
PERFORMANCE ANALYSIS OF VIRTUAL PATH 
OVER LARGE-SCALE ATM SWITCHES 

BY 

TANG Oo 

A THESIS 

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF M A S T E R OF PHILOSOPHY 

DlVISION OF INFORMATION ENGINEERING 

T H E CHINESE UNIVERSITY OF HONG KONG 

DECEMBER 1 997 



^^^^ IR 1 6J^^;_J^3 

\ ^ UNIVERSITY"“̂ /M 
^̂ ^̂ IBRARY SYSTE1̂ 冬// ‘ 

^ ^ ^ ^ 



Abstract 

A quasi-static routing scheme, called path switching, implemented in the three-

stage Clos network has been proposed in [34]. It uses periodical connection pat-

terns at the central stage, input queueing at the first stage and output queueing 

at the last stage. Traffics are multiplexed on a virtual path in input modules, 

which consists of all the virtual connections from an input module to an output 

module. The throughput is limited by the first stage, if space-division switch 

module is used, and can be made arbitrarily close to 100% with large number 

of central modules. However, the loss probability due to output contention will 

also increase with the number of central modules. We propose a simple virtual 

path scheduling scheme to achieve high throughput while lowering loss proba-

bility. The key idea of our method is to schedule the arrivals at the last stage 

of virtual paths such that only a limited number of contenders will be allowed 

at any output at any time. The scheduling is fulfilled by logical partition and 

proper route assignment of virtual path, which will be discussed fully in chapter 

2. Compared with other methods, the scheduling scheme is more flexible to 

manage the virtual path. 

The performance of virtual path under scheduling scheme, including max-

imum throughput and concentration loss, is evaluated with the assumption of 
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independent and uniform traffic. The concentration loss will be reduced by the 

partition of virtual path. However, the maximum throughput will be degraded if 

the input stage is implemented by space-division switch. The maximum through-

put is obtained by simulation with various parameter settings. Several schemes 

such as look-ahead, input smoothing and complex buffer management are pro-

posed to improve the throughput. If memory switch is used at input stage, 

the throughput could be as high as 100% even with bursty traffic. However, 

the multiplexing gain will decrease when the virtual path is split, because less 

sources share buffer and bandwidth on a partitioned virtual path. The loss of 

multiplexing gain is estimated by assuming on-off sources at the input module. 

The path switch is both input and output buffered, and cells can be dropped 

at both stages. Two switching mechanisms, queue loss and backpressure mode, 

are assumed to study the buffer dimensioning and cell loss probability due to 

buffer overflow. The effect of backpressure upon the maximum throughput is 

obtained by simulation where the buffer is dedicated to each input and output 

port. The cell loss probability is compared under queue loss and backpressure 

mode with different buffer allocation among input and output. 
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大 規 模 A T M 交 換 機 上 的 虛 路 徑 性 能 分 析 

摘要：文獻[34]中提出的虛路徑交換是一種實現于三級0^08網絡 
上的准靜態交換方案。其中間級采用周期連接方式，第一級采用輸入緩 
沖，第三級采用輸出緩沖。從一個輸入模塊到一個輸出模塊的所有虛電路 
組成了一條虛路徑，這些虛電路在輸入級被复接到虛路徑上。如果第一級 
采用空分交換，流量會受到限制。如果有足夠的中間級模塊，流量能接近 
100%，但是輸出級由於碰撞產生的信元丟失率會隨之上升。我們提出一 
個簡單的虛路徑調度方案，可以減低踫撞丟失率，同時保持大的流量。方 
案的關鍵是如何安排到達最後一級的信元，使得僅有有限數目的踫撞能夠 
同時發生。這種調度由虛路徑的邏輯劃分和正確的路由分配完成。与其它 
方法相比較，這個方案可以更加靈活地管理虛路徑。 

針對于不相關和均句的業務，我們分析了虛路徑的性能，包括最大 
流量和踫撞丟失率。踫撞丟失率能夠被虛路徑的劃分減低，但是，最大流 
量會受到損失。不同參數的最大流量可由仿真得到，并且可以利用以下幾 
種方案對之加以改善，例如：前視，輸入端口擴展和內存管理等。如果第 
一級采用存儲交換，流量可以達到100%。然而，當虛路徑被分細時，复 
用增益會被降低，因爲在一條被分細的虛路徑上，共享內存和帶寬的信源 
數目減少了。 

對于輸入信號爲開-關信號的情況，我們估計了其复用增益的損失。 
因爲虛路徑交換機有輸入和輸出緩存，信元可能在輸入和輸出端被丟失。 
兩種交換模式：排隊丟失和反饋等待被用來硏究內存的設置和溢出槪率。 
通過仿真，我們得到了反饋等待對最大流量產生的影響。當輸入和輸出緩 
存采用不同設置時，我們比較了這兩種模式下的信元丟失率。 



Contents 

1 Introduction 1 

1.1 Background 1 

1.2 The Concept of Cross-Path Switching 8 

1.3 Contribution and Organization of Thesis 12 

2 The Virtual Path Scheduling Scheme 14 

2.1 The Trade-off Between Throughput and Concentration Loss . . 14 

2.2 Partition of Virtual Paths 19 

2.3 The Capacity and Route Assignment of Virtual Paths 21 

3 Performance Analysis and Simulation Results 28 

3.1 The Improvement of Concentration Loss 28 

3.2 The Throughput with Look-ahead Scheme 30 

3.3 The Throughput with Input Smoothing Scheme 34 

3.4 The Throughput with Bursty Source 37 

3.5 Buffer Dimensioning and The Cell Loss Probability Due to Buffer 

Overflow 38 

4 Capacity Assignment and Evaluation of Multiplexing Gain 47 

iv 



4.1 Principle of Capacity Assignment 47 

4.2 The Model of Virtual Path 49 

4.3 Capacity Assignment for CBR Service 51 

4.4 Capacity Assignment for Real-time V B R Service 53 

4.5 Capacity Assignment for Non Real-time V B R Service . . . , . . 55 

4.6 Capacity Matrix 56 

4.7 The Evaluation of Multiplexing Gain of Input Stage 58 

5 Discussions and Conclusions 64 

Bibliography 67 

V 



List of Figures 

1.1 The Concept of Virtual Channel and Virtual Path 2 

1.2 The Input Queueing Switch and Look-ahead Scheme 4 

1.3 Output Contention 5 

1.4 The Input-output Queueing Switch 5 

1.5 The Shared-buffering Memory Switch 6 

1.6 The Three-Stage Clos Network 9 

1.7 The Corresponding Bipartite Graph of Route Assignment . . . . 11 

2.1 Lower Throughput with 4 Central Modules 15 

2.2 Higher Throughput with 8 Central Modules 16 

2.3 The Relation Between Loading at Input Links and Central Links 17 

2.4 The Loss Probability vs. M/N and N with R=8 18 

2.5 The Architecture of the Batcher-R-banyan Knockout Switch . . 19 

2.6 Limited Contenders With Partition 21 

2.7 Partition of Virtual Paths 22 

2.8 The Bipartite Graph of Route Assignment to Clusters 23 

2.9 The Architecture of the Benes Network 24 

2.10 Divide a Benes Network into Sub-networks 25 

2.11 Convert A Benes Network into A Clos Network 26 

vi 



2.12 The Routing Constraint in Benes Network 27 

3.1 The Loss Probability vs. M|N for Various G with R = 8 29 

3.2 The Loss Probability vs. M|N for Various G with R = 9 30 

3.3 The Loss Probability vs. M|N for Various G with R=10 . . . . 31 

3.4 The Maximum Throughput vs. M/N for Various D 32 

3.5 The Integration of Input Modules in Clos Network 33 

3.6 The Maximum Throughput vs. w for Various D 34 

3.7 Idle Output Port with Look-ahead Scheme 34 

3.8 The Input Smoothing Scheme 35 

3.9 The Resequencing of Cells 36 

3.10 The Maximum Throughput under Backpressure Mode 40 

3.11 The Cell Loss Probability at Output Buffer 41 

3.12 The Total Cell Loss Probability vs. Input Buffer Size 42 

3.13 The Total Cell Loss Probability vs. Output Buffer Size 44 

4.1 The Model of Virtual Path 50 

4.2 The Required Bandwidth per Non Real-time Source with p 二 0.338 59 

4.3 The Required Bandwidth per Non Real-time Source with p = 0.5 60 

4.4 The Required Bandwidth per Non Real-time Source with Bs — 2 61 

4.5 The required bandwidth per real-time source 62 

5.1 The Architecture of the Batcher-R-banyan Knockout Switch . . 65 

vii 



Chapter 1 

Introduction 

1.1 Background 

Asynchronous Transfer Mode(ATM) is being developed by the ITU as part of 

the Broadband Integrated Services Digital Networks(B-ISDN) switching tech-

nology for future mixed telephone and data networks. B-ISDN is designed to 

provide subscriber communication services over a wide range of bit rates from 

a few megabits per second to several gigabits per second. In an ATM network, 

data is fragmented into cells before being sent on the transmission links. The 

motivation of cell-based network is to: (a) support multiple types of services; 

(b) reduce the number of transmission networks; (c) provide easier support for 

multicasting; and (d) offer a better multiplexing scheme than ISDN for higher 

utilization of network sources. ATM operates in a connection-oriented mode. A 

logical/virtual connection is set up between end points and necessary network re-

sources(bandwidth and buffer) are reserved along the route. Each connection is 

characterized by a Virtual Channel Identifier(VCI) assigned at call setup. Since 
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Chapter 1 Introduction 

there may be large number of simultaneous connections between two end-points, 

a semi-permanent connection can be established between end-points to allow ef-

ficient and simple management of available resources. This virtual connection 

is known as virtual path and is identified by the Virtual Path Identifier(VPI). 

Cells of a source are identified by both VCI and VPI in their header, and are 

multiplexed with cells of other sources on a virtual path which may traverse 

several physical links. The basic concept of virtual channel and virtual path is 

illustrated in figure 1.1. Even the state of individual virtual circuits may change 

quickly from time to time, the state of virtual path will keep quasi-static because 

of the superposition of traffic. This makes it possible that the reconfiguration 

of virtual path is relatively less frequent. 

n ^ ^ ^ ^ ^ ^ g 
™ |:;\ ；' V / iM、、乂 v ^ ™ 
Workstation Workstation 

广 ‘ 一 、 、 

� y 

,一 —~~~ 

, � 
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\ . / ( �. / \ I \ 
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: ) • Physical link ( ^ ^ Switching node 

0 0 Viirtual path Virtual Channel 

Figure 1.1: The Concept of Virtual Channel and Virtual Path 
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Chapter 1 Introduction 

At intermediate switching nodes, cells are stored and forwarded to individual 

outlet according to the local routing information established at call setup. The 

Quality of Service(QOS) of each connection, such as cell loss rate, maximum 

cell transfer delay and peak-to-peak cell delay variation, must be satisfied at 

switches. It may happen that many cells simultaneously arrive at a buffer, 

causing congestion or buffer overflow, or many cells are destined to the same 

output link, causing output contention. Those cells congested at the buffer 

will suffer from queueing delay; and those which can not be stored or have lost 

contention will be dropped. The typical value for cell loss probability ranges from 

10_8 to 10_u [51]. These requirements challenge the performance of switches 

in terms of throughput and cell loss probability. In addition, the switch must 

be high-speed and large-scale to keep up with the command of ever-developing 

services and networks. 

