16,368 research outputs found

    Impact of different time series aggregation methods on optimal energy system design

    Full text link
    Modelling renewable energy systems is a computationally-demanding task due to the high fluctuation of supply and demand time series. To reduce the scale of these, this paper discusses different methods for their aggregation into typical periods. Each aggregation method is applied to a different type of energy system model, making the methods fairly incomparable. To overcome this, the different aggregation methods are first extended so that they can be applied to all types of multidimensional time series and then compared by applying them to different energy system configurations and analyzing their impact on the cost optimal design. It was found that regardless of the method, time series aggregation allows for significantly reduced computational resources. Nevertheless, averaged values lead to underestimation of the real system cost in comparison to the use of representative periods from the original time series. The aggregation method itself, e.g. k means clustering, plays a minor role. More significant is the system considered: Energy systems utilizing centralized resources require fewer typical periods for a feasible system design in comparison to systems with a higher share of renewable feed-in. Furthermore, for energy systems based on seasonal storage, currently existing models integration of typical periods is not suitable

    Optimization in Differentiable Manifolds in Order to Determine the Method of Construction of Prehistoric Wall-Paintings

    Full text link
    In this paper a general methodology is introduced for the determination of potential prototype curves used for the drawing of prehistoric wall-paintings. The approach includes a) preprocessing of the wall-paintings contours to properly partition them, according to their curvature, b) choice of prototype curves families, c) analysis and optimization in 4-manifold for a first estimation of the form of these prototypes, d) clustering of the contour parts and the prototypes, to determine a minimal number of potential guides, e) further optimization in 4-manifold, applied to each cluster separately, in order to determine the exact functional form of the potential guides, together with the corresponding drawn contour parts. The introduced methodology simultaneously deals with two problems: a) the arbitrariness in data-points orientation and b) the determination of one proper form for a prototype curve that optimally fits the corresponding contour data. Arbitrariness in orientation has been dealt with a novel curvature based error, while the proper forms of curve prototypes have been exhaustively determined by embedding curvature deformations of the prototypes into 4-manifolds. Application of this methodology to celebrated wall-paintings excavated at Tyrins, Greece and the Greek island of Thera, manifests it is highly probable that these wall-paintings had been drawn by means of geometric guides that correspond to linear spirals and hyperbolae. These geometric forms fit the drawings' lines with an exceptionally low average error, less than 0.39mm. Hence, the approach suggests the existence of accurate realizations of complicated geometric entities, more than 1000 years before their axiomatic formulation in Classical Ages

    Development of Neurofuzzy Architectures for Electricity Price Forecasting

    Get PDF
    In 20th century, many countries have liberalized their electricity market. This power markets liberalization has directed generation companies as well as wholesale buyers to undertake a greater intense risk exposure compared to the old centralized framework. In this framework, electricity price prediction has become crucial for any market player in their decision‐making process as well as strategic planning. In this study, a prototype asymmetric‐based neuro‐fuzzy network (AGFINN) architecture has been implemented for short‐term electricity prices forecasting for ISO New England market. AGFINN framework has been designed through two different defuzzification schemes. Fuzzy clustering has been explored as an initial step for defining the fuzzy rules while an asymmetric Gaussian membership function has been utilized in the fuzzification part of the model. Results related to the minimum and maximum electricity prices for ISO New England, emphasize the superiority of the proposed model over well‐established learning‐based models

    Clustering functional data using wavelets

    Get PDF
    We present two methods for detecting patterns and clusters in high dimensional time-dependent functional data. Our methods are based on wavelet-based similarity measures, since wavelets are well suited for identifying highly discriminant local time and scale features. The multiresolution aspect of the wavelet transform provides a time-scale decomposition of the signals allowing to visualize and to cluster the functional data into homogeneous groups. For each input function, through its empirical orthogonal wavelet transform the first method uses the distribution of energy across scales generate a handy number of features that can be sufficient to still make the signals well distinguishable. Our new similarity measure combined with an efficient feature selection technique in the wavelet domain is then used within more or less classical clustering algorithms to effectively differentiate among high dimensional populations. The second method uses dissimilarity measures between the whole time-scale representations and are based on wavelet-coherence tools. The clustering is then performed using a k-centroid algorithm starting from these dissimilarities. Practical performance of these methods that jointly designs both the feature selection in the wavelet domain and the classification distance is demonstrated through simulations as well as daily profiles of the French electricity power demand

    Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics.

