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Abstract 

This paper present two dynamic and distributed clustering algorithms for Wireless Sensor 

Networks (WSN). Clustering approaches are used in WSNs to improve the network lifetime and 

scalability by balancing the workload among the clusters. Each cluster is managed by a cluster head 

(CH) node. The first algorithm requires the CH nodes to be mobile: by dynamically varying the CH 

node positions, the algorithm is proved to converge to a specific partition of the mission area, the 

generalized Voronoi Tessellation, in which the loads of the CH nodes are balanced. Conversely, if the 

CH nodes are fixed, a weighted Voronoi clustering approach is proposed with the same load balancing 

objective: a reinforcement learning approach is used to dynamically vary the mission space partition 

by controlling the weights of the Voronoi regions. Numerical simulations are provided to validate the 

approaches. 

Keywords: Voronoi partitioning, wireless sensor networks, Markov decision processes, 

reinforcement learning. 
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1 Introduction 

Wireless Sensor Networks (WSNs) are basically composed by sensor nodes, spread over the 

monitored area in order to collect the measures of interest, and by data sink nodes, which collect the 

data transmitted by the sensor nodes, process and aggregate the received measures and convey the 

elaborated data to a remote data centre. The management of WSNs is a widely-researched topic in the 

literature, since an efficient operation of WSNs is relevant to many applications, such as, e.g., 

environmental sensing [1], critical infrastructure monitoring [2], health care monitoring [3], process 

control monitoring [4], air quality monitoring [5], networked control systems [6]. One of the main 

challenges in WSN management is the energy consumption of the nodes, which limits the WSN 

lifetime. A common strategy to maximize the WSN lifetime is to group the WSN nodes into clusters. 

Data processing operations, such as data filtering, data aggregation and data fusion, are carried out in 

each cluster to reduce the load of data transmitted over the WSN, and, consequently, the overall 

energy consumption. The node responsible for gathering and processing the cluster data is the so-

called cluster head (CH) node. 

WSN clustering can be classified according to many characteristics (see, e.g., [7] and the 

references therein). In this paper, we are interested in dynamic clustering algorithms with a fixed 

number of CH nodes, with either fixed or mobile CH and sensor nodes, aimed at balancing the load 

among the CH nodes during the WSN lifetime. The paper does not take into account other aspects of 

WSNs which depend on the specific implementation, such as: the presence of algorithms to elect the 

CH nodes among the sensor nodes, the characteristics of the communication among the nodes and of 

the implemented routing algorithm, the data processing algorithms within the CH nodes. For the same 

reason, only the load balancing objective is considered; for instance, to maximize the WSN lifetime 

the objective might be to balance of the leftover energy among the CH nodes (and not their load only), 

but the energy consumption depends on the characteristics of the specific WSN implementation, such 

as the fact that CH nodes act as data relays or not, the energy occurring to move in case of mobile CH 

nodes, the data processing algorithms within the CH nodes and so on [8]. 

Generally, clustering is obtained by defining a region of competence for each CH. The first 

algorithm proposed in this paper deals with mobile CH nodes. We assume that the sensor nodes are 

associated to the nearest CH node; the objective is then to move the CH nodes in such a way that the 

set of CH nodes induce a balanced partition of the mission area. A discrete-time, distributed dynamic 

clustering algorithm is proposed for mobile WSNs, which lets the partition induced by the CH nodes 

converge to the so-called generalized Centroidal Voronoi Tessellation (CVT), with favorable 

characteristics in terms of load balancing. The control actions of the algorithm are such that, if the 

environment is stationary, the positions of the CH nodes are proved to converge to the CVT. 

If the CH nodes are fixed, a dynamic clustering algorithm is proposed, in which the CH node 

regions are varied by opportunely controlling the weights of a weighted centroidal Voronoi 
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tessellation. The system is modelled as a Markov decision process (MDP) and the control actions (i.e., 

the way the weights are varied) are computed by a reinforcement learning (RL) algorithm with the 

objective of minimizing a cost representing the load unbalancing among the CH nodes. 

The paper is organized as follows: Section 2 presents a literature review and outlines the paper 

contributions; Section 3 summarized the basic concepts and definitions of Voronoi partitioning, MDP 

and RL; the proposed dynamic CVT and weighted Voronoi algorithms are analyzed in Sections 4 and 

5, respectively; Section 6 collects the simulation results; finally, Section 7 draws the conclusions and 

outlines the future works. 

2 Related works and paper contributions 

2.1 Related works 

Dynamically modifying the mission space partitioning (i.e., the composition of the WSN 

clusters) can be exploited to ensure balancing and prolong WSN operations. The main degrees of 

freedom for WSN balancing are dynamic clustering, CH node migration across the mission space and 

CH node role migration among nodes (i.e., dynamic CH node election). A rich variety of algorithms 

have been proposed for each of these topics, often in combined forms. In this paper, we investigate CH 

node migration and dynamic clustering concepts. The reader interested in CH node election algorithms 

is referred to [7,9–11], where the most popular algorithms are explained, such as: LEACH [12], which 

introduces a random election mechanism, HEED [13], an extension of LEACH including among the 

election parameters also the residual energy of the node, EECS [14], a LEACH-like algorithm for 

single-hop WSNs, which introduces a distance-based metric to balance load among cluster head, and 

many others. EECS is interesting in that it promotes unequal clustering, meaning that the clusters far 

away from the WSN sink (or gateway) node tend to be smaller compared to closer ones (CH nodes far 

from the sink node spend more energy to transmit data, in single-hop WSNs). As a result [14], EECS 

manages to prolong network lifetime (the time until the first node runs out of energy) compared to 

LEACH and HEED. LEACH extensions have been designed to specifically tackle nodes mobility and 

the associated issue of increased packet loss. In LEACH-M [15], a mobility metric is proposed. In 

[16], the CH election is based on node residual energy and mobility; node clustering is then based on 

the connection time with the CH, the distance from the CH, the node residual energy and the node 

degree of the CH. Another recent extension of LEACH for mobile networks is LEACH-MF [17], 

which enhances the fuzzy inference system proposed in [18] to improve the CH selection phase for 

mobile scenarios, by taking into account the residual energy and the moving speed.  

