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ABSTRACT 

Fluid catalytic cracking (FCC) is one of the most important processes in the petroleum refining 

industry for the conversion of heavy gasoil to gasoline and diesel. Furthermore, valuable gases such 

as ethylene, propylene and isobutylene are produced. The performance of the FCC units plays a 

major role on the overall economics of refinery plants. Any improvement in operation or control of 

FCC units will result in dramatic economic benefits. Present studies are concerned with the general 

behaviour of the industrial FCC plant, and have dealt with the modelling of the FCC units, which 

are very useful in elucidating the main characteristics of these systems for better design, operation, 

and control. Traditional control theory is no longer suitable for the increasingly sophisticated 

operating conditions and product specifications of the FCC unit. Due to the large economic 

benefits, these trends make the process control more challenging. There is now strong demand for 

advanced control strategies with higher quality to meet the challenges imposed by the growing 

technological and market competition.  

According to these highlights, the thesis objectives were to develop a new mathematical model for 

the FCC process, which was used to study the dynamic behaviour of the process and to demonstrate 

the benefits of the advanced control (particularly Model Predictive Control based on the nonlinear 

process model) for the FCC unit. The model describes the seven main sections of the entire FCC 

unit: (1) the feed and preheating system, (2) reactor, (3) regenerator, (4) air blower, (5) wet gas 

compressor, (6) catalyst circulation lines and (7) main fractionators. 

The novelty of the developed model consists in that besides the complex dynamics of the reactor-

regenerator system, it includes the dynamic model of the fractionator, as well as a new five lump 

kinetic model for the riser, which incorporates the temperature effect on the reaction kinetics; 

hence, it is able to predict the final production rate of the main products (gasoline and diesel), and 

can be used to analyze the effect of changing process conditions on the product distribution. The 

FCC unit model has been developed incorporating the temperature effect on reactor kinetics 

reference construction and operation data from an industrial unit. The resulting global model of the 

FCC unit is described by a complex system of partial-differential-equations, which was solved by 

discretising the kinetic models in the riser and regenerator on a fixed grid along the height of the 

units, using finite differences. The resulting model is a high order DAE, with 942 ODEs (142 from 

material and energy balances and 800 resulting from the discretisation of the kinetic models). 

The model offers the possibility of investigating the way that advanced control strategies can be 

implemented, while also ensuring that the operation of the unit is environmentally safe. All the 

investigated disturbances showed considerable influence on the products composition. Taking into 

account the very high volume production of an industrial FCC unit, these disturbances can have a 

significant economic impact. The fresh feed coke formation factor is one of the most important 

disturbances analysed. It shows significant effect on the process variables. The objective regarding 

the control of the unit has to consider not only to improve productivity by increasing the reaction 

temperature, but also to assure that the operation of the unit is environmentally safe, by keeping the 

concentration of CO in the stack gas below a certain limit. 

The model was used to investigate different control input-output pairing using classical 

controllability analysis based on relative gain array (RGA). Several multi-loop control schemes 
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were first investigated by implementing advanced PID control using anti-windup. A tuning 

approach for the simultaneous tuning of multiple interacting PID controllers was proposed using a 

genetic algorithm based nonlinear optimisation approach. Linear model predictive control (LMPC) 

was investigated as a potential multi-variate control scheme applicable for the FCCU, using 

classical square as well as novel non-square control structures. The analysis of the LMPC control 

performance highlighted that although the multivariate nature of the MPC approach using 

manipulated and controlled outputs which satisfy controllability criteria based on RGA analysis can 

enhance the control performance, by decreasing the coupling between the individual low level 

control loops operated by the higher level MPC. However the limitations of using the linear model 

in the MPC scheme were also highlighted and hence a nonlinear model based predictive control 

scheme was developed and evaluated. 

Results demonstrate that using modern nonlinear model predictive control (NMPC) approaches 

based on state-of-the-art optimization algorithms and software the advanced control of complex 

chemical processes, such as the FCCU can be brought into the realm of possibility.  The proposed 

nonlinear control scheme was applied to the control of the highly nonlinear FCC process. 

Simulations showed that the non-linear model-based MPC is highly effective, and coped well with 

the complexity and nonlinearities of the FCC process. Both NMPC and LMPC were superior to 

PID control, and it was shown that the NMPC provided better performance compared to LMPC. A 

novel economic criteria-based NMPC (ENMPC) was proposed and demonstrated the benefits of 

controlling the plant based on economic criteria rather than following predetermined setpoint 

trajectories. The new concept of differentiating between beneficial (good) and harmful (bad) 

disturbances was introduced and it was shown that regulating the plant at it predetermined 

operating conditions when beneficial disturbances occur can actually decrease control performance. 

The novel ENMPC scheme is inherently able to differentiate between good and bad disturbances 

and exploit potential beneficial disturbances continuously adapting the plant operating conditions to 

achieve economic optimisation and satisfy environmental and operating constraints. 

These results have demonstrated that the control structures proposed may be applied in industry in 

the form of a new scheme for controlling highly complex chemical processes with significant 

economic benefits. 
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cpCO2  heat capacity of carbon dioxide (B.t.u/mol F) 
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CHAPTER 1                                            

INTRODUCTION 

1.1 Background 

Worldwide, the fluid catalytic cracker (FCC) is the workhorse of the modern refinery. Its function 

is to convert heavy hydrocarbon petroleum fractions into a slate of more usable range of products, 

and must adapt to seasonal, environmental and other changing demand patterns, such as for 

gasoline, LPG and diesel. Furthermore, valuable gases such as ethylene, propylene and isobutylene 

are produced. The performance of the FCC units plays a major role in the overall economics of 

refinery plants (Alhumaizi and Elnashaie, 1997). Any improvement in operation or control of FCC 

units will result in dramatic economic benefits. First commercialised over half a century ago, the 

FCC is still evolving. Improvements in the technology, as well as changing feed stocks and product 

requirements continue to drive this evolution. Control of the FCC has been, and continues to be, a 

challenging and important problem. As will be seen, its steady state behaviour is highly nonlinear, 

leading to multiple steady states and input multiplicities. In earlier years, before the development of 

zeolite catalysts, the major control problem was one of stabilisation, of just keeping the unit 

running. Later with zeolite catalysts, the emphasis shifted to increasing production rates in the face 

of unit constraints and to handling heavier feeds (Arbel et al., 1995). New world trends in product 

demands, and to meet more severe legislation about fuel compositions raised the significance of 

controlling FCC product selectivity. The different product slates of the FCC process are the 

consequence of the complex interplay between reactions, such as cracking, isomerisation, hydrogen 

transfer, oligomerisation, etc. The complexity of gas oil mixtures, which are the typical FCC feeds, 

makes it extremely difficult to characterise and describe the inherent kinetics at a molecular level. 

Hence, one is forced to examine generalities rather than the details. One of the methods used to do 

this, is to consider the behaviour of groups of compounds as a unit. In this way, similar components 

are grouped into a few “cuts” or “lumps”. Therefore, the study of the reactions involved in the 

catalytic cracking process has followed the lumping methodology (Serti-Bionda et al., 2010). 

The FCC unit consists of two interconnected gas-solid fluidised bed reactors. The riser reactor, 

where almost all the endothermic cracking reactions and coke deposition on the catalyst occur, and 
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the regenerator reactor, where air is used to burn off the coke accumulated on the catalyst. The heat 

produced is carried by the catalyst from the regenerator to the reactor (Emad and Elnashaie, 1997). 

Thus, in addition to reactivating the catalyst, the regenerator provides the heat required by the 

endothermic cracking reactions. The region of economically attractive operational conditions is 

determined by both the properties of the feed stocks, catalyst and the desired product distribution 

requirements. In practice, the optimisation of the FCC unit to the desired range of products is 

usually carried out by trial and error. The disadvantage of this approach is that the transition from 

one state to the other must be gradual, and is not always successful, because of the complex 

interactions between the two reactors. As a result, it could lead to loss of production and 

consequently affect profits. Most of the economic gain from FCC control development has come 

from the optimisation level, with the regulation system simply providing stable, responsive, and 

safe operation. The problem is to find regulator schemes that are effective, economically justified, 

related to existing practice, and able to provide an adequate operator interface when desired. Most 

studies (Kurihara, 1967; Iscoll, 1970; Lee and Kugelman, 1973; Eng et al., 1974; Edwards and 

Kim, 1988; McFarlane et al., 1990; Krishna and Parking, 1985; Elshishini and Elnashaie, 1990) 

concerning FCC units have dealt with the process control based on a simplified reactor-regenerator 

model, which in principle incorporates major observed dynamics. Any FCC control should 

maintain a suitable reactor temperature distribution so as to achieve good product characteristics. 

The regenerator temperature profile should also be bounded so as to prevent abnormal combustion 

and excessive temperatures. At the same time, energy and material balances must be maintained 

between the two parts of the unit (Lopez-Isunza, 1992). 

The modelling of complex chemical systems in the simulation of process dynamics and control has 

been motivated by the economic incentives for improvement of plant operation and plant design. 

Presently, studies are concerned with the general behaviour of industrial FCC units; these research 

efforts deal with the modelling of FCC units, which are very useful in elucidating the main 

characteristics of these units for better design, operation, and control. Traditional control theory is 

no longer suitable for the FCC unit‟s increasingly sophisticated operating conditions and product 

specifications (Jia et al., 2003). Due to the large economic benefits, these trends make the process 

control more challenging. There is now a strong demand for advanced control strategies with higher 

control quality to meet the challenges imposed by the growing technological and market 

competition (Liao, 2008).  

Demand in the world oil markets is primarily for motor gasoline and other high quality fuels. 

Gasoline and other high products can be sold at highest prices; therefore, heavy oils are less 
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valuable than the light fractions. Crude distillation separates crude oil into more useful fractions. 

However, distillation alone cannot meet the demand for high quality fuels. Figure  1.1 shows the 

range of products demanded by the market from a barrel of crude oil, compared with the products 

produced by distillation alone. An important job of modern refineries is to convert oil from the 

„bottom of the barrel‟ to gasoline and other marketable products. Since a typical FCC unit can 

convert a large amount of feedstock into more valuable products, the overall economic benefits of a 

refinery could be considerably increased if proper control and optimisation strategies are 

implemented. But, analysis and control of FCC processes have been known as challenging 

problems due to the following process characteristics; (1) very complicated and little known 

hydrodynamics, (2) complex kinetics of both cracking and coke burning reactions, (3) strong 

interactions between the reactor and the regenerator, and (4) many operating constraints. However, 

the large throughput of FCCU, the change in operating conditions, and the substantial economic 

benefits are the motivation behind this research (Han et al., 2000). 

 

 

Figure 1.1: Products from typical barrel of crude oil  
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1.2 Research aim and objectives 

The aim of this research project is to develop a mathematical model that can simulate the behaviour 

of the FCC unit, which consists of feed and preheat system, reactor (riser and stripper), regenerator, 

air blower, wet gas compressor catalyst circulation lines, and the main fractionators. The model will 

be subsequently used in studies of control and economic optimisation. The developed model deals 

with the complex dynamics of the reactor-regenerator system, and also includes the dynamic model 

of the fractionator, as well as a detailed five lump kinetic model for the riser (namely: gas oil, 

gasoline, diesel, LPG and coke). This model is able to predict and describe the compositions of the 

final production rate, and the distribution of the main components in the final product. This allows 

the estimation of economic factors, related to the operation of the FCCU. 

Seven objectives have been identified that lead to a logical progression through the research:    

a) to gain knowledge and understanding of FCC unit behaviour by developing a user-friendly, 

process simulator using an object-oriented programming environment. The simulator can 

be used to understand the process dynamics, and perform operator training, control 

structure design, controller tuning, through a comprehensive literature review; 

b) implement and evaluate the 5-lump kinetic model in the FCC global model, to simulate the 

dynamic behaviour of open and closed loops using decoupled advanced PID control 

algorithms; 

c) design and evaluate control schemes for controlled and manipulated variables in order to 

choose the best control pairs by using an analysis tool, known as relative gain array (RGA); 

d) develop a PID tuning algorithm for a Multi Input Multi Output (MIMO) system by using 

model based optimisation; 

e) design and implement linear and nonlinear Model Predictive Control (MPC); 

f) derive and evaluate different economic optimisation objectives; and 

g) implement a hierarchical Real Time Optimisation (RTO) algorithm and perform evaluation 

for different economic objectives. 
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1.3 Main contribution of the thesis 

The main contributions of this thesis are summarised in the following lists: 

a) An original mathematical model for the FCC process was developed based on the 

momentum, mass, and energy dynamic balances. It incorporates process hydrodynamics, 

heat transfer, mass transfer and catalytic cracking kinetics based on a lumping strategy, 

which lumps molecules and reactions according by their boiling point and treated as 

pseudo-components for a global description of the phenomena taking place in the reactor. 

The process is multivariable, strongly nonlinear, highly interactive, and subject to many 

operational, safety and environmental constraints, posing challenging control problems. 

The model was implemented in the C programming language for efficient solution, and 

compiled in Matlab/Simulink language programming, because it provides a convenient 

graphical user interface. Moreover, the model has been used to study the dynamic 

behaviour of the process, control the output variables and economic optimisation. The 

global model of the FCCU is described by a complex system of partial-differential-

equations, which was solved by discretising the kinetic models in the riser and regenerator 

on a fixed grid along the height of the units, using finite differences. The resultant model is 

described by a complex system of a higher order differential-algebraic-equation (DAE), 

with 142 ODEs (from material and energy balances and 800 algebraic equations resulting 

from the discretisation of the kinetic models).  

b) A flexible process simulator was developed that can be used to show how the open and 

closed loop control systems perform in the case of disturbances and model uncertainty. The 

developed simulator enables engineering and technical personnel to carry out research on 

the design, operation, performance, and development of a proper control system for a 

modern catalytic cracking unit. It could also act as an efficient tool for training operating 

personnel. 

c) An automatic tool is proposed to tune PID controllers in a MIMO process based on a 

Genetic Algorithm (GA). The tuning of several interacting controllers in complex industrial 

plants is a challenge to process engineers and operators. The success of this task depends 

on complete knowledge of plant behaviour and control requirements, which can present 

strong interactions among variables, non-linearity and conflicting objectives. An advantage 

of the proposed scheme is that a coupled MIMO process with several control loops can 
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have all the controllers tuned in a unified way as a full MIMO controller. In the 

development phase, the problem of tuning n regulatory control loops was modelled as an 

optimisation problem, where tuning one control loop may damage the performance of the 

remaining ones. The solution of the multi-objective problem by the weighted sum approach 

is possible, since each loop is locally evaluated by a function that considers the integral 

squared error (ISE). It is worthwhile to note that this modelling is not restricted to PID 

control. The objective function can be used as a basis for the design and tuning of general, 

linear or non-linear multivariable controllers.  

d) To introduce an analysis method based on the relative gain array (RGA) as a tool to help 

select variable pairings for decentralised multivariable control structures. 

e) To evaluate the performance of Model Predictive Control (MPC) based on linearised global 

reactor-regenerator-main fractionator FCCU global model. Various square and non-square 

control structures are investigated, and the tuning of the MPC is evaluated. 

f) To develop an efficient real-time nonlinear model predictive control (NMPC) strategy, 

based on efficient multiple shooting optimization and a real-time iteration scheme, and to 

evaluate the performance of the proposed scheme in the case of the simulated complete 

FCCU. 

g) To develop a novel NMPC scheme based on the on line optimization of overall process 

economics related objectives. To demonstrate the benefits of controlling the FCCU based 

on real time economic decisions, and exploiting the beneficial effects of „disturbances‟ if 

any, rather than simply tracking set point trajectories determined off line. 

1.4 Thesis structure  

An outline of the chapters in this thesis is as follows: 

Chapter 1 gives an introduction to the problems in fluid catalytic cracking technology, together 

with the recent improvements that maximise the productivity and product quality. The aims of the 

current study, thesis contribution and structure of the thesis report are discussed. 

Chapter 2 provides a review of relevant literature on chemical process control. The sub-sections 

within this chapter consist of fundamentals of crude oil processing, introduction to the FCC and its 

significance, process description, and FCC catalyst and process chemistry. The FCC unit is 
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discussed in its modelling and kinetics aspects. Moreover, various control tools and techniques are 

discussed. The important information that can be obtained about control, and economic process 

control is mentioned. 

Chapter 3 presents the details of the FCC mathematical model, including the five lump kinetic 

model for the riser section and the main systems: feed and preheat system, reactor (riser and 

stripper), regenerator, air blower, wet gas compressor catalyst circulation lines and the main 

fractionator.  

Chapter 4 presents the development of a dynamic process simulator for an open-loop system with 

a wide range of operating conditions and in the presence of disturbances. Also, sensitivity analyses 

for composition of the products are presented. The economic aspects have been described by plant 

gross profit and gasoline octane number, which are sensitive to the presence of disturbance.  

Chapter 5 describes and discusses the implementation of a closed loop system using different 

regulatory controller structures. A set of FCC unit dynamic simulations have been performed and 

studied in response to disturbances.  

Chapter 6 presents an overview of NMPC and LMPC techniques and their implementation on a 

very complex, industrially relevant FCC process. Software packages for advanced control 

simulations are studied and presented.  

Chapter 7 introduces the novel NMPC approach for the hierarchical Real Time Optimisation 

(RTO) algorithm and provides an evaluation for different economic objectives. 

Chapter 8 concludes the thesis by summarising the results of all the work that has been presented, 

and proposes areas of future work. 

 

.
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CHAPTER 2                                                  

LITERATURE REVIEW 

2.1 Fundamentals of crude oil processing 

The debate on fossil fuels and substitute energy sources is presently at a peak. In this respect, it can 

be seen that there are significant efforts on the global scale to develop alternatives in the form of 

sustainable energy sources. Yet, the currently existing alternatives to fossil fuels suffer from 

drawbacks (Kirby, 2004), listed in the following: 

a. Water power, hydroelectric or otherwise, is a clean, non-polluting source. However, it 

relies on the presence of a sufficiently large water resource, and dam construction is not a 

sustainable activity. 

b. Another option involves utilising hydrogen, which is an abundant resource. Yet, currently, 

requires large amounts of electrical energy for it to be generated from fossil fuels or water, 

and is also problematic in its transport and storage. 

c. The option of energy from the sun or wind has been subject to significant work, and as such 

may meet a large part of the needs in some areas. However, this depends on climatic 

conditions, and the day/night cycle, and as such availability is variable. 

d. Development of cleaner derivative fuel technologies, which produce gas from coal before 

burning to produce power, are said to result in less pollutants (E.ref.1). 

e. The alternative of nuclear power has the benefit of zero emissions of pollutants. However, 

it presents huge challenges in the safe disposal of radioactive waste. 

f. Biomass-derived bio-fuels rely on processing organic, vegetable matter. Such fuel is 

blended with conventional fossil fuel-derived diesel or petrol at low concentrations. For 

example, maximum 10% bio-fuel blended into petrol (E.ref. 2). A further problem lies in 

the amount of resources diverted from food production to bio-fuel, which raises a number 

of ethical questions.  

g. The recovery of low-grade heat from ocean and geothermal sources offers a potential long-

term solution through power generation using, for example, the Organic Rankine Cycle 

(14% max. efficiency). Presently, such technology is in the early stages of development, 

and has seen little implementation in practice. 
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Given these realities, it would be correct to say that there is still some time before alternative 

technologies can play an effective role in meeting all current and future power generation needs. 

Therefore, as yet, oil remains the prime energy source, providing humanity with its essential needs, 

including food, chemical products, therapeutic drugs, clothing, warmth and facilitating movement 

(Kirby, 2004). 

OPEC reported that over the last forty years, fossil fuels, primarily oil, have been the main source 

of energy in the world (E. ref. 3). 

The organisation predicts that the dependence on oil will remain the same over the next two 

decades, with a decline by 2030 from 39% in consumption to 36.5%. If the current trends in energy 

policy and technology development continue unchanged then the demand for oil could rise to 

118mb/d by 2030, i.e. an increase of 34mb/d in the interval 2005-2030. Given the economic crisis, 

affecting the world since 2008, allied to the high price of crude oil, global consumption has fallen. 

This is expected to reverse as the global economy begins to recover. The demand for crude oil will 

be driven by the needs of the transport sector, with a predicted rise to 18mb/d by 2030. This will 

remain so, even with the existence of alternative sources for producing transport fuels, such as tar 

sand, coal, shale, and even recycled tyres and plastics. However, the process of producing petrol 

and diesel from crude oil remains the least expensive (E.ref. 4). 

The process of producing transport fuels and other useful products involves transporting crude oil 

to the refinery where it is passed through a distillation column at atmospheric pressure, and 

fractions of jet fuel, diesel, heavy and light straight run gasoline are recovered; these high quality 

fuels constitute only 40% of the crude oil (E.ref. 5). The remaining 60% is composed of poor fuels 

that require more processing to transform them into valuable transport fuels. The atmospheric 

distillation column bottoms are then distilled under a vacuum, which produces gas oils. These 

heavy hydrocarbons are then passed as feedstock to hydrocracker or fluid catalytic cracker (FCC) 

units, and converted into transport fuels and light gases after sweetening. 

As mentioned previously, valuable fuels are produced following vacuum distillation and cracking 

of the 60% crude oil part. This percentage varies with the crude oil constituents, rising in heavier 

crude oils, characterised by higher molecular weight constituents with less hydrogen molecules. In 

this case, the value of cracking units, FCC and hydrocrackers, is even greater. Therefore, refineries, 

in future, will require greater upgrading unit capacity, reaching 7.5mb/d in 2020, according to 

OPEC (E.ref. 3). It is widely recognised that one of the most efficient way to increase productivity 
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and efficiency is by adapting advanced controller strategies (McFarlane et al., 1990; McFarlane et 

al., 1993; Krishna and Parking, 1985; Elshishini and Elnashaie, 1990). 

2.1.1 Process technology  

Introduction to FCC and it significance 

The FCC process among those used in upgrading crude oil products is characterised by its long 

term reliability and operation, and the variety of products resulting, such as high octane gasoline. 

The capability of the FCC process to produce, at low cost, high yields of gasoline with high octane 

number, means it plays a major role in the strategy of gasoline production in refineries (E.ref. 6). 

The valuable contribution made by FCC units in gasoline production can be seen in the example of 

the El Segundo refinery FCC unit operated by Chevron, producing 20 gallons of gasoline per 

second, which represents the volume of 100,000 car fuel tanks (E.ref. 5). 

FCC units vary quite significantly, in terms of where the cracking reaction occurs, and the mode of 

control selected. In pre-1965 FCC units, the cracking reaction occurs in the dense-phase, fluidised 

catalyst bed reactor, while control is established through choice of bed depth time and temperature 

during the process. In time, cracking reactions in the riser became more prominent, especially after 

introduction of potent zeolite catalysts; all this, required modifications to unit operation. New FCC 

unit designs have contributed to fundamental changes (Saxton and Worley, 1970), where reactor 

bed level was minimised; in particular, the rate of circulation of the catalyst was used to control the 

cracking reaction. In the same context, older units were also modified to accommodate the 

increased prominence of riser cracking reactions. In these scenarios, feed cracking reactions in the 

riser have varied in proportion to those taking place in the bed reactor, through varying the 

combinations of reactor and riser, between multiple or single riser feed lines, in parallel and serially 

(Saxton and Worley, 1970). 

It is worthwhile to mention that FCC units are also capable of producing other high value oil 

derivatives, such as polypropylene, in addition to gasoline, extremely flexibly, meeting demand in 

this regard. For example, the FCC unit designed and licensed by UOP has been modified according 

to the target product, where the purpose of the PetroFCC unit is production of petrochemical 

feedstock. The UOP PetroFCC unit has the ability to generate ethylene, propylene, benzene and 

paraxylene, and butylenes, which represents a significant rise in yield in comparison to the 

traditional unit (E.ref. 7). Such production capabilities are reflected in a production capacity of 
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about 28% of a total production 50.2 million tons per year of PG/CG (polymer and chemical grade) 

propylene by FCC units. The yields of the process are shown in Table 2.1. 

Table 2.1: Uses of FCC products. 

FRACTION               USES 

Gases Plant fuel system 

Further processed into petrochemical 

Feedstocks 

LPG (Liquid Petroleum Gas) 

Gasoline Treated and blended into motor Gasolines 

Naphtha Refined into motor gasoline 

Light Cycle Oil Diesel fuel 

Jet fuel 

Fuel oil 

Heavy Cycle Oil Residual fuel 

Thermal cracking 

Clarified Slurry Oil Residual fuel 

Thermal cracking 

The process results in production, in the regenerator, of waste flue gas, composed of water vapour, 

carbon dioxide, and carbon monoxide.  

FCC units are the key producers of the majority of refinery-grade (RG) polypropylene as a result of 

gasoline and distillate production operations. RG polypropylene is a by-product of refineries, and 

annual worldwide output is 31.2 million tons. The petrochemical industry currently absorbs over 

50% of this RG polypropylene output. It is predicted that output of RG polypropylene by FCC units 

will rise by around 5% each year (E.ref. 8). 

The present discussion has reflected on the role of FCC units in the context of oil consumption in 

the future, where they are expected to play a significant role in accommodating expanding demand 

for olefins, diesel, and gasoline; FCC units will represent 47% of new refinery capacity (E.ref. 3). A 

technical description of the three parts of the FCC process is presented below (see Figure  2.1): 

a) Pre-treatment of the feedstock: this involves the removal of sulphur as well as other 

contaminants; 

b) Catalyst Reaction/Regeneration: the hydrocarbon feedstock is cracked after coming in 

contact with the hot catalyst. The coke formed on the catalyst surface is then burnt off in 

the regenerator section; and 

c) Separation stage: based on specific boiling range, separation of hydrocarbons into different 

products, such as diesel, gasoline, occurs. 
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Figure 2.1: UOP type Fluid Catalytic Cracking Unit. 

While the term „mature‟ may be used to describe FCC technology, strictly, it is only true with 

respect to: 

a. its existence as a commercial process for a long time; and 

b. multi-phase fluidisation, as the underlying technology (Sadeghbeigi, 2000). 

Otherwise, the technology continues to develop, and respond to the changing demands of the 

industry. In this context, understanding FCC process behaviour is key to responding to technical 

challenges and market demands, including environmental protection, operating conditions, higher 

hydrocarbon feeds processing, unit upgrading, refinery product derivatives, and feeds. 
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FCC unit operation may be better understood through experimental, or computer simulation studies. 

In comparing both approaches, experiments are very costly, given the large number of variables 

involved, e.g. process parameters, production strategy, feedstock type. Therefore, simulation offers 

a more cost effective and flexible means of studying and optimising the FCC process. The main 

effort lies in developing a model that accurately describes the process, after which responses can be 

modelled for any change in the variables of interest, without any further work on the model 

(Sadeghbeigi, 2000). 

Process Description  

The FCC process earns its name from the fluid-like behaviour of the very fine particle catalyst 

when mixed with vapour. The constant circulation of fluidised catalyst between reaction and 

regeneration zones keeps the cracking process continuous and stable. In addition, the re-circulating 

catalyst provides a convenient heat transfer medium between the reactor, regenerator and the oil 

feed. Current basic designs of operational FCC units include: “side-by-side”, Orthoflow or stacked 

types (i.e. separate but adjacent reactor and regenerator vessels), and reactors mounted directly 

above the regenerator, respectively (Gary and Handwerk, 1975).  

Under normal FCC operational conditions, gas-oil and any other feedstocks are heated. This heat is 

usually provided by the main fractionator bottoms pumparound and/or fired heaters. The FCC feed 

is preheated and then channelled to the reactor riser base, meeting the regenerated catalyst. Since 

the catalyst has been heated in the regenerator, this allows the feed to attain the desired temperature 

for the reactor. The catalytic reaction in the riser is endothermic, with cracking taking place in the 

vapour phase, and requires the feed to be vaporised. In practice, steam is the preferred means of 

atomising the feed. Catalyst activity is steadily degraded due to coke deposits arising from the 

cracking reactions while the catalyst promotes the reaction without it being chemically changed. It 

is at the reactor stripper stage that the catalyst and cracking products are separated. The centrifugal 

separation effect of cyclone stages is used to collect and return the catalyst through the diplegs and 

flapper/trickle valves to the stripper. On its journey into the stripper, hydrocarbons are adsorbed on 

the surface of the spent catalyst. Meanwhile, the porous catalyst is filled with hydrocarbon vapour; 

it also entrains vapours as it falls into the stripper. Steam is primarily used to strip and remove the 

hydrocarbons entrained by fine catalyst particles. Product vapour leaves the cyclone stage in the 

main fractionator, while hot product vapour from the reactor also enters close to the main 

fractionator base. Fractionation involves condensing and then vaporising the hydrocarbon 

components. Vapour/liquid contact is promoted using devices such as shed decks, disk/doughnut 
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trays, and grid packing. The wet gas compressor receives unstabilised gasoline and light gases exit 

at the top of the main fractionator. Further transformation then takes place in other refinery units.  

The main fractionator produces:  

 A gas phase comprising 70-90% C3 and C4 hydrocarbons, each containing 60% propane 

and 40-55% butane respectively. 

 A 195
 
C end distillation point gasoline fraction made up of paraffin (45-50%), alkenes (8-

15%), naphtens (7-15%), and aromatics (20-30%). 

 A diesel fraction (distillation range: 195-420
 
C); di- and tri-aromatic molecules make up 

the bulk of the 30-50% of the aromatics in this fraction. 

 A slurry above 420
 
C. 

Constant regeneration of the catalyst is needed because of coke “poisoning”. This takes place in a 

regenerator which, in addition to restoring catalyst activity, also supplies heat that drives the 

endothermic feed cracking reaction. A blower brings in fresh air to burn off the coke, which is 

made up of carbon, hydrogen, and traces of sulphurs and nitrogen. An air distributor near the 

bottom of the regenerator vessel is provided for this purpose. The flue gas resulting from coke 

combustion passes through cyclones found at the top of the regenerator and, in some designs, is 

sent to a CO boiler, while in others a shell/tube or box heat exchanger harnesses the flue heat to 

produce steam from the boiler feed water (Sadeghbeigi, 2000).  

FCC catalyst 

Since there are over 140 different types of catalyst formulations in the world today, it is important 

that the refinery personnel involved in cat cracker operations have the fundamental understanding 

of catalyst technology. This is useful in areas like trouble shooting of units. The use of additives is 

likely to increase in the coming years due to the need to produce reformulated gasoline and to 

reduce SOx and NOx emissions (Scherzer, 1990). 

Catalyst components 

FCC catalysts are in the form of fine powders with an average particle size of 75 microns. There are 

four major components in the catalyst.  

Zeolite 

It is the key ingredient of the FCC catalyst. Its role is to provide product selectivity and much of 

catalytic activity. It has a well-defined lattice structure. Its basic building blocks are silica and 

alumina tetrahedral. Each tetrahedron consists of a silicon or aluminium atom at the center of the 
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tetrahedron with oxygen atoms at the corners. The activity of the zeolite comes from its acid sites. 

The zeolites with application to FCC are Type X and Type Y. Virtually all of the catalysts used 

today in FCC are of Type Y (Humphries and Skocpol, 2004). 

Rare earth components such as lanthanum and cerium were used to replace sodium in the crystal. 

They form “bridges” between two to three acid sites in the zeolite framework. The rare earth 

exchange adds to the zeolite activity and thermal and hydrothermal stability. Low aluminium 

content zeolites are called Ultra stable Y or USY because of its higher stability. They are used for 

production of high-octane gasoline by raising the olefinicity (O'Connor et al., 2001). 

The properties of zeolite play a significant role in the overall performance of the catalyst. The 

reactor/regenerator environment can cause significant changes in chemical and structural 

composition of the zeolite. For e.g., in the regenerator, the zeolite is subjected to thermal and 

hydrothermal treatments. The zeolite must also retain its crystallinity against feedstock 

contaminants such as vanadium and sodium. The three parameters, which govern zeolite behavior, 

are Unit Cell Size, Rare earth level, Sodium content. 

The Unit Cell Size (UCS) 

Is a measure of aluminium sites or the total potential acidity per unit cell. The negatively charged 

aluminium atoms are sources of active sites in the zeolite. Silicon atoms do not possess any activity 

(Cheng et al., 1998). 

Rare earth  

Elements serve as a “bridge” to stabilize aluminium atoms in the zeolite structure. They prevent the 

aluminium atoms from separating from the zeolite lattice when the catalyst is exposed to high 

temperature steam in the regenerator. The rare earth increases zeolite activity and gasoline 

selectivity with a loss in octane (Silverman et al., 1986). The insertion of rare earth maintain more 

and closer acid sites, which promotes hydrogen transfer reactions. In addition, rare earth improves 

thermal and hydrothermal stability in the zeolite. 

Sodium 

Is originates either from the zeolite or from the feedstock. It decreases the hydrothermal stability of 

the zeolite. It also reacts with the zeolite acid sites to reduce catalyst activity. In a de-aluminated 

zeolite, when the UCS is low, the sodium can have an adverse effect on the octane of gasoline. It is 

attributed to the droop in the number of strong acid sites. 
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Matrix 

This refers to the components of the catalyst other than the zeolite. The term active matrix means 

the component of the catalyst other than the zeolite having catalytic activity. 

Alumina is the source for an active matrix. The active matrix contributes significantly to the overall 

performance of the FCC catalyst. The zeolite pores are not suitable for cracking of large 

hydrocarbon molecules. They are too small to allow diffusion of the large molecules to the cracking 

sites. An effective matrix must have a porous structure to allow diffusion of hydrocarbons into and 

out of the catalyst. The active matrix pre-cracks heavy feed molecules for further cracking at the 

internal zeolite sites. The result is a synergistic interaction between matrix and zeolite in which the 

activity attained by their combined effects can be greater than the sum of the individual effects. An 

active matrix can also serve as a trap to catch some of the vanadium and basic nitrogen. The high 

boiling fraction of the FCC feed usually contains metals and basic nitrogen that poison the catalyst. 

Catalysts and the Cracking Reaction  

First, a long-chain hydrocarbon molecule is absorption on the porous surface of the catalyst. This 

absorption weakens the bonds between the atoms of the hydrocarbon molecule which makes the 

molecule more reactive (Bhattacharyya, 2010). 

Inside the pores, the hydrocarbon molecule contacts the catalyst‟s active sites. The acidity of the 

active sites promotes a chemical reaction that cracks the hydrocarbon molecule apart. The cracked 

molecules that leave the catalyst particle are made up of shorter-chained hydrocarbons. They may 

form single bonds or rings. When these shorter-chained hydrocarbons are disengaged from the 

catalyst, they can be separated into several more valuable products: olefinic gases, liquefied 

petroleum gases, gasoline, and light fuel oil (Katz, 2001).  

Process Chemistry  

The chemistry of the fluid catalytic cracking process is complex although catalytic cracking has 

been subject to long and in-depth investigation. This reaction has been described as occurring 

because carbenium ion intermediates are produced on the acid sites of a catalyst‟s surface 

(Tominaga and Tamaki, 1997). Yet, the nature of these carbocations is still controversial. Meyers 

(1997) proposed the description: "classical" carbenium ions and protonated cyclopropane 

derivatives. In addition to C-C bond cleavage, the complex cracking process also includes other 

reactions: 
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 Isomerisation; 

 Protonation, deprotonation; 

 Alkylation; 

 Polymerisation; 

 Cyclisation, 

 Condensation (due to which coke is also formed).  

Complex intra- and inter-molecular reactions distinguish the catalytic cracking process, also leading 

to coke formation while the deactivating effect of coke on the catalyst holds the key to an elegant 

practical process (Sadeghbeigi, 1995; Magee and Mitchell, 1993). 

Equations 2.1-2.15, describe the series of complex reactions occurring to a large gas-oil molecule in 

the presence of 1,200°F to 1,400°F (650°C to 760°C) FCC catalysts. The nature and strength of the 

acid sites on the catalyst surface feature among the many factors affecting the distribution of 

products. However, other factors, such as non-ideal mixing in the riser and poor separation of 

cracked products in the reactor, cause the majority of cracking in the FCC.  

In a typical FCC unit, the main reactions occurring are (Sadeghbeigi, 2000): 

a) Cracking 

 paraffins cracked to olefins and smaller paraffins 

C10H22 C4H10+C6H12         (2.1) 

 olefins cracked to smaller olefins  

 C9H18 C4H8+C5H10         (2.2) 

 aromatic side-chain scission 

 ArC10H21 ArC5H9+C5H12       (2.3) 

 naphthenes cracked to olefins and smaller ring compounds 

Cyclo-C10H20 C6H12+C4H8       (2.4) 

b) Isomerisation 

 olefin bond shift 

1-C4H8 trans-2-C4H8        (2.5) 

 normal olefins to iso-olefin 

n-C5H10 iso-C5H10         (2.6) 

 normal paraffin to iso-paraffin 

n-C4H10 iso-C4H10         (2.7) 

 cyclo-hexane to cyclo-pentane 
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C6H12 C5H9CH3         (2.8) 

c) Hydrogen transfer 

Naphtene+Olefin Aromatic+Parafin       (2.9) 

 cyclo-aromatisation 

C6H12+3C5H10 C6H6+3C5H12       (2.10) 

d) Trans-alkylation/alkyl-group transfer 

C6H4(CH3)2+C6H6 2C6H5CH3       (2.11) 

e) Cyclisation of olefins to naphthenes  

C7H14 CH3-cyclo-C6H11       (2.12) 

f) Dehydrogenation 

n-C8H18 C8H16+H2        (2.13) 

g) Dealkylation 

Iso-C3H7-C6H5 C6H6+C3H6       (2.14) 

h) Condensation 

Ar-CH=CH2+R1CH=CHR2 Ar-Ar+2H      (2.15) 

2.2 Mathematical  modelling concept 

Given the various processes occurring in chemical plant, a multidisciplinary approach is needed in 

modelling such processes. A system of equations mathematically describes the intrinsic and 

interdependent relationships between the process variables, to form the computer model. 

The benefits of simulation models are useful in (Tasoti, 2007): 

 Design of the system: including optimizing the process and its parameters, performing 

dynamic analysis, and analyzing the effect of key factors, as well as unit upgrade. 

 Process control: analysing the possible control strategies, identifying the best control 

scheme; developing predictive control model and expert system. 

 Potential failure mode identification: includes determining factors disturbing the process, or 

those that reduce performance of the plant. 

 Personnel training: enabling realistic training simulation of plant start-up, operation, and 

shutdown, including operation at the plant design limits. 

 Developing safety procedures and determining the environmental impact: allows dangerous 

regimes of operation to be identified with associated risk assessment leading to accident 

prevention controls, and quantifying social and economic impacts.  
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The mathematical models for a system may be described as stochastic / statistical (empirical) or 

analytical, based on the type of relations existing among the system variables. A statistical model is 

built on measurements, and observations of system operation, and has the advantage of: 

 mathematical simplicity, and so requires basic mathematics treatment 

 Knowledge of the system does not need to be deep, concerning the underlying phenomena, 

and processes 

However, statistical models also present several major disadvantages, where:  

 A large amount of data, obtained from experiments on the system to be modelled, is 

required 

 It is not possible to extrapolate and extend mathematical models beyond the range of 

experimental data used to build them 

 A unique and new model must be built to fit each new system or variant developed, using 

new data derived from experiments performed on these systems  

In contrast, analytical mathematical models are built on equations for the laws of conservation of 

mass, energy, and momentum, as well as those laws governing the physics and chemistry of 

processes occurring in the system. Such models offer a number of advantages: 

 The ability to extend them easily to take account of changes, i.e. their domain of validity is 

extended, 

 Provide greater flexibility,  

 Analytical models can be extended to fit new systems with similar processes. 

However, analytical models also present disadvantages, in that:  

 Knowledge of the system‟s underlying processes and phenomena must be quite good 

 Specialist skill is required to derive those equations that describe the physics and chemistry 

of the system to be modeled 

 A model validation/verification stage, involving experiment, is needed; the experimental 

data is input into the model to compare output with reality. 

Additionally, the system models may reflect either the steady state, or unsteady (dynamic) state; in 

the former, the model algebraic equations are independent of time, i.e. do not change with time; 

while in the latter, the model equations are time-dependent, differential equations describing 

continuous system variables. In addition, the relationships in either case may be linear or non-
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linear. The analytical model of the chemical system is built by specifying appropriate energy, 

momentum, and mass conservation equations coupled to the equations of chemical equilibrium and 

the physical state of the system. 

 The statistical model is built by recording the process variables in experiments, and 

applying statistical methods to determine the equations relating the process inputs to the 

output 

 A mixed statistical and analytical model may be defined by coupling empirical and 

analytical equations  

2.2.1 FCC cracking kinetics modelling 

Prior to the 1930s, hydrocarbon cracking was achieved by applying high temperature to effectively 

break the bonds in the high molecular weight compounds resulting in lower molecular weight 

hydrocarbons. However, this thermal cracking process was superseded by catalytic cracking, which 

would occur rapidly, and at lower temperature. 

Currently, key components of modern refinery infrastructure are fluid catalytic crackers, which 

facilitate the conversion of high molecular weight hydrocarbons into desired products, LPG, 

gasoline, and diesel. Given the high value products of cracking, any development that increases 

FCC process yields, by as little as 1%, is welcomed (Das et al., 2003). However, such advances can 

only be achieved by deep understanding of FCC operations, typically, residence times, 

temperatures, catalysts, feedstocks, and catalyst-to-oil (C/O) ratio. Optimisation of unit operation 

for maximum yield in particular modes of operation requires models for the reactor and reaction 

kinetics that are highly accurate, regardless of the feedstock used. 

Review of FCCU Modelling 

The importance of the FCCU has led to the development of many models over time, based on 

varying assumptions regarding reaction kinetics, and component hydrodynamics, including 

generator and riser. The focus in some models has been the regenerator only (Ford et al., 1976; 

Errazu et al., 1979; de Lasa et al., 1981; Guigon and Large, 1984; Krishna and Parkin, 1985; Lee et 

al., 1989a), while others have been restricted to the cracking process or reactor (Weekman and 

Nace, 1970; Paraskos et al., 1976; Jacob et al., 1976; Shah et al., 1977; Lee et al., 1989b; Larocca et 

al., 1990; Takatsuka et al., 1987), and yet others that included both reactor and regenerator (Kumar 

et al., 1995; Lee and Kugelman, 1973; McGreavy and Isles-Smith, 1986; Bozicevic and Lukec, 

1987; Arandes and de Lasa, 1992; McFarlane et al., 1993; Arbel et al., 1995; Arandes et al., 2000). 

