5,836 research outputs found

    An improved energy-efficient clustering protocol to prolong the wireless sensor network lifetime

    Get PDF
    A wireless sensor network (WSN) is an important part of the Internet of Things (IoT). However, sensor nodes of a WSN-based IoT network are constraining with the energy resources. A clustering protocol provides an efficient solution to ensure energy saving of nodes and prolong the network lifetime by organizing nodes into clusters to reduce the transmission distance between the nodes and base station (BS). However, existing clustering protocols suffer from issues concerning the clustering structure that adversely affects the performance of these protocols. In this study, we propose an Improved Energy-Efficient Clustering Protocol (IEECP) to prolong the lifetime of the WSN. The proposed IEECP consists of three sequential parts. First, an optimal number of clusters is determined for the overlapping balanced clusters. Then, the balanced-static clusters are formed on the basis of a modified Fuzzy C-means algorithm by integrating this algorithm with a centralized mechanism to reduce and balance the energy consumption of the nodes. Lastly, cluster heads (CHs) are selected in optimal locations with the rotation of the CH function among members of the cluster based on a new CH selection-rotation algorithm by combining a back-off timer mechanism for CH selection and rotation mechanism for CH rotation. In particular, the proposed protocol reduces and balances the energy consumption of nodes by improving the clustering structure, where IEECP is suitable for networks that require a long lifetime. The simulation results prove that the IEECP prolongs the network lifetime better than Energy efficient clustering protocol based on K-means (EECPK-means)-midpoint algorithm (EECPK-means), Traffic-Aware Channel Access Algorithm (TACAA), and an optimal clustering mechanism based on Fuzzy C-means (OCM–FCM) protocols based on the First node die and Weighted first node die. Furthermore, IEECP performs better than the above protocols in terms of the energy dissipation in the network and the number of messages received by BS

    Predictive intelligence to the edge through approximate collaborative context reasoning

    Get PDF
    We focus on Internet of Things (IoT) environments where a network of sensing and computing devices are responsible to locally process contextual data, reason and collaboratively infer the appearance of a specific phenomenon (event). Pushing processing and knowledge inference to the edge of the IoT network allows the complexity of the event reasoning process to be distributed into many manageable pieces and to be physically located at the source of the contextual information. This enables a huge amount of rich data streams to be processed in real time that would be prohibitively complex and costly to deliver on a traditional centralized Cloud system. We propose a lightweight, energy-efficient, distributed, adaptive, multiple-context perspective event reasoning model under uncertainty on each IoT device (sensor/actuator). Each device senses and processes context data and infers events based on different local context perspectives: (i) expert knowledge on event representation, (ii) outliers inference, and (iii) deviation from locally predicted context. Such novel approximate reasoning paradigm is achieved through a contextualized, collaborative belief-driven clustering process, where clusters of devices are formed according to their belief on the presence of events. Our distributed and federated intelligence model efficiently identifies any localized abnormality on the contextual data in light of event reasoning through aggregating local degrees of belief, updates, and adjusts its knowledge to contextual data outliers and novelty detection. We provide comprehensive experimental and comparison assessment of our model over real contextual data with other localized and centralized event detection models and show the benefits stemmed from its adoption by achieving up to three orders of magnitude less energy consumption and high quality of inference

    Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications

    Get PDF
    Wireless sensor networks monitor dynamic environments that change rapidly over time. This dynamic behavior is either caused by external factors or initiated by the system designers themselves. To adapt to such conditions, sensor networks often adopt machine learning techniques to eliminate the need for unnecessary redesign. Machine learning also inspires many practical solutions that maximize resource utilization and prolong the lifespan of the network. In this paper, we present an extensive literature review over the period 2002-2013 of machine learning methods that were used to address common issues in wireless sensor networks (WSNs). The advantages and disadvantages of each proposed algorithm are evaluated against the corresponding problem. We also provide a comparative guide to aid WSN designers in developing suitable machine learning solutions for their specific application challenges.Comment: Accepted for publication in IEEE Communications Surveys and Tutorial

    Dynamic distributed clustering in wireless sensor networks via Voronoi tessellation control