A lot of switch architectures have been studied, which can be classified into 

two classes: space-division switch and shared-buffering memory switch. The 

space-division switch is made up of cross points(2 x 2 switching elements), and 

can be further divided into three types by queueing discipline: input queueing, 

output queueing and input-output queueing. 

An input queueing switch architecture is shown in figure 1.2. A separate 

bufFer is placed at each input port and cells wait at the buffer for access to 

the output port. If the input bufFer is served first-in first-out(FIFO), then the 

throughput is limited to 0.586 due to the head of line blocking under uniform 

traffic [17] [23]. An example is shown in figure 1.2. At input port 1, the first 

cell can not be cleared because it loses contention with the first cell at input 

port 3. Then the next cell destined for output 2 is blocked by it even that the 
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Figure 1.2: The Input Queueing Switch and Look-ahead Scheme 

output 2 is idle at this time slot. The throughput can be increased by relaxing 

the strict first-in first-out discipline of input buffers, e.g., incorporating a look-

ahead contention resolution scheme. During a time slot, the first w cells in each 

input queue will sequentially contend for idle output ports, till a cell in the queue 

is selected or the contention resolution process repeats w times. The parameter 

w is the look-ahead window size. If the look-ahead contention resolution scheme 

is used, the second cell of input 1 to output port 2 will not be blocked and can 

be selected to transmit at the look-ahead step 2. The analysis and simulation 

results of throughput as a function of w can be found in [17] [33]. 

The output queueing switch, such as the well-known knockout switch [24 

and Batcher-R-banyan network with output expansion(Starlite) [33] [44], gives 

the best performance in terms of throughput and delay. In a knockout switch, 

for example, each output port can accept R simultaneous arrivals where R is 

the group size. It is possible that more than R cells contend the same output 

port. In that case, the excess ones will be dropped immediately. This is known 
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Figure 1.3: Output Contention 

as output contention. An example is shown in figure 1.3, in which five cells 

contend for port 0. Since the group size is equal to two, three of the cells are 

dropped. One output port can be dedicated a buffer, or several output ports can 

share a buffer to achieve higher efficiency and lower overflow probability [43 . 

0 I I | 3 | 2 h - . . . . — I I I I 1 0 

1 I I 11 丨2 h - • •::::: : - • . — I I I 丨丨 1 

2 I I |4 |l I~-•" ' "：：#— I I I I I 2 
• , . , , • • • • . ' • ' • , ,  

N-1 丨 7 丨 2 — — N-1 

input buffers switch infrastructure output buffers 

Figure 1.4: The Input-output Queueing Switch 

The input-output queueing switch shown in figure 1.4 has been studied in 

7] [21] [40] [50]. If the switch operates at S times the input link rate, more 

than one cells can be cleared from an input port in one time slot to alleviate 
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the head of line blocking. A maximum of S cells can be switched to one output 

port at a time slot and S is called speed-up factor. Output buffer is needed to 

accommodate arrivals, because only one cell can be transmitted to output link 

in a time slot. If S is less than the number of input ports, input queues are 

needed to avoid cell loss, since it is possible that more than S cells at input 

buffers are destined to one output port. Arrivals that can not be delivered will 

wait at the input buffer for retry in the next time slot instead of being dropped. 

As illustrated in figure 1.4, two head-of-line cells to output port 2 can be cleared 

at one time slot with speed-up factor of 2, and excess ones have to wait at the 

input buffer. Likewise, we can place input buffer to an output-expansion switch 

to store cells which can not be accepted at output port. Also there may be some 

sharing among input or output buffer to lower cell loss rate. The input-output 

queueing switch can reach high throughput with speed-up or output expansion. 

o j \ n n / t " 
1 — X Shared X — i 
2 — M U X > - Buffer _<^DMUX 一 ^ 

Z Memory \ ^ 

N-i — y ^ ( S B M ) X ^ ^ - N - i 

input ports output ports 

Controller 

Figure 1.5: The Shared-buffering Memory Switch 

The architecture of shared-buffering memory switch is illustrated in figure 1.5 

10] [14] [54] [62]. Incoming ATM cells are time-multiplexed in the MUX block 

and stored in the shared buffer memory(SBM). Physically all stored ATM cells 

share the whole memory, but a separate queue is formed logically for each output 
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port, thereby realizing the self-routing function. Every cell is written into its 

corresponding logical queue and read out from the SBM, demultiplexed in the 

DMUX block to output port. Since a separate queue is formed for an output 

port, there is no head of line blocking, so the throughput can be as high as 

100%. The buffer is shared by all output ports, thereby achieving efficient buffer 

utilization and small cell loss ratio. However, the access speed of memory is 

proportional to the switch size and transmission speed, since the memory must 

be read and written by all input and output ports during a time slot. Thus 

the operating speed is the bottleneck for a large-scale and high-speed memory 

switch. 

Because the physical size of switch module is constrained by the VLSI tech-

nology and the processing speed of a central controller, they can be inter-

connected to construct large-scale, multistage switch network such as Clos net-

work [8], Benes network [4] and Cantor network [5] etc. Due to the stochastic 

characteristics of traffic, routing in a switch may change at every time slot. The 

routing assignment is on a slot-by-slot basis according to the global information 

of arrivals at the switch. Therefore the processing speed of central controller 

is a bottleneck which severely restricts the growth of switch size and speed. In 

addition, the Quality of Service(QOS) of virtual connections can not be guar-

anteed in most of switches. On the other hand, the opposite of dynamic routing 

is static routing such as circuit switch, in which the routing pattern of switch 

is not changed on the fly. However, the efficiency of resource utilization is low, 

because peak rate is reserved and dedicated to a source so that there is no mul-

tiplexing. Especially under multimedia environment in which the sources are 

of multirate, the non-blocking condition is stringent by static routing in circuit 
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switch. A distributed routing scheme-path switching has been proposed by Lee 

34] to handle the above issues. 

1.2 The Concept of Cross-Path Switching 

The cross-path switch proposed in [34] is a large-scale ATM switch architecture 

which adopts quasi-static routing scheme in the three-stage Clos network. As 

shown in figure 1.6, the three-stage Clos network has M modules at the central 

stage and K modules at each outer stage. The size of each input (output) 

module is N x M {M x N), where M/N > 1 is defined as the expansion factor. 

The input(output) links of central modules are called central links from now on. 

At any time, a central module can be assigned to an input-output module pair 

only once, and there are up to M alternative routes between any input-output 

module pair. Instead of routing all arrivals with a central controller on the fly, 

the routing could be implemented in a distributed manner over three stages of 

the Clos network. 

The cross-path switching uses predetermined, periodical connection patterns 

in the central stage, input queueing in the first stage, and output queueing in 

the last stage. The connection patterns of central modules are repeated in each 

frame, which consists of F consecutive time slots. A virtual path between an 

input module and an output module comprises all virtual circuits connecting 

them. The scheduling of path switching involves capacity assignment and route 

assignment of all virtual paths between input and output modules. Since a max-

imum of M cells can be switched from an input module by central stage in a 

slot, the total free capacity is M. The required service rate of virtual path form 
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M-1 
Figure 1.6: The Three-Stage Clos Network 

input module i to output module k, 0 < Xi,k < M cells/slot, is determined by 

the stochastic characteristics of the aggregate traffic multiplexed on it and their 

QOS, which will be discussed later in chapter 4. The capacity assignment is to 

find Ci,k subject to Ci,k > Xi,k and E[lo^ Ci,k = Ek=o^ Ci,k = M by a certain 

criterion. The assigned capacity of virtual path, Ci,k, is defined as the average 

number of cells that can be delivered by central stage at a time slot, or the aver-

age number of central modules assigned to the virtual path at a slot. However, 

Ci,k may not be integer after capacity assignment. Since the connection pattern 

of virtual paths is repeated in frames, the service discipline is like weighted round 

robin with period F. If ei’k, the number of tokens during a frame is known, Ci,k, 

the average service rate of virtual path is equal to ei,k|F. Then we only need to 

find ei,k subject to Cî k/F > \i,k and E[lo^ ^i,k : T>k=o e(k = FM, which can be 
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formulated as an optimization problem. As long as F is large enough, ei’k can 

be approximated by integers and the round-ofF error is negligible. The capacity 

of virtual paths during a frame could be written in the form of a matrix E as 

follows: 

/ \ 
eo,o eo,i . . . eo,/<-i 

ei,o ei i . . . ei K-i 
E = 

• • • • 
• • • • 
• • • • 

乂 ̂ K-1,0 ^K-1,1 . . . ^K-lJ<-! y 

Each element of matrix E denotes the number of central modules assigned 

to the virtual path. Because capacity is reserved for each virtual path, the QOS 

at path level is guaranteed. 

The route assignment is to determine the connection pattern of all the central 

modules in each time slot after capacity assignment, i.e., the number of central 

modules assigned to a virtual path is known. If the Clos network at F time 

slots are put together to construct one large Clos network with FM central 

modules, the route assignment is equivalent to determine the routing pattern of 

FM central modules at one instant given the input-output pair connections. It 

is fulfilled by the edge-coloring of a regular bipartite graph with degree FM [35 . 

This point is illustrated in figure 1.7 which represents the connection patterns 

of central modules in figure 1.6. Nodes on the left denote the input modules and 

nodes on the right, the output modules. The number of edges joining two nodes 

is equal to the capacity of the virtual path during a frame. All the adjacent FM 

edges at a node are colored with FM distinct colors, each of which represents 

a central module at a certain time slot by time-space interleaving principle [34]. 

Color 0 , 1 , . . . , M — 1 represent central modules at time slot 0; color M, M + 
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1 , . . .， 2 M - 1 represent time slot 1; . . . ; color ( F - l ) M , ( i ^ - l ) M + l , . . . ， F M _ 1 

represent time slot F — 1. Once the color of each edge is known, the connection 

pattern of central modules at each time slot is determined by the time-space 

interleaving principle. 

input modules output modules 

" ^ ! “ 
• • V 
^ \ ： 

K-1 鲁 • K-1 

Figure 1.7: The Corresponding Bipartite Graph of Route Assignment 

Knowing the connection pattern of central modules, the input modules will 

select matched cells waiting at input buffer and deliver them to the central stage, 

where cells will be switched to their destined output module by predetermined 

routes. The output module will handle the contention among arrivals and route 

them to individual output port. Therefore the routing is distributed among all 

the input and output modules, without the involvement of central controller. 

This makes large-scale ATM switch built on modules possible, since routing is 

not the bottleneck any more. 
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Chapter 1 Introduction 

1.3 Contribution and Organization of Thesis 

Up to now, the "width" of virtual path is defined by the physical parameters 

of Clos network, e.g., N, M and K. Once these parameters are fixed, it is im-

possible to manage the virtual path flexibly. However, the restriction is relaxed 

by logical partition of virtual path and the "width" of those sub-paths could be 

variable. This is the virtual path scheduling scheme proposed in the next chap-

ter. The performance of path switch including throughput and concentration 

loss probability, has been studied in [34]. A trade-off between throughput and 

concentration loss rate is revealed that they will both increase with the number 

of central modules. In the next chapter, it will be illustrated that by proper 

route assignment of partitioned virtual path, the issue is solved by the virtual 

path scheduling scheme which can lower concentration loss rate while keeping 

throughput high. It is flexible to meet different cell loss requirement while the 

implementation is rather simple. 

