working intervals’ lower bounds is (0.205, 1].

5.3.3 The Impact o f jum.sat to Sm min up

For a given traffic pattern and a given A, Sm mi„_Up increases as jum-sat increases, which
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means the working interval can be enlarged by improving the saturation throughput of 

multicast scheduling. From (90), Sm min up(^max) is a non-decreasing function of jum.sat and 

Sm_min_up(Amax) equals to juJju when the value of Fm-sat reaches 1. Thus, as long as jum.sat is 

big enough, a value that is close to fjJfj. can be selected within the intersection of 

working intervals’ upper bounds.

The value of Fm-sat is determined by traffic scenario (Bernoulli or bursty), E[b], Fmin, 

Fmax, and K. Values of Fm-sat are gained for given traffic scenarios and K  through 

simulations. Tables 11 and 12 demonstrate the values of Fm-sat as a function of AT under 

uniform Bernoulli and bursty traffic, respectively. It is shown that Fm-sat can be enlarged 

to approach 1 by increasing the value of K.

Table 11. Fm-sat as a function of K  with uniform Bernoulli traffic,

Fmin ~' -̂>Fmax — 6, and N  — 16.

k 1 4 16 32 64
Fm-sat 0.873 0.956 0.987 0.993 0.997

Table 12. jum-sat as a function of K  with uniform bursty traffic, 

E[b] = 32, Fmin = 2, Fmax = 6, and N  = 16.

k 1 4 16 32 64
Fm-sat 0.721 0.835 0.935 0.964 0.977

5.4 Analytical and Simulation Results

Extensive simulations are performed for various traffic patterns, and switches with 

different sizes to verify the theoretical analysis and infer further conclusions. The 

simulation results are consistent with the theoretical analysis results. Because of the 

space limitation, only some typical results of a 16 x 16 input-queued switch are shown. 

All simulations have been fixed at one million time slots. Data are gathered for statistical 

elaboration during the last half million time slots. Unless specified otherwise, the input 

buffer size (L) is 5,000 packets for Bernoulli traffic and 100,000 packets for bursty
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traffic. This is to assure that the packet loss ratio is zero while evaluating the throughput 

and delay performance of algorithms that can achieve 100% throughput.

5.4.1 Performance o f Integration Algorithms

5.4.1.1 Uniform Traffic

Figures 37 and 38 show the average delays as a function of output load for /SCIA, 

/SCIA, NCIA, RIA, and MSM, under Bernoulli traffic and bursty traffic with E[b] = 32, 

respectively. By assigning Sm a value within the intersection of working intervals’ upper 

bounds, 100% throughputs are achieved by /SCIA and /SCIA with theoretical guarantee. 

On the contrary, with RIA or NCIA, the switch becomes unstable once output load 

exceeds a certain value less than 1, i.e., their saturation throughput is less than 1. 

Furthermore, average delays of f SCIA and /SCIA are always smaller than RIA and 

NCIA. In a word, in terms of throughput and delay, /SCIA and /SCIA perform better 

than RIA and NCIA. The performance improvement introduced by adopting /SLIP as the 

base for unicast scheduling and adopting WBA-MQ as the base for multicast scheduling 

is shown by the delay and saturation throughput differences between RIA and /SCIA 

(/SCIA). Similarly, compared with NCIA, the promising throughput and delay 

performance of /SCIA and /SCIA demonstrates the benefits of integrating unicast and 

multicast scheduling in one switching fabric.

As shown in [38], MSM can also achieve 100% throughput. From the saturation 

throughput point of view, MSM performs as well as /SCIA and /SCIA. However, under 

both Bernoulli and bursty traffic, the average delays of two slot-coupled integration 

algorithms are obviously smaller than the average delay of MSM no matter what the 

output load is. /SCIA and /SCIA exhibit better delay performance than MSM. This is 

not surprising. With MSM, a multicast packet is logically split into unicast copies and 

scheduled individually. Then the scheduling of multicast traffic is not concentrative. 

