
This paper was presented at the NIK 2015 conference. For more information see http://www.nik.no/

MORTAL - Multiparadigm Optimizing Retargetable
Transdisciplinary Abstraction Language

Ove Kåven1,2 and Lars Ailo Bongo2
1Kongsberg Spacetec AS, Tromsø, Norway

2Department of Computer Science, University of Tromsø, Norway
ovek@arcticnet.no, larsab@cs.uit.no

Abstract
This short paper describes MORTAL, a new general-purpose programming language and
compiler for high-performance scientific applications. MORTAL aims to bridge the
knowledge gap between computer scientists and scientists by offering a multiparadigm
programming environment that allows connecting the mathematical formulae written by
scientist to algorithms implemented by the software engineer in a natural way, and
understood by both. We provide the rationale for MORTAL, give an overview of the
language design and the MORTAL compiler. The compiler is self-hosting, and our initial
evaluation shows that MORTAL programs have similar performance as C programs.

1. Introduction
Computational modeling and analysis has become essential in many scientific and
engineering disciplines. However, to solve current problems in computational science
ever more powerful software and hardware is required. Existing high-performance
programs have shown their usefulness, but efficient implementations typically require
trained computer scientists. Unfortunately, a computer scientist may not have the
necessary mathematical or statistical background to understand the computational
problem to be solved, and may therefore miss potential mathematical transformations of
the problem that might increase numerical accuracy or reduce computation time. In
addition, experienced computer scientists are usually in short supply. A solution is
therefore needed that makes existing computer scientists more efficient, reduces the
need for them, or both.

We believe a novel programming language can solve both problems if it has the
following features:
1. Multiparadigm: it must be possible for the language to be used effectively by both

software engineers through imperative or functional programming, and scientists
through declarative programming. By having multiple paradigms in the same
language, the mathematical formulae declared by the scientist can be connected to
the computation frameworks and algorithm libraries implemented by the software
engineer in a natural way, understood by both (as demonstrated in for example [1]).

2. Optimizing: the language should be designed for minimal overhead, and for
compiling to optimized machine code that can take full advantage of the available
hardware.

3. Retargetable: the language should make it possible to abstract away platform
specifics without losing performance. It should be possible to allow the same source
code to compile for various operating systems, CPUs, GPUs and even FPGAs.
Ideally, the business logic should be independent of the software libraries used to
perform the computations.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by BIBSYS: Open Journals Systems

https://core.ac.uk/display/327107624?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

4. Transdisciplinary: the language should be general-purpose, and make it possible to
write programs that can combine knowledge from different domains and be useful
for different fields.

5. Abstracting: the language should be easy and intuitive to use, and automate away as
many implementation details as possible, allowing the programmer to focus on the
concepts that are really of concern.
We have investigated numerous programming languages, but to our knowledge,

none solves all five requirements (we provide a detailed discussion in [2]). In particular,
the most relevant multiparadigm languages have the following issues: Nim [3] is too
low-level, Rust [4] is too restrictive, Scala [5] is JVM based, Wolfram [6] is proprietary
and dynamic, Oz [7] require its own VM, and Julia [1] is dynamic.

We propose a language called MORTAL that achieves all five goals. To reduce the
complexity of the language, we take full advantage of modern compiler technology, and
provide strong metaprogramming facilities. MORTAL also provides declarative
programming, and contract-based programming [8]. The above mulitparadigm
languages, and several other languages inspired the design of MORTAL. Its syntax is
from Pascal, Java, Python, and C/C++/C#, and it provides mathematical operations as in
Matlab. Objective-C and Vala [9] inspired the MORTAL memory management.

The following section gives an overview of MORTAL. Section 3 provides an initial
evaluation, and Section 4 concludes.

2. MORTAL Language and Compiler Design
MORTAL is a new metaprogrammable language with a syntax designed for use in high-
performance applications (a detailed description of the design and syntax is in [2]).

To interoperate with existing libraries and frameworks, we have initially
implemented the traditional procedural and object-oriented programming paradigms,
with a few adaptations for metaprogrammability, automatic memory management,
performance, and productivity. We have not yet designed the corresponding declarative
paradigms, but the syntax is flexible enough to integrate these later. This partially
satisfies the Multiparadigm and Retargetable requirements.

To make MORTAL customizable and usable in different domains, it provides a
number of overloadable operators and sufficient metaprogramming power to grant a
natural syntax to the use of external libraries and frameworks. This satisfies the
Transdisciplinary and Abstracting requirements.

To make it run at high performance on any available hardware, MORTAL is a
compiled language that also makes provisions for runtime code generation and runtime
algorithm specialization. This satisfies the Optimizing requirement.

To make MORTAL easy to learn for programmers familiar with other languages, it
uses a classic curly-braces syntax, with a few adaptations to make the syntax ambiguity-
free.

