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ABSTRACT

Learning Chinese as a Second Language (CSL) is a difficult task for students in English-

speaking countries due to the large symbol set and complicated writing techniques. Tra-

ditional classroom methods of teaching Chinese handwriting have major drawbacks due

to human experts’ bias and the lack of assessment on writing techniques. In this work,

we propose a sketch-based educational system to help CSL students learn Chinese hand-

writing faster and better in a novel way. Our system allows students to draw freehand

symbols to answer questions, and uses sketch recognition and AI techniques to recognize,

assess, and provide feedback in real time. Results have shown that the system reaches a

recognition accuracy of 86% on novice learners’ inputs, higher than 95% detection rate for

mistakes in writing techniques, and 80.3% F-measure on the classification between expert

and novice handwriting inputs.
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1. INTRODUCTION

Chinese has become a popular second language to learn in the Western world just for

the past two decades [1]. It has been indicated by education researchers that learning

handwriting is the most crucial as well as the most difficult part on the way to master the

Chinese language [2]. While traditional classroom teaching methods are prone to human

experts’ bias and lack interactive feedback and instructions [3], we propose a sketch-based

educational system that revolutionizes the way CSL students learn Chinese handwriting

with the assistance of sketch recognition and Artificial Intelligence (AI) techniques.

1.1 The need for a new interactive educational system for learning Chinese hand-

writing

It can be an extremely difficult task for a Westerner to learn to recognize and even write

Chinese characters because they have no resemblance with any Western language [4].

Multiple factors can be blocking the success for CSL learner to acquire Chinese handwrit-

ing in a short time. The Chinese language has a symbol set that numbers in thousands,

while English has only 26 letters. The large number of symbols has not only made it al-

most impossible to to learn all the characters in a short time for CSL learners, but more

importantly, since there is not a consistently obvious rule for writing techniques that can

be applied to the entire symbol set, students need to gradually gain their perception and

experience through a long-term practice. Writing techniques can be especially hard for

students with fluency in English because each Chinese character is formed with a combi-

nation of several to tens of poly-line strokes in fixed ordering and directions, while each

English letter has no more than 4 strokes. Moreover, there exist numerous visually sim-

ilar characters that have completely different meanings, making it harder for students to

recognize and memorize.
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An efficient way of education can help CSL learner acquire the crucial skills in writ-

ing Chinese characters. Traditional classroom methods of teaching Chinese handwriting

have major drawbacks. First of all, human teachers can have their bias on grading stu-

dents’ writing quality due to the long history and complexity of Chinese characters [5].

Moreover, the way human teachers assess students’ writing ability is solely based on the

visual forms of written characters, while the process of writing can be even more impor-

tant for beginners. In addition, there are always too many students in classroom teaching

methods, making it impossible for teachers to offer personalized feedback to each specific

student. These problems can be solved by our proposed sketch-based educational sys-

tem. By employing sketch recognition techniques, the system is able to accurately tell if a

correct symbol has been written for a given question, and analyze both stroke and vision

data to assess the student’s performance. With the big amount of data we collected from

both novice and expert users, we are also able to utilize Machine Learning techniques to

find out important features to distinguish between well and badly written samples. With

these combined, the system is able to give feedback in accordance with each student’s

performance in real time, and help them improve their writing skills.

1.2 Sketch recognition applied in educational systems

Sketch recognition is the automated recognition of hand-drawn diagrams by a comput-

ers [6, 7, 8]. It can be applied to classroom activities that involve writing and drawing.

It revolutionizes the way teachers teach and students learn in knowledge domains where

handdrawing is the most efficient way to express ideas and convey messages. The past

decade has seen sketch recognition algorithms being applied in systems in different edu-

cation domains that include civil engineering [9, 10, 11, 12], engineering design [13, 14],

music theory [15], as well as East Asian language handwriting [16, 17, 18, 19]. One of

the major improvements sketch recognition brings to these domains is that both gesture
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and vision information can be used to recognize and assess students’ sketches, while hu-

man teachers usually only have access to the latter. While vision data presents the final

form of the sketch, the lack of analysis and feedback on the process of drawing can pre-

vent students from forming a good drawing habit. It has been shown that in some specific

domains, it is the features that reflect how the user perform the drawing, rather than the

final visual structure that distinguish experts from novices [20]. With sketch recognition

techniques being applied in educational systems, students’ drawing traces and speed can

are kept track of, which provide valuable information to the instructors.

1.3 Benefits of sketch-based interactive learning in Chinese handwriting

Real-time feedback is crucial for students to realize their mistakes and make correc-

tions accordingly [21]. Compared to traditional teaching methods, sketch-based educa-

tional systems can assess students’ writing samples in real time and give immediate feed-

back to the students, which helps them form a good writing habit. In the early stages

of learning Chinese handwriting, students can always be confused with the writing tech-

niques in each character. Common mistakes novice learners tend to make include:

• Broken and concatenated strokes. The existence of multiple poly-line strokes in

Chinese characters makes it unobvious to the students how they should separate the

strokes. It has been observed from our user study that in most cases beginner level

students would either write multiple single-line strokes in one concatenated stroke,

or one poly-line stroke in multiple straight line segments.

• Incorrect stroke ordering. It is a general yet ambiguous rule to Western students

that they should write strokes from top to bottom, and left to right. Because as

the character contains more strokes, students can be confused whether they should

write a vertical or horizontal line first, when such two strokes have start points close

to each other. We find this especially important for those learners whose native
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languages are English because they often try to write the vertical stroke first in such

cases, while usually it is the horizontal one that should go first.

• Incorrect stroke directions. Even after CSL students become used to writing the

entire character as well as each stroke from top to bottom and left to right, there are

cases where a stroke can be in diagonal orientation, where a general rule of stroke

direction barely exists [22]. Novice students often write in wrong directions on these

strokes.

The heavy existence of these three types of writing technique mistakes emphasizes the

significance of real-time feedback. With the assistance of sketch recognition algorithms,

we are able to first predict the students’ intention on writing each stroke in one character

by matching the strokes from the sample to those from the template. If the system fails

to find a one-to-one match, we will be able to tell the existence of broken or concatenated

strokes. If a one-on-one matching is found, the system detects if there exist wrong stroke

orders or wrong stroke directions by comparing each sample stroke to the corresponding

template stroke, and instructs the user on these mistakes.

After the students acquire the ability to follow the correct writing techniques of a given

character, it is also important to learn to write it in a neat form. Since novice learners tend

to focus on writing the characters correctly and similar to the templates, less attention has

been paid to writing them with a good positioning of strokes. It has been stated that the

assessment of Chinese handwriting depend on both local features (stroke level) and global

features (character level) [5]. In this thesis work, we use Machine Learning techniques to

find features that are important in distinguishing good from bad writing samples, and use

these to automatically assess their visual quality.

In all, instead of having to wait for the human instructor’s feedback on the students’

entire handwriting set in one homework assignment or examination as in traditional class-
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room teaching methods, students can now learn a good way to improve their writing style

and quickly apply them to their future learning.

1.4 Proposed system

In this thesis, we propose an educational system for learning Chinese handwriting

that addresses some of the problems that traditional methods have not been able to deal

with. We hope to reach higher recognition accuracy, and assess and provide feedback to

students’ handwriting samples in more aspects. Specifically, the goal of this work is to

address the following problems:

1. Symbol recognition: Can we develop an efficient algorithm that reaches a reason-

able accuracy on recognizing students’ writing samples for our symbol set?

2. Writing technique assessment and feedback: Can we reach better detection rate

for students’ mistakes in writing techniques and provide richer feedback to them?

