13 research outputs found

    Ship steering control using feedforward neural networks

    Get PDF
    One significant problem in the design of ship steering control systems is that the dynamics of the vessel change with operating conditions such as the forward speed of the vessel, the depth of the water and loading conditions etc. Approaches considered in the past to overcome these difficulties include the use of self adaptive control systems which adjust the control characteristics on a continuous basis to suit the current operating conditions. Artificial neural networks have been receiving considerable attention in recent years and have been considered for a variety of applications where the characteristics of the controlled system change significantly with operating conditions or with time. Such networks have a configuration which remains fixed once the training phase is complete. The resulting controlled systems thus have more predictable characteristics than those which are found in many forms of traditional self-adaptive control systems. In particular, stability bounds can be investigated through simulation studies as with any other form of controller having fixed characteristics. Feedforward neural networks have enjoyed many successful applications in the field of systems and control. These networks include two major categories: multilayer perceptrons and radial basis function networks. In this thesis, we explore the applicability of both of these artificial neural network architectures for automatic steering of ships in a course changing mode of operation. The approach that has been adopted involves the training of a single artificial neural network to represent a series of conventional controllers for different operating conditions. The resulting network thus captures, in a nonlinear fashion, the essential characteristics of all of the conventional controllers. Most of the artificial neural network controllers developed in this thesis are trained with the data generated through simulation studies. However, experience is also gained of developing a neuro controller on the basis of real data gathered from an actual scale model of a supply ship. Another important aspect of this work is the applicability of local model networks for modelling the dynamics of a ship. Local model networks can be regarded as a generalized form of radial basis function networks and have already proved their worth in a number of applications involving the modelling of systems in which the dynamic characteristics can vary significantly with the system operating conditions. The work presented in this thesis indicates that these networks are highly suitable for modelling the dynamics of a ship

    Improving Traffic Safety and Efficiency by Adaptive Signal Control Systems Based on Deep Reinforcement Learning

    Get PDF
    As one of the most important Active Traffic Management strategies, Adaptive Traffic Signal Control (ATSC) helps improve traffic operation of signalized arterials and urban roads by adjusting the signal timing to accommodate real-time traffic conditions. Recently, with the rapid development of artificial intelligence, many researchers have employed deep reinforcement learning (DRL) algorithms to develop ATSCs. However, most of them are not practice-ready. The reasons are two-fold: first, they are not developed based on real-world traffic dynamics and most of them require the complete information of the entire traffic system. Second, their impact on traffic safety is always a concern by researchers and practitioners but remains unclear. Aiming at making the DRL-based ATSC more implementable, existing traffic detection systems on arterials were reviewed and investigated to provide high-quality data feeds to ATSCs. Specifically, a machine-learning frameworks were developed to improve the quality of and pedestrian and bicyclist\u27s count data. Then, to evaluate the effectiveness of DRL-based ATSC on the real-world traffic dynamics, a decentralized network-level ATSC using multi-agent DRL was developed and evaluated in a simulated real-world network. The evaluation results confirmed that the proposed ATSC outperforms the actuated traffic signals in the field in terms of travel time reduction. To address the potential safety issue of DRL based ATSC, an ATSC algorithm optimizing simultaneously both traffic efficiency and safety was proposed based on multi-objective DRL. The developed ATSC was tested in a simulated real-world intersection and it successfully improved traffic safety without deteriorating efficiency. In conclusion, the proposed ATSCs are capable of effectively controlling real-world traffic and benefiting both traffic efficiency and safety

    Model based detection and reconstruction of road traffic accidents

    Get PDF
    This thesis describes the detection and reconstruction of traffic accidents with event data recorders. The underlying idea is to describe the vehicle motion and dynamics up to the stability limit by means of linear and non-linear vehicle models. These models are used to categorize the driving behavior and to freeze the recorded data in a memory if an accident occurs. Based on these data, among others the vehicle trajectory is reconstructed with fuzzy data fusion. The side slip angle which is a crucial quantity describing the vehicle stability is estimated with non-linear state observers and Kalman-Filters. The methodologies presented may lead from accident reconstruction considered here to accident avoidance

