338 research outputs found

    Programming MPSoC platforms: Road works ahead

    Get PDF
    This paper summarizes a special session on multicore/multi-processor system-on-chip (MPSoC) programming challenges. The current trend towards MPSoC platforms in most computing domains does not only mean a radical change in computer architecture. Even more important from a SW developer´s viewpoint, at the same time the classical sequential von Neumann programming model needs to be overcome. Efficient utilization of the MPSoC HW resources demands for radically new models and corresponding SW development tools, capable of exploiting the available parallelism and guaranteeing bug-free parallel SW. While several standards are established in the high-performance computing domain (e.g. OpenMP), it is clear that more innovations are required for successful\ud deployment of heterogeneous embedded MPSoC. On the other hand, at least for coming years, the freedom for disruptive programming technologies is limited by the huge amount of certified sequential code that demands for a more pragmatic, gradual tool and code replacement strategy

    MORTAL - Multiparadigm Optimizing Retargetable Transdisciplinary Abstraction Language

    Get PDF
    This short paper describes MORTAL, a new general-purpose programming language and compiler for high-performance scientific applications. MORTAL aims to bridge the knowledge gap between computer scientists and scientists by offering a multiparadigm programming environment that allows connecting the mathematical formulae written by scientist to algorithms implemented by the software engineer in a natural way, and understood by both. We provide the rationale for MORTAL, give an overview of the language design and the MORTAL compiler. The compiler is self-hosting, and our initial evaluation shows that MORTAL programs have similar performance as C programs

    Fast Recompilation of Object Oriented Modules

    Full text link
    Once a program file is modified, the recompilation time should be minimized, without sacrificing execution speed or high level object oriented features. The recompilation time is often a problem for the large graphical interactive distributed applications tackled by modern OO languages. A compilation server and fast code generator were developed and integrated with the SRC Modula-3 compiler and Linux ELF dynamic linker. The resulting compilation and recompilation speedups are impressive. The impact of different language features, processor speed, and application size are discussed

    A Retargetable System-Level DBT Hypervisor

    Get PDF
    System-level Dynamic Binary Translation (DBT) provides the capability to boot an Operating System (OS) and execute programs compiled for an Instruction Set Architecture (ISA) different to that of the host machine. Due to their performance critical nature, system-level DBT frameworks are typically hand-coded and heavily optimized, both for their guest and host architectures. While this results in good performance of the DBT system, engineering costs for supporting a new, or extending an existing architecture are high. In this paper we develop a novel, retargetable DBT hypervisor, which includes guest specific modules generated from high-level guest machine specifications. Our system simplifies retargeting of the DBT, but it also delivers performance levels in excess of existing manually created DBT solutions. We achieve this by combining offline and online optimizations, and exploiting the freedom of a Just-in-time (JIT) compiler operating in a bare-metal environment provided by a Virtual Machine (VM) hypervisor. We evaluate our DBT using both targeted micro-benchmarks as well as standard application benchmarks, and we demonstrate its ability to outperform the de-facto standard QEMU DBT system. Our system delivers an average speedup of 2.21× over QEMU across SPEC CPU2006 integer benchmarks running in a full-system Linux OS environment, compiled for the 64-bit ARMv8-A ISA and hosted on an x86-64 platform. For floating-point applications the speedup is even higher, reaching 6.49× on average. We demonstrate that our system-level DBT system significantly reduces the effort required to support a new ISA, while delivering outstanding performance.Publisher PD

    05101 Abstracts Collection -- Scheduling for Parallel Architectures: Theory, Applications, Challenges

    Get PDF
    From 06.03.05 to 11.03.05, the Dagstuhl Seminar 05101 ``Scheduling for Parallel Architectures: Theory, Applications, Challenges\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general

    Custom Integrated Circuits

    Get PDF
    Contains table of contents for Part III, table of contents for Section 1 and reports on eleven research projects.IBM CorporationMIT School of EngineeringNational Science Foundation Grant MIP 94-23221Defense Advanced Research Projects Agency/U.S. Army Intelligence Center Contract DABT63-94-C-0053Mitsubishi CorporationNational Science Foundation Young Investigator Award Fellowship MIP 92-58376Joint Industry Program on Offshore Structure AnalysisAnalog DevicesDefense Advanced Research Projects AgencyCadence Design SystemsMAFET ConsortiumConsortium for Superconducting ElectronicsNational Defense Science and Engineering Graduate FellowshipDigital Equipment CorporationMIT Lincoln LaboratorySemiconductor Research CorporationMultiuniversity Research IntiativeNational Science Foundatio
    • …
    corecore