These models have been summarised in Table 2.2, with a breakdown of feedstock/product 

combinations with respect to each component. 
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 Table 2.2: Review of kinetic models used in FCCU with different lump components.  

 

Where : PF: Product Focus, FF: Feed Focus, AG : Aromatic Gasoline, Arh : Heavy Aromatic Rings, Arl : Light Aromatic Rings, Ash : Heavy Aromatic Substituents, Asl : Light Aromatic Substituents, Gas : ( Light Gas, 

Dry Gas, Fuel Gas ), HCO : Heavy Cycle Oil  ( Ph,  Nh, Ash, Arh ), HGO : Heavy Gas Oil  ( Ash, Arh ), LCO : Light Cycle Oil  ( Pl , Nl , Asl , Arl  ), LGO : Light Gas Oil  ( Asl , Arl ), LPG : Liquid Petroleum Gas, Nh : 

Heavy Naphthene, Nl : Light Naphthene, Ph : Heavy Paraffin, Pl : Light Paraffin, VGO : Vacuum Gas Oil, P, O, N, A: Paraffin, Olefins,  Naphthene, Aromatic. 

Kinetic 
M o d e l s 

C o m p o n e n t s  

Feed Product 

1 2 3 4 5 6 7 8 9 10 11 12 

Pl Nl Asl Arl Ash Arh Ph Nh Gasoline LPG Gas Coke Approach R e f. 

3 – Lump 

 
Gas Oil G Gas + Coke PF 1 

4a – Lump 

 
Gas Oil G Gas Coke PF 2,3 

4b – Lump 

 
Gas Oil G LPG + Gas Coke PF 4,5.19 

5a – Lump 

 
Gas Oil G LPG  Gas Coke PF 6,7 

5b – Lump 

 
LCO HCO G LPG + Gas Coke PF 8,9,10 

6a – Lump 

 
LCO Gas Oil G LPG Gas Coke PF 11 

6b – Lump 

 
LCO Gas Oil G LPG Gas Coke PF 12 

    7 – Lump 

 
HCO G + Diesel Propene + butene Propane + butane Ethene  

Other 

gases 
Coke PF 13 

8a – Lump 

 
Non-Aromatic Carbons Aromatic carbons G + Diesel Propene + butene Propane + butane Ethene  

Other 

gases 
Coke PF 14 

8b –  Lump 

 
LCO P O N A LPG Gas Coke PF 15 

8c – Lump 

 
Gas Oil P O N A LPG Gas Coke PF 16 

10 - Lump 
Pl Nl Asl Arl Ash Arh Ph Nh G  Gas + Coke 

 

FF 
17,18,19,20,21 

12 – Lump 

 
Pl Nl Asl Arl Ash Arh Ph Nh G LPG Gas Coke 

 

FF 
22 
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A common assumption regarding the flow in the reactor riser is to consider that it follows a plug 

regime (Arbel et al., 1995), allied to a uniform distribution temperature in the cross-section, and a 

gradient over the riser height. Further assumptions include adiabatic conditions, quasi-steady state, 

temperature uniformity irrespective of position for the two phases, no slip conditions, and oil 

vapour/catalyst constant heat capacities. Another assumption is that the riser has isothermal 

conditions, as in the CSTR type, despite the non-isothermal conditions existing in the riser bottom, 

given the finite time for mixing (McFarlane et al., 1993). Therefore, the main difference among 

these models of the riser is in the treatment of the kinetics of reaction. 

The study of catalytic cracking involves two key areas: (i) catalytic cracking reaction mechanism; 

and (ii) the approach chosen for describing the kinetics of complex, multi-component mixtures (the 

level of kinetic expression complexity selected must be balanced with the financial, resource, and 

computational cost, etc. of the model). A reduced modelling overhead may be secured by 

employing correlations of cracking kinetics, given the availability of several, such as The saturates, 

aromatics, resins and asphaltenes SARA (Xu et al., 2005), lumps like the 5 lump model (Bozicevic 

and Lukec, 1987), and a mechanistic approach to reactions as in single-event kinetics (Feng et al., 

1993). 

The Lumped Approach to Kinetic Modelling 

Feedstocks passed through a cracking unit vary in component species, which are typically a huge 

amount of different hydrocarbons, beyond the ability of models to account for the kinetics of each 

one. Overcoming this obstacle involves the introduction of lumping, in which species are grouped 

together based on their boiling range, where it is thought that their reaction kinetics will be the 

same. These lumped groups represent pseudo-components that are treated as though they are 

individual components. An example of lumped components is that of C6 to C8 paraffins, which 

share the same physical and chemical properties. In gas oil cracking, reactions take place 

sequentially along a series of paths, where the resulting primary products are lumped into pseudo-

components, such as gasoline, coke, LCO, and LPG (Gomez-Prado et al., 2006). 

Kinetic Models based on Products 

Blanding (1953) presented the first model of catalytic cracking kinetics using a two lump approach, 

where the first lump contained all the components with boiling points above that of gasoline, and 

the second lump contained those below. Nearly two decades later, a 3-lump model Figure  2.2 was 

proposed; the first lump contained gas oil that was not cracked, the second grouped the components 

of gasoline, and the third light gas and coke (Weekman and Nace, 1970). This model was 
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distinguished by being simple as it had three components resulting in only three reactions, and 

allowed the yield of gasoline, and conversion of gasoil to be calculated at the same time (Lee et al., 

1989). 

 

 

 

 

 

 

Figure 2.2: 3-lump Model. 

However, this model also presented some disadvantages, including the need to calculate a new 

kinetics set, whenever the feedstock changed (Weekman and Nace, 1970). This major disadvantage 

was overcome with the development of a 10-lump model, which was more complex (Figure  2.3), 

but allowed feedstock composition and kinetic constants to remain independent (Jacob et al., 1976). 

This model was made up of lumps, in which groups with similar molecular structure were grouped 

together. These lumps are the products: (i) gasoline (G) and (ii) coke with gases (C). Then the 

reaction groups: (iii) naphthtenes (N), (iv) paraffins (P), (v) aromatic rings (Ar), (vi) aromatic 

substituent groups (As); these reaction groups are further subdivided into light and heavy fractions, 

where the former have boiling ranges below 343 °C, and are denoted by the subscript, l, and the 

latter have boiling ranges above 343 °C, and are denoted by the subscript, h. 

The 10-lump model provided a number of advantages, as it enabled estimates of the rate of light 

and heavy oils, as well as gasoline production, as well as gas oil conversion to be calculated. 

However, the model required the composition of feedstock to be determined, and also further data 

from experiments (Jacob et al., 1976). In common with the 3-lump model, it was not possible to 

independently estimate coke formation (Feng et al., 1993). 

The concept of lumping feedstock components and products has become well-established and 

progressed over time (Weekman and Nace, 1970). In catalytic cracking models proposed by Yen et 

al. (1988) and Lee et al. (1998), the three lump model was developed into a 4-lump model (Figure 

2.4) by creating two separate lumps from the coke with gas oil lump. 

Gas oil 

Gas + Coke 

Gasoline 



Chapter 2: Literature review 

 

 
 24  
  

 

Figure 2.3: 10-lump model. 

 

Figure 2.4: 4-lump Mode. 

A 5-lump model was proposed (Figure  2.5), where the gas oil lump was further sub-divided into 

light and heavy fractions (Corella and Frances, 1991). For the case of aromatic gas oil cracking, this 

5-lump model was made simpler by Dupain et al. (2003) in modelling less reaction. The Weekman 

and Nace (1970) 3-lump model was extended into a 5-lump model by dividing the gas oil lump into 

three new lumps comprising paraffins, naphthtenes, and aromatics by Larocca et al. (1990). The 5-

lump model by Ancheyta-Juarez et al. (1999) was different in that rather than divide the gas oil 

lump, they split the gas lump into two dry gas and liquefied product gas lumps. The model 

describing the distribution of the products of catalytic cracking was proposed by John and 
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Wojciechowski (1975). In the model, primary and secondary products were n-butane, propylene, 

and butane, and secondary products were represented by iso-butane, ethylene, ethane, methane, and 

coke. Corma and Martinez-Triguero (1984) proposed modifications to the model in adding 

isobutene and propane to the primary and secondary products group. 

 

Figure 2.5: 5-lump Model. 

6-lump models were proposed by Takatsuka et al. (1987), who added a new lump for the residual 

oil, and Oliveira and Biscaia (1989), who focused on paraffinic gas oils and gasoline. An 8-lump 

model was derived from the Ancheyta-Juarez et al. (1999) 5-lump model by Hagelberg et al. 

(2002) (Figure  2.6). The gasoline lump was split into olefin, paraffin, naphthene, and aromatic 

components lying in the 343

C

+
 boiling temperature range, and also those components with boiling 

temperatures in the range, 220

C to 343


C, comprising light naphthenes, light paraffins, and light 

aromatics. The assumption was that the cracking the heavy hydrocarbon lumps would result in 

gasoline, light gas oil, coke, and light gases lumps. Furthermore, the light gas oil lump would be 

cracked to give gasoline, coke, and light gases. Further cracking was considered possible, where 

gasoline would be converted into coke and light gases. The model is easier to deal with given the 

reduced set of kinetic parameters. Additionally, data to fit the kinetic rates of the model were 

obtained from short contact reactor experiments.  

An advance in the area of 5-lump model was presented in the work of Dupain et al. (2006), in 

taking account of thermal cracking in producing coke and gas. However, despite the simplicity of 

kinetic models based on products, they are dependent on the feedstock conceptualised as one 

component. Such dependence on the feedstock in the model kinetics is a significant disadvantage, 

as new experiments must be performed for any change to the feedstock composition to derive the 

appropriate kinetic parameters. 
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Figure 2.6: 8-lump model. 

Kinetic Models based on the feed 

As was discussed previously for those models based on products, a number of models have also 

been proposed that are based on the feedstock, beginning with the Jacob et al. (1976) 10-lump 

model, where the spectrum of products was treated in a better way. The composition of the 

feedstock was studied from the perspective of its influence on the gasoline product composition. 

The feedstock was considered to be a combination of napthtenes, paraffins, and aromatics, while 

gasoline was considered to be composed of olefins, naphthenes, paraffins, and aromatics (Pitault et 

al., 1994). This model also considered the LPG, light cycle oil, coke, and dry gas product groups. 

All this led to the inclusion of 25 reactions, such as cyclisation of olefins to naphthenes, hydrogen 

transfer, ß-scission, and condensation with hydrogen transfer between olefins and aromatics. 

Data for the reaction rate constants were determined by experiments on the microactivity-test 

(MAT) system. However, this may introduce errors to the model given the limitations associated 

with the MAT system in the kinetic modelling of catalytic cracking (Farag, 1993). It is argued that 

the time allocated (1-2 min) for catalyst contact is shorter than is the case in practice in the riser. In 

addition, feed vaporisation, and the endothermic nature of cracking may lead to a significant drop 

in reactor temperature, which is not accounted for (Hagelberg et al., 2002). 

A 13-lump model (Figure  2.7) presented by SINOPEC (Chen and Cao, 1995) shares the same 

features as the 10-lump model. Feedstock components are grouped by family, i.e. naphthtenes (N), 

paraffins (P), asphaltenes (Fa), and aromatics (Ca), and also based on range of boiling temperature 

denoted by l for diesel (205 - 320°C), m for gas oil (320 - 500°C), and h for residue (500°C and 

above). Products are then split into a gasoline lump (G), coke lump (Ck), and a lump including all 

C1 to C4 gases (Gs) (Gomez-Prado et al., 2006). 
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In another model, the gas products lump is divided into a primary lump composed of 46.7g/gmol 

average molecular weight (LPG) gases, and secondary lump composed of  18.4 g/gmol average 

molecular weight dry gaseous constituents to give a 12-lump model (Olivera, 1987). 

 

Figure 2.7: 13-lump model.  

These 10, 12 and 13 lump models cannot include the whole spectrum of products, and so further 

treatment is needed to provide estimates of coke and light gas yields. In the case where coke is not 

presented in the kinetic model component balance, catalyst coke deposits may be estimated by the 

correlation given by Kambreck (1991). 

Gas oil cracking was represented in a kinetic model using the lumping approach, where the gas oil 

feed is converted into lower boiling point products, namely gasoline, liquid petroleum gas (LPG), 

light cycle oils (LCO), coke, and light gases (LG). Further conversion of these products results in 

lower cut point products, such as LPG, gasoline and LG from LCO, as well as coke (Araujo-

Monroy and Lopez-Isunza, 2006). 

This kinetic model is distinct given that the dependence of kinetic parameters on feedstock type is 

taken care of through frequency factor functions representing the ratio of feed 

aromatics/naphthenes. Moreover, an innovative feature is that each feedstock component is 

converted into its constituent species that are adsorbed and cracked on the catalyst surface to give 

the lower level component. For example, the paraffins component of gas oil, at the LCO level, is 

transformed into, and adsorbed as olefins, paraffins, aromatics, and naphthtenes. 
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However, a number of disadvantages are present, where the basis of this model is claimed to be 

Gates (1979) catalytic cracking reactions, but this is not so clear in the actual model. Furthermore, 

light gas and LPG components are treated as lumps, rather than individually. 

Feed/Product-focus Kinetic Models 

Since the models discussed above focused either on the product spectrum or the feedstock, their 

limitations led workers to propose models that integrated both, e.g. Gomez-Prado (2003). In the 

model, four families are considered to form the feedstock, namely olefins, paraffins, aromatics, and 

naphthenes. In addition to asphaltenes, these are split by boiling range into cuts comprising light 

gasoline (50 to 120°C), heavy gasoline (120 to 205°C), diesel (205 to 320°C), gasoil (320 to 

500°C), and residue (greater than 500°C). The product spectrum is defined to include the key 

refinery products of interest, i.e. gases, gasoline, and diesel, as well as coke, which represents a 

major component in the model since it is the source of heat for vaporising the feed, and maintaining 

the endothermic cracking reactions. The full model is made up of 294 reactions for the 32 

components (Gomez-Prado et al., 2006). 

2.3 Introduction to advanced chemical process control 

2.3.1 Why advanced process control? 

From its beginnings in antiquity until the early 1960s, the field of process control was based almost 

entirely on mechanical, electrical, or pneumatic analog controllers, which were usually designed 

using linear single-input, single-output considerations. Hardware limitations, economic cost, and 

the dearth of applicable theory usually precluded anything more complex then these simple 

schemes. Because many large-scale industrial processes are endowed by nature with large time 

constants, open-loop stability, and significant damping of fluctuations through mixing and storage 

tanks such simple control schemes work well for perhaps 70 percent of the control loops one might 

encounter. For the remaining 30 percent more difficult control problems, most controllers were 

considered marginally acceptable during this early period because there were few environmental 

regulations, product specifications were quite loose, and intermediate blending tanks could cover 

many of the sins of inadequate control. Thus the costs of even small sophistications in control were 

high and the economic incentives for improved control were comparatively low (Agachi et al., 

2006). 
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Over the last 25 to 30 years, there has been a dramatic change in these factors. Industrial processes 

are now predominantly continuous with large throughputs, highly integrated with respect to energy 

and material flows, constrained very tightly by high-performance process specifications, and under 

intense governmental safety and environmental emission regulations. All these factors combine to 

produce more difficult process control problems as well as the requirement for better controller 

performance. Significant time periods with off-specification product, excessive environmental 

emissions, or process shut-down due to control system failure can have catastrophic economic 

consequences because of the enormous economic multipliers characteristic of high throughput 

continuous processes. This produces large economic incentives for reliable, high-quality control 

systems in modern industrial plants.  

Another recent development in process control is that the performance of real-time digital 

computers suitable for on-line control has improved significantly, while prices have fallen 

drastically. Figure  2.8 shows an example of the price trends for small minicomputers in spite of the 

inclusion of more reliable electronics and increasing inflation. With the process control computer 

now such a small part of the overall process capital costs, the installation of a fast minicomputer 

with large amounts of storage can often be easily justified on the basis of improved safety and 

manpower savings. Once in place, the computer is usually operating in a timesharing mode with 

large numbers of input/output operations, so that the central processing unit (CPU) is typically in 

use only about 5 percent of the time. Thus many installations have 95 percent of the computing 

power of a highly capable minicomputer, programmable in a high-level languages such as Fortran, 

C, Visual Basic, LabVIEW etc., already available for implementing sophisticated computer control 

schemes.  

 

Figure 2.8: An example of price trends for real time minicomputers. 
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At the same time, modern control theory is undergoing intense development, with many successful 

applications in the chemical industry. Recently, a number of process control research groups have 

been applying new and more sophisticated control of algorithms and schemes to simulated, 

laboratory-scale, and even full-scale processes. The process control engineer must design an 

economically optimal process control scheme based on a judicious comparison of the available 

control algorithms. The present work offers help in this and strives to present a brief introduction to 

the theory and practice of the most important modern process control strategies, using the 

industrially relevant chemical processes as the subjects of control performance studies (Lu, J. 2001 

and Agachi et al., 2006). 

2.3.2 Concepts of process control 

A control system comprises a number of elements, and is used to bring and maintain a process 

variable at a specified level or trajectory-the set point or reference. Control system analysis is based 

on linear system theory, whereby the cause-effect relationship between the various system elements 

is assumed linear. Figure  2.9 is a schematic representation of the variables in a process. These 

variables can be classified into input, and output, and further sub-divided into disturbance, 

manipulated, associated, and controlled variables. An input variable is one governed by the system 

“environment” including disturbance inputs and manipulated or control inputs, which in turn, 

affect the output; these include mass or energy flows, environmental variables etc. Output variables 

include technological parameters, yield, etc. Output variables comprise controlled variables that 

need to be held at specific set points, and associated variables that are controlled within a specified 

range (Agachi et al., 2006). 

 

Figure 2.9: Definition of input and output variables considered for control system design. 

Control systems are classified into open and closed loop. Figure 2.10 shows a schematic of an 

open-loop system, in which a controller or control actuator achieves the desired response. On the 

other hand, the closed-loop control system utilises a measure of the output-the feedback signal-to 

see how far this differs from the desired output.  
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Figure 2.10: Open-loop control system. 

Figure 2.11 represents a simple closed-loop feedback control system. In this type of system, the 

process is controlled by a function describing the relationship between the output and the reference 

input. Generally, the difference between the reference input and actual process output is amplified. 

This is fed back into the control system, with the objective of constantly reducing this difference. 

This concept of feedback control forms an important basis of system design and analysis (Agachi et 

al., 2006; Nagy, 2001).  

 

 

 

 

Figure 2.11: Closed-loop feedback control system. 

2.3.3 History of automatic control 

The concept of feedback control was one of the most important contributions in the history of 

automatic control (Mayr, 1970). The use of feedback in order to control a system has had a 

fascinating history. The first applications of feedback control rest in the development of float 

regulator mechanisms in Greece in the period 300 to 1 B.C. The water clock of Ktesibios used a 

float regulator. An oil lamp devised by Philon in approximately 250 B.C. used a float regulator in 

the oil lamp for maintaining a constant level of fuel oil. Heron of Alexandria, who lived in the first 

century A.C., published a book entitled Pneumatica, which outlined several forms of water-level 

mechanisms using float regulators (Mayr, 1970).  
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Figure 2.12: Evolution of industrial control technology. 

The lines of technological development can be divided into two separate streams, as illustrated in 

Figure  2.12. The upper stream with its two branches is the more traditional one, and includes the 

evolution of analog controllers and other discrete devices such as relay logic and motor controllers. 

The second stream is a more recent one that includes the use of large-scale digital computers and 

their mini and micro descendants in industrial process control. These streams have merged into the 

current mainstream of distributed digital control systems.  

The dates of several key milestones in the evolutionary process of the development of control 

theory and practice are shown in Table 2.3. 
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Table 2.3: Selected historical developments of control systems. 

1769 James Watt's steam engine and governor developed. The Watt steam engine is often used 

to mark the beginning of the Industrial Revolution in Great Britain. During the industrial 

revolution, great strides were made in the development of mechanization, a technology 

preceding automation. 

1800 Eli Whitney's concept of interchangeable parts manufacturing demonstrated in the 

production of muskets. Whitney's development is often considered as the beginning of 

mass production. 

1868 J. C. Maxwell formulates a mathematical model for a governor control of a steam engine.  

1913 Henry Ford's mechanized assembly machine introduced for automobile production. 

1927 H. W. Bode analyzes feedback amplifiers. 

1932 H. Nyquist develops a method for analyzing the stability of systems.  

1934 Direct-connected pneumatic controls dominate market. 

1938 Transmitter-type pneumatic control systems emerge, making centralized control rooms 

possible. 

1952 Numerical control (NC) developed at Massachusetts Institute of Technology for control of 

machine-tool axes. 

1954 George Devol develops “programmed article transfer" considered to be the first industrial 

robot design. 

1958 First computer monitoring in electric utility 

1959 First supervisory computer in refinery 

1960 First solid-state electronic controllers on market. 

1960 First Unimate robot introduced, based on Devo1's designs. Unimate installed in 1961 for 

tending die-casting machines. 

1963 First direct digital control (DDC) system installed. 

1970 First programmable logic controllers (PLCs) on market. 

1970 Sales of electronic controllers surpass pneumatic 

1975 First distributed digital control system on market. 
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Computer-based Control System Developments  

In addition to the evolution of the traditional types of control systems described above, a more 

recent (and equally important) evolution of computer-based process control systems has been 

taking place, as shown in the lower part of Figure  2.12. The first application of computers to 

industrial processes was in the areas of plant monitoring and supervisory control. In September 

1958, the first industrial computer system for plant monitoring was installed at an electric utility 

power generating station. This innovation provided an automatic data acquisition capability not 

available before, and freed the operator from much drudgery by automatically logging plant 

operating conditions on a periodic basis. Shortly thereafter (in 1959 and 1960), supervisory 

computer control systems were installed in a refinery and in a chemical plant. In these applications, 

analog controllers were still the primary means of control. The computer used the available input 

data to calculate control set points that corresponded to the most efficient plant operating 

conditions. These set points then were sent to the analog controllers, which performed the actual 

closed-loop control. The ability of supervisory control computers to perform economic optimization 

as well as to acquire, display, and log plant data provided the operator with a powerful tool for 

significantly improving plant operations. 

The next step in the evolution of computer process control was the use of the computer in the 

primary control loop itself, in a mode usually known as direct digital control, or DDC. In this 

approach, process measurements are read by the computer directly, the computer calculates the 

proper control outputs then sends the outputs directly to the actuation devices. The first DDC 

system was installed in 1963 in a petrochemical plant. For security, a backup analog control system 

was provided to ensure that the process could be run automatically in the event of a computer 

failure. This proved to be a wise precaution, because this early DDC installation (as well as many 

others) was plagued with computer hardware reliability problems. Despite these problems, it 

demonstrated many of the advantages digital control has over analog control: tuning parameters and 

set points do not drift, complex control algorithms can be implemented to improve plant operation, 

and control loop tuning parameters can be set adaptively to track changing operating conditions. 

2.3.4 Economical importance of process control 

Control engineering is concerned with the analysis and design of goal-oriented systems. Modern 

control theory is concerned with systems with the self-organizing, adaptive, robust, learning, and 

optimum qualities. The control of an industrial process (manufacturing, production, and so on) by 
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automatic rather than human means is often called automation. Automation is prevalent in the 

chemical, electric power, paper, automobile, and steel industries, among others. The concept of 

automation is central to our industrial society. Automatic machines are used to increase the 

production of a plant per worker in order to offset rising wages and inflationary costs. Thus 

industries are concerned with the productivity per worker of their plant. Productivity is defined as 

the ratio of physical output to physical input. In this case we are referring to labour productivity, 

which is real output per hour of work. In a study conducted by the U.S. Commerce Department it 

was determined that labour productivity grew with an average annual rate of 2.8% from 1948 to 

1984. In order to continue these productivity gains, expenditures for factory automation in the 

United States have increased from 8.0 billion dollars in 1992 to 20.0 billion dollars in 2000. 

Worldwide, expenditures for process control and manufacturing plant control have grown from 

22.0 billion dollars in 1992 to 45.0 billion dollars in 2000. The U.S. manufacturers currently supply 

approximately one-half of worldwide control equipment (Brittain, 1977).  

The transformation of the U.S. labour force in the country's brief history follows the progressive 

mechanization of work that attended the evolution of the agrarian republic into an industrial world 

power. In 1820 more than 70% of the labour force worked on the farm. By 1900 fewer than 40% 

were engaged in agriculture. Today, less than 5% work in agriculture.  

The easing of human labour by technology, a process that began in prehistory, is entering a new 

stage. The acceleration in the pace of technological innovation inaugurated by the Industrial 

Revolution has until recently resulted mainly in the displacement of human muscle power from the 

tasks of production. The current revolution in computer technology is causing an equally 

momentous social change: the expansion of information gathering and information processing as 

computers extend the reach of the human brain. The work week in U.S. manufacturing industries 

shortened from 67 hours in 1860 to about 39 hours in 1984 and even less nowadays. Control 

systems are used to achieve (1) increased productivity and (2) improved performance of a device or 

system. Automation is used to improve productivity and obtain high quality products. Automation 

is the automatic operation or control of a process, device, or system. Automatic control of machines 

and processes is used in order to produce a product within specified tolerances. The term 

automation first became popular in the automobile industry but nowadays none of the industries 

can survive to the very strict economical and ecological requirements and the process complexities 

without automation. There are about 350,000 control engineers in the United States and also Japan, 

and over 200,000 control engineers in the states of former Soviet Union and Eastern Europe. In the 

United States alone, the control industry does a business of over 30 billion dollars per year!  
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2.3.5 Whatis“modern”controltheory? 

In response to an input perturbation, a system is considered stable if it settles to a steady state; 

however, it is unstable if it remains unsteady, with outputs varying. In a stable integrating system, 

the output asymptotically approaches a ramp, while it changes in an exponential manner in an 

exponentially unstable system.  

Classical control theory only addresses single-input, single-output (SISO) systems represented by 

constant coefficient linear differential equations, also described by Laplace as transforms. However, 

modern control theory is able to address general multivariable systems, whether defined by 

variable-coefficient linear, nonlinear, and partial differential equations, as well as by integral 

equations. Moreover, optimal control theory has been developed so that control schemes can be 

implemented to minimise a specified function, such as cost etc.  

 Furthermore, methods for process identification and state estimation have also been 

developed. Process identification algorithms determine the structure of the process model 

and can then provide estimates of process parameters. State estimation techniques are 

applied in real-time systems to estimate those state variables that are not measured, or to 

improve estimates of state-variables given measurement errors. Nagy and Agachi (2004) 

describe a typical advanced control scheme as consisting of (see Figure  2.13):  

 a process subjected to control inputs (u), natural process disturbances (d1), and special input 

disturbances (d2) used for the purpose of identification; 

 measurement devices: these monitor a number of system state variables or a combination of 

these, with measurement error included; 

 state estimator: this provides a best estimate of process state (xest), based on the noisy 

measurements (y) and the process model;  

 a controller: this takes account of the state estimates (xest), setpoints (r) and controller 

parameters (K) and generates appropriate control actions; 

 a process identification block: its function is to identify the process model parameters () 

from user measurements of the process. Provided the parameters do not change with time, 

this identification is unique. However, if process parameters vary with time, identification 

has to be undertaken periodically, in order to adapt to these changes.  

In most applications only a few of the components of this control structure are required. 
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Figure 2.13: Advanced computer control scheme. 

2.3.6 Advanced process control techniques 

Key problems in Advanced Control of Chemical Processes 

Figure 2.14 outlines the main features of chemical processes in relation to the challenges they pose 

in terms of control. Chemical processes are mainly characterised by (Nagy and Agachi, 2004): 

These characteristics have revealed the implementation of various advanced control strategis to 

maximize process performance. 

The chemical industry is characterized as having very dynamic and unpredictable marketplace 

conditions. For instance, in the course of the last 15 years we have witnessed an enormous variation 

in crude and product prices. 

The demands of chemical products vary also widely, imposing different production yields. It is 

generally accepted that the most effective way to generate the most profit out of the plants while 
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responding to marketplace variations with minimal capital investment is provided by the integration 

of all aspects of automation of the decision making process (Garcia et al., 1989), which are:  

 

Figure 2.14: Common process characteristics, important in the choice of control strategy 
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appropriate instrumentation); 

 control (satisfying operating criteria by manipulating degrees of freedom in the process); 
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 product quality: products must satisfy set specifications. 

 human preference: these may be dictated by the tolerance of the plant operator: e.g. 

variable oscillation levels that are not tolerable.  

In addition, the implementation of such integrated systems is forcing the processes to operate over 

an ever-wider range of conditions. As a result, we can state the control problem that any control 

system must solve as follows (Garcia et al., 1989): 

“Update on-line the manipulated variables to satisfy multiple, changing 

performance criteria in the face of changing plant characteristics.”  

The whole spectrum of process control methodologies in use today is faced with the solution of this 

problem. The difference between these methodologies lies in the particular assumptions and 

compromises made in the mathematical formulation of performance criteria and in the selection of 

a process representation. These are made primarily to simplify the mathematical problem so that its 

solution fits the existing hardware capabilities. The natural mathematical representation of many of 

these criteria is in the form of dynamic objective functions to be minimized and of dynamic 

inequality constraints. The usual mathematical representation for the process is a dynamic model 

with its associated uncertainties.  

At the moment there are an important number of advanced control techniques from ad hoc 

algorithms for particular systems to very general methods with wide application area and well-

developed theory. A classification of these techniques is difficult because many of the algorithms 

are very similar, being obtained from some more general methods via usually minor changes 

concerning the performance criteria, optimization method, prediction horizon, constraint handling, 

etc. However, all these algorithms have a common feature: all are based on a process model, 

described in different ways. The proposed classification, based on this feature is presented in 

Figure  2.15. According to this, the advanced control techniques can be classified first in four 

conceptually different categories. The first and most important approach, the Model Predictive 

Control (MPC), can be classified further, for example, according to different model types used for 

prediction in the controller. This feature being usually the most significant difference among MPC 

algorithms. 
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Figure 2.15: Classification of advanced control techniques. 

2.3.7 Historical development of LMPC 

The current interest of the processing industry in MPC can be traced back to a set of papers, which 

appeared in the late 1970s. In 1978 Richalet et al. described successful applications of "Model 
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(DMC) (Cutler and Ramaker, 1980) and reported applications to a fluid catalytic cracker (Prett and 
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Control"). The future moves of the manipulated variables are determined by optimization with the 

objective of minimizing the predicted error subject to operating constraints. The optimization is 
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algorithms. It became known as "Open Loop Optimal Feedback". The main idea of this approach is 

presented on Figure 2.16. 

 

Figure 2.16: The moving horizon approach of MPC techniques. 

The extensive work on this problem during the 1970s was reviewed in the thesis by Gutman (1982). 
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control and weight average bed temperature profile control; hydrocracker recycle surge drum level 

control; reformer weight average inlet temperature profile control; analyzer loop control. The latter 

has been described in more detail by Caldwell and Martin (1987). Setpoint has applied the MPC 

technology to: fixed and ebulating bed hydrocrackers (Grosdidier, 1988); fluid catalytic crackers; 

distillation columns; absorber/stripper bottom C2 composition control, polymerization reactors and 

other chemical and petroleum refining operations (Meadows et al., 1995; Nagy and Agachi 1997; 

Marques and Morari 1986; Matsko 1979; Prett and Gillette 1979). 

In academia, MPC has been applied under controlled conditions to a simple mixing tank and a heat 

exchanger (Arkun et al., 1986) as well as a coupled distillation column system for the separation of 

a ternary mixture (Levien and Morari, 1987). Parrish and Brosilow (1985) compared MPC with 

conventional control schemes on a heat, exchanger and an industrial autoclave Parrish and Brosilow 

(1985). 

2.3.8  Industrial MPC development  

An excellent review of the industrial development of MPC, was presented by Allgower et al. (1999) 

in their review paper. They presented the most important commercial software for industrial 

implementation of MPC as follows: 

IDCOM 

The first description of MPC control applications was presented by (Richalet et al., 1976; Richalet 

1993; Richalet et al., 1978). They described their approach as Model Predictive Heuristic Control 

(MPHC). The commercial software was referred to as IDCOM, an acronym for Identification and 

Command. The distinguishing features of IDCOM are: 

1. finite impulse response (FIR) model for the plant;  

2. quadratic performance objective over a finite prediction horizon;  

3. future output behavior specified by a reference trajectory; 

4. input and output constraints included in the formulation;  

5. optimal inputs computed using a heuristic iterative algorithm.  

The MPHC algorithm drives the predicted future output as closely as possible to a reference 

trajectory, defined as a first order path from the current output value to the desired setpoint. The 

speed of the desired closed loop response is set by the time constant of the reference trajectory.  
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Richalet et al. (1978) maked the important point that dynamic control must be embedded in a 

hierarchy of plant control functions in order to be effective. They describe four levels of control.  

 Level 3 - Time and space scheduling of production  

 Level 2 - Optimization of setpoints to minimize costs and ensure quality and quantity of 

production  

 Level l - Dynamic multivariable control of the plant  

 Level 0 - Control of ancillary systems; PID control of valves.  

They pointed out that significant benefits do not come from simply reducing the variations of a 

controlled variable through better dynamic control at level 1. The real economic benefits come at 

level 2 where better dynamic control allows the controlled variable setpoint to be moved closer to a 

constraint without violating it. This argument provides the basic economic motivation for using 

MPC technology. This concept of a hierarchy of control functions is fundamental to advanced 

control applications and seems to have been followed by many practitioners.  

DMC  

Engineers at Shell Oil developed MPC technology independently in the early 1970's, with an initial 

application in 1973. Cutler and Ramaker presented details of an unconstrained multivariable control 

algorithm which they named Dynamic Matrix Control (DMC) at the 1980 Joint Automatic Control 

Conference (Cutler and Ramaker, 1980; Cutler et al., 1983). In a companion paper Prett and 

Gillette (1979) described an application of DMC technology to a FCCU reactor/regenerator in 

which the algorithm was modified to handle nonlinearities and constraints. Key features of the 

DMC control algorithm include:  

1. linear step response model for the plant; 

2. quadratic performance objective with move suppression over a finite prediction 

horizon; 

3. future output behavior specified by following the setpoint;  

4. optimal inputs computed as the solution to a least-squares problem.  

By using the step response model one can write predicted future output changes as a linear 

combination of future input moves. The matrix that ties the two together is the so-called Dynamic 

Matrix. Using this representation allows the optimal move vector to be computed as the solution to 
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a least-squares problem. Feedforward control is readily included in this formulation by modifying 

predicted future outputs.  

The objective of a DMC controller is to drive the output as close to the setpoint as possible in a 

least-squares sense with a penalty term on the input moves. This results in smaller computed input 

moves and a less aggressive output response. As with the IDCOM reference trajectory, this 

technique provides a degree of robustness to model error. Move suppression factors also provide an 

important numerical benefit in that they can be used to directly improve the conditioning of the 

numerical solution.  

The initial IDCOM and DMC algorithms represent the first generation of MPC technology; they 

had an enormous impact on industrial process control and served to define the industrial MPC 

paradigm (Garcia and Prett, 1986).  

QDMC  

The original IDCOM and DMC algorithms provided excellent control of unconstrained 

multivariable processes. Constraint handling, however, was still somewhat ad-hoc. Engineers at 

Shell Oil addressed this weakness by posing the DMC algorithm as a Quadratic Program (QP) in 

which input and output constraints appear explicitly (Garcia and Morshedi, 1986). A distinguishing 

feature of QDMC over DMC is that the control moves are solved as a QP with hard constraints 

rather than least squares without constraints.  

The default QDMC algorithm requires strict enforcement of input and output constraints at each 

point of the prediction horizon. Constraints that are strictly enforced are referred to as hard 

constraints. Constraints for which violations are allowed are referred to as soft constraints. In 

practice Garcia and coworkers (Garcia and Morari, 1982; Garcia and Morshedi, 1986) report that 

hard output constraints are typically required to be satisfied over only a portion of the horizon 

which they refer to as the constraint window. The constraint window generally starts at some point 

in the future and continues on to steady state. They report that if non- minimum phase dynamics are 

present, performance is improved by pushing the constraint window farther into the future. This 

amounts to ignoring hard output constraints during the initial portion of the closed loop response. 

The QDMC algorithm can be regarded as representing a second generation of MPC technology, 

comprised of algorithms, which provide a systematic way to implement input and output 

constraints. This was accomplished by posing the MPC problem as a QP.  
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IDCOM-M, SMOC, and PCT  

As MPC technology gained wider acceptance, and problems tackled by MPC technology grew 

larger and more complex, control engineers implementing second generation MPC technology ran 

into other practical problems. The QDMC algorithm provided a systematic approach to incorporate 

hard input and output constraints, but there were several obvious, limitations: 

1. there was no clear way to handle an infeasible solution. For example it is possible for a 

feedforward disturbance to lead to an infeasible QP; what should the control do to 

recover from infeasibility?  

2. the soft constraint formulation is not completely satisfactory because it means that all 

constraints will be violated to some extent, as determined by the relative weights. 

Clearly some output constraints are more important than others, however, and should 

never be violated. 

3. process models are still limited to step response models, which are incapable of 

representing unstable processes. 

4. the constant-disturbance output feedback is sub-optimal and unrealistic especially when 

low-level PID controllers are in place.  

Fault tolerance is also an important practical issue. Rather than simply turning itself off as signals 

are lost, a practical MPC controller should remain online and try to make the best of the sub-plant 

under its control. It also became increasingly difficult to translate control requirements into relative 

weights for a single objective function. Including all the required tradeoffs in a single objective 

function means that relative weights have to be assigned to the value of output setpoint violations, 

output soft constraint violations, inputs moves, and optimal input target violations.  

These issues motivated engineers at Shell (France), Adersa and Setpoint Inc. to develop new 

versions of MPC algorithms. The version marketed by Setpoint was called IDCOM-M, while the 

Adersa version was referred to as HIECON (Hierarchical Constraint Control). The IDCOM-M 

controller was first described in a paper by Grosdidier et al. (1988). Distinguishing features of the 

IDCOM-M algorithm include:  

1. controllability supervisor to screen out ill-conditioned plant subsets; 

2. multi-objective function formulation; quadratic output objective followed by a 

quadratic input objective; 

3. controls a single future point in time for each output, called the coincidence point, 

chosen from a reference trajectory; 
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4. constraints can be hard or soft, with hard constraints ranked in order of priority.  

The SMOC algorithm (Marquis and Broustail, 1988) developed at Shell France is very close to the 

"modern" development of MPC with the following distinguishing features:  

1. state space models are used which can represent both stable and unstable processes. 

2. full state estimation known as extended close-loop observer is used for output 

feedback; constant output disturbance is simply a special case. 

3. a distinction is introduced between controlled variables that are in the control objective 

and feedback variables that are used for state estimation, resolving the difficulty for 

interdependent output variables. 

4. input and output constraints are observed via a QP formulation.  

The SMOC and IDCOM-M algorithms are two of several that represent a third generation of MPC 

technology; others include the PCT algorithm sold by Profimatics, the RMPCT controller 

developed by Honeywell, and the PFC algorithm developed by Adersa. This generation 

distinguishes between several levels of constraints (hard, soft, ranked), provides some mechanism 

to recover from an infeasible solution, addresses the issues resulting from a control structure that 

changes in real time, uses state estimation as optimal output feedback, and allows for a wider range 

of process dynamics (stable and unstable) and controller specifications.  

While MPC theory has advanced to the point where nominal stability can be guaranteed with 

several schemes, the majority of the current industrial MPC algorithms are based on ideas inherited 

from the original DMC and IDCOM algorithms. Products sold by Adersa, Aspen Technology, 

Continental Controls, Honeywell, and Pavilion Technology share such features as a finite 

prediction horizon and options for impulse or step response models. The main emphasis in recent 

years has been to allow for a wider range of model types, including nonlinear models, state space 

models (e.g., SMOC from Shell), and better integration of the controller interface into existing 

distributed control hardware (Qin and Badgwell, 2000). 

2.3.9 Unconstrained Linear Model Predictive Control (LMPC) with step 

response and impulse response models 

Step Response Models 

To derive the step response model for a general multi-input-multi-output (MIMO) it was assumed 

that  yl, l=1,...,ny, were stable and deal with an output vector at each time interval: 
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1
( 1) [ ( 1),..., ( 1)]

y

T

n
y k y k y k

        
(2.16) 

and can be define the state vectors 

( 1) [ ( 1) , ( ) ,..., ( 3) , ( 2) ] ( ) 0; 1T T T T TY k y k y k y k n y k n for v k i i
  

(2.17) 

and 

( ) [ ( ) , ( 1) ,..., ( 2) , ( 1) ] ( ) 0; 0.T T T T TY k y k y k y k n y k n for v k i i
   

(2.18) 

The output vector evolution is described by: 

( ) ( 1)SY k M Y k           (2.19) 
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And the identity matrix I is of dimension ny x ny. 

Each step response coefficient Si is a vector of dimension ny  
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The step response model becomes: 

( ) ( 1) ( 1)SY k M Y k S v k        
 (2.22) 

where S is an nny vector. 

Assume next that there are nv inputs vm, m=1,...,nv. Because of linearity, the effects of the individual 

inputs can simply be added up: 
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m m
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This can be defined as an input vector 
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coefficient matrix: 
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where sl,m,i is the i
th
 step response coefficient relating the m

th
 input to the l

th
 output. Then the MIMO 

step response model becomes: 

( ) ( 1) ( 1) .sY k M Y k S v k        
 (2.25) 

The recursive expression (2.26) is initialized (k=0) assuming that there were no changes v(-l) cu 

l=1,...,n (which put the system at steady state) and that the steady state output ˆ 0y is known 

(measured). Then the vector Y(0) can be set equal to the steady state system output ˆ 0y  repeated n 

times: 

^ ^ ^

(0) [ (0) , (0) ,..., (0) ] .T T T TY y y y         
 (2.26) 

The recursive formula (2.26) was proposed in the original formulation of DMC. 

