600 research outputs found

    Emerging Works on Wireless Inductive Power Transfer: AUV Charging from Constant Current Distribution and Analysis of Controls in EV Dynamic Charging

    Get PDF
    Wireless power transfer through inductive coupling, termed as inductive power transfer (IPT), is one of the important technologies in power electronics that enable transfer of power between entities without physical connections. While it has seen significant growth in the areas such as electric vehicle charging, phone charging and biomedical implants, its emerging applications include charging of autonomous underwater vehicles (AUVs) and dynamic charging of electric vehicles from the roadway. This dissertation addresses a few key challenges in these areas of IPT applications, paving the way for future developments. For the WPT for AUV, the recently developing sea-bed installed marine systems are targeted, which typically gets power from on-shore sources through constant dc low-current distribution. As the present underwater IPT topologies are not suitable for such applications, this dissertation proposes underwater IPT topologies to interface directly with such constant current distribution and provide a constant voltage output supply to the on-board systems inside the AUVs. The considerations for seawater losses and the small-signal models for control purposes are also addressed. Analysis and experimental results are provided for validations of the analytical designs and models. In the area of electric vehicle dynamic wireless power transfer (EV DWPT), the comparison of control performances of different coupler, compensation topologies and control implementations are addressed. The effect of communication latency on control bandwidth are also addressed. The outcomes are presented through analysis and simulations, and based on that future research recommendations are made to pave way for future commercial developments of well regulated and interoperable EV DWPT systems

    Functional modelling and prototyping of electronic integrated kinetic energy harvesters

    Get PDF
    The aim of developing infinite-life autonomous wireless electronics, powered by the energy of the surrounding environment, drives the research efforts in the field of Energy Harvesting. Electromagnetic and piezoelectric techniques are deemed to be the most attractive technologies for vibrational devices. In the thesis, both these technologies are investigated taking into account the entire energy conversion chain. In the context of the collaboration with the STMicroelectronics, the project of a self-powered Bluetooth step counter embedded in a training shoe has been carried out. A cylindrical device 27 × 16mm including the transducer, the interface circuit, the step-counter electronics and the protective shell, has been developed. Environmental energy extraction occurs exploiting the vibration of a permanent magnet in response to the impact of the shoe on the ground. A self-powered electrical interface performs maximum power transfer through optimal resistive load emulation and load decoupling. The device provides 360 μJ to the load, the 90% of the maximum recoverable energy. The energy requirement is four time less than the provided and the effectiveness of the proposed device is demonstrated also considering the foot-steps variability and the performance spread due to prototypes manufacturing. In the context of the collaboration with the G2Elab of Grenoble and STMicroelectronics, the project of a piezoelectric energy arvester has been carried out. With the aim of exploiting environmental vibrations, an uni-morph piezoelectric cantilever beam 60×25×0.5mm with a proof mass at the free-end has been designed. Numerical results show that electrical interfaces based on SECE and sSSHI techniques allows increasing performance up to the 125% and the 115% of that in case of STD interface. Due to the better performance in terms of harvested power and in terms of electric load decoupling, a self-powered SECE interface has been prototyped. In response to 2 m/s2 56,2 Hz sinusoidal input, experimental power recovery of 0.56mW is achieved demonstrating that the device is compliant with standard low-power electronics requirements

    Resonant coils analysis for inductively coupled wireless power transfer applications

    Get PDF
    This paper proposes Wireless Power Transfer (WPT) system, consisting of transmitter-receiver coils along with some conditioning and stabilizing circuits. The transmitter circuit is designed with a simple H bridge circuit to supply the pulses to source coil. The efficiency variation or performance with respect to the coil size has been demonstrated in this paper, which is not well demonstrated experimentally in the past. It is about an inductive link efficiency calculation as a function of the geometrical dimensions. The efficiency has been derived analytically, and analytical results are validated experimentally. From the results observed the effect of geometrical dimensions (area, distance, shape, and size) is explored. The performance analysis evaluated analytically against experimentally, infers that the inductive coupling with same sized coil has achieved maximum power transfer wirelessly, for a shorter distance with applied input voltage of 24 V at resonance frequency of 180 kHz. This proposed system is practically tested for applications such as charging of devices or providing wireless sensor networks with energy supplied. The results have got useful utility for Electric Vehicles automobile industry. © 2016 IEEE

    Techniques, Circuits and Devices for Noncontact Sensing through Wireless Coupling

