22,349 research outputs found

    Dark Field Differential Dynamic Microscopy enables the accurate characterization of the roto-translational dynamics of bacteria and colloidal clusters

    Get PDF
    Micro- and nanoscale objects with anisotropic shape are key components