With the virtual path scheduling scheme, the improvement of concentration 

loss is analyzed by knockout principle. The maximum throughput is obtained 

numerically and several methods to improve it are discussed in chapter 3. These 

results could be used for optimization of switch design. With different parameter 

settings, the cell loss probability at input and output buffer is obtained by 

simulation. Given the number of buffer budget, a proper allocation among 

input and output should be performed according to the feedback strategy and 

maximum throughput. The buffer dimensioning under backpressure and queue 

loss mode, are compared in chapter 3. 

If the switch size is fixed, the larger is N, the smaller is K, and the number 
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of virtual path per input module, which is equal to K, is smaller too. With 

larger input(output) module size, the efficiency of resource utilization is im-

proved because more virtual circuits are multiplexed on the virtual path and 

share capacity. It seems that the module size should be as large as possible to 

achieve high efficiency. However, how much is the multiplexing gain improved 

by increasing module size? It is possible that the multiplexing gain rise quickly 

with the module size within a certain range. Beyond the range, the improvement 

is marginal. If this is true, the module size should not be as large as possible, 

because the cost rises sharply with the size. Even there may not be an optimal 

solution, it is still of significance to evaluate the multiplexing gain of virtual 

path, which is presented in chapter 4. 

w 
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Chapter 2 

The Virtual Path Scheduling 

Scheme 

2.1 The Trade-off Between Throughput and Con-

centration Loss 

The modules at the first stage are input-buffered switches, which will store the 

arrivals that can not be cleared immediately. The throughput is mainly limited 

at the first stage due to the head of line blocking. To alleviate the head of 

line blocking, the look-ahead arbitration is performed to select those packets 

whose addresses match with the connection pattern at that time slot. The first 

w cells at input buffer will contend for idle output ports sequentially during a 

contention resolution cycle. It is possible that no matched cell can be found 

after searching the whole window in all the input buffers of an input module, so 

the central links assigned to the virtual path are wasted. Obviously, the deeper 
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is the look-ahead search, the higher is the throughput. When the window size w 

tends to infinity, the throughput approaches 100%. However, the window size is 

limited by the speed of processor and the improvement of throughput is trivial 

after w is beyond a certain value [17 . 

The maximum throughput of the first stage is also a monotonic increasing 

function of the expansion factor M/N. Because the arbitration of cells at the 

first stag is based on their output module, the number of virtual paths of each 

input module equals to the number of output modules under uniform traffic. 

For constant K, more routes could be assigned to a virtual path if more central 

modules were provided. This is equivalent to channel grouping method which 

expands the number of output ports of a physical address. The throughput 

surges up since the head-of-line blocking is alleviated and more cells destined 

for the same output module can be delivered at the same time. A full discussion 

of this point and the specific analysis could be found in [43 . 

^ 1 2 --. <f to output module 1 

~ ~ ~ ^ . . • • . • . . . • .>< : 
1 2 1 , ' ' 么 to output module 2 

,•• 
1 1 1 1 1 •', 

^ 0 1 '• . -7 to output module 3 

,,,......••••••• •••••'' 
3 3 3 “ to output module 0 

4X4 input module 
Figure 2.1: Lower Throughput with 4 Central Modules 

An input module is shown in figure 2.1, with size of 4 x 4. If the number 

of output modules, K, is also 4, then there is only one central module assigned 

to a virtual path in one time slot under homogeneous traffic. Maximum of 1 
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, - r to output module 1 

n 2 2 "--... ....'' 
u "• •-...---•' ,^ to output module 1 

, . - - ' ' • • • • - • - . . - / ' 
. - - ' ' ' .-•' "^ to output module 2 

1 1 1 — “ ..'•' 
i . ,- ' ' to output module 2 

••''' .T^ to output module 3 
9 0 1 — : . .• . .• 

L ^ . . - ' ' ' to output module 3 

, , - - ' ' ' to output module 0 
0 o o _ _ - ' 
� � � to output module 0 

4X8 input module 

Figure 2.2: Higher Throughput with 8 Central Modules 

cell can be delivered to one output module through the path, so the first cell 

at input link 1 has to wait for retry because it loses contention with input link 

2. If the input module size is altered to 4 x 8 as in figure 2.2, then two central 

modules will be assigned to a virtual path at one time slot, so that both the 

two head cells can be carried on the path simultaneously. The throughput of 

the first stage can be arbitrarily close to 100% with large number of central 

modules. However, the loss probability due to contention at the last stage may 

also increase with M. This trade-off has been discussed in [34], which is fully 

revealed in the follows. 

Modules in the last stage are output buffering with group size R, the maxi-

mum number of cells that can be accepted by an output port in one time slot. 

Since cells in input modules are selected independently, it is possible that a num-

ber of cells with the same destination address find their way to the output port 

simultaneously. Each output module will resolve the contentions among cells 

destining for the same output port, and those losing contention will be dropped 

on the floor. In the worst case, there are M contenders at the last stage, and 

M — R of them would be dropped. 
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For the sake of simplicity, we assume that the traffic loading on each link of 

central modules is uniform and independent. Let pout be the loading on each 

central link and pin be the loading on each input link of an input module, then 

they are related by: 

pout = J^ • pin (2.1) 

/ P o u t = N M Pin\ 

^ f _ \ 
Pin H — — — (1-Ploss ) Pin 

— N X M = = M X N — ^ ^ 
Figure 2.3: The Relation Between Loading at Input Links and Central Links 

According to the Knockout principle [24], the loss probability Pioss is given 
by 

Pioss = 丄 . E ( Z - i ^ P f l ( ^ ^ m - ^ ^ ) ^ (2.2) 
P^n i=R+i \ ^ J 丄、 丄、 

二 丄 . v ( / - i ^ ) P f ) ( ^ y ( i - ^ ) w (2.3) 
P^ , 么 、 ) \ " � M ) � M) 

Given that the input loading of 0.8 and group size of 8，the loss probability 

as function of the expansion factor and module size is shown in figure 2.4. It 

can be observed that Pioss increases with the module size quickly, for the same 

M/N, the loss probability varies in a wide range with different N. For each 

value of N, the loss probability rises sharply with respect to M/N, when M!N 
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Group size=8 input loading=0.8 
10—6 1 t t I I I I- 

% • • 
• • • 

lf^^^. o / - /N=4 ^ ^ ‘ ； 

1 � � / / : / ； 

1Q-101 1 I I I 1 ！ 1  
0 1 2 3 4 5 6 7 8 

Expansion Factor M/N 

Figure 2.4: The Loss Probability vs. M / N and N with R = 8 

is less than a certain threshold; beyond the threshold, then 乃讓 rises slowly. 

For example, Pioss is 5 x 10~® as M 二 12 and N = 8, while it rises to 10"^ if 

M : 64 and N — 32. From the above analysis, it seems that there are only 

two approaches to lower the output contention: either reduce N and M/N{i.e. 

smaller module size) or enlarge group size R. However, for a constant switch 

size, reducing N would significantly increase K, the number of input(output) 

modules , and consequently the central module size will be large. The number of 

virtual path per module is also rising with K, which will degrade the throughput 

34] and result in poor statistical multiplexing gain of virtual paths(it will be 

analyzed later in chapter 4). The latter is not economical because it would 

bring greater complexity to output modules. Raising R by 1 means to place one 

more N x N banyan network in a Batcher-banyan knockout switch architecture 

shown in figure 2.5, or increase the buffer access speed of a memory switch by 

1. Furthermore, once the switch is built, M , N and R can't be altered any 
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longer. A virtual path scheduling scheme is proposed here to reduce output 

contentions. It could satisfy different cell loss requirements with great flexibility 

while achieving desirable high throughput. 

~ ^ l 1 ^ K r ^ _ ^ ^ ^ 7 f \ ^ ^ 
1 1 — ^ ^ / ~ b a n y a n . \ / . MUX J > ^ ~ 

— 了口 W^ "̂""̂ ^W^^^ 
； MxM _ ^ = 5 ^ MxM I ^ \ ^ _ k\ , / M ^ , 1 
： Batcher R+i [ ^ reverse R+i\~~“ banyan ^~"y ~~̂  Mux^  
; sorting banyan \ ： _ _ ^ _ ^ " \ J \ ^ ^ 
• network concentrator : \ . : }\K : 

：I ： W V \ ^ 
M-1 • PI • - banyan • • MUX ^>- 

^ 1 • (R-1) 1̂  ^ ^ 

Figure 2.5: The Architecture of the Batcher-R-banyan Knockout Switch 

2.2 Partition of Virtual Paths 

It is well known that the output contention is due to unscheduled concurrent 

arrivals. Contention resolution could be performed at input- queueing switch, 

where blocked cells have to wait at input buffer for re-entry so that no contention 

occurs at output ports. But the case is different for output queueing, which 

allows cells with the same destination to arrive simultaneously. Path switching 

is the combination of input queueing and output queueing, with predetermined 

and repeated route assignments of every virtual path. Input modules choose 

suitable cells according to their destination. Excess cells that current route 

can't carry have to wait for re-entry at later time slots. In this sense, the 
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virtual path is able to schedule cells, i.e., decide whether to deliver them or not. 

However, the current virtual path is so "wide" that a number of contenders can 

pass through it at the same time. The key idea of the virtual path scheduling 

scheme is to partition the virtual path into sub-paths such that only a limited 

number of contenders would arrive at an output port simultaneously and the 

output contention could be alleviated. 

In order to partition a virtual path, we logically divide an output module into 

G "virtual" modules, each of them consists of N!G output ports, assuming that 

MjG and N|G are integers. Those output ports in the same virtual module will 

be called an output "cluster". Thus, a virtual path is defined as the connection 

between an input module (physical) and an output virtual module. That is, we 

split one original virtual path into G sub-paths. G — 1 and G 二 N are two 

extreme cases. G = 1 is the case of the original path switch without division; 

G 二 N means that a cluster comprises only one output port. We assume that 

the capacity of central stage is equally distributed among G clusters, such that 

each of them is assigned M|G central modules in every time slot(This is fulfilled 

by the route assignment presented in the next section). As a result, arrivals 

at the last stage are scheduled and the number of contenders at each output 

port is limited to M!G. The idea is illustrated in figure 2.6, in which an 6 x 2 

output module with R 二 2 is split into two 3 X 1 virtual ones. The number of 

contenders is limited to three, and consequently maximum of one cell per output 

port would be dropped at any time, compared to four without partition. 

Loadings from an input module to a cluster are multiplexed on the virtual 

path and served by assigned rate, as illustrated in figure 2.7. The connection 

patterns of central modules are known and repeated in a cyclic manner. Each 
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cells virtual modules 

i i r f ^  
^ r n _ L �� ^ ^ R=2 

• ^ T T � � �> e = 0 i K > 4 � � \ / / V \ ^ 、、，<• 

^ ^ • . 万 ： 、 … … . 