3. Quality assessment: Can we find important features that help distinguish good from

bad writing quality?

The rest of this thesis reviews the literature, presents the methodology employed in our

system, and analyzes evaluation results based on the data collected from user studies.
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2. RELATED WORK

2.1 Sketch recognition

Sketch recognition algorithms can be classified into three categories. Gesture-based

recognition methods rely on features that represent the the movement of points that form

a sketch. Strokes are recorded and saved as a sequence of points that contain location and

time information associated with them. Gesture-based systems focus on the process the

sketch is drawn rather than what it looks like in a final form. The linear classifier pro-

posed by Rubine et al. [23] uses 13 features to represent a sketch based on the x and y

coordinates as well as the time of each point. Long et al. [24] further extended the work

to include more features, for instance, density. Template matching algorithms are com-

putationally cheaper since they need no training data. $1 [25] is an efficient algorithm

for single stroke sketch recognition which is robust with size and rotation. To success-

fully recognize sketches drawn with multiple strokes, two algorithms built based upon $1

are proposed to encompass all possible stroke orders and directions. [26, 27]. $P [28],

a template matching algorithm based on point clouds, was proposed to recognize ges-

tures with less constraints to the sketches. Geometry-based recognition methods have less

constraints to the drawing process but rather focus on the geometric features in sketches.

Geometry-based sketch recognition has reached a big success in recognizing primitive

shapes [29, 30, 31, 32, 33, 34, 6, 35, 36, 37]. Gladder [38], a novel sketch recognition

method that combined gesture- and geometry-based techniques was proposed and outper-

formed either technique on its own. Vision-based recognition techniques solely rely on

the visual structure of the sketches. Distances that are calculated based on the location of

points are often used to measure similarities between sketches [39, 40]. These methods do

not require users to draw in a pre-defined manner but recognize inputs from a vision level.
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2.2 Sketch-based Intelligent Tutoring Systems

Sketch recognition have been applied and succeeded in practical applications that help

students learn and teachers teach in many specific domains. Mechanix [9, 10, 11, 12] is

an automated system to aid students learn introductory engineering. Maestoso [41, 15]

was proposed to teach novice learners music theory through sketch practicing on quizzed

music structures. In the domain of drawing, iCanDraw [42] is an efficient system to assist

users in drawing human faces. EasySketch [43, 44, 45] and EasySketch2 [46] aim at

developing children’s self-regulating skills through sketching. Persketchtivity [13, 47, 48,

20] is a system proposed for engineering design, which is not only able to effectively

recognize handdrawn inputs, but also assess their quality and provide real-time feedback

to students. Sketchography [49] is a sketch-based educational system for teaching river

drawing in Geography classes which used geometry-based recognition to recognize and

extract features from sample drawings, and Machine Learning techniques to automatically

grade students’ drawings. Flow2Code [50] is an application that uses sketch recognition

to help Computer Science students understand and express ideas of computer programs

through drawing flowcharts. Sketch recognition and assessment have also been applied to

the domains of Asian language education, such as Japanese Kanji [19], Mandarin phonetic

symbols [16, 17, 51], and Chinese characters [52, 53, 54].

2.3 Computer-aided Chinese Language Education

Our proposed sketch-based educational system for Chinese handwriting composes

three parts, namely, handwriting recognition, technique assessment, and visual quality

assessment. Handwriting recognition has long been researched using deep neural net-

works [3]. The work by LeCun et al. has revolutionized handwriting recognition by back-

propagation networks [55, 56] and can be extended to off-line Chinese character recogni-

tion [57, 58]. Online recognition rely on the trajectory of points, which is more relevant
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to our research. Gesture- and vision-based recognition methods [39, 28, 36] are indepen-

dent from writing techniques so they can be very helpful in recognizing beginner level

CSL learners’ writing samples. They have also been applied to similar educational sys-

tems for Asian handwriting recognition and reached good results [19, 16, 17]. Observing

that Chinese characters are typically formed with poly-line shapes on 8 directions [59],

orientational features such as Gabor features can be very powerful in handwriting recog-

nition [60, 61]. In addition, corner finding algorithms [30, 62, 63] are very useful for

extracting features from writing samples. Machine Learning and fuzzy techniques have

been employed extensively on assessing the quality of handwritings [64, 5], but they rely

on pixel data that reflects the overall structure of symbols while little attention has been

paid stroke-level features. Methods for detecting and correct students’ writing techniques

has been proposed based on stroke level features [19, 17], however, these methods have

limited ability to instruct students when multiple types of technique mistakes coexist in

one writing sample.
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3. RECOGNITION OF HANDWRITTEN CHINESE CHARACTERS

The recognition accuracy is crucial to the system because it directly affects the effi-

ciency of the entire education process and user experience. An efficient recognition al-

gorithm for our system should be able to accurately tell which character the CSL learner

tries to draw. This goal requires our recognition system 1) rely on features that distin-

guish among template characters and 2) have a reasonable tolerance for novice students’

common mistakes. Previous work has shown template matching methods have reached

reasonably good results on East Asian characters [17]. In this work, we propose a tem-

plate matching algorithm for handwriting recognition based on the projections of writing

samples on horizontal, vertical, left diagonal, and right diagonal orientation.

3.1 Preprocessing

CSL learners in the early stage of learning handwriting try to mimic the template im-

ages in their memory but pay less attention to correct techniques or a good visual structure.

This brings obstacles for stroke-based template matchers to achieve consistent results for

a character written with different quality issues. Preprocessing steps solved part of the

problems.

3.1.1 Resampling

The goal of resampling is to turn each handwriting sample and template into point

clouds, so that stroke count, order, and directions will be irrelevant to the recognition

result. Moreover, since the original stroke is produced by sampling the trace of students’

drawing movements at a fixed rate that is determined by the hardware and software, strokes

with similar shapes but different speeds can have completely different distributions of

points, which make them not comparable. We resample each sample and template to the
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same amount of points, where the distances between neighboring points are always the

same. The specific steps for resampling a multi-stroke sketch to point clouds can be found

in [28]. Resampling is also conducted to the timestamps.

3.1.2 Translation

Most template matching algorithms calculates the similarity between a sample and a

template based on Euclidean distances. The Euclidean distance between point (x1, y1) and

(x2, y2) is calculated as the following:

d =
√

(x1 − x2)2 + (y1 − y2)2. (3.1)

Due to the possible difference in the sizes of the writing frames of the template and sam-

ple, the Euclidean distance between two points that have similar locations relative to the

bounding box the character can be large. In order to resolve this problem, we first set the

centroids of each sample and template to be the original point (0, 0), and then set the all

the points relevant to the centroids.

3.1.3 Scaling

While students may try to draw a visually similar symbol to the template based on their

memory, they often neglect the fact that a well-written character should have a good shape,

which means the height to width ratio of the character plays an important role. A visually

similar but badly shaped character are can be hard to recognize due to the stretching on

either horizontal or vertical orientation. In order to resolve this, we rescale each point in

the sample and template so that the sizes and ratios of the bounding boxes are the same.
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3.2 Proposed template matching algorithm

3.2.1 The projection feature

To accurately recognize novice students’ writing samples with a good tolerance to

both technique and visual mistakes, we propose an efficient template matching method

motivated by the following observations:

1. Chinese characters can be seen as formed as multiple straight line segments, where

each line segment can be roughly seen as positioned on one of the four orientations:

horizontal, vertical, left diagonal, and right diagonal [59, 22].

2. CSL learners usually know which orientation each straight line segment should be

positioned on, and know the relative sequence of each line segment on each orienta-

tion, but can place these segments with little consideration on how to balance them

in the entire structure.