We have designed and implemented an optimizing compiler for MORTAL (figure
1). It implements a large part of the language design, and some of the memory
management. The compiler is written in its own language, and compiles itself (self-
hosting). The compiler generates C code, which is then compiled to machine code.
Generating C code is an easy and popular way to make code generator backends for
high-level languages, but we also plan to implement other code generators to satisfy the
Retargetable requirement. In addition, MORTAL is compatible with libraries such as
Glib, and we intend to interface with frameworks such as Spark [10].

3. Initial Evaluation
The implementation of the MORTAL language is not yet complete, but we can evaluate
the current implementation with respect to correctness, usability, and performance.

3.1. Correctness and Usability
Currently the biggest test for correctness is whether the MORTAL compiler is able to
compile itself correctly. To test this, we compile the compiler thrice. First, we build a
reference compiler from the C sources in version control. We use the reference compiler
to build a test compiler, and the use the test compiler to build itself. The resulting
compiler must compile without errors and pass the MORTAL unit test-suite, which the
current version does.

Since we have written the MORTAL in MORTAL, we also believe its
implementation show the usability of the language. Especially, we have found
MORTAL’s run-time type information (RTTI) system and its multimethods very useful
in the construction of the compiler. Multimethods have allowed manipulating the
Abstract Syntax Tree (AST) with an ease comparable to that of functional languages.

3.2. Performance
MORTAL aims to provide performance comparable to C/C++. To test this, we
implemented the fasta benchmark from the Computer Languages Benchmark Game
[11] in MORTAL and compared its performance with fasta.gcc, a reasonably well-
optimized C implementation (a faster implementation exists, but it uses UNIX file
descriptors and its own buffering, instead of standard I/O used by MORTAL)

Figure 1 MORTAL compiler design.

We implemented two versions of the benchmark in MORTAL: without I/O
optimizations, and with a level of I/O optimization comparable to the C version. The
latter uses MORTAL's C compatibility features to do direct pointer manipulation, since
we have not yet implemented slices in MORTAL.

Version Average (sec)
Optimized C 3.219
Simple MORTAL 4.427
Optimized MORTAL 3.215

Table 1 Performance of fasta benchmark, with n = 10.000.000. Average over six executions.
The measurements were done on a laptop with an AMD A10-5757M quad-core

CPU running at 2.5GHz, and 8 GB of RAM, running Debian jessie (gcc version 4.9.2).
2. The results show that a MORTAL program can achieve the performance of C (Table
1). The difference between MORTAL and C is mostly because of minor implementation
differences between the C and MORTAL programs. Since MORTAL's compiler
currently generates C code itself, it would otherwise not be possible for MORTAL to
outperform well-written C code.

4. Conclusion
This short paper has introduced and described MORTAL, a new metaprogrammable
programming language for high-performance applications, and its compiler. The
language currently has procedural and object-oriented programming, and provides many
important features such as RTTI, function and operator overloading, subtype and
parametric polymorphism, multimethods, and exceptions. The language design satisfies
most of its original goals, but we still need to design and integrate the declarative
paradigms, and implement other code generators to satisfy all five.

The compiler is self-hosting and able to compile itself, showing that the language
and its compiler is already usable. MORTAL programs match the performance of C
programs. We believe that as MORTAL and its compiler matures, it will become a
useful language for solving many of the demanding computational tasks in modern
science, and for our future work in programming language research.

MORTAL is open source, released under the MIT license, and available from
https://sourceforge.net/projects/

References
[1] Bezanson, Jeff, et al. "Julia: A fast dynamic language for technical computing." arXiv preprint

arXiv:1209.5145 (2012).
[2] Ove Henrik Kåven. Multiparadigm optimizing retargetable transdisciplinary abstraction language.

Master’s thesis, Dept. of Computer Science, University of Tromsø. April 2015.
http://hdl.handle.net/10037/7730

[3] Nim Programming Language. http://nim-lang.org/.
[4] The Rust Programming Language. http://www.rust-lang.org/.
[5] Odersky, Martin, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth, Stéphane

Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger. An overview of
the Scala programming language. No. LAMP-REPORT-2004-006. 2004.

[6] Wolfram Language. https://www.wolfram.com/language/.
[7] Smolka, Gert. The Oz programming model. Springer Berlin Heidelberg, 1995.
[8] B. Meyer, Applying 'design by contract, Computer, vol. 25, pp. 40--51, Oct 1992.
[9] Vala - Compiler for the GObject type system, https://wiki.gnome.org/Projects/Vala.
[10] Zaharia, Matei, et al. "Spark: cluster computing with working sets." Proceedings of the 2nd USENIX

conference on Hot topics in cloud computing. Vol. 10. 2010.
[11] Computer Languages Benchmark Game. http://benchmarksgame.alioth.debian.org

http://munin.uit.no/handle/10037/7730

	1. Introduction
	2. MORTAL Language and Compiler Design
	3. Initial Evaluation
	3.1. Correctness and Usability
	3.2. Performance

	4. Conclusion
	References

