1,194 research outputs found

    The 'what' and 'how' of learning in design, invited paper

    Get PDF
    Previous experiences hold a wealth of knowledge which we often take for granted and use unknowingly through our every day working lives. In design, those experiences can play a crucial role in the success or failure of a design project, having a great deal of influence on the quality, cost and development time of a product. But how can we empower computer based design systems to acquire this knowledge? How would we use such systems to support design? This paper outlines some of the work which has been carried out in applying and developing Machine Learning techniques to support the design activity; particularly in utilising previous designs and learning the design process

    The all-too-flexible abductive method:ATOM's normative status

    Get PDF
    The author discusses the abductive theory of method (ATOM) by Brian Haig from a philosophical perspective, connecting his theory with a number of issues and trends in contemporary philosophy of science. It is argued that as it stands, the methodology presented by Haig is too permissive. Both the use of analogical reasoning and the application of exploratory factor analysis leave us with too many candidate theories to choose from, and explanatory coherence cannot be expected to save the day. The author ends with some suggestions to remedy the permissiveness and lack of normative force in ATOM, deriving from the experimental practice within which psychological data are produced. (c) 2008 Wiley Periodicals, Inc

    The role of abduction in production of new ideas in design

    Get PDF
    The pragmatist philosopher Peirce insisted that besides deduction and induction there is a third main form of inference, abduction, which is the only type of inference capable of producing new ideas. Also he defined abduction as a stage of the methodological process in science, where hypotheses are formed to explain anomalies. Basing on these seminal ideas, scholars have proposed modified, widened or alternative definitions of abduction and devised taxonomies of abductive inferences. Influenced by Peirce’s seminal writings and subsequent treatments on abduction in philosophy of science, design scholars have in the last 40 years endeavoured to shed light on design by means of the concept of abduction. The first treatment was provided by March in 1976. He viewed that abduction, which he called “productive reasoning”, is the key mode of reasoning in design. He also presented a three-step cyclic design process, similar to Peirce’s methodological process in science. Among the many other later treatments of design abduction, Roozenburg’s definition of explanatory and innovative abduction is noteworthy. However, an evaluation of the related literature suggests that research into abduction in design is still in an undeveloped stage. This research shows gaps in coverage, lack of depth and diverging outcomes. By focusing on the differences between science and design as well as on empirical knowledge of different phenomena comprising design, new conceptions of abduction in design are derived. Given the differences of context, abduction in design shows characteristics not yet found or identified in science. For example, abduction can occur in connection to practically all inference types in design; it is a property of an inference besides an inference itself. A number of the most important abductive inference types as they occur in design are identified and discussed in more detail.Peer reviewe

    What Can We Learn From Analogue Experiments?

    Get PDF
    In 1981 Unruh proposed that fluid mechanical experiments could be used to probe key aspects of the quantum phenomenology of black holes. In particular, he claimed that an analogue to Hawking radiation could be created within a fluid mechanical `dumb hole', with the event horizon replaced by a sonic horizon. Since then an entire sub-field of `analogue gravity' has been created. In 2016 Steinhauer reported the experimental observation of quantum Hawking radiation and its entanglement in a Bose-Einstein condensate analogue black hole. What can we learn from such analogue experiments? In particular, in what sense can they provide evidence of novel phenomena such as black hole Hawking radiation

    What Can We Learn From Analogue Experiments?

    Get PDF
    In 1981 Unruh proposed that fluid mechanical experiments could be used to probe key aspects of the quantum phenomenology of black holes. In particular, he claimed that an analogue to Hawking radiation could be created within a fluid mechanical `dumb hole', with the event horizon replaced by a sonic horizon. Since then an entire sub-field of `analogue gravity' has been created. In 2016 Steinhauer reported the experimental observation of quantum Hawking radiation and its entanglement in a Bose-Einstein condensate analogue black hole. What can we learn from such analogue experiments? In particular, in what sense can they provide evidence of novel phenomena such as black hole Hawking radiation

    Reflective inductive inference of recursive functions

    Get PDF
    AbstractIn this paper, we investigate reflective inductive inference of recursive functions. A reflective IIM is a learning machine that is additionally able to assess its own competence.First, we formalize reflective learning from arbitrary, and from canonical, example sequences. Here, we arrive at four different types of reflection: reflection in the limit, optimistic, pessimistic and exact reflection.Then, we compare the learning power of reflective IIMs with each other as well as with the one of standard IIMs for learning in the limit, for consistent learning of three different types, and for finite learning
    • …
    corecore