The first observation implies that projections on the four orientations provide useful infor-

mation about the lengths and locations of stroke segments on each orientation. Fig. 3.1

shows a Chinese character with two horizontal stroke, one vertical stroke, and several di-

agonal strokes. The projection on one particular orientation contains peaks and valleys

that indicate the locations and length of strokes on this orientation. These features can be

especially helpful for recognizing novice users’ handwriting samples because they typi-

cally write each character stroke by stroke so that the relative locations and orientations of

each stroke are preserved in their written characters.

The second observation has inspired us to develop an efficient recognition algorithm

that relies on the relative stroke locations on each orientation, and is invariant with the

internal distribution of a character. Fig. 3.2 shows an example of a handwriting sample of

the character "five" that has badly positioned strokes. In this example, the middle horizon-

11



(a) Character example

(b) Horizontal projection (c) Vertical projection

(d) Left diagonal projection (e) Right diagonal projection

Figure 3.1: Projections on the four most important orientations of a Chinese character

tal stroke segment is too close to the top of the bounding box while the correct location

should be around the middle. And the vertical stroke segment on the right is also too far

from the middle. Euclidean distance based template matching algorithms [39, 28] will not

work well on these handwriting samples because 1) The bad distribution of ink can intro-

duce errors in the point matching step [28] and 2) Even if a correct stroke correspondence
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(a) Template of the character "five" (b) An example of a handwritten "five"
with bad stroke positionings

Figure 3.2: A comparison of the template and a sample with bad stroke positionings

is found, the distances calculated between points or point clouds can be very large and will

lead to a low confidence in the recognition result [25, 26, 27].

3.2.2 Dynamic Time Warping

It can be observed from Fig. 3.1 and Fig. 3.2 that in a character where strokes are

not well positioned, the relative ordering information of each peak in the projection ar-

rays are still preserved, but with valleys of different sizes between them. Dynamic Time

Warping (DTW) [65] is an efficient algorithm to match two sequences with similar pat-

terns but different lengths or paces. The dynamic programming nature of this algorithm

makes it possible to find a perfect match between such two sequences. As illustrated in

Fig. 3.3, a perfect match can be found in two time series with different paces but contain

similar patterns. Two sequences 0, 3, 0, 4, 0, 0 and 0, 0, 3, 0, 0, 4, 0 each have two peaks

with heights 3 and 4 with different indexes and different intervals in between. However, a

perfect matching can still be found using this dynamic programming algorithm.

The goal for DTW is to find a warping path between a sample sequence S and a
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Figure 3.3: An illustration of the DTW algorithm

template sequence T :

S = s1, s2, ..., si, ..., sm (3.2)

T = t1, t2, ..., tj, ..., tn (3.3)

A m ∗ n matrix M can be formed where M [i, j] denote the cost γ (i, j) when the ith

element in S corresponds to the jth element in T . DTW uses dynamic programming and

local greedy matching to find a path that goes from (0, 0) to (m− 1, n− 1) that minimizes

the cumulative cost. Applying the endpoint constraint [66], the cumulative cost is built

using dynamic programming:

γ (i, j) = δ (i, j) + min (γ (i− 1, j) , γ (i, j) , γ (i, j − 1)) (3.4)

where

δ (i, j) =| si − tj | . (3.5)
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3.3 Proposed recognition method

As stated previously, if a student tries to write a particular character, the information

of relative positions of strokes on each orientation is preserved in four projection arrays.

Using DTW to match projections from the sample to template, the following constraints

are applied:

1. Endpoint constraint: The first and last point in the projection arrays must corre-

spond to each other.

2. Monotonicity constraint: The elements corresponded to each other must be or-

dered with respect to the order of their original occurrences in the arrays.

3. Warping window size constraint: The warping window size is set to 3 for our

algorithm.

To recognize a handwriting sample, we go through the following steps for each template

to find the final template matching result:

1. Translate both the sample and template sketches with respect to the centroids of the

sketches.

2. Transform both sketches to pixel arrays.

3. Scale both pixel arrays to 400 ∗ 400 arrays.

4. Calculate the projections of both pixel arrays on horizontal, vertical, left diagonal,

and right diagonal orientations.

5. Calculate the DTW cumulative distance results on the projection of each orientation

and sum them up.
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6. The template matcher returns the template list sorted in ascending order by the

summed DTW costs.

7. The first item in the list of templates returned by the template matcher will be the

final recognition result.
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4. TECHNIQUE ERROR DETECTION AND FEEDBACK GENERATION

While it is not a hard task for beginner level CSL learners to write characters that are

visually similar to the templates, they can make a large amount of mistakes in writing

techniques. In order to better instruct learners, it is important for our system to accurately

detect their mistakes and offer informational feedback. This chapter covers the three types

of technique mistakes we are aiming at, the methods we use to detect them, and the feed-

back we offer for each type.

4.1 Stroke count

4.1.1 Overview

As stated previously, Chinese characters are formed with a set of poly-line strokes

connecting or intersecting with each other. A complex combination of poly-line strokes

can cause difficulties for beginners to tell how to separate these strokes. This results in the

heavy existence of four types mistakes related to stroke count:

• Concatenating strokes: When two strokes are connecting end to end but should be

written separately, students often write them in one stroke.

• Broken strokes: When one stroke is formed with multiple line segments, students

often break it into several strokes at corners.

• Missing strokes: Students often forget to write some short strokes in a multi-stroke

character.

• Extra strokes: Strokes in the sample that do not correspond to any stroke in the

template sometimes exist in characters that are visually similar to other ones.
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Fig. 4.1(a) shows a template character that contains three strokes. The first one goes hor-

izontal from left to right, and then turns left diagonal, the second one goes vertical from

top to bottom, then turn right diagonal, and the third one is a straight line that goes from

left to right. The first and second strokes are both poly-line strokes and they connect with

each other end to end. This type of stroke relationship is where students are likely to make

mistakes of concatenating strokes. Fig. 4.1(b) shows a handwriting sample with this type

of mistake, where the first and second strokes in the template are written in one concan-

tenated stroke. Similarly, students can randomly break a poly-line stroke up at one of its

corners, making mistakes of broken strokes.

(a) Template of the character "son" (b) A handwritten "son" with concatenated
strokes

Figure 4.1: An example of mistakenly concatenated strokes in a character written by one
of our users

4.1.2 Finding stroke correspondences

In order to detect the specific mistakes in strokes from students’ input and give in-

teractive feedback, an efficient algorithm that matches strokes from template and sample
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is crucial. We propose algorithms to find stroke correspondences for the following three

different conditions.

4.1.2.1 Sample has same amount of strokes as template

In this case, we believe student’s handwriting has correct stroke count. So the task is to

find the one-to-one correspondence from each sample stroke to each template stroke. This

stroke correspondence finding problem can be modeled as an assignment problem that has

been solved in graph theory [67]. This task can be translated into constructing a bipartite

graph [68], where the strokes from the sample and template each form a vertex set with

size n, and edges connect the two vertex sets so that their summed weight is minimized.

The optimal solution can be found using the Hungarian algorithm [69]. The model has

also been applied in finding the point correspondence in two different gestures, and it has

been proved that a greedy approach can reach close to optimal results in finding point

correspondence [28].

We assume that a greedy algorithm for finding matching strokes can reach close to

optimal results due to the few number of strokes in each character. And we use Hausdorff

distance to weight the edges. The algorithm works as follows: For each stroke in the

sample si, find an unmatched stroke tj in the template so that the Hausdorff distance

between si and tj is minimized. This algorithm outputs a one-to-one correspondence from

sample strokes to template strokes.