Rather than dealing with CH node role migration, in this paper we investigate balancing via i) 

navigation of the CH nodes in the mission space, in the context of mobile WSNs (Section 4) and ii) via 

dynamic modification of the cluster extensions, in a context of fixed CH nodes (Section 5). 
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Several works have been proposed in literature dealing with balancing through CH node mobility. 

A method is proposed in [19], which overcomes previous strategies based on random movements by 

investigating three different mobility strategies, one based on movement towards energy-dense regions 

of the WSN, a second one promoting CH migration towards the WSN regions generating more events 

and a third one realizing a hybrid approach. The authors show that the hybrid approach is the most 

effecting in prolonging the operative life of the WSN, up to 75% more with respect to standard 

algorithms such as LEACH. The CH node mobility algorithm proposed in this paper is based on the 

concept of Voronoi partitioning [20]. Voronoi WSN partition has been already investigated in some 

works, since the technique appears well-suited to support information fusion algorithms and 

transmission power control. Reference [21] presents a distributed approach for explicitly computing 

the Voronoi partition of the WSN sensor field (i.e., of the area monitored by the WSN) based on 

geometrical considerations and aimed at minimizing the energy consumption. Reference [22] presents 

an offline (i.e., static) distributed algorithm for achieving energy-aware Voronoi WSN partitioning 

(off-line partitioning is achieved based on the knowledge of the location of nodes deployment). A 

centralized fuzzy C-means clustering algorithm is presented in [23], in which the fuzzy membership 

functions are based on the Voronoi partitioning of the WSN, computed relying on a distance metric 

including both the Euclidean distance and the residual energy of the nodes. Reference [24] presents a 

Voronoi-based clustering algorithm in which mobile CH nodes are pushed by “virtual forces” 

computed to minimize the variance of the cluster dimensions and the energy depletion of the CH 

nodes. The algorithm in [24] requires the explicit computation of the Voronoi diagrams after each 

iteration. 

Researchers have realised that both the CH node location (or election) and the cluster sizes are 

critical to the WSN lifetime. This is because of the combined effect of the intra-cluster data processing 

load and the inter-clusters data forwarding load (in multi-hop WSNs), which have both to be sustained 

by the cluster heads. The greater the cluster size is, the greater will be the data processing load; the 

closer the CH node is to the base station, the greater will be the amount of data from other CH nodes 

that the CH node in question will have to forward to the base station. Hence, researchers have studied 

algorithms to control and balance the cluster sizes. One of the earliest works in this sense is [25], 

which presents a static clustering which takes into account the interaction between routing and 

clustering; an optimization problem is defined to find the optimal power allocation strategy. In [26], a 

genetic algorithm is used to find a static association between each sensor node and a CH node, optimal 

with respect to the modelled energy consumption; the configuration is kept for the whole network 

lifetime. Reference [27] proposes a dynamic energy-aware distributed topology control, in which CH 

nodes are assumed to be fixed and the objective is to control the cluster sizes in order to balance the 

CH node energy. The algorithm starts by computing the initial partition of the mission area as the 

Voronoi tessellation induced by the CH node positions. Then, an iterative algorithm changes the 

partition by moving the vertices of the regions according to heuristic rules taking into account the 
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position and the leftover energy of the adjacent CH nodes. No convergence results to favourable 

configurations are given. In [28], a dynamic clustering scheme for WSN lifetime optimization is 

proposed, which requires periodically solving a non-linear programming problem to regulate the 

radius of each cluster. 

2.2 Paper contributions 

The main innovation proposed by this paper in the context of WSN clustering is the concept of 

dynamically controlling the Voronoi partition achieved by the CH nodes, while guaranteeing the 

convergence to a balanced clustering configuration. Two discrete-time control methodologies are 

proposed, the former suitable for mobile WSNs, the latter for fixed WSNs. Both algorithms are 

distributed and require the execution of simple update rules by the CH nodes, without the need of 

explicitly computing the Voronoi partition at any time-step. 

The first algorithm, inspired by the data-sink node election method developed in [9] for fixed 

WSNs, and by the algorithm for multi-vehicle routing in [29], proposes a new approach to move 

mobile CH nodes in such a way that, in stationary environments, the network partitioning converges 

towards a generalized CVT, which takes into account both the position and the load generated by each 

sensor node. In contrast with the algorithms in [21], [22], [23], [24], the proposed one does not require 

to explicitly compute the partition at each time-step. 

The second algorithm, based on a MDP model of the WSN and on a RL algorithm, proposes a 

new approach to vary the partition of the mission area in static WSNs. The mission area is partitioned 

according to a weighted Voronoi tessellation. The resulting clusters are unequal, as in [14], [27], [28], 

with the key differences that the proposed algorithm i) dynamically sets the weights without the need 

of solving optimization problems at each time-step, ii) in stationary environments, lets the partition 

converge to the weighted Voronoi tessellation which minimizes the mean squared error between the 

load of each CH nodes and the average load of the CH nodes. 

3 Preliminaries  

Sections 3.1 and 3.2 present some notions on Voronoi partitioning, on MDP and on reinforcement 

learning. Standard notation is used throughout the paper, with vectors denoted with bold characters, 

and with  denoting the cardinality operator.  

