33 research outputs found

    Stiffness Analysis for an Optimal Design of Multibody Robotic Systems

    Get PDF

    A hybrid multi-objective evolutionary approach for optimal path planning of a hexapod robot

    Get PDF
    Hexapod robots are six-legged robotic systems, which have been widely investigated in the literature for various applications including exploration, rescue, and surveillance. Designing hexapod robots requires to carefully considering a number of different aspects. One of the aspects that require careful design attention is the planning of leg trajectories. In particular, given the high demand for fast motion and high-energy autonomy it is important to identify proper leg operation paths that can minimize energy consumption while maximizing the velocity of the movements. In this frame, this paper presents a preliminary study on the application of a hybrid multi-objective optimization approach for the computer-aided optimal design of a legged robot. To assess the methodology, a kinematic and dynamic model of a leg of a hexapod robot is proposed as referring to the main design parameters of a leg. Optimal criteria have been identified for minimizing the energy consumption and efficiency as well as maximizing the walking speed and the size of obstacles that a leg can overtake. We evaluate the performance of the hybrid multi-objective evolutionary approach to explore the design space and provide a designer with an optimal setting of the parameters. Our simulations demonstrate the effectiveness of the hybrid approach by obtaining improved Pareto sets of trade-off solutions as compared with a standard evolutionary algorithm. Computational costs show an acceptable increase for an off-line path planner. © Springer International Publishing Switzerland 2016

    MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics

    Full text link
    El libro de actas recoge las aportaciones de los autores a través de los correspondientes artículos a la Dinámica de Sistemas Multicuerpo y la Mecatrónica (Musme). Estas disciplinas se han convertido en una importante herramienta para diseñar máquinas, analizar prototipos virtuales y realizar análisis CAD sobre complejos sistemas mecánicos articulados multicuerpo. La dinámica de sistemas multicuerpo comprende un gran número de aspectos que incluyen la mecánica, dinámica estructural, matemáticas aplicadas, métodos de control, ciencia de los ordenadores y mecatrónica. Los artículos recogidos en el libro de actas están relacionados con alguno de los siguientes tópicos del congreso: Análisis y síntesis de mecanismos ; Diseño de algoritmos para sistemas mecatrónicos ; Procedimientos de simulación y resultados ; Prototipos y rendimiento ; Robots y micromáquinas ; Validaciones experimentales ; Teoría de simulación mecatrónica ; Sistemas mecatrónicos ; Control de sistemas mecatrónicosUniversitat Politècnica de València (2011). MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/13224Archivo delegad

    Application of LEGO Mindstorms Kits for Teaching Mechatronics Engineering

    Get PDF
    One of the major educators’ challenges is to teach the theoretical lessons with practical examples that can be taught in the classroom or teaching laboratories. The application of these examples will face a major problem for students in engineering: the difficulty of understanding and seeing how a mechatronic device works in everyday life. This requires the use of tools that enable the construction of different low cost prototypes to assist in student learning. Another challenge to educators is the need to motivate students during the lessons and to present models that students can make and develop on their own. Within this context this paper presents a pedagogic proposition based on the use of LEGO Mindstorms kits to teach practical lab activities in a mechatronics engineering course. The objective is to develop teaching methodologies with the use of these LEGO kits in order to motivate the students and also to promote a higher interdisciplinarity, by proposing projects that unify different disciplines. Thus, the paper is divided into three parts according to the educational experiences implemented in the course of mechatronics engineering at the Federal University of Uberlândia, Brazil. The first part presents the use of the kits in robotics discipline. The second part presents the use of the virtual kits in the Computer Aided Design discipline with zero-cost. The third part presents a multi-disciplinary project EDROM in mechatronics using LEGO kits

    Static Balancing of Wheeled-legged Hexapod Robots

    Get PDF
    Locomotion over different terrain types, whether flat or uneven, is very important for a wide range of service operations in robotics. Potential applications range from surveillance, rescue, or hospital assistance. Wheeled-legged hexapod robots have been designed to solve these locomotion tasks. Given the wide range of feasible operations, one of the key operation planning issues is related to the robot balancing during motion tasks. Usually this problem is related with the pose of the robot’s center of mass, which can be addressed using different mathematical techniques. This paper proposes a new practical technique for balancing wheeled-legged hexapod robots, where a Biodex Balance System model SD (for static & dynamic) is used to obtain the effective position of the center of mass, thus it can be recalculated to its optimal position. Experimental tests are carried out to evaluate the effectiveness of this technique and modify and improve the position of hexapod robots’ center of mass

    Robot Manipulators

    Get PDF
    Robot manipulators are developing more in the direction of industrial robots than of human workers. Recently, the applications of robot manipulators are spreading their focus, for example Da Vinci as a medical robot, ASIMO as a humanoid robot and so on. There are many research topics within the field of robot manipulators, e.g. motion planning, cooperation with a human, and fusion with external sensors like vision, haptic and force, etc. Moreover, these include both technical problems in the industry and theoretical problems in the academic fields. This book is a collection of papers presenting the latest research issues from around the world

    Natural Motion for Energy Saving in Robotic and Mechatronic Systems

    Get PDF
    Energy saving in robotic and mechatronic systems is becoming an evermore important topic in both industry and academia. One strategy to reduce the energy consumption, especially for cyclic tasks, is exploiting natural motion. We define natural motion as the system response caused by the conversion of potential elastic energy into kinetic energy. This motion can be both a forced response assisted by a motor or a free response. The application of the natural motion concepts allows for energy saving in tasks characterized by repetitive or cyclic motion. This review paper proposes a classification of several approaches to natural motion, starting from the compliant elements and the actuators needed for its implementation. Then several approaches to natural motion are discussed based on the trajectory followed by the system, providing useful information to the researchers dealing with natural motion
    corecore