• 7 ^ - 丄 , / 、 = ^ �i 
•_L 丁 / 乂 R=2 

M - 4 ^ > ^ 
I f \ ‘ .L I 

D R O P P E D 
Figure 2.6: Limited Contenders With Partition 

input module selects those cells with desired cluster number which matches the 

connection pattern of central stage. 

2.3 The Capacity and Route Assignment of Vir-

tual Paths 

The capacity and route assignments of virtual paths follow the same procedure 

as that in the original path switch [34]. Capacity is assigned to each virtual 

path according to the aggregate traffic statistics from the input module to the 

cluster and their required QOS(Quality of Service). After capacity assignment, 

the number of central modules granted to virtual paths during a frame is known, 

the details will be postponed to chapter 4. There is an invisible border across the 

virtual paths which lead to the same physical module by logical partition. The 

capacity of a virtual path can not be used by others, even they are connected to 

one output module. However, the border can be broken if we need "wider" path 
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input buffers y ^ ^ ^ I  

^e>^ - ' 

z r i n ^ virtual paths 
input modules output module 

Figure 2.7: Partition of Virtual Paths 

to carry traffic. In this sense, the management of virtual path is rather flexible. 

The route assignment determines the connection patterns of central modules 

at each time slot. It is fulfilled, by coloring a bipartite graph shown in figure 2.8. 

The bipartite graph needs not to be symmetric any longer, which relaxes the 

constraints imposed by physical parameters. In figure 2.8, there are KG small 

nodes on the right, each of them represents a cluster and G small nodes enclosed 

by a circle form an output module. Input modules are indicated by the nodes on 

the left, whose degree is FM, as mentioned before. Notice that there are FM/G 

adjacent edges on each cluster, if capacity of central stage is equally distributed 

among clusters. Once the coloring is complete, each central module will know 

the virtual paths which it is assigned to at any time slot and establish proper 

connections for the virtual paths. 

However, in addition to the edge-coloring with FM colors, the scheduling 

of routes imposes extra constraint. Colors assigned to a cluster must be evenly 
22 
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input modules output modules 
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Figure 2.8: The Bipartite Graph of Route Assignment to Clusters 

distributed over the F time slots, so that only M/G central modules are assigned 

to a cluster at any time. The FM colors can be divided into F sets, set 0 = 

{ 0 , 1 , . . . , M - 1}, set 1 = { M , M + 1 , . . . , 2M — 1}, . . . , set F - 1 二 {{F — 

l ) M , {F — l)M + 1 , . . . , FM - 1}. Set i denotes the colors corresponding to 

time slot i according to the time-space interleaving principle. M/G colors must 

be elaborately chosen from each set for a cluster so that there are MjG central 

modules assigned in a time slot and consequently FM/G during a frame. 

A parallel algorithm, which does route assignment in a N x N Benes network 

35], can be used for coloring bipartite graphs. Given input-output connections, 

the status of all the switching elements of Benes network can be calculated 

with time complexity of O(log^ N). Since the connection patterns of M central 

modules of size KxK need to be determined, there are KFM connections during 

a frame. It will be shown in the follows that the connection patterns of M central 

modules will be determined by the route assignment in an KFM x KFM Benes 

network. 
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^ ¾ 
; 4 g ^ ^ O ^ ; 

Figure 2.9: The Architecture of the Benes Network 

A Benes network is constructed recursively with 2 x 2 switching elements as 

in figure 2.9. An N x N Benes network can be viewed as constructed by two 

N/2 X N/2 Benes subnetworks, which can be further divided into four N/4： x 7V/4 

Benes subnetworks. So the input links at the first stage can be routed through 

two subnetworks, then 4 subnetworks at stage 2 and so on. Then the Benes 

network could be viewed as consisting of central subnetworks sandwiched by 

two out stages as shown in figure 2.10. 

Property 1. The Benes network is isomorphic to a Clos network，by rear-

ranging some switching elements. Assuming that F, M, N, K are all power of 2， 

a KFM X KFM Benes network can be converted to a Clos network with FM 

central modules of size K x K and K input(output) modules of size FM x FM 

35:. 

24 



Chapter 2 The Virtual Path Scheduling Scheme 

： -.•• 

一 — j……》 ： ^ — 一 
： ： ： — • , », • — 

—\ / �':,-�/ ••.. '•'• \ — 
W V' i sub-network 00 V , M.  

I \ / i:"vi k/i \ = 
11 / \ • • •'•««»•««••»«««»_•*««««»«»«••••»»••••••»««»««•••»«•• • f, , \ / k 

> J = y |—二」—. f p | = > 
\Aui •‘''!. .v •• i y A /  

W^m 
Am :��{ sub-network 10 "-- /M  

- \M '':;lj U -
\ :.:• V sub-network 1 'i "：•： / Jf  

jnR….……i--X] �..i….…… 'A^ 
, . •! »' • • 

- ：..,’ ： I ••�/: — IK •‘.....丨 i ,._.:丨 y4'  
\ ..' •••. i sub-network 11 / •.. / 

\ ；•• \： ... •； / 

- 丨丨 丨 — 
— ： i ； — 

• • • • • • • • • • • • • • • • • • • • • • • • • * • • • • • • * • • • • • • • • • • • • • • * 

Figure 2.10: Divide a Benes Network into Sub-networks 

If the switching elements of two filling patterns in figure 2.9 are inter-changed 

together with their connected links, a Clos network will be resulted in, as shown 

in figure 2.11. From top to bottom, the FM central modules are sequentially 

numbered from 0 to FM — 1, the number of colors assigned to them. By the time-

space interleaving principle, the top M ones denote color set 0 which represents 

central modules at time slot 0; the second M ones denote color set 1 which is 

time slot 1; and so on. The number of connections established from input to 

output modules is equal to the capacity of the virtual path. To calculate the 

routes of these connections, we only need to know the routing information of 

switching elements of the isomorphic Benes network. Given the KFM input-

output connections, the status of each switching element of the Benes network 

in figure 2.9 can be determined by the parallel algorithm. By converting the 25 
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Figure 2.11: Convert A Benes Network into A Clos Network 

Benes network into a Clos network in figure 2.11, the connection patterns of 

FM central modules can be obtained, which is actually the routing information 

of M central modules at every time slot. At this step, the edges of the bipartite 

graph can be colored. 

To schedule the colors of a cluster over F time slots, another property of 

routing in Benes network is utilized. 

Property 2. Beginning with port zero, every F inputs(outputs) of one 

FMK X FMK Benes network are grouped into a “bunch” so that input(output) 

ports are partitioned into MK bunches. F Connections within a hunch will he 

scheduled in F different time slots. 

At any element of a Benes network, one of the two input links is routed 

through either of the two subnetworks at next stage. This is the constraint that 
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Figure 2.12: The Routing Constraint in Benes Network 

routing must abide by. Due to the construction principle of Benes network, the 

F connections within a bunch must be routed through F subnetworks at stage 

l0g2F. For example, the first four input links in figure 2.12 are routed to 2 

subnetworks first, with link 0, 2 to subnetwork 0 and link 1, 3 to subnetwork 1. 

At the second stage, subnetwork 0 is divided into two smaller subnetworks 00 and 

01; link 0 is routed through subnetwork 00 and link 2 through subnetwork 01. 

The same is the routing of link 1 and 3. By property 1, the KFM x KFM Benes 

network can also be rearranged into a Clos network with F central modules of 

size KM X KM and KM i n p u t ( o u t p u t ) m o d u l e s of size F x F, as is shown 

in figure 2.10. The F central modules are numbered with 0 �F — 1 from 

top to bottom, which can be viewed as the number of F color sets (time slot). 

One KM x KM central module can be further divided into M smaller K x K 
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ones, so each of them represents M modules at the same time slot. Since the 

F connections within a bunch will be routed through the F distinct central 

modules, then they are evenly placed into F time slots, with one in each. When 

MjG bunches are assigned to a cluster, only M/G central modules are assigned 

to a cluster at any time. After the connection pattern of F central modules in 

figure 2.12 is determined, the routing of FM K x K central modules of path 

switch will be known. 
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Chapter 3 

Performance Analysis and 

Simulation Results 

Assuming uniform and independent traffic, the cell loss rate due to contention is 

calculated theoretically as that in [24]. The throughput with respect to various 

partition is hard to analyze theoretically, so the result is obtained by simulation. 

The maximum throughput with look-ahead scheme will be presented in section 

2, which can be estimated by an approximate formula. In section 3, the input-

smoothing scheme is assumed, which will improve the throughput. To reveal the 

cell loss probability at input buffer and output buffer, two mechanisms, queue 

loss and backpressure, are compared in section 5. 

3.1 The Improvement of Concentration Loss 

Under above assumption, cells on a virtual path have the same probability to be 

destined to each of N|G output ports within a cluster. Similar to equations 2.3, 
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the cell loss probability can be computed as follows. 

N|G N 
P- = MjG .内 " =M ‘ � (3.1) 

Pi- = i . | > -丑)CT)(錄)'(1 - W"G-i (3.2) 

--去.黑(“<門(泰)'(1-泰)等-'關 

It equals to the loss probability of an M|G X N|G module, since there are 

maximum of MjG concurrent contenders. If group size R is set equal to M|G, 

no cell would be knocked out. For a 1024 x 1024 switch, we choose N — 32 

and K = 32. Given the offered load of 0.8, the cell loss probability with R — 8, 

R = 9 and R — 10 respectively, is shown in figure 3.1，figure 3.2 and figure 3.3 

with respect to M/N and G, compared with that of no splitting(i.e. G — 1). 

Ioading=0.8 R=8 
10̂  I !• I ::i::.:::::::::!::::::::::::l::::::::::::t:::::::::::: 

f f ^ 
10—1。I I 1 1 1 1 1 1  

0 1 2 3 4 5 6 7 8 
Expansion Factor E=M/N 

Figure 3.1: The Loss Probability vs. M!N for Various G with R = 8 
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Figure 3.2: The Loss Probability vs. M|N for Various G with R = 9 

Given the required value of Pioss, several pairs of (M/7V, G) could be chosen. 

For instance, pairs of (1.2, 4), (2.4, 8), (4.9, 16) could achieve Pioss of 10~® when 

R = 8. No cells loss would occur if any pair of (1, 4), (2, 8) and (4,16) is chosen, 

which is the case that M!G equals to R. It is shown that Pioss decreased sharply 

when M|G is close to R. However, the values of G and M/N also depend on the 

complexity of hardware and the throughput. The throughput would suffer from 

degradation when G is large for constant M/N, as illustrated in the follows. 

3.2 The Throughput with Look-ahead Scheme 

If the input modules are space-division switch, the throughput will sufFer from 

degradation with partition of virtual path due to the head of line blocking. The 

degradation of throughput is due to the fact that the number of virtual paths 

of each input module is expanded by splitting. Desired cells are selected and 
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Figure 3.3: The Loss Probability vs. M|N for Various G with R=10 

delivered according to their cluster number at the first stage. Under uniform 

traffic, cells at the first stage are destined for KG clusters, compared with K in 

the original path switching. As there are more destinations, less central modules 

could be dedicated to a virtual path on the average for constant M. This is 

equivalent to reducing the number of ports within a group in channel-grouping 

scheme. This limit of throughput is imposed by input-queueing. 