If all the outputs are integrating, then (2.26) holds with M 
S
 replaced by: 
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Consequently, both the stable and integrating outputs lead to the general formula: 

( ) ( 1) ( 1).Y k MY k S v k          (2.28) 

Impulse Response Models 

For stable SISO (single-input-single-output) systems equation (2.19) in an expanded form is: 
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and by taking the differences between the adjacent rows the following can be obtaind: 
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where 

( ) ( ) ( 1)y k i y k i y k i
       

 (2.31) 

and 

1
;

i i i
h s s            (2.32) 

1 2
[ . . . ] ;T

n
H h h h           (2.33) 

are the impulse response coefficients of the system. 

Analogous to the development of the step response the model can be derived as: 
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and therefore for  l > n,  

1
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y k l h v k l i         (2.36) 

Or, 
1

( ) ( )
n

i
i

y k h v k i         (2.37) 

which is referred to as the input-output form of the impulse response model. 

Estimation and prediction 

The objective for using a model is to predict the effect of future manipulated variable moves on the 

output. This will allow finding the “best” future moves to reach some desired output behavior. To 

obtain a more general form of the model in which the measured disturbances are also accounted thy 

modeled system can be represented by the block diagram in Figure  2.17. It is assumed that P
u
 (the 
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effect of u an y) is described by the step response coefficients and P
d
 (the effect of the disturbances 

d on y) by a similar dynamic matrix: 

 

Figure 2.17: Plant with manipulated variable u, measured disturbance d and effect of unmeasured 

disturbance w. 
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The straightforward generalization of (2.28) is given as follows: 

( | 1) ( 1 | 1) ( 1) ( 1)S u dY k k M Y k k S u k S d k      (2.39) 

Using this general linear model, the following operations have to be performed to obtain a p-step-

ahead prediction vector: 

1. Preparation. Do not vary the manipulated variables for at least n time intervals 

(u(-1)=u(-2)=...= u(-n)=0) and assume the measured disturbance changes are zero 

(d(-1)=d(-2)=...= d(-n)=0) during that time. Then the system will be at rest at k=0. 

2. Initialization (k=0). Measure the output (̂0)y and initialize the model prediction vector as 

ˆ ˆ ˆ(0 | 0) [ (0) , (0) ,..., (0) ]T T T TY y y y         (2.40) 

Measure d(0), obtain measurement at next sampling time  ( (̂1)y , d(1)); and set k=1. 

3. Model Prediction 
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where 

( | 1) [ ( | 1) , ( 1 | 1) ,..., ( 2 | 1) , ( 1 | 1) ]T T T T TY k k y k k y k k y k n k y k n k  

           
 (2.42) 

Correction:  

ˆ( | ) ( | 1) ( ( ) ( | 1) .
F

Y k k Y k k K y k y k k     
 (2.43) 

4. Compute the p-step-ahead prediction vector: 

  u( 1 | ) ( | ) ( ) ( )k k k k d k kd uY MY S S      (2.44) 

where 

( | 1) [ ( 1 | ) , ( 2 | ) ,..., ( 1 | ) , ( | ) ] ;T T T T Tk k y k k y k k y k p k y k p kY    
(2.45) 

estimated for ( ) 0; ;

( ) [ ( ) , ( 1) ,..., ( 1) ] .T T T T

u k i i m

k u k u k u k mu

 

5. Obtain measurements (̂ 1)y k , d(k+1) at the next sampling time, set k:=k+1 and go to 

step 3. 

Least Squares Solution of the Control Problem 

The algorithm presented before to compute the p-step-ahead prediction vector for m present and 

future input moves allow expressing the control problem as an optimization problem of the form:  

u

2 2
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where 
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p

diag

diag

         (2.47) 

are the weight matrices in block diagonal form. 

This optimization problem can be solved by the least squares algorithm. For this the problem can be 

rewritten as the following set of linear equations: 
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where: 

( 1 | )
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( 1 | ) ( 1) [ ( | ) ( )].
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e k k

e k k
E k k k k k d k

e k p k

dR MY S     .(2.49) 

Ep(k+1|k) is the measurement corrected vector of future output deviations from the reference 

trajectory (i.e. errors), assuming all future moves are zero. Note that this vector contains the effect 

of measurable disturbances (S
dd(k)) on the prediction.  

For practical choices of p  n and weights this system of equations is over specified: the total 

number of independent equations is greater than or equal to the dimension of the vector of 

unknowns u(k). That is, the total number of controlled variable projections is larger than the total 

number of manipulated variable projections.  

The vector of residuals of the system (2.48) is  

[ ( | ) ( ) ( ) ( 1)]

( )

y

u

k k d k k k

k

d uMY S S u R

u
      (2.50) 

or 

[ ( 1 | ) ( 1)]
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u

k k k

k

Y R

u
         (2.51) 

It should be noted that minimizing the sum of squares of the residuals of (2.48) is equivalent to 

solving the optimal control problem (2.46). The solution that minimizes the sum of squares of the 

residuals of (2.48) is given by  

1( ) ( ) ( 1 | ) .T yT y uT u T yT y

p
k E k ku u uu S S S      (2.52) 

At a given interval of time k, having implemented moves in the past and having measured the most 

current values of the output variables (̂ )y k , a set of future manipulated variable moves u(k) up to 

m intervals of time is computed. This set of moves into the future could be implemented as such 
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and the solution repeated after m intervals of time have elapsed. However, using this 

implementation measurement information would be used only every m intervals of time.  

The output measurement (̂ )y k  is used for the correction of the present state estimate Y(k|k). Because 

at time k future measurement information is not available, we judge it to be best to omit the 

correction step in the p-step-ahead predictor. However, at time k+1 new measurement information 

becomes available and can be used to obtain improved state estimates Y(k+1|k+1) and output 

predictions Y(k+1|k+1). Thus the available measurement information is better used if only the 

moves corresponding to the present time are implemented and if the whole procedure is repeated at 

the next time interval when a new measurement becomes available. That is, as a new measurement 

is obtained, a new value for Y (k+1|k+1) is computed, accounting for measurement errors and 

changes in disturbances. Such a controller implementation is denoted as the moving horizon or 

receding horizon approach.  

Moving Horizon and Closed Form Control Law  

As explained above, the MPC control problem is solved at each time interval to allow the controller 

to compensate effectively for disturbances on the outputs and for model errors. The resulting 

control law becomes:  

( 1( ) [ 0 0...0] ) ( 1 | )T yT y uT u T yT y

p
u k I E k ku u uS S S     (2.53) 

where only the first move (at time k) is computed. Note that the only part of the algorithm that 

changes at each execution of the controller is the projected error Ep(k+1|k). Therefore, for 

implementation the constant matrix pre-multiplying Ep(k+1|k) can be computed off-line:  

( 1[ 0 0...0] ) .T yT y uT u T yT y

MPC
K I u u uS S S      (2.54) 

The on-line algorithm is summarized in the following:  

1. Preparation. Do not vary the manipulated variables for at least n time intervals 

(u(-1)=u(-2)=...=u(-n)=0) and assume the measured disturbance changes are zero 

(d(-1)=d(-2)=...=d(-n)=0) during that time. Then the system will be at rest at k = 0.  

2. Initialization (k = 0). Measure d(0) and the output (̂0)y  and initialize the model prediction 

vector as 

ˆ ˆ ˆ(0 | 0) [ (0) , (0) ,..., (0) ] .T T T TY y y y
      

 (2.55) 
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Obtain measurement at next sampling time ( (̂1)y , d(1)). Set k = 1. 

3. Model Prediction: 

( | 1) ( 1 | 1) ( 1) ( 1) .S u dY k k M Y k k S u k S d k     (2.56) 

where the first element of Y(k|k-1), y(k|k-1), is the model prediction of the output at time k. 

The value of u(k-1) should be the actual value implemented on the plant, rather than the 

value computed by the controller at the last time step. This value may be different because 

of actuator saturation. 

Correction:  

ˆ( | ) ( | 1) ( ( ) ( | 1).
F

Y k k Y k k K y k y k k
     

 (2.57) 

4. Compute the reference trajectory error vector: 

( 1 | ) ( 1) ( | ) ( ).
p

E k k k Y k k d kuR M S       (2.58) 

5. Compute the manipulated variable move:  

( ) ( 1 | )
MPC p

u k K E k k        (2.59) 

which is implemented on the plant. 

6. Obtain measurements (̂ 1)y k , d(k+1) at next sampling time, set k:=k+1 and go to step 3.  

The dynamic behaviour of this algorithm will be determined by the choice of adjustable parameters. 

These include the weights y
 and u

 and the number of moves m. These parameters will influence, 

among other things, the speed of response and specifically, the stability of the inputs and outputs 

(i.e. whether the algorithm produces bounded u and/or y signals). Note that, if any of these 

parameters needs to be changed on-line, it is necessary to recompute the matrix KMPC, thus 

imposing additional on-line computational requirements. 

2.3.10 General tuning guidelines of MPC 

The most significant tuning parameters that must be selected for MPC controllers are prediction 

horizon, control horizon, sampling interval, penalty weight matrices, and if the control engineer 

decided to use a filter, the parameters of this. 

The choice of these parameters has a profound effect on the nominal stability, robustness, and 

controller performance of the MPC algorithms. In practical applications the most important criteria 
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that have to be satisfied by controllers are: stability and robustness. Thus, ideally one should know 

a range of the control parameters, which provide stability and robustness, and then select from this 

interval the values for the parameters, which give the best control performance in accordance to 

certain control objectives. For linear systems there are developed algorithms to obtain the sufficient 

conditions, which guarantee nominal stability and robustness (Garcia and Morari, 1985a; Garcia 

and Morari, 1985b; Shridar and Cooper, 1997). However for nonlinear systems the known 

sufficient conditions (Allgower, 1999) are usually much too strong to be met for practical 

implementation and one must resort to a set of heuristics based on the extrapolation of linear 

systems, simulations and experiments.  

According to this, the following effects of the tuning parameters on the control performance were 

observed from the author experience and the examples from the literature: 

Prediction horizon. Usually longer prediction horizon leads to more aggressive control action and 

faster response. With longer prediction horizons the closed-loop system is less robust to model-

plant mismatch, however this effect can be reduced by including a filter in the feedback loop. 

Nominal stability is strongly affected by the horizon length. Usually there is a critical minimum 

horizon length to achieve a stable closed-loop system. 

Control horizon. When the number of control moves is increased a more aggressive control action 

can be observed. In this case the system response is faster and more sensitive to disturbances. 

Additionally, increasing the control horizon leads to much more complicated optimization 

problems, especially in the nonlinear case. Usually there is an upper band on the control horizon 

established by the controller performance and the computational complexity of the problem. 

Sampling time. To ensure good closed-loop performance, the sampling time should be small 

enough to capture adequately the dynamics of the process, and at the same time large enough to 

permit the feasibility of real-time implementation (the computational time necessary to solve one 

open-loop control problem should be smaller than the sampling interval). Zafiriou and Morari 

(1986) proposed some criteria to select the sampling interval for stable linear SISO systems 

(Zafiriou and Morari, 1986). For unstable systems robustness depends on the sampling time and 

there is an inverse relationship between the model error and the maximum allowable size of the 

sampling time.  

Weight matrices. Some attempts to obtain these parameters have been presented in the literature 

(Kalra and Georgakis, 1994). The results of the author simulations show that the smaller the weight 

on the control inputs the better is the control performance with regards of the controlled outputs. 
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However, to avoid aggressive control action small penalties (usually 5-15 % of the output penalty) 

on the control action should be used, too. Finally there is the possibility of making the weights time 

varying. Because there are no easy guidelines this is rarely pursued in practice.  

Feedback filter. The use of a well-tuned filter on the feedback signal provides good disturbance 

rejection and fast systems response. However, the choice and the effects of the filter are strongly 

dependent on the certain system (Luenberger, 1971). An example of the effects of the Extended 

Kalman Filter (EKF) used in the NMPC of a high purity distillation column is presented later. 

2.4 Interaction analysis and multiple single-loop designs 

2.4.1 The Relative Gain Array (RGA) 

In the control of multi-parameter plant, a common technique is the Relative Gain Array (RGA), 

which was first developed by Bristol (1966), with other workers (Shinskey, 1979, 1984; McAvoy, 

1983) contributing to its further development and wider adoption. The relative gain array forms the 

basis of the analysis, and is defined as a matrix containing all possible combinations of Single Input 

Single Output (SISO) variable pairs expressed in the form of interactive measures (Bristol, 1966). 

As such, considering the defined interactions for control of decentralised (multiloop SISO) systems, 

a set of preferred variable pairs are indicated in the RGA. While the RGA technique was initially 

developed for steady state systems, it was relatively easy to account for dynamic systems (Witcher 

and McAvoy, 1977). 

However, with further improvements, the RGA included other than simple interaction measures, 

and also included fundamental property data, i.e. robustness against errors in the model and 

uncertainties in the input, as well as stability of the closed loop (Grosdidier et al., 1985; Yu and 

Luyben, 1987; Skogestad and Morari, 1987). 

The RGA has been well described, in terms of properties and uses (Hovd and Skogestad, 1992), 

and while it enjoys wide use, suffers a number of disadvantages, where interactions between control 

loops may occur in the steady and dynamic states, but these are not captured in the RGA (Friedly, 

1984). This is explained in that the RGA does not provide the true closed loop interaction measures 

(Jensen et al., 1986). In addition, for greater than 2x2 systems, the RGA is not capable of providing 

the response satisfying the variable pairing problem (Bristol, 1979), and is the case where there is 

total dependence on other control loops of feasibility of the variable pairing (Shinskey, 1984; 

Haggblom, 1994). 
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The influence of other output variables on the transfer function governing the input and output 

variables (uj) and (yi) respectively has been defined in a proposed interaction measure (Bristol, 

1966). This interaction measure represented by the ratio of the two transfer functions; one defines 

the relation between the given two input and output variables, while others are uncontrolled, and 

the other transfer function of the same two variables, but with all others controlled, denoted by
ij

; 

where:  

constant,

constant,

k

k

i

j u k j

ij

i

j y k i

y

u gain with other loopsopen

gain with other loops closedy

u

      (2.60) 

The relative gains 
ij

for all possible variable pairings define a matrix, the relative gain array 

(RGA), Λ. The partial derivatives in eq. (2.60) can be related to the open-loop transfer functions of 

a system. Consider a 2x2 system described by the model: 

1 11 1 12 2
 ( )     ( )   ( )     ( )   ( )y s G s u s G s u s         (2.61) 

2 21 1 22 2
 ( )     ( )   ( )     ( )   ( )y s G s u s G s u s         (2.62) 

The transfer function between y1 and u1 with y2 uncontrolled (i.e., u2 = 0) is G11. The corresponding 

transfer function when y2 is perfectly controlled is obtained by the elimination of u2 with y2 = 0. 

This gives the relative gain: 

1

12 21
11

11 22

( (

(

) )
( ) 1

)()

G s G s
s

G s G s
          (2.63) 

The value for  must be computed for every possible combination of i and j. After every value is 

found, the RGA matrix can then be formed:  

11 12 1

21 22 2

1 2

       

       

   

 

     

 

n

n

n n nn

RGA           (2.64) 
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Interpreting the RGA 

There are certain important properties and guidelines used in understanding and analysing the 

RGA, and what the different values of the RGA mean:  

1. All elements of the RGA across any row, or down any column will sum up to one:  

1 1

1
n n

ij ij
i j

          (2.65) 

This makes calculating the RGA easier because:  

in a 2x2 case, only 1 element must be calculated to determine all elements,  

in a 3x3 case, only 4 elements must be calculated to determine all elements and so on.  

2. The
ij

calculated from a steady-state matrix is dimensionless and unaffected by scaling.  

3. Each of the rows in the RGA represents one of the outputs. Each of the columns represents 

a manipulated variable.  

 If 
ij

= 0: The manipulated variable (mj) will have no effect on the output or the controlled 

variable (yi).  

 If 
ij

= 1: The manipulated variable mj affects the output yi without any interaction from the 

other control loops in the system. From the definition of ij this implies that the gain loop 

with all loops open is equal to the gain loop with all other loops closed: i.e. g11 = g
*

11.  

 f ij < 0: The system will be unstable whenever mj is paired with yi, and the opposite 

response in the actual system may occur if other loops are opened in the system.  

 f 0 < ij < 1: This implies that other control loops (mj- yi) are interacting with the 

manipulated and controlled variable control loop.  

Three different relationships based on λ=0.5 imply different interpretations of pairing and the RGA:  

 If ij = 0.5: The control pairing effect is equal to the retaliatory effect of other loops.  

 If ij < 0.5: The other control loops are influencing the control pair, and the influence of the 

other control loops is greater than the influence of the control pair.  

 If ij > 0.5: This means that the control pair has a greater influence on the system than the 

other control loops.  
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 If 
ij

>1: The open-loop gain of the control pair is greater than the gain with all other loops 

closed: i.e. g11 > g
*

11. The positive value of RGA indicates that the control pair is dominant 

in the system, but the other loops are still affecting the control pair in the opposite 

direction. The higher the value of 
ij

 the more correctional effects the other control loops 

have on the pair (Haggblom, 1995). 

Table 2.4: Summary of the interpretation of the RGA. 

ij
 Possible Pairing 

ij
= 0 Avoid pairing mj with yi 

ij
= 1 Pair mj with yi 

ij
< 0 Avoid pairing mj with yi 

ij
= or < 0.5 Avoid pairing mj with yi 

ij
>1 Pair mj with yi 

2.5 Nonlinear Model Predictive Control (NMPC) and industrial 

applications 

2.5.1 Introduction 

During in the last decade nonlinear model predictive control (NMPC) techniques have become 

increasingly important and accepted in chemical industries. The NMPC paradigm encompasses a 

significant number of different approaches, each one with its own special feature, all NMPC 

techniques rely on the idea of generating values for process inputs as solutions of an on-line (real-

time) optimization problem using a nonlinear process model. The nonlinear dynamic model can be 

used in different ways and in different phases of the control algorithm depending on the particular 

nonlinear model predictive control approach. Excellent reviews have been published in the 

literature recently, indicating the current and continuously increasing interest directed toward this 

control strategy (Allgower et al., 1999; Qin and Badgwell, 2000; Henson, 1998; Imsland et al., 

2003; McAvoy, 2002; Nikolaou and Michael, 2001; Poloski et al., 2003; Mayne, 2000). Our 

intention is not to review these reviews here. The objective of this is rather to provide a motivation 



Chapter 2: Literature review 

 

 
 60  
  

of the study, identify potential benchmark processes categories, and to bring up key problems that 

need to be addressed in industrial NMPC applications. For details about the applications and 

NMPC products the reader is referred to the aforementioned review papers and the references 

therein. 

In the wide variety of chemical processes nonlinearity is the rule rather than the exception. There 

are processes which present many challenging control problems including: nonlinear dynamic 

behaviour, multivariable interactions between manipulated and controlled variables, unmeasured 

state variables, unmeasured and frequent disturbances, high-order and distributed processes, 

uncertain and (variable) dead time on inputs and measurements. Further, reliable measurements of 

important variables to be controlled, such as quality related variable, are often difficult to obtain on-

line. The economic benefits of applying advanced process control (APC) approaches in chemical 

industry had been widely recognized, first in academia but nowadays in industry, too. The 

theoretical economical optimal operating condition of a chemical process usually lies on active 

constraints. Therefore in practice the operating region has to be chosen such that constraints are not 

violated even in the case of strong disturbances. Quality of control determines how close the 

process can be pushed to the boundary. APC approaches allow the tighter control of process 

variables, hence permitting the operation of processes closer to the limits, yielding higher profit. A 

simple graphical explanation of the economical advantages of APC is shown in Figure 2.18 and 

2.19. The schematic representation on Figure 2.19 shows that the optimal operating region given by 

APC is usually on active constraints but provides higher quality with lower variability then typical 

operating regions with classical control approaches. 

 

 

  Limit 

Target 

Safety 

Margin 

No APC  APC 

reduces 

variation 

Reduced variation 

allows operation 

closer to limit 

 = Profit 

Figure 2.18: Economical benefit given by the use of APC. 
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A number of APC approaches and algorithms that are able to handle some of the aforementioned 

process characteristics have been presented in the recent years. Many of these approaches are not 

able to handle the various process characteristics and requirements met in industrial applications 

resulting in a large gap between the number of industrial and academic NMPC products. Although, 

it is well recognized, that the performance of a control system is mostly inherent in how 

successfully it can cope with the nonlinearity of the process, chemical processes have been 

traditionally controlled by using algorithms based on a linear time-invariant approximate process 

model the most common being step and impulse response models derived from the convolution 

integral. One reason for this is that in most LMPC applications reported the goal is largely to 

maintain the process at a desired steady-state (regulator problem, disturbance rejection) (e.g. in 

refinery processing), rather than moving rapidly from one operating point to another (setpoint 

tracking problem). A carefully identified linear model, which usually can be identified in a fairly 

straightforward manner from process test data, is sufficiently accurate in the neighborhood of a 

single operating point. In addition, by using a linear model and a quadratic objective, the nominal 

MPC algorithm takes the form of a highly structured convex Quadratic Program (QP), for which 

reliable solution algorithms and software can easily be found. This is important because the 

solution algorithm must converge reliably to the optimum in no more than a few tens of seconds to 

be useful in manufacturing applications. For these reasons, in many cases a linear model will 

provide the majority of the benefits possible with MPC technology (Bequette, 1991; Morari and 

Lee, 1997; Lee and Cooley, 1996). 

Figure 2.19: Typical operating regions with and without APC. 
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Nevertheless, there are cases where nonlinear effects are significant enough to justify the use of 

nonlinear model predictive control (NMPC) technology. These include at least two broad categories 

of applications (Qin and Badgwell, 2000); i.e., disturbance rejection control problems where the 

process is highly nonlinear and subject to large frequent disturbances (pH control, bioreactor, etc.) 

(Galan et al., 2000; Nagy and Agachi, 1998; De Oliveira, 1996), or setpoint tracking problems 

where the operating points change frequently and incorporate a sufficiently wide range of nonlinear 

process dynamics (batch process control, start-up problems, polymer manufacturing, etc.) (Muske 

et al., 2000a; Muske et al., 2000b; Nagy and Agachi, 1997; Brengel and Geider, 1989).  

A rough distribution of the number of MPC applications versus the degree of process nonlinearity 

is shown on Figure  2.20, (Qin and Badgwell, 2000). MPC technology has not yet penetrated deeply 

into areas where process nonlinearities are strong and market demands require frequent changes in 

operating conditions. It is these areas that provide the greatest opportunity for NMPC applications 

(Morari and Lee, 1997; Qin and Badgwell, 2000).  

 

 

Figure 2.20: Distribution of MPC application versus the degree of process nonlinearity. 
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2.5.2 Generic NMPC problem formulation 

A direct extension of the LMPC methods results when a nonlinear dynamic process model is used, 

rather than the linear convolution or state space model.  

Nonlinear model predictive control is an optimization-based multivariable constrained control 

technique using a nonlinear dynamic process model for the prediction of the process outputs 

(Allgower et al., 1999; Bequette, 1991). At each sampling time the model is updated on the basis of 

new measurements and state variable estimates. Then the open-loop optimal manipulated variable 

moves are calculated over a finite prediction horizon with respect to some cost function, and the 

manipulated variables for the subsequent prediction horizon are implemented. Then the prediction 

horizon is shifted by usually one sampling time into the future and the previous steps are repeated. 

This generic moving horizon approach of model predictive control algorithms (both nonlinear and 

linear) is given in Figure (2.16). 

The optimal control problem to be solved on-line in every sampling time in the NMPC algorithm 

can be formulated as: 

( )
min ( ( ), ( ), )
u t

x t u t p           (2.67) 

subject to: 

( ) ( ( ), ( ), )x t f x t u t p ,          (2.68) 

( ) ( ( ), ( ), )y t g x t u t p ,          (2.69) 

0 0
ˆ ˆ( ) ( ), ( )

k k
x t x t x t x ,         (2.70) 

( ( ), ( ), ) 0, [ , ]
k F

h x t u t p t t t ,         (2.71) 

where  is the performance objective, t is the time, tk is the time at sampling instance k, tF is the 

final time at the end of prediction, ( ) xnx t  is the nx vector of states, u(t)   is the nu set of input 

vectors with 
un

 representing the set of all possible trajectories of each control 

input, ( ) yn
y t  is the ny vector of measured variables used to compute the estimated states (̂ )

k
x t , 

pn
p  is the np vector of uncertain parameters, where the set  can be either defined by hard 
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bounds or probabilistic, characterized by a multivariate probability density function. The function 

: x xn nf  is the vector function of the dynamic equations of the system, 

: yx
nng is the measurement equations function, and : xn ch  is the 

vector of functions that describe all linear and nonlinear, time-varying or end-time algebraic 

constraints for the system, where c denotes the number of these constraints. The objective function 

can have the following general form: 

( ( ), ( ), ) ( ( ), ) + ( ( ), ( ), )
F

k

t

F t
x t u t p x t p x t u t p dt       (2.72) 

The form of (2.72) is general enough to express a wide range of objectives encountered in NMPC 

applications (moving or shrinking horizon approach on regulation and/or setpoint tracking, direct 

minimization of the operation time, optimal initial conditions, multiple simultaneous objectives, 

treatment of soft constraints, etc.). For batch processes with end-point optimization the objective 

usually reduces to the Mayer form ( () 0 ), however the Lagrange term ( () ) still may be used, 

e.g. to implement soft constraints on control rate.  

2.5.3 Industrial implementation of NMPC 

In the past 20-30 years LMPC has become a preferred control strategy for a large number of 

processes mainly due to the reasons mentioned in the introduction. While the development of 

LMPC approaches and industrial products has reached the fourth generation with more than 4500 

applications (see Figure  2.21), there are only few NMPC providers (Table  2.6) with rather limited 

number of applications (Table  2.6). 

Table  2.5 lists several commercial NMPC products and the companies supplying them. This list is 

by no means exhaustive. There are several other approaches but these are either mainly applications 

to a particular process or the NMPC products are too new (Fischer-Rosemount, ABB, Ipcos, etc.) 

and were not included here due to lack of information. However the technology sold by the 

companies in Table 2.6 is representative of the current state-of-the-art. 
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Figure 2.21: Summary of industrial LMPC applications by areas.  

 

Table 2.5: NMPC companies and product names. 

Company Product Name (Acronym) 

Adersa Predictive Functional Control (PFC) 

Aspen Technology Aspen Target (Apollo) 

Continental Controls Multivariable Control (MVC) 

DOT Products NOVA Nonlinear Controller (NOVA-NLC) 

Pavilion Technologies Process Perfecter 

An excellent review and description of these NMPC products is given in (Qin and Badgwell, 2000). 

Table 2.6 provides information on the details of each algorithm, including the model types used, 

options at each step in the control calculation, and the optimization algorithm used to compute the 

solution.   
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Table 2.6: Comparison of industrial NMPC control technology. 

Company Adersa Aspen 

Technology 

Continental 

Controls 

DOT 

Products 

Pavilion 

Technologies 

Algorithm
 

PFC Aspen Target MVC NOVA-NLC Process 

Perfect 

Model Forms
1 

NSS-FP 

S ,I, U 

NSS-NNN 

S, I, U 

SNP-ARX 

S 

NSS-FP 

S, I 

NNN-ARX 

S, I, U 

Feedback
2 

CD, ID CD, ID, EKF CD CD CD, ID 

Rem. Ill-cond.
3
 - IMS IMS IMS - 

SS. Opt. Obj.
4 

Q[I,O] Q[I,O] Q[I,O] - Q[I,O] 

SS. Opt. Const.
5 

IH, OH IH, OH IH, OS - IH, OH, OS 

Dyn. Opt. Obj.
6 

Q[I,O], S Q[I,O,M] Q[I,O,M] (Q,A)[I,O,M] Q[I,O] 

Dyn. Opt. 

Const.
7 

IA, OH, OS, 

R 

IH, OS-l1 IH, OS IH, OH, OS IH, OS 

Output Traj.
8 

S, Z, RT S, Z, RT S, Z, RT S, Z, RTUL S, Z, TW 

Output Horiz.
9 

CP CP FH FH FH 

Input Param.
10 

BF MM SM MM MM 

Sol. Method
11 

NLS QPKWIK GRG2 NOVA GRG2 

1
Model Form: (ARX) autoregressive with exogeneous inputs (input-output model), (FP) First-Principles, 

(NSS) Nonlinear State-Space, (NNN) Nonlinear Neural Net, (SNP) Static Nonlinear Polynomial, (S) Stable, 

(I) Integrating, (U) Unstable  
2
Feedback: (CD) Constant Output Disturbance, (ID) Integrating Output Disturbance, (EKF) Extended 

Kalman Filter  
3
Steady-State Optimization Objective: (Q) Quadratic, (I) Inputs, (O) Outputs  

4
Removal of ill-conditioning: (IMS) Input move suppression 

5
Steady-State Optimization Constraints: (IH) Input Hard maximum, minimum, and rate of change constraints, 

(OH) Output Hard maximum and minimum constraints  
6
Dynamic Optimization Objective: (Q) Quadratic, (A) One norm, (I) Inputs, (O) Outputs, (M) Input Moves  

7
Dynamic Optimization Constraints: (IH) Input Hard maximum, minimum, and rate of change constraints, 

(IA) IH with input acceleration constraints, (OH) Output Hard maximum and minimum constraints, (OS) 

Output Soft maximum and minimum constraints, (OS-l1) Output soft constraints with l1 exact penalty 

treatment 
8
Output Trajectory: (S) Setpoint, (Z) Zone, (RT) Reference Trajectory, (TW) Trajectory Weighting, (TRUL) 

Upper and lower reference trajectories 
9
Output Horizon: (FH) Finite Horizon, (CP) Coincidence Points  

10
Input Parameterization: (SM) Single Move, (MM) Multiple Move, (BF) Basis Functions  

11
Solution Method: (NLS) Nonlinear least squares, (QPKWIK) multi-step Newton method, (GRG2) 

Generalized reduced gradient, (NOVA) Mixed complimentary nonlinear program  

An approximate summary of industrial NMPC application is presented in Table 2.8 with the breakdown on 

different areas of application shown on Figure  2.22.  
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Table 2.7: Approximate summary of NMPC applications by application areas.  

Company 

Area 
Adersa 

Aspen 

Technology 

Continental 

Controls 

DOT 

Products 

Pavilion 

Technologies 
Total 

Air and Gas   18   18 

Chemicals 2  15  5 22 

Food 

Processing 

    9 9 

Polymers  1  5 15 21 

Pulp and 

Paper 

    1 1 

Refining     13 13 

Utilities  5 2   7 

Unclassified 1  1   2 

Total 3 6 36 5 43 93 

 

 

 

Figure 2.22: Summary of NMPC applications by areas.  

It is interesting to note that the distribution of NMPC applications has changed significantly 

compared to LMPC applications. In refining where processes are operated around a steady-state 

LMPC can do the job, and the additional burden related to NMPC is probably not necessary. 

However in polymers and chemicals (e.g. pharmaceuticals) NMPC seem to be the right approach. 

Half of the NMPC applications are in these two areas, while we can find only a very small 

percentage of LMPC applications in these processes. The explanation for this could be in the fact 
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approaches usually fail. The analysis of the LMPC approaches in these areas shows that those 

applications are for continuous processes where LMPC approaches (sometimes with gain 

scheduling) can work around the operating points. For example INCA
®
 (the product of IPCOS 

Technology (Van Brempt et al., 2001) in the actual control calculations uses linear models carefully 

identified for the operating points, approach which is however more difficult to use efficiently for 

batch processes. Also for polymers and chemicals (e.g. pharmaceuticals) the objectives are in terms 

of distribution control of the final product quality which is difficult to express in the LMPC 

framework. An interesting observation from the analysis of the NMPC applications shows that 

almost all reported applications (those which were found in the literature) are for continuous 

processes and many of the presented products do not even work for discontinuous highly nonlinear 

and unstable processes with large variation in process gain. The need of NMPC for continuous 

polymerization processes can be explained by the frequent grade changeover operations of the 

reactors in order to meet diversified demands of the market. However even in these cases relatively 

simpler NMPC approaches based on linear model scheduling can work and are applied. In the case 

of batch polymerization and certain fine chemical processes the physico-chemical properties of the 

system (viscosity, density, heat capacity) can change dramatically during the process leading to 

change in the gain sometimes even with two order of magnitudes. In these cases the controller has 

to cover a wide range of operating conditions and cope with highly nonlinear process dynamics. 

This motivates the use of batch polymerization (Park et al., 2003; Pan and Lee, 2003; Sekia et al., 

2001; Dulce and Silva, 2002) or fine chemical processes (Le Lann et al., 1999) as good benchmark 

problems for NMPC assessments. These processes also allow a broad variation in the control 

problem formulation from simple setpoint tracking to shrinking horizon online optimizing control, 

or end-point performance control, product property distribution control, etc. Although the above 

statistics shows the contrary, it should be mentioned however, that in the fine chemicals industry 

frequent changes in products, lower production rates can make the implementation of NMPC more 

difficult to be accepted, due the high rate of return needed in the case of short product lifetime. 

2.5.4 Challenges in industrial NMPC   

The flow of tasks which need to be performed in generic industrial NMPC applications is presented 

in Figure  2.23. Each block represents its specific problem which need to be discussed in more detail 

and can represent the main framework of industrial NMPC assessments. Even the link of the 

NMPC to the process through the input/output devices (I/O) is an important issue where 

communication protocols between process and controller or even between different task-blocks 
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within the NMPC need to be compared (OPC, DDE, UDP, TCP/IP, etc.). Obviously not all blocks 

are present for all NMPC applications. However if the goal is the development of generic NMPC 

tools adequate for SISO, or thin (CVs > MVs), fat (CVs < MVs), or square (CVs = MVs) MIMO 

plants all components need to be considered, and those components which are not needed for a 

certain application will be turned off. For example for SISO control systems the determination of 

process subsets and ill-conditioning is not an issue and the corresponding modules will be by-

passed in the controller.  

 

Figure 2.23: Sequence of tasks involved in a generic NMPC application. 

Some of the major challenges related to industrial NMPC applications in my opinion are: 

 Efficient development and identification of control-relevant model. The importance of 

modeling in NMPC applications is straightforward. Unlike traditional control where 
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attributed to modeling and system identification. Figure  2.24 schematically represents the 

design effort involved in NMPC design versus traditional control.  
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tests. Figure  2.25 shows the distribution of industrial MPC algorithms based on the model 
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and therefore well suited for optimization that can require extrapolation beyond the range 

of data used to fit the model. Despite the clear advantages of using FP models most of the 

NMPC approaches are based on empirical nonlinear models. The reasons for this are in the 
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Figure 2.24: Design effort of NMPC versus traditional control. 

 burden required for the solution of FP models. Since the modelling is a time consuming 

part of the NMPC design the choice of proper modelling environment is crucial. Almost all 

industrial NMPC approaches try to beneficiate form the power of chemical modelling 

software (ASPEN, gPROMS, Hysys, etc.) rather than building and solving the models from 

scratch. The model identification is important even if first principle models are used. In this 

case usually offline parameter identification has to be performed. It is very important to 

keep in mind (however often overlooked) that models (whether empirical or FP) are 

imperfect (both in term of structure and parameters). Therefore robustness is a key issue in 
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penalization of excessive control movements). How to choose the proper plant tests to 
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2003; Wang and Romagnoli, 2003). Another important problem which need to be assessed 
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accuracy of the model and computational burden is usually very challenging. Including 

many details into the model can lead to large number of states resulting in unobservable 

models based on available measurements besides the prohibitively large computational 

burden. The determination of the control-relevant model always has to be done in 

conjunctions with the observer design.  

 

Figure 2.25: Classification of model types used in industrial MPC algorithms. 

 State and parameter estimation. The lack of reliable sensors is one of the major bottlenecks 

in industrial NMPC applications. This problem is crucial when FP models are used 

(Allgower et al., 1999). This problem needs to be assessed in detail in the project. In many 

industrial applications software sensors need to be developed based on additional empirical 

models (most often neural networks are used for this purpose, e.g. INCA, (Van Brempt et 

al., 2001). 
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optimization, or the choice of proper objective functions and optimization problem setup 
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model, estimator (of model parameters and states), and optimization algorithm as an 

integrated system (that are simultaneously optimized) rather than independent components 

could be the capstone in NMPC design.  

 Long-term maintenance of control system. It is clear the implementation complexity of 

NMPC approaches is high. But it is important to assess how long term maintenance can be 

performed and what the limits of the approach in face of changing process and operating 

conditions are. 

2.5.5 First principle (analytical) model based NMPC 

The objective of NMPC is to calculate a set of future control moves (control horizon, Tc or M) by 

minimization of a cost function, like the squared control error on a moving finite horizon 

(prediction horizon, TP or P). The optimization problem is solved on-line based on prediction 

obtained from a nonlinear model. One can use different empirical nonlinear models for prediction 

in the controller, but the most attractive approach is the use of first principle models, which are 

globally valid and therefore well suited for the optimization that can require extrapolation beyond 

the range of data used to fit the model (De Oliveira and Biegler, 1994; Lee, 1998). 

A general mathematical formulation of the nonlinear model predictive control problem, when the 

process is described by ordinary differential equations (ODEs), is: 

 objective function: 

( ), ,
min , . , ,

u P M
J x t u P M           (2.73) 

 constraints: 

, , ,
dx

f x u q d
dt

           (2.74) 
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1u k i u k M  for all 1,i M P       (2.80) 

min max
x k i x k i x k i         (2.81) 

min maxp
y k i y k i y k i          (2.82) 

Where x = state variables, u = manipulated variables, q = parameters, d = measured and 

unmeasured disturbances, y = output variables. 

Generally, the prediction and control horizon, respectively, are considered fixed for an open loop 

optimization. The objective function usually is chosen as the sum of the squares of the differences 

between the predicted outputs and the setpoint values over the prediction horizon of P time steps: 

22
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( ), () ( ), () 1
k P

k

t T
P

i p
it

J x t u Q E dt J x k u Q r k i y k

   

(2.83) 

  continuous  form   discrete form 

Often the objective function (2.83) includes a second term, which is the squared sum of the 

manipulated variable changes over the control horizon (M): 

2 2

1 1

( ), () 1 1
P M

i p i
i i

J x t u Q r k i y k R u k i     (2.84) 

The second term was originally introduced by the unconstrained formulation of LMPC in which 

constraints are handled artificially through the weighting factors (matrices Qi and Ri). Since the 

constrained LMPC algorithms likewise the NMPC methods explicitly include constraints there is 

no need of the second term in the objective function, however in many of the constrained LMPC 

and NMPC applications authors use this term, too. Instead of, or additionally to the second term of 

the objective function, we can assure a smooth control action by introducing another term to 

minimize the deviations of the manipulated inputs from their setpoints. In this way a more general 

formulation of the performance function is obtained and the optimization problem to be solved at 

each sampling time can be written as follows: 

2 22
'

1
1 1 1

min 1 1 1 1
P M M

ref

i p i lu k u k M
i i i

Q r k i y k R u k i R u k i u k i

            

(2.85) 

The predicted values of the output variables (y-p) can be considered equal to the value obtained 

from the model (ym), but usually a correction is made to reduce the cumulative error effect of the 
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measurement errors and the model/plant mismatch. The correction equation usually has the 

following form: 

( )
p m m p

y k i y k i K k i y k y k       (2.86) 

The decision variables in the optimization problem expressed by equations (2.73)-(2.82) are the 

control actions, M sampling time steps into the future (control horizon). Generally, 1  M  P and it 

is assumed that manipulated variables are constant beyond the control horizon (equation 2.80). 

Although the optimization provides a profile of the manipulated input moves over a control horizon 

(M), only the first control action is implemented. After the first control action is implemented, new 

measurements are obtained which are used for the compensation of plant/model mismatch and the 

estimation of unmeasured state variables. Finally the prediction horizon is shifted by one sampling 

time into the future and the optimization is performed again.  

In the NMPC approaches absolute (2.78) and velocity (2.79) constraints as well as state- and 

output-variable constraints are explicitly included.  

Since a constrained nonconvex nonlinear optimization problem has to be solved on-line, the major 

practical challenge associated with NMPC is the computational complexity that increases 

significantly with the complexity of the models used in the controller. There has been a significant 

progress in the field of dynamic process optimization. Fast on-line optimization algorithms that 

exploit the specific structure of optimization problems arising in NMPC have been developed and 

real-time applications have been proven to be feasible for small-scale processes. However, the 

global solution of the optimization cannot be guaranteed and the development of fast and stable 

optimization techniques is one of the major objectives in the NMPC research (De Oliveira and 

Biegler, 1995). 

2.5.6 Nonlinear model predictive control with guaranteed stability 

Besides the constraints described in the previous section, another important requirement that the 

nonlinear model predictive controllers have to meet (however seldom taken into consideration for 

practical implementation) is that it should assure a stable closed-loop system. 

The most straightforward way to achieve guaranteed stability is to use an infinite horizon cost 

functional (P = M =) (Campo and Morari, 1986; Keerthi and Gilbert, 1988). In this case, from the 

Bellman‟s principle of optimality results that the open loop input and sate trajectories obtained as 

the solution of the optimization problem are equal to the closed loop trajectories of the nonlinear 
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system. Consequently, any feasible predicted trajectory goes to the origin. However, using infinite 

horizon in the performance criterion leads to practically unsolvable optimization problem. To cope 

with this disadvantage, and guarantee stability, besides the input and state constraints, so-called 

stability constraints have to be included into the finite horizon open-loop optimization problem 

(Chen and Allgower, 1996; Chen and Allgower, 1998a; Findeisen and Allgower, l999; Findeisen 

and Rawlings, 1997; Sistu and Bequette, 1996). 

The most widely suggested stability constraint is the terminal equality constraint, which forces the 

states to be zero (equal to their steady state values) at the end of the finite horizon: 

0
P

x t T            (2.87) 

Using the terminal equality constraint to guarantee stability is an intuitive approach, however it 

increases significantly the on-line computation necessary to solve the open loop optimization 

problem and often causes feasibility problems (De Nicolao et al., 1996; De Nicolao et al., 1997; De 

Nicolao et al., 1998). 

Another approach to guarantee stability is the so-called quasi-infinite horizon nonlinear MPC 

(QIHNMPC), in which the prediction horizon is approximately extended to infinity by introducing 

a terminal penalty term in the objective function (Chen and Allgower, l997; Chen et al., 1997; Chen 

et al., 1998; Findeisen and Allgower, 2000a; Mayne and Michalska, 1990; Michalska and Mayne, 

1993). The basic idea of this approach consists of the approximation of the infinite horizon 

prediction to achieve closed-loop stability, while the input function to be determined on-line is of 

finite horizon only. The terminal penalty term is determined off-line such that it bounds from above 

the infinite horizon objective function of the nonlinear system controlled by a local state feedback 

law in a terminal region  (Chisci et al., 1996; Mayne, 1996; Mayne et al., 2000; Mayne and 

Michalska, 1990; Meadows et al., 1995; Meadows and Rawlings, 1993). 