3.1 Voronoi Partitioning 

Table 1 summarizes the nomenclature used to define the Voronoi partitioning problem. 
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Convex Euclidean domain/mission area 

 
Euclidean distance between two points  

 
Weighted Euclidean distance between two points , with weight vector  

 
Density function with discrete support 

 
Density function 

 
Set of the generator points of the Voronoi tessellation 

 
Generalized centroid computed with respect to the density function   

 
Generalized centroid computed with respect to the density function   

 
Voronoi partition (or tessellation) generated by the generating points in  

 
Voronoi region associated to generating point  

 
Weighted Voronoi region associated to generating point  with weights vector w 

 
Weighted Voronoi tessellation generated by the points in  with weight vector w 

 

Weights vector of the weighted Voronoi partition 

Table 1: Voronoi tessellation nomenclature 

Mission space partitioning relies on the definition of Voronoi partition. Let us consider a convex 

Euclidean domain , and a set  of points in . The Voronoi regions with respect to the set  

is defined as: 

, ,  (1) 

where  is the Euclidean distance between  and . Equation (1) states that a point 

 belongs to the Voronoi region  if it is such that the distance between  and  is not 

greater than the distance between  and any other point . The Voronoi regions  are 

bounded and convex, and are such that  and is a set of zero measure, i.e., 

they form a partition of the mission space , referred to as Voronoi partition or tessellation, denoted 

with . The points  are the so called generating points, or generators, of the 

Voronoi partition. 

Depending on the position of the generating points in the mission space , specific partitions can 

be generated. In particular, in Section 4 we are interested in the generalized Centroidal Voronoi 
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Tessellation (CVT), whose generating points are the centers of mass of the Voronoi regions, and 

which is regarded as an optimal partition corresponding to an optimal distribution of generators [20]: 

 

Definition 1: Let the density function  be an absolutely continuous spatial 

distribution, with bounded and convex support in 
 2

.The generalized centroid of the set  

with respect to the density function  is .  

 

In analogy with Definition 1, in the discrete spatial distribution case, the generalized centroids are 

defined as follows: 

 

Definition 2. The generalized centroid of a set  with respect to a discrete density function 

 with support given by a finite, discrete set  is 

. (2) 

  

The resulting Voronoi partition is the generalized CVT: 

 

Definition 3: A Voronoi tessellation  of a convex set  is called a generalized 

Centroidal Voronoi Tessellation with respect to the density function  ( ), if each generator  is 

equal to the generalized centroid of its partition  with respect to  ( ).   

 

Different Voronoi tessellations can be obtained by defining different distances (see, e.g., [30]), 

which, however, may present some drawbacks depending on the specific use-case: e.g., 

multiplicatively weighted Voronoi diagrams, obtained by dividing the Euclidean distance between a 

point and a generator point by a positive weight associated to the generator, may have disconnected 

partitions; in power diagrams, where the distance between a point and a generator point is defined as 

the squared Euclidean distance minus the generator weight, the generator may lie outside its own 

region. The clustering algorithm in Section 5 makes use of the additively weighted (AW) Voronoi 

tessellation, where the distance is defined as , with 

                                                      

2 I.e., there is a bounded and convex subset  s.t.  if , and  if . 
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. Accordingly, the AW Voronoi regions, which depend on the weights 

vector, are defined as: 

. (3) 

The AW Voronoi tessellation is suitable for a WSN scenario, given that the generators lie within their 

region and there are no ‘holes’ in the regions. 

3.2 Markov Decision Processes and Reinforcement Learning 

Table 2 summarizes the nomenclature used to define the MDP/RL approach. 

 

 
Cost function of the MDP 

 
Expected discounted total cost under policy  with initial state distribution  

 
Exploration rate  

 
Learning rate at time  

 
Transition probability from state  to state  when action  is chosen 

 
Policy 

 
Action-value function for state , action  and policy  

 
Initial state distribution 

 
Transition probability matrix of the MDP 

 
Action chosen in state  under policy  

 
Action chosen at time  

 
Action space of the MDP 

 
Value function for state  and policy  

 

Weight vector in state   

 
State of the system at time  

 
State space of the MDP 

Table 2: MDP/RL nomenclature 

A MDP is a discrete-time stochastic control process defined by the tuple , where 

 is finite state set,  is finite action set,  is the transition probability matrix,  is 

the initial state distribution,  is the cost function and  is the discount 
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factor, weighting immediate vs. future costs. Under the Markovian (or memory-less) property and 

under the stationary distribution assumption, the transition probabilities are stationary and the generic 

element  of the matrix  describes the probability that the system trajectory transits from state 

 to  when action  is chosen. A policy  is a mapping from the state space to the action 

space, i.e., 
 3

. In this paper we consider the stationary, infinite-horizon case 

under the total discounted cost criterion [31], in which a policy is optimal if it minimizes the expected 

cost: 

, 

where  and  are the state visited and the action chosen at time , respectively,  denotes the 

expected value under policy  with initial state distribution . The value function  is the 

expected discounted cost starting from  and following policy  thereafter; the action-value function 

 is the expected discounted cost starting from , choosing action  and following policy  

thereafter: . 

Model-based and model-free methods exist to solve MDP (i.e., to find an optimal policy). 

Dynamic programming algorithms (see, e.g., [32]) are model-based methods, since they need a 

complete environment description (i.e., the transition probabilities must be known in advance) and are 

able to find an optimal policy iteratively; beside the need of a model, they are not scalable since the 

state space dimension explodes in practical scenarios (the so-called curse of dimensionality [33]). 