The maximum throughput as a function of M|N is obtained by simulation 

when w = 8, which is denoted by circles in figure 3.4. From the simulation 

result, the empirical formula of the maximum throughput, pmax is estimated to 

be: 

pmax = e a ; p { _ 0 . 2 8 ^ # . exp�—a��— ^f)} for D > 2 (3.4) 

where D = KG|N, E 二 M|N, and a 二 0.44, b = 1 for D = 4,8; a = 0.3, 

b 二 0 for D = 16. The empirical formula is also plotted in figure 3.4, which 
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Figure 3.4: The Maximum Throughput vs. M/N for Various D 

matches the simulation very well. It seems that the maximum throughput pmax 

is quite sensitive to the change of E and D, but insensitive to the change of a or 

b. This empirical formula can be used to investigate the the trade-off between 

performance and complexity of the switch, and to estimate the optimal design 

parameters for given throughput and cell loss probability requirements. We have 

observed the following from simulation results: 

(1) The maximum throughput pmax surges up rapidly when M/N is less than 

y , but decreases with respect to D. We can't explain the noticeable discrepancy 

when M/N = y . It can be seen that for pairs of (M/N^ D) which achieve the 

same Pioss^ those of larger M|N produce higher throughput. The reason is 

that the ascending rate of throughput with respect to M/N is greater than its 

descending rate with respect to Z), so that large value of M|N and D could 

maintain high throughput. 

(2) The throughput improvement is marginal when M!N is greater than y . 
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In addition, the switch is more complex with large value of M/N. Therefore, 

only moderate value of M/N and D should be chosen. Several ways to keep 

high throughput are presented below. 

Input modules Central modules Output modules 
(64X 128) (32 X 32) (64X32) 

input queues y^^^ ^̂̂^̂̂ ~̂"-~~~~~~~-~~~_̂  r-^ output queues 

_ 
^ ¾ ^ 31 J ^ ^ ^ ^ -

Figure 3.5: The Integration of Input Modules in Clos Network 

For fixed M/N and G, larger 7V(i.e. smaller D) will result in both higher 

throughput and multiplexing gain [43]. It is due to two reasons: 1. the proba-

bility of finding a matched cell for an idle central link is higher if searching in 

more input ports; 2. More sources share the capacity of virtual path, which will 

improve the multiplexing gain. Thus, several input modules could be combined 

as a large one so that D is reduced, and consequently the throughput could be 

higher. For example, if N = 32 and K : 32 are chosen to construct a 1024 X1024 

switch, the maximum throughput is 81% when M/N 二 2, G = 8(D : 8). If 

every two 32 x 64 input modules are integrated into one 64 x 128 module with G 

kept unchanged, as in figure 3.5, then D is only 4 so that the throughput could 

reach 91% without cell loss. However, the size of module is constrained by VLSI 
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technique and look-ahead scheme must be performed faster for a large module. 
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Figure 3.6: The Maximum Throughput vs. w for Various D 

Increasing the look-ahead window size w would also be helpful, especially 

when D is large. Results of simulation with M/N = 2 are shown in figure 3.6. 

3.3 The Throughput with Input Smoothing Scheme 
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Figure 3.7: Idle Output Port with Look-ahead Scheme 
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Figure 3.8: The Input Smoothing Scheme 

It is proposed in look-ahead scheme that an input port can send at most one 

cell during a contention resolution phase, so maximum of N cells can be cleared 

from an input module and M — N central links will be idle at any time. Besides, 

after all the losing input ports are searched to depth of w, it is possible that cells 

destined to some remaining idle output ports can not be found at those losing 

input ports within the whole window. Thus the bandwidth of those output 

ports will not be used even if there are matched cells at those winning input 

ports. For instance, in figure 3.7, input port 1 is selected to transmit the first 

cell to output port 2 during the contention resolution phase, so it can not send 

any more cells at current time slot. At the end of contention resolution phase, 

output port 0 is still idle, because there is no cell to output port 0 at all the 

other input ports apart from port 1. Even the second cell at input port 1 is 

destined to output port 0, the output port 0 has to be idle. If an input port is 

allowed to transmit more than one cell, the throughput of input queueing switch 

will be improved. This idea, called input smoothing, was proposed in [17]. As 

shown in figure 3.8, cells at an input port are demultiplexed into b input links 

and Nb cells simultaneously contend for output ports. Those losing contention 
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will wait at input buffer for reentry later. The improvement of the throughput 

is marked by increasing b or M|N, as presented in the following table when 

choosing K 二 32, N = 32 and G = 8: 

M/N b = 2 b=4 b=6 b=8 

1 0.317 0.486 0.589 0.655 

2 0.507 0.850 0.987 0.996 

3 0.636 0.994 0.999 0.999 

— t o output module 1 

_.,.. 7 — to output module 3 

> -.V,V,;- ' " — to output module 2 

~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ " ^ •':::•-.. 一 to output module 0 
3c 3b 3a X ： - - . . .、 

"• >•.、^ 一 to output module 3 
" • • i 

— t o output module 3 

— t o output module 0 

——to output module 2 

input module 

Figure 3.9: The Resequencing of Cells 

Of course, the complexity of input module with input-smoothing is much 

higher compared with look-ahead scheme. If it is constructed by batcher-banyan 

modular architecture, the complexity is discussed in [33] and [34]. Another 

problem of resequencing appears if multiple cells can be sent from an input port 

simultaneously. It is possible that more than one cells of a virtual circuit at an 

input port can be sent to central modules and further arrive at their output port 

at the same time. To maintain the sequence of cells of a virtual circuit, the first 

one is always routed to the upmost central module available, and the successors 
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are routed to lower central modules sequentially. So the central modules keep 

the sequence information. Suppose that three central modules are assigned to 

output module 3 at a time slot, as shown in figure 3.9. The three cells, 3a, 3b 

and 3c of a connection are stored at the input FIFO buffer. If all of them win 

the access to the central modules, 3a is always routed to the upmost central 

module, 3b the second and 3c the lowest. When they arrive at the output port, 

the output port can identify the one appearing at upper central module as the 

predecessor and the one at lower central module as the successor. Then they 

will be stored at the output buffer with their original sequence. 

3.4 The Throughput with Bursty Source 

For independent traffic such as Bernoulli source, the throughput can be improved 

by look-ahead or input smoothing. However, this may not be true for correlated 

source. Suppose that cells arrive at input port in bursts; within each burst, 

cells are destined to the same output port. If these bursty arrivals are stored in 

FIFO buffer, it is highly possible that several consecutive ones have the same 

destination. If the first one of them fails in the contention, it is most likely 

the rest of them can not be selected to transmit so that the look-ahead or input 

smoothing is almost useless [40]. The bursty characteristics of traffic will degrade 

throughput a lot, which depends on the burst length [43]. 

An approach to maintain high throughput of input queueing was proposed 

in [27], [45] etc. It is suggested that each FIFO queue in input link is divided 

into logical queues according to their destinations and a matching procedure is 

performed at input buffer to select winning cells. However, the number of logical 
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queues at an input port has to equal to the number of output ports. For a large-

scale switch, this central controller may be a bottleneck because the number of 

logical queues at an input port is vast. In path switch, cells are accommodated 

in logical queues according to their clusters, thus the number of logical queues is 

reduced and the above scheme may be feasible. The head of line blocking could 

be completely eliminated if each input keeps D = KG logical queues destined 

for D addresses. Or a shared-bufFering memory switch could do the same job. 

Almost 100% throughput could be achieved with a moderate value of M even 

with bursty traffic. 

3.5 Buffer Dimensioning and The Cell Loss Prob-

ability Due to Buffer Overflow 

Owing to the finite input and output buffer size, arrivals at the first and last 

stage seeing a full buffer will be lost. Intuitively, more cells will be lost at input 

buffer if the throughput of switch is low; otherwise, most of the loss will take 

place at output bufFer. The input queueing and output queueing switch are the 

extreme cases where buffer overflows at either input or output. The path switch 

is input-output buffered, which requires a proper buffer allocation to input and 

output. We assume uniform and independent Bernoulli process at input buffer 

so that the arrivals at output port form Poisson process [17]. Each input and 

output port is dedicated a buffer and there is no sharing. To evaluate the cell 

loss probability, two different switching mechanisms can be considered: 
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• Queue Loss(QL), in which cell loss takes place at both the input and out-

put buffer. The first stage can switch cells to the last stage whenever 

the bandwidth is available, without the knowledge of buffer space at out-

put port. At both input and output buffer, excess cells that can not be 

accommodated will be dropped. 

• Backpressure(BP), in which the available space of output buffers is signaled 

back to input ports. The number of cells transferred to output port can 

not exceed the available vacancy, even if there is idle bandwidth. In this 

case, cells that can not be switched are stored at input buffer unless it is 

full, and no cell loss occurs at output buffer. 

Since the switch capacity is expensive, we should protect cells which have 

passed through switch from being collapsed. If some cells have to be dropped 

due to heavy traffic and limited storage space, we should choose to drop those 

less important, or abandon them at input buffer, instead of losing at output 

buffer. The switch capacity is wasted if a number of cells are lost at output 

buffer after they are switched to output port. Backpressure could keep cell from 

loss at output buffer, at the cost of lower throughput [21] [50]. The throughput 

will be lower than that under QL mode because cells may be blocked by a full 

output buffer, and consequently idle bandwidth will be resulted in. In path 

switch, however, the capacity of central stage is shared by all the traffic on the 

virtual path. If one output buffer is full, cells destined to other output ports 

on the virtual path could be selected to transmit. Then we can expect that the 

throughput with backpressure will not degrade much. 
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Figure 3.10: The Maximum Throughput under Backpressure Mode 

We are interested in evaluating the maximum throughput and cell loss proba-

bility due to buffer overflow under these two modes. Each input port is dedicated 

a buffer of size B, and output port B�. With K = 32,7V = 3 2 , M : 64,i^ = 

8, w 二 8 and look-ahead scheme, the maximum throughput under QL mode has 

been shown in figure 3.4. The throughput with G = 1,2 is very close to 100%, 

which is not shown in the figure. The maximum throughput under BP mode as 

the function of output buffer size is obtained by simulation, shown in figure 3.10 

with the same parameters. The throughput with G 二 4,8 under BP mode is 

almost identical to that under QL mode, but there is a noticeable gap when 

G = 1,2. Because the maximum throughput with G = 8 is close to 80% under 

QL mode, the chance of output buffer saturation is negligible at this load when 

buffer size is greater than 10. In this case, the backpressure signal seldom occurs 

so that the first stage will not be affected. When G = 4, the backpressure can 

not be neglected if buffer size is around 10, so the throughput is a bit lower. But 
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the gap tends to zero soon since larger buffer size makes backpressure ineffec-

tive. As G = 1,2, the higher maximum throughput brings higher load at output 

buffer. The probability of output buffer saturation can not be neglected, then 

more cells will be blocked at input buffer by backpressure signal. Due to the 

limited searching depth of look-ahead scheme, other cells may not be selected 

to transfer even when idle bandwidth is available. As the buffer increases, the 

throughput is improved and tends to that under QL mode since a large buffer 

makes BP useless. 