    Model-based approach for the plant-wide economic control of fluid catalytic cracking unit

    Get PDF
    Fluid catalytic cracking (FCC) is one of the most important processes in the petroleum refining industry for the conversion of heavy gasoil to gasoline and diesel. Furthermore, valuable gases such as ethylene, propylene and isobutylene are produced. The performance of the FCC units plays a major role on the overall economics of refinery plants. Any improvement in operation or control of FCC units will result in dramatic economic benefits. Present studies are concerned with the general behaviour of the industrial FCC plant, and have dealt with the modelling of the FCC units, which are very useful in elucidating the main characteristics of these systems for better design, operation, and control. Traditional control theory is no longer suitable for the increasingly sophisticated operating conditions and product specifications of the FCC unit. Due to the large economic benefits, these trends make the process control more challenging. There is now strong demand for advanced control strategies with higher quality to meet the challenges imposed by the growing technological and market competition. According to these highlights, the thesis objectives were to develop a new mathematical model for the FCC process, which was used to study the dynamic behaviour of the process and to demonstrate the benefits of the advanced control (particularly Model Predictive Control based on the nonlinear process model) for the FCC unit. The model describes the seven main sections of the entire FCC unit: (1) the feed and preheating system, (2) reactor, (3) regenerator, (4) air blower, (5) wet gas compressor, (6) catalyst circulation lines and (7) main fractionators. The novelty of the developed model consists in that besides the complex dynamics of the reactorregenerator system, it includes the dynamic model of the fractionator, as well as a new five lump kinetic model for the riser, which incorporates the temperature effect on the reaction kinetics; hence, it is able to predict the final production rate of the main products (gasoline and diesel), and can be used to analyze the effect of changing process conditions on the product distribution. The FCC unit model has been developed incorporating the temperature effect on reactor kinetics reference construction and operation data from an industrial unit. The resulting global model of the FCC unit is described by a complex system of partial-differential-equations, which was solved by discretising the kinetic models in the riser and regenerator on a fixed grid along the height of the units, using finite differences. The resulting model is a high order DAE, with 942 ODEs (142 from material and energy balances and 800 resulting from the discretisation of the kinetic models). The model offers the possibility of investigating the way that advanced control strategies can be implemented, while also ensuring that the operation of the unit is environmentally safe. All the investigated disturbances showed considerable influence on the products composition. Taking into account the very high volume production of an industrial FCC unit, these disturbances can have a significant economic impact. The fresh feed coke formation factor is one of the most important disturbances analysed. It shows significant effect on the process variables. The objective regarding the control of the unit has to consider not only to improve productivity by increasing the reaction temperature, but also to assure that the operation of the unit is environmentally safe, by keeping the concentration of CO in the stack gas below a certain limit. The model was used to investigate different control input-output pairing using classical controllability analysis based on relative gain array (RGA). Several multi-loop control schemes were first investigated by implementing advanced PID control using anti-windup. A tuning approach for the simultaneous tuning of multiple interacting PID controllers was proposed using a genetic algorithm based nonlinear optimisation approach. Linear model predictive control (LMPC) was investigated as a potential multi-variate control scheme applicable for the FCCU, using classical square as well as novel non-square control structures. The analysis of the LMPC control performance highlighted that although the multivariate nature of the MPC approach using manipulated and controlled outputs which satisfy controllability criteria based on RGA analysis can enhance the control performance, by decreasing the coupling between the individual low level control loops operated by the higher level MPC. However the limitations of using the linear model in the MPC scheme were also highlighted and hence a nonlinear model based predictive control scheme was developed and evaluated.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    NASA Workshop on Distributed Parameter Modeling and Control of Flexible Aerospace Systems

