5,672 research outputs found

    Video Based Handwritten Characters Recognition

    Get PDF

    Advances in Character Recognition

    Get PDF
    This book presents advances in character recognition, and it consists of 12 chapters that cover wide range of topics on different aspects of character recognition. Hopefully, this book will serve as a reference source for academic research, for professionals working in the character recognition field and for all interested in the subject

    A Sketch-Based Educational System for Learning Chinese Handwriting

    Get PDF
    Learning Chinese as a Second Language (CSL) is a difficult task for students in English-speaking countries due to the large symbol set and complicated writing techniques. Traditional classroom methods of teaching Chinese handwriting have major drawbacks due to human experts’ bias and the lack of assessment on writing techniques. In this work, we propose a sketch-based educational system to help CSL students learn Chinese handwriting faster and better in a novel way. Our system allows students to draw freehand symbols to answer questions, and uses sketch recognition and AI techniques to recognize, assess, and provide feedback in real time. Results have shown that the system reaches a recognition accuracy of 86% on novice learners’ inputs, higher than 95% detection rate for mistakes in writing techniques, and 80.3% F-measure on the classification between expert and novice handwriting inputs

    Document Image Analysis Techniques for Handwritten Text Segmentation, Document Image Rectification and Digital Collation

    Get PDF
    Document image analysis comprises all the algorithms and techniques that are utilized to convert an image of a document to a computer readable description. In this work we focus on three such techniques, namely (1) Handwritten text segmentation (2) Document image rectification and (3) Digital Collation. Offline handwritten text recognition is a very challenging problem. Aside from the large variation of different handwriting styles, neighboring characters within a word are usually connected, and we may need to segment a word into individual characters for accurate character recognition. Many existing methods achieve text segmentation by evaluating the local stroke geometry and imposing constraints on the size of each resulting character, such as the character width, height and aspect ratio. These constraints are well suited for printed texts, but may not hold for handwritten texts. Other methods apply holistic approach by using a set of lexicons to guide and correct the segmentation and recognition. This approach may fail when the domain lexicon is insufficient. In the first part of this work, we present a new global non-holistic method for handwritten text segmentation, which does not make any limiting assumptions on the character size and the number of characters in a word. We conduct experiments on real images of handwritten texts taken from the IAM handwriting database and compare the performance of the presented method against an existing text segmentation algorithm that uses dynamic programming and achieve significant performance improvement. Digitization of document images using OCR based systems is adversely affected if the image of the document contains distortion (warping). Often, costly and precisely calibrated special hardware such as stereo cameras, laser scanners, etc. are used to infer the 3D model of the distorted image which is used to remove the distortion. Recent methods focus on creating a 3D shape model based on 2D distortion informa- tion obtained from the document image. The performance of these methods is highly dependent on estimating an accurate 2D distortion grid. These methods often affix the 2D distortion grid lines to the text line, and as such, may suffer in the presence of unreliable textual cues due to preprocessing steps such as binarization. In the domain of printed document images, the white space between the text lines carries as much information about the 2D distortion as the text lines themselves. Based on this intuitive idea, in the second part of our work we build a 2D distortion grid from white space lines, which can be used to rectify a printed document image by a dewarping algorithm. We compare our presented method against a state-of-the-art 2D distortion grid construction method and obtain better results. We also present qualitative and quantitative evaluations for the presented method. Collation of texts and images is an indispensable but labor-intensive step in the study of print materials. It is an often used methodology by textual scholars when the manuscript of the text does not exist. Although various methods and machines have been designed to assist in this labor, it still remains an expensive and time- consuming process, often requiring travel to distant repositories for the painstaking visual examination of multiple original copies. Efforts to digitize collation have so far depended on first transcribing the texts to be compared, thus introducing into the process more labor and expense, and also more potential error. Digital collation will instead automate the first stages of collation directly from the document images of the original texts, thereby speeding the process of comparison. We describe such a novel framework for digital collation in the third part of this work and provide qualitative results

    Template Based Recognition of On-Line Handwriting

    Get PDF
    Software for recognition of handwriting has been available for several decades now and research on the subject have produced several different strategies for producing competitive recognition accuracies, especially in the case of isolated single characters. The problem of recognizing samples of handwriting with arbitrary connections between constituent characters (emph{unconstrained handwriting}) adds considerable complexity in form of the segmentation problem. In other words a recognition system, not constrained to the isolated single character case, needs to be able to recognize where in the sample one letter ends and another begins. In the research community and probably also in commercial systems the most common technique for recognizing unconstrained handwriting compromise Neural Networks for partial character matching along with Hidden Markov Modeling for combining partial results to string hypothesis. Neural Networks are often favored by the research community since the recognition functions are more or less automatically inferred from a training set of handwritten samples. From a commercial perspective a downside to this property is the lack of control, since there is no explicit information on the types of samples that can be correctly recognized by the system. In a template based system, each style of writing a particular character is explicitly modeled, and thus provides some intuition regarding the types of errors (confusions) that the system is prone to make. Most template based recognition methods today only work for the isolated single character recognition problem and extensions to unconstrained recognition is usually not straightforward. This thesis presents a step-by-step recipe for producing a template based recognition system which extends naturally to unconstrained handwriting recognition through simple graph techniques. A system based on this construction has been implemented and tested for the difficult case of unconstrained online Arabic handwriting recognition with good results