10° 1 1 1 1 1 1 1 1  
；——e—: p=o.4 
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Figure 3.11: The Cell Loss Probability at Output Buffer 

The loss probability at output buffer under QL mode, e。，could be evaluated 

by the M / D / l / N model [17](see appendix of this chapter) and is plotted in 

figure 3.11 with various traffic loading at the last stage. The loss probability at 

input buffer, eiqi, is obtained by simulation. Due to the limited random numbers 

that computer can generate, the accurate value of loss probability is above 10"^. 

The total loss probability in the switch, Cgi, is equal to Cigi + ( l -eigi)eo ~ CigZ + e � . 
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Since there is no loss at output buffer under BP mode, the cell loss probability, 

e— is equal to the loss at input buffer denoted by €却,which is also got by 

simulation. 
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Figure 3.12: The Total Cell Loss Probability vs. Input Buffer Size 

First we choose K = 32, N = 32，M 二 64, R = 8, w = 8 and G = 8. Because 

the maximum throughput under BP mode is not afFected by backpressure as 

mentioned above, the cell loss at input bufFer is also identical to that under QL 

mode. Given input load of 0.7, the total cell loss probability under two modes 

as a function of input buffer size is plotted in figure 3.12. ê p, the solid line, 

is obtained with Bo=10, since larger B � i s ineffective. Under BP mode, it is 

effective to place a large bufFer at input and ê p drops quickly with B{ if B � 

is greater than 10. However, Under QL mode, Cqi gets saturated soon when 

Bo is small. It is of no use to allocate a large bufFer to input since the cell 

loss is dominated by e� . It can be observed that ê p is always lower than Cgi 

given identical bufFer budget, because no output loss occurs. For the same loss 
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requirement, the BP mode needs less buffer than QL mode. For instance, total 

buffer size of 4 5 (凡= 1 0 , Bi — 35) is needed under BP mode, given loss rate of 

10—5; but under QL mode, total of 5 5 (凡= 1 8 , Bi 二 37) is required. 

The reason is illustrated in [40] that there are some bufFer-sharing effects in 

the input-buffered scheme. Under QL mode with high throughput, arrivals from 

all inputs to an output port can easily congest the dedicated buffer, so most of 

losses occur at output buffer. Under BP mode, however, the arrivals are dis-

tributed across several input buffers if output buffer gets congested. Therefore, 

an input buffer does not overflow easily. It is consistent with the intuitive expla-

nation that the QL mode generally requires a larger output buffer to guarantee 

a certain loss performance. 

Now we choose K 二 32,7V = 32 ,M 二 64,i^ = S,w = 8 and G = 2, so 

that the maximum throughput will change with the output buffer size B � u n d e r 

backpressure. In this case, the throughput under QL mode is very lose to 100%, 

so the performance is like that of output queueing switch. Given the input load 

of 0.9, Ciqi is less than 10—9 if input buffer size is larger than 10. Compared with 

e。，Cigi could be neglected in the range interested so that we could consider that 

Cqi does not change with input buffer size. However, the story is different for BP 

mode, where the throughput will degrade and input buffer plays an important 

role in loss performance. The total cell loss probability with respect to output 

buffer size are compared in figure 3.13. Cqi , the dotted-dash line, is obtained 

with Bi=lO. 

It shows that cell loss under both modes decreases with B�, but ê p drops 

more sharply. With the same total buffer size, the BP mode does not always per-

forms better unless buffer is properly allocated among input and output. For cell 
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Figure 3.13: The Total Cell Loss Probability vs. Output BufFer Size 

loss requirement of 10"^, bufFer size of 42 under BP mode is needed if 双=30. 

Whereas, only 37 is required under QL mode(_B,- 二 10, B �= 27). With this 

bufFer setting under BP mode, the improvement of ê p by input buffer-sharing 

can not compensate the negative effect of lower throughput. Consequently, the 

QL mode with a large output bufFer will performs better. However, if fixing 

Bi to be 10, the BP mode always performs better. Although the throughput is 

lower under BP mode, the effect of bufFer-sharing with this setting overruns the 

negative effect of longer service time. Then the proper buffer allocation among 

input and output is important under BP mode. It is noticed that the perfor-

mance under BP mode is improved much more quickly by increasing output 

buffer size than placing the same amount at input bufFer. For instance, the loss 

rate is about 3.7 x 10—3 with B{ of 20 and B � o f 10; however, it drops sharply to 

around 1.4 x 10"^ with the same buffer budget but 10 at input and 20 at output. 

Though a larger input bufFer would reduce the cell loss, the improvement of the 
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maximum throughput offsets the effect of larger input buffer if the same amount 

is placed at output. Then we can conclude that in this case, more budget should 

be given to output buffer if the amount of memory is kept constant. 

Appendix: The Loss Probability at Output Buffer 

Let the load at an output be p, then the probability that a cell to an tagged 

output port appears at a central link is jf^^ because maximum of MjG central 

links can carry cells to an output port. The arrival process at output can be 

viewed as Poisson process with parameter p, if M!G is large enough [17]. Defin-

ing the random variable A as the number of arrivals at an output port in a time 

slot, we have: 

- =尸小 =的 = { T ) (杂广 ( 1 -杂严、 = 0， 1’ . . . ’ R 一 1 (3.5) 

- =叫 4 =丑} = I (T)(南)卞 一 ik，-' (3.6) 

where R is the output group size. Remember that maximum of R cells can be 

read into the buffer at a time slot and excess ones are knocked out. 

Let Qm be the output queue length at the end of the mth time slot, and 

Am denote the arrivals during the time slot. Since there are at most R batch 

arrivals at an output port, the queue length could be modeled by a M / D / l / N 

queue with output buffer size B � : 

Qm 二 m i n [ m a x ( 0 , Q m - i — 1 ) + A ^ , Bo] ( 3 . 7 ) 

This is a finite, discrete-time Markov chain with state transition matrix P 
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Denote the steady state probability by qn 二 Pr{Q = n} and in vector 

form q = ( '̂o, qi,..., qB�), where Q is the queue length in steady state,. It can 

be solved by the balance equation q{I - Q) = 0 and qe = 1. The cell loss 

probability at output buffer, e。，can be calculated by following equation 

Elnumber of lost cells at output buf fer] , � 
e � = (o.o) 

offered load at output 
B fi 

二 - E E qnak{k + n-Bo) (3.9) 
Pn=Bo-R+lk=Bo-n+l 
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Chapter 4 

Capacity Assignment and 

Evaluation of Multiplexing Gain 

4.1 Principle of Capacity Assignment 

Capacity assignment of ATM services has been discussed in [13] [16] [18] [19 

20] [22] [37] [52] etc, based on prediction or measurement of traffic. If traffic 

characteristics can be modeled accurately, the prediction method can be used to 

do the capacity assignment. The ATM network has to support multiple classes 

of services such as data, voice and video with widely different traffic character-

istics and QOS requirements. The users must declare their traffic parameters 

and the expected QOS, which can be mapped to appropriate service classes. 

The ATM services are classified into five classes，including CBR(Constant Bit 

Rate), real-time VBR(Variable Bit Rate), non real-time VBR, ABR(Available 

Bit Rate), and UBR(Unspecific Bit Rate) service. The traffic parameters are 

specified by PCR(peak cell rate), SCR(sustainable cell rate), MBS(maximum 
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burst size), MCR(minimum cell rate), and CDVT(cell delay variation tolerance), 

which are detailed in the Traffic Management Specification of ATM Forum [2 . 

The QOS parameters of interests are 1.CDV(peak-to-peak cell delay variation) 

and CTD(maximum cell transfer delay) 2. CLR(cell loss ratio), defined by ATM 

Forum. The attributes of service classes in terms of traffic parameters and QOS 

are presented in the following table, which characterize a class completely. 

service class traffic parameters QOS 

CBR PCR, and CDVT CLR, CTD and CDV 

real-time V B R PCR, SCR MBS, and CDVT CLR, CTD and CDV 

non real-time V B R PCR, SCR MBS, and CDVT CLR 

A B R PCR, CDVT, and MCR Minimum Cell Rate 

UBR PCR, CDVT, and MCR non 

At call setup, necessary resources including capacity and buffer, must be 

reserved along the path. If enough resource could be reserved at all the nodes 

along the path, the connection can be admitted to the network, otherwise it is 

rejected. So it is very important to determine the required capacity and buffer 

at each node to guarantee the promised QOS while maximizing the resource uti-

lization. Most of ATM services are bursty, such as video streams and TCP/IP 

datagram which generate large amount traffic in a short time, but little or no 

at the rest of duration. Since traffic arrive in bursts, the amount of bandwidth 

required by these services varies with time during the connection. One of the 

simplest way to manage all the traffic streams is based on peak allocation. A 
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bandwidth equivalent to the declared peak bit rate is allocated to each connec-

tion to ensure the high deterministic QOS. However, under this policy, most of 

the bandwidth will be significantly under-utilized because of the large variance 

in the traffic streams. In this case, no multiplexing gain is taken advantage and 

the resource of network is wasted. 

Another way is to allocate capacity based on the effective bandwidth, which 

is the minimum capacity required to guarantee the QOS when a source is served 

alone. For instance, the effective bandwidth of an on-off source can be calculated 

once its traffic descriptors, QOS and available buffer size are known, as detailed 

in [12] [16]. The allocated bandwidth of aggregate traffic is equal to the sum of 

effective bandwidth of all the multiplexed sources. It is still conservative because 

the multiplexing gain among sources is not taken into account. 

A more efficient approach to manage network resource is to allocate band-

width to aggregate bursty traffic with close characteristics and QOS require-

ments. In this case, the capacity allocated to a group of bursty traffic streams 

is lower than the sum of their effective bandwidth. For simplicity, we assume 

that connections within a service class possess identical traffic attributes, so that 

capacity is assigned to the aggregate traffic of the class. The QOS is guaranteed 

for the class instead of individual connections, but each connection can also get 

satisfactory QOS if proper scheduling scheme is applied at cell level [63 . 

4.2 The Model of Virtual Path 

If the input modules are shared-buffering memory switch, the throughput will be 

as high as 100%, since there is no head of line blocking. As depicted in figure 4.1, 
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Figure 4.1: The Model of Virtual Path 

there are KG logical queues in one input module, each of them accommodating 

cells destined to a cluster. Arrivals at all the input ports are multiplexed subject 

to their destination in individual logical queues served by allocated rate. With 

work-conserving service discipline, a virtual path will make use of its capacity 

whenever there is backlog in its buffer. To make analysis simple, each logical 

queue is viewed as a dedicated buffer, which is further partitioned based on 

classes. No buffer sharing is assumed among virtual path or classes. The capacity 

assignment is not trivial, because the multiplexing must be taken into account. 

Since the characteristics and QOS of service classes are different, the capacity 

of virtual path will be calculated based on each class. Supposing that there 

are n,k connections of class A:(CBR, VBR, A B R and UBR) feeding into a logical 

queue with service rate Ck for each class, the capacity of virtual path is equal to 

the sum of Ck. Despite that the capacity of virtual path is logically partitioned 

among classes, it can be used by other sources if a certain class does not make 

use of its allocated bandwidth with a work-conserving scheduling scheme at cell 
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level. Although the throughput will not degrade for shared-buffering memory 

switch, the multiplexing gain still changes with the "width" of virtual paths. 