RL algorithms are model-free methods which converge to an optimal policy under the hypothesis 

that every state is visited an infinite number of times (see, e.g., [33]); however, RL algorithms are able 

to fast converge to effective sub-optimal policies in many practical problems. Let the system be in a 

generic state ; RL algorithms chose an action  based on a given control rule, and then 

observe the next state  and the cost  incurred after the transition. Based on the 

observations, the RL algorithms update the value function estimate  or the action-value function 

estimate . Different RL methods exist, which differ by the rule used to decide the control 

action and by the rule used to update the value (or action-value) function. In this paper (not focused on 

RL solutions), the widely-used Q-learning algorithm is used, but more complex RL algorithm can be 

used (e.g., SARSA(λ), as in [34], actor-critic methods [35]). The Q-Learning update rule is the 

following one: 

                                                      

3 Policies in which one action per state is chosen with probability 1 are called deterministic policies. Considering 

deterministic policies only is not a limitation in unconstrained MDPs, since a deterministic optimal policy always exists [35]. 
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, (4) 

where the learning rate  is the key parameter for the algorithm convergence: if 

 and , the estimate (4) converges to the optimal action-

value function as  ([35]). In state , the action is then decided based on the current estimate of 

the state-action value function; the current best action is the one corresponding to the minimum Q 

value in state . To guarantee a certain degree of exploration of the state space set, an -greedy rule is 

followed: the best action is chosen by the controller with probability , where  is the 

exploration rate; with probability  a random action is chosen: 

. (5) 

A large value of  guarantees that different policies with respect to the current best one are explored, 

and thus avoids that the system remains stuck in a local minimum. A small value of , on the other 

hand, lets the controller choose the best action based on the current estimates of the action-value 

function and favors the exploitation of the current best policy. 

Several extensions to non-stationary environments have been proposed in the literature. In this 

paper, the update rule of [36], tailored to non-stationary environments, is used: 

  

. 

(6) 

4 Dynamic Clustering for Mobile WSN 

Table 3 summarizes the nomenclature used to define the dynamic Voronoi partitioning algorithm. 
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Multiset collecting all the nodes that have been associated to CH node  up to time  

 
Set of the CH nodes 

 
Set of sensor node positions at time  

 
Set of the limit reference positions of the generator points (CH nodes) 

 
Set of the generator point (CH nodes) positions at time  

 
Multiplicity of sensor node  in  (i.e., the number of times  appears in ) 

 
Set of sensor nodes associated to CH node  at time  

 
Position of sensor node  at time  

 
Limit reference position of the generator point (CH node)  

 
Position of the generator (CH node)  at time  

 
Expected transmission rate of node  

 
Transmission rate of node  at time  

 
Average transmission rate of the sensor node  during round  

 
Cumulative transmission rate of the sensor nodes associated to the CH node  up to step  

 
Time instant of the -th round  

 
Time instant when sensor node  was included in  for the -th time 

 
Set of sensor network nodes 

 
Partition of the set of sensor network nodes  according to the generator points in  

 
Subset of sensor network nodes in the partition  

Table 3: Dynamic Voronoi tessellation nomenclature 

Let the mission space be a bounded, convex Euclidean domain . The sensor network is 

deployed on the mission area ; let  be the set of generally mobile network nodes. The position of 

the node  at time  is defined by the time-varying mapping function , and  

denotes the set of node positions at time . Finally, let  denote the set of the CH nodes in the sensor 

network. The position of the generic CH node  at time  is defined by the mapping function 

, and  is the set of CH node positions. 
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4.1 Dynamic CVT Algorithm 

We describe in the following the proposed clustering algorithm for network balancing in presence 

of mobile nodes and variable transmission data rates. The algorithm relies on the periodical Voronoi 

partitioning of the network, with each CH node playing the role of a Voronoi region’s generator. A 

proper update rule for the CH node target positions is provided in the following in order to keep the 

network clustering balanced in time. Target CH node positions are computed periodically; the time 

scale is then discretized, and, during every round, it is assumed that the CH nodes can reach the target 

positions by moving on the mission space. The proposed algorithm is distributed, since each CH node 

takes the control decisions independently of the other CH nodes. The communication among the CH 

nodes is kept limited to the communication of their target position at every round, i.e., each time a new 

target position computation is made. 

Let  denote the duration of each round, and let  be the time instant corresponding to the 

beginning of round : . We assume that, at time , each node  is associated to one 

CH node; thus, we also assume an initial clustering of the network: the initial association of sensor 

nodes to CH nodes in round  can be chosen randomly; however, a reasonable initialization is to 

associate each sensor node at time  to the nearest CH node. At the beginning of each round , each 

sensor node sends to all the CH nodes (e.g., by flooding the network) its position  and its 

average transmission rate during the -th round, denoted with . The CH nodes also exchange 

among them their position set .  

Given the position sets  and , each CH node  computes which are its associated sensor 

nodes (i.e., the nodes whose distance to  is smaller than the distances to the other CH nodes) and 

collects them in the neighbor set . 

Each CH node stores the past and the current neighbor sets in the multiset 

, with .  is a multiset in the sense that each node 

can appear in  more than once;  denotes the operation of multiset union
 4
. The number of times 

                                                      

4 Multisets, also commonly known as bags, are unordered collections of items which may contain duplicates. For 

example, the multiset  is equivalent to the multiset , but differs from the multiset (also a set in this case) 

 because of the multiplicity of element 1. The multiset  by definition contains only the elements that occur 
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a node  appears in  is called the multiplicity of the node, and is denoted in the following with 

. The multiplicity of a node is in practice equal to the number of times the node was associated 

to the CH node  up to time . With little abuse of notation, let  denote the time instant when 

node  was associated to  for the -th time, i.e., raising the multiplicity of node  in  to . 