2.6 Conclusions 

For modern refiners, the catalytic cracker is the key to profitability in that the successful operation 

of the unit determines whether or not the refiner can remain competitive in today's market. The 

major objective of FCC units is to convert low-value, high-boiling feedstocks into valuable 

products such as gasoline and diesel. The three dominant reactions are cracking, isomerisation, and 

hydrogen transfer. The catalyst acid sites have a major influence on the reaction chemistry. The 

introduction of zeolites into the FCC catalyst drastically improved the performance of the catalytic 

cracker reaction products. The zeolite catalysts are active and selective. The higher activity and 
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selectivity translate into more profitable liquid product yields and additional cracking capacity. The 

need to produce reformulated gasoline will increase demand for the shape-selective zeolite; the 

additive technology is continuously expanding.  

The benefits of the new catalyst technologies is the achievement of deep bottoms cracking with low 

coke; high conversion and high yields of gasoline and light olefins. These benefits have been 

verified in many successful commercial applications.  

Selective modifications of the unit's components (feed injection, riser termination, air distribution, 

catalyst cooling, stripper design), flexibility of operations, mechanical improvements are improving 

the unit's reliability, and increasing the quantity and quality of valuable products, and operating 

flexibility. However, these modifications also increase the complexity of controlling the highly 

interacting and strongly nonlinear FCCU. 

It is well recognized that the economic effectives on the performance of the control system applied 

for its operation suitable control system can increase efficiency and reduce the environmental 

impact of an FCCU. 

This chapter provides an overview of the development of linear and nonlinear model predictive 

control strategies .The detailed evaluation of the trends of industrial applications and preparation of 

the model predictive control approaches indicate that linear and nonlinear MPC are suitable 

technologies for the FCCU, with significant potential to increase the profit a ability and efficiency 

of the unit.  

The FCCU high degree of efficiency will continue to play a key role in meeting future market 

demands, in which the application of advanced control approaches will be undoubtedly a key 

element. 
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CHAPTER 3                                           

MATHEMATICAL MODELING OF A FLUID 

CATALYTIC PROCESS 

3.1 Analytical mathematical model of the FCCU 

In current refineries, the FCC unit plays a prominent role, producing gasoline and diesel, as well as 

valuable gases, such as ethylene, propylene and isobutylene, from feedstocks that comprise 

atmospheric gas oils, vacuum gas oils and hydrocracker bottoms. The significant economic role of 

the FCC unit in modern-day petroleum refining has attracted great interest in academia and industry 

in terms of developing and modelling control algorithms for efficient FCC application. Figure  3.1 

depicts the unit to which the mathematical model relates. The main parts of the FCC unit that have 

been modelled are:  

1. Feed and preheat system 

2. Reactor 

3. Catalyst circulation lines  

4. Regenerator 

5. Air blower  

6. Wet gas compressor  

7. Main fractionators. 

The modelling of this unit is sufficiently complex to capture the major dynamic effects that occur in 

an actual FCCU system; it is multivariable, strongly interacting and highly nonlinear.  

The FCCU dynamic model presented in this chapter includes the main systems as well as a kinetic 

model based on a five-lump system, capable of predicting the yields of valuable products. While 

the five-lump kinetic model is a significant simplification of the actual cracking kinetics; it is 

sufficiently complex to describe the yields of valuable products and gasoline octane value. The 

resulting global model of the FCCU is described by a complex system of partial-differential-

equations, which were solved by discretising the kinetic models in the riser and regenerator on a 
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fixed grid along the height of the units, using finite differences. The resulted model is a high order 

DAE, with 942 ODEs (142 from material and energy balances and 800 resulting from the 

discretisation of the kinetic model).  

The body of literature relating to the modelling of the FCC process is quite large, reporting strong 

interactions and a variety of operating, security and environmental constraints. The prospect of 

realising even greater yields of high-demand products through increased production and more 

stable operation have motivated the search for models that are practical and more accurate, allied to 

control strategies that are flexible, better performing, and more cost effective. Ford et al. (1976) 

proposed a distributed parameter model of the FCC unit regenerator based on a detailed kinetic 

combustion model. This was followed by Lee and Groves (1985), who modelled an FCC unit by 

employing macroscopic models to describe the reactor and regenerator. However, it was only until 

McFarlane et al. (1993) described a dynamic FCC unit model with constraints that a problem which 

was challenging the chemical process control community was overcome.  

 

Figure 3.1: UOP fluid catalytic cracking unit. 
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Their work proposed a distributed parameter model for the regenerator, yet used a continuous 

stirred-tank reactor (CSTR) without a yield model for the reactor section. In order to achieve 

effective FCC optimisation, it is quite important that a detailed yield model, which will predict 

gasoline octane value and yields of valuable products, is applied, as declared in the literature in 

Section 2.2. In this context, there are many kinetic models, which can be categorised as: heavy 

lumped models and molecular based models. Despite being more generic, molecular models require 

analysis at a molecular level. Since such an analysis is very complex, one strategy has been to lump 

different groups of molecules by boiling point. These are then treated as pseudo-components, 

allowing the phenomena occurring in the reactor to be described globally. Regarding modelling for 

the riser section, different kinetic schemes were proposed: from three kinetic lumps, up to thirteen 

or more (Jacob et al., 1976). Secchi et al. (2001) dynamically simulated the UOP stacked FCC unit 

by modelling the regenerator as a bubble–emulsion–freeboard model, while the riser was 

represented by a 10-lump dynamic model. This was validated against experimental data obtained 

from a working industrial unit. Han and Chung (2001) also proposed a detailed dynamic FCC 

process simulator, including models of catalyst liftlines, stripper, feed preheater and cyclones. The 

riser reactor was described as a distributed parameter 4-lump model and the regenerator as a two-

regime, two-phase model.  

Accurately modelling industrial FCC units is very complicated owing to the strong interactions 

between process variables, the significant uncertainty surrounding the kinetics of the cracking 

reactions, coke deposition leading to catalyst deactivation in the riser reactor, and the coke burning 

process in the regenerator.  

3.1.1 Feed system model 

The fresh feed stream is transported through the preheat furnace; after exiting, slurry recycled from 

the main fractionator bottom is mixed with it. The model presented by McFarlane et al. (1993) and 

Cristea et al. (2003) assumed that, at all times, actual flows were equal to the controller‟s set point 

by disregarding controller dynamics and those of the flow streams: 

1 1

setF F            (3.1) 

2 2

setF F
           

( 3.2) 

3 3

setF F             (3.3) 

4 4

setF F            (3.4) 
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Figure 3.2: Feed system. 

3.1.2  Preheat system model 

According to McFarlane et al. (1993), the feed pre-heater is represented as a furnace with a fixed 

flame temperature in the combustion chamber, regardless of spatial position. Moreover, air supply 

to the pre-heater is assumed to be at the temperature of the surroundings.  
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Figure 3.3: Preheat systems.  

Based on the assumption that fresh feed, F3, enters the preheat furnace at temperature T1, the 

dynamic energy balance returns furnace firebox and outlet temperatures using the following models 

(McFarlane et al., 1993; Cristea et al., 2003): 

 3
5

1
fu f lm loss

fb

dT
F H UA T Q

dt 
            (3.5) 
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Reactor Model  

Figure  3.4 presents the two parts of the reactor: the riser and the stripper. 
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Figure 3.4: Schematic diagram of the industrial riser reactor and the stripper. 

In gasoline and olefin refinery production, FCC units are the main conversion units. FCC reactor 

models typically represent the riser using lump-kinetic schemes with varying numbers of lumps to 

simulate the two-phase (i.e. constant slip between phases) plug-flow transported bed. These models 

are used to simulate FCC operation and predict product yields.  
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The reactor riser model  

The complexity inherent in the riser is due to complicated hydrodynamics, heat transfer, mass 

transfer and catalytic cracking kinetics. Moreover, influential parameters vary along the riser height 

(Gupta and Rao, 2003): 

  Feed is injected into the riser, as are particles of hot catalyst from the regenerator; the 

liquid feed vaporises and entrains catalyst and liquid drops along the riser height. 

 Vaporisation of liquid feed increases gas velocity. 

 The varying gas velocity affects axial (and radial) catalyst volume fractions. 

 Gas and catalyst particles exhibit significant slip between each other. 

 Vaporised hydrocarbons undergo cracking on the surfaces of catalyst particles, resulting in 

lighter hydrocarbons and coke. The coke is deposited on the catalyst surface steadily 

deactivating it. The reactant and product hydrocarbons continue to diffuse to and away 

from the catalyst surface.  

 Heat is transferred from the hot catalyst, vaporising liquid feed and providing heat to the 

endothermic cracking reactions. 

The lumping approach is applied to FCC unit modelling given that it is not feasible to treat all 

species and reactions, because the complex reaction network comprises a huge number of unknown 

rate constants. Therefore, molecules and reactions are lumped by their chemical nature, i.e. the 

number of carbon atoms, while different molecular groups are lumped by their boiling points. For 

this purpose, kinetic models have been found to describe cracking behaviour adequately 

(Carabineiro et al., 2004). 

In modelling the riser for this study, the following assumptions were made:  

 Cracking reactions take place exclusively in the reactor, 

 The riser wall is adiabatic, 

 Negligible dispersion and adsorption occur inside catalyst particles, 

 The catalyst and coke are given the same properties,  

 The riser reactor is taken as being tubular, one-dimensional, and with no axial or radial 

dispersions. 
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Kinetic model of riser reactor 

The following representative models describing riser kinetics were investigated:   

Five-lump kinetic model 

When it is important to predict yields of coke, gasoline and dry gas, a five-lump kinetic model is 

used. Knowledge of coke yields allows heat integration to be studied, together with air blowers and 

the design and simulation of the main fractionator. While predicting yields of gasoline and dry gas 

separately from other lumps, it allows the effects at main components in the FCC unit (e.g. gas 

compressors) to be analysed. Therefore, this catalytic cracking kinetic model separates gasoline, 

dry gas and coke from other lumps (Ancheyta-Juarez and Sotelo-Boyas, 2000). 

The following scheme simplifies five-lump kinetic models (Dupain and Gamas, 2003; Dupain et 

al., 2006): A number of assumptions are made in this model: coke forms at initial catalyst-oil 

contact, diesel only cracks to gas, and it is not converted into gasoline where a small quantity of 

uncrackable gas oil exists. 

 

 

 

Figure 3.5: The five-lump kinetic model for cracking. 

All the cracking reactions are assumed to occur only in the reactor riser. Sensible heat, heat from 

vaporisation, and the heat driving the endothermic cracking reactions are provided by the hot 

catalyst. The riser is modelled by mass balance, describing the production of gasoline, diesel, 

slurry, coke and gases. The following sets of differential equations describe this model:  

Gas oil 

Coke 

Gas 

LCO Gasoline 

k 6 

k 5 

k 2 
k 1 

k 4 

k 3 
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1 2 3 5
(( ( )( )) ( ( )feed

slurry slurry conv slurry slurry

c

dy
k k k y x k y x CTO

dt
    (3.11) 

1 4 6
(( ( ) ) ( ) )diesel

slurry slurry diesel conv diesel coke

c

dy
k y x k y k y CTO

dt
     (3.12) 

2
(( ( ))gasoline

slurry slurry conv

c

dy
k y x CTO

dt
        (3.13)  

3 4
(( ( ) )gas

slurry slurry diesel conv

c

dy
k y x k y CTO

dt
       (3.14) 

5 6
(( ( ) )coke

slurry slurry diesel coke

c

dy
k y x k y CTO

dt
       (3.15) 

The catalyst-to-oil ratio (CTO) is expressed as follows:  

3 4

Frgc
CTO

f f
          (3.16)  

The activity function of coke formation describes this process: 

coke
coke

c

d

dt
          (3.17)  

Coke deposits “poison” the catalyst and reduce cracking activity. The activity function of catalyst 

conversion can be described as a function of coke content; it is assumed to be the same for all the 

reactions. 

conv
conv

c

d
kd

dc          (3.18) 

Catalyst deactivation model 

The catalyst deactivation model is used in kinetic studies conducted on catalytic cracking/pyrolysis 

lumping models, and is typically based on a function dependent on time-on-stream, represented by 

the catalyst residence time, or a function dependent on coke content of catalyst, represented by the 

catalyst coke mass fraction. While the former catalyst deactivation functions are in use, the latter 

are particularly appropriate, since a main cause of catalyst deactivation is coke (Alsabei et al., 

2008). 
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The aim in this work was to develop a coke content-dependent, catalyst deactivation function. 

Among the estimated function variables, coke content of the catalyst is independent, and represents 

an operating parameter, with unknown value at any particular point in time. As such, to prevent a 

new unknown from being introduced, direct measurement to deduce the parameter, and 

consequently the deactivation function, was performed. The function of coke content in the catalyst 

was derived from least squares regression analysis, varying with the prevailing operating conditions 

and properties of the feed. The catalyst deactivation function was then derived. 

As shown in Eq. (3.29), the catalyst coke content (Cc) in heavy oil pyrolysis is a function varying 

with feed atomic ratio C/H, temperature of reaction (T), oil gas residence time (t), catalyst residence 

time (tc), and weight ratios of catalyst-to-oil (Rco) and steam-to-oil (Rso). 

Least squares regression analysis is performed on experimental results to yield the parameters 

needed in Eq. (3.29), resulting in Eq. (3.30). In turn, experimental data applied to the catalyst 

deactivation function described by Eq. (3.31), yields the function used in this work. This function is 

independent of reaction temperature, and does not vary, compared to a deactivation function based 

time-on-stream, as the function already accounts for the effect of temperature (Roman et al., 2009). 

1 1 100

b
e fc d g

c co so c

C
C a T t R R t

H
       (3.19) 

4.3889
0.4795 0.39630.2838 0.1774 0.22763.5248 1 1 100

c co so c

C
C T t R R t

H
    (3.20) 

exp
c

C            (3.21) 

4.3889
0.4795 0.39630.2838 0.1774 0.2276exp 2.55 1 1

co so c

C
T t R R t

H
    ( 3.22) 

Assumptions regarding riser energy balance include stirred tank dynamics, negligible heat loss to 

the environment, and the heat of cracking being proportional to riser temperature. Hence, the 

energy balance is (Cristea et al., 2003): 

r
in outeff

dT
M Q QCp dt

         ( 3.23) 

where: 

3 2 base,fin rgc fl
 = + ( - ) Q Q CpF T T          (3.24) 
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out catout slurry cracking ff
 = + + +  Q Q Q Q Q         (3.25)  

( )
catout rgc c r base

Q F Cp T T           (3.26) 

4 r refslurry sv sr
 = [ ( - )+ ] Q Cp QF T T         ( 3.27) 

3 r refff fv fr
 = [ ( - )+ ] Q Cp QF T T          ( 3.28) 

3 4cracking crack
F FQ H          ( 3.29) 

crack r ref = 172,7 +3( - ) H T T          ( 3.30)  

The bottom of the reactor riser pressure is needed in the force balance on the regenerated catalyst 

bend. This is expressed by: 

risris
rb 4

h
 = +P P

144
           (3.31) 

where 

3 4 rgc

ris
ris

+ +F F F
 =            (3.32) 

3 4 rgc
ris

v part

+F F F  = +           (3.33) 

The inventory of the catalyst in the riser is: 

rgc ris ris
ris

ris

F A h = W           ( 3.34) 

3.1.3 The reactor stripper model  

This part of the FCC unit is represented as a continuous tank with perfect mixing, where reactions 

do not occur. This is justifiable, since the catalyst and product vapour are separated immediately by 

the cyclones; thus, usually, no cracking reaction occurs in this disengaging-stripping section. The 

factors affecting coke yield in the riser in the form of deposits on the catalyst, are assumed 

exclusively to be: weight hourly space velocity in the riser (WHSV), carbon concentration on the 

regenerated catalyst, residence time of the catalyst in the riser, and the coking characteristics of the 

various feeds (Cristea et al., 2003). 
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Figure 3.6: Scheme of the FCCU stripper. 

The production of coke is given by: 

-1.9843

1

    

00

  rB

coke

3 4
F1.3557

F
F F

WHSV
        (3.35) 

where 

ris
r

rgc

W =  
60F

           ( 3.36)  

3 4

ris

3600( + )F F
WHSV =  

W
         (3.37) 

45 3 0.8f 3 1 2

3 4

B

F F F
F F

F
F

        (3.38) 

and     f     = 1 for normal gasoil 

  > 1 for heavier than normal gasoil 

  < 1 for lighter than normal gasoil 

  >  0 

Wet gas yield is given by: 
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wg 3 4 1 2 r ref = ( + )[ + ( - )]F F F C C T T          (3.39) 

The coke balance in the stripper also includes any carbon on the regenerated catalyst entering the 

reactor. This is expressed by: 

sc r
rgc rgc coke sc sc sc

r

1dC dW = ( + - - )F C F F C C
dt dtW

       (3.40) 

In the stripper, catalyst balance is given by: 

r
rgc sc

dW  = -F F
dt

          (3.41) 

The pressure drop between the main fractionator and the reactor is assumed constant; hence, the 

reactor pressure is given by: 

4 5 frac
P P P           (3.42)  

3.1.4 Regenerator model  

For the regenerator model, the assumptions are that the catalyst phase is perfectly mixed, that coke 

deposits on the catalyst consist of carbon and hydrogen, and that all the hydrogen is burned off in 

the regenerator.  Moreover, it is assumed that the conversion of hydrogen is complete following 

these reactions: 

2 2
4H O 2H O           (3.43) 

where oxygen and carbon in the coke react to produce CO and CO2: 

2
2C O 2CO           (3.44) 

2 2
C O CO            (3.45) 

Furthermore, carbon monoxide reacts to produce carbon dioxide: 

2
2 2

2CO O CO           (3.46) 

Mass and heat transfer in the reactor and regenerator are complex. Hence, the regenerator is 

typically described as two zones: a dense bed zone (with a dense phase and a gaseous phase), and 

an entrained catalyst zone (Figure 3.8). Two phases are assumed to make up the fluidised bed: 

gaseous reactants first giving a bubble phase and including products moving up the bed in plug-
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flow; and a second, perfectly mixed, dense phase comprising solid catalyst and gas (Bollas et al., 

2007; Han and Chung, 2001).  

 

 

Figure 3.7: Regenerator phases. 

Along the bed, gas moves and mass transfer between the two phases occurs. In order to allow 

modelling of the dense bed, a number of assumptions, as follow, are made:  

 bubbles do not contain any catalyst particles within them;   

 the cyclones restore all the particles of the ejected catalyst in the freeboard to the dense 

bed;  

 perfect mixing of the catalyst particles in the dense bed occurs due to the cyclone 

recycling action and circulation in the bed; 

 thermal equilibrium exists between the catalyst in the dense bed and the gases;  

 the gas densities of the bubble and emulsion phases are both the same; 

 gases follow a tubular flow regime in both the bubble and emulsion phases; 

 regenerator gas consists of oxygen, carbon monoxide, carbon dioxide, water vapour, 

and nitrogen.  
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The gaseous and dense phases of the bed are assumed to be in internal equilibrium. Due to 

entrainment in the flows, catalyst is to be found in the zone above the dense bed (the disengaging 

zone). The quantity of catalyst decreases with vertical distance. In the presence of the catalyst, heat 

is generated by reactions (3.43), (3.44) and (3.45); this influences the energy balance in the 

regenerator. Only reaction (3.46) is significant in the region above the disengaging zone (the dilute 

phase) since there is very little catalyst there (Han et al., 2000; Ansari and Tade, 2000). 
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air blower
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F sc

Tcyc
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V6

V7

Fair
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Figure 3.8: Scheme of the FCCU regenerator. 

The following equations describe the energy balance for the reactor bed (McFarlane et al., 1993; 

Cristea et al., 2003): 

[ ] reg

reg c I in out

dT
W Cp M Q Q

dt
         (3.47) 

where 

in air H C sc
  = + + +Q Q Q Q Q          (3.48) 

out fg rgc e
Q Q Q Q           (3.49) 

( )
air air air air base

Q F Cp T T          (3.50) 
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H H H
Q F H            (3.51) 

1 2, 2
(

c air sg sg
Q F XCO H XCO H         (3.52) 

( )
sc sc c sc base

Q F Cp T T           (3.53) 

( )
rgc rgc c reg base

Q F Cp T T          (3.54) 

( )
H sc sc rgc H

F F C C C
          

(3.55) 

2, 2 2, 2 2

2

[ ( 0.79 )

0.5 ]( )
fg air sg sg sg

H cyc base

Q F XO CpO XCO CpCO XCO CpcO CpN

F CpH O T T
    

(3.56) 

The energy balance of the regenerator is expressed by: 

reg
bed

(z)dT
 = 0                 0 z  z

dt         
(3.57) 

2

_

reg
1 2

bed

(z) dXCO (z)dXCO(z) 1dT
 = ( + )   H H

dt dz dz Cp(z)
   < z  z z       

(3.58) 

2 2 2 2 2

2

.

. H z ec
air

z cyc

z cyc

Cp(z) = 0 79 + XCO(z) CpCO + XCO (z) + XO (z) + ...CpN CpCO CpO

1
[0 5 O + ]   CpH CpF M

F
 = 0   z  Z
 = 1   z < z

   

(3.59) 

The carbon balance is given by: 

rgc regc
rgc

reg

1dC dWdW = ( - ) C
dt dt dtW

        (3.60) 

reg
sc sp

dW
  = -F F

dt
          (3.61)  

  2,12 ( )c
sc sc rgc rgc air sg sg

dw
F C F C F XCO XCO

dt
           (3.62) 

Mass balances of oxygen, carbon monoxide, carbon dioxide are expressed as: 

2 2. 1 2 rgc 3B
s

XO (z)dXO  = [100 (-0 5 - ) (z) - XCO(z)]  k k C k
dz

      (3.63) 
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2
1 rgc 3B

s

XO (z)dXCO(z)
 = [100 (z) - 2 XCO(z)]  k C k

dz
     (3.64) 

2 2 .
(z)dXCO dXO (z) (z)dXCO  = - - 0 5  

dz dz dz
       (3.65) 

2 2 2
.XCO (z) = XO (0) - XO (z) -0 5 XCO(z)        (3.66) 

2

1
0 0.21 0.25

air H

air

XO ( ) = F F
F

        (3.67) 

34000
19.88

( ) 459.6

1
6.9547 regT z

k e          (3.68) 

.
.

2
. reg

25000
15 06-

(z)+459 6Tk  = 0 69148  e          (3.69) 

.
.

3
. reg

45000
25 55-

(z)+459 6T6k  = 0 6412 P e          (3.70) 

The output concentrations are: 

2
2

air
,sg

sg

100 F XO = cO
F

          (3.71) 

2 2
.

6

sg

28 XCO10 = cCO
28 XCO + 44 +32 XO + 22 12XCO

      (3.72) 

The following empirical formula gives volume fractions of catalyst in the regenerator bed: 

B
d (z)

 = 0 
dz

           (3.73) 

eB

bed

 (z) = 1 -      

 0 z  z
          (3.74) 

airB B

reg s c,dilute

bed cyc

d (z) -1000 (z)F
 = 

dz A
   < z  z z

         (3.75) 

. . .
min max

2
s s

e f f

bed

1 904+0 363 - 0 048
 = [1, ( , + )] 

z
     (3.76) 

0.332 0.06
f s

v           (3.77) 
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The empirical equations describing the mass flow rate of entrained catalyst exiting the bed are: 

,e reg c dilute s
M A v           (3.78) 

where: 

,
0.878 0.582

c dilute s
v          (3.79) 

sg air
s

regg

+ 1F F = 
2 A

          (3.80) 

where 

. .
6

g
reg

520 P = 
379 14 7 ( + 459 6)T

         (3.81) 

Ideal gas behaviour is assumed to give regenerator pressure balance: 

.reg6
reg

reg,g

R dndTdP  = [n +( + 459 6) ]T
dt dt dtV

      (3.82) 

air sg

dn
 = -  F F

dt
           (3.83) 

reg,g reg cyc reg bed e = - (1 - )V A z A z         (3.84) 

reg
6rgb

reg

WP  = +P
144 A

          (3.85) 

6 4RR
P P P            (3.86) 

Stack gas flows through the stack valve from the regenerator are given by: 

sg 14 14 6 atm = -F k V P P          (3.87) 

Empirically, the regenerator bed height is expressed as: 

min . .
reg reg cycc,dilute c,dense

bed cyc s

reg c,dense c,dense c,dilute

-W A z
 = [ ,(2 85 +0 8 + ) ( )] z z

-A  
   (3.88) 

where 

,
(1 )

c dense part f           (3.89) 
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3.1.5 Air blower model 

A single-stage centrifugal compressor, driven by a variable speed steam turbine, is used to simulate 

the air blower system. For the anti-surge control system, an atmospheric vent line and valve are 

available on the discard line (Cristea et al., 2003). 
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Figure 3.9: Combustion air blower. 

Head capacity performance is given by: 

. .9 6 2
sucn,comb base = 45000 + 1 581 - 1 249  F 10 10 P       (3.90) 

. 2
base

1

14 7 P = P
P

          (3.91) 

Suction and discharge pressure are given by: 

1
6 6

,

( 460)
( )

29
atm

v

comb s

dP R T
F F

dt V
         (3.92) 

comb,d2
6 V7 7

comb,d

R ( + 460)TdP  = ( - - )F F F
dt 29 V

        (3.93) 

where 

.
1 sucn,comb

6

atm

520 29 P F = F
14 7 379 60 ( + 460)T

        (3.94) 
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7 2comb rgb
F k P P           (3.95) 

V6 6 atm 1pp
 = (V6) -  fF k P P          (3.96) 

V7 7 2 atmpp
 = (V7) -fF k P P          (3.97) 

3.1.6 Model of catalyst circulation lines  

The rate of catalyst circulation through the lines‟ system between the regenerator and riser is 

controlled by two slide valves; the pressure drop across each governs the catalyst circulation rate. 

Spent and regenerated catalyst circulation is represented as a single-phase flow, driven by simple 

force balances. For the purpose of simplification, factors affecting catalyst circulation in an 

operational FCCU are disregarded in the model. These include carbon concentration on the 

regenerated catalyst and stream injection at various points in bends (Cristea et al., 2003): 

6 , 2
144( ) ( ) 0rgc rgc rgc

rb bed c tap oil c svrgc elb rgc

rgc c

F L f
P P z E E P P

A
    (3.98) 

The force balance on the spent catalyst line is expressed as: 

4 6 , 2
144( ) ( ) 0r sc sc sc

str lift c svsc elb sc

str sc c

W F L f
P P E E P P

A A
     (3.99) 

where 

250 144
[ ]cat

sv

sv c

F
P

KA sv
          (3.100) 

* 21

2elb c
P N v            (3.101) 

3.1.7 Main fractionator model  

Distillation technology is quite prevalent in the refining industry, which counts as one of the largest 

users. A key refinery process, fractionating, occurs in the distillation unit so modelling the 

distillation unit is vital in predicting the composition of products derived from various gas oils 

processed under different operating conditions. 

Among separation processes, FCC distillation stands out as one of the most complex. Distillation 

typically results in a mixture of various hydrocarbon compounds which cannot be characterised in 
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terms of individual components. This has given rise to the practice of substituting a finite number 

of pseudo-components to express the composition of crude feedstocks and resulting products. Each 

pseudo-component is a complex hydrocarbon mixture characterised by an average boiling point and 

an average specific gravity; this is then treated as a single component (Kumar and Sharma, 2001). 

The FCCU global model includes a nonlinear model representing a continuous 38-stage distillation 

column with a reboiler and a total condenser; feed flow enters the column at stage 8. The following 

assumptions were made with respect to the 117
th
 order model for the main fractionator: 

 There are three pseudo-components (multicomponent hydrocarbon mixture) representing 

gasoline, diesel and slurry(the heavy component) 

 relative volatilities are constant, 

 there is no vapour holdup, 

 molar flows are constant (vapour flow is the same for all stages), 

  Franci's Weir Formula describes liquid flow dynamics, 

 there is a total condenser, 

 energy balance and hydrodynamics are neglected. 

Hence, the pressure balance for the main fractionator is expressed by: 

5
wg V11 V12 V13

dP  = 0.833( - - + )F F F F
dt

        (3.102) 

where            
12 12 12 5V atm

F k V P P         (3.103) 

Liquid flows according to Franci's Weir Formula:  

ow uw
M M M           (3.104) 

The liquid flow L depends only on holdup over the weir, ow
M ; total holdup is the sum of the holdup 

over the weir and the holdup below the weir:  

ow uw
M M M

          (3.105)
 

In the rectifying section, vapour flows are given by: 

(1 )
b F

V V g F
          

(3.106) 
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The equations of the derived model are given (Halvorsen et al., 2000; Halvorsen and Skogestad, 

2003) by: 

 the liquid holdup at each column stage j except the feed stage is given by:  

1 1

j

j j j j

dM
L L V V

dt
           (3.107)  

 the material balance for component i at stage j except the feed stage:  

,

1 , 1 , 1 , 1 ,

j i j

j i j j i j j i j j i j

dM x
L x L x V y V y

dt
       (3.108) 

 the liquid holdup at the feed stage NF:  

1 1
NF

NF NF NF NF

dM
L L V V F

dt
        (3.109) 

 the material balance for component i at the feed stage:  

,

1 , 1 , 1 , 1 ,

NF i NF

NF i NF NF i NF NF i NF NF i NF

dM x
L x L x V y V y

dt
      (3.110) 

 for the reboiler (stage j=1), the liquid holdup is: 

1
2 1

dM
L V B

dt
          (3.111) 

 the material balance for component i in the reboiler (stage j=1):  

1 ,1

2 ,2 1 ,1 ,1

i

i i i

dM x
L x V y Bx

dt         
 (3.112) 

 for the condenser (stage j=NT) 

1
NT

NT T

dM
V L D

dt
         (3.113) 

 the material balance for component i in the reboiler (stage j=NT):  

,

1 , 1 , ,

NT i NT

NT i NT i NT i NT

dM x
V y LTx Dx

dt
       (3.114) 

 Vapour-liquid equilibrium in each stage j for the multicomponent mixture i:  

1 ( 1)
i j

j

i j

x
y

x
          (3.115) 
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3.1.8 Wet gas compressor model 

This component of the FCC process is represented by a single-stage centrifugal compressor. The 

compressor is driven by a constant speed electric motor and is assumed to pump against a constant 

pressure created by the vapour recovery unit (Cristea et al., 2003).  
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Figure 3.10: Wet gas compressor. 

Wet gas compressor performance is given by: 

                                           

                                     
      (3.116) 

Where 

0.0942182.922( 1)
wg rw

H C          (3.117) 

vru
rw

7

P = C
P

           (3.118) 

The ideal gas law provides the relation for molar flow rate through the compressor: 

.
sucn,wg 7

11

520 F P = F
379 60 590 14 7

         (3.119) 
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Pressure balance around the compressor is given by: 

7
V11 11

dP  = 5 ( - )F F
dt

         (3.120) 

V11 11 5 7pp
 = (V11) -fF k P P         (3.121) 

13 13 13V vru
F k V P            (3.122) 

The nonlinear valve flow characteristics are expressed by: 

2 ln[0.15(1 )]( ) x

pp
f x e   for 0.5x           (3.123) 

( ) 0.3
pp
f x x       for 0.5x           (3.124) 

The geometric and functional parameters of the model were adjusted to provide simulation outputs 

in the range of the real plant data, shown in Table 3.1. The Matlab function with the implemented 

model equations and use constants is in Appendix. 

Table 3.1 provides data for the global model of a complex reactor-regenerator-fractionator process 

plant. 

Table 3.1: Construction and operation data. 

Experimental data Value 
Unit of 

measure 

Riser diameter 1.2 m
 

Riser height 39.4 m 

Striper diameter 2.9 m 

Striper height 5.6 m 

Elevation of the feed inlet in the riser 2.4 M 

Cross sectional area of regenerated catalyst pipe 0.6 m
2 

Cross sectional area of spent catalyst pipe 0.7 m
2
 

Length of regenerated catalyst pipe 7.3 m 

Length of spent catalyst pipe 5.4 m 
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Experimental data Value Unit of measure 

Cross sectional area of regenerated catalyst, slide valve at 

completely open position 
0.58 m

2
 

Cross sectional area of spent catalyst, slide valve at 

completely open position 
0.7 m

2
 

Regenerator diameter 8.5 m 

Regenerator height 13.7 m 

Height of cyclone inlet 15.2 m 

Height of O2 measurement point 17 m 

Elevation of the pipe for regenerated catalyst, outlet from 

regenerator 
12.2 m 

Elevation of the pipe for spent catalyst, inlet in the 

regenerator 
18.5 m 

Temperature of the fresh feed entering the regenerator 143 C 

Atmospheric pressure 1 bar 

Location of the feed stage tray 8 - 

Spent catalyst valve position 55 % 

Regenerated catalyst valve position 65 % 

Fresh feed flow rate 170 m
3
/h 

Slurry recycle flow rate 9.6 m
3
/h 

Furnace fuel flow rate 34 scf/s 

Gasoil density 0.8915 t/m
3
 

Slurry density 0.968 t/m
3
 

Gasoline density 0.7372 t/m
3
 

Diesel density 0.862.6 t/m
3
 

3.2 Conclusions 

This chapter proposes a complex nonlinear dynamic model for the FCCU. The model describes the 

7 main sections of the entire FCCU; including (1) the feed and preheating system, (2) reactor, (3) 

regenerator, (4) air blower, (5) wet gas compressor, (6) catalyst circulation lines and (7) main 

fractionators. 

The novelty of the model consists in that besides the complex dynamics of the reactor-regenerator 

system, it includes the dynamic model of the fractionator, as well as a new five lump kinetic model 

for the riser which incorporates the temperature effect an reaction kinetics; hence, it is able to 
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predict the final production rate of the main products (gasoline and diesel) and can be used to 

analyze the effect of changing process conditions on the product distribution.  

The FCCU model has been developed on the basis which incorporates the temperature effect on 

reactor kinetics reference construction and operation data from an industrial unit. The resulting 

global model of the FCCU is described by a complex system of partial-differential-equations, 

which was solved by discretising the kinetic models in the riser and regenerator on a fixed grid 

along the height of the units, using finite differences. The resulting model is a high order DAE, with 

942 ODEs (142 from material and energy balances and 800 resulting from the discretisation of the 

kinetic models). 
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CHAPTER 4                                             

DEVELOPMENT OF A DYNAMIC PROCESS 

SIMULATOR FOR THE FCCU 

In this system the main operation and considerations for the FCCU are analysed. In the 

development of the process simulation these aspect must be taken into consideration to provide a 

tool that enables operators to analyse realistic process conditions. The following operational and 

control aspects will determine the key input and output parameters used in the simulations. 

4.1 Considerations of process operation 

The primary purpose of FCCU is to convert the heavy oils such as vacuum gasoil, coker gasoil, etc 

into lighter and more valuable products such as LPG, gasoline, distillate and diesel. This particular 

unit is designed to maximize the production of LPG and gasoline while the distillate product stream 

is used either in the diesel pool or the fuel oil pool. The aim of operation of the unit depends on the 

specific requirements of each of these products. The control of operation of the unit depends on a 

few selected parameters, which are closely monitored to achieve the optimum mix of products that 

satisfy all the requirements. They also depend on the various unit constraints such as equipment 

limitations, etc. The FCCU is a complex multivariate system with strong interactions between the 

parameters. This interaction is a natural consequence of heat balance. This heat balance refers to a 

steady state condition of the process where energy, or heat, requirements are met by the combustion 

of coke. This heat gets transferred from the regenerator to the reactor by hot circulated catalyst. For 

e.g., if reactor temperature is increased, at constant feed preheat temperature, then there will be a 

corresponding increase in the catalyst circulation rate and in the regenerator temperature, which 

will have its own effect on the yields and product quality. 

The most important and common term that describes the operation of FCCU is conversion. This 

gives a broad picture of the performance of the unit. It is defined as the weight percent of the 

feedstock that has been converted to gasoline or lighter than gasoline products. It also includes the 

coke formation during the cracking reactions. 

Conversion (%) = [Feed rate (vol.) – (Distillate + LCO + HCO) /Feed rate (vol.)] 100 
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The conversion is also represented as apparent conversion and true conversion based on seasonal 

demands of gasoline. Normally, the end point of gasoline distillation range would be between 380 

o
F and 450 

o
F, i.e. 193 

o
C to 232 

o
C. Any undercutting of gasoline would result in that portion of 

gasoline dropping down to the LCO pool.  

Hence apparent conversion is the conversion calculated before allowing for the adjustment and true 

conversion is the one calculated on actual yields. It should, however, be noted that the fractionator 

is operated in a fixed temperature profile and no cut point adjustments are done in the normal 

operation of the unit. 

Another term used for comparison of the different operating variables is the kinetic conversion. 

This is defined as conversion divided by 100 minus conversion. 

Kinetic conversion = Conversion / (100-conversion)  

The second order values of kinetic conversion are useful in generating straight-line relationships 

between the variables. This term is used generally for the process monitoring and catalyst 

evaluation of the unit and is not widely used by the operating personnel in the routine operation of 

the unit. 

For purpose of discussion, the unit can be broadly divided into the reactor-regenerator and the rest, 

i.e. fractionator, gas concentration and power recovery sections. Most of the major parameters in 

these sections are adjusted independent of each other. Normally the reactor section is operated and 

stabilized in a fixed pattern before adjusting the rest of the unit. Any change in the reactor-

regenerator operation parameters will subsequently need the fractionation and other sections to be 

re-stabilized.  

4.1.1 Reactor-regenerator section 

The major operating parameters that are adjusted in the reactor-regenerator section include the 

charge rate, combined feed temperature, combustion air rate, pressure balance, reactor temperature, 

recycle ratio, catalyst inventory, fresh catalyst addition rate, dispersion steam and stripping steam 

rates, etc. The parameters, which cannot be adjusted directly, include catalyst activity, catalyst 

circulation rates, feed quality, conversion, regenerator temperature, etc. 

Feed charge rate 

The feed charge rate to the unit is normally decided on a long-term basis and is not subjected to 

frequent changes during routine operation. However, the unit operates best when the feed rate is 
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close to design. The flexibility of feed rate is usually dependent on constraints of equipments and 

its capacity limitations rather than the process itself. For effective unit operation, change of feed 

rate involves restoration of the original conversion levels by adjusting the severity of operation. 

This is achieved by maintaining the reactor temperature at the required level. The various means of 

maintaining the required reactor temperature is discussed in detail later. 

Combined feed temperature 

Any FCCU in operation will automatically adjust its parameters to maintain its heat balance. One of 

the major inputs of heat to the reactor is the feed. The temperature of the combined feed, i.e. fresh 

feed and the recycle together, is directly related to the heat input to the reactor. 

Any change in the feed temperature will correspondingly lead to changes in the catalyst circulation 

rate and thereby conversion levels if the reactor temperature is to be maintained constant. If, for 

example, the feed temperature is increased slightly, then in order to maintain the same reactor 

temperature, less heat is required from the catalyst. So the catalyst circulation rate gets reduced. As 

a result of that, conversion level decrease as there is less contact between feed and catalyst. Also 

coke generation is reduced when catalyst circulation rate reduces. Regenerator temperature tends to 

rise slightly as catalyst circulation rate reduces. If there is any limitation in the catalyst circulation 

rates and in maintaining the required reactor temperature, then it is advisable to increase the feed 

temperature. If, on the other hand, there is no limitation in catalyst circulation, then it is advisable 

to reduce feed temperature and maintain same reactor temperature to increase conversion level. 

When conversion is increased in this manner, the gas yield is also reduced. 

The effects of an increase in the feed temperature are: 

 Reduction in catalyst to oil ratio 

 Reduction in coke yield 

 Reduction in conversion 

 Increase in regenerator temperature 

Combustion air rate 

This is the most important parameter in the regenerator and can vastly affect the operation of the 

unit. The main purpose of the regenerator is to burn off all the coke that has been formed during the 

course of the cracking reactions. The heat that is produced during the burning of coke in the 

regenerator is used for providing the required temperature in the reactor for normal operation of the 
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unit. It is also essential to ensure that the entire coke is burnt off or else the activity of the catalyst 

gets reduced and also maintaining the reactor temperatures become difficult. The air rate to the 

regenerator is set to maintain a slight amount of excess oxygen in the regenerator flue gases. About 

1-2% excess oxygen is maintained so as to ensure that the entire coke in the spent catalyst is burnt 

off in the regenerator.  

Reactor temperature 

The reactor temperature is the most important parameter in the reactor structure during the normal 

operation of the unit. The conversion level of the unit is dependent on the reactor temperature. 

Increase in reactor temperature will result in an increase in the conversion. Higher reactor 

temperature will also result in a slightly higher octane number of gasoline produced. This controller 

acts on the regenerated catalyst slide valve, thereby adjusting the catalyst circulation rate to meet 

the required reactor temperature. Generally, reactor temperature can also be adjusted by varying the 

other parameters of heat balance in the system like the feed preheat, the coke make, recycle ratio, 

airflow, etc. However, the best method of adjusting the reactor temperature would depend on 

individual scenario taking into consideration the flexibility available in the feed preheat circuit, 

main air blower capacity, catalyst regeneration, slide valve opening, etc.  

The effects of an increase in the reactor temperature are: 

 Increase in catalyst to oil ratio 

 Increase in regenerator temperature 

 Increase in conversion 

 Increase or decrease in gasoline yield depending on over-cracking point 

 Increase in C4– yield and olefins 

 Increase in gasoline octane and bromine number 

 Increase in cycle oil aromaticity 

 Slight increase in coke yield 

CO combustion 

During the course of the cracking reactions in the riser, coke is formed as a by product, which gets 

deposited on the catalyst. This coke is burnt off in the regenerator to evolve the heat required to 

carry out the reactions in the riser. It is also required to retain its activity, as the coke deposition on 

the catalyst will prevent the oil particles from coming in contact with the active sites of the catalyst. 