In successing sections, the capacity assignment based on services classes will be 

presented and the multiplexing gain will be estimated. 

4.3 Capacity Assignment for CBR Service 

CBR services are characterized by PCR with constant interarrival time. It 

is common to assume the aggregate CBR traffic should be allocated equal to 

the sum of their peak rate. However, if the CTD and CLR requirements are 

stringent, the required bandwidth will be greater than the overall peak rate [53 . 

The waiting time distribution of the aggregate CBR connections can be analyzed 

via the Y^Di|D|l queue. To avoid complex root-finding computation, Dron, 

Ramamurthy and Sengupta developed an efficient approximation for the waiting 

time distribution, which significantly reduces the computation time while being 

very accurate [11]. 

Suppose there are n CBR connections with peak rate R bits/sec, multiplexed 

on a virtual path with service rate Ccbr bits/sec. From [11], the probability that 

the waiting time of an arrival cell is greater than t can be calculated as follows: 

• ^ rt^Ccbr^ {Ccbr ——nR)t^^ 
Prob{waiting time of an arrival > t} = exp{-2[-^ 1 J) 

几 (4.1) 

Where b is the number of bits in an ATM cell(424 bits). 

In order to guarantee Prob{CTD > tmax} < ^2, it is sufficient to ensure 

Prob{waiting time of an arrival > tmax} < £2, which can be computed by 
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equation 4.1. Given e2 and tmax̂  the required capacity C = " " to meet the delay 

constraint can be calculated by equation 4.1 as 

cdeiay = 2n[ah|tmax^nR) (4 2) 

cbr n + yJn^{l+4:Rtmax/b)^4:an 

where a = -1.151ogiQ e2 

To compute the cell loss ratio, assume buffer of size Bchr is allocated to all the 

n CBR connections. Arrivals seeing a full buffer will be lost. Approximating the 

cell loss ratio by the buffer overflow probability, we can use the relation between 

the queue length seen by arrival and the waiting time experienced. When there 

is backlog in the buffer, the service rate must be Ccbr, so it will take time of 

Bcbr/Ccbr to drain out a full buffer. 

queue length seen by arrival ^ waiting time experienced * Cchr (4.3) 

CLR ^ Prob{queue length on arrival > Bcbr} (4.4) 

= P r o — U — — e — r r - > � �( 4 . 5 ) 
^cbr 

二 e : r p { - 2 [ ^ + (1 — ^ ) B ^ , r ] } (4.6) 
72 Ucbr 

Given cell loss rate ei and buffer size Bcbr, from equation 4.6, the bandwidth 

required to meet the cell loss constraint is: 

70 / ? 
C^oss = (；^ (A 7) 

cbr _ 1 + B - | n - | 3 / B - ^ . ) 

where |3 = -1.151<¾^ Ci 
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From the above analysis, the capacity to support n CBR connections should 

guarantee both the CTD and CLR, so it is 

C c b r = m a x { n R , C i , , C i r ) ( 4 . 8 ) 

4.4 Capacity Assignment for Real-time V B R 

Service 

For real-time V B R sources, the QOS is specified by the Cell Loss Ratio(CLR), 

Maximum Cell Transfer Delay(MaxCTD) and the Cell Delay Variation(CDV). 

Allocating a large bufFer to a real time source is of no significance, since the 

delay constraints are tight and cells experienced queueing delay beyond the 

constraints will be discarded. Only the case of small buffer for real-time source 

will be considered. Most of real-time V B R sources are very bursty, such as video 

stream which produces traffic from time to time but not constantly. Thus the 

real-time traffic could be modeled by exponential on-off source very well, which 

alternates between “on” and "off" states. When it is on, traffic stream of peak 

rate R is generated; when it is off, no traffic is generated. The period of on 

state as well as off state is exponentially distributed with average length of l / /z 

and 1/A respectively. The utilization of a source, p, i.e. the probability that 

a source is on, is equal to A/(A + //); and the average traffic rate of a source 

r = RX/{X^fi). 

Assume n identical real-time VBR sources are multiplexed on a virtual path 

with service rate Crtvbr- The bufFer size allocated to each source is Bs, and the 

capacity per source is denoted by Cs = CMr|n. The bufFer overflow probability 
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can be estimated by following equation [18] [20]: 

Proh{queuelength > nBs}=, 丑 ~"777;~"-exp{-n[I{Cs)^HJ^s]} 
^27rnC.{R-C.)ln^0^ 

(4.9) 

眷、1兮务>1~^ (4.10) 

H 二 ]/hMi - |) + 4 ^ ^ J I ^ - 2["呈-Ml - fii^ (4.n) 

where 1 < Cs < R 

It is noticed that the buffer overflow probability is not improved much by the 

presence of a small buffer compared to the average burst size. For example, if the 

peak rate of each source is lMbit /s and the average on period is 2 seconds, then 

the average burst size is 2Mbits. A buffer of 1000 bits is small and negligible 

to improve the buffer overflow. So the buffer overflow probability can always be 

approximated by a zero buffer [20 . 

By approximating cell loss ratio with buffer overflow probability ei, the ca-

pacity per source 0丄嶋 can be calculated from equation 4.9 numerically, which 

is not time consuming. 

Given the delay constraint Prob{CTD > tmax} < ^2, the required capacity 

Cf"iay could be approximated by the relation between queue length seen by 

arrival and the waiting time in the preceding section. 

t2 = Proh{waiting time experienced by arrival > tmax} (4.12) 
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^ Proh{queue length on arrival > nCstmax} (4.13) 

= , R ^ ,1 �exp{-n[I{Cs) + HJCsima. ] } (4.14) 
—C^R - a ) , r ^ ^ ^ 

After above steps, the capacity for real-time V B R connections should be the 

maximum of n C， ^ and nCi ' ' ' . 

4.5 Capacity Assignment for Non Real-time V B R 

Service 

Since there is no time constraint on non real-time V B R services, a large buffer 

can be used to store bursts that arrive faster than that can be transmitted. The 

accurate analysis was done by anick etc [1]; however, it involves rather complex 

root-finding solutions. Two computationally simple approximation of bandwidth 

allocation for single or aggregate connections are proposed. One is the effective 

bandwidth or equivalent capacity based on fluid-flow model [12] [16]; the other is 

Gaussian approximation [16]. The former calculates the effective bandwidth of a 

single source based on the flow-fluid model with bit rate modulated by the state 

of an underlying Markov chain. The sum of effective bandwidth is then assigned 

to the aggregate traffic subject to the linearity and additivity, as revealed in 

6] [12] [28]. The effective bandwidth is considered to be conservative since the 

multiplexing is ignored. However, in the case of large buffer, high utilization of 

source, or small number of multiplexed connections, the multiplexing could be 

negligible, as stated in [16] and verified in the next section where the multiplexing 

gain is evaluated. When a lot of sources are aggregated or the utilization is low, 

the Gaussian approximation would perform better, because the multiplexing is 
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no longer negligible. 

The model assumed here is the same as that of real-time V B R source. The 

effective bandwidth of a single source is approximated in [16] as: 

Ce 二 I + 2 M ( | — " ) { V N ^ ( 1 - f^R - ^ P + 4 B ^ M 1 - p)R - ^ } (4.15) 

where a = ln{l/e), e = Prob{buffer overflow} and |3 = l / / i , the average 

burst length. The capacity required by n multiplexed connections is the sum of 

their effective bandwidth. 

When statistical multiplexing is of significance, the Gaussian approximation 

would be rather accurate by assuming a Gaussian distribution for the aggregate 

traffic rate. Let rrii and o j be the mean and variance of V B R source z, then 

the mean m and the variance a^ of the superposition of n processes should be 

5T=i ^ i and E L i crf respectively. Given the cell loss probability e, the required 

capacity can be approximated by [16]: 

Cnrtvbr =爪 + (a (4.16) 

where ( ^ 1.8 — 0.46 log^Q{^j^me|a) 

4.6 Capacity Matrix 

After above procedure, the capacity for CBR, real-time VBR and non real-time 

V B R services on a virtual path have been determined. The sum of them is 

the required capacity of the virtual path to support their QOSs, which can be 

represented by following K x GK matrix T: 
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( A o , o , o A o , i , o . • . A o , G - i , o . . . A o , G - i , K - i ) 

A l,0,0 入1，1，0 . . . ^ 1 , G - 1 , 0 . . . ^l,G-l,K-l 
T = . • . • . • . . • • * • . . • . • • 

�A/<-i,o,0 ^K-1,1,0 ...入/[1’0_1’0 . . . h<-l,G-l,K-l / 

where K is the number of input(output) modules and Xi,j,k is the required 

capacity from input module U to the jth cluster of output module Ok. It is 

possible that the sum of a row or a column is less than M, the capacity of 

central stage. Then we need to allocate the residual bandwidth to virtual paths 

by certain criteria, and these extra bandwidth can be used by ABR and UBR 

services. Finally, the following K x GK capacity matrix C can be found: ( \ 

C0,0,0 C o , l , 0 . . . C o , G - l , 0 . . . C o , G - l , K - l 

C l , 0 , 0 Ci，i ’o . • . C i , G _ l , 0 . . . C l , G - l , 7 < - l 

C = . • . • . • 
• • • • • • 

. . • • • • 

\ C / < - l , 0 , 0 C K - 1 , 1 , 0 . . . C / < - l , G - l , 0 . . . CK-l,G-l,K-l / 

E c%],k = M/G 
j:o 

K-1 G-1 
E E � > - M 
i=0 j=0 

K-1 G-1 
E E � > 二 M 
k=0 j=0 

where Ci,j,k is the capacity allocated to that virtual path, which must equal 

to or be larger than Xij,k- Cij,k may be obtained by optimizing some objective 

functions such as average delay of virtual path. Multiply C by F一the frame 

size and do some roundoff, so that elements in matrix E are integers. 
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/ \ 
eo,o,o eo,i,o . . . eo,G-i,o . . . ^o,G-i,K-i 

ei,o,o ei’i’o . . . ei,G-i,o . . . e i ,c - i ,K-i 
E = F . C 二 

: : •. ： •• ： . . ‘ • • • 

�eK-i,o’o ^K-i,i,o …ex-i,G-i,o …eK-i,G-i,i<-i / 
Since total capacity is FM and equally assigned to G groups, ei,j,k must 

satisfy the following restrictions: 

E e4k = FM/G 
j=o 

K-1 G-1 
E E � > = F M 

i=0 j=o 

K-1 G-1 
E E � ’ & = F M 
k=0 j=o 

4.7 The Evaluation of Multiplexing Gain of In-

put Stage 

In ATM networks, connections(virtual circuits) are multiplexed on virtual path, 

then traffic on virtual paths are multiplexed on physical link. The multiplexing 

improves the utilization by exploiting the fact that when sources are bursty, some 

sources generate low or no traffic much of the time. The statistical characteris-

tics of traffic makes it possible that Quality of Service(QOS) can be guaranteed 

while maintaining sufficient utilization. The multiplexing gain can be defined 

as the ratio between the effective bandwidth of a source when it is transmit-

ted alone, and the required bandwidth of a source when it is multiplexed with 

others. The required bandwidth of aggregate traffic depends on the number 
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of multiplexed sources, buffer size and QOS. In path switch, traffics are sta-

tistically multiplexed on the virtual paths, the evaluation of multiplexing gain 

is important for dimensioning and call admission control. In this section, the 

multiplexing gain which changes with the number of sources on a path, will be 

evaluated for homogeneous real-time and non real-time V B R traffics. 