    Get PDF
    Le tecnologie per la misurazione di grandezze fisiche senza contatto sono diventate sempre più centrali in vari settori, che vanno dal monitoraggio industriale alle applicazioni sanitarie. In questo contesto, la tesi si concentra sullo sviluppo e l'implementazione di tecniche innovative, circuiti elettronici e dispositivi per la rilevazione senza contatto. L’analisi presentata all'interno di questa tesi considera lo scenario del rilevamento senza contatto a distanza nel campo elettromagnetico lontano (far-field) e al rilevamento senza contatto di prossimità, sfruttando le interazioni elettromagnetiche in campo vicino (near field). Nell’ambito del rilevamento senza contatto a distanza, la tesi indaga l'uso delle onde elettromagnetiche per il monitoraggio non invasivo del livello di solidi granulari all’interno di silos. Questo sistema, sviluppato impiegando un sensore radar commerciale a onda continua modulata in frequenza, dimostra il potenziale di questa tecnologia nel monitoraggio non invasivo e senza contatto in contesti agricoli e industriali. Considerando invece lo scenario del rilevamento senza contatto di prossimità, la tesi fornisce un'analisi dell'interrogazione senza contatto di sensori passivi e ne presenta diversi approcci e applicazioni. Vengono affrontate le problematiche delle misurazioni senza contatto, proponendo alcune soluzioni per migliorarne l'affidabilità e l'accuratezza, permettendo in particolare di renderle indipendenti dalla distanza di interrogazione. In particolare, la tesi presenta un sistema per la misurazione senza contatto della frequenza di risonanza di risonatori MEMS piezoelettrici. La tecnica proposta sfrutta l'accoppiamento magnetico tra un’unità di interrogazione ed un’unità sensore ed è applicata in modo innovativo per la rilevazione della temperatura, sfruttando le proprietà dei risonatori a disco in nitruro di alluminio (AlN) su silicio sottile piezoelettrico (TPoS) ed una tecnica di interrogazione senza contatto a tempo commutato. Inoltre, la tesi presenta un’etichetta flessibile per la misurazione della temperatura corporea, che combina il rilevamento a contatto della temperatura con una lettura senza contatto dell’unità sensore sfruttandone l'accoppiamento magnetico con un unità di interrogazione. L’etichetta flessibile, che costituisce l'unità sensore, è composta da una bobina induttiva che consente l'accoppiamento magnetico, un condensatore ceramico utilizzato come elemento sensibile alla temperatura, sfruttandone il coefficiente di temperatura della capacità, ed un induttore aggiuntivo utilizzato per rendere la frequenza di risonanza del circuito risonante RLC indipendente dalla flessione dell’etichetta. In modo analogo, le tecniche di interrogazione proposte sono state applicate ad un nuovo metodo per l'interrogazione senza contatto di un sensore induttivo, utilizzato per rilevare target conduttivi. Il sistema proposto presenta una bobina avvolta collegata con un condensatore per formare un circuito LC risonante, la cui frequenza di risonanza cambia quando un target conduttivo viene introdotto nel campo magnetico generato dalla bobina stessa. Attraverso una bobina di interrogazione esterna, accoppiata elettromagneticamente al sensore induttivo, è possibile interrogare senza contatto il sensore induttivo, permettendo quindi la rilevazione a distanza di target conduttivi. Infine, lo studio esposto in questa tesi introduce una tecnica avanzata per l'interrogazione senza contatto di sensori resistivi passivi, sfruttando risonatori a cristallo di quarzo come dispositivo risonante e basandosi sulla stima del fattore di qualità del circuito che costituisce l’unità sensore. Il metodo proposto supera i limiti delle tecniche basate su misure di ampiezza, legati in particolare all'influenza della distanza di interrogazioneNoncontact sensing technologies have become increasingly central in a variety of fields, ranging from industrial monitoring to healthcare applications. In this context, the thesis focuses on the development and implementation of innovative techniques, electronic circuits, and devices for contactless sensing via wireless coupling, responding to the growing interest in noncontact measurement methods. The themes treated in this thesis regard both the scenario of distant noncontact sensing in the electromagnetic far field, and proximate wireless sensing, leveraging on near-field electromagnetic interactions. Each domain is distinctly characterized by its specific technologies, applications, and methodologies, reflecting their operational ranges and fundamental principles. In the domain of distant wireless sensing, the thesis investigates the use of electromagnetic waves for unobtrusive level monitoring of granular solids in silos. This system, developed employing a commercial frequency-modulated continuous-wave radar sensor, demonstrates the potential of this technology in unobtrusive monitoring in agricultural and industrial environments. Considering the proximate wireless sensing domain, the thesis provides an analysis of noncontact interrogation of passive sensors and it presents different approaches and applications. It addresses the challenges and offers solutions for enhancing the reliability and accuracy of contactless measurements, which can be advantageously independent of the interrogation distance. This can path the way to the development of low-cost, disposable and sustainable devices for healthcare and industrial applications. In particular, the thesis presents a system for the noncontact measurement of the resonant frequency of piezoelectric MEMS resonators. The technique exploits magnetic coupling between interrogation and sensor units, and it is innovatively applied for temperature sensing exploiting a thin-film piezoelectric on silicon (TPoS) aluminium nitride (AlN) disk resonators and a contactless interrogation time-gated technique. Furthermore, the thesis presents a flexible patch for body temperature measurement, combining contact sensing with contactless readout, and exploiting magnetic coupling between interrogation and sensor units. The flexible patch, forming the sensor unit, is composed of an inductive coil for magnetic coupling, a ceramic capacitor used as the temperature sensing element exploiting its temperature coefficient of capacitance and an additional inductor to make the resonant frequency of the resulting resonant RLC circuit independent from the bending of the patch. Similarly, interrogation techniques have been applied to a novel method for contactless interrogation of an inductive sensor used for detecting conductive targets. The system features a solenoidal coil connected with a capacitor to form a resonating LC circuit, whose resonant frequency changes when a conductive target is introduced in the generated magnetic field. An external interrogation coil electromagnetically coupled to the inductive sensor enables the wireless measurement for conductive target detection. Lastly, the study introduces an advanced technique for the contactless interrogation of passive resistive sensors. The novel approach exploits the resonant frequency stability and the high quality factor of a quartz crystal resonator, used as a resonant element, with a series-connected resistor acting as the sensing element. This method overcomes the limitations of amplitude measurements techniques typically affected by the interrogation distance