As already specified, each time an element is associated to , the CH node also keeps trace of the 

node transmission rate and position. In the following,  and , will denote, 

respectively, the position and the transmission rate of the node  when multiplicity  was gained in 

. 

The new target position  of the CH node , that is, the point in the region which the CH 

node  has to reach at time , is then computed as the reference point of the multiset , 

defined as the point which minimizes the average weighted squared distance to the sensor nodes in 

, with each squared distance being weighted by the respective node’s transmission rate: 

.  (7) 

(Note that  in (2) means to visit each node in  only once, as in usual set operations.) 

Given that the function to be minimized in (7) is strictly convex in , there is a unique reference 

point  for each . Also, since all the elements of  belong to , and  is convex, it 

follows that . 

Different balancing objectives can be pursued by changing the weights of the weighted squared 

distances in equation (7), i.e., by substituting the transmission rate  with another characteristic 

of sensor node , such as the leftover energy. 

                                                                                                                                                                      

either in  or in , and the multiplicity of each element in  is the multiplicity of that element in  plus the multiplicity of 

that element in , e.g., . 
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4.1.1 Convergence of the reference points to the CVT 

We are interested at showing that the sequences of the reference points (7) converge to the 

generating points of the CVT, i.e., to the generalized centroids, as . The property will be proved 

in the stationary case, i.e., under the following assumptions: 

 

Assumption 1.  

a. The sensor nodes (differently from the CH nodes) are fixed, and thus the set of the sensor node 

positions is time-independent; we will then omit the subscript , i.e., ; 

b.  The sensor transmission rates have a Poisson distribution with mean . 

 

Under Assumption 1.a, at each round  the only required communication exchange among the 

CH nodes concerns their positions  and the node transmission rates . Under 

Assumption 1.b, the scenario is then equivalent to a standard Voronoi clustering problem with points 

on the mission space appearing with exponential distribution. As shown in [29], since the cardinality 

of  is finite, the sequences of the positions of the reference points  converge to well-defined 

limit generation points, denoted as , collected in the limit set ; the 

corresponding limit Voronoi partition and limit Voronoi regions are denoted as  and , 

respectively. The following property holds: 

  

Property 1 [29]. The sequence of the Voronoi partitions  generated by the 

sequences of reference points , converges, almost surely, to the limit Voronoi 

partition  generated by the limit reference points , .   

 

Thanks to Property 1, to study the steady-state properties of the algorithm we just need to check 

the properties of the limit Voronoi partition , i.e., to check that  is a generalized centroidal 

tessellation. 

The Voronoi partition  induces an associated node set partition, denoted with 

, where the sensor nodes are grouped as: 
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.  (8) 

Also, from Property 1, it follows that, as , the network graph is partitioned in  subsets of 

nodes , defined as in eq. (8), and that the sequence of node set partitions 

, converges to the limit node set partition . 

The main result is given in the following Theorem 1, which demonstrates that the limit Voronoi 

partition obtained by the proposed algorithm is a generalized CVT: 

 

Theorem 1. Under Assumption 1, for all CH nodes , the limit reference point 

 of the sequence of reference points (7) coincides with the generalized centroids 

of the limit Voronoi region , computed with respect to the stationary density function , 

defined as the spatial distribution of the sensors, weighted by the node average transmission rates: 

. (9) 

where  is a normalization constant.  

 

Proof. Since the average transmission rate of the nodes is stationary by assumption, the 

distribution  is stationary as well. We are interested in the limit generating points of the limit Voronoi 

partition, which, given the update rule of eq. (7), and considering that the sensor node positions are 

constant by Assumption 1.a, are defined as 

.  

(10

) 

By Property 1, eventually, as , the position of each generator  converges to the limit point 

 and  converges to the limit set . Hence, eventually, the new nodes  in  will 

all belong to . The first consequence is that the contribution of the terms of the first summation 

in (10) for  will vanish as : 
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.  (11) 

Secondly, it holds that . Thanks to the fact that the transmission rate 

distribution is stationary, the average transmission rate is recovered at the limit, and, from equation 

(11), it follows: 

 

 

.  (12) 

Finally, by the definition (9) of , from equation (12) it holds that (considering also that the 

normalization constant  of equation (9) does not affect the  operator): 

.  (13) 

By comparing equation (13) and equation (2) of Definition 2, it turns out that the limit reference 

point  is the generalized centroid of the limit Voronoi region  with respect to the discrete 

stationary density function .  

4.1 Mobile WSN Clustering Implementation 

At stage , the information available to each CH node  are the sensor node positions, the CH 

node positions, the indexes of its associated sensor nodes, collected in the set , and the 

transmission rates of its associated nodes, . 

In practice, to compute the new target positions , there is no need to solve the 

optimization problem (7) at each stage, or to store all the values of the past CH node positions and 

transmission rates, since iterative algorithms exist, as, for instance, the MacQueen’s k-means method, 

which eventually converges to the same minimizer of (12) (see [20,37]). In the considered scenario, 

the iterative algorithm of Table 4 is executed at every stage  by every CH node  to compute the 

target points . 
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Step 0 Initialization at time  (round ): 

a.   

b.   

c.   

Step 1 At time  (round ), for all , compute the neighbor set  and initialize: 

a.   

b.   

Step 2 For all  and for all , update 

a.   

b.   

Step 3 For all , 

a. Move towards  and transmit the new position to the other CH node 

b. Update  

Step 4 Go to Step 1  

Table 4: Dynamic CVT algorithm 

At the end of step 2,  is the new target position of CH node  and  is the cumulative 

transmission rate of the nodes associated to CH node  up to step . To execute the algorithm of Table 

4 it is sufficient that each CH node  stores the current positions of the CH nodes (to compute the 

neighbor set at step 1), the last reference point  and the last cumulative load . The initial 

conditions are  and . 