According to [44], this kind of scheme compromises the performance of multicast 

scheduling. However, with the slot-coupled integration algorithms, through queueing 

and scheduling unicast and multicast traffic separately, the merits of well-studied unicast 

and multicast scheduling algorithms and queueing policies could be captured so that both 

unicast and multicast scheduling can achieve good performances.
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Figure 37. Delay as a function of normalized output load with uniform 

Bernoulli traffic, Pu = 70%, jum/ju = 69.5%, Fmin — 2, and Fmax = 6.
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fSCIA, Sm = 0.90, k = 4 
ISCIA, Sm = 0.90, k = 4w 10000

0 0.2 0.4 0.6 0.8 1
Output Load

Figure 38. Delay as a function of normalized output load with uniform 

Bursty traffic, E[b\ = 32, Pu = 70%, n J f i  = 69.5%, Fmin = 2, and Fmax = 6.

From the packet loss ratio point of view, /SCIA and /SCIA also perform better than 

MSM, RIA and NCIA. The average packet loss ratios as a function of output load are 

illustrated and compared in Figures 39 and 40. The input buffer size is fixed at 100
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packets for Bernoulli traffic and 1000 packets for bursty traffic, respectively. The 

advantage of /SCIA and /SCIA in terms of packet loss ratio is obvious, which is 

consistent with the comparison result of saturation throughput and delay.

7
NCIA, k = 4 

RIA, k = 46 MSM □
fSCIA, Sm = 0.73, k = 4 
ISCIA, Sm = 0.73, k = 4

o
03
CC<o</)O

4

i 3
COQ. 2<uo>2 § 1 <

0

1
0.7 0.75 0.8 0.85 0.9 0.95 1

Output Load

Figure 39. Packet loss ratio as a function of normalized output load with uniform 

Bernoulli traffic, Pu = 70%, f i j fx  = 69.5%, Fmtn = 2, Fmax = 6, and L = 100.
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fSCIA, Sm = 0.75, k = 64 
ISCIA, Sm = 0.75, k = 64
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0 0.2 0.4 0.6 0.8 1
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Figure 40. Packet loss ratio as a function of normalized output load with uniform 

bursty traffic, E[b\ = 32, Pu = 70%, = 69.5%, Fmin = 2, Fmax = 6, and L = 1000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



82

Additionally, two groups of simulations are run with two given output loads, 

respectively, where the percentage of multicast traffic varies from 0.1 to 0.9. The 

average delays under Bernoulli traffic and bursty traffic are shown in Figures 41 and 42, 

respectively. We can observe that the average delays of /SCIA and /SCIA are always 

smaller than that of MSM, RIA, and NCIA. This result further illustrates the 

performance advantage of the slot-coupled integration algorithms under variant traffic 

compositions.

NCIA, n = 0.9 
RIA, n = 0.9 

MSM, n = 0.9 
fSCIA, Sm = 0.90, n = 0.9 
ISCIA, Sm = 0.90, u = 0.9 

NCIA, n = 0.4

1000

£ 1000

100
O)

0 0.2 0.4 0.6 0.8 1
Multicast output load / Output load

Figure 41. Delay as a function of nJfJ. with uniform Bernoulli traffic, 

Fmin ~ 2, Fmax — 6, and K  — 4.

1e+0

|10000
F
c
*1000J20)Q| 1000 

I
100

10

NCIA, u = 0.8 -  
RIA, u = 0.8 -  

MSM, u = 0.8 -< 
fSCIA. Sm = 0.90. u = 0.8 ' 
ISCIA, Sm = 0.90. u = 0.8 -  

NCIA. u = 0.4 -  
RIA. u = 0.4 -  

MSM, u = 0.4 -  
fSCIA. Sm = 0.60. u = 0.4 -  
ISCIA. Sm = 0.60, u = 0.4 -  -« e>

10 0.2 0.4 0.6 0.8
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Figure 42. Delay as a function of fijfj. with uniform Bursty traffic, 

E[b\ = 32, Fmin = 2, Fmax = 6, and K  = 16.
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5.4.1.2 Non-uniform Traffic

The non-uniform traffic model adopted in simulations is as follows: one of the N  

inputs, for instance input i, has a higher link arrival rate than others, and the other inputs 

have equal link arrival rates. Let Q  represent the ratio of 2, to Aj, where j  * i. Figures 43 

and 44 plot the average delay and packet loss ratio as a function of output load for non- 

uniform bursty traffic with an i? o f  two. Although /SCLA and /SCIA are mainly proposed 

for uniform traffic, compared with other integration algorithms, they still perform better, 

i.e., smaller average delay and less average packet loss ratio are achieved under a given 

traffic pattern.