    Application of a Design for Excellence Methodology for a Wireless Charger Housing in Underwater Environments

    Get PDF
    A major effort is put into the production of green energy as a countermeasure to climatic changes and sustainability. Thus, the energy industry is currently betting on offshore wind energy, using wind turbines with fixed and floating platforms. This technology can benefit greatly from interventive autonomous underwater vehicles (AUVs) to assist in the maintenance and control of underwater structures. A wireless charger system can extend the time the AUV remains underwater, by allowing it to charge its batteries through a docking station. The present work details the development process of a housing component for a wireless charging system to be implemented in an AUV, addressed as wireless charger housing (WCH), from the concept stage to the final physical verification and operation stage. The wireless charger system prepared in this research aims to improve the longevity of the vehicle mission, without having to return to the surface, by enabling battery charging at a docking station. This product was designed following a design for excellence (DfX) and modular design philosophy, implementing visual scorecards to measure the success of certain design aspects. For an adequate choice of materials, the Ashby method was implemented. The structural performance of the prototypes was validated via a linear static finite element analysis (FEA). These prototypes were further physically verified in a hyperbaric chamber. Results showed that the application of FEA, together with well-defined design goals, enable the WCH optimisation while ensuring up to 75% power efficiency. This methodology produced a system capable of transmitting energy for underwater robotic applications.This work is funded by the European Commission under the European Union’s Horizon 2020—The EU Framework Programme for Research and Innovation 2014–2020, under grant agreement No. 871571 (ATLANTIS).info:eu-repo/semantics/publishedVersio

    Stepper microactuators driven by ultrasonic power transfer

    No full text
    Advances in miniature devices for biomedical applications are creating ever-increasing requirements for their continuous, long lasting, and reliable energy supply, particularly for implanted devices. As an alternative to bulky and cost inefficient batteries that require occasional recharging and replacement, energy harvesting and wireless power delivery are receiving increased attention. While the former is generally only suited for low-power diagnostic microdevices, the latter has greater potential to extend the functionality to include more energy demanding therapeutic actuation such as drug release, implant mechanical adjustment or microsurgery. This thesis presents a novel approach to delivering wireless power to remote medical microdevices with the aim of satisfying higher energy budgets required for therapeutic functions. The method is based on ultrasonic power delivery, the novelty being that actuation is powered by ultrasound directly rather than via piezoelectric conversion. The thesis describes a coupled mechanical system remotely excited by ultrasound and providing conversion of acoustic energy into motion of a MEMS mechanism using a receiving membrane coupled to a discrete oscillator. This motion is then converted into useful stepwise actuation through oblique mechanical impact. The problem of acoustic and mechanical impedance mismatch is addressed. Several analytical and numerical models of ultrasonic power delivery into the human body are developed. Major design challenges that have to be solved in order to obtain acceptable performance under specified operating conditions and with minimum wave reflections are discussed. A novel microfabrication process is described, and the resulting proof-of-concept devices are successfully characterized.Open Acces