4.1.2.2 Sample has fewer strokes than template

When the sample character contains less strokes than the template, it is indicated that

either concatenated strokes exist in the sample or some template strokes are missing. We

proposal a greedy algorithm that relies on Hausdorff distance and directed Hausdorff dis-

tance to find the stroke correspondence.

As introduced in [39], the Hausdorff distance between two point sets A and B is de-
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fined as:

H(A,B) = max(h(A,B), h(B,A)) (4.1)

where

h(A,B) = max
a∈A

(min
b∈B
||a− b||) (4.2)

is defined as the directed Hausdorff distance fromA toB. The directed Hausdorff distance

denotes the maximum distance from each point in A to its closest point in B. Note that in

most cases h(A,B) 6= h(B,A). It can be observed from Eq. 4.2 that directed Hausdorff

distance measures how A is visually similar to a subset of B. The value h(A,B) can have

be very small whenA approximately overlaps a subset ofB, while in this case h(B,A) can

be large due to outliers. As a result, Hausdorff distance can be very sensitive to outliers.

Observing these characteristics, we propose a greedy algorithm as described in Alg. ?? that

finds a one to many stroke correspondence from sample to template by iterating through

each sample stroke and finding the best set of template strokes that fit it.

4.1.2.3 Sample has more strokes than template

When sample has more strokes than template, there must be either broken stroke or

extra strokes in the sample. For this condition, we can apply Alg. ?? to find a one-to-

many correspondence from template strokes to sample strokes, which is equivalent to a

many-to-one correspondence from sample strokes to template strokes.

4.1.3 Feedback

Apart from giving binary feedback to indicate whether the student has written correct

stroke counts or not, the system also provides specific interactive instructions to users.

Fig. 4.2 shows an example of our feedback to handwritings with mistakes on stroke count.

We highlight broken strokes with the same color to indicate they should be written with

one strokes, and we highlight concatenated strokes to indicate they should be written with
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Algorithm 1 Algorithm for finding a one to many stroke correspondence from sample to
template

1: function FINDCORRESPONDENCE(Sample, Template)
2: Result = ∅
3: for StrokeS in Sample do
4: SORT(Template) by DIRECTEDHAUSDORFFDISTANCE(StrokeT, StrokeS)
5: CurrentList = ∅
6: CurrentDistance =∞
7: for StrokeT in Template do
8: NewList = CurrentList+ StrokeT
9: NewDistance = HAUSDORFFDISTANCE(StrokeS,NewList)

10: if NewDistance ≤ CurrentDistance then
11: CurrentDistance = NewDistance
12: Add StrokeT to CurrentList
13: Remove StrokeT from Template
14: end if
15: end for
16: Add CurrentList to Result
17: end for
18: return result
19: end function

multiple strokes.

4.2 Stroke order

4.2.1 Stroke order judgment

For stroke order, we also give both binary judgment and specific feedback to the user’s

handwriting. Stroke order is judged as correct if each stroke in the sample is written in the

same chronological order as in the template.

For characters that have correct stroke counts, the system look at the one to one stroke

correspondence array and judge stroke order as correct if each element in the array is equal

to its index, and incorrect otherwise. For handwriting samples that have more strokes than

template, the system judges stroke order as correct only if both correctly written strokes
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(a) Feedback for broken strokes (b) Feedback for concatenated strokes

Figure 4.2: Feedback to broken and concatenated strokes. In the example on the left, the
character "five" should be written with 4 strokes, the second being the middle stroke with
one horizontal and one vertical stroke segment. In the example on the right, the rectangle
that surrounds the character "four" should be written with 3 strokes.

and broken strokes are written in the correct chronological order. If a template stroke

is detected as written in multiple broken strokes, we take each sample stroke si that it

corresponds to, and find the matching part in the template by finding point Psi and Pei

on the template stroke, which has the minimum distance from the start and end points to

that sample stroke, respectively. The broken strokes are in the correct order only if for

each i, Psi has in chronologically earlier than Ps(i+1) in the template. In addition, the

system also requires that for each template stroke tj , the each one of the of sample strokes

that corresponds to must all appear earlier than the all sample strokes that corresponds to

t(j+1) so as to be considered to have correct stroke order. The stroke order judgment for

characters that have fewer strokes than template works similarly.
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4.2.2 Feedback

To instruct users, we highlight the strokes in the sample that are not in the correct

chronological order, so as to let users know which strokes are in the wrong order. Fig. ??

shows an example of the system’s feedback on a handwriting sample with incorrect stroke

order.

Figure 4.3: An example of the system’s feedback on wrong stroke orders. The black
number next to each stroke is the actual ordering of it, and the red numbers are the correct
ordering.

4.3 Stroke direction

Stroke direction is defined as the chronological order of the start point and end point of

each stroke. To judge if each stroke is written in the correct direction, the system calculates

a vector ~vs from the start to the end point, and calculates a vector ~vt based on either a

complete or a part of a template stroke that it corresponds to, and calculates cos(~vs, ~vt) as

the cosine between these two vectors. A stroke is considered to have the correct direction

only of the cosine value is positive. For each sample stroke that has a wrong direction, the
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system shows a green dot moving in the correct direction.
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5. QUALITY ASSESSMENT

Assessing the overall quality of a handwritten Chinese character is a difficult task.

The aim of this part of our work is to find out important features that reflect how a user

masters Chinese handwriting. We look at both global and local features, that reflect not

only how the sample is similar to the template as a whole, but also the internal balance

of the character. We also take into account speed, which is significant to indicate how

the user is familiar with handwriting, or how the user is serious in pursuing an accurate

writing. Following is the list of features we extracted from each writing sample.

5.1 Bounding box ratio

Good handwritings always have proper shapes. A badly sized character can be either

too thin or too flat. This feature, calculated as Eq. 5.1, measures the difference in height

width ratio of a given character of a sample from that of the template, where ws and hs

denote the width and height of the sample, and wt and ht denote the width and height of

the template, respectively.

FR = |ws/hs − wt/ht| (5.1)

5.2 Centroid location (x-axis)

The location of the centroid in a handwriting sample reflect how ink is globally dis-

tributed within the character. It is commonly observed in badly written samples have un-

balanced distribution, making the centroid located far away from the center of the bound-

ing box [64]. Eq. 5.2 shows FCX , the difference in the distance from centroid to center of

a sample from that of the template.

FCX =

∣∣∣∣xsampleCentroid − xsampleCenter

ws

− xtemplateCentroid − xtemplateCenter

wt

∣∣∣∣ (5.2)
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5.3 Centroid location (y-axis)

Similar to FCX , FCY reflects the difference of the vertical location of the centroid in

the bounding box of a sample from that of the template.

FCY =

∣∣∣∣ysampleCentroid − ysampleCenter

hs
− ytemplateCentroid − ytemplateCenter

ht

∣∣∣∣ (5.3)

5.4 Hausdorff distance

Hausdorff distance is a metric that evaluates how the sample and the template overlap

with each other. FH is the Hausdorff distance between sample and template.