To analysis the multiplexing gain in input module, exponential on-off sources 

are assumed. The traffic streams generated by all sources are independent and 

identically distributed(i.i.d). Traffics are uniformly distributed on all the virtual 

path and sources on a virtual path share both buffer and capacity. 

Assuming Ns identical sources per input module, the number of clusters is 

KG, so there are n^ = Ns/KG sources per cluster. For simplicity, the peak rate 

R and the average burst length 1/^ are normalized to 1. The buffer size per 

source and the required capacity per source is denoted by Bs and Cs respectively. 

Thus the n^ sources are multiplexed in a buffer of size UsBs with service rate of 

TlsCs. 

S o u c e n u m b e r = 1 2 0 0 Average ra te=0 .338 
0 . 7 | 1 1 1 1 1 1 1 1 1 

W^ 
i�.55.........丨.........\.......:.........:....̂ ^̂ ^̂ ^̂ ^̂ ;̂ ;;̂ ^̂ ;̂;;;;3̂ ........i.......-

H:l:::i 
i : J $ ^ — Q ‘ 7 : 

。.4- .... 1 ^ # ^ . . . 丨 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 丨 . . . . . -

^ ^ ~ 0 ~ ~ : Q = 1 e - 6 : 

0 .35 ' f ^ \ • ： -Qol I i I I i I I 1 1  
‘ 0 2 0 4 0 6 0 8 0 100 120 140 160 1 8 0 2 0 0 

K G - T h e Number of Virtual Path Per Input Module 

Figure 4.2: The Required Bandwidth per Non Real-time Source with p = 0.338 
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For non real-time V B R sources, a large bufFer can be allocated to avoid 

overflow, though a long period of queueing delay will result. Given the bufFer 

overflow probability e, the required C^ can be calculated accurately by equation 

52 in [1]. When N^ 二 1200, A 二 0.51, B^ = 1, the relation between Cs and KG 

is shown in figure 4.2, given e = 10"®, 10"^ and 10"^ respectively. The effective 

bandwidth of a single source is estimated to be 0.93, 0.94, 0.9473 respectively 

by equation 4.15, which is much higher than the average rate of 0.3377. The 

capacity for the aggregate traffic is much less than the effective bandwidth which 

is close to peak rate. It is verified that the effective bandwidth is too conservative 

in this case, especially when the number of source on a virtual path is large, 

because the utilization of source is low(0.3377). 

Souce number=1200 Average rate=0.5025 
0.8| 1 1 1 1 i 1 1 1 I 

j j . 丨 - i - - . - .： - [ 3 2 ^ ^ l 

_ : : t i P ^ 
t j ^ : : _ : 
1 ^ ^ ] _ _ ^ Q = 1 e - 7 : 

0.5 - \ : : : ； •； •； -

： ~ 0 ~ : Q = 1 e - 6 : 

0.45 - ^ ：• ： : • ： -

04l 1 i I I 1 1 1 1 L- 
• 0 20 4 0 60 80 100 120 140 160 180 200 

K G - T h e Number of Virtual Path Per Input Module 

Figure 4.3: The Required Bandwidth per Non Real-time Source with p = 0.5 

When A : 1.01 so the average rate is 0.5, the required capacity is presented 

in figure 4.3. The effective bandwidth of a single source is estimated to be 0.9329, 

0.9418, 0.9487 for the three different overflow requirements. 

It is shown that the required capacity per source is almost a linear increasing 
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Souce number=1200 Average rate=0.5025 

0.68| 1 1 1 1 1 1 1 1 ! 

�.66.........；.........丨..................；..................；....................丨.....̂p̂' 
0.64- 丨 ； y^py^ 

% 0.6-- \^^^^^^^^^i .̂ -

卜…丨丨;J#̂ 丨丨： 
^ 0 . 5 6 - ： . … … ^ ^ ^ J X ^ ^ . . . . :  
卜 ： V ^ ! ^ ^ ^ ^ ^ ^ " ^ ^ : ~ ® ~ ; Q = 1 e - 8 : 

0.54 - / ¾ ¾ ^ ^ ^ -

.̂ :̂......丨....丨...—...i........ 
j ^ r ： • ~ 0 ~ ; Q = 1 e - 6 ; 

05L_ I i 1 1 i i 1 1 ‘ 
‘ 0 20 40 60 80 100 120 140 160 180 200 

K G - T h e Number of Virtual Path Per Input Module 

Figure 4.4: The Required Bandwidth per Non Real-time Source with B^ = 2 

function as the number of virtual path. When a large number of sources are 

multiplexed on a virtual path, the shared buffer size is large so that the bursty 

traffic is smoothed out. The superposition of a lot of bursty sources is much 

smoother than the single one according to the central limit theorem. When a 

lot of sources are multiplexed on a path, the required capacity is a bit more than 

the average rate, compared with the effective bandwidth of a single source which 

is close to peak rate. The capacity assignment based on effective bandwidth is 

then too conservative which will admit less sources to the switch. The path 

switch can take advantage of multiplexing gain quite well, resulting in efficient 

utilization of resources. 

When the virtual path is getting narrower, the number of sources on a path 

gets smaller and the required capacity gradually increases. This is because the 

shared buffer size is smaller and the probability that most of sources are gener-

ating traffic simultaneously is much greater. In this case, the multiplexing gain 

is no longer significant so that the utilization efficiency of resources is degraded. 
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However, the loss of multiplexing gain is not serious, with high utilization 

of source or a large buffer. The multiplexing gain with average rate 0.5 in 

figure 4.3 is lower than that in figure 4.2 with average rate 0.3377. Under this 

situation, the probability that a source is “on” is higher, which makes it harder 

to take advantage of the bursty characteristics. In extreme case where all sources 

generate traffic at the peak rate constantly, there is no multiplexing at all. If 

the buffer is large enough to smooth out the burst, the multiplexing among 

sources is not significant due to the same reason. As illustrated in figure 4.4, 

the loss of multiplexing gain is less than 30% if buffer size of 2 is allocated to a 

s o u r c e ( j B s 二 2 ) . 

Source n u m b e r = 1 2 0 0 average rate=0.1 

i| 1 1 1 1 1 1 1~-]333333^^^ 

i p l 
Q_ n ¢̂  - JS y/^ y^ ： -

0̂.5 : y ^ ^-0--1e-8 ： 
� 4 : . / ^ : — Q = 1 e - 7 : ：....,.._ 

0 ^ \ - ^ P = 1 e - 6 ： 

� . 3- . f ...丨...........................:.... 
0.2-r....；.......；..........…..‘.…..................-
0 11 I 1 1 I I I I I 1  

‘ 0 2 0 4 0 6 0 80 100 1 2 0 140 1 6 0 180 2 0 0 
The number of virtual paths per input module 

Figure 4.5: The Required Bandwidth Per Real-time Source 

For real time V B R sources, the buffer overflow probability can always be 

approximated by a zero buffer. Given Ns = 1200, A = 0.111, B^ 二 0, e = 

10_6,10—7 and 10—8 respectively, the relation between Cs and KG is shown in 

figure 4.5. The required capacity varies in a wide range, from 0.2 to nearly peak 

rate with stringent QOS, and it increases almost exponentially with the number 
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of virtual paths. When a large number of real-time sources are multiplexed on 

a virtual path, the aggregate traffic gets smoother so that the probability of the 

aggregate traffic rate exceeds the service rate is small. Whereas, when only a few 

sources share capacity on a virtual path，zero or small buffer can not smooth out 

the bursty traffic, so that the capacity must be large enough to guarantee the 

tight delay constraint. Great loss of multiplexing gain and consequently quite 

poor efficiency of resource will result in, if the virtual path is too “narrow”. 

When there are small number real-time sources multiplexed on virtual path, it 

is better keep the virtual path "wide" enough to achieve high efficiency. Usually, 

the real-time services can tolerate relative high cell loss rate, such as voice and 

video. And coding technology will recover the lost cells or errors. Non real-time 

services such as data communication, are more susceptible to the cell loss. So 

narrow virtual path is suggested for non real-time traffic and wide one for real-

time traffic, though the concentration loss will be greater for real-time traffic. 

In the extreme case, there is no partition for real-time traffic. At input module, 

cells of non real-time services will be selected by their cluster number while those 

of real-time services will selected by their output module number. At output 

port, priority will be given to cells of non real-time services if contention occurs. 
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Discussions and Conclusions 

We have proposed a virtual path scheduling scheme to manipulate virtual paths 

flexibly and alleviate the output contention at cross-path switch. The defini-

tion of virtual path is no longer confined by the physical parameters of switch 

architecture and the bipartite graph can be asymmetric. Since the scheduling 

scheme is implemented by upper layer software, it has the flexibility to alter G 

in order to achieve various performance. Once the hardware of switch is built, 

only G needs to be changed to meet diverse requests. Splitting of the original 

virtual path is shown to be able to lower cell loss probability. In reality, the traf-

fic loading is time-variant, and traffic characteristics of VCs are various. It is 

known that output contention is not sensitive to input loading [24]. When traffic 

loading is heavy, small value of G should be adopted to keep high throughput 

and multiplexing gain, since the cell loss is mainly due to buffer overflow instead 

of contention. Under light traffic loading, G should be large enough to limit the 

cell loss due to contention as the maximum throughput is not a major concern. 

Compared with the space-division switch, memory switch is suggested at 
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Figure 5.1: The Architecture of the Batcher-R-banyan Knockout Switch 

input stage to keep high throughput and make cell scheduling more feasible. No 

special contention resolution scheme or concentrator would be needed if the last 

stage is implemented by a Batcher-R-banyan knockout switch in figure 5.1 [6 

and R is set to M/G, because there will be no gaps between active cells after the 

sorting procedure. If a multi-buffered memory switch is used as output module, 

the memory access speed is reduce from M to M/G so that the cost is lower. 

Thus, the implementation of cross-path switch can be greatly simplified. 

With dedicated buffer at input and output port, the maximum throughput 

and cell loss probability are compared under queue loss mode(QL) and backpres-

sure mode(BP). The buffer dimensioning under these two modes among input 

and output are studied with different settings. The BP mode always performs 

better than QL mode in terms of cell loss probability, if buffer is properly allo-

cated among input and output. When maximum throughput is low, more buffer 

should be given to input port under BP mode, because the backpressure effect 

is not sensitive to output buffer size so that cell loss will be improved by placing 
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more buffer at input. However, if the improvement of throughput with large 

output bufFer will offset the effect of increasing input buffer, we obtain a better 

performance by placing larger bufFer at output. 

The multiplexing gain depends on many factors, such as the attributes of 

traffic sources, the number of sources multiplexed on a virtual path, buffer size 

etc. It is hard to say which choice of switch parameters is optimal. However, 

given the traffic at an instant, the multiplexing gain can be evaluated for the 

purpose of system administration. The multiplexing gain may be degraded a 

lot for real-time traffic if only a small number of sources are multiplexed on a 

virtual path; in that case, we should keep a wide path for real-time traffic. 
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