NCIA, k = 4 - e -  
RIA, k = 4 —I— 

MSM —B— 
fSCIA, Sm = 0.90, k = 4 
ISCIA, Sm = 0.90, k = 4

100000

10000
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0 0.2 0.4 0.6 0.8 1

Output Load

Figure 43. Delay as a function of normalized output load with non-uniform Bursty 

traffic, Q =  2, E[b] = 32, Pu = 70%, [iJ/j, = 69.5%, Fmin = 2, and Fmax = 6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



84

NCIA, k = 4 
RIA, k = 4

MSM □
fSCIA, Sm = 0.90, k = 4 
ISCIA, Sm = 0.90, k = 4

<d 10 o>

0 0.2 0.4 0.6 0.8 1
Output Load

Figure 44. Packet loss ratio as a function of normalized output load with 

non-uniform Bursty traffic, 1 2 -2 , E[b\ = 32, Pu = 70%, pm/p  = 69.5%,

Fmin = 2, Fmax = 6, and L = 1000.

5.4.2 Performance Improvement by Increasing K

Based on the aforementioned analysis, the working interval decreases while the 

saturation throughput of multicast scheduling decreases. Under some traffic patterns, the 

working interval may even be an empty set, if  jum-sat is not big enough, which means that 

100% throughput cannot be achieved under any Sm. Therefore, in order to enlarge the 

working interval, jum-sat needs to be increased. The saturation throughput of multicast 

scheduling can be increased efficiently through increasing the number of multicast 

queues {K). Figures 45 and 46 illustrate the improvement of delay performance 

introduced by increasing the number of multicast queues for Bernoulli traffic and bursty 

traffic, respectively. For the given traffic composition, Sm is fixed at a value close to 

juJ ju. The average delays as a function of output load are plotted. At first, the average 

delay performance improves dramatically as K  increases. Once K  is big enough such that 

100% throughput is achieved, the improvement of delay performance is not significant.
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Figure 45. Delay as a function of normalized output load with uniform Bernoulli traffic, 

Pu = 70%, nJ/u = 69.5%, Fnan = 2, Fmax = 6, and Sm = 0.73.
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Figure 46. Delay as a function of normalized output load with uniform Bursty 

traffic, E[b] = 32, Pu = 70%, juJ jli = 69.5%, Fmin = 2, Fmax = 6, and Sm = 0.75.

The increase of the number of multicast queues leads to the decrease of the packet 

loss ratio, which is shown in Figures 47 and 48. The input buffer size is fixed at 100 

packets for Bernoulli traffic and 1000 packets for bursty traffic, respectively. Like the
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delay performance, the performance o f packet loss ratio improves significantly as the 

increase of A- at first. Once K  is big enough to achieve 100% throughput, the decrease of 

the packet loss ratio is almost negligible.

<0a
V)V)o

%<0Q_Q)o>2
I
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J  J
-1
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Figure 47. Packet loss ratio as a function of normalized output load with uniform 

Bernoulli traffic, Pu = 70%, /uj/u = 69.5%, Fmin = 2, Fmax = 6, and L = 100.
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Figure 48. Packet loss ratio as a function of normalized output load with uniform Bursty 

traffic, E[b] = 32, Pu = 70%, fijju  = 69.5%, Fmin = 2, Fmax = 6, and L = 1000.
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Furthermore, the saturation throughputs as a function of K  under different traffic 

compositions are shown in Figure 49. For a given n J ii, Sm is fixed at a value close to 

juJ ju. The difference between Sm and jum/ / j  is less than 10% of juJ ju. With the same 

traffic pattern and the same Sm, saturation throughput increases and converges to 1 as AT 

increases. If AT is big enough, 100% throughput can be achieved.
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Figure 49. Saturation throughput as a function of K  with uniform traffic,

Fmin = 2, Fmax = 6 for /SCIA and /SCIA.