FH = H(A,B) = max(h(A,B), h(B,A)) (5.4)

where

h(A,B) = max
a∈A

(min
b∈B
||a− b||) (5.5)

5.5 Tanimoto similarity coefficient

Tanimoto coefficient [39] measures the similarity between two binary images by cal-

culating the overlap of their black and white pixels. Tanimoto coefficient between image

A and image B is calculated as

T (A,B) =
nab

na + nb − nab

, (5.6)

where na and nb are the numbers of black pixels in image A and image B, respectively,

and nab is the number of overlapping black pixels. For images that the majority of pixels

are white, the Tanimoto coefficient complement can be of more importance in measuring
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their similarity. The Tanimoto coefficient complement is calculated as

TC(A,B) =
n00

na + nb − 2nab + n00

, (5.7)

where n00 is the number of overlapping white pixels. T (A,B) and TC(A,B) are combined

to form the Tanimoto similarity coefficient, calculated as

TSC(A,B) = αT (A,B) + (1− α)TC(A,B). (5.8)

α is dependent on the number of black pixels in each image and is calculated as

α = 0.75− 0.25

(
na + nb

2n

)
, (5.9)

where n is the total number of pixels in both images.

5.6 Yule coefficient

Similar to Tanimoto coefficient, Yule coefficient measures the similarity between two

binary images based on the overlapping of black and white pixels. Yule coefficient can be

calculated as 5.10

Y (A,B) =
nabn00 − (na − nab)(nb − nab)

nabn00 + (na − nab)(nb − nab)
(5.10)

5.7 Stroke length distribution

We observed from the user studies that novice CSL learners tend to draw strokes with

extreme lengths, while a good handwriting requires a good ratio of stroke lengths. For

a character with n strokes, its length distribution can be represented as a normalized se-

quence Dist = (d1, d2, ..., dn) where di is proportional to the length of the ith stroke to

the total length of every stroke in the character. FLD measures the similarity of length
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distribution of sample and template using Bhattacharyya distance [70].

FLD = DB(Dists, Distt) = − ln(BC(Dists, Distt)) (5.11)

where

BC(p, q) =
n∑

i=1

√
piqi. (5.12)

5.8 Average stroke orientation similarity

The orientations of stroke play an important role in the visual perception of Chinese

handwriting [71]. For each stroke, we use the angle from its start point to end point

to approximate its orientation [23]. For each stroke from the sample, we measure its

orientation similarity from the template by calculating the cosine of the angle it forms

with its corresponding stroke from the template. FOA is calculated as the average of these

cosine values weighted by the lengths of strokes.

FOA = cos (si, ti) (5.13)

5.9 Minimum stroke orientation similarity

This feature denotes the minimum orientation similarity of the sample stroke to its

corresponding template stroke.

FOM = min cos (si, ti) (5.14)

5.10 Average speed

The trade-off between accuracy and speed in sketching has long been discussed in the

literature [72, 73]. We observed that expert users in our study needs a significantly longer
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time to provide good writings than novice. The average speed of a stroke is calculated as

the length divided by the time spent on writing it. In order to make this feature invariant

with users’ pauses between strokes, FAS is calculated as the average of speed of each

stroke weighted by their lengths.

FAS =

(
TotalPathLength

TotalT ime

)
(5.15)

5.11 Speed fluidity

An experienced writer tend to write at a more steady pace. We use the ratio of mini-

mum and maximum speeds in a handwriting to represent the speed fluidity of each stroke.

FSF is calculated as the average of speed fluidity of each stroke weighted by their lengths.

FSF =

(
MinSpeed

MaxSpeed

)
(5.16)

5.12 Horizontal projection difference

The projection feature has been extensively used for assessing the visual quality of

Chinese handwritings [5, 64]. The difference between two projection arrays P and Q are

defined as DP (P,Q) = (
∑n

x=1 |P (x)−Q(x)|)/(
∑n

x=1 |P (x) +Q(x)|). FHP measures

the difference in the horizontal projections between sample and template.

FHP = DP (SampleHorizProjection, TemplateHorizProjection) (5.17)
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5.13 Vertical projection difference

Similar to FHP , FV P measures the difference in the vertical projections between sam-

ple and template.

FV P = DP (SampleV ertProjection, TemplateV ertProjection) (5.18)
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6. RESULTS AND EVALUATION

6.1 User study

To evaluate the performance of our system, we collected data from 3 groups of students

from Texas A&M University. At the beginning of each user study, we presented the in-

formation sheet which has been approved by the institutional review board (IRB) of Texas

A&M University and started the experiment only after getting the user’s consent. The first

group of users contains 11 expert students whose native languages are Chinese and they all

have been using Chinese as their primary language since childhood. These students were

asked to write each of the 27 characters 3 times with the best of their abilities, and these

data are used to evaluate our symbol recognition algorithm, as well as labeled data for

training and testing our machine learning algorithm that classifies between good and bad

handwriting samples. The second group contains 9 expert students who have more than

10 years of experience writing Chinese characters, and they were asked to provide casual

style handwriting samples. The essential step of the writing technique assessment part of

our system is the accuracy for finding stroke correspondences from sample to template.

We hope to see robustness of our stroke matching algorithm through testing on casual data

provided by Chinese users which are typically written in a cursive way and thus contain

many concatenated strokes. So we use data from group 2 to evaluate our stroke matching

sysmte and compare the results with similar East Asian language educational systems [17].

The third group contains 10 novice students who have none or little experience in Chinese

handwriting. These users were asked to draw each character 3 times to mimic the template

presented to them, and use the feedback provided by our system to improve their writing

techniques. Data from group 3 will be used to evaluate our recognition algorithms on

symbols as well as writing techniques, and further used as labeled data for our machine
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learning algorithm that classifies between good and bad handwritings. After collecting

data from novice users, we also asked them to share their thoughts and give feedback on

our system through a survey. Table 6.1, table 6.2 table 6.3 show the demographic infor-

mation of the three groups of users respectively.

We evaluate the performance of our system from four aspects. Firstly, we test the pro-

posed handwriting Chinese character recognition algorithm against state-of-the-art tem-

plate matching algorithms as well as previous East Asian language educational systems [28,

17]. This test is done using data from group 1 and group 3. Secondly, we test our algo-

rithms for assessing students’ writing techniques. In this part, we evaluate the stroke

matching algorithm on data from both group 2 and group 3, and then evaluate the writing

technique judgments on only data from group 3. Thirdly, we evaluate the significance of

features for classifying between good and bad handwritings using data from group 1 and

group 3. Lastly, we evaluate the usability of our system based on the technique mistakes

novice users make overtime and their feedback on our system using data from group 3.

ID Fluency in Chinese Native language Gender Number of characters
1 Expert Chinese Male 85
2 Expert Chinese Female 94
3 Expert Chinese Male 77
4 Expert Chinese Male 84
5 Expert Chinese Male 97
6 Expert Chinese Male 76
7 Expert Chinese Female 85
8 Expert Chinese Male 83
9 Expert Chinese Female 79
10 Expert Chinese Female 71
11 Expert Chinese Female 90

Table 6.1: Information of users of group 1
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ID Fluency in Chinese Native language Gender Number of characters
12 Expert Chinese Female 55
13 Expert Chinese Male 55
14 Expert Chinese Male 56
15 Expert Chinese Female 175
16 Expert Chinese Male 56
17 Expert Chinese Female 56
18 Expert Chinese Female 52
19 Expert Chinese Female 66
20 Expert Chinese Male 161

Table 6.2: Information of users of group 2

ID Fluency in Chinese Native language Gender Number of characters
21 Novice English Female 94
22 Novice English Male 86
23 Noivce Japanese Male 70
24 Novice Korean Female 94
25 Novice English Male 114
26 Novice English Male 105
27 Novice English Male 86
28 Novice English Male 93
29 Novice Hindi Male 105
30 Novice English Female 114

Table 6.3: Information of users of group 3

6.2 Handwriting recognition

In this section, we compare the recognition rate of our proposed system with the fol-

lowing methods/systems:

1. $P: [28]: A state-of-the-art template matching algorithm for multi-stroke sketches

based on point clouds. In order to minimize the recognition errors caused by various

writing techniques such as stroke count, order, and directions, the $P algorithm treats

each sketch as a cloud of points. To recognize a given handdrawn input sample, both
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the template and the sample are normalized to have the same amount of points and

to be bounded by a square of the same size. A greedy algorithm is applied to match

each point from the sample to the template. The final distance between the sample

and the template is calculated as the summ of distances of each point pair weighted

by the significance of the point.