    UWB radio channel and diversity characterization for wireless implanted devices

    Full text link
    Las redes de área corporal permiten la interconexión de nodos independientes situados dentro o fuera de la superficie corporal o, incluso, alejados de dicha superficie. En cuanto a las comunicaciones intracorporales, el establecimiento de un enlace robusto con una cápsula endoscópica o con un marcapasos, son ejemplos de los avances tecnológicos conseguidos en las últimas décadas. A pesar de estos desarrollos en asistencia sanitaria, los estándares actuales para este tipo de comunicaciones no permiten conexiones inalámbricas de alta velocidad de transmisión, las cuales son comunes en los servicios actuales de telecomunicaciones. Los sistemas UWB han surgido como potencial candidato para las futuras redes de comunicaciones inalámbricas intracorporales. No obstante, el principal obstáculo de la tecnología UWB para aplicaciones intracorporales es la alta atenuación que sufren las señales transmitidas al atravesar los distintos tejidos corporales, que aumenta drásticamente con el aumento de la frecuencia. Por tanto, es importante una caracterización precisa del canal UWB intracorporal a la hora de validar dicha banda como la adecuada para este propósito.Esta tesis se centra en el análisis de la tecnología UWB para posibilitar comunicaciones intracorporales inalámbricas desde un punto de vista experimental. Para conseguir este objetivo, se ha empleado un novedoso sistema de medidas experimental basado en fantomas en diversos escenarios de propagación intracorporal. De esta forma, se pueden comprobar las pérdidas de propagación en el medio así como la diversidad del canal de una forma fiable. Con el fin de validar los valores obtenidos en el laboratorio, se han comparado y analizado con los obtenidos en un experimento in vivo. Por otro lado, se han diseñado y fabricado nuevas antenas UWB candidatas para comunicaciones intracorporales, empleando técnicas existentes y nuevas de miniaturización y optimización. Finalmente, se han usado técnicas basadas en diversidad para mejorar el rendimiento del canal de propagación en dos escenarios intracorporales diferentes.Wireless Body Area Networks allow the interconnection between independent nodes located either inside or over the body skin or further. Regarding in-body communications, establishing a proper link with a capsule endoscope or with a pacemaker are examples of technological advances achieved in the last decades. In spite of these healthcare developments, current standards for these kind of communications do not allow high data rate wireless connections, which are common in the current telecommunication services. UWB systems have emerged as a potential solution for future wireless in-body communications. Nevertheless, the main drawback of UWB for in-body applications is the high attenuation of human body tissues which increases dramatically with the increment of frequency. Hence, an accurate UWB in-body channel characterization is relevant in order validate UWB frequency band as the best candidate for future networks of implantable nodes. This thesis is devoted to test UWB technology for in-body communications from an experimental point of view. To achieve this goal, a novel spatial phantom-based measurement setup is used in several in-body propagation scenarios. Thus, the losses in the propagation medium and the channel diversity are checked in a reliable way. In order to check the values obtained in laboratory, they are compared and discussed with those obtained in an in vivo experiment. On the other hand, new UWB antenna candidates for inbody communications are designed and manufactured by using typical and new miniaturization and antenna optimization techniques for this purpose. Finally, diversity-based techniques are used to improve the performance of the propagation channel in two different in-body scenarios.Les xarxes d'àrea corporal permeten la interconnexió de nodes independents situats, o bé dins, o bé sobre la pell, o inclús allunyats del propi cos. Pel que fa a les comunicacions intracorporals, l'establiment d'un bon enllaç amb una càpsula endoscòpica o amb un marcapassos, són exemples dels avanços tecnològics aconseguits les darreres dècades. A pesar d'aquests desenvolupaments en assistència sanitària, els estàndards actuals per a aquests tipus de comunicacions no permeten connexions sense fil d'alta velocitat de transmissió, que són habituals als serveis actuals de telecomunicacions. Els sistemes UWB han sorgit com una solució potencial per a les futures comunicacions sense fill intracorporals. No obstant, el principal obstacle de la tecnologia UWB per a les aplicacions intracorporals és l'alta atenuació dels teixits del cos humà, que augmenta dràsticament amb l'increment de freqüència. Per tant, és important una caracterització acurada del canal UWB intracorporal a l'hora de validar la banda de freqüència UWB com a la millor candidata per a les futures xarxes de nodes implantats.Aquesta tesi se centra en l'anàlisi de la tecnologia UWB per a comunicacions intracorporals des d'un punt de vista experimental. Per a aconseguir aquest objectiu s'ha emprat un sistema novedós de mesures experimentals, basat en fantomes, en diversos escenaris de propagació intracorporal. D'aquesta manera es poden comprovar les pèrdues de propagació en el medi i la diversitat del canal d'una forma fiable. Per tal d'avaluar els valors obtinguts al laboratori, s'han comparat i analitzat amb aquells obtinguts en un experiment in vivo. Per altra banda, s'han dissenyat i fabricat noves antenes UWB candidates per a comunicacions intracorporals emprant tècniques típiques i noves de miniaturització i optimització d'antenes per a aquest propòsit. Finalment s'han usat tècniques basades en diversitat per a millorar el rendiment del canal de propagació en dos escenaris intracorporals diferents.Andreu Estellés, C. (2018). UWB radio channel and diversity characterization for wireless implanted devices [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/111836TESI