In non-stationary environments (e.g., when the transmission rates are time-varying or if the 

network graph is time-varying due to sensor mobility and/or due to the occurrence of node failures), 

the distribution  is non-stationary, and, according to Definition 2, the generalized CVT is time-

varying as well. In this case, Step 1 of Table 4 can be modified to weight the new points (i.e., the node 

associations at step ) more than the old ones, in an exponential averaging fashion. Step 1.b of the 

iterative algorithm becomes: 
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Step 1 b.  

Table 5: Step 1.b of the dynamic CVT algorithm for non-stationary environments 

where  is a constant real number between  and  which weights the past points: at time , the 

weight of the node association occurred at time  is reduced by a factor . Depending on the 

dynamics of the distribution, by tuning the parameter  this new rule might be able to ‘follow’ the 

variations of the traffic rate distribution and/or of the sensor node positions. Note that the stationary 

algorithm is obtained by setting . 

5 Dynamic Weighted Clustering for Fixed WSN 

In this Section, a new idea is presented to let fixed (non-mobile) CH nodes cope with variations 

of the network, e.g., in terms of node transmission rates. The idea is to control the width of the areas 

covered by the generators (i.e., by the CH nodes) by varying the generator weights in response to the 

variations of the transmission rates of the node. 

5.1 Dynamic Weighted Clustering MDP Model 

The system is modelled as a discrete-time MDP, defined by the tuple , under the 

assumption that sensor node position is fixed and that the sensor transmission rates are stationary and 

exponentially distributed with mean . 

An additive weighted metric is used, where the weights are used to vary the neighbor sets of the 

CH nodes. The sensor node association to the CH nodes depends on the weighted distance, i.e., on a 

weights vector ; the neighbor sets are defined accordingly: 

. (14) 

State space . Let  denote the system state at time 

, where: 

- , is the weight associated to the CH node  at time ; 

-  is the least loaded CH node at time , i.e.: . 
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A maximum weight value  is defined to limit the state space; clearly,  must be selected in 

oder not to affect the control potential. To obtain a discrete and finite state space, the set of admissible 

values is then quantized and defined as: 

, with , (15) 

where  is the quantization interval. Notice that all the weights are equal if 

 (in such case, the weighted tessellation corresponds to the standard one). A 

feasible weight vector  is defined as the vector of the weights of the CH nodes such that their sum is 

; the set of feasible weights is then defined as 

. (16) 

With this approximation, the state space is defined as the following finite set: 

. (17) 

Note that different states may exist with the same weights vector, since the CH node loads vary with 

time. With little abuse of notation, the least loaded CH node, the weights vector and the weight 

associated to the -th generator in state  will be denoted with , and , respectively. 

Correspondingly, let  be the set of the nodes associated to the CH node  in state . 

Action space . In the generic state , the available actions are the ones which increase the 

weight of the least loaded CH node  and, at the same time, decrease the weight of a CH node. By 

defining  as a null vector of  components but the -th element equal to one, the action space when 

the system is in state  is defined as the following set of  actions: 

. (18) 

As the controller chooses the action  in state , the next state  is one of the states in  such that 

. Note that, the action  with  is a null-valued vector, i.e., it 

equals to doing nothing. 

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ita
 S

tu
di

 la
 S

ap
ie

nz
a]

 a
t 0

0:
18

 1
4 

Se
pt

em
be

r 
20

17
 



Transition matrix . Given that the transmission rates of the nodes are exponentially distributed, 

there is a probability that, at time , any of the CH nodes is the least-loaded one. The transition 

probabilities  are then positive if  is such that , null otherwise. If action 

 with  is chosen, the next weights vector is equal to the current one; 

nonetheless, a state transition may occur if the sensor node loads vary in such a way that the least 

loaded CH node changes. Since the transition probabilities depend on the statistical characteristics of 

the traffic and are not easily computed, and to cope with the curse of dimensionality, a model-free RL 

approach is proposed in the following. 

Cost function . The main objective of the algorithm is to balance the load among the CH nodes 

by varying the weights vector and, consequently, the neighbor sets. Let  denote the expected 

load of CH node  in state , and let  be the average expected load of the CH nodes on state , i.e: 

 and . The proposed state-dependent cost function 

, evaluating the load balance among the CH nodes, is then the mean squared error 

. (19) 

The expected load  depends on the state  only thanks to the assumption of a stationary 

environment. 

Different balancing objectives can be pursued by changing the cost (19), e.g., by considering the 

leftover energies of the sensor nodes. 

5.2 Dynamic Weighted Clustering RL Algorithm 

The optimal policy for the MDP defined in the former Section is pursued on-line by means of RL 

algorithms. Since the objective of the paper is not focussed on finding new RL algorithms, the Q-

learning algorithm is proposed as a simple, popular and effective algorithm for stationary 

environments. In non-stationary environments, the algorithm in [36] is proposed, which requires minor 

modifications to the Q-learning update rule to be implemented. 

For both the stationary and the non-stationary cases, at stage , the information available to each 

CH node  are the sets of the positions of the sensor nodes and of the CH nodes,  and , 

respectively, the current weight vector , the indexes of its associated nodes, collected in the set 

, and the transmission rates of its associated nodes computed over the last stage, 
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. Then, each CH node  computes its current load as the sum of the transmission 

rates of its associated nodes, i.e., , and communicates it to the other 

CH nodes. Every CH node then computes the current cost as , where 

 is the average current load of the CH nodes, and the index  of the least-

loaded CH node. Thus, each CH node knows the current state . 