2. BopoNoto [17]: An ITS used for teaching Chinese Zhuyin symbols that have reached

reasonably high recognition rate. It is important to note that though the domain

Zhuyin have different symbols than Chinese characters, Zhuyin symbols have been

invented using strokes that are used in Chinese characters and the writing of Zhuyin

symbols follow the same manner as Chinese characters. The BopoNoto system uses

a two-part template matching algorithm for recognizing Zhuyin symbols. In the first

stage, the system calculates the Hausdorff similarity [15] between the sample and

each template, and returns a sorted list of symbols. In the second stage, the system

calculates the point coverage ratio [17] of templates that rank top 10% in the list

and take the template with the highest point coverage ratio as the recognition result.

The second step has been proved crucial for reducing recognition error caused by

samples that are visually similar to a subset of points of a particular template. This

algorithm has successfully recognized the entire Zhuyin symbol set [17].

We compare the recognition rates, and rankings of correct answer in the lists returned by

each template matcher. All three algorithms are run on the datasets from both expert users

(group 1) and novice users (group 3).
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6.2.1 Results

6.2.1.1 Recognition rate

Recognition rate is defined as the number of times that the correct prediction ranks

first in the list returned by the template matcher divided by the total number of writing

samples. As can be observed from Fig. 6.1, our overall recognition rate reaches 91%,

which is significantly higher than BopoNoto’s 87% and BopoNoto’s 81%. Fig. 6.2 shows

that our proposed method reached 98% and 85% recognition rates for expert and novice

users, respectively, which is better than BopoNoto’s 94% and 79%, and $P’s 89% and

73%.

Figure 6.1: Overall recognition rates of the three algorithms on the entire data set
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Figure 6.2: Recognition rates of the three algorithms on expert and novice datasets

6.2.1.2 Confusion matrices

Fig. 6.3 and Fig. 6.4 show the confusion matrices of our proposed classifier on the 27

symbols. It can be observed that expert data are almost always accurately classified. The

most miss classified character is "text", which is often classified as a very similar character

"female". However our algorithm often gets confused on characters with more complex

strokes like "he" and "you", whose projections have less obvious patterns.

6.2.1.3 Rank of matched template in the result list

As pointed out in the previous subsection, each template matcher returns a list of labels

their similarity to the sample. So it is a good indication when the correct templates show

in the top several indexes of the results list. In the implementation of our system, we judge

each handwriting as correct as long as the answer ranks top 3 in the recognition results

list. Fig. 6.5 shows our proposed template matching algorithm reaches 98% in ranking

the correct templates top 3, beating BopoNoto’s 89% and $P’s 93%. Fig. 6.6 shows our
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Figure 6.3: The confusion matrix of our proposed classifier on expert data

system has reached 100% and 95% in this metric for expert and novice data, respectively,

beating BopoNoto’s 96% and 83%, and $P’s 97% and 90%. Fig. 6.7 shows the correct

answers are almost always ranked top by our proposed template matching algorithm, with

an average index of 0.023 for experts, and 0.352 for novice, which is significantly better

than BopoNoto’s 0.35 and 1.287, and $P’s 0.318 and 1.065. It can also be indicated that

our proposed method is more robust to the level of students’ handwriting ability, while the

average ranking of BopoNoto varies largely with user groups. Fig. 6.8 shows the number

of occurrences that the correct classification result ranks at each index int the result lists
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Figure 6.4: The confusion matrix of our proposed classifier on novice data

returned by the three template matchers for novice users. It clearly shows that correct

predictions are heavily distributed on the first several indexes in our system. And the

correct predictions are always in the top 13, while BopoNoto and $P’s results both have

long tails.

6.2.2 Analyses and discussions

The recognition results have shown that our proposed system have better recognition

rates than the BopoNoto system as well as the $P template matching algorithm. It can
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Figure 6.5: The percentages of writing samples whose corresponding templates rank top
3 in the result lists

Figure 6.6: The percentage of writing samples whose corresponding templates rank top 3
in the results list for expert and novice users
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Figure 6.7: Average rankings of correct templates in the result lists

be observed from our experiments that BopoNoto’s two-part recognition algorithm has

performed significantly better than using Hausdorff distance as the only similarity met-

ric. This proves that the point coverage ratio has successfully reduced the errors caused

by writing inputs that are visually similar to a subset of points of a particular template.

Though BopoNoto reaches pretty decent recognition rate on expert data, the result has

validated our observation that the proposed template matching algorithm is more robust

with the user’s ability in Chinese handwriting. The results have also proved our hypoth-

esis that projections is an important feature for classification due to the nature of strokes

in Chinese characters, and that dynamic programming can efficiently avoid the possible

errors in recognition introduced by the distribution of strokes in students’ handwritings.

From the confusion matrices, it can be observed that like many other vision-based template

matching algorithms, our system can get confused on visually similar symbols. However,

from Fig. 6.8 we can see that the correct answer are almost always ranked top in the result

list by our template matcher, and that our system has less variance in classifying novice
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Figure 6.8: Number of predictions at each index in the result lists returned by the template
matchers on the novice dataset

users’ inputs than BopoNoto and $P.

6.3 Handwriting technique assessment

In this section, we evaluate our system’s ability to assess students’ writing techniques

and the accuracy in detecting their mistakes.

41



6.3.1 Results

6.3.1.1 Stroke matching

The algorithm for finding stroke correspondence from sample to template is essential

for assessing the techniques of each handwriting sample since it determines the correct-

ness of our stroke order and direction assessments. In order to prove the robustness our

stroke matching algorithm, we tested it on both novice data (group 3) and cursive writing

samples from 9 expert users (group 2). For samples that have correct stroke counts, we

compare our method with BopoNoto [17], which uses a similar greedy algorithm to find

stroke correspondences. Table 6.4 shows 1455 out of 1651 handwritings are written with

correct amounts of strokes, 136 with less strokes, and 36 with more strokes than template.

And our system is able to find correct stroke correspondences with an accuracy of 98.5%,

which is significantly better than BopoNoto’s 92.4%. While BopoNoto is not able to deal

with characters with concatenated and broken strokes, our system is able to correctly find

stroke correspondences for samples that have less strokes than template with an accuracy

of 85.6%, and for those that have more strokes with an accuracy of 97.3%.

Type Correct stroke count Less strokes More strokes
Total number 1455 159 37
Successful match (proposed) 1433 136 36
Successful match (BopoNoto) 1344 N/A N/A

Table 6.4: Stroke matching result

6.3.1.2 Stroke order judgment

In our proposed system, we provide binary to the students regarding the correctness

of the order of strokes in each character they write. BopoNoto [17] has proposed an

42



efficient way to judge stroke order for characters that have correct stroke counts, but breaks

when stroke count is incorrect. Observing that more information is yet to be retrieved

and utilized in broken strokes and concatenated strokes, our proposed method aims at

providing richer feedback, by assessing and instructing on all characters regardless of

stroke count correctness.

1. We first evaluated the accuracy of our stroke order judgment method on characters

with correct stroke counts and compared it against BopoNoto [17]. This result is largely

dependent on the one to one stroke matching accuracy. Table 6.5 and Table 6.6 show our

method reaches an accuracy of 98.6% and an F-measure of 99.1%, performing slightly

better than BopoNoto’s 96.2% and 95.4%, which can be observed from Table 6.7 and

Table 6.8.