    Enhanced sequence labeling based on latent variable conditional random fields

    Get PDF
    Natural language processing is a useful processing technique of language data, such as text and speech. Sequence labeling represents the upstream task of many natural language processing tasks, such as machine translation, text classification, and sentiment classification. In this paper, the focus is on the sequence labeling task, in which semantic labels are assigned to each unit of a given input sequence. Two frameworks of latent variable conditional random fields (CRF) models (called LVCRF-I and LVCRF-II) are proposed, which use the encoding schema as a latent variable to capture the latent structure of the hidden variables and the observed data. Among the two designed models, the LVCRF-I model focuses on the sentence level, while the LVCRF-II works in the word level, to choose the best encoding schema for a given input sequence automatically without handcraft features. In the experiments, the two proposed models are verified by four sequence prediction tasks, including named entity recognition (NER), chunking, reference parsing and POS tagging. The proposed frameworks achieve better performance without using other handcraft features than the conventional CRF model. Moreover, these designed frameworks can be viewed as a substitution of the conventional CRF models. In the commonly used LSTM-CRF models, the CRF layer can be replaced with our proposed framework as they use the same training and inference procedure. The experimental results show that the proposed models exhibit latent variable and provide competitive and robust performance on all three sequence prediction tasks

    Online Handwritten Chinese/Japanese Character Recognition

    Get PDF

    Content Recognition and Context Modeling for Document Analysis and Retrieval

    Get PDF
    The nature and scope of available documents are changing significantly in many areas of document analysis and retrieval as complex, heterogeneous collections become accessible to virtually everyone via the web. The increasing level of diversity presents a great challenge for document image content categorization, indexing, and retrieval. Meanwhile, the processing of documents with unconstrained layouts and complex formatting often requires effective leveraging of broad contextual knowledge. In this dissertation, we first present a novel approach for document image content categorization, using a lexicon of shape features. Each lexical word corresponds to a scale and rotation invariant local shape feature that is generic enough to be detected repeatably and is segmentation free. A concise, structurally indexed shape lexicon is learned by clustering and partitioning feature types through graph cuts. Our idea finds successful application in several challenging tasks, including content recognition of diverse web images and language identification on documents composed of mixed machine printed text and handwriting. Second, we address two fundamental problems in signature-based document image retrieval. Facing continually increasing volumes of documents, detecting and recognizing unique, evidentiary visual entities (\eg, signatures and logos) provides a practical and reliable supplement to the OCR recognition of printed text. We propose a novel multi-scale framework to detect and segment signatures jointly from document images, based on the structural saliency under a signature production model. We formulate the problem of signature retrieval in the unconstrained setting of geometry-invariant deformable shape matching and demonstrate state-of-the-art performance in signature matching and verification. Third, we present a model-based approach for extracting relevant named entities from unstructured documents. In a wide range of applications that require structured information from diverse, unstructured document images, processing OCR text does not give satisfactory results due to the absence of linguistic context. Our approach enables learning of inference rules collectively based on contextual information from both page layout and text features. Finally, we demonstrate the importance of mining general web user behavior data for improving document ranking and other web search experience. The context of web user activities reveals their preferences and intents, and we emphasize the analysis of individual user sessions for creating aggregate models. We introduce a novel algorithm for estimating web page and web site importance, and discuss its theoretical foundation based on an intentional surfer model. We demonstrate that our approach significantly improves large-scale document retrieval performance

    Filtered Semi-Markov CRF

    Full text link
    Semi-Markov CRF has been proposed as an alternative to the traditional Linear Chain CRF for text segmentation tasks such as Named Entity Recognition (NER). Unlike CRF, which treats text segmentation as token-level prediction, Semi-CRF considers segments as the basic unit, making it more expressive. However, Semi-CRF suffers from two major drawbacks: (1) quadratic complexity over sequence length, as it operates on every span of the input sequence, and (2) inferior performance compared to CRF for sequence labeling tasks like NER. In this paper, we introduce Filtered Semi-Markov CRF, a variant of Semi-CRF that addresses these issues by incorporating a filtering step to eliminate irrelevant segments, reducing complexity and search space. Our approach is evaluated on several NER benchmarks, where it outperforms both CRF and Semi-CRF while being significantly faster. The implementation of our method is available on \href{https://github.com/urchade/Filtered-Semi-Markov-CRF}{Github}.Comment: EMNLP 2023 (Findings
    • …
    corecore