The CH node  is the controller node at stage ; it decides the action , based on an 

-greedy policy, and communicates the new weights  to all the other CH 

nodes. Finally, all the CH nodes update their neighbour sets , according to the 

additively weighted distance, and update the values of the Q functions according to the Q-learning rule 

(4). 
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Step 0 Initialization at time  (round ), for all : 

a.   

b.   

c.   

d.   

Step 1 At time  (round ), for all : 

a. Compute  and  

b. Transmit  to the other CH nodes 

Step 2 Once received the ’s, for all : 

a. Retrieve the state  with  

c. Compute  and   

d. If , update  with update rule (4) 

Step 3 
CH node : 

a. Chooses  with -greedy rule (5)  

b. Computes   

c. Transmits  to the other CH nodes  

Step 4 For all : 

a. Update  and go to Step 1  

Table 6: Weighted CVT algorithm 

Even if each CH node computes and stores the Q-tables independently, and even if, at every 

stage, only one of the CH nodes is the controller, the Q-learning algorithm properties still hold since 

the Q-function estimates coincide, being based on the same information set. 

In non-stationary environments, the update rule (6) is used in Step 2.d of the algorithm to try to 

follow the time-varying distribution of the traffic rate of the sensor nodes: 

 

Step 2 d. If , update  with update rule (6) 

Table 7: Step 2.d of the weighted CVT algorithm for non-stationary environments 
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6 Simulations 

Numerical simulations were executed to test the presented algorithms against a static clustering 

strategy. The objective was to evaluate the algorithm characteristics and no specific WSN was 

modeled.  

Three clustering algorithms were implemented. A reference static algorithm was considered, in 

which the CH nodes are fixedly placed in the position corresponding to the generators of the CVT of 

the mission area  (static clustering); let the set of the positions of the CH nodes with static clustering 

be denoted as . The dynamic CVT algorithm of Table 4 and Table 5 was also implemented, with 

mobile CH nodes and with initial CH node positions  (dynamic CVT clustering). Finally, 

also the dynamic CVT algorithm of Table 6 and Table 7 was implemented, with fixed CH nodes with 

positions  (dynamic weighted clustering). 

Three scenarios were simulated: with static nodes and stationary distribution of the average 

transmission rates of the sensor nodes (stationary scenario); with static nodes and time-varying 

transmission rate distribution (non-stationary scenario); with mobile nodes and stationary rate 

distribution (mobile scenario). The parameter  of the dynamic CVT algorithm was set equal to  in 

the non-stationary and mobile scenarios. The learning rate of the RL algorithm was selected as 

, where  is the number of times that the current state was visited up to 

time . The other RL algorithm parameters were set as described in Table 8. 

 

Parameter Stationary scenario Non-stationary and mobile scenarios 

 
    

 
    

 
    

 
    

Table 8: RL parameters 

In the first scenario,  fixed sensor nodes were regularly positioned over an area  of 

, as shown in Figure 1 a). The number of CH nodes was  and the number of simulated 

rounds was . The sensor node transmission rate distribution was stationary during the 

simulation runs. The distribution was exponential with mean  depending on the position  of 
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the sensor node  on : , where  is a normalization constant, 

 denotes the probability density function of a normal spatial distribution on the Euclidean plane, and 

 and  are the mean and variance of the distribution, respectively (i.e., in this 

scenario, the normal distribution of the mean transmission rate was centered in the lower-right 

quadrant of ). Figure 1 a) shows the initial CH node positions , inducing a CVT for the sensor 

node positions (i.e., without weighting each node with its transmission rate). The upper plot of Figure 

1 d) shows that this configuration does not guarantee a balanced load among the CH nodes, with an 

average cost during the simulation of about 0.35; note that the cost variations during the simulations 

are due to the fact that the node transmission rates are not constant. Figure 1 b) shows the final 

positions of the CH nodes as well as their trajectories during the simulation performed with the 

dynamic CVT algorithm: the cluster of the lower-left CH node (i.e., the CH node closer to the sensor 

nodes with the largest transmission rates) is reduced, while the cluster of the upper-right CH node (i.e., 

the CH node closer to the sensor nodes with the smallest transmission rates) is increased. The middle 

plot of Figure 1 d) shows that this configuration manages to improve the load balance, with a cost 

which is rapidly lowered in the first 50 rounds and which then stabilizes at about 0.06 (the cost is 

about 16.5% with respect to the static simulation). Figure 1 c) shows the final partition obtained by 

varying the weights vector in the simulation performed with the dynamic weighted algorithm: again, 

the cluster of the lower-left CH node is reduced, while the cluster of the upper-right CH node is 

increased. The lower plot of Figure 1 d) shows that also this configuration improves the load balance, 

with a cost which is lowered in the first 50 rounds, and which then stabilizes at about 0.09 (the cost is 

about 25.7% with respect to the static simulation). During the first 50 rounds the cost oscillates 

because the RL algorithm is exploring the state space, and sometimes unfavorable actions are chosen. 

We note that, in this scenario, the weighted dynamic algorithm performances are similar to the 

dynamic CVT algorithm ones, even if the CH node positions are fixed. 

 

 

 

 

 

 

Figure 1: stationary scenario; a) initial configuration; b) final configuration with dynamic CVT algorithm; c) 

final configuration with dynamic weighted algorithm; d) cost dynamics during the simulation. 