Predicted: correct Predicted: incorrect
Actual: correct 1143 17
Actual: incorrect 4 287

Table 6.5: Confusion matrix of proposed stroke order judgment when stroke count is cor-
rect

Accuracy Precision Recall F-measure
98.6% 99.7% 98.5% 99.1%

Table 6.6: Results of proposed stroke order judgment when stroke count is correct

2. We then evaluated our system’s ability to judge stroke order on characters with

incorrect stroke counts. Table 6.9 and Table 6.10 show our method is able to accurately

judge stroke order when stroke counts are incorrect with an accuracy of 87.8% and an

F-measure of 89%.
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Predicted: correct Predicted: incorrect
Actual: correct 1079 83
Actual: incorrect 12 277

Table 6.7: Confusion matrix of BopoNoto’s stroke order judgment when stroke count is
correct

Accuracy Precision Recall F-measure
96.2% 98.9% 92.9% 95.4%

Table 6.8: Results of BopoNoto’s stroke order judgment when stroke count is correct

Predicted: correct Predicted: incorrect
Actual: correct 102 25
Actual: incorrect 0 49

Table 6.9: Confusion matrix of proposed stroke order judgment when stroke count is in-
correct

Accuracy Precision Recall F-measure
85.8% 100% 80.3% 89.0%

Table 6.10: Results of proposed stroke order judgment when stroke count is incorrect

6.3.1.3 Stroke direction judgment

We evaluate the binary classification result on the correctness of stroke directions. We

evaluate this judgment on characters with correct and incorrect stroke counts separately.

We first test our algorithm on handwriting samples that have correct stroke counts. Ta-

ble 6.11 and Table 6.12 show our method accurately classifies between characters with and

without direction errors with an accuracy of 98.3% and an F-measure of 99.1%, which is

significantly better than BopoNoto’s 80.4% and 88.1%. Table 6.15 and Table 6.16 show

our method is able to detect wrong directions when stroke count is incorrect as well, where

our classification reaches an accuracy of 87.2% and an F-measure of 91.9%.
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Predicted: correct Predicted: incorrect
Actual: correct 1317 20
Actual: incorrect 5 106

Table 6.11: Confusion matrix of proposed stroke order judgment when stroke count is
correct

Accuracy Precision Recall F-measure
98.3% 99.6% 98.5% 99.1%

Table 6.12: Results of proposed stroke order judgment when stroke count is correct

Predicted: correct Predicted: incorrect
Actual: correct 1055 282
Actual: incorrect 2 109

Table 6.13: Confusion matrix of BopoNoto’s stroke order judgment when stroke count is
correct

Accuracy Precision Recall F-measure
80.4% 99.8% 78.9% 88.1%

Table 6.14: Results of BopoNoto’s stroke order judgment when stroke count is correct

Predicted: correct Predicted: incorrect
Actual: correct 130 23
Actual: incorrect 0 27

Table 6.15: Confusion matrix of proposed stroke direction judgment when stroke count is
incorrect

Accuracy Precision Recall F-measure
87.2% 100% 85.0% 91.9%

Table 6.16: Results of proposed stroke direction judgment when stroke count is correct

6.3.2 Analyses and discussions

The results in this section have indicated that our proposed system is able to detect

students’ writing technique mistakes in a more well-rounded way so as to provide richer

45



feedback to them. The proposed system is able to accurately find matching strokes from

sample to templates, for writing samples with both correct and incorrect stroke counts.

The successful stroke matching enables our system to fully utilize information from every

stroke in the sample and give feedback to users. The proposed system reaches high accu-

racy on detecting mistakes in stroke count, order, and directions. While BopoNoto [17]

tends to assess the correctness of each writing sample in a sequential way and will not

give feedback on one aspect if there are mistakes on the previous one, our proposed sys-

tem assesses the three aspects of technique independently, providing richer feedback to

users.

6.4 Handwriting quality assessment

6.4.1 Experiment

In this section, we evaluate the importance of features on distinguishing between good

and bad handwritings. We use data from user group 1 and group 3 as training data, auto-

matically labeled as "good" and "bad" handwritings, respectively. In this section, we first

conducted statistical analyses to these two labeled datasets and the feature values associ-

ated with them. We then performed a Best First Search algorithm [74] to select the subset

of features that has the best separability between the two labeled datasets. We then built a

classifier to distinguish between the two labeled datasets using the selected features.

6.4.2 Results

6.4.2.1 Statistical analysis

We conducted Welch’s t-test [75] on our data set to see how well these features distin-

guish expert and novice data. T-values show how the average values are different in these

two data sets, and features with p-values lower than 0.05 are considered to be significant.

Table 6.17 shows the t-test results of the features we extracted for handwriting quality
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assessment.

Feature Description t-value p-value
f1 Ratio of bounding box -7.99319 3.0384 ∗ 10−15
f2 Centroid location (x) -9.9457 1.3064 ∗ 10−22
f3 Centroid location (y) -9.87485 2.5608 ∗ 10−22
f4 Hausdorff distance -18.4768 4.0003 ∗ 10−69
f5 Tanimoto coefficient 15.1258 2.2817 ∗ 10−48
f6 Yule coefficient 5.188746 2.4140 ∗ 10−7
f7 Stroke length distribution difference -9.28028 9.6376 ∗ 10−20
f8 Stroke orientation similarity (average) 7.477118926 1.5143 ∗ 10−13
f9 Stroke orientation similarity (min) 6.024062129 2.2875 ∗ 10−9
f10 Average speed -11.96446616 4.7238 ∗ 10−31
f11 Speed fluidity -12.39988266 2.8252 ∗ 10−33
f12 Horizontal projection difference -12.44523023 4.9875 ∗ 10−34
f13 Vertical projection difference -7.517797442 9.0902 ∗ 10−14

Table 6.17: T-test results for features

6.4.2.2 Feature selection

Although the t-test indicated all 13 features have very low p-values, it does not guar-

antee that the entire feature set is optimal for our classification task. Subset selection is

a method for selecting a subset of features that represent the data well [76]. We used

Weka [77, 78], a statistical analysis and machine learning software based on Java to run

subset selection using the Best First Search algorithm [74]. The feature subset selection

result in Table 6.18 shows 10 out of the 13 features were selected, excluding f6, f9, and

f13.

6.4.2.3 Classification

Based on the features selected, we applied a Random Forest [79] on our dataset using

selected features to classify between expert and novice data. We first used 10-fold cross-
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Feature Description Selection result
f1 Ratio of bounding box Selected
f2 Centroid location (x) Selected
f3 Centroid location (y) Selected
f4 Hausdorff distance Selected
f5 Tanimoto coefficient Selected
f6 Yule coefficient Not selected
f7 Stroke length distribution difference Selected
f8 Stroke orientation similarity (average) Selected
f9 Stroke orientation similarity (min) Not selected
f10 Average speed Selected
f11 Speed fluidity Selected
f12 Horizontal projection difference Selected
f13 Vertical projection difference Not selected

Table 6.18: Feature selection result

validation [80] and Table 6.19 and Table 6.20 shows our classification result reaches an

Predicted: expert Predicted: novice
Actual: expert 653 150
Actual: novice 176 674

Table 6.19: Confusion matrix of classification with 10-fold cross-validation
Class Precision Recall F-measure
Expert 0.788 0.813 0.800
Novice 0.818 0.793 0.805
Overall 0.803 0.803 0.803