5.5 Summary

This chapter analyzed the design challenges to efficiently support both unicast and 

multicast traffic within one switching fabric. Simply considering multicast as a special 

case of unicast would not allow queueing and scheduling to be scalable. Likewise, 

simply considering unicast as a special case of multicast would compromise the 

performance of unicast traffic. Two efficient integration algorithms were proposed for 

input-queued switches with FIFO queues. Based on the theoretical analysis to the 

working interval o f multicast service ratio, 100% throughput and a promising 

performance in terms of both delay and packet loss ratio can be achieved under variant

Bernoulli, \xj\i = 0.37, Sm = 0.4—$— 
Bernoulli, \ i j \ i  = 0.70, Sm = 0.73—1— 
Bernoulli, = 0.93, Sm = 0.97- s -  

Bursty, E[b] = 32, |Wn = 0.37, Sm = 0.4 * 
Bursty, E[b] = 32, \ij\i. = 0.70, Sm = 0 .73-v- 
Bursty, E[b] = 32, Mn/n = 0.93, Sm = 0 .97-#-
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traffic compositions. The analytical and simulation results show that the proposed 

integrated queueing and scheduling performs well in the present of diverse traffic 

patterns.

Since both unicast scheduling and multicast scheduling are based on algorithms 

designed specifically for uniform traffic, the two integration algorithms are proposed 

mainly for uniform traffic. However, the idea of providing separate queues for unicast 

and multicast traffic and coupling unicast and multicast scheduling in each time slot can 

be extended to design integration algorithms specifically for non-uniform traffic, which 

will be the future work.
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CHAPTER VI

CONCLUDING REMARKS AND FUTURE RESEARCH

This chapter summarizes main contributions and conclusions in Section 6.1 and 

presents possible future research directions in Section 6.2.

6.1 Concluding Remarks

The contributions of this dissertation are listed below.

• Deduced the closed-form expressions of saturation throughput, average service 

time, and average delay for a large N  x N  multicast switch with multiple FIFO 

queues per input port;

• Created a Markov Chain model to analyze the probability distribution function of 

residue size at the beginning of a time slot and generalized the theoretical analysis 

on saturation throughput, average service time, and average delay to the case of M  

x N  switches;

• Validated the theoretical analysis using a number of experimental data;

• Proposed two novel integrated scheduling algorithms, /SCIA and /SCIA, to 

integrate unicast and multicast scheduling within one switching fabric;

• Experimentally studied the performance of /SCIA and /SCIA and analyzed their 

properties.

The following conclusions are obtained through the research work presented in this 

dissertation.

• For a large N  x N  multicast switch with multiple FIFO queues per input port, a 

small number of queues (less than ten) are sufficient to achieve the sub-optimal 

performance;

• For a large M  x N  multicast switch with multiple FIFO queues per input port, a 

small number of queues (much less than 2N -  1) is a reasonable choice for the 

tradeoff between the saturation throughput and delay performances and the
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scheduling overhead;

• For a large M  x N  multicast switch, the final achievable saturation throughput 

decreases as the ratio of MIN decreases;

• The performance analysis results for N  x N  or M  x N  multicast switches are valid 

for practical large-sized switches;

• The proposed integration algorithm, /SCIA and /SCIA, can achieve 100% 

throughput with theoretical guarantee and exhibit promising delay and packet loss 

ratio performances under both uniform Bernoulli and uniform bursty traffic.

6.2 Future Research Directions

There are several ways to extend this research, which are briefly discussed below.

6.2.1 Extending Performance Analysis o f Multicast Switches to More General Cases

In order to facilitate the theoretical analysis onJVxJVorMxJVmul t icas t  switches 

with K  FIFO queues per input port given in Chapters III and VI, several assumptions are 

set up, some of which can be modified to extend the analysis to more general cases.

• Small-sized and medium-sized switches'. In the analysis given in Chapters III and 

VI, the switch size (N) is assumed to be a very large number. The closed-form 

expressions for saturation throughput and delay are not relevant to N. Through 

simulations, it is shown that the analysis results is valid when N  > 80. However, 

the experimental data also indicates that the saturation throughput drops obviously 

as N  increases when N  is not big enough (See Figures 4, 5, 20, and 21). By 

considering N  as a factor during the analysis, both saturation throughput and delay 

will be functions of N. As a result, the analysis results will be valid for any-sized 

switches instead of just large-sized switches.