In the non-stationary scenario, 800 fixed sensor nodes were randomly positioned over an area  

of  , as shown in Figure 2 a). The number of CH nodes was  and the number of 
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simulated rounds was . The sensor node transmission rate distribution was time-varying 

during the first  rounds. Initially, at time , all the sensor nodes transmits with equal 

mean rate ; at the end of the simulation, the distribution was exponential with 

normally distributed intensity: , with  and  (i.e., the 

final transmission rate distribution was centered in ). The mean rates of the sensor nodes were 

linearly varied from round  to round  as , 

and then remained constant during the last rounds, i.e., . Figure 

2 a) shows the initial CH node positions , inducing a CVT for the sensor node positions. The 

upper plot of Figure 2 d) shows that, initially, when the mean transmission rates of the sensor nodes 

are uniform, this configuration guarantees a balanced load among the CH nodes; however, as the rate 

distribution changes, the load balance degrades and the cost grows up to about 0.22 in the final rounds. 

Figure 2 b) shows the final positions of the CH nodes as well as their trajectories during the simulation 

performed with the dynamic CVT algorithm: the cluster of the center CH node (i.e., the CH node 

closer to the sensor nodes with the largest transmission rate) is reduced, while the other clusters are 

increased. The middle plot of Figure 2 d) shows that the CH node trajectories manage to vary the 

Voronoi regions in order to keep the load balanced during the simulation rounds, with an average cost 

of about 0.03 (the cost is about 12.6% with respect to the static simulation). Figure 2 c) shows the final 

partition obtained by varying the weights vector in the simulation performed with the dynamic 

weighted algorithm: again, the cluster of the middle CH node is reduced, while the other clusters are 

increased. The lower plot of Figure 2 d) shows that the variations of the weights vector during the 

simulation rounds manage to keep the load balanced, with an average cost of about 0.04 (16.8% with 

respect to the static simulation). 

 

 

 

 

 

 

Figure 2: non-stationary scenario; a) initial configuration; b) final configuration with dynamic CVT algorithm; 

c) final configuration with dynamic weighted algorithm; d) cost dynamics during the simulation. 
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The mobile scenario presents mobile sensor nodes, initially randomly positioned over an area of 

, as shown in Figure 3 a). The number of CH nodes was  and the number of simulated 

rounds was . The sensor node transmission rate distribution was stationary during the 

simulation runs:  during the whole simulation. From round  to round  the 

sensor nodes move over a larger mission area of : the final node position  was 

randomly computed as , where  is a random number 

extracted from a uniform distribution between  and . The positions of the sensor nodes were 

linearly varied from round  to round  as , 

and then remained constant during the last rounds, . Figure 3 a) 

shows the initial CH node positions , inducing a CVT for the initial sensor node positions. The 

upper plot of Figure 3 d) shows that, initially, since the mean transmission rates of the sensor nodes 

are uniform, this configuration guarantees a balanced load among the CH nodes; however, as the 

nodes start moving, the load balance degrades and the cost grows up to about 0.02 in the final rounds. 

Figure 3 b) shows the final positions of the CH nodes as well as their trajectories during the simulation 

performed with the dynamic CVT algorithm: as the nodes spread over the mission area the CH nodes 

move away from one another to cover a larger area. The lower plot of Figure 3 d) shows that the CH 

node trajectories manage to vary the Voronoi regions to keep the load balanced during the simulation 

rounds, with an average cost of about 0.002 (20% with respect to average cost in the static simulation) 

and a final cost of about 0.004 (17.8% with respect to final cost in the static simulation). 

 

 

 

 

 

 

Figure 3: mobile scenario; a) initial configuration; b) final configuration with dynamic CVT algorithm; c) cost 

dynamics during the simulation. 

7 Conclusions 

The proposed approaches to WSN clustering manage to dynamically partition the mission space 

with the objective of balancing the load of the cluster head nodes. Two distributed iterative algorithms 

are proposed. In case the CH nodes are mobile, the first algorithm dynamically controls the positions 
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of the CH nodes, considered as the generator points of a Voronoi partition, in such a way that the 

partition converges to a generalized Centroidal Voronoi Tessellation, with favorable load balancing 

characteristics. In case the CH nodes are fixed, the second algorithm is proposed, based on 

reinforcement learning. The algorithm dynamically controls the weights of the additively weighted 

Voronoi partition generated by the positions of the CH nodes, with the aim of balancing their load. In 

both the proposed algorithms, the main innovation is that they guarantee the convergence towards a 

balanced network partition without the need of solving optimization programs or of explicitly 

computing the Voronoi diagram at any time-step. The algorithms were validated by numerical 

simulations. 

Current and future work is aimed at three main objectives: 

i. The first objective is to take into account also energy-balancing objectives by considering the 

WSN energy-related characteristics – such as the energy depletion due to the transmitted traffic 

or to the node mobility, or the impact of energy harvesting approaches (see, e.g., [38]). The first 

algorithm can be modified by defining appropriate weights for equation (7), and the second 

algorithm can be modified by defining different costs with respect to the ones in equation (19). 

ii. The second objective is to enhance the algorithm performances in non-stationary environments, 

e.g., by means of model-based control design to make use of predictions of the node mobility 

and/or of the traffic dynamics. 

iii. The third objective is to apply the proposed algorithms to real use-cases, therefore taking into 

account all the technology-dependent implementation issues not investigated in this paper. 
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Figure 1: stationary scenario; a) initial configuration; b) final configuration with dynamic CVT algorithm; c) 

final configuration with dynamic weighted algorithm; d) cost dynamics during the simulation. 
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Figure 2: non-stationary scenario; a) initial configuration; b) final configuration with dynamic CVT algorithm; 

c) final configuration with dynamic weighted algorithm; d) cost dynamics during the simulation. 
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Figure 3: mobile scenario; a) initial configuration; b) final configuration with dynamic CVT algorithm; c) cost 

dynamics during the simulation. 
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