    Get PDF
    Although significant advances have been made in modeling and controlling flexible systems, there remains a need for improvements in model accuracy and in control performance. The finite element models of flexible systems are unduly complex and are almost intractable to optimum parameter estimation for refinement using experimental data. Distributed parameter or continuum modeling offers some advantages and some challenges in both modeling and control. Continuum models often result in a significantly reduced number of model parameters, thereby enabling optimum parameter estimation. The dynamic equations of motion of continuum models provide the advantage of allowing the embedding of the control system dynamics, thus forming a complete set of system dynamics. There is also increased insight provided by the continuum model approach

    Exchange rate forecasting: an application of radial basis function neural networks

    Get PDF
    The purpose of this research is to investigate the forecasting performance of Artificial Neural Network models applied to foreign exchange rates. The study concentrates on the behavior of forecasts of exchange rates generated from the radial basis function (RBF) network models where little previous work exists;Exchange rates examined are the German mark/US dollar, Japanese yen/US dollar, and Italian lira/US dollar. One-step-ahead forecasts from univariate and multivariate RBF models are compared with those generated from ARIMA models, random walk forecasts and the forward rates. Interest rates and the money supply (M1) are used as explanatory variables in the multivariate analyses;Out-of-sample evaluation criteria include root mean squared error, correct direction , and speculative direction . Hypothesis tests are used to assess if differences in forecast accuracy from different models are significant and to assess if models can predict the direction of change with statistical significance. The tests employed are the Modified Diebold Marino test [Harvey et al. (1997)], the Pesaran-Timmerman (1992, 1994) non-parametric market timing test, and the chi2 test of independence [see Swanson and White (1997)];The main results of the study indicate that RBF models may be a useful alternative to the other models considered for forecasting exchange rates. In particular, out-of-sample forecasting results indicate that some multivariate RBF models using interest rates as economic variables do have forecasting value for some exchange rates. In the presence of interest rates, the M1 variable does not seem to possess much explanatory power for forecasting the three exchange rates

    Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference

    Full text link
    The 6th ECCOMAS Young Investigators Conference YIC2021 will take place from July 7th through 9th, 2021 at Universitat Politècnica de València, Spain. The main objective is to bring together in a relaxed environment young students, researchers and professors from all areas related with computational science and engineering, as in the previous YIC conferences series organized under the auspices of the European Community on Computational Methods in Applied Sciences (ECCOMAS). Participation of senior scientists sharing their knowledge and experience is thus critical for this event.YIC 2021 is organized at Universitat Politécnica de València by the Sociedad Española de Métodos Numéricos en Ingeniería (SEMNI) and the Sociedad Española de Matemática Aplicada (SEMA). It is promoted by the ECCOMAS.The main goal of the YIC 2021 conference is to provide a forum for presenting and discussing the current state-of-the-art achievements on Computational Methods and Applied Sciences,including theoretical models, numerical methods, algorithmic strategies and challenging engineering applications.Nadal Soriano, E.; Rodrigo Cardiel, C.; Martínez Casas, J. (2022). Proceedings of the YIC 2021 - VI ECCOMAS Young Investigators Conference. Editorial Universitat Politècnica de València. https://doi.org/10.4995/YIC2021.2021.15320EDITORIA

    Space station systems: A bibliography with indexes (supplement 9)

    Get PDF
    This bibliography lists 1,313 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1989 and June 30, 1989. Its purpose is to provide helpful information to researchers, designers and managers engaged in Space Station technology development and mission design. Coverage includes documents that define major systems and subsystems related to structures and dynamic control, electronics and power supplies, propulsion, and payload integration. In addition, orbital construction methods, servicing and support requirements, procedures and operations, and missions for the current and future Space Station are included

    Technology for large space systems: A bibliography with indexes (supplement 19)

    Get PDF
    This bibliography lists 526 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1988 and June 30, 1988. Its purpose is to provide helpful information to the researcher, manager, and designer in technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion, and solar power satellite systems
    corecore