    Novel pneumatic circuit for the computational control of soft robots

    Get PDF
    Soft robots are of significant research interest in recent decades due to their adaptability to unstructured environments and safe interaction with humans. Soft pneumatic robots, one of the most dominant subsets of soft robots, utilize the interaction between soft elastomeric materials and pressurized air to achieve desired functions. However, the systems currently used for signal computation and pneumatic regulation often make use of rigid valves, pumps, syringe drivers, microcontrollers et al. These bulky and non-integrable devices limit the performance of pneumatically-driven soft robots, carrying challenges for the robot to be miniaturized, untethered, and agile. This DPhil aims to develop pneumatic circuits that can be integrated into the soft robot bodies while performing both onboard computation and control. This thesis presents our contributions towards the aforementioned objective step by step. Firstly, we designed a 3D-printable bistable valve with tunable behaviours for controlling soft pneumatic robots. As an integrable control device, the valve stores one bit of binary information without requiring a constant energy supply and correspondingly controls a pneumatic chamber. Secondly, in order to reduce the number of valves required to control multi-chamber soft robots, we introduced a modular approach to design multi-channel bistable valves based on the previous work. Thirdly, in order to achieve continuous pressure modulation with integrable devices, we designed a soft proportional valve, utilizing the continuous deformation of Magnetorheological Elastomer (MRE) under magnetic flux. Apart from the analogue activation manner, this design also ensures a fast response time, operating at a time scale of tens of milliseconds, much shorter than the mechanical response time of most soft pneumatic actuators. Fourthly, to achieve onboard proportional control of multi-chamber soft robots, we developed an MRE valve array with an embedded cooling chamber. Physical experiments showed that our MRE valve array ensured the independence and accuracy of each valve unit within it, with a significantly lowered temperature of 73.9 o^oC under 5 minutes of operation. Lastly, we developed an open-source software toolbox supporting the design of integrable pneumatic logic circuits to enhance their accessibility and performance. The toolbox comes with a graphical user interface (GUI) to take users' desired logic functions in the form of a truth table and a set of 2D space constraints related to the available space onboard the robot. It then schedules the pneumatic circuit which performs the desired computation within the space constraints and produces a 3D-printable CAD file that can be fabricated and used directly. The work presented in this thesis enables the community to simplify the process of integrating control devices into soft pneumatic robots, thereby paving the way for a new generation of fully untethered and autonomous soft robots

    Available Technologies and Commercial Devices to Harvest Energy by Human Trampling in Smart Flooring Systems: a Review

    Get PDF
    Technological innovation has increased the global demand for electrical power and energy. Accordingly, energy harvesting has become a research area of primary interest for the scientific community and companies because it constitutes a sustainable way to collect energy from various sources. In particular, kinetic energy generated from human walking or vehicle movements on smart energy floors represents a promising research topic. This paper aims to analyze the state-of-art of smart energy harvesting floors to determine the best solution to feed a lighting system and charging columns. In particular, the fundamentals of the main harvesting mechanisms applicable in this field (i.e., piezoelectric, electromagnetic, triboelectric, and relative hybrids) are discussed. Moreover, an overview of scientific works related to energy harvesting floors is presented, focusing on the architectures of the developed tiles, the transduction mechanism, and the output performances. Finally, a survey of the commercial energy harvesting floors proposed by companies and startups is reported. From the carried-out analysis, we concluded that the piezoelectric transduction mechanism represents the optimal solution for designing smart energy floors, given their compactness, high efficiency, and absence of moving parts

    Applications of Power Electronics:Volume 2

    Get PDF
    corecore