Table 6.20: Detailed accuracy by class with 10-fold cross-validation

F-measure of 0.803. We also used leave-one-out cross-validation [81] on the dataset. The

results in Table 6.21 and Table 6.22 show that we reach an F-measure of 0.799. In order

to prove we are not overfitting the dataset, we randomly selected two thirds of the dataset

as training data, and tested on the remaining one third. An F-measure of 0.771 is reached
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Predicted: expert Predicted: novice
Actual: expert 648 155
Actual: novice 177 673

Table 6.21: Confusion matrix of classification with leave-one-out cross-validation
Class Precision Recall F-measure
Expert 0.785 0.807 0.796
Novice 0.813 0.792 0.802
Overall 0.800 0.799 0.799

Table 6.22: Detailed accuracy by class with leave-one-out cross-validation

as indicated in Table 6.23 and Table 6.24. We also performed the classification by using

Predicted: expert Predicted: novice
Actual: expert 201 50
Actual: novice 75 219

Table 6.23: Confusion matrix of classification with randomly selected 2/3 of dataset used
as training data and 1/3 as test data

Class Precision Recall F-measure
Expert 0.728 0.801 0.763
Novice 0.814 0.745 0.778
Overall 0.775 0.771 0.771

Table 6.24: Detailed accuracy by class with randomly selected 2/3 of dataset used as
training data and 1/3 as test data

data from the first 13 users (7 expert users and 6 novice users) as training data, and the

rest as test data, which reached an F-measure of 0.674, as can be seen in Table 6.25 and

Table 6.26. Last but not least, we performed a leave-one-user-out cross-validation on all

of our user data and repeated the experiment 21 times. We reached a weighted F-measure

of 0.804, which can be seen from Table 6.27

49



Predicted: expert Predicted: novice
Actual: expert 187 87
Actual: novice 109 218

Table 6.25: Confusion matrix of classification with first 13 users’ data as training data and
the rest as test data

Class Precision Recall F-measure
Expert 0.632 0.682 0.656
Novice 0.715 0.667 0.690
Overall 0.677 0.674 0.674

Table 6.26: Detailed accuracy by class with first 13 users’ data as training data and the rest
as test data

Class Precision Recall F-measure
Expert 1 0.701 0.798
Novice 1 0.698 0.811
Overall 1 0.699 0.804

Table 6.27: Detailed accuracy by class with leave-one-user-out cross-validation

6.4.3 Analyses and discussions

We are using a dataset composing of 803 samples written by experts, and 850 sam-

ples written by novice learners to find significant features to distinguish between well- and

badly-written characters. The statistical analysis has shown that similarity metrics such

as Hausdorff distance and Tanimoto coefficient, are most important to tell good from bad

samples. We also observed one of the common characteristic of novice data can have a

bad shape overall, which is reflected by the ratio of bounding box. We also found features

that reflect the internal balance of characters, such as stroke length distribution, projec-

tions, and location of centroids, have good separability on handwritings from experts and

novices. Another finding is that novice students have more difficulty mastering the hor-

izontal balance of characters than vertical, and the horizontal projection feature is much
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more important than vertical projection in distinguishing between the two user groups.

Using the selected features, our system is able to classify between expert and novice hand-

writings with an F-measure of 0.803 using 10-fold cross-validation, 0.799 using leave-

one-out cross-validation, 0.771 using two thirds of randomly selected data as training data

and the rest as test data, and 0.674 using the first 13 users’ data as training data, and the

rest as test data.

6.5 Usability

6.5.1 Experiment

In this study, we focus on evaluating the usability of our user interface for CSL students

by looking at how our feedback has helped improve learners’ handwriting techniques.

Users from group 3 were asked to handwrite each character mimicking the template pro-

vided, and use the feedback provided by our system as debug information to improve their

future tries. We count the mistakes they make in writing techniques in each try, and ob-

serve if our system is able to help them write better. After the data collection, we asked

these novice users to provide feedback for our system by giving scores from 1-5 to indicate

how each part of the feedback had helped them improve.

6.5.2 Results

We first analyzed data on the number of technical mistakes the students made on each

try. Fig. 6.9 shows the number of mistakes in students’ handwriting decrease significantly

with the help of our instructional feedback. In the survey after collecting data from stu-

dents, we asked the students to give scores from 1 to 5 to our feedback and animations

on each writing technique, and let us know their thoughts and comments. Fig. 6.10 shows

the scores each students give to our technique feedback. From Table 6.28 we can observe

that students are very satisfied on the system’s feedback on stroke count and stroke di-

rection, but sometimes get confused on the feedback for stroke order. We hope to figure
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Figure 6.9: Average number of mistakes made on each try in each technique

out a better way to instruct on stroke order in the near future. Students mention that the

way we highlight broken and concatenated strokes are very helpful to tell them how to

separate strokes. One of the students also mention the trace we present by animations on

strokes with wrong directions helps her clearly remember which stroke should go in which

direction. Some students also mention that it is not easy to clearly understand how they

should fix their stroke order mistakes based on our feedback. These good feedbacks are

very helpful for us to improve our system.

Stroke count Stroke order Stroke direction
4.22 3.33 4.11

Table 6.28: Average ratings on each technique feedback
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Figure 6.10: Scores given by students on system’s feedback on each technique

6.5.3 Analyses and discussions

The results have shown that our system gives clear feedback and instructions to users

and is able to help them improve their writing techniques overtime. We noticed that stroke

count and stroke directions are not big obstacles for CSL learners, since it is often straight-

forward to tell how many strokes are their in the character, and it is often clear that stroke

directions are fundamentally from left to right, and from up to bottom. Students tend to

make way more mistakes on stroke order, which is hard to summarize giving multiple in-

tersection strokes in each character. We also observed from students inputs that students

whose native languages are English tend to draw vertical strokes first, while in most case it

is the horizontal strokes that should go first. As can be observed from Fig. 6.9 that novice

students have an average of more than 1 mistakes on stroke order the first time they write,

and even at the third time they still make an average of 0.53 mistakes. This indicates the

great need for better stroke order instructions. From the survey result, we can observe that

our feedback on stroke count mistakes are very helpful to users. However, the way we give
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feedback on stroke order mistakes needs to be more clear.
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7. FUTURE WORK

Pressure is an important feature for Chinese handwriting and it is highly related to

speed and is significant to distinguish from novice and experienced writers. We plan to use

pressure-sensitive devices with our system in future developments and collection, assess

students’ writing techniques related to pressure, and find out how pressure affects the

visual quality of handwritings.

We also plan to integrate visual quality assessment into our system by developing an

automatic grading algorithm based on the features that we proved to be significant, so that

students not only learn to write each character correctly and with good techniques, but also

learn to reach a good visual quality. In addition, we hope to deploy our system to an entry

level Chinese language class in an American college, and see if our system can do better

jobs in teaching handwriting than human teachers.
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8. CONCLUSIONS

In this thesis, we presented a sketch-based educational system for Chinese handwriting.

Compared to tradition classroom education, our system is able to analyze students’ digital

writing data and give feedback in real time. We developed a new method for handwrit-

ing recognition that reaches an accuracy of 86% on novice learners’ data. Our technique

assessment system is able to accurately detect students’ mistakes on stroke count, stroke

order, and stroke direction, and give feedback in real time that helps students improve their

future writing style. We also collected handwriting samples from both experts and novice

students, and found 10 features that are significant for handwriting quality assessment. We

were also able to use these features to classify expert data and novice data using machine

learning techniques, which reached an F-measure of around 80%. We evaluated the us-

ability of our system on novice CSL learners, and observed the users had overall positive

feedback on our educational system.
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