    Get PDF
    BackgroundSingle-cell transcriptomics allows researchers to investigate complex communities of heterogeneous cells. It can be applied to stem cells and their descendants in order to chart the progression from multipotent progenitors to fully differentiated cells. While a variety of statistical and computational methods have been proposed for inferring cell lineages, the problem of accurately characterizing multiple branching lineages remains difficult to solve.ResultsWe introduce Slingshot, a novel method for inferring cell lineages and pseudotimes from single-cell gene expression data. In previously published datasets, Slingshot correctly identifies the biological signal for one to three branching trajectories. Additionally, our simulation study shows that Slingshot infers more accurate pseudotimes than other leading methods.ConclusionsSlingshot is a uniquely robust and flexible tool which combines the highly stable techniques necessary for noisy single-cell data with the ability to identify multiple trajectories. Accurate lineage inference is a critical step in the identification of dynamic temporal gene expression

    Incorporating Power Transmission Bottlenecks into Aggregated Energy System Models

    Get PDF
    Energy scenario analyses are able to provide insights into the future and possible strategies for coping with challenges such as the integration of renewable energy sources. The models used for analyzing and developing future energy systems must be simplified, e.g., due to computational constraints. Therefore, grid-related effects and regional differences are often ignored. We tackle this issue by presenting a new methodology for aggregating spatially highly resolved transmission grid information for energy system models. In particular, such approaches are required in studies that evaluate the demand for spatially balancing power generation and consumption in future energy systems. Electricity transmission between regions is crucial, especially for scenarios that rely on high shares of renewable energy sources. The presented methodology estimates transmission line congestions by evaluating the nodal price differences and then applies a spectral clustering on these particular link attributes. The objective of the proposed approach is to derive aggregated model instances that preserve information regarding electricity transmission bottlenecks. The resulting models are evaluated against observables such as the annual amount of redispatched power generation. For a selection of defined performance indicators, we find a significantly higher accuracy compared to the commonly used, spatially aggregated models applied in the field of energy scenario analysis

    Assessment of the Effectiveness of the Greek Implementation. VRU-TOO Deliverable 14

    Get PDF
    The work of VRU-TOO is targeted specifically at the application of ATT for reducing risk and improving comfort (e.g. minimisation of delay) for Vulnerable Road Users, namely pedestrians. To achieve this, the project operates at three levels. At the European level practical pilot implementations in three countries (U.K., Portugal and Greece) are linked with behavioural studies of the micro-level interaction of pedestrians and vehicles and the development of computer simulation models. At the National level, the appropriate Highway Authorities are consulted, according to their functions, for the pilot implementations and informed of the results. Finally, at the local level, the pilot project work is fitted into specfic local (municipality) policy contexts in all three pilot project sites. The present report focuses on the Elefsina pilot application in Greece and the relevant National and Local policy contexts are the following. At the National level, the ultimate responsibility for road safety and signal installations rests with the Ministry of Environment and Public Works. The Ministry is responsible for the adoption of standards and solutions for problems and also for a large number of actual installations, since local authorities lack the size and expertise to undertake such work on their own One of the project's aims is to provide information to the Ministry as to the suitability of the methods developed for aiding pedestrian movement, ultimately leading to a specification for its wider use. The Ministry is expecting to use the final results of the present study for possible modifications of its present standards for pedestrian controlled traffic signals. At the local level (Elefsina) the municipality has, in the past, pursued environmental improvements through pedestrianisation schemes in the city centre. At the same time it has developed a special traffic management policy, to solve a particularly serious problem of through traffic. A summary of the policy is contained in Appendix A and more details in a previous deliverable (Tillis, 1992). In the particular case of Elefsina pedestrian induced delay to through vehicular traffic, may form a key element in this policy ensuring at the same time, an incentive to divert to the existing bypass and enhancing pedestrian movement. The effectiveness of pedestrian detection techniques tested in the pilot, will provide valuable information on the future implementation of the policy. Thus, the Elefsina Pilot Project operates at the same time on three levels: It provides a basis, in combination with the other two pilot project sites, for comparing the effects of pedestrian detection on pedestrian safety and comfort at a European level. It provides information to the National authorities (Ministry of Environment and Public Works) for their standards setting, scheme design and implementation tasks. It fits into a comprehensive plan at the local level for effecting environmental improvements and enhancing pedestrian amenity and comfort at the same time. In addition, an investigation into the capabilities of pedestrian detectors to function as data collection devices, was performed. The data 'quality gap' betweenvehicular and pedestrian tr&c may be closed with the utilisation of microwave pedestrian detectors, providing a more solid foundation for the planning for total person movement through networks (vehicle occupants, public transport passengers, pedestrians). This the second deliverable issued for Elefsina and comprises of the main section which contains a description of the work undertaken, the results and a number of appendices serving as background material in support of the statements in the main text

    Incorporating power transmission bottlenecks into aggregated energy system models

    Get PDF
    Energy scenario analyses are able to provide insights into the future and possible strategies for coping with challenges such as the integration of renewable energy sources. The models used for analyzing and developing future energy systems must be simplified, e.g., due to computational constraints. Therefore, grid-related effects and regional differences are often ignored. We tackle this issue by presenting a new methodology for aggregating spatially highly resolved transmission grid information for energy system models. In particular, such approaches are required in studies that evaluate the demand for spatially balancing power generation and consumption in future energy systems. Electricity transmission between regions is crucial, especially for scenarios that rely on high shares of renewable energy sources. The presented methodology estimates transmission line congestions by evaluating the nodal price differences and then applies a spectral clustering on these particular link attributes. The objective of the proposed approach is to derive aggregated model instances that preserve information regarding electricity transmission bottlenecks. The resulting models are evaluated against observables such as the annual amount of redispatched power generation. For a selection of defined performance indicators, we find a significantly higher accuracy compared to the commonly used, spatially aggregated models applied in the field of energy scenario analysis
    corecore