    Get PDF
    This paper presents two dynamic and distributed clustering algorithms for Wireless Sensor Networks (WSNs). Clustering approaches are used in WSNs to improve the network lifetime and scalability by balancing the workload among the clusters. Each cluster is managed by a cluster head (CH) node. The first algorithm requires the CH nodes to be mobile: by dynamically varying the CH node positions, the algorithm is proved to converge to a specific partition of the mission area, the generalised Voronoi tessellation, in which the loads of the CH nodes are balanced. Conversely, if the CH nodes are fixed, a weighted Voronoi clustering approach is proposed with the same load-balancing objective: a reinforcement learning approach is used to dynamically vary the mission space partition by controlling the weights of the Voronoi regions. Numerical simulations are provided to validate the approaches

    FCS-MBFLEACH: Designing an Energy-Aware Fault Detection System for Mobile Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) include large-scale sensor nodes that are densely distributed over a geographical region that is completely randomized for monitoring, identifying, and analyzing physical events. The crucial challenge in wireless sensor networks is the very high dependence of the sensor nodes on limited battery power to exchange information wirelessly as well as the non-rechargeable battery of the wireless sensor nodes, which makes the management and monitoring of these nodes in terms of abnormal changes very difficult. These anomalies appear under faults, including hardware, software, anomalies, and attacks by raiders, all of which affect the comprehensiveness of the data collected by wireless sensor networks. Hence, a crucial contraption should be taken to detect the early faults in the network, despite the limitations of the sensor nodes. Machine learning methods include solutions that can be used to detect the sensor node faults in the network. The purpose of this study is to use several classification methods to compute the fault detection accuracy with different densities under two scenarios in regions of interest such as MB-FLEACH, one-class support vector machine (SVM), fuzzy one-class, or a combination of SVM and FCS-MBFLEACH methods. It should be noted that in the study so far, no super cluster head (SCH) selection has been performed to detect node faults in the network. The simulation outcomes demonstrate that the FCS-MBFLEACH method has the best performance in terms of the accuracy of fault detection, false-positive rate (FPR), average remaining energy, and network lifetime compared to other classification methods

    Improved fuzzy c-means algorithm based on a novel mechanism for the formation of balanced clusters in WSNs

    Get PDF
    The clustering approach is considered as a vital method for many fields suchas machine learning, pattern recognition, image processing, information retrieval, data compression, computer graphics, and others.Similarly, it hasgreat significance in wireless sensor networks (WSNs) by organizing thesensor nodes into specific clusters. Consequently, saving energy and prolonging network lifetime, which is totally dependent on the sensor’s battery, that is considered asa major challenge in the WSNs. Fuzzyc-means (FCM) is one of classification algorithm, which is widely used in literature for this purpose in WSNs. However, according to the nature of random nodes deployment manner, on certain occasions, this situation forces this algorithm to produce unbalanced clusters, which adversely affects the lifetime of the network.To overcome this problem, a new clustering method called FCM-CMhas been proposed by improving the FCM algorithm to form balanced clustersfor random nodes deployment. The improvement is conductedby integrating the FCM with a centralized mechanism(CM).The proposed method will be evaluated based on four new parameters. Simulation result shows that our proposed algorithm is more superior to FCM by producing balanced clustersin addition to increasing the balancing of the intra-distances of the clusters, which leads to energy conservation and prolonging network lifespan

    A survey of machine learning techniques applied to self organizing cellular networks

    Get PDF
    In this paper, a survey of the literature of the past fifteen years involving Machine Learning (ML) algorithms applied to self organizing cellular networks is performed. In order for future networks to overcome the current limitations and address the issues of current cellular systems, it is clear that more intelligence needs to be deployed, so that a fully autonomous and flexible network can be enabled. This paper focuses on the learning perspective of Self Organizing Networks (SON) solutions and provides, not only an overview of the most common ML techniques encountered in cellular networks, but also manages to classify each paper in terms of its learning solution, while also giving some examples. The authors also classify each paper in terms of its self-organizing use-case and discuss how each proposed solution performed. In addition, a comparison between the most commonly found ML algorithms in terms of certain SON metrics is performed and general guidelines on when to choose each ML algorithm for each SON function are proposed. Lastly, this work also provides future research directions and new paradigms that the use of more robust and intelligent algorithms, together with data gathered by operators, can bring to the cellular networks domain and fully enable the concept of SON in the near future
    • …
    corecore