• Finite queue size: In Chapters III and VI, the queue size is assumed to be infinite 

and all the queues are modeled as M/G/l queues. However, in the real-world 

switches and routers, the queue size is finite. Assuming that the queue size is K, 

the queues should be modeled as M/G/K queues. Then, in addition to saturation 

throughput and average delay, the close form expression for packet loss ratio also 

needs to be derived.
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• Non-random queueing policies and scheduling algorithms: In Chapters III and VI, 

it is shown that the saturation throughput and delay performance cannot be 

noticeably improved by adding more queues when K  is big enough. 100% 

throughput cannot be achieved especially when the value of MIN is small. 

Considering that random queueing policy and random scheduling algorithm are 

adopted, the performance can be further improved by choosing proper queue 

policy and scheduling algorithm. As what is discussed in Chapter II, queueing 

policies such as Majority [12] and LBQ [4] and scheduling algorithms such as 

MaxService [12] and GMSS [4] have been proposed to achieve promising 

performance for multicast traffic. The experimental results specified in Chapter V 

also suggest that WBA-MQ performs well for both Bernoulli and bursty traffic 

(See Tables 11 and 12). Analyzing multicast switches that deploy these policies 

and algorithms promises to be an exciting topic for future research.

• Non-uniform traffic: In Chapters III and VI, the multicast traffic is assumed to 

uniformly distribute among input and output ports. Nevertheless, in the real 

world applications, the traffic tends to be non-uniform. Thus analyzing system 

performances under non-uniform multicast traffic is very meaningful for the 

design of switches and routers that construct today’s Internet.

6.2.2 Designing Multicast Scheduling Algorithms for Non-Uniform Traffic

For unicast traffic, LQF [34], OCF [34], and LPF [36] are designed to achieve 100% 

throughput for both uniform and non-uniform traffic. On the contrary, current multicast 

queueing policies and scheduling algorithms are mainly proposed for uniform traffic. 

And their performance is evaluated only under the assumption of uniform traffic. The 

queueing and scheduling of non-uniform multicast traffic remains an open issue. As 

what is mentioned previously, non-uniform multicast traffic is typical in the real world 

applications. Therefore, the design o f queueing policy and scheduling algorithm for non- 

uniform traffic is an attractive direction for future research work. Here are some specific 

suggestions.

• Generally speaking, while pursuing high performance in terms of saturation 

throughput, delay, and packet loss ratio, this design also needs to assure stability,
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fairness, and starvation free.

• The multicast flows with different arrival rates should be evenly partitioned into 

input queues such that the output load of an input queue equals to each other.

• A certain number of flows with heaviest arrival rates should be split into different 

queues in order to mitigate HOL blocking.

• At an input port, the packets destined to the output ports with heavy output loads 

should be scheduled with higher priority. Meanwhile the packets destined to the 

output ports with light output loads cannot be starved.

• At an output port, the packets coming from the input ports with heavy input loads 

should be scheduled with higher priority. Meanwhile the packets coming from 

the input ports with light input loads cannot be starved.

• Scheduling decisions can utilize several system parameters as the reference, such 

as the queue length, the age of the HOL packet, the residue size of a HOL packet, 

and so on.

6.2.3 Theoretically Analyzing the Performance o f Integrated Unicast and Multicast 

Scheduling

The performance of the integration algorithms proposed in Chapter V is mainly 

evaluated throughput simulations. Although simulation is a very important and useful 

tool in the area of queuing and scheduling of switches, it will be more convincible if 

theoretical support can be provided. Furthermore, the closed-formed expressions of 

performance metrics can describe the performance of the integration algorithms more 

comprehensively than sampled experimental data. Thus, the next direction for this 

research will be deriving the probability characteristics of service time, saturation 

throughput, delay, and packet loss ratio of the integrated algorithms. The analysis is 

expected to utilize the MIG/ 1 or M/G/K model and the model of Markov Chain.
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