Coke comprises of carbon and hydrogen in varying proportions. In the regenerator, the entire 
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carbon is converted to carbon dioxide, either directly from the carbon state or in steps where the 

carbon is first converted to carbon monoxide and then carbon monoxide to carbon dioxide. The 

hydrogen in the coke gets converted to water. 

The reactions that take place in the regenerator can be summarized as given below: 

2 2C  O  CO  heat            (4.1) 

2C  ½ O     CO  heat            (4.2) 

2 2CO  ½ O     CO  heat            (4.3) 

2 2 2H  ½ O    H O  heat            (4.4) 

Maximum heat is generated from the combustion of carbon monoxide to carbon dioxide. Flow of 

air to the regenerator is increased to such an extent that complete oxidation to carbon dioxide is 

ensured. This also confirms that the catalyst has been regenerated to the maximum possible extent 

thus regaining its activity. CO combustion to CO2 is also promoted by adding additional agents 

such as CO promoters in the fresh catalyst being added into the system. The process of regeneration 

of the spent catalyst in the regenerator requires great attention because of the after effects of either 

excess air or less air than what is required. They are called afterburning and behind in burning, 

which is discussed below.  

Behind in burning / afterburning 

It is very important to burn off all the coke that is produced during the cracking reactions. The flow 

of air to the regenerator has to be enough so as to ensure that all the coke has been burnt off. This 

can be done by maintaining a slight excess amount of oxygen in the flue gas exiting out of the top 

of the regenerator. The amount of coke burnt should be equal to the amount of coke generated 

during the reactions. If the coke burnt is less than the coke being deposited on the catalyst, then 

there will be net accumulation of coke. This will result in loss of activity of the catalyst. The 

regenerator temperature will also start coming down slightly. The difference in temperature 

between the dense phase of the catalyst and the dilute phase of the catalyst or the flue gas 

temperature will come down as there is no more air available for further combustion of coke. The 

sample of catalyst, if checked periodically, will tend to get darker and darker. The material balance 

of the unit gets affected as a result of the lower activity of the catalyst with conversion levels 

coming down. This phenomenon is called behind in burning. Care should be taken not to let the 
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unit go behind in burning. In case the unit does go behind in burning, then the flow of air should be 

increased in very slow steps keeping constant watch over the regenerator temperatures. There will 

be a sharp rise in the temperatures leading to a corresponding decrease in the catalyst circulation 

rates. This will lead to further temperature rise in the regenerator, which in turn will have to be 

compensated by decreasing the combined feed temperature to increase catalyst circulation rates. 

Once all the accumulated coke in the catalyst has been confirmed as burnt off by physically 

checking the sample of catalyst and verifying with the expected improvement in conversion, then 

the unit can be brought back to the normal state. The catalyst absorbs about 70% of the heat that is 

generated in the regenerator during the course of burning of coke. Hence it is essential that most of 

the coke burning take place in the combustor zone so that the catalyst present in the dense phase 

can absorb the heat that is generated. In case of excessive air to the regenerator, the velocity of 

catalyst will increase resulting in transfer of the burning location from the dense phase to the dilute 

phase of catalyst. When coke burning takes place in the dilute phase then the heat that is liberated 

cannot be fully absorbed as there will be very less catalyst around that location. As a result the heat 

liberated will increase the temperatures of the cyclones and the flue gas lines leading to possible 

damage to the equipment.  

Regenerator temperatures 

Regenerator temperature is as such not a directly controlled parameter. It however gives a fair idea 

of the operation of the unit. The change in regenerator temperature indicates the change in the 

process of reaction in the riser. An increase in the regenerator temperature indicates either a heavier 

feedstock, i.e. more coke formation, lower catalyst circulation rate, higher operating pressures, 

higher combined feed temperatures, etc. The difference in temperatures within the dense phase and 

dilute phase of catalyst in the regenerator also gives an idea of the extent of behind in burning or 

afterburning.  

Regenerator catalyst re-circulation 

The high efficiency regenerator operation involves complete oxidation of carbon and carbon 

monoxide to carbon dioxide within the dense phase of catalyst. The regenerator can be divided into 

two sections; the lower regenerator and the upper regenerator connected by a riser through which 

the catalyst is transported up from the lower to the upper zone. There is also another line, which 

sends the catalyst from the upper regenerator section to the lower zone. The re-circulation slide 

valve is located on this line. This line is utilized to send back some of the hot catalyst from the 

upper zone to the lower zone to maintain the required minimum temperature so that complete 
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combustion is ensured. This is essential because if the combustion is incomplete, then the balance 

coke in the catalyst will start burning in the dilute phase of the catalyst in the upper zone and in the 

flue gas lines. The heat that will be liberated during that burning will not be absorbed fully as the 

density of catalyst in that area is very low. This will result in the cyclone and other hardware 

getting exposed to very high temperatures causing mechanical damage. This phenomenon, as 

explained earlier, is called afterburning. In such cases, the re-circulation slide valve is opened so 

that the hot catalyst flows back to the lower section of the regenerator, thereby increasing 

temperature, which will result in more combustion taking place and the entire C and CO gets 

converted to CO2. 

Catalyst circulation rate 

This is also not a directly controlled parameter. It depends on the overall operation of the reactor 

and regeneration. The rate of catalyst circulation is dependent on the feed rate, reactor temperature, 

combined feed temperature and the regenerator temperature. The catalyst circulation rate is the 

main driver for maintaining the reactor temperature. It is also dependant on the pressure 

differentials across the slide valves. The opening of the regenerated catalyst slide valve gives a fair 

picture of the relative performance of the unit. This should be in a “floating” range and not too 

close or too wide open. 

Catalyst to oil ratio (CTO ratio) 

This is similar to catalyst circulation rate in that it is not a directly controlled parameter. This is 

defined as the tones per hour of catalyst circulated divided by the tones per hour of feed charge rate. 

This parameter is dependent on the catalyst circulation rate and is affected by the changes in the 

process parameters, which affect the circulation rate. An increase in the catalyst to oil ratio occurs 

as a result of an increase in the reactor temperature, a decrease in the regenerator temperature or a 

reduction in the combined feed temperature. If, for the same reactor temperature, the CTO ratio is 

increased, it will lead to an increase in conversion resulting in higher gas and LPG yield, more coke 

formation and a slight decrease in regenerator temperature. However, the rate of increase in 

conversion with increasing CTO ratio becomes less when high levels of conversion are reached. 

The relationship of kinetic conversion with CTO ratio is linear and keeps on increasing without 

change. 

 Feed quality 

The feed quality itself is not a parameter that can be controlled or changed. It keeps on changing 

over a period of time due to the varying proportions and the quality of the individual components 
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like vacuum gas oil, coker gas oil, unconverted bottoms from hydrocracker unit, etc. Hence the feed 

sample is tested for its properties and then the appropriate process conditions are maintained to get 

the desired results from the unit. 

Effect of reactor-regenerator variables on products 

Dry gas 

At a constant feed temperature and reactor temperature, the reactor energy requirement will remain 

the same. Some operating variables can be changed without altering the energy requirements of the 

reactor like regenerator temperature and feed preheat temperature. This is because the energy input 

is a combination of catalyst circulation rate and temperature. To maintain a constant reactor 

temperature, if the feed temperature or regenerator temperature is raised, then the catalyst 

circulation rate is reduced. Although the reactor temperature doesn‟t go up, the riser-mix 

temperature goes up because lower quantity of hotter catalyst mixing with feed. It has been 

accepted that dry gas yield increases with higher reactor temperatures. It has also been noted that 

the dry gas yield varies even at constant reactor temperatures. Whenever the riser-mix temperature 

increases, it has been seen that dry gas yield increases. Hence increase in regenerator temperature or 

feed preheat temperature also increases the dry gas yield. It goes to show that the dry gas yield is 

not a function of conversion but is a thermally driven process. Decreasing the reactor temperature, 

regenerator temperature or the feed temperature can reduce dry gas generation but its effect on the 

other sections and products should also be considered. 

LPG 

Normally, the yield of C3s and C4s are dependant only on conversion levels. That is to say that the 

yield of LPG will increase as conversion increases no matter how it is achieved, increasing reactor 

temperature or catalyst to oil ratio, etc. The ratio of isobutane to butylenes yields drops sharply as 

the reactor temperature is increased. This is because at higher reactor temperatures, higher olefins 

will be generated with little effect on the C4 yield. This is of relevance to estimate the amount of 

isobutane in feed to the alkylation unit. 

Gasoline 

At constant conversion levels, increasing the reactor temperature decreases gasoline yield. When 

the reactor temperature is increased, to hold constant conversion the C/O ratio also has to be 

adjusted. Hence there will be more dry gas yield and coke formation. So the liquid yield, including 

gasoline, will come down. Generally it is accepted that a 10% increase in conversion or a 10oC rise 
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in reactor temperature will increase the RON of gasoline by 1.0 number from the base octane 

number. As the temperatures go higher, the rate of increase in octane goes down. Since gasoline 

yield and gasoline octane are both dependant on reactor temperature in different ways, an optimum 

operating range has to be decided to maximize octane-barrels. The increase in octane due to higher 

reactor temperature is due to the increase in the olefin content of gasoline. The olefin content of 

gasoline is reflected in the bromine number. Lowering conversion level at the same reactor 

temperature can reduce olefins in gasoline. Gasoline octane sensitivity, defined as the difference 

between RONC and MONC is a function of reactor temperature only and is not affected by any 

change in the conversion level. 

Cycle oils 

Like LPG, the yield of cycle oils is also a function of conversion level only. 

4.2 Implementations and simulation procedure 

The FCC model comprises algebraic equations coupled with ordinary differential equations and 

differential algebraic equations of high order.  

The set of algebraic and differential equations describing the 7 main parts of the FCCU were 

implemented in simulators using the Matlab differential algebraic equation solvers. Matlab ODE 

functions are used to solve the spatial ordinary differential equations for the riser, yielding the 

output variables of gas temperature at the riser exit, and the distribution of product in the stream. 

The spatial differential equations for the reactor riser and regenerator are solved using an Eulis 

discretization method in space, and then applying adoptive predictions ODE integrators 

(implemented in Matlab ODE solvers) to the discretized equations for the time-domain integration. 

For the dynamic model, the solution in that the first step involves calculating the variables at the 

steady state. Once this is accomplished, these values are used to define the open loop initial 

conditions. The C++ programming language was used to write the code for the plant model 

simulator. The Matlab MEX compiler was used to compile the C-function used in the simulation. 

Although, source files can be compiled and linked within a Matlab executable shared library by 

MEX, the model was run on MATLAB SIMULINK to ensure solution efficiency. The dynamic 

process simulator achieves 3 key aims: 

1. Exploring the dynamic behaviour of the process 

2. Development and evaluation of facilitates the control schemes based on the model for the 

whole process unit. 
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3. Serves as the predictive model in the nonlinear model predictive schemes developed in this 

study. 

4.2.1 Open loop simulations for the investigations of the dynamic behaviour of 

the FCCU 

The major manipulated variables (MV) in this FCC unit are: fresh feed flow, recycled slurry flow, 

spent catalyst valve, regenerated catalyst valve, furnace fuel flow, air temperature, coke formation 

factor and air flow rate. A set of process outputs were investigated in this section, as shown in 

Table (4.1).These inputs and outputs correspond to the most frequently used manipulated and 

controlled outputs, corresponding to most industrial FCC units (Arbel et al., 1996; Grosdidier et al., 

1993). Other manipulated variables and output variables can be added to the simulator according to 

specific industrial practice by implementing it in a SIMULINK block diagram, as shown in Figure 

(4.1).The step change analysis is shown in this chapter in Figures (4.3 to 4.8). These figures show 

the widely different dynamic characteristics of the variables, including inverse response and other 

important non-linearities with different disturbance scenarios (Table 4.1). All the disturbances 

reflect possible upsets that affect the normal operation of the unit, and have been selected from a 

practical point of view (Alsabei et al., 2008).  

Table 4.1: Process input and base case operating conditions with disturbances. 

Type variable Description Base case 

operating 

conditions 

Disturbance  % 

Step change 

value 

+                -  

 

 

 

 

 

Manipulated 

variable 

F3 Flow of fresh feed to reactor riser 

(lb/s) 

120 132 108 ±10 

Fair_c Air flow rate into regenerator (lb/s) 69.92 73.41 66.42 ±5 

76.91 62.92 ±10 

svsc Spent catalysis valve (%) 0.3   - 

svrgc Regenerator catalyst valve (%) 0.3   - 

F5 Flow of fuel to furnace (lb/s) 32   - 

psif Effective coke factor for gas-oil 

feed  

1 1.05 0.95 ±5 

1.1 0.9 ±10 

F4 Flow of slurry to reactor riser (lb/s) 3 3.6 2.4 ±20 

tair  Temperature of air entering 

regenerator (F) 

416   - 
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Figure 4.1: SIMULINK block diagram used for the open-loop simulation. 

Sensitivity analysis for composition of the products 

The objective of the simulations is to investigate whether small errors in the parameters can have 

consequences for products composition. In the riser section (described by the five-lump kinetic 

model as described in Chapter 3), a sensitivity analysis for composition of the products at different 

catalyst-raw material-ratios, i.e. the ratio of catalyst circulated to fresh feed (CTO), was performed. 

The CTO is not an independent variable, and increases with an increase in reactor temperature; 

moreover, it decreases with higher regenerator or combined feed temperatures. Therefore a high 

sensitivity of the product composition to variations in the CTO indicates that the reactor and 

regenerate temperatures must be tightly controlled for smooth operation of the FCCU. 

Figures (4.2) illustrate that CTO has an important influence on the composition of coke, gases and 

diesel resulting in the riser. It also has a small influence on the gasoline yield at the outlet from the 

riser. The increase of the CTO leads to an increased cracking rate. The coke amount is formed very 

fast during the first 0.4 seconds. During the first 0.4 seconds, a rapid decrease in the rate of 

conversion of raw material is found due to coke formation. After 4 seconds, no net diesel is formed; 

it only disappears. Gas, formed from both gas oil and diesel, rapidly forms within 0.4 seconds and 

then starts to saturate. During the first 4 seconds, the gas is predominantly formed from gasoil, but 
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afterwards is taken over by diesel. This indicates that diesel is a stable fraction, which displays 

hardly any cracking activities. 

 

 

 

Figure 4.2: Distribution of products and raw material, and raw material conversions in the riser at 

different CTOs. 

The fact that diesel is a fairly inactive phase is because the gasoil molecules are more reactive a 

result of longer side-chains attached to the polycyclic aromatic cores; diesel is less reactive due the 
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short side-chains, which are attached to these cores. The raw-material conversion at different CTOs 

is shown in Figure 4.2. The CTO has a small influence on the raw-material conversion; an increase 

in CTO leads to approximately the same value of conversion (~ 80%). 

Analysis of the dynamic response of the FCCU to various process disturbances 

Dynamic simulation of the FCC process was performed according to the simulation design shown 

in Table (4.1). Gas oil feed rate, air flow rate, and stem positions of the slide valves at both catalyst 

transport lines were chosen as simulation variables to whose changes the dynamic responses are 

demonstrated. Each simulation run started from the steady state corresponding to the base case 

operating conditions, and the subsequent transient response was obtained as each simulation 

variable went through a series of step changes shown in Table (4.1). 

Change in fresh feed rate (F3) 

Disturbance could appear due to the raw-material rate changes. Figure (4.3) shows that a 10% 

increase in the fresh feed rate determines the decrease in the regenerator temperature, and also in 

the reactor, after a peak.  

Figure (4.3) shows the dynamic responses to the changes in fresh feed rate. After the fresh feed rate 

is increased by10% at time equal to 1.5 h, the reactor temperature drops because of an increase in 

heat consumption to vaporise the additional amount of fresh feed. The lowered riser temperature 

(Tr) results in a considerable decrease in feed conversion, while the increased feed rate leads to a 

sharp rise in coke on spent catalyst (Csc), and subsequently on regenerated catalyst (Crgc). The 

increased feed rate also raises the density of hydrocarbon gases in the reactor, and so there is a 

jump in gas pressure, as well as in the pressure at the reactor (not shown). This jump will trigger a 

jump in spent catalyst flow rate, but has an opposite effect on regenerated catalyst flow rate. 

Therefore, the catalyst holdup in the reactor steadily decreases, until a new steady state is reached, 

where the two catalyst circulation rates balance each other. Regenerator temperatures (Treg) start to 

decrease due to increased spent catalyst inflow from the reactor. Since the fixed air flow does not 

supply enough oxygen to burn of the increased coke in the dense bed nor to sustain after-burning 

reactions in the freeboard, CO concentration (cCOsg) in the stack gas steadily rises. The oxygen 

deficiency in the regenerator also leads to no further rises in the temperature at the new steady state. 

A 10% step decrease in the fresh feed rate at 1.5 h causes the system to move in the opposite 

direction to the case of the 10% step increase, but the detailed responses show quite different 

aspects due to process nonlinearity. The feed conversion increases due to increased catalyst-to-oil 

ratio in the riser as well as better regeneration of catalyst in the regenerator. Contrary to the oxygen 
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deficiency encountered before, oxygen surplus prevails throughout the regenerator, because of the 

decreased spent catalyst inflow from the reactor. This causes a rise in the regenerator temperature 

due to after-burning of CO, and a consequent drop in the CO concentration (cCOsg) of stack gas. It 

was found in the simulations described above that the step changes in fresh feed rate immediately 

alter the reactor pressure, which subsequently triggers a series of changes in the process dynamics. 

Figure 4.3: Simulation of FCCU dynamic response in the presence of step change in flow fresh feed 

disturbance (F3 = ±10% increase at t = 1.5 h).  

Change in air flow rate (Fair_c) 
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to the regenerator. A 5% step increase in air flow causes a sharp increase in the regenerator pressure 

(P6), as well as in the regenerated catalyst flow rate (frgc) to the riser bottom. On the other hand, the 

spent catalyst flow rate (not shown) has inverse response behaviour of initial decrease followed by 

ultimate increase. This behaviour can be explained by a steady increase in the reactor pressure due 

to increasing static pressure exerted by the rising catalyst holdup in the reactor. The increased air 

flow rate also accelerates coke burning, and thus raises temperature in every part of the unit and 

reduces the CO concentration (cCOsg) in the stack gas. It also causes the coke concentrations on 

both spent and regenerated catalyst to steadily drop to their respective steady state values. The 

conversion of feed is increased by the elevated riser temperature and cleaner regenerated catalyst. 

Figure 4.4: Simulation of FCCU dynamic response in the presence of step change in air flow rate 

disturbance (Fair_c = ± 5% decrease at t = 1.5 h).  
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A 5% step decrease in the air flow rate at time equal to 1.5 h brings about the state of oxygen 

deficiency in the regenerator. A large amount of coke cannot be burnt, resulting in gradual 

accumulation on catalyst surfaces in both vessels over a long time. Such a long response time is 

characteristics of the composition dynamics in the regenerator that has large mass and thermal 

holdups and strong interactions with the reactor. CO concentration (cCOsg) also shows a 

considerable increase, because of poor afterburning reactions in the regenerator. This oxygen 

deficiency lowers the temperatures of both vessels as well as the conversions, but gasoline yield is 

significantly increased. 

 

Figure 4.5: Simulation of FCCU dynamic response in the presence of step change in air flow rate 

disturbance (Fair_c = ± 10% decrease at t = 1.5 h).  
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Figure (4.5) shows the dynamic responses to the changes in the air flow rate to the regenerator. A 

10% step increase in air flow causes an effect on air blower efficiency, because of its limitations. 

This can be clearly noted as there are no significant changes in the variables; the conversion of feed 

is also affected. 

A 10% step decrease in the air flow rate at time equal to 1.5 h resulted in similar behaviour as seen 

for 5% step degrees as shown in figure (4.4). 

Change in coke formation factor (Ψf) 

Heat is required to make the cracking reaction work and achieve satisfactory conversion. The 

quality of the FCC feedstock impacts the concentration of coke on the catalyst entering the 

regenerator. Coke formation is a necessary by product of the FCC operation, the heat released from 

burning coke in the regenerator supplies the heat for the reaction.  

Figure ( 4.6) shows the dynamic responses to the (5%) increase in Ψf, fresh feed coke formation 

factor, at time equal to 1.5 h. 

This simulation run with a 5% increase represents a realistic unmeasured disturbance to the feed 

composition. The increase in Ψf   affects the cracking reactions, and coke is deposited on the 

catalyst, reducing catalyst activity. This led to a rapid increase in coke deposition in the riser and 

concentration of coke on spent catalyst (Csc). This additional coke is transported to the regenerator 

on the spent catalyst resulting in higher combustion rates in the regenerator, and thus an increase in 

regenerator temperature (Treg). However, the initial increase in combustion rates is insufficient to 

burn off all additional coke arriving from the reactor, and so the concentration of carbon on 

regenerated catalyst (Crgc) increases. Consumption of oxygen increases, while total air flow rate to 

the regenerator is held constant by the total air controller, so excess oxygen concentration in the 

stack gas (cO2,sg) decreases and stack carbon monoxide concentration (cCO,sg) peaks and begins to 

decline. As regenerator temperature increases, combustion rates increase and more of the coke 

transported from the reactor is consumed. The concentration of carbon on regenerated catalyst 

peaks and begins to decline. It eventually reaches steady state at a level only slightly higher than the 

initial concentration. Taking into account the fact that the heat generated by CO formation is about 

three times less than CO2 heat formation, the global effect is to reduce the net heat contribution in 

the regenerator with the consequence that the temperature decreases in the last part of the 

simulation. 

During regeneration, the coke level on the catalyst is typically reduced (Crgc). The carbon also 

decreases during the process (Wc). Moreover, the catalyst inventory stand pipe entering the 
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regenerator (Wsp) increases, and the regenerator pressure (P6) is also increased. The pressure has 

little effect on conversion, so it is not adjusted to change product yields, but is important for 

catalyst circulation phenomena. 

From the regenerator, the catalyst flows down through a transfer line commonly referred to as a 

standpipe, where (frgc) is the catalyst circulation rate. The amount of carbon that remains on the 

regenerated catalyst is an operating variable, and more carbon on the regenerated catalyst results in 

less conversion. 

Increasingly hotter regenerated catalyst is transported back to the riser, affecting its energy balance. 

As riser temperature (Tr) increases, wet gas production increases due to higher cracking rates. 

 

Figure 4.6: Simulation of FCCU dynamic response in the presence of step change in fresh feed coke 

formation factor disturbance (Ψf = ±5% decrease at t = 1.5 h).  
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With this magnitude of disturbance, the carbon on the regenerated catalyst can be reduced by 

increasing the regenerator temperature. It is important, however, to keep a constant percentage of 

carbon on the regenerated catalyst, because carbon yields increase in the reactor when the 

regeneration is incomplete. If this additional carbon is not burned off in the regenerator, the carbon 

yields will again increase when the catalyst passes through the reactor. This can lead to carbon 

runaway, i.e. more carbon is produced than burned off (Sadeghbeigi, 2000; Bollas et al. 2007). 

The composition of the products and raw material along the riser is also influenced in both either a 

positive or negative way by this disturbance; the increase in the coking rate leads to an increase in 

the flow of the regenerated catalyst, which then increases the catalyst-to-oil ratio, is not an 

independent variable. It increases with an increase in reactor temperature and decreases with higher 

regenerator temperature; this then leads to a decrease in gasoline and coke yield, but an increase in 

LCO and LPG yield. The disturbance would be considered positive, if the objective is to have more 

LCO or LPG than gasoline, and negative if gasoline is the desired product. 

A 5% step decrease in coke formation factor, Ψf, at 1.5 h causes the system to move in the opposite 

direction to the case of the 5% step increase, but the detailed responses show quite different aspects 

due to process non-linearity with inverse responses. 

The dynamic responses to the disturbance test of (10%) increase in Ψf (fresh feed coke formation 

factor) at time equal to 1.5 h, is shown in Figures ( 4.7). These figures show the widely different 

dynamic characteristic of the variables, including inverse response and other important non-

linearities.  

However, it can be noted in the scenario of (10%) decrease in coke formation factor, Ψf, which the 

gasoline products increase hugely. This determines two facts, in that the disturbance could be a 

positive sign, and that feed quality affects the gasoline production.  
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Figure 4.7: Simulation of FCCU dynamic response in the presence of step change in fresh feed coke 

formationfactordisturbance(Ψf  =  ±10% decrease at t = 1.5 h).  
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expected to have a greater effect on system response than an equal size change in gas oil feed.  
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As demonstrated in this run, small changes in slurry flow rate produce significant temperature 

responses, and therefore slurry flow rate is a useful manipulated variable. The reduction in slurry 

flow rate causes an immediate and rapid drop in the concentration of coke on spent catalyst (Csc). 

With lower Csc, less coke arrives at the regenerator on spent catalyst, reducing the rate of 

combustion reactions occurring in the bed. Regenerator temperature (Treg) drops slightly, excess 

oxygen (cO2,sg) rises and concentration of carbon monoxide in the stack gas (cCO,sg) falls. The flow 

rate of regenerated catalyst (Frgc) falls a small amount, for reasons described previously; this leads 

to increases of carbon inventory in the regenerator (Wc) and inventory of catalyst in regenerator 

stand pipes (Wsp). With falling regenerator bed temperature and flow rate of regenerated catalyst, 

reactor riser temperature (Tr) also increases after initial falls caused by the sudden drop in slurry 

flow rate.  

 
Figure 4.8: Simulation of FCCU dynamic response in the presence of step change in slurry flow recycle 

rate disturbance (F4 = ± 20% decrease at t = 1.5 h).  
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Disturbance in slurry recycle flow rate leads to a decrease in the flow of the regenerated catalyst, 

which decreases the catalyst-to-oil ratio, then leading to a small increase in LCO yield, but 

decreases gasoline or LPG yield. 

In figure (4.8), it can clearly be observed that a 20% decrease in slurry recycle flow rate, F4, has an 

opposite effect on all the other variables. In addition, the same disturbance caused nonlinear 

behaviour and inverse response for most of the variables. 

4.3 Conclusions 

Cracking reactions are endothermic, and therefore, to achieve higher productivity, the reactor 

should be operated at as high a temperature as possible. Assuring the regeneration of the catalyst 

(the burning of the deposited coke), the regenerator, as with the reactor, must be operated as close 

as possible to its metallurgical limit in terms of temperature. Restrictions concerning the 

concentration of carbon monoxide in the stack gas are very important from an environmental point 

of view. A dynamic simulator was developed, which implemented the detailed dynamic model for 

an FCC process and the model solver (these were presented in chapter 3). The correlations were 

developed for the thermodynamic properties and transport parameters contained in the model either 

by literature survey, or by nonlinear regression of literature data. The steady-state behaviour was 

investigated and the results showed good match with those in the literature, and real plant data. 

 All the investigated disturbances showed considerable influence on the products composition. 

Taking into account the very high volume production of an industrial FCCU, these disturbances can 

have a significant economic impact. The fresh feed coke formation factor is one the most important 

disturbances analysed. It shows significant effect on the process variables. Moreover, the objective 

regarding the control of the unit has to consider not only to improve productivity by increasing the 

reaction temperature, but also to assure that the operation of the unit is environmentally safe, by 

keeping the concentration of CO in the stack gas below a certain limit.  

The dynamic simulations show the nonlinear and multivariable behaviour of the FCC process. The 

simulation results also show that the FCC model is sufficiently complex to capture the major 

dynamic effects that occur in an actual unit. The process outputs exhibited a series of complex 

dynamic behaviours, such as inverse response behaviour, variations different time scales, impulse 

response, indicating difficulties in controller designs. 

The model offers the possibility of investigating the way that advanced control strategies can be 

implemented, while also ensuring that the operation of the unit is environmentally safe.  
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CHAPTER 5                                                       

ADVANCED PID CONTROL OF THE FCCU 

PROCESS 

5.1 Introduction 

Over the course of six decades, significant developments have been achieved in catalytic cracking, 

which is a key petroleum refining process. As a result, the fluid catalytic cracking unit (FCCU) has 

been the test bed for many new control schemes, and both the industry and academics have worked 

steadily to develop and implement efficient algorithms for this purpose. The FCC process presents 

many challenges due to its (i) complex and poorly understood hydrodynamics, (ii) complicated 

reaction kinetics for cracking and coke burning, (iii) significant reactor/regenerator interactions, and 

(iv) multiple constraints in operation (Elamurugan and Kumar, 2010). Moreover, the process is 

characterised by behaviour in the steady and dynamic states that is highly nonlinear, which results 

in many potential states and input levels, etc. Prior to the introduction of zeolite catalysts, 

stabilising and maintaining the process was the key control objective. However, with the use of 

zeolite catalysts attention focused on raising production output, and coping with heavy feedstocks. 

As a desirable product, reformulated gasoline has added the challenge of controlling the product 

chemistry, which is a complicated undertaking as those variables that can be manipulated are very 

few compared to the large number of actual process variables (Han et al., 2001). 

5.2 Controllability analysis and control structure selection for the FCCU 

5.2.1 General considerations for the control of the FCCU 

In general, the key objective of controlling the FCCU is to keep the process running within 

acceptable safety, environmental, and staff workload limits, etc, while simultaneously guaranteeing 

economic plant operation. Typically, a conventional hierarchical control system satisfies these 

criteria, where each level performs a specific task or tasks (see Figure 5.1). In the schematic not all 

the logic control functions are presented, e.g. startup/shutdown and safety systems, as these do not 

feature in normal plant operation. There are various ways for the concept to be implemented in a 

control system, but more importantly the idea of distributing control to the different levels is key. 
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This chapter discusses the regulatory control level, which is the lowest in the hierarchy, and solely 

tasked with maintaining smooth running of the process. In contrast, economic optimisation is 

handled by higher levels in the hierarchy. Typically, such a control system is both decentralised and 

cascaded, where specific measurements for set points are acquired in the implementation of the 

former, and then set point values commanded by the upper levels or the human operator, in the 

latter. Cascaded loops may also be found within the regulatory control level, in that a valve position 

is cascaded into a measurement of flow, in which case, flow is a manipulated variable not the 

position of the valve. Henceforth, “regulatory control system” and “lower-level control system” are 

used interchangeably. 

 

Figure 5.1: Hierarchical control system. 
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Within this control hierarchy, an intermediate or supervisory level may hold a multivariable, 

process model-based system that computes optimised plant operating parameters according to a 

specific objective. This supervisory level is characterised by the capability to handle constrained 

manipulated and controlled variables, especially in avoiding saturation of the manipulated 

variables. This preventative action may require coordination between control loops through 

assigning set values, or perhaps directly introducing more degrees of freedom. 

The control hierarchy upper or top level is concerned with optimisation across the entire process 

plant, which is typically in the steady state and taking place regularly off-line. Even though this top 

level is where the most significant economic gains are realised, proper functioning of the lower 

levels is necessary for this to happen. This fact is often not properly understood. 

5.2.2 Objectives for regulatory control 

A control system regulating process plant should satisfy several criteria or objectives: 

1. Control quality needs to be at a level where operating personnel are able to maintain the 

plant operating in safety, without need for action on part of the control system higher 

hierarchical levels. This enables simple recovery from failures, where no expensive backup 

is needed for the higher levels. 

2. The system needs to be easily understood and tuned, which is usually solved by using 

control loops that are simple and decentralised. However, where significant interactions 

exist, multivariable control may be introduced. 

3. At the top level, the system should as far as practicable use simple models, in order to 

enhance reliability and reduce cost in formulating and implementing a complex dynamic 

plant model, which will have a computation overhead applied at the top level. This is 

resolved by ensuring that the regulatory control level is at the lower level of the system 

hierarchy, which has the advantage of minimising model uncertainty and facilitating local 

linearization. 

4. The system should allow the upper levels in the hierarchy to have longer sampling times, 

which would lessen the computational burden at those levels. Distinct sampling times 

should be used, with faster times at the lower levels, and so higher levels will not wait for 

responses from the lower levels. 
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Therefore, based on the criteria or objectives above, a set of four further objectives for the 

regulatory control may be formulated: 

5. Rapid control should be possible, particularly in the case of some variables. 

6. The control system should operate the process closely following the set values commanded 

by the hierarchy top levels. These set values sent to the bottom level represent manipulated 

variables, where the aim is to move the process to these new values directly with minimum 

interaction, avoiding the need to map interactions and process dynamics in a model residing 

at the top levels. 

7. The system should effectively reject local perturbations, which is an extension of the 

second objective, and aims at maintaining the controlled parameters at the set points. The 

system needs to include extra degrees of freedom or additional manipulated variables 

(unused) that are directly changed by the top levels in the system hierarchy. 

8. The system must be robust, i.e. it should not be unnecessarily limited in performance due 

to, for example, significant sensitivity to perturbations, or have RGA elements. This 

remaining control problem is that which is seen by the top level, and contains manipulated 

inputs, both used and unused, as well as lower level set values. The unnecessary 

performance limitations refer those which are not part of the original control problem 

formulation in the absence of the control system lower level (Hovd and Skogestad, 1993). 

The first three objectives (5,6,7) above relating to rapid control, set point following, and 

perturbation rejection are discussed here, and relate to system controllability at the lower level. The 

criterion of simplicity is satisfied by the system lower level being completely decentralised. 

5.2.3 Control structure selection for the FCCU using RGA 

The criteria or objectives presented in the previous section are satisfied primarily by choosing the 

appropriate control strategy or structure, and then deciding the following: 

 Outputs y: the regulatory system controlled variables, both primary and secondary, or 

control objectives, are chosen. Primary outputs can normally be chosen easily, as they 

represent key process variables, or those needed to achieve a control objective. Such 

variables may need rapid control, as previously discussed in the system objectives (5), and 

include liquid levels, and specific pressures and temperatures to be maintained within strict 

limits. On the other hand, secondary outputs are variables, which can normally be measured 
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easily, but are not essential to control. They are chosen to satisfy some of the objectives (1, 

2, and 4) discussed previously. Such variables are usually pressures and temperatures at 

specific points in the process plant.  Hence, the choice of regulatory control system output 

variables is closely linked to the problem of measurement choices. 

 Inputs u: regulatory control system manipulated variables are chosen. The chosen inputs 

represent a subset of the whole range of manipulated inputs, while any “unused” variables 

represent manipulated inputs that can be used ether by the top control hierarchy, or the 

plant operating personnel. 

 Pairing: the controlled and manipulated variables selected are paired to achieve 

decentralised control. Such pairing will affect the nature of system interactions and 

disturbances. Moreover, in this decentralized control system, the tolerance to failure in one 

or many loops is also determined by pairing. 

Selection of the outputs 

Generally several variables are controlled in an FCCU. However, in this work controlling two or 

three variables at the regulatory level will be considered, which represent the most important output 

parameters and also exemplify the difficulties of the multivariable controller design for interacting 

systems. These parameters are: Tr, Treg, and cO2,sg (Grosdidier et al., 1993). The justification for 

trying to control these three variables is as follows: 

The product distribution is determined by the reaction conditions inside the riser, which are 

therefore very important for the economic performance of the FCC process. There is then an 

incentive to control both Tr and Treg which are directly related to the riser outlet and inlet 

temperature, respectively. A secondary controlled variable is not necessarily less important than a 

primary controlled variable. For example, although Tr is classified as a secondary controlled 

variable because it in itself is not very interesting, the importance of Tr as a controlled variable 

comes from the close connection between Tr and conversion. The need to avoid afterburning should 

be obvious and makes it reasonable to control directly cO2,sg.  

Based on this discussion, the primary controlled variables considered in this work is the cO2,sg., 

whereas the secondary variables are Tr and Treg , for which measurements are generally available. 
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Independent variables (manipulating inputs and disturbances) 

The following nine independent variables were considered: 

 

svrgc = regenerated catalyst slide valve position. 

svsc = the spent catalyst slide valve position. 

Fair_c = flow rate of air to the regenerator 

F5 = furnace fuel flow rate 

F3 = fresh feed gas oil flow rate 

F4 = slurry recycle flow rate 

V14= stack gas valve 

tair = air temperature 

Ψf = feed oil composition; here represented by the coke production rate factor 

The feed oil composition may be adjusted by changing the ratio between recycled and fresh feed. 

There are actually several additional manipulating variables, but we have assumed that these are 

already used by the regulatory control level to control holdups and pressure. These variables 

include: 

Fsc = spent catalyst flow rate 

Ffg = flue gas flow rate 

Wwg = wet gas compressor throughput, as the wet gas compressor is situated downstream of the 

distillation column receiving the reaction products.  

Fsc is used to control the catalyst holdup in the separator, whereas F3 is used to control the 

regenerator pressure P6. Wwg indirectly controls the separator pressure P4. In practice the pressures 

P6 and P4 may have to be adjusted when the catalyst slide valve position svsc is changed, in order to 

avoid reversal of the catalyst flow (Fsc). 

All the nine independent variables above may be used as manipulating variables (u’s) for control, 

but in most cases we will only use two: the regenerated catalyst flow rate, Frgc and the air flow rate 

Fair_c .The remaining independent variables may then be regarded as disturbances (d‟s) in the 

regulatory control system. The variables Ψf , F5, F4 and F3 are all related to the oil feed. The 
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variable Ψf is the coke production rate factor and depends on the feed composition. Immediately 

downstream of the FCC there is a distillation column which separates the products from the 

cracking reactions. The heavy fraction from the distillation column, “slurry,” has a large coke 

producing tendency. The coke production rate factor can therefore be changed indirectly by 

changing the amount of slurry, which is recycled to the riser. The air temperature tair is generally a 

disturbance since there is usually no air preheater in the system. 

Consideration of typical operational constraints for the FCCU 

The constraints that apply to plant operation must be carefully considered in making choices 

regarding the manipulated input and controlled output variables. For the FCC, one or more 

constraints determine the optimal operating point, and so the preferred control structure is the one 

that operates the plant nearest to these constraints. The plant optimal operating point will vary 

according to the properties of the feedstock, and the product range aimed for, which obviously 

influences the relative importance of the different constraints. This encourages the development of 

a different control structure for each optimal operating state. Yet, it may not be practical to 

formulate a different control structure for different operating conditions. Control constraints that are 

commonly encountered, may include: 

 Flue gas minimum oxygen concentration (cO2,sg): The concentration of oxygen in flue gas 

needs to be minimum in that complete combustion will have taken place previously within 

the dense regenerator bed, where CO is converted into CO2 (complete combustion mode). 

This is an important constraint that ensures that no afterburning takes place, as there is 

insufficient oxygen in the flue gas. 

 Wet gas compressor maximum capacity: The FCC unit wet gas compressor compresses the 

output products ready to be taken for gas treatment downstream. 

 Air blower maximum capacity (FT): The blower capacity needs to be at the maximum 

required to supply air for combustion within the regenerator. 

Implications for Regulatory Control 

For the purpose of operating the plant close to the constraints, it is worthwhile to choose the 

constrained outputs (measurements) to be controlled by the regulatory system. Therefore, in the 

complete combustion mode, flue gas oxygen concentration, cO2,sg, may be adopted as a controlled 

variable. 
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At the same time, in the control system, it is wise to avoid those manipulated inputs that may cause 

constraints to be easily reached. For example, wet gas production is affected significantly by feed 

flow rate F3, and so in a process state nearing the wet gas compressor constraint, feed flow rate F3, 

should not be adopted as a manipulated variable. A similar scenario involves the air flow rate Fair_c 

and air blower capacity constraint. However, a number of workers (Pohlenz, 1963; Hicks et al., 

1966) have proposed air flow rate, Fair_c, as a manipulated variable. Therefore, the control system 

should prevent the process from violating the air blower capacity constraint. This may be achieved, 

for example, by modifying the feedstock or the conditions of reaction leading to less coke 

formation. FCC constraints were treated in detail by Grosdidier et al. (1993), of which a key 

selection is presented in Table 5.1. 

Table 5.1: Operating constraints and their relative importance (0: low; 10: high). 

No. Process variable Notation Constraints Importance 

1. Temperature of reactor riser Tr Tr < 537 C 10 

2. Temperature of regenerator bed Treg 720 C < Treg < 745 C 10 

3. Concentration of O2 in stack gas cO2,sg cO2,sg > 2 % 9 

4. Concentration of CO in stack gas cCO,sg cCO,sg > 350 ppm 9.5 

5. Differential pressure between  

regenerator and reactor 

dprr 0.15 bar < dprr < 0.2 bar 8 

Controller and manipulated variable pairing 

The complexity of manipulated and controlled variable pairing is such that systematic mathematical 

analysis is needed to account for more than physical or process parameters. A well-configured 

control system would be capable of keeping the process within specified constraints, and rapidly 

restore it to its nominal operating state. In the context of choosing the appropriate control structure, 

related to multiple single-loop controllers (see Chapter 2), and determining interaction among the 

variables, the relative gain array (RGA) and variations of it (Wolff et al., 1992; Skogestad and 

Wolff, 1992) is commonly applied. As RGA is a linear approach, the process model equations, 

which are non-linear, need to be linearised for different points of operation, as illustrated below. 

The FCC unit model may be considered to be composed of vector differential-algebraic-equations 

(DAEs), as follows: 
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( , )
dx

f x u
dt

           (5.1) 

( , )y y x u            (5.2) 

with state (x), input (u) and output (y) vectors expressed by 

1
,...,
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x x x               (5.3) 
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,...,
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1
,...,

k
y y y            (5.5) 

Linearizing the system in the operating point  (xo, uo)  gives the following linear model 
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The RGA matrix for a square (n x n) plant can be calculated using the following formula: 

T
1

1 1RGA C A B D C A B D       (5.9) 

where the  symbol is the Hadamard product (element by element product) and A, B, C, and D are 

coefficient matrixes from the linear state space model. 

For independent control loops, pairs where the input and output relative gain is close to 1, are the 

best. In contrast, pairs that exhibit relative gains that are negative in the steady state must be 

avoided (Bristol, 1966). Such a pairing will cause whole system or single loop instability in an 

integral control scheme or on removal of that specific loop (Grosdidier et al., 1985). Furthermore, 

process plants that exhibit high values of RGA, especially at high frequency, suffer inherently poor 

controllability, regardless of the control system used (Skogestad and Morari, 1987b). Moreover, 
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implementing decentralised control, where input and output pairs have low RGA values (compared 

to 1) in the bandwidth region, signals potential problems in stability (Hovd and Skogestad, 

1992a,b). 

Table 5.2 shows different control structures which were considered for control implementation 

From the RGA analysis the best results were obtained with control schemes 1 and 2 (Table 5.2) for 

which RGA matrix values close to 1 were obtained. Table 5.3 gives a suggested pairing for scheme 

1 Tr-F5, Treg-svsc. In Table 5.4 the suggested pairing for scheme 2 Tr-F5, Treg-svsc, cO2,sg-V14 is 

given. The results obtained with the other schemes from Table 5.4 were not conclusive since there 

are small and negative values, indicating that those configurations potentially would not work. 

These points out strong couplings between some of the control loops especially when three or more 

control loops are considered.  

Table 5.2: Different control structure schemes for PID controller.  

Control scheme 1 2 3 4 5 

(2x2) (3x3) (4x4) (5x5) (6x6) 

Manipulated 

inputs 

F5, 

svsc 

F5, svsc, 

V14 

F3, F4, 

VB, V11 

F3, svsc, F5, 

V14, svrgc 

F3, F4, svrgc, 

svsc, LT,VB 

Controlled 

variables 

Tr, 

Treg 

Tr, Treg, 

cO2,sg 

Tr, P6, 

X(1), X(82) 

Tr, Treg, 

P5, T3, P6 

X(1), X(82), Wr, 

Tr, Treg, Wreg 

Table 5.3: RGA matrix of a sample 2X2 control scheme. 

Controlled 

variable 

Manipulated Variables 

F5 svsc  

Tr 1 0 

Treg 0 1 
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Table 5.4: RGA matrix of a sample 3x3 control scheme. 

Controlled 

variable 

Manipulated Variables 

F5 svsc  V14 

Tr 1 -0 0 

Treg -0 1.1297 -0.1297 

cO2,sg 0 -0.1297 1.1297 

5.3 Advanced PID control of the FCCU 

5.3.1 Design of the PID control algorithm 

In the domain of controlling FCC units and achieving specific objectives, many approaches quite 

advanced techniques. A block diagram of a PID controller is presented in Figure 5.2, which 

illustrates this generic feedback controller, commonly used in industrial and process control 

applications. In this controller, the values of the measured process variable and the commanded set 

value are compared revealing a difference termed the "error", which the controller aims to reduce to 

a minimum through appropriate control inputs. The PID or three term algorithm involves 

proportional (P), integral (I), and derivative (D) constant values, which may be explained 

heuristically in that P is based on present error, I on past error accumulation, while D predicts 

future errors, according to the present rate of change (Taguchi and Araki, 2000). The process is 

adjusted by applying control actions, based on the weighted sum of these three constants, to a 

controlled element; for example, a valve or heating circuit power supply. 

The PID controller does not require any prior knowledge of the process to be controlled, which is a 

major advantage (Bennett, 1993). The controller is tuned for the particular process by adjusting the 

values of the three parameters, and controller response may be defined according to responsiveness 

to error, set point overshoot, and degree of oscillation. However, despite its advantage in general 

applicability, PID control may not provide optimised operation or assure process stability. 

The PID algorithm allows one or two of the three parameters to be disabled simply by assigning a 

zero value to the relevant constant, and hence may become a PD, PI, I or P controller accordingly. 

Due to the sensitivity of derivative action (D) to noise, it is quite common to encounter PI 

controllers. However, the integral (I) is important to enable command values to be achieved. 
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Figure 5.2: A block diagram of a PID controller. 

The simulator described in the previous chapter was used to conduct simulations for closed-loop 

FCCU control. This used the MatLab-Simulink interface to apply an advanced PID algorithm 

(discrete position algorithm with backward approximation and anti-windup) that facilitates stability 

of the closed loop. Anti-windup in the algorithm was the main reason for the improved PID 

controller performance, and overcomes the physical limits associated with control elements. For 

example, a valve cannot exceed its fully closed or fully open positions, as this is physically 

impossible. The effect on control is severe, as the integral action may lead to instability; when the 

control element is saturated, simply by the fact that the output cannot change regardless of the 

input; this breaks the feedback loop. This unstable operating mode will cause a drift, involving high 

values, and even after the control element is desaturated, the system may take even longer to be 

restored to a stable state. Moreover, the control element may also experience, high and low value 

swings before recovery. Anti-windup, also termed tracking or back calculation, ensures that the 

integral is maintained at an appropriate value, once the control element saturates, which enables the 

controller to act properly, once again, after the error state changes (Bohn and Atherton, 1995). 

5.3.2 Constrained optimization based MIMO PID tuning 

The PID controller is in general a single input single output (SISO) controller which has a set of 

tuning parameters, which can be used to fine-tune the closed-loop response for good performance 

and stability. Tuning the multiple interacting PID loops is generally very difficult due to the high 

level of coupling between the loops.  



Chapter 5: Advanced PID Control of the FCCU Process 

 

 
 136  
  

In practice often the loops appear to be tuned independently, however when they are activated 

simultaneously the process can exhibit poor control performance or can be destabilized. To take the 

coupling between the loops into account the controllers should be tuned simultaneously. This work 

proposes a method for the tuning of the multiple PID control loops based on the use of a 

constrained optimization problem, which minimizes the overall integral square error (OISE) of the 

control loops defined as,  

2

1 0

( ( ))
f

L
tN

i
i

OISE e t dt           (5.10) 

where ei (t)  is the error function in the case of loop ,  is the number of PID loops and  is the 

time horizon on which the error is computed. From the objective function the control effort was 

omitted since the primary objective was to evaluate whether it is possible to find a set of tuning 

parameters, which would provide suitable control performance in a given input-output structure. 

However once a particular control architecture would be found, in a practical framework the control 

efforts could also be included in the objective function (5.10). The optimization problem for the 

tuning is expressed as follows 

,
min

i iK T
OISE            (5.11) 

  subject to:   

min, max,
  

i i i
k k k           (5.12) 

 min, max,
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i i i L
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where  and  are the proportional gain and integral time, respectively, for the PID controller of 

loop i , and the constraints (5.12) and (5.13) sets the minimum and maximum limits on the tuning 

parameters. This is a highly nonlinear and nonconvex optimisation problem which may exhibit 

multiple local minimums, has the solution generally represents a complex numerical problem. 

Additionally due to the presence of constraints and input saturations the computations of the 

gradients for gradient-based optimisation approaches may be difficult. In this chapter a Genetic 

Algorithm-based optimisation framework is proposed for the tuning of MIMO interaction PID 

control systems.  

The main advantages of the genetic algorithm (GA) include that it represents a global optimisation 

approach (although it does not guarantee that the final global optimum can be achieved within finite 

i LN ft

iK iT
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number of iterations) and in the large numerical stability of the approach due its derivative-free 

nature (Schaffer, 1984; Kursawe, 1990; Hajela et al., 1992; Murata, 1997; Srinivas and Deb, 1994; 

Fonseca and Fleming, 1993; Horn and Nafploitis, 1993; Deb, 2001; Carlos et al., 2002; Goldberg, 

1989; Holland, 1975; Petry et al., 1994; Davidor, 1991; Karr, 1992; Kacprzyk, 1995; Linkens and 

Nyongesa, 1995a; Linkens and Nyongesa, 1995b; Surmann et al., 1993). 

The GA typically uses binary digits to form character strings to represent codes for potential 

(candidate) solutions in an optimisation. This character string, consisting of binary digits, is termed 

a „chromosome‟, mirroring the terminology used in genetics. The candidate solution indicated by 

the chromosome is termed an „individual‟, where the GA is concerned with many individuals 

gathered in a „population‟. The individuals in the population are iteratively modified and updated, 

in each step termed a generation, where the optimisation proceeds through a search for the best 

solutions. A fitness function within the GA assesses the individuals, and reveals the extent to which 

they are satisfactory; in addition, an objective function may be used for comparison in a classical 

approach to optimisation. The fitness function enables the GA concept of „survival of the fittest‟ to 

be applied, where the algorithm seeks to achieve maximum fitness values rather than the classical 

optimisation approach of seeking to minimise some objective function. As such, specifying the 

fitness function is a vital aspect in GA design, leading to output of optimised solutions, and 

appropriate algorithm performance. In each iteration (generation), the GA evaluates the candidate 

solutions (individuals) by computing their fitness values, and then generating new individuals based 

on the old information. 

The generation of new solutions is quite distinct in Gas compared to approaches in numerical 

optimisation. First, an initial population composed of individuals is generated, which describes the 

primary estimates regarding the optimisation. In each iteration step, the GA evaluates a group of 

solutions, as opposed to one solution, as is the case in gradient descent and similar approaches. The 

candidate solutions (individuals) are assessed by computing their fitness values, with new ones 

being formulated to form part of the subsequent generation. Given its distinct approach, the GA 

does not involve calculating the Hessian or Jacobian matrices, which may produce an ill-

conditioned problem for a stiff and highly dimensional FCC unit model, negatively affecting the 

optimisation. In contrast, simulation has demonstrated that even with a small population, GA 

convergence may be rapid; 2x2 and 3x3 systems converged over 10 generations only to a global 

optimum (see Figures 5.3 - 5.4). The resulting tuning parameters for the individual PID loops are 

presented in Table 5.5. Tracking the evolution of fitness values (average and best) over successive 

generations reveals that within the initial generation, tuning parameters were quite close to the best, 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFT-496FMFW-2&_user=5371438&_coverDate=12%2F15%2F2003&_rdoc=1&_fmt=full&_orig=search&_cdi=5235&_sort=d&_docanchor=&view=c&_acct=C000010119&_version=1&_urlVersion=0&_userid=5371438&md5=dffa6e5e564f40242bb6d0e5c0ff55f6&artImgPref=F#bib48
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFT-496FMFW-2&_user=5371438&_coverDate=12%2F15%2F2003&_rdoc=1&_fmt=full&_orig=search&_cdi=5235&_sort=d&_docanchor=&view=c&_acct=C000010119&_version=1&_urlVersion=0&_userid=5371438&md5=dffa6e5e564f40242bb6d0e5c0ff55f6&artImgPref=F#bib39
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFT-496FMFW-2&_user=5371438&_coverDate=12%2F15%2F2003&_rdoc=1&_fmt=full&_orig=search&_cdi=5235&_sort=d&_docanchor=&view=c&_acct=C000010119&_version=1&_urlVersion=0&_userid=5371438&md5=dffa6e5e564f40242bb6d0e5c0ff55f6&artImgPref=F#bib28
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFT-496FMFW-2&_user=5371438&_coverDate=12%2F15%2F2003&_rdoc=1&_fmt=full&_orig=search&_cdi=5235&_sort=d&_docanchor=&view=c&_acct=C000010119&_version=1&_urlVersion=0&_userid=5371438&md5=dffa6e5e564f40242bb6d0e5c0ff55f6&artImgPref=F#bib42
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFT-496FMFW-2&_user=5371438&_coverDate=12%2F15%2F2003&_rdoc=1&_fmt=full&_orig=search&_cdi=5235&_sort=d&_docanchor=&view=c&_acct=C000010119&_version=1&_urlVersion=0&_userid=5371438&md5=dffa6e5e564f40242bb6d0e5c0ff55f6&artImgPref=F#bib49
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFT-496FMFW-2&_user=5371438&_coverDate=12%2F15%2F2003&_rdoc=1&_fmt=full&_orig=search&_cdi=5235&_sort=d&_docanchor=&view=c&_acct=C000010119&_version=1&_urlVersion=0&_userid=5371438&md5=dffa6e5e564f40242bb6d0e5c0ff55f6&artImgPref=F#bib27
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFT-496FMFW-2&_user=5371438&_coverDate=12%2F15%2F2003&_rdoc=1&_fmt=full&_orig=search&_cdi=5235&_sort=d&_docanchor=&view=c&_acct=C000010119&_version=1&_urlVersion=0&_userid=5371438&md5=dffa6e5e564f40242bb6d0e5c0ff55f6&artImgPref=F#bib30
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFT-496FMFW-2&_user=5371438&_coverDate=12%2F15%2F2003&_rdoc=1&_fmt=full&_orig=search&_cdi=5235&_sort=d&_docanchor=&view=c&_acct=C000010119&_version=1&_urlVersion=0&_userid=5371438&md5=dffa6e5e564f40242bb6d0e5c0ff55f6&artImgPref=F#bib13
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFT-496FMFW-2&_user=5371438&_coverDate=12%2F15%2F2003&_rdoc=1&_fmt=full&_orig=search&_cdi=5235&_sort=d&_docanchor=&view=c&_acct=C000010119&_version=1&_urlVersion=0&_userid=5371438&md5=dffa6e5e564f40242bb6d0e5c0ff55f6&artImgPref=F#bib6
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and so no significant improvements were detected. This was because the initial tuning parameters 

had been obtained using standard (Ziegler-Nichols) methods for SISO systems applied to the 

individual controllers. Over the ten generations, there was a sharp decrease in mean fitness values, 

in parallel with convergence; this indicates that the parameters represent the global optimum, where 

all the individuals (candidate solutions) had been converging to the best solution, over successive 

generations. Furthermore, this demonstrated that for the system, individual and independent tuning 

of the controllers may result in achieving the same level of performance as simultaneous tuning of 

interacting controllers. In industry, the norm in the FCC unit is that PID controllers are tuned 

individually. 

Table 5.5: Tuning parameters of the PID controllers. 

Controller Parameters 

Type K1 T1 [s] K2 T2[s] K3 T3[s] Td [s] Tsamp [s] OISE 

3x3 0.0009 5.9 0.001 5.5 0.003 0.8 0 100 1.07 E5 

2x2 0.0367 5.0 0.0004 63.953 - - 0 100 8.081 E4 

 

 

Figure 5.3: Fitness value for 2X2 PID controller system tuning. 
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Figure 5.4: Fitness value for 3X3 PID controller system tuning 

5.3.3 Multivariable PID control of the FCCU  

3x3 structure 

The MIMO closed loop system designed and implemented in Matlab/Simulink environment with 

the most common control scheme using PID controller is shown in Figure 5.5.  Process simulations 

with three independent control loops were carried out. Based on the RGA results in Table 5.4 the 

following control pairings were used: Tr-F5, Treg-svsc, cO2,sg-V14. The control performance was 

evaluated in the case of regulatory (disturbance rejection) and servo control (set point tracking).  

The regulatory control has been investigated in the case of a +5% disturbance in the feed oil 

composition represented by the coke production rate factor Ψf  and in the case of a setpoint change 

as indicated in Table 5.6.  
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Figure 5.5: SIMULINK block diagram for the closed loop simulation with three PID controller loops. 

Table 5.6: Tested data for 3 x 3 PID controllers in MIMO loops parameters. 

Loop Controlled 

variables 

Manipulated 

variables 

Disturbance Control scenario 

Servo, C Regulatory,% 

1 Tr - Treg -cO2,sg F5 - svrgc - V14 Ψf Tr→541.6 

Treg→737.7 

cO2,sg →4   

+ 5 

In the case of the regulatory control scenario considered the +5% increase in coke formation factor 

in the feed oil occurs at time 1.5 h. The control system is able to maintain the controlled outputs 

within small variations, compared to the uncontrolled case (shown in Chapter 4). Variations are 

within 1-1.5 °C for the reactor temperature and bellow 4 °C for the regenerator temperature, 

whereas for the uncontrolled case these are around 5 and 8 °C, respectively. Whilst the CO2 

emission reaches similar maximum levels in the case of the controlled scenario as for the 

uncontrolled case, the control systems eventually brings the emission level down , below 4%.  
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Similar variations can be observed in the case of the CO emission, too. The variations in the 

product composition (Figure 5.7) are also relatively small. The settling time however is 

considerably long. It takes more than 6 hours for the control systems to bring the process back in 

the original operating point. Such a long period of operation with product specifications outside the 

required boundaries may lead to considerable economic effects. These results indicate that although 

the proposed control structure is able to eventually suppress the effect of the investigated 

disturbance on the process relatively well, this takes a significant amount of time, hence if the 

process is subject to frequent disturbances this may lead to poor overall control performance and 

potentially considerable economic and environmental losses.   

 

Figure 5.6: Performance of the regulatory controls for (Tr vs. F5), (Treg vs. svsc) and (cO2,sg vs. V14)  in the 

presenceofstepincreaseinthecokingfactorΨf +5%, at t = 1.5 h. 
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Figure 5.7: Dynamic behaviour of other uncontrolled process variables in the case of the disturbance 

rejection scenario in Figure 5.6. 
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 Figure 5.8: Performance of the servo control for (Tr vs. F5), (Treg vs. svsc) and (cO2,sg vs. V14)  in the 

presence of step increase, at t = 1.5 h. 
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Figure 5.9: Dynamic behaviour of other uncontrolled process variables in the case of the setpoint 

tracking scenario in Figure 5.8. 
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based on their analysis of the disturbance sensitivities for the FCCU system studied. The closed-

loop simulation model was implemented using two separate PID control loops as shown in Figure 

(5.10) and the parameters were tuned using a tuning approach based on a Genetic Algorithm (GA).  

 

Figure 5.10: SIMULINK block diagram for the closed loop simulation with two PID controller loops. 

Table 5.7: Tested data for PID controllers in MIMO loops parameters. 

Loop 
Controlled 

variables 

Manipulated 

variables 

Disturbance Controller problem 

Servo, C Regulatory, % 

1 Tr - cO2,sg svrgc – V14 Ψf - + 5  

2 Tr -Treg F5 - svsc Ψf Tr    → 541.6 

Treg → 737.7 

+ 5  

The simulation results are shown in Figures (5.11 – 5.16). Both control structures provide excellent 

performance. The plots clearly show that the Tr , Treg and oxygen concentration can be controlled 

and brought to their steady states or new setpoints. Usually temperature control systems in large 

unit operations have a large time constant, but in the riser, the gas oil and catalyst flow rates are 



Chapter 5: Advanced PID Control of the FCCU Process 

 

 
 146  
  

very large, residence times are short, the cracking reactions are quick, therefore the riser outlet 

temperature reveals a quick response to the regenerated catalyst valve opening. 

 

Figure 5.11: Model responses for the reactor Tr  and regenerator cO2,sg temperatures by manipulated 

svrgc & V14 withchangesinthecokingfactorΨf +5%, at t = 1.5 h. 
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Figure 5.12: Dynamic behaviour of other uncontrolled process variables in the case the scenario in 

Figure 5.11. 
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Figure 5.13: Model responses for the reactor Tr  and regenerator Treg temperatures by manipulated  F5 

& svsc withchangesinthecokingfactorΨf +5%, at t = 1.5 h. 
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Figure 5.14: Dynamic behaviour of other uncontrolled process variables the case scenario in figure 

5.13. 
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Figure 5.15: Performance of the servo control for (Tr vs. F5) and (Treg vs. svsc) in the presence of step 

increase, at t = 1.5 h. 
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Figure 5.16: Dynamic behaviour of other uncontrolled process variables the case scenario in Figure 

5.15. 
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identify the controller parameters for the interacting SISO PID control loops. Sample 2x2 and 3x3 

control schemes were evaluated for disturbance rejection and set point tracking. The results 

demonstrate that as the number of independent control loops increases, the performance of the PID 

controller scheme strongly deteriorates, as indicated, for example, by significantly increased 

settling time. While the control system is able to stabilize the system, the decreased performance in 

the case of frequent disturbances may lead to significant economic losses or negative environmental 

impact, providing incentives towards the implementation of more advanced multivariable control 

systems. 
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CHAPTER 6                                           

MULTIVARIABLE LINEAR AND NONLINEAR 

MPC OF THE FCCU 

6.1 Introduction 

FCC unit control has been investigated by many workers, including the application of multivariate 

and nonlinear predictive control approaches (Alvarez-Ramirez et al., 1996; Aguilar et al., 1999; 

Abou-Jeyab and Gupta, 2001; Kiss and Szeifert, 1997; Balchen et al., 1992; Grosdidier et al., 

1993). A multivariable control scheme was proposed for an industrial FCC unit with controls in the 

reactor and regenerator; it was concluded that this offered a robust solution resulting in good 

dynamic performance (Grosdidier et al. 1993). Temperature control of FCC units was also achieved 

using a state-space model based predictive controller, with the non-linear optimisation problem 

solved in real-time. Simulation studies demonstrated good closed loop performance. However, the 

model-based control schemes are characterised by high computational costs, due to the large 

numbers of process variables and the complex interactions between the controlled and manipulated 

variables (Balchen, 1992).  Non-linear control, accommodating uncertainty, was also applied to the 

temperature control in the FCC regenerator and riser (Alvarez-Ramirez et al., 1996; Aguilar et al., 

1999). The closed loop controllers developed using this concept were practical, and regulated the 

temperature near the set point. Hovd and Skogestad (1993) reported that the key to satisfactory 

control of the FCC units is in choosing the appropriate controlled variables for the linear model 

predictive control scheme investigated. It was demonstrated that control of FCC units presents a 

non-linear, multi-variable, complex dynamic problem, where the control loops frequently interact 

strongly. At the same time, FCC unit operation takes place in the presence of constraints, and so the 

control strategy must be designed to accommodate these complex input-output interactions, and to 

demonstrate robustness in face of operating non-linearity, and errors in models. 

In the practical control of FCC units, as mentioned previously in Chapter 5, generally the preferred 

control loops are decentralised, temperature in the reactor and regenerator being the main 

parameters that need to be closely controlled (Christensen et al., 1999; Avidan and Shinnar, 1990). 

Temperature as an independent variable plays a critical role in adjusting the activity of the catalyst 
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in the steady state, and influences the product properties, such as octane number of gasoline. 

Moreover, process efficiency, conversion, and product yield, as well as plant safety are affected by 

the temperatures in the system. Therefore, in the key parts of the FCC unit, i.e. reactor, regenerator 

and riser, temperature needs to be controlled for optimal operation, and kept within the plant‟s 

design limits.  

This meant that a new design and implementation of linear and non-linear controllers was needed to 

handle the challenging control problem for the FCC process. Furthermore, the strong nonlinearity 

of the FCC process and the presence of large number of operational, safety and environmental 

constraints require the use of a multivariate model-based controller. In this context, model 

predictive control (MPC) offers a promising solution to the FCC unit control, as it accommodates 

multiple inputs and outputs, constraints, and is an optimisation based strategy (Emad and Elnashaie, 

1997; Karla and Georgakis, 1994). 

Based on these preliminary aspects, two main types of model predictive control (MPC) approaches 

are investigated in this chapter: (i) linear model predictive control (LMPC) and (ii) nonlinear model 

predictive control (NMPC). The former approach is also investigated under the realistic scenario 

which considers model-plant mismatch, by using the linearized model in the LMPC scheme and 

using the complex first-principles nonlinear model for the plant simulator. 

6.2 Linear MPC design and implementation 

6.2.1 LMPC simulation using the linear model as plant  

Linear Model Predictive Control (LMPC) is one of the most widely used advanced control methods 

in the chemical industry. Also referred as moving (receding) horizon control, has become an 

attractive control strategy especially for linear but also for nonlinear systems subject to input, state 

and output constraints. There are some features that individualize MPC in the field of control 

design making it attractive. In contrast to other feedback controllers that calculate the control action 

based on present or past information, MPC determines the control action based on the prediction of 

future dynamics of the system. Due to the future prediction, early control action can be taken 

accounting for future behaviour. In practice, most of the systems have to satisfy input, state or 

output constraints, resulting in limitations on achievable control performance (in the extreme case 

affecting the stability). The main idea of MPC is to calculate a set of future manipulated variable 
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moves (on the control horizon), which is calculated to minimize an objective function based on the 

sum of squares of the differences between model predicted outputs and a desired output variable 

trajectory over a prediction horizon (p). The mathematical formulation of the LMPC problem is 

given in detail in Chapter 2. 

As highlighted in Chapter 2, the tuning of a MPC is challenging, particularly in the multi-input-

multi-output (MIMO) configuration, which is the most commonly used structure for MPC 

applications (Garcia et al., 1989; Semino and Scali, 1994; Lee and Yu, 1994). Potential tuning 

variables include the input and prediction horizons, designated m and p respectively, as well as 

sampling time, Ts The MIMO features of the problem present the difficulties in tuning, where 

changes in the variables influence control performance. The challenges are more significant, where 

model non-linearities exist (Chen and Allgower, 1997). The nature of these challenges dictates an 

iterative approach to MPC tuning, with further improvement in controller performance achieved 

through recursive simulations. The task of MPC tuning has been greatly facilitated with publication 

of MPC tuning guidelines (Karla and Georgakis, 1994; Semino and Scali, 1994; Chen and 

Allgower, 1997). In this case, choice of sampling time, Ts, is a compromise between potentially 

exceeding the computational capacity of the system, on one hand, and missing key data for the 

dynamic process, on the other.  

Taking the existing tuning guidelines into account for the FCCU process a sampling time of Ts=100 

s was selected. Similarly, since high values for prediction and control horizons (p and m 

respectively) result in greater computation, while small values leads to control that is “short-

sighted”, therefore, p = 20 was chosen, which with the sampling time of 100 s corresponds to a 

quarter (2000 s) of the open loop setting time of the process. Smaller values would result in a short 

term control view, and so more controlling effort; moreover, for these smaller values of p, 

constraint checking takes place over a small horizon, creating a dead zone where control is 

inefficient. At the same time, larger values of p (compared to the settling time) result in slow (but 

stabilising) control responses, which come at a greater computation cost. The value selected for the 

control horizon, m is 5, which was found to provide a suitable compromise between computational 

effort and enough degrees of freedom to stabilize the process and achieve the desired control 

performance. Values less than this resulted in inefficient control action with degrees of freedom 

that are insufficient, while larger values result in aggressive control actions. 

Dynamic simulations were used to investigate various MPC schemes resulting in interesting results 

with practical implications in the industrial setting. 
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Control scheme selection 

The process parameters (variables) that are seen to play a key role in proper operation of the FCC 

unit were identified from the published literature, and by analysing the commercial process 

(Rhemann et al., 1989; Yang et al., 1996). These process variables are controlled to ensure that the 

process is run safely and economically. The amount of catalyst or catalyst inventory in the reactor, 

Wr, is controlled to stabilise circulation of the catalyst, and also creates a buffer preventing 

disturbances due to coke deposition on the catalyst, as well as helping to stabilise the temperature 

from reactor to regenerator. In the regenerator, a controlled temperature regime is necessary, with 

Treg at a set value, for the process of coke burn-off and consequent catalyst regeneration to achieve 

stability. Exceeding the limit of temperature permanently deactivates the catalyst, while a lower 

temperature prevents proper coke removal, and results of coke accumulation and gradual decrease 

in performance with time. The catalytic cracking reactions in the reactor also require good control 

of temperature, Tr, for efficient feedstock conversion. Another controlled process variable, stack gas 

oxygen concentration, cO2,sg, is key to burning the coke, and as such maintaining the thermal 

balance, and maximising the combustion air blower load efficiency. 

The manipulated process variables are independent variables selected for the practical reason that 

they can be modified, where the main ones are for catalyst, preheating furnace fuel, stack gas, and 

air vent flow rates. The catalyst flow, spent and regenerated, is controlled by slide valve positions, 

svrgc and svsc respectively. The flow of fuel to the preheating furnace, F5, is a key variable in 

maintaining the FCC unit thermal balance. The flow of regenerator stack gas is controlled by the 

position of the stack gas valve, V14. Similarly, the flow from the air vent is controlled by the 

position of the air vent valve position, V7. The variables that represent potential sources of 

disturbances are ambient temperature, and the coking characteristics of the feedstock, i.e. rate of 

coking. 

MPC is inherently a multivariate control scheme which can automatically deal with interactions 

between multiple inputs and outputs. Therefore in principle it is not necessary to choose input and 

output variables that correspond to a close to diagonal RGA matrix, representing decoupled non-

interacting control loops, when MPC is applied directly at the basic level of the typical control 

hierarchy. However in most practical situations MPC is implemented on top of the basic control 

system which consists typically of single-input-single-output (SISO) control loops mainly based on 

PID controllers. Therefore in a practical industrial scenario before the implementation of the MPC 

the first step is to select the control loops at the basic control level. 
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The controllability study is the first step in control scheme selection, and has shown its 

effectiveness in both decentralised and multivariable control approaches (Hovd and Skogestad, 

1991; Cristea and Agachi, 1996). In this step identifying the best input-output pairs with the highest 

sensitivities but minimal interactions, can significantly improve the control performance of the 

higher level MPC. In this context the RGA analysis facilitates the selection of the best manipulated 

variables influencing the controlled variables, and hence the most appropriate MPC scheme.  

Based on this approach, a set of control schemes has been investigated. They have a different 

number of controlled/manipulated variables for square control structure (same number of inputs and 

outputs): 2x2, 3x3, 4x4, and non-square control structures (different number of manipulated inputs 

and controlled outputs): 2x4, schemes, presented briefly in Table 6.1.  

Table 6.1: Input-output configurations tested with the MPC parameters used.  

No Control  

scheme 

Controlled 

variables 

Manipulated variables MPC tuning parameters 

(duration, prediction and 

control horizons and u ) 

1 2x2 Tr - Treg F5 - svsc [8000 s, Ts = 40, p = 20,    

m = 5, u  = 0.8] 

2 3x3 Tr - Treg - Wr F5 - V14 - svsc [10000 s , (Ts = 80, p = 20, 

m = 2), u = 0.8] 

3 4x4 Tr - Treg - cO2,sg - Wr svrgc - V14 - V7 - svsc [10000 s , (Ts = 80, p = 20, 

m = 5), u  = 0.8] 

4 4x2 Tr - Treg F5 - svrgc - svsc- V14 [8000 s , (Ts = 80, p = 20, 

m = 5), u  = 0.8] 

A linear model was used for the computation of the manipulated variables, obtained by the 

linearization of the non-linear model around the nominal operating point (Patwardhan et al., 1990). 

The RGA analysis was performed for all configurations. The result for control scheme 1 is given in 

Chapter 5, whereas the RGA matrix for the control structures 2 and 3 are given in Tables 6.2 and 

6.3. 

Representative results from the control schemes given in Table 6.1 are presented in Figures 6.1-

6.10. Note that the input and output variables represented in the figures are deviation variables 

compared to their steady state values. This is due to the fact that the LMPC control design is 
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generally based on the linear model identified around a particular operating point. The controller 

was tested in different setpoint changes. Figure 6.1 and Figure 6.2 indicate that the 2x2 control 

scheme is able to provide a very good setpoint tracking, for a 10C and 15C change in the Tr and 

Treg setpoints, respectively. The new setpoints are achieved quickly with no or minimal overshoot. 

Additionally, the MPC provides a good decoupling between the two control loops, shown by the 

relatively small disturbance in one of the controlled output when the setpoint changes for the other 

controlled outputs. This is mainly due to the fact that the input-output pairs are well-correlated 

according to the RGA analysis presented in Chapter 5. When the setpoint corresponding to any of 

the controlled outputs changes, both manipulating inputs must react, on one hand, to bring one of 

the outputs to the new setpoint value, and on the other hand to eliminate the effect of changes and 

maintain the other output at its original setpoint value. The control actions are smooth, indicating 

the control-change weight coefficient was chosen properly to achieve fast but stable closed-loop 

performance. 

Figures 6.3 and 6.4 illustrate the performance of the 3x3 control scheme, which includes as an 

additional control output the inventory of catalyst in the reactor (Wr) and as an additional input the 

stack valve position (V14). The setpoint tracking performance of the LMPC is very good, the new 

setpoints are achieved very fast, with no overshoot and with minimal interactions. It is interesting to 

observe that increasing the number of manipulating inputs the MPC controller is able to provide a 

significantly better decoupling of the controlled outputs compared to the 2x2 case. When the 

setpoint changes for the Tr or the Treg, practically no disturbance can be observed in the other 

process outputs. 

Similar observations are found by analyzing the results of the other 3x3 control structure on Figures 

6.5 and 6.6. These results compared to the simulation results with the PID controllers for the same 

structure presented in Chapter 5, also indicate a significantly better performance. However, note 

that in the LMPC simulations no model-plant mismatch is assumed and the plant is represented by 

the linearized process model. 

The results of the 4x4 control scheme are presented in Figures 6.7 and 6.8. These results also 

indicate that with the increase in the number of manipulating inputs the controller is able to provide 

better decoupling. In this control structure the fuel flow to the furnace (F5) was eliminated from the 

manipulating inputs and the combustion air blower vent valve (V7) and the regenerated catalyst 

valve (svrgc) were added instead. This, however, has led to a decrease in the controller performance 

compared to the 3x3 structure studied before. Although the observed interactions between the 
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controlled variables are minimal some of the process outputs settle slower to their new setpoint 

value (e.g. Treg). This indicates that the F5 is an important manipulating input, which should be kept 

in the MPC control scheme. 

The 4x4 control scheme indicates the ability of this approach to maintain the stack gas oxygen 

concentration at a predefined value, which allows more efficient FCCU operation due to better use 

of air blower capacity, and leads to safer operation through control of the “afterburning” 

phenomenon.  

One of the advantages of the MPC approach is that different number on manipulating and 

controlled variables can be used (non-square system) for control. This is an important property, 

given the previous observations that by increasing the number of manipulating inputs the 

decoupling between the controlled outputs can be improved. The simulations for the non-square 

4x2 MPC scheme (4 inputs and 2 outputs) did reveal improvements compared to 2x2 or even to the 

4x4 schemes, in providing better control performance. The advantage of using a control scheme 

with a higher number of manipulated than controlled variables is especially important when 

constraints on the manipulated variables are imposed. The surplus manipulated variables may be 

advantageous when one or more of the manipulated variables become restricted.  

These results demonstrated the benefits of the model based multivariate control and the advantages 

of using excess of manipulated inputs. However the judicious selection of the manipulated inputs is 

emphasized, as it was indicated that the F5 is an important parameter, which should be kept 

amongst the set of manipulated inputs to achieve the best control performance. 

Table 6.2: RGA Matrix of 3X3 Control Scheme. 

Controlled 

variable 

Manipulated Variables 

F5 svsc  V14 

Tr 1 0 -0 

Treg -0 -0 1 

Wr 0 1 -0 
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Table 6.3: RGA Matrix of the 4x4 control scheme. 

Controlled 

variable 

Manipulated Variables 

svrgc V7 V14 svsc 

Tr 1 -0 -0 -0 

Treg -0 0 1 0 

cO2,sg -0 1 0 0 

Wr 0 -0 -0 1 

 

 

Figure 6.1: The 2x2 LMPC simulation results with the controlled variable response for setpoint change 

for Tr and Treg at different times.  
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Figure 6.2: Manipulated variables for the 2x2 LMPC control scheme. 

 

Figure 6.3: The 3x3 LMPC simulation results with the controlled variable response for setpoint change 

for Tr , Treg and Wr at different times. 
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Figure 6.4: Manipulated variables for the 3x3 LMPC control scheme. 

 

Figure 6.5: The 3x3 LMPC simulation results with the controlled variable response for setpoint change 

for Tr , Treg and cO2,sg  at different times.  
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Figure 6.6: Manipulated variables for the 3x3 LMPC control scheme. 

 

Figure 6.7: The 4x4 LMPC simulation results with the controlled variable response for setpoint change 

for Tr , Treg , cO2,sg and Wr at different times. 
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Figure 6.8: Manipulated variables for the 4x4 LMPC control scheme. 
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Figure 6.10: Manipulated variables for the non-square 4x2 control scheme. 
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6.11 the 2x2 LMPC scheme with Tr and Treg as the controlled outputs and F5 and svsc as the 

manipulated inputs.  

The result obtained in the case step change in the setpoint is presented in Figure 6.12. The MPC 

tuning was performed by choosing the output and input weights based on the maximum allowable 

deviation of the corresponding variables, followed by a trial and error refining step. 

A very good control performance was achieved when the setpoint change was small as indicated in 

Figure 6.12. However if the magnitude of the setpoint change increases by 5 C the LMPC fails to 

control this strongly nonlinear plant. This is expected since the predictions are based on the linear 

model obtained in the original operating point and as the process deviates from this operating point 

the model-plant mismatch increases and the control performance deteriorates. Generally these 

deviations and increasing model-plant mismatch may lead to stability problems in practical 

implementations. One approach to improve robust performance is to use different linearized models 

in the LMPC controller obtained in different operating points, and automatically choosing the 

corresponding model based on the operating region of the FCCU. 

 

  

Figure 6.11: MPC block diagram for FCCU. 
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Figure 6.12: Simulation results with the LMPC applied to the plant represented by the nonlinear 

process model, in the case of setpoint changes in Tr and Treg , at t=1.5 h. 

 

Figure 6.13: Manipulated variable response for set point change in the output, for 2x2 control scheme. 
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6.3 Nonlinear model predictive control (NMPC) of the FCCU 

In this section, an efficient algorithm is presented and applied for the non-linear MPC of the FCCU. 

Chemical processes are typically non-linear, and as such, control system performance is generally 

governed by its ability to handle process non-linearity. Linear MPC schemes where linear models 

are used for prediction are in common use in various sectors, and so control issues, such as stability 

have been fully addressed. In contrast, non-linear MPC schemes are relatively new, appearing in 

the last twenty years, but with a growing base of applications (Agachi et al., 2006). 

6.3.1 Efficient real-time iteration based NMPC approach 

The optimal control problem to be solved on-line in every sampling time in the generic NMPC 

algorithm (Nagy et al., 2007) can be formulated as: 

  Problem 
1
( )

k
P t : 

( ) ,
min ( ( ), ( ); )

F
ku t t

x t u t          (6.1) 

subject to:          

( ) ( ( ), ( ); )x t f x t u t ,         (6.2) 

( ) ( ( ), ( ); )y t g x t u t ,         (6.3) 

0 0
ˆ ˆ( ) ( ), ( )

k k
x t x t x t x ,        (6.4) 

( ( ), ( ); ) 0, [ , ]F

k k
h x t u t t t t ,        (6.5) 

where  is the performance objective, t  is the time, k
t  is the time at sampling instance k , 

F

k
t  is 

the final time at the end of prediction, 0
0t  is the initial time, ( ) xnx t  is the x

n  vector of states, 

( )u t  is the u
n  set of input vectors, ( ) yn

y t is the 
y

n  vector of measured variables used to 

compute the estimated states (̂ )
k

x t  with initial values 0̂
x , 

n
 is the n  vector of possible 

uncertain parameters, where the set  can be either defined by hard bounds or probabilistic, 

characterized by a multivariate probability density function. The function : x xn nf  is 

the twice continuously differentiable vector function of the dynamic equations of the system, 

: yx
nng is the measurement equations function, and : xn ch  is the vector 

of functions that describe all linear and nonlinear, time-varying or end-time algebraic constraints 

for the system, where c  denotes the number of these constraints.  
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The objective function in the case the typical receding horizon NMPC with the aim to minimize 

deviations from the setpoints can be expressed as of can have the following general form: 

2
2 2

( ( ), ( ); ) ( )
F
k

y uk
u

t
ref ref

Q Qt
Q

du
x t u t y y u u dt

dt
    (6.6) 

where, refy and refu are the output and input references, respectively, and 
,

,
y u u

Q Q Q are weighting 

matrixes.  

Efficient optimization via direct multiple shooting 

The optimal control problem 1
( )

k
P t  is an infinite dimensional problem, which except in a few very 

simple cases is impossible to solve. The main idea behind direct methods is based on transforming 

the original infinite dimensional problem 1
( )

k
P t  into a finite dimensional nonlinear programming 

problem (NLP) by formulating a discrete approximation to it that can be handled by conventional 

NLP solvers (Biegler, 2000). The time horizon [ , ]F

k k k
t t t  is divided into 

p
N  subintervals 

(stages) 
, , , 1

[ , ]
k i k i k i

t t , 0,1, , 1
p

i N , with discrete time steps 

,0 ,1 , , 1 , 1
... ...

p

F

k k k k i k i k N k
t t t t t t t . The infinite dimensional continuous control input 

( )
k

u t  is then parameterized into a piecewise representation , ,
( , )

k i k i
u t p  for ,k i

t  with p
N  local 

control parameter vectors 
,0 ,1 , 1
, , ,

pk k k N
p p p  with 

,
pn

k i
p and the optimization problem is solved 

with the local control parameter vectors being the decision variables. In most of the practical 

application piece-wise constant or piece-wise linear control parametrization is used. In the simplest 

case, using piecewise constant parameterization, we have 
,0 , 1 1 1

( , , , ) [ , , , ]
p pk k k N k k k N

u t u u up p . 

Problem 1
( )

k
P t  gives the general discrete time formulation of problem 1

( )
k

P t : 

Problem 1
( )

k
P t : 

1, , ,
min { ( ; ) ( , ; )}

p

p

p
k k k Np

k N
k N

k N j j ju u u
j k

x x u ,      (6.7) 

  subject to: 

( , ; ) 0
k k k

G x u ,         (6.8) 

( , ; ) 0
k k k

H x u ,         (6.9) 
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where 
p

N  is the number of stages in the prediction horizon [ , ]F

k k
t t , : x yx

n nn

k
G  

corresponds to all equality constraints resulted from the algebraic equations (6.3) of the model or 

from the discretized model equations, 
2: x un c n

k
H  is the vector function of all 

inequality constraints (6.5), including the constraints on the inputs considering. We consider here 

that the set of possible inputs is given as hard bounds. It is assumed that the vector functions G  and 

H are twice continuously differentiable. Sequential Quadratic Programming (SQP) is generally 

considered as the most efficient numerical method available to solve nonlinear optimization 

problems (NLP). It has been shown that SQP requires the fewest function evaluations to solve 

NLPs (Binder et al., 2001). SQP is a quasi Newton method that treats nonlinear optimization 

problems by solving a sequence of local linear-quadratic approximations. The Lagrangian of the 

optimization problem is approximated quadratically, typically by applying a numerical update 

formula. Constraints are approximated linearly. SQP methods generally apply the equivalent of 

Newton steps to the optimality conditions of the NLP problem achieving fast rate of convergence.  

Several optimisation approaches have been proposed for the solution of the optimal control 

problem (6.7)-(6.9), including sequential approaches (Hicks and Ray, 1974; de Olivieara and 

Biegler, 1994), simultaneous approaches (Tsang et al., 1975; Biegler, 2000; Cuthrell and Biegler, 

1989) and hybrid approaches such as direct multiple shooting (Bock and Plitt, 1984; Bock et al., 

2000a; 2000b; Diehl, 2001; Diehl et al., 2002; E. ref 9).  

Direct multiple shooting is one of the most efficient optimisation approaches available for the 

solution of the NMPC problems hence it was selected as the method applied in this work.The direct 

multiple shooting procedure consists of dividing up the time interval [ , ]F

k k
t t  into M subintervals 

1
[ , ]

i i
 via a series of grid points 0 1 2

F

k M k
t t .  Note that the grid points do 

not necessary correspond to the discretization points ( p
N ) in the definition of problem 1

( )
k

P t . Using 

a local control parameterizations a shooting method is performed between successive grid points 

(see Figure 6.14). The solution of the ODE on the M  intervals are decoupled by introducing the 

initial values i  of the states at the multiple shooting nodes i  as additional optimization variables. 

The differential equations and cost on these intervals are integrated independently during each 

optimization iteration, based on the current guess of the control, and initial conditions i . The 

continuity/consistency of the final state trajectory at the end of the optimization is enforced by 

adding consistency constraints to the nonlinear programming problem. The additional interior 
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boundary conditions, are incorporated into one large nonlinear programming problem (NLP) to be 

solved, which is given in a simplified form below (Nagy et al., 2007): 

Problem 
2

P : 

( ; ) 0
min ( ; ) subject to   

( ; ) 0v

G v
v

H v
       (6.10) 

where the optimization variable v contains all multiple shooting state variables and controls 

0 0 1 1 1 1
[ , , , , , , , ]

M M M
v u u u .       (6.11) 

The discretized initial value problem and continuity constraints are included in the equality 

constraints: 

0

1 1

(̂ )

( ; ) ( ; , ) 0

( , ; )

k

i i i i i

i i

x t

G v x t u

y g u

,       (6.12) 

and the inequality constraints are given by ( ; ) ( , ; ) 0
i i

H v H u , for 0,1, ,i M . The main 

idea of the direct multiple shooting algorithm is illustrated in Figure 6.14. 

 

Figure 6.14: Illustration of the direct multiple shooting algorithm. 
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Real-time NMPC algorithm 

The solution of problem 
2

P   requires a certain, usually not negligible, amount of computation time

k
, while the system will evolve to a different state. In this case the optimal feedback control 

0| 1| |
( ) [ , , , ]

k k p kk t t N t
u t u u u  computed in moment 

k
t  corresponding to the information available up to 

this moment, will no longer be optimal. Computational delay 
k

 has to be taken into consideration 

in real-time applications. In the approach used here, in moment 
k

t , first the control input from the 

second stage of the previous optimization  problem, 
11| kt

u , (which corresponds to the first stage of 

the current optimization) is injected into the process, and then the solution of the current 

optimization problem is started, with fixed 
10| 1|
.

k kt t
u u  After completion, the optimization idles for 

the remaining period of 
1

( , )
k k k

t t t , and then at the beginning of the next stage, at moment 

1k k
t t t , 

1| kt
u  is introduced into the process, and the algorithm is repeated. This approach 

requires real-time feasibility for the solution of each open-loop optimization problems ( k
t ). 

Initial value embedding strategy 

The initial values embedding strategy originally proposed by Bock et al. (2000b), can significantly 

enhance computational performance. The approach is based on the fact that optimization problems 

at subsequent sampling times differ only by the initial values that are imposed through the initial 

value constraints. Accepting an initial violation of these constraints, the solution trajectory of the 

previous optimization problem can be used as an initial guess for the current problem. Since in the 

direct multiple shooting approach the decision variables include both the control input and the 

initial values of the states and the discretization points, for this approach to work efficiently the 

entire decision vector (control plus states) has to be initialized with the solution of the previous 

optimisation problem. Furthermore, all derivatives as well as an approximation of the Hessian 

matrix are already available for the solution trajectory from the previous step, and these can be used 

in the new problem. In this way the first QP solution can be performed without any additional ODE 

solution, leading to a computationally highly efficient approach (Diehl et al., 2002). 
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Solution tool for efficient BNMPC implementation 

The solution of problem 
2

P  can be performed using various optimization packages. The NMPC 

tool, OptCon, (Nagy et al., 2004) based on the sequential-quadratic-programming (SQP) type 

optimizer HQP (Franke et al.), which is used in conjunction with the implicit differential-algebraic-

equation (DAE) solver, DASPK, for robust and fast solution of the model equations (Li and 

Petzold, 1999), has been successfully applied in various applications including the control of an 

industrial pilot scale polymerization reactor (Nagy et al., 2007). OptCon includes a number of 

desirable features. In particular, the NMPC is based on first-principle or grey-box models, and the 

problem formulation is performed within Matlab
®
  (The Mathworks Inc.), which is the most widely 

used modeling and control environment for control engineers. The model used in the controller has 

to be developed in the form of Simulink
®
 (The Mathworks Inc.) “mex S-function” using C 

language. The S-function interface of the optimization tool provides convenient and fast 

connectivity with Matlab
®
. The NMPC implementation offers an efficient approach based on the 

direct multiple shooting algorithm, that exploits the special structure of optimization problem that 

arise in NMPC. The software uses low rank updates of the approximation of the Lagrangian 

Hessian of the nonlinear subproblems combined with a sparse interior point algorithm for the 

efficient treatment of the linear-quadratic subproblems in the nonlinear SQP iterations. Bounds and 

inequality constraints are handled using a barrier method and line search is used for global 

convergence of the SQP iterations. OptCon implements the real-time approach, and also provides 

an OPC connectivity, making it appropriate for rapid real-time prototyping of NMPC algorithms in 

industrial environment. 

6.3.2 NMPC FCCU simulation results 

The complex dynamic model of the FCCU was used in the NMPC algorithm. The 2×2 control 

structure is presented as one of the simulations performed. The two controlled variables are: reactor 

temperature Tr and regenerator temperature Treg. The two manipulated inputs are: fuel flow F5 and 

slide valve positions svsc on the spent catalyst circulation line. The coking rate factor Ψf change 

(5% step increase at moment t = 5000 s) has been selected as a typical disturbance. The control of 

presented variables is important for the efficient and safe operation of the unit, and has direct 

impact on the products yield. The reactor temperature has to be maintained at a certain level to 

provide a desired maximum conversion of the feed oil. Proper reactor and regenerator temperature 
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control also means good management of thermal energy. A set of tested scenarios is presented in 

Table 6.3. 

Table 6.3: Tested scenarios for NMPC simulations. 

Case Disturbance Setpoint change  NMPC tuning 

parameters (duration, 

prediction and control 

horizon and weight) 

Step increase Step decrease 

1 N/A Tr→551, at 2000 s 

Treg→729, at 3000 s 

Tr→547, at 4000 s 

Treg→727, at 4000 s 

[8000 s ,(Ts = 100, p = 5,  

m = 5), Qu = 10] 

2 + 5 %, at 5000 

s 

Tr→546.6, at 2000 s 

Treg→741, at 3000 s 

- [8000 s , (Ts = 100, p = 

10, m = 5), Qu = 10] 

Two different scenarios are considered: 

(i) NMPC without anticipation – in this case the setpoint change is treated as a 

disturbance which happens unexpectedly. The NMPC will react only after the setpoint 

change has been applied to the process. 

(ii) NMPC with anticipation – in these simulations it is assumed that the moment when 

the setpoint change will occur is known beforehand, and is programmed in the NMPC 

controller. In this case the NMPC can take into account during the prediction the future 

changes in the setpoints and hence can react before the actual change happens, to 

achieve optimal performance.  

Figure 6.14 illustrates the performance of the NMPC with both anticipation and no anticipation 

scenarios. The first setpoint change in Tr and Treg, respectively, are considered known a priori and 

were programmed in the NMPC from the beginning of the simulation. Therefore the controller can 

react anticipating the change in the future resulting in very good setpoint tracking performance. The 

second simultaneous setpoint change at 4000 s, are considered as disturbance, in the sense that they 

are not programmed in the NMPC. This could correspond to a realistic scenario when sudden 

change in the operating conditions have to be applied immediately e.g. due to safety considerations. 

It can be seen that in this case the NMPC reacts with delay, since the change of the setpoint is only 
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detected at the next sampling time after the change occurred. Due to the real time iteration scheme, 

according to which the control action is implemented with one sampling period delay, the NMPC 

practically can only react to the unanticipated setpoint change after two sampling periods. 

The CPU times corresponding to the NMPC calculations in each iterations and the number of SQP 

iterations are presented in Figure 6.16. It can be observed that the maximum number of iterations 

(set to 5 SQP iterations in these studies) is achieved when the setpoint changes occur, however the 

real-time iteration scheme and initial value embedding strategy allow the convergence of the 

optimisation problem over several iterations without considerable decrease in control performance. 

The maximum total computational time (approximately 65 s) is well below the sampling time of 

100 s. The results demonstrate that the efficient optimisation scheme and tool used here can 

guarantee the real-time feasibility of the NMPC implementation, with very good control 

performance even for a model with a large number of ODEs. 

Additionally the benefits of designing control systems in which a sepoint change can be 

programmed in with anticipation are highlighted. Since the control performance can be 

significantly improved if the predictive controller can take a future setpoint change into account, it 

is important to design the control systems to allow specifying the setpoint change and the time 

when that must occur, and operators need to be aware about the benefits of programming the future 

change into the controller in advance. 

Figure 6.17 illustrates the results for case 2, considering NMPC with anticipation for setpoint 

change and in the case of a measured disturbance scenario. The setpoint change in the Tr is very 

well followed by the NMPC, however the control performance degrades when the change in Treg 

occurs. Careful examination of the control variables show that one of the manipulated variables 

(svsc) saturates in this case, which causes the decreased tracking performance. At t= 5000 s a 5% 

increase in Ψf  occurs. It is assumed that the disturbance is measured and the NMPC is able to reject 

the effect of the disturbance. The controller reacts to the disturbance as can be observed from the 

variation in the manipulated inputs, but no deviations in the controlled output is observed, 

indicating the excellent disturbance rejection ability of the NMPC system. 

The NMPC provides stable closed-loop response in both simulate scenarios with very good setpoint 

tracking and disturbance rejection performances. The NMPC is able to provide a very good 

decoupled response with minimal disturbance in the controlled outputs when the setpoint change 

occurs for one of the outputs only. 
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Figure 6.15: Performance of the NMPC in the case of setpoint change with and without anticipation. 
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Figure 6.17: Performance of the NMPC in the case of setpoint change with anticipation and a 

measured disturbance (5 % step increase at t = 5000 s inΨf). 

6.4 Conclusions 
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To further improve the control performance an efficient nonlinear model predictive control 

approach (NMPC) is implemented to the FCCU. The approach used is based on a real-time 

iterations scheme with initial value embedding, and is based on a highly efficient multiple shooting 

optimisation approach to achieve real-time feasibility.  The efficient NMPC approach is evaluated 

for setpoint tracking and disturbance rejection. For setpoint tracking two different scenarios, with 

and without anticipation are considered. The results demonstrate that superior performance of the 

NMC scheme and highlight the importance of the implement setpoint changes into the controller in 

advance whenever this is possible to achieve better control performance. 

Both NMPC and LMPC were superior, and it was also shown that NMPC provided better 

performance compared to LMPC. The performance advantage could be noted in terms of 

overshoot, settling time, and maintaining the controlled variables within the limiting constraints of 

the plant. Furthermore, the potential for practical implementation of the NMPC approach in the 

industrial context of complex chemical processes has been demonstrated. These results have 

demonstrated that the control structures proposed may be applied in industry in the form of a new 

scheme for controlling highly complex chemical processes. 
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CHAPTER 7                                                      

ECONOMIC OPTIMIZATION OF FCCU 

7.1 Dynamic Real - time Optimization (DRTO) 

In the process industry, a main challenge is to ensure optimal plant operation regardless of 

constantly varying materials and conditions, whether composition of feedstocks, rates of 

production, prices of material inputs and outputs, or energy availability. In this complicated 

context, the concept of Real-time Optimisation (RTO) was introduced in an attempt to ensure that a 

process is optimised for given economic constraints. The process is optimised through RTO, from 

the perspective of target profit or cost, and so profit-seeking enterprises can make sure that their 

plant is achieving optimal profitability, even as operating parameters and materials are subject to 

change. In typical form, RTO assumes that transient perturbations may be disregarded over a 

sufficiently large interval, as the process achieves the steady state. A typical RTO system consists 

of parts for detecting the steady state, acquiring and validating data, updating the process model, 

solving the optimisation problem, and applying operating policies (Adetola, 2008). 

Given the surge in interest in Dynamic Real-Time Optimization (DRTO) or Non-linear Model 

Predictive Control (NMPC) for economic process optimisation (Backx et al., 2000; Helbig et al., 

2000; Engell, 2007; Rawlings and Amrit, 2008; Zavala, 2008), efficient means to solve such 

optimisation problems have witnessed significant progress. Economic optimisation control schemes 

have advanced beyond the usual implementation of NMPC based on quadratic cost criteria that are 

minimised in terms of the deviation from a steady state set value. In economic NMPC all the 

dynamic degrees of freedom are considered in ensuring maximum economic profit over a specific 

time interval. A further point is that maximum profit is achieved at high frequency sampling rates, 

compared to the low sampling rates characteristic of conventional steady-state optimisation, and 

only during the process steady state. Therefore, DRTO effectively manages perturbations, and 

ensures that these are exploited optimally for maximum profit, compared to simple compensation 

for deviation from a steady state set value. However, sufficient research on DRTO and NMPC from 

an economic perspective has not been performed. 
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The strategy of DRTO based on an economic perspective was introduced (Helbig and Marquardt, 

2007; Kadam and Marquardt, 2007), and is shown in Figure 7.1. Compared to the conventional 

approach, DRTO does not distinguish between dynamic and steady states, but engages in directly 

optimising the process according to economic criteria over the prediction horizon. Such a strategy 

involves calculating a solution to the NMPC problem utilising an economic objective function 

derived from first-principle dynamic models. In this context, process control actions are generated 

based on an economic objective; this particular control structure was first proposed by Morari et al. 

(1980). 

 

Figure 7.1: Illustration of D-RTO or Economically-Oriented NMPC 
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Further progress took the form of a controller based on a receding horizon applied to constrained 

nonlinear process plant was also proposed (Angeli and Rawlings, 2010). For economically-

optimised NMPC, an infinite-horizon formulation was proposed (Wurth et al., 2009). In an 

approach utilising a search technique for the general extremum, closed loop stability was studied 

with regard to optimisation from the economic perspective (Krstic and Wang, 2000). With the 

assumption of significant duality, an NMPC with an economic orientation was analysed in terms of 

nominal stability property (Diehl et al., 2010). Moreover, it was reported that multiple solutions 

result from formulations utilising linear economic objective functions, where a number of degrees 

of freedom remain to be optimised, and may be used to enhance operability through computing a 

second optimisation problem (Huesman et al., 2008). On the other hand, for efficient process 

economic optimisation, it has been reported that, at times, rapid achievement of the steady state 

may not be beneficial. Moreover, a turnpike-like trend results from an economic objective 

formulation (Rawlings and Amrit, 2008). While it seeks to follow a constant path, in the final part 

of the horizon, the trendline departs from the constant. Such a trend has also been previously 

reported in the economics literature, as being a feature of economic optimisation problems (Carlson 

et al., 1991). 

A number of workers have addressed the problem of FCC process optimisation, where Rhemann et 

al. (1989) demonstrated an advanced control approach with systematic optimisation. In another 

study, a fitting model was used to derive five independent variables (preheat and reactor 

temperatures, and rate of feedstock, and HCO supply, as well as slurry recycling), where the 

generalised reduced gradient (GRG) technique was used to solve the economic objective function. 

Subsequently, optimised set values were input to the control system. For a residual catalytic 

cracking (RCC) unit, model-predictive control, with on-line optimisation, was applied (Cutler and 

Perry, 1983). This comprised a 40 equation, 20 independent variables, black box system for which 

a regression was performed using a large dataset covering different plants. The successive quadratic 

programming (SQP) technique was utilised to both formulate and solve the objective function 

containing constraints on variables; as a result, optimised set values for the process model-

predictive controller were generated. The regression equation aspect of the optimisation scheme, 

means that not all the process behaviour is captured, which necessitates frequent updates of the 

model. An empirical model for predicting cracking products yield was combined with energy and 

mass balance, at macroscopic level, to form a Model IV FCC unit optimisation model (Ellis et al., 

1998). Subsequently, a performance comparison was made between on-line and off-line 

optimisation, in terms of varying product pricing structure, and feedstock composition. However, 
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the work is not of direct industrial value, since the Model IV FCC unit lacks riser or slide valves, 

and is an outmoded plant type, which has been superseded by the upgraded FCC unit. 

7.1.1 Integrated Real-Time Optimization and Control 

The traditional approach to optimisation and control involves layers, in which the upper supervisory 

or optimisation layer is separate from the lower control layer; in this scheme, optimised control 

values are generated in the real-time optimisation (RTO) layer, and then passed down to the control 

layer for implementation. A steady state model is the basis for the RTO, and as such executed once 

the process achieves the steady state. In its separate layer, process control values are generated 

utilising a different model and frequencies. In this context, these two separate layers do not process 

the same data, which creates conflict and so predicted operating values may not be optimal; 

integrating both layers are still subject of research, and workers have attempted to tackle this 

systematically. The theory for such an integrated approach, in regard of performance and stability 

analysis, is well established. At present, two major classes have been proposed based on either 

model type or RTO execution frequency (Adetola, 2008). 

1. Single level strategy:  This approach involves the simultaneous solution of both the control and 

economic optimisation problems; this is achieved by including the economic objective term in the 

standard MPC objective function, and so a single algorithm MPC solves both problems (de 

Gouv‟ea and Odloak, 1998; Zanin et al., 2002). This non-linear objective function contains both 

constraints that are steady state and dynamic, which must be resolved. In order to achieve the 

desired performance and stability, tuning of the relevant weighting factors is needed to properly 

implement this extended controller. The weighting factor values are determined by a significant 

amount of simulation (Zanin et al., 2002), which differs from a linear MPC scheme for which 

tuning is subject to specific guidelines. The single layer strategy allows rapid responses to changes 

in process variables, more so than in a two layer implementation. The disadvantage is that this 

strategy is only suitable for processes with short settling time, to which a linear model can be 

applied. 

2. Two level strategy: This represents the classical hierarchical control structure, which aims to take 

into consideration the process‟ dynamic and non-linear behaviour. Typically, this approach is based 

on the idea of two levels; on the upper level, the economic optimisation as a dynamic process is 

addressed, while on the lower level, the non-linear MPC computations are performed (Kadam et al., 

2002; Kadam et al., 2003; Zhu et al., 2004). Given the existence of two distinct layers, their 
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solution cycles need not follow the same sample intervals; hence, the RTO may be performed only 

when a disturbance or change occurs in the process conditions. As such, the RTO may be triggered 

by a disturbance sensitivity analysis, which detects persistent disturbances having high sensitivities 

(Kadam et al., 2002; Kadam et al., 2003). The RTO algorithm is based on dynamic models, in 

which appropriate set points are recalculated whenever economic benefits can be secured. A key 

factor in the success of this approach is the interaction of these two layers. The potential drawbacks 

to this approach revolve around the varying dynamic models that are applied. 

The decomposition of the real-time economic optimisation of the process into a single layer or two 

has been proposed by many workers (Mohsen et al., 2011; Glauce et al., 2010; Wurth et al., 2009; 

Ioannis, 2005; Haruo et al., 2004; Zanin et al., 2002; Zanin et al., 2000; Loeblein and Perkins, 

1999; Miriam et al., 1998; Robert et al., 1998). 

7.2 Process optimizer for Economic NMPC of the FCCU 

The FCC unit economic optimisation has a simple objective, to achieve the maximum profit from 

the process (Han et al., 2004). Therefore, the objective function seeks to maximise the difference 

between material and operating costs, and the market value of the products yielded by the process; 

this is given by: 

   max , , , ,

1 1

ps f sN N

f x u p F w F w C x u p
pMF pMF kFJ kFJ opr

p k

    
 

 (7.1) 

where       represents the product streams  (LPG, gasoline, HCO and LCO);      represents the 

feedstock streams (gas oil and slurry recycles); and       represents the operating cost (cost of 

utility consumption and generation, and others). 

A different objective function, which maximised the difference in feedstock and products value, 

was proposed (Umesh and Armando, 1998). In a simplification of the function, utility costs, 

comprising fuel, power consumption, etc, were considered negligible. However, the disadvantage in 

neglecting these terms is that a false premise will result, where using more power to produce a 

greater amount of products will be considered an optimum, while this is not actually the case, as 

there is a rise in cost associated, for example, with driving compressors at the maximum. 

Furthermore, there is an implicit assumption that the market has unlimited capacity to absorb 

whatever quantity of product is produced. Another assumption is that any unused feedstock is fully 
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recovered, and maintains its value. With the exception of wash oil and diesel feedstocks, the 

resulting cost function is given by: 

 3 3ugo gl gl gs gsC F F v F v F v           (7.2) 

where F3 flow of gas-oil feed, gal/s, Fgl flow of gasoline, gal/s, Fgs flow of lighter gas, gal/s, Fugo 

flow of unused (uncracked) gas-oil, gal/s. v3 value of gas-oil feed, $/gal, vgl value of gasoline, $/gal, 

vgs value of lighter gas, $/gal. 

Costs with respect to the manipulated variables and utilities can also be included for a more detailed 

representation of the actual costs. 

7.2.1 One layer economic NMPC of the FCCU 

In a hierarchical dynamic real-time optimisation and control scheme, the upper level is typically 

that of the optimisation algorithm, where the FCC optimum economic operating values are 

determined. The solution of the optimisation problem posed is achieved using the SQP algorithm, 

which incorporates an economic objective function, the process constraints set, and four decision 

variables addressed by the optimisation engine. The decision variables selected were the fuel flow 

rate, spent catalyst valve position, and the temperatures in the riser and regenerator. The existing 

typical constraints for an FCCU were described comprehensively by McFarlane et al. (1993). In 

this work, the manipulated variables and constraints selected for optimisation are presented in Table 

7.1. Values were assigned to the different parameters, where the combustion air blower (operating 

range 60 ± 70 kg/s) was at maximum as indicated by a 100% open suction valve V6; valve positions 

for the spent catalyst and regenerator were 0.3% open at the beginning; in operation, the wet gas 

compressor suction valve V11 was 95% open. The chosen combustion constraints followed the 

proposal by McFarlane et al. (1998), and comprised the choice of regenerator temperature and 

oxygen content of stack gas, or stack gas CO concentration of 350 ppm maximum. In the initial 

simulations, the stack gas CO concentration was used as a constraint in the DRTO. The variable 

process parameters were given by explicit expressions, following which the objective function was 

computed. 
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Table 7.1: Constrained and manipulated variables for application to FCC unit. 

Constrained and manipulated variables Min  Max 

Fuel flow rate, SCF/s 10 F5 70 

Spent catalyst valve position, % 0.1 svsc 0.8 

Oxygen concentration in stack gas valve, ppm 0 cO2,sg 350 

Regenerator temperature, C 685 Treg 760 

In this work, simplified economic objective function was used, mainly focusing on optimising the 

product distribution, rather than taking production rates and cost of raw material or operational 

costs into account. The aim of this analysis was to show the advantage of adopting an economic 

NMPC strategy in order to adapt the operating conditions of the FCCU to obtain products that were 

adapted according to the varying trends in demand due to environmental, seasonal, or other 

changes. This objective function to be minimized is given by: 

                                     + 

                                             (7.3) 

                      (7.4) 

                        (7.5) 

where w1,2,... i  cost related weighting coefficient. Three different scenarios were considered, 

corresponding to the scenarios in Table 7.2, represented by, 

                            (7.6) 

                            (7.7) 

                            (7.8) 

The objective function presented here is typical of what is found in practice, in that a system of 

multiple variables requires real-time optimisation to achieve particular objectives that may vary, 

during the production, while being constrained in specific aspects. Two manipulated inputs were 

used in the control schemes evaluated, comprising of the fuel flow rate, u1=F5 (SCF/s), and spent 

catalyst valve position, u2=svsc (%). The regenerator and reactor temperature are analysed during 
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the economic control scheme, since these represent the main controlled process outputs for the 

other control approaches, and their variations has a significant impact on the overall performance of 

the plant. Note however, that in the case of economic NMPC these outputs are not directly 

regulated. 

A set of four cases were formulated for the optimisation of a FCC unit with a daily production of 

46,000 barrels with the objective of profit maximisation. The optimisation cases were used to 

compare the performance of control algorithms for different market price scenarios (Table 7.2). The 

benchmark chosen for comparison was the first case, corresponding to a classical NMPC 

implementation which uses the advanced control algorithm to track predetermined but constant 

operating setpoints for the reactor and regenerator temperatures, similarly as described in Chapter 

6. Although these values would in general be determined to achieve acceptable profit and 

performance corresponding to a particular raw material and operating conditions, this regulatory 

scheme is unable to adapt the operating conditions to achieve continuous profit optimisation. 

Table 7.2: Scenarios of the operation studies 

Case Algorithms Objective Disturbance 

1 NMPC Benchmark study Ψf      + 5% 

2 2.1 DRTO/NMPC 

Maximize LCO Ψf       + 5% 

2.2   NMPC  

3 3.1 DRTO/NMPC 

Maximize LPG Ψf       + 5% 

3.2 DRTO/NMPC with environmental constraint 

4 DRTO/NMPC Minimize LCO Ψf       + 5% 

The NMPC controller adopts the same tuning parameters and constraints as the DRTO/NMPC 

algorithm except for the weight of the economic components. The initial steady state of the FCC 

was given by: uss = [32 0.3] and for the reactor and regenerator temperatures, yss = [531.6 729.8] 

were used, which were also the setpoint values for the first, benchmark regulatory NMPC scenario. 

The prediction horizons used in the algorithm were: m = 3 and p = 3. The constraints on the 

manipulated inputs considered were: umax = [70 0.8], umin = [10 0.1].  In addition, the sampling 

period is equal to 100 s. The disturbance comprised 5% increase in the coking formation factor for 

all cases.  
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Case 1: Benchmark study using NMPC for regulatory control 

This case presents the benchmark study when NMPC is used to regulate the reactor and regenerator 

temperature at their fixed setpoint values, and the control objective is to minimize any deviation 

from these setpoint values in the case of any process disturbance. The simulations performed are 

illustrated below in Figures 7.2 - 7.4. In Figure 7.2, the effect of the disturbance on the system‟s 

behaviour can be clearly seen. It is also clear that the controller can restore the temperatures by 

manipulating the inputs. The effects of corrective action can be seen as a decrease in LCO yield 

from 0.19 % to 0.17 % (Figure 7.3 (a)) and at the same time increasing LPG and gasoline 

percentage (Figure 7.3 (b and c)). Although this might be favoured, depending on the product 

requirement, but an undesirable significant increase in CO and decrease in O2 amounts does not 

make this operating scenario feasible (Figure 7.4.(a and b)), due to  potential violation of 

environmental constraints. Although this simulation scenario demonstrated the remarkable 

performance of the NMPC approach to keep the temperatures within very small variation around 

the setpoint (below 0.2 C compared to 5 C in the open loop simulations shown in Chapter 4), the 

results emphasize several key observations: 

(i) Good regulatory performance (maintaining the setpoint at its desired values) does not 

guarantee optimal operation of the plant in all disturbance scenarios. As it can be seen, in 

these results, despite the tight control of the process temperatures significant variations in 

the product distribution are caused by the disturbance related to the change in the quality of 

raw material. 

(ii) Depending on the actual economic objective under which the FCCU operates at the 

moment when a disturbance occurs, from the economic operation point of view these 

disturbance can be differentiated as “beneficial” (good) and “harmful” (bad) disturbances, 

despite the fact that they both may cause deviation of the control system from its original 

setpoints. Note however that the same distrurbance may be considered “good” or “bad” 

depending of the economic objective under which the plant operates at the moment when 

the disturbance occurs. For example, if the FCCU operates under the economic objective 

expressed simply as to maximize the LPG concentration, a 5% increase in the coking 

factor, can be considered as a “beneficial” or “good” disturbance as it causes an increase in 

the LPG concentration (also shown in the case of the uncontrolled open loop simulations in 

Chapter 4). In this case, although the disturbance creates a deviation of the process 

temperatures from their original setpoints using control effort and utility costs to regulate 

the process at the original setpoint may actually reduce the economic objective than doing 
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no control at all. Certainly the process must be controlled under all conditions, but the 

control scheme should offer the possibility to adapt the operating conditions and potential 

exploit the effect of “beneficial” disturbance to achieve economically optimal operation, 

while maintain an operational, safety and environmental constraints.  

(iii) Additional constraints e.g. related to environmental considerations should also be taken into 

account to achieve a globally optimal performance. Operating conditions which may 

maximize a particular economic objective related to the product composition but violate 

e.g. the furnace capacity to burn all resulting CO and hence violates environmental 

constraints are not acceptable. 

In the following several economic NMPC scenarios are presented taking the aforementioned 

observations into account. 

 

Figure 7.2: ControlledandmanipulatedvariablesresponsesforNMPCinpresenceofΨf  disturbance 

(5 % step increase at t = 8000 s). 
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Figure 7.3: Model outputs dynamic responses for NMPC (a) LCO, (b) LPG, and (c) Gasoline. 
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Figure 7.4: Model outputs dynamic responses for NMPC (a) cCOsg. and (b) cO2,sg. 
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In this case, the economic objective function is to maximise LCO concentration based on seasonal 

demand, especially in winter, where it is more valuable than other products. The tuning parameters 

adopted in the (DRTO/NMPC) algorithm are as follows: m = 3 and p = 3; the cost related weighting 

coefficient is                    ; and the output constraints are defined as follows: ymax = [555 

760] and ymin = [525 685].  

Figure 7.5: Controlled and manipulated variables responses for DRTO/ENMPC of maximizing LCO in 

presenceofΨf  disturbance (5 % step increase at t = 8000 s). 
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maintain the riser outlet temperature on target. A higher bed temperature, therefore, decreases the 

catalyst/oil ratio, which usually has undesirable effects on the product yields. 

On the other hand, a low dense bed temperature is also undesirable, because it can force the 

regenerated catalyst slide valve to open fully, and can thereby limit the processing capacity of the 

unit. The F5 saturates during the control, indicating that the maximum fuel flow is required to raise 

the temperature to the economic optimum. Note that in these simulations the costs of utilities such 

as associated to the increase in F5 are neglected. After the process is brought to the new operating 

conditions that correspond to the particular fresh feed quality a disturbance in the raw material 

quality is simulated as a 5% increase in the coking factor. The ENMPC automatically adapted the 

operating conditions (e.g. increase mainly the regenerator temperature) to maintain economically 

optimal operations. This illustrates the working of the ENMPC, since when the coking factor of the 

raw material increases more coke is formed and hence higher temperature is needed to regenerated 

the catalyst. This new condition is automatically detected and found by the proposed ENMPC 

scheme. 

The simulation results can be divided into two groups i.e. before and after disturbance at 8000s. For 

instance, in Figure 7.6 (a), the first part shows a sharp increase in LCO yield with a peak value of 

(0.39 %) at 2000s followed by a small decrease. This corresponds to the optimal LCO 

concentration corresponding to the raw material quality considered initially. In the second part after 

the disturbance developed, the LCO slightly increases and stabilizes at 0.365. The DRTO/ENMPC 

technique shows better performance for maximizing the LCO yield (0.365), as shown in Figure 7.6 

(a), which is a significant increase compared with the previous LCO yield (0.17 %) obtained in the 

bachmark simulation when the process was regulated at the original steady state temperature 

setpoints (Figure 7.3 (a)). Figure 7.6 (b) also shows an increase in LPG yield before the 

disturbance, yet the yield was reduced slightly after the disturbance, but still remained greater than 

case 1 (0.196). 
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Figure 7.6: (a) LCO yield when the economic objective is to maximize LCO and (b) LPG yield. 
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Figure 7.7: Model outputs dynamic responses for DRTO/NMPC (a) gasoline, (b) cCOsg and (c) cO2,sg . 
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The O2 level rapidly decreases as the controller pushes more catalyst into the regenerator to 

maintain the regenerator temperature at the desired level. The oxygen concentration falls slightly 

when the disturbance is introduced, but returns to the pre-disturbance level after the controller‟s 

corrective action. This is the most important parameter in the regenerator and can vastly affect the 

operation of the unit. The main purpose of the regenerator is to burn off all the coke that has been 

formed during the course of the cracking reactions. The heat that is produced during the burning of 

coke in the regenerator is used to maintain the required temperature in the reactor for normal 

operation of the unit. It is also essential to ensure that all the coke is burnt off, or else the activity of 

the catalyst is reduced, and maintaining the reactor temperatures becomes difficult. The air rate to 

the regenerator is set to maintain a slight amount of excess O2 in the regenerator flue gases. About 

1-3% excess oxygen is maintained so as to ensure that all the coke in the spent catalyst is burnt off 

in the regenerator.  

For comparison the results with regulatory NMPC (case 2.2) are shown in Figures 7.8-7.10. The 

steady state optimal controlled variables obtained from the DRTO/ENMPC algorithm were used as 

the setpoint temperature values for the regulatory NMPC. Figure 7.8 demonstrates the behaviour of 

the controlled and manipulated variables when they attempt to track the new setpoint values. The 

reactor temperature appears to follow the setpoint even in the presence of the disturbance. The 

regenerator temperature in the first part, before the disturbance, was brought to the new optimal 

steady state by the controller, but as the disturbance proceeded, it increased slightly, because more 

carbon was produced in the bed. Figure 7.9 (a) shows an increase in the LCO (0.33), and comparing 

it with the previous LCO yield (0.37) produced from DRTO/ENMPC proved that the proposed 

ENMPC approach gave an improvement in the LCO yield of 4 %, which is of significant value 

from the economic point of view, especialy considering the high-volume production of the FCCU. 

The results illustated that in this distrubance and objective scenario it is more economic to find a 

new opearting condition than to regulate the process at the previously deermined optimal setpoint 

values. The ENMPC approach was able to exploit the potentia beneficial effect of the distrubance 

and increased the LCO concentraion even further compared to the optimal value with the original 

raw material, whereas forcing the FCCU to operate at or close to the previously determined optimal 

temperature leads to an actual decrease in the the LCO concentration. Furthermore the ENMPC 

approach kept the CO emissions at a much lower level after the disturbance than the NMPC. Figure 

7.9 (b) shows better LPG yield (0.2773) than that produced with DRTO/ENMPC, however this was 

not considered in the optimisation. 
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Figure 7.8: Controlled and manipulated variables responses for the regulatory NMPC using the 

setpointsdeterminedbytheENMPCforthenominalrawmaterial,inpresenceofΨf  disturbance (5 % 

step increase at t = 8000 s). 
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Figure 7.9: Model outputs dynamic responses for NMPC (a) LCO, (b) LPG and (c) gasoline. 
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Figure 7.10: Model outputs dynamic responses for NMPC (a) cCOsg and (b) cO2,sg. 
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Figure 7.11 shows how the controlled and manipulated variables react to find the optimal operating 

condition to achieve maximum LPG yield.  

Figure 7.11: Controlled and manipulated variables responses for DRTO/ENMPC of maximizing LPG 

inpresenceofΨf  disturbance (5 % step increase at t = 8000 s). 
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Figure 7.12: (a) LPG yield when the economic objective is to maximize LPG, (b) LCO and (c) gasoline. 
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a further increase can be observed and the LPG yield stabilises at 0.285. The limited variation after 

the disturbance is due to the fact that the manipulated inputs were saturated hence limiting the 

ability of the ENMPC to react to the disturbance. Nevertheless the ENMPC approach was able to 

recognize the beneficial effect of the disturbance and allowed both the reactor and regenerator 

temperatures to increase resulting in an additional increase in LPG yield.The first part in Figure 

7.12 (b) shows a sharp increase in LCO yield, followed by a small decrease. In the second part, 

after the disturbance, the LCO yield slightly increases and stabilizes at 0.375 %. The 

DRTO/ENMPC technique, in this case, shows better performance not only for maximizing LPG, 

but also the LCO yield has increased more than the previous case 2 (0.365) as shown in Figure 

7.6(a). Figure 7.12 (c) shows a significant decrease in gasoline yield in both parts of the simulation, 

before and after the disturbance, from the initial value 0.42 to 0.148, however this parameter was 

not considered in the optimisation. 

 

 

Figure 7.13: Model outputs dynamic responses for DRTO/ENMPC of (a) cCOsg and (b) cO2,sg. 
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Figure 7.13 (a) illustrates an increase in CO emission (681 ppm) as shown in the first part, which 

temporarily exceeds the allowed emission limits (350 ppm). Subsequently the controller was able to 

bring the CO to a lower level, however the temporary violation of the constraints could results in a 

significant amount of CO release into the atmosphere. The O2 level, shown in Figure 7.13 (b), 

rapidly decreases to maintain the regenerator temperature at the desired level. The O2 concentration 

goes down slightly when the disturbance began at 8000s and stabilizes at 2.48 %. 

DRTO/ENMPC of the FCCU with CO environmental constraint 

In this section, the same approach as in the previous case (case 3.1) was used, aiming to maximize 

the LPG yield by applying an environmental constraint for CO emissions (to keep CO 

concentration below 350 ppm). Figure 7.14 shows how the controller‟s corrective action with the 

temperatures worked to achieve the optimal operating condition values, while maintaining the 

environment constraints. 

 

Figure 7.14: Controlled and manipulated variables responses for the DRTO/ENMPC of maximizing 

LPG with environmental constraints inthepresenceofΨf  disturbance (5 % step increase at t = 8000 s). 
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It can be clearly seen in Figures 7.15 (a, b and c) for LPG, LCO and gasoline yields respectively, 

that these were identical to the earlier values, especially in the second part. The first parts show that 

slight damping occurred, because of the controller‟s corrective actions to maintain the CO 

constraint limit, as shown in Figure 7.16 (a).  

 

 

 

Figure 7.15: Model outputs dynamic responses for the DRTO/ENMPC (a) LPG, (b) LCO and (c) 

gasoline. 
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However, the re-circulation slide valve for spent catalyst, svsc, opened fully, as a control action, to 

allow more deposited catalyst to enter the upper regenerator section. After that, some of the hot 

catalyst from the upper zone was taken to the lower zone in the regenerator to maintain the required 

minimum temperature so that complete combustion is ensured. This is essential, because if the 

combustion is incomplete, then the coke balance in the catalyst will start burning in the dilute phase 

of the catalyst in the upper zone and in the flue gas lines. The heat that will be liberated during that 

burning will not be absorbed fully, as the density of catalyst in that area is very low.  

This will result in a cyclone effect, and other hardware being exposed to very high temperatures 

causing mechanical damage. This phenomenon, as explained earlier, is called afterburning. In such 

cases, the re-circulation slide valve is opened so that the hot catalyst flows back to the lower section 

of the regenerator, thereby increasing temperature, which will result in more combustion taking 

place and all the C and CO is converted into CO2. 

 

 

Figure 7.16: Model outputs dynamic responses for DRTO/NMPC of (a) cCOsg and (b) cO2,sg. 
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Case 4: DRTO/ENMP of the FCCU to minimize LCO yield to gain in Gasoline yield 

In this case, the economic objective function is to minimize LCO based on seasonal demand. The 

cost related weighting coefficient is                    , and the constraints on the manipulated 

inputs, considered here are: umax = [70 0.8], umin = [10 0.1]. The output constraints are defined as 

follows: ymax = [555 760] and ymin = [525 685], and the sampling period is equal to 100 s. The 

coking formation factor disturbance has been applied by 5% increase at t = 8000s. Figure 7.17 

shows how the controlled and manipulated variables react to find the optimal operating condition 

values to fulfil the economic objective function goal.  

Figure 7.17: Controlled and manipulated variables responses for the DRTO/ENMPC of minimizing 

LCO in the presence of Ψf  disturbance (5 % step increase at t = 8000 s). 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

513

526

539

T
r (
C

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

704

717

730

T
re

g
 (
C

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

20

30

40

F
5
 (

S
C

F
/s

)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0.2

0.3

0.4

time (s)

s
v
s
c
 (

%
)

 



Chapter 7: Economic Optimization of FCCU 

 

 
 206  
  

Similarly to the previous case the manipulated inputs are saturated but this time at their minimum 

limits. This limits the performance of the ENMPC approach to achieve global optimum 

nevertheless the simulation results even under these constrained conditions show significant 

economic benefits. 

The DRTO/NMPC technique appears to show the LCO yield being minimized to be able to 

maximize the gasoline yield.  

 

 

 

Figure 7.18: (a) LCO yield when the economic objective is to minimize LCO, DRTO/NMPC, (b) 

Gasoline and (c) LPG.  
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Figure 7.18 (a), indicates that a sharp drop in the LCO yield to 0.092 is obtained, which is a 

significant decrease compared with the LCO yield in case 1 (a decease with 17 % compare to the 

benchmark values (Figure 7.3 (a)). In Figure 7.18 (b), the first part shows a sharp increase in 

gasoline yield to 0.59 at 3000 s followed by a small decrease. In the second part, the gasoline 

decreases and stabilizes at 0.57. Figure 7.18 (c) shows a sharp decrease in LPG yield, before the 

disturbance, and the yield slightly increased, after the disturbance (to 0.11). However, this value is 

still lower than case 1 (0.19). 

 

 

Figure 7.19: Model outputs dynamic responses for DRTO/NMPC of (a) cCOsg and (b) cO2,sg. 
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However, the excess O2 (4.85 %) in the stack gas is economically wasteful, since energy is 

expended to blow air into the regenerator vessel.  

Table 7.3 summarises the results of cases obtained using RTO for different economic objective 

functions and NMPC controller that have been considered in this chapter.  

Table 7.3: Summary of results 

Cases Variable 

Tr  (ᵒC) Treg (ᵒC) LPG (%) LCO (%) Gasoline 

(%) 

cCOsg 

(ppm) 

cO2,sg  

(%) 

C
as

e 
1

 

Initial 531.6 729.8 0.176 0.193 0.427 0.489 3.3 

Optimal1 531.6 729.8 0.196 0.1777 0.4333 2.3e+4 0.0204 

C
as

e 
2

 

2
.1

 

Initial 531.6 729.8 0.176 0.193 0.427 0.489 3.3 

Optimal1 550.66 748.71 0.2706 0.356 0.1934 0.4512 3.4 

Optimal2 551.2 751.6 0.267 0.365 0.187 0.489 3.315 

2
.2

 

Initial 551.2 751.6 0.176 0.193 0.427 0.489 3.3 

Optimal1 550.32 749.5 0.279 0.343 0.197 0.451 3.4 

Optimal2 551.2 751.6 0.277 0.336 0.207 104.8 1.347 

C
as

e 
3

 

3
.1

 

Initial 531.6 729.8 0.176 0.193 0.427 0.489 3.3 

Optimal1 553.28 751.9 0.283 0.363 0.166 1.85 2.8 

Optimal2 555.1 756.4 0.285 0.374 0.148 3.832 2.484 

3
.2

 

Initial 531.6 729.8 0.176 0.193 0.427 0.489 3.3 

Optimal1 553.26 751.9 0.283 0.363 0.166 1.82 2.8 

Optimal2 555.1 756.4 0.285 0.374 0.148 3.832 2.484 

C
as

e 
4

 Initial 531.6 729.8 0.176 0.193 0.427 0.489 3.3 

Optimal1 526 725 0.112 0.086 0.572 0.0152 4.73 

Optimal2 516.7 715.2 0.115 0.093 0.59 0.021 4.852 

 

7.3 Conclusions 

The varying conditions on the market have encouraged the chemical processing industry to 

maximise the capabilities of the available plants. The productivity, and hence profitability, of high 

capital cost plant must be linked more closely to market demand, which can be achieved by 
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designing control strategies which are able to take these demands into account and set the operating 

conditions to provide optimal performance under changing market requirements. 

In this work, a single layer, simplified, DRTO/ENMPC controller was studied. The controller 

proposed combines both on-line optimisation and control of multiple parameters with constraints. 

This allows simultaneous solution of both the control and optimisation problems as one. Initial 

results revealed that this optimising controller can bring a highly disturbed process to a stable state, 

as well as successfully controlling it at a new operating state, despite constraints, that satisfies 

specific economic criteria.  

Optimisation of plant during dynamic operation creates new opportunities for maximising plant 

profitability and associated productivity. The novel concept of beneficial (good) and harmful (bad) 

disturbances is introduced and it is shown that the proposed approach is able to differentiate 

between these two scenarios, and potentially exploit the benefits of good disturbances, while 

maintaining the plant within the operating constraints. An additional benefit of the economic 

NMPC-based process simulator is its potential to be used as a practical tool for training plant 

operating personnel in the new plant operation regimes. Plant operating personnel can use the 

simulation tool to understand how the optimal operating conditions are achieved under different 

disturbances in the context of new operating constraints for the key process parameters, enhancing 

process understanding. 

 

 

 

 

 



Chapter 8: Conclusions and Future Work 

 

 
 210  
  

CHAPTER 8                                             

CONCLUSIONS AND FUTURE WORK 

This chapter provides an overview of the conclusions that can be drawn from the results of the 

work presented in this thesis. Some aspects of the work that require further development and 

improvement, which may form the basis for future investigations, are proposed. 

8.1 Conclusions 

The aim of this research project was to develop a mathematical model that can simulate the 

behaviour of the FCC unit, which consists of feed and preheat system, reactor (riser and stripper), 

regenerator, air blower, wet gas compressor, catalyst circulation lines, and the main fractionators. 

The model was subsequently used in studies of control and economic optimisation. The developed 

model is able to describe the complex dynamics of the reactor-regenerator system, and also 

includes the dynamic model of the fractionator, as well as a detailed five lump kinetic model for the 

riser (with components gas oil, gasoline, diesel, LPG and coke). This model is able to predict and 

describe the compositions of the final production rate, and the distribution of the main components 

in the final product. This allows the estimation of economic factors, related to the operation of the 

FCCU. This aim has been attained through successful achievements of the relevant objectives listed 

in Chapter 1 and individually presented in Chapters 2 to 7. The overall aim was to provide a 

systematic and comprehensive framework for robust economic control for optimal system 

operations. The main conclusions of the chapters and thesis are presented below. 

In addition to an overview of some aspects of the advanced control processes as they currently 

stand, Chapter 2 also presented a comprehensive literature review of the development of linear and 

nonlinear model predictive control strategies. The detailed evaluation of the trends of industrial 

applications and preparation of the model predictive control approaches indicate that linear and 

nonlinear MPC are suitable technologies for the FCCU, with significant potential to increase the 

profitability and efficiency of the unit. This is part of the objective to gain knowledge and 

understanding of FCC unit behaviour, as well as its characteristics, so that these can be accounted 

for in the process controller design. The work has produced a compilation of literature methods for 

improving FCC unit productivity and efficiency that have been in use from 1941 to the present. 
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An original mathematical model for the FCC process was developed based on the momentum, 

mass, and energy dynamic balances, and incorporates process hydrodynamics, heat transfer, mass 

transfer and catalytic cracking kinetics based on a lumping strategy. Molecules and reactions are 

lumped according by their boiling point and treated as pseudo-components for a global description 

of the phenomena taking place in the reactor.  

The FCCU mathematical model includes seven main components of the overal system: (1) feed and 

preheat system, (2) reactor (riser and stripper), (3) regenerator, (4) air blower, (5) wet gas 

compressor, (6) catalyst circulation lines, and (7) the main fractionator. The novelty of the model 

consists in that besides the complex dynamics of the reactor-regenerator system, it also includes the 

dynamic model of the fractionator, as well as a model capable of predicting the yields of valuable 

products and gasoline octane value, and a kinetic model for the riser section, which also 

incorporates the detailed effect of temperture on the product distribution. Different kinetic models 

where studied starting with the three lumped kinetic model, to a complex model with 13 lumped 

components. From the presented models, the five-lump (namely: gas oil, gasoline, diesel  (LPG), 

gases and coke) kinetic model for the riser section was chosen to model the product composition in 

the FCC riser, since it corresponds to the available literature data and provides sufficient 

complexity to describe the yields of the key valuable products and gasoline octane value.  

The dynamic simulator was used to study the dynamic behaviour of the process. A set of dynamic 

simulations were performed to study the dynamic response of the FCCU to disturbances. The 

selected disturbances reflect possible upsets that affect the normal operation of the unit, and were 

selected from a practical point of view, after several discussions and close cooperation with refinery 

personnel. Simulations demonstrate that the process is multivariable, strongly interacting and 

highly nonlinear. Inverse response behaviour has also been observed, indicating difficulties in the 

controller design. The simulation study showed that the developed simulator is sufficiently complex 

to capture the major dynamic effects that occur in an actual FCCU system and is able to depict the 

main dynamic characteristics of a typical commercial FCC process. The simulator includes all 

important economic, environmental and safety constraints of the overal system. 

The developed simulator enables engineering and technical personnel to carry out research on the 

design, operation, performance, and development of a proper control system for a modern catalytic 

cracking unit. It could also be an efficient tool for training operating personnel. 
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As the catalytic cracking is achieved through endothermic reactions, operating the reactor at the 

highest possible temperature, allows greater productivity. At the same time, catalyst regeneration 

through coke burning also means that both reactor and regenerator should be operated at the 

highest temperature allowed by their metallurgical limits. Stack gas carbon monoxide 

concentration is also restricted due to environmental issues. A detailed dynamic FCC model and 

solver were implemented in the dynamic simulator (as described in Chapter 3). The model 

correlation equations relating to the transport and thermodynamic properties were derived from the 

published literature, directly or through a non-linear regression. The products composition was 

found to be significantly influenced by the disturbances applied in this study. Therefore, the 

disturbances have a huge impact on process economics due to the FCC unit‟s high production 

volume. Among the key disturbances studied is fresh feed coke formation factor, which has a large 

effect on the process variables. The FCC unit control must not only act to raise productivity, but 

must also ensure that the process is safe for the environment; stack gas CO concentration must be 

maintained below specific limits.  

In applying advanced PID controllers to the multivariable process, the closed-loop dynamic 

behaviour was studied using the dynamic simulator. Analysis of the process controllability was 

performed using a simple RGA matrix, with the aim of exploring the interactions between the 

different process variables.The PID control approach was applied for several control structures, 

which demonstrated that between some loops there were strong couplings. This could complicate 

the tuning of individual loops. A genetic algorithm (GA) based optimsation approach was 

implemented to determine the tuning parameters for the interacting PID control loops. This 

approach was used to evaluate 2x2 and 3x3 control schemes in terms of setpoint tracking and 

distrubance rejection performance. The results of the simulation show that increasing the number 

of independent loops causes the PID controller performance to  degrade significanty, as manifested 

in higher settling interval. It was found that the control system stabilised the process, yet in the 

presence of many disturbances, resulted in non-optimal operation resulting in negative 

environmental effects or economic losses. Therefore, applying advanced multivariable control 

systems to the control of the FCC unit is justified by the potential economic benefits to be 

achieved. 

 

The benefits of model predictive control as the most commonly used multivariate control approach 

were demonstrated for the control of the FCCU. A detailed analysis of based on Linear MPC was 
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first performed which showed to advantages of using sets of control inputs and outputs based on 

relative well decoupled systems, which can offer suitable performance of the lower level basic 

control system, in a real industrial implementation. The study also indicated that the fuel flow in the 

preheater is a key manipulated input in the control of the reactor temperature which is one of the 

most important performance influencing process parameters. The benefits of non-square control 

architectures with larger number of manipulated variables than controlled outputs was shown to 

provide better decoupling between the controlled outputs than typical square control structures 

(same number of inputs and outputs). Simulation results also indicated the limited applicability of 

the linear MPC when applied to the nonlinear plant.  

 

An efficient real-time nonlinear model predictive control (NMPC) strategy, based on efficient 

multiple shooting optimization was developed using a real-time iteration scheme. The performance 

of the proposed scheme was evaluated for the FCCU process. Based on this efficient approach a 

single layer, DRTO/ENMPC controller was investigated, which combines real-time optimisation 

with constrained multivariable control. Hence, this controller is able to simultaneously handle the 

process control and economic optimisation of the plant. The primary results show that such a 

controller is capable of stabilising a process and operating it within specified constraints to achieve 

defined economic objectives. Several simulated case studies have demonsted that applying a real-

time model-based online optimisation scheme based on economic criteria can provide optimal 

process performance in case of changing quality of the raw material, while maintaining the process 

within operational and environmental constraints. 

8.2 Recommendations for future work 

The following aspects of the work presented in this thesis could be incorporated in future work: 

1. The present work permits the study of some interesting aspects regarding the modelling and 

control of the catalytic cracking unit. One of these trends could be the improvement of the 

present model by applying a more complex kinetic model for the riser section, together 

with a more detailed model for the main fractionator and then model validation and 

optimization based on experimental data. This would allow an even more comprehensive 

investigation of the effects of changed operating conditions on the product distribution.  

2. Another important development could be along the line of studies on thermal integration 

applied to the existing catalytic cracking model and NMPC control; results could lead to 

efficient use of raw material and energy, increased economic efficiency to reduce energy 
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and raw material consumption, reduction of operating costs or improvement of profit 

margins of the process.  

3. Plant-wide control is one of the advanced trends being applied by refiners. These systems 

can look at large amounts of data, and are expected to make more consistent and logical 

decisions than people could or would concerning unit or plant-wide profitability. The 

presented study only used a 2x2 system for the economic control to provide a proof of 

concept of the benefits of the ENMPC approach. Future studies incorporating a more 

comprehensive plant-wide control scheme with multiple inputs and outputs in the ENMPC 

algorithms may provide additional benefits of the control scheme. 

4. Evaluation of an output feedback scheme in the control approach applied that incorporates 

a state and parameter estimation step would significantly improve the robustness of the 

control scheme. In the present study state feedback was assumed, which is a realistic 

assumption considering that the main state variables modelled are measurable in the real 

plant, however the employment of state and parameter estimation approach (e.g. extended 

Kalman filter, or moving horizon estimation) would allow the use of more complex process 

models and confer adaptability to changind process conditions. 

5. More detailed economic objectives could be included in the economic optimisation, taking 

into account production rates, operating and utility costs and other aspects that affect the 

profit of the plant. 

 

As a final conclusion, it is important to emphasise that FCCU control continues to be a vital field 

with significant research problems, and a nonlinear model-based predictive control scheme that 

allows the incorporation of economic objectives has significant potential benefits to provide a 

positive step-change in the improvement of the current operating practices for industrial FCCUs.  
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Appendix  

The following MATLAB codes for main model which contains the main FCC Unit (7) parts with 5-

lump riser model.  

function [sys, 

X0]=fccmodcol2(t,X,u,flag,disturban

ce); 

  

persistent ft xO2sg xCOsg xCO2sg 

fsc frgc cO2sg cCOsg yhcofinal 

ylcofinal yglnfinal 

%    Constants 

  

%    feed system constants 

  

f1set = 13.8; 

f2set = 0.0; 

%f3set = 126.0; 

%f4set = 5.25; 

  

%    preheat system constants 

  

%f5set  =  34.0; 

taufo  =   60.0; 

taufb  =  200.0; 

UAf    =   25.0; 

temph1 =  460.9; 

DHfu   = 1000.0; 

a1     =    0.15; 

a2     =  200.0; 

  

%    reactor and fractionator 

constant 

  

%psif   = 1.0; 

Aris   = 12.3;%9.6 

hris   = 129.4;%60; 

rov    = 0.57; 

ropart = 68; 

c1     = 7.12e-3;%8.84e-3; 

c2     = 3.8e-5;%4.0e-5; 

tref   = 999;%999; 

mcpeff = 10000; 

cpc    = 0.31; 

tbase  = 959; 

cpfl   = 0.82; 

tbasef = 700; 

t4     = 572; 

cpsv   = 0.80; 

cpsl   = 0.80; 

Qsr    = 412.0; 

cpfv   = 0.81; 

Qfr    = 309; 

dtstrp = 10; 

k12    = 0.5; 

patm   = 15;%14.7; 

dpfrac = 9; 

astr   = 70.9;%60; 

eloi   = 11.5;%124.5; 

estrp  = 26.2;%130; 

  

%     wet-gas compressor constants 

  

pvru = 101.; 

k11  = 1.5; 

k13  = 0.01; 

  

%     ubend constants 

  

roc    = 45; 

areaur = 6.7;%3.7; 

areaus = 8.2;%5.2; 

lur    = 44;%56; 

lus    = 30.2;%56; 

furgc  = 17; 

fusc   = 47; 

R      = 10.73; 

vslip  = 2.2; 

g      = 32.2; 

Asvsc  =930;%749; 

Asvrgc = 930;%533; 

  

%     Regenerator constans 

  

ch      = 0.075; 

mh      = 2; 

cpc     = 0.31; 

Qe      = 556; 

areg    = 706.5;%590; 

zlp     = 11; 

ztop    = 106;%52;%47; 

zcyc    = 103;%50;%45; 

dH1     = 46368; 

dH2     = 169080; 

cpH2O   = 8.62; 

cpN2    = 7.22; 

cpCO    = 7.28; 

cpCO2   = 11; 

cpO2    = 7.62; 

dHH     = 60960; 
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cpair   = 7.08; 

tair    = 416; 

mi      = 200000; 

fof     = 424; 

zsp     = 13; 

hsp     = 20; 

asp     = 7; 

k14     = 1.1; 

alp     = 8.73; 

taufill = 40; 

hlift   = 34; 

etap    = 40.3;%155; 

elift   = 61;%134; 

  

%    airblowers 

  

k6     = 250; 

k7     = 25; 

%k8     = 10; 

k9     = 10; 

kca    = 40; 

tatm   = 75; 

tcombd = 190; 

vcombs = 40; 

vcombd = 1000; 

kavg   = 1.39; 

polef  = 1; 

samin  = 5000; 

samax  = 6100; 

sb     = 5950; 

klift  = 5; 

tliftd = 225; 

vliftd = 200; 

kcla   = 0.01; 

kila   = 0.005; 

  

  

V6    = 1.0; 

V7    = 0.0; 

V8    = 0.0; 

V9    = 0.0; 

V11   = 0.95; 

V12   = 0; 

V13   = 0.0;     

Vlift = 0.42; 

dpset = -3.37; 

  

%coloana 

NT=41;  

% Location of feed stage (stages 

are counted from the bottom): 

NF=21; 

% Number of components 

NC=3; 

% Relative volatilities: 

alpha=[alpha1 alpha2...alphaNC] 

alpha=[2.0 1.5 1.0]; 

%F=0.33; 

  

  

%     Algebraic equations 

  

if abs(flag) == 1 

  

   %   state variables 

  

     for i=1:82 

         x(i)=X(i); 

     end 

     for i=83:123 

         M(i)=X(i); 

     end 

     T2   = X(124); 

     T3   = X(125); 

     Tr   = X(126); 

     Csc  = X(127); 

     Wr   = X(128); 

     P5   = X(129); 

     P7   = X(130); 

     Treg = X(131); 

     Crgc = X(132); 

     Wreg = X(133); 

     Wc   = X(134); 

     Wsp  = X(135); 

     P6   = X(136); 

     n    = X(137); 

     P2   = X(138); 

     vsc  = X(139); 

     vrgc = X(140); 

     P1   = X(141); 

     fcol = X(142); 

      

%intrari 

     f3      = u(1); 

     f4      = u(2); 

     svsc    = u(3); 

     svrgc   = u(4); 

     LT      = u(5); 

     fair_c  = u(6); 

     f5set   = u(7); 

     psif    = u(8); 

     

      VB     = 0.4; 

     V14     = 0.612; 

      

 %disturbances 

  

%     if t>30000 

%    dpfrac=10.45; %13; %10; %9.75;  



Appendix 

 

 
 242  
  

% end 

%    

%      if t>=10000 

%     psif = 0.5; 

%     end 

%    

     %if t>=300 & t<=3900 

        % tatm=tatm+30/28800*(t-

300); 

        %elseif t>3900 

        % tatm=tatm+30*3600/28800; 

        %end 

      

  

%   2.2  feed system equations 

  

f1 = f1set; 

f2 = f2set; 

%f3 = f3set; 

%f4 = f4set; 

  

%   2.3  Preheat system computing 

  

f5    = f5set; 

  

dtin  = T3-temph1; 

dtout = T3-T2; 

tln   = (dtin-

dtout)/(log(dtin/dtout)); 

Qloss = a1*f5*T3-a2; 

  

%   2.4 General equations 

  

%  regenerator computing used in 

ubend and other 

  

prgb = P6 + Wreg/144/areg; 

f7   = kca*sqrt(max(0,P2-prgb)); 

rog  = 

520*P6/(379*14.7*(Treg+459.6)); 

  

p4   = P5+dpfrac; 

dprr = P6-p4; 

  

fsg = k14*V14*sqrt(max(0,P6-patm)); 

  

% regenerator equations using total 

air flowrate 

  

% ft       = f7; 

% fair     = f7/29; 

ft       = f7 + fair_c; 

fair     = ft/29; 

vs       = 0.5*(fsg+fair)/rog/areg; 

rocdil   = -0.878+0.582*vs; 

epsf     = 0.332+0.06*vs; 

rocdens  = ropart*(1-epsf); 

zbed     = 

min(zcyc,(2.85+0.8*vs+(Wreg-

rocdil*areg*zcyc)/... 

            (areg*rocdens))*1/(1-

rocdil/rocdens)); 

pblp     = P6;  

me       = areg*vs*rocdil; 

roag     = 29*P6/R/(Tr-

dtstrp+459.6); 

  

%   2.5    ubend equations 

  

%     computing fsc 

  

fsc        = vsc*areaus*roc; 

Msc        = (Wr + 

areaus*lus*roc)/g; 

deltapsc   = 144*(p4-pblp) + 

Wr/astr+(estrp-elift)*roc; 

deltapsvsc = 

((50*0.453*60/0.7/900)^2)*((fsc/svs

c/Asvsc)^2)/roc; 

fmicsc     = (deltapsc - 

144*deltapsvsc)*areaus - 

vsc*lus*fusc; 

  

%     computing frgc 

  

frgc  = vrgc*areaur*roc; 

  

vris  = (f3+f4)/rov+frgc/ropart; 

roris = (f3+f4+frgc)/vris; 

prb   = P5+dpfrac+roris*hris/144; 

  

  

Mrgc        = (max(0,Wsp) + 

areaur*lur*roc)/g;                 

deltaprgc   = 144*(P6-

prb)+(max(0,Wsp))/asp + (etap-

eloi)*roc; 

deltapsvrgc = 

((50*0.453*60/0.7/900)^2)*((frgc/As

vrgc/svrgc)^2)/roc; 

fmicrgc     = (deltaprgc - 

144*deltapsvrgc)*areaur - 

vrgc*lur*furgc;   

  

%   2.6 wet-gas compressor 

equations 

  

crw    = pvru/P7; 

hwg    = 182922.1*(crw^(0.0942)-1); 
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fsucwg = 11600+sqrt(max(0,1.366e+8-

0.1057*hwg^2)); 

f11    = 2.636e-6*fsucwg*P7; 

fV13   = k13*V13*pvru; 

  

%   2.7 airblowers equations 

  

if V6 > 0.5 

         fpp6 = exp(2*log(0.15)*(1-

V6)); 

else 

         fpp6 = 0.3*V6; 

end 

if V7 > 0.5 

        fpp7 = exp(2*log(0.15)*(1-

V7)); 

else 

        fpp7 = 0.3*V7; 

end 

  

Pbase = 14.7*P2/P1; 

Fsucn_comb = 

45000+sqrt(max(0,1.581e+9-

1.249e+6*(Pbase)^2)); 

f6   = 

0.0451*P1*Fsucn_comb/(tatm+460); 

fV7  = k7*fpp7*sqrt(max(0,P2-

patm)); 

fV6  = k6*fpp6*sqrt(max(0,patm-

P1)); 

  

%reactorul cu riser cu 5 componenti 

  

COR=frgc/(f3+f4);                     

tc=Aris*hris/vris;   

  

k1=1.54; 

k2=5; 

k3=0.55; 

khco=7.09; 

k4=0.35; 

k5=0; 

k6=0; 

k7r=0.25; 

k8=0; 

kd=6.25; 

alfa=18.5; 

xhco=0.19; 

  

CTO=COR; 

  

yhco0=0.95; 

ylco0=0.035; 

ygln0=0.01; 

ygas0=0; 

ycoke0=0; 

ficoke0=1; 

teta0=0; 

  

step=0.01; 

  

No_of_elemnts = fix(tc/step); 

  

yhco   = zeros(1,No_of_elemnts); 

ylco   = zeros(1,No_of_elemnts); 

ygln   = zeros(1,No_of_elemnts); 

ygas   = zeros(1,No_of_elemnts); 

ycoke  = zeros(1,No_of_elemnts); 

ficoke = zeros(1,No_of_elemnts); 

  

yhco(1)=yhco0; 

ylco(1)=ylco0; 

ygln(1)=ygln0; 

ygas(1)=ygas0; 

ycoke(1)=ycoke0; 

ficoke(1)=ficoke0; 

  

t=0; 

timp(1) = 0; 

  

cont = 1; 

while t <= tc 

     cc=0.68*(1-exp(-30*t)); 

   ficonv=exp(-(kd*cc)); 

     

dyhco=((-(k1+k2+k3)*(yhco(cont)-

xhco))*ficonv-(k7r*(yhco(cont)-

xhco))*ficoke(cont))*CTO; 

dylco=((k1*(yhco(cont)-xhco)-

k4*ylco(cont))*ficonv-

(k8*ylco(cont))*ficoke(cont))*CTO; 

dygln=(k2*(yhco(cont)-

xhco))*ficonv*CTO; 

dygas=(k3*(yhco(cont)-

xhco)+k4*ylco(cont))*ficonv*CTO; 

dycoke=(k7r*(yhco(cont)-

xhco)+k8*ylco(cont))*ficoke(cont)*C

TO; 

dficoke=-alfa*ficoke(cont); 

  

yhco(cont+1)=yhco(cont)+step*dyhco; 

ylco(cont+1)=ylco(cont)+step*dylco; 

ygln(cont+1)=ygln(cont)+step*dygln; 

ygas(cont+1)=ygas(cont)+step*dygas; 

ycoke(cont+1)=ycoke(cont)+step*dyco

ke; 

ficoke(cont+1)=ficoke(cont)+step*df

icoke; 

  

t=t+step; 
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timp(cont+1) = t; 

cont = cont + 1; 

end 

  

yhcofinal=yhco(end); 

ylcofinal=ylco(end); 

yglnfinal=ygln(end); 

ygasfinal=ygas(end); 

ycokefinal=ycoke(end); 

ficokefinal=ficoke(end); 

timp=timp(end); 

frhco=yhcofinal/(yhcofinal+ylcofina

l+yglnfinal+ygasfinal); 

frlco=ylcofinal/(yhcofinal+ylcofina

l+yglnfinal+ygasfinal); 

frgas=ygasfinal/(yhcofinal+ylcofina

l+yglnfinal+ygasfinal); 

frglngas=(yglnfinal+ygasfinal)/(yhc

ofinal+ylcofinal+yglnfinal+ygasfina

l); 

frtotal= frhco+frlco+frglngas; 

quf=frhco+frlco+frglngas-frgas; 

zF=[frglngas frlco frhco];    

  

fb      = (psif*f3 + 3*f4 + 2*f1 - 

0.8*f2)/(f3 + f4); 

wris    = frgc*Aris*hris/vris; 

whsv    = 3600*(f3+f4)/wris; 

taur    = wris/60/frgc; 

fcoke   = 

(1.3557*(f3+f4)*fb*taur^(-

1.98431))/(100*whsv); 

fwg     = (f3+f4)*(c1+c2*(Tr-

tref)); 

Qrgc    = frgc*cpc*(Treg-tbase); 

Qrin    = Qrgc+f3*cpfl*(T2-tbasef); 

Qcatout = frgc*cpc*(Tr-tbase); 

Qslurry = f4*(cpsv*(Tr-tref)+Qsr); 

Qff     = f3*(cpfv*(Tr-tref)+Qfr); 

dhcrack = 172.7+3*(Tr-tref); 

Qcracking = (f3+f4)*dhcrack; 

Qrout     = 

Qcatout+Qslurry+Qcracking+Qff; 

Qr      = Qrin-Qrout; 

tsc     = Tr-dtstrp; 

fV12 = k12*V12*sqrt(P5-patm); 

  

if V11 <= 0.5 

         fppwg = 0.3*V11; 

else 

         fppwg = 

exp(2*log(0.15)*(1-V11)); 

end 

  

fV11 = k11*fppwg*sqrt(max(0,P5-

P7)); 

  

fH   = fsc*(Csc-Crgc)*ch; 

epse = 

min(1,max(epsf,epsf+(1.904+0.363*vs

-0.048*vs^2)/zbed)); 

  

z    = 0;  

treg = Treg; 

xCO  = 0; 

xCO2 = 0; 

%xO2  = 1/fair*(0.21*fair-0.25*fH); 

xO2  = max(0,1/fair*(0.21*fair-

0.25*fH));%% s-a modificat de mine 

stepz = 0.2; 

  

while z < ztop 

  if z<zcyc 

      deltaz = 1; 

  else 

      deltaz = 0; 

  end 

      cpz = 

0.79*cpN2+xCO*cpCO+xCO2*cpCO2+xO2*c

pO2+... 

            

(0.25*cpH2O*fH+deltaz*cpc*me)/fair; 

  

      k1 = 6.9547*exp(19.88-

34000/(treg+459.6)); 

      k2 = 0.69148*exp(15.06-

25000/(treg+459.6)); 

      k3 = 0.6412*P6*exp(25.55-

45000/(treg+459.6)); 

  

%    

      if z<=zbed 

         rob = 1-epse; 

      else 

        rob  = (1-epse)*exp(-

1000*fair/(areg*vs*rocdil)*(z-

zbed)); 

      end 

  

     dxO2z  = (100*(-0.5*k1-

k2)*rob*Crgc-k3*xCO)*xO2/vs; 

     dxCOz  = (100*k1*rob*Crgc-

2*k3*xCO)*xO2/vs; 

     dxCO2z = -dxO2z - 0.5*dxCOz; 

    if z <= zbed 

      dtregz = 0; 

    else 

      dtregz = 

(dH1*dxCOz+dH2*dxCO2z)/cpz; 
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    end 

   

  xO2  = xO2+dxO2z*stepz; 

  xCO  = xCO+dxCOz*stepz; 

  xCO2 = xCO2+dxCO2z*stepz; 

  treg = treg+dtregz*stepz; 

  

       if xCO < 0 

          xCO = 0; 

       end 

       if xO2 < 0 

          xO2 = 0; 

       end 

       if xCO2 < 0 

          xCO2 = 0; 

       end 

       if z > zcyc 

         rob  = 0; 

         tcyc = treg; 

       end 

     z = z + stepz; 

end 

  

xO2sg   = xO2; 

xCOsg   = xCO; 

xCO2sg  = xCO2; 

  

Qfg     = 

(fair*(xO2sg*cpO2+xCOsg*cpCO+xCO2sg

*cpCO2+0.79*cpN2)+0.5*cpH2O*fH)*(tc

yc-tbase); 

Qsc     = fsc*cpc*(tsc-tbase); 

Qc      = 

fair*(xCOsg*dH1+xCO2sg*dH2); 

Qh      = fH*dHH; 

Qair    = fair*cpair*(tair-tbase); 

Qoutreg = Qfg+Qrgc+Qe; 

Qinreg  = Qair+Qh+Qc+Qsc; 

Qreg    = Qinreg-Qoutreg; 

lsp     = max(0,Wsp)/roc/asp; 

d       = min(3,hsp-lsp); 

fsp     = 

max(0,fof*sqrt(asp)*(zbed-zsp)-

4925-20*(3-d)); % - 27; 

cO2sg   = 100*fair*xO2sg/fsg; 

cCOsg   = 

1e+6*28*xCOsg/(28*xCOsg+44*xCO2sg+3

2*xO2sg+22.12); 

vregg   = areg*zcyc-areg*zbed*(1-

epse); 

%fcol= f3+f4+frgc-fsc-fwg; 

%coloana 

KcB=10;  KcD=10;                     

% controller gains 

MDs=0.1; MBs=0.1;                    

% Nominal holdups - these are 

rather small   

Ds=0.165; Bs=0.165;                      

% Nominal flows 

MB=X((NC-1)*NT+1);   

MD=X(NC*NT) ;   % Actual reboiler 

and condenser holdup 

D=Ds+(MD-MDs)*KcD ;   % Distillate 

flow 

B=Bs+(MB-MBs)*KcB ;            % 

Bottoms flow      

x=X(1:(NC-1)*NT);                       

% Liquid compositions from btm to 

top 

M=X((NC-1)*NT+1:NC*NT);                 

% Liquid hold up from btm to top 

  

% Rearrange elements of composition 

vector (x) for later use 

Iu=[1:NT]'*ones(1,NC-

1)+NT*ones(NT,1)*[0:NC-2];     

x=(x(Iu))';                           

% THE MODEL 

  

% Vapour-liquid equilibria 

(multicomponent ideal VLE, 

Stichlmair-Fair, 'Distillation', p. 

36, 1998) 

y=(alpha(1:NC-

1)'*ones(1,NT).*x)./(ones(1,NC-

1)'*(1+(alpha(1:NC-1)-1)*x)); 

 % Vapor Flows assuming constant 

molar flows 

i=1:NT-1;    V(i)=VB*ones(1,NT-1); 

i=NF:NT-1;   V(i)=V(i) + (1-

quf)*fcol*0.4535/178; 

% Liquid flows are given by 

Franci's Weir Formula 

L(i)=K*Mow(i)^1.5  

% Liquid flow L(i) dependent only 

on the holdup over the weir Mow(i) 

% M(i)= Mow(i) + Muw(i) (Total 

holdup = holdup over weir + holdup 

below weir)  

Kuf=21.65032/60;                                

% Constant above feed 

Kbf=29.65032/60;                                

% Constant below feed 

%Kuf=19/60;     %pt. dpfrac=9.0                           

% Constant above feed 

%Kbf=27/60;     %pt. dpfrac=9.0                           

% Constant below feed 

Muw=0.1;                                    

% Liquid holdup under weir (Kmol)   
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i=2:NF;      L(i)= Kbf*(M(i)-

Muw).^1.5;     % Liquid flows below 

feed (Kmol/min)     

i=NF+1:NT-1; L(i)= Kuf*(M(i)-

Muw).^1.5;     % Liquid flows above 

feed (Kmol/min)  

L(NT)=LT;                                    

% Condenser's liquid flow 

(Kmol/min)   

% Time derivatives from material 

balances for  

% 1) total holdup and 2) component 

holdup 

  

% Column 

j=2:NT-1; 

dMdt(j) = L(j+1)         - L(j)       

+ V(j-1)         - V(j); 

  

for i=1:NC-1; 

for j=2:NT-1; 

dMxdt(i,j) = L(j+1)*x(i,j+1)  - 

L(j)*x(i,j)   + V(j-1)*y(i,j-1)     

- V(j)*y(i,j); 

end  

end 

  

% Correction for feed stage 

% The feed is assumed to be mixed 

into the feed stage 

  

dMdt(NF) = dMdt(NF)  + 

fcol*0.4535/178; 

  

dMxdt(:,NF)=dMxdt(:,NF)+(fcol*0.453

5/178)*zF(1:NC-1)'; 

  

% Reboiler (assumed to be an 

equilibrium stage) 

dMdt(1) = L(2) - V(1)        - B; 

  

i=1:NC-1; 

dMxdt(i,1)= L(2)*x(i,2) - 

V(1)*y(i,1) - B*x(i,1); 

 % Total condenser (no equilibrium 

stage) 

dMdt(NT) = V(NT-1) - LT  - D; 

  

i=1:NC-1; 

dMxdt(i,NT)= V(NT-1)*y(i,NT-1) - 

LT*x(i,NT) - D*x(i,NT); 

  

% Compute the derivative for the 

mole fractions from d(Mx) = x dM + 

M dx 

dxdt=(dMxdt-x.*(ones(NC-

1,1)*dMdt))./(ones(NC-1,1)*M'); 

  

% Rearrange elements of composition 

vector (dxdt) for later use 

Ix=[1:(NC-1)*NT]';    

W=dxdt'; 

dxdt=W(Ix);         

  

dT2   = (temph1+UAf*tln/f3-

T2)/taufo; 

dT3   = (f5*DHfu-UAf*tln-

Qloss)/taufb; 

dTr   = (Qrin-Qrout)/mcpeff; 

dCsc  = (frgc*Crgc+fcoke-fsc*Csc-

Csc*(frgc-fsc))/Wr; 

dWr   = frgc-fsc; 

dP5   = 0.833*(fwg-fV11-fV12+fV13); 

dP7   = 5*(fV11-f11); 

dTreg = (Qinreg-

Qoutreg)/((Wreg+max(0,Wsp))*cpc+mi)

; 

dCrgc = (fsc*Csc-fH-

(max(0,fsp)*Crgc+12*fair*(xCOsg+xCO

2sg))-Crgc*... 

         (fsc-max(0,fsp)))/Wreg; 

dWreg = fsc-max(0,fsp); 

dWc   = fsc*Csc-fH-

(max(0,fsp)*Crgc+12*fair*(xCOsg+xCO

2sg)); 

dWsp  = max(0,fsp)-frgc; 

dP6   = (R*(n*(Qinreg-

Qoutreg)/((Wreg+max(0,Wsp))*cpc... 

+mi)+(Treg+460)*(fair-fsg)))/vregg; 

dn    = fair-fsg; 

dP2   = 

R*(tcombd+460)/29/vcombd*(f6-fV7-

f7); 

dvsc  = fmicsc/Msc; 

dvrgc = fmicrgc/Mrgc; 

dP1   = R*(tatm + 460)*(fV6-

f6)/(29*vcombs); 

dfcol = f3+f4+frgc-fsc-fcol; 

%sys = [dxdt;dMdt']; 

sys = 

[dxdt;dMdt';dT2;dT3;dTr;dCsc;dWr;dP

5;dP7;dTreg;dCrgc;dWreg;... 

dWc;dWsp;dP6;dn;dP2;dvsc;dvrgc;dP1;

dfcol]; 

  

%i=1:123; 

 %X = 

[x;M;T2;T3;Tr;Csc;Wr;P5;P7;Treg;Crg

c;Wreg;Wc;Wsp;P6;n;P2;vsc;vrgc;P1;f

col]; 
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 elseif flag == 0 

  sys = [142 0 142+11 8 0 0]; 

   

  

X0 = [ 

    

    4.102805762039235e-001 

    5.250768045383215e-001 

    6.090295678210853e-001 

    6.647184711852767e-001 

    6.999136517544166e-001 

    7.218309205578514e-001 

    7.355425780052245e-001 

    7.442398214671327e-001 

    7.498489420584803e-001 

    7.535247153536314e-001 

    7.559668699297101e-001 

    7.576074667588276e-001 

    7.587190211488416e-001 

    7.594769446441061e-001 

    7.599961569859209e-001 

    7.603530400594605e-001 

    7.605989356947257e-001 

    7.607686491186187e-001 

    7.608859237989325e-001 

    7.609670311072776e-001 

    7.610231583520370e-001 

    7.935100634028763e-001 

    8.202657175072821e-001 

    8.418073423207758e-001 

    8.589595228917157e-001 

    8.726250679955578e-001 

    8.836454796758728e-001 

    8.927370216494378e-001 

    9.004757439591793e-001 

    9.073081306860253e-001 

    9.135718798231480e-001 

    9.195182605182517e-001 

    9.253321212605720e-001 

    9.311482385285077e-001 

    9.370639780922759e-001 

    9.431487644117131e-001 

    9.494509921460599e-001 

    9.560029811652185e-001 

    9.628244826189277e-001 

    9.699251398615792e-001 

    9.773062150484678e-001 

    1.530244978499652e-001 

    1.541263538337487e-001 

    1.459528257717734e-001 

    1.344903117907614e-001 

    1.233999670224613e-001 

    1.141560945015914e-001 

    1.070097723447256e-001 

    1.017107298678100e-001 

    9.787644439610779e-002 

    9.514324975575179e-002 

    9.321328685875070e-002 

    9.185882971957438e-002 

    9.091210762040128e-002 

    9.025217387431267e-002 

    8.979299824849162e-002 

    8.947390960606379e-002 

    8.925236108228883e-002 

    8.909862784488616e-002 

    8.899199577167828e-002 

    8.891805499293592e-002 

    8.886679315082846e-002 

    9.271398485781029e-002 

    9.511705265421500e-002 

    9.620994638509704e-002 

    9.617527103715355e-002 

    9.519883982471469e-002 

    9.344428455716700e-002 

    9.104331179342076e-002 

    8.809543157234483e-002 

    8.467221514355509e-002 

    8.082300408083755e-002 

    7.658048860952456e-002 

    7.196550956157456e-002 

    6.699093505992447e-002 

    6.166468549993386e-002 

    5.599205504002732e-002 

    4.997748248122757e-002 

    4.362590131499029e-002 

    3.694376848976960e-002 

    2.993984307260207e-002 

    2.262576268252438e-002 

    9.284641325253319e-002 

    1.099044817624081e+000 

    1.099044817624081e+000 

    1.099044817624082e+000 

    1.099044817624082e+000 

    1.099044817624083e+000 

    1.099044817624083e+000 

    1.099044817624084e+000 

    1.099044817624084e+000 

    1.099044817624084e+000 

    1.099044817624084e+000 

    1.099044817624084e+000 

    1.099044817624084e+000 

    1.099044817624083e+000 

    1.099044817624083e+000 

    1.099044817624082e+000 

    1.099044817624082e+000 

    1.099044817624081e+000 

    1.099044817624081e+000 

    1.099044817624080e+000 

    1.099044817624080e+000 

    1.023048680803940e+000 
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    1.023048680803940e+000 

    1.023048680803940e+000 

    1.023048680803940e+000 

    1.023048680803940e+000 

    1.023048680803940e+000 

    1.023048680803940e+000 

    1.023048680803940e+000 

    1.023048680803940e+000 

    1.023048680803940e+000 

    1.023048680803940e+000 

    1.023048680803940e+000 

    1.023048680803940e+000 

    1.023048680803940e+000 

    1.023048680803940e+000 

    1.023048680803940e+000 

    1.023048680803940e+000 

    1.023048680803940e+000 

    1.023048680803940e+000 

    9.529993506207503e-002 

    7.826027736455383e+002 

    1.659564334971949e+003 

    9.932070027620795e+002 

    3.901281291711348e-003 

    2.225473104525494e+005 

    1.579229601661189e+001 

    1.557926799156491e+001 

    1.064425988191907e+003 

    1.952728693846411e-003 

    3.927528423494652e+005 

    1.845380965498859e+003 

    3.243834313719916e+003 

    2.786505547810026e+001 

    2.566492705837050e+002 

    3.479018022391441e+001 

    4.055562514970572e+000 

    4.963524272053554e+000 

    1.492154586174961e+001 

    8.300000000000543e+001 

 ]; 

  

elseif flag == 3 

  

    for i=1:82 

         x(i)=X(i); 

     end 

     for i=83:123 

         M(i)=X(i); 

     end 

     T2   = X(124); 

     T3   = X(125); 

     Tr   = X(126); 

     Csc  = X(127); 

     Wr   = X(128); 

     P5   = X(129); 

     P7   = X(130); 

     Treg = X(131); 

     Crgc = X(132); 

     Wreg = X(133); 

     Wc   = X(134); 

     Wsp  = X(135); 

     P6   = X(136); 

     n    = X(137); 

     P2   = X(138); 

     vsc  = X(139); 

     vrgc = X(140); 

     P1   = X(141); 

     fcol = X(142); 

     p4   = P5+dpfrac; 

dprr = P6-p4; 

  if t==0 

    ft    =7.002416469083545e+001; 

    xO2sg = 9.426727601699798e-002; 

    xCOsg = 4.259398111910952e-008; 

    xCO2sg = 9.308933947905657e-

002; 

    fsc = 1.496502568024175e+003; 

    frgc = 1.496502568024172e+003; 

    cO2sg = 9.426727601699826e+000; 

    cCOsg = 4.079815564345754e-002; 

    yhcofinal= 1.899999980733520e-

001; 

    ylcofinal = 7.899168031516896e-

002; 

   yglnfinal = 5.383451451188887e-

001; 

  

   frglngas = 0.56952817544156; 

   frlco = 0.17262037126428; 

   frhco = 0.25785145329416; 

   quf = 0.93122462693013; 

   ygasfinal = 6.607188611783442e-

02; 

   ycokefinal = 3.430893910662157e-

02; 

    

 end 

sys=[X]; 

sys = 

[X;ft;xO2sg;xCOsg;xCO2sg;fsc;frgc;c

O2sg;cCOsg;yhcofinal;ylcofinal;ygln

final]; 

  

else 

  

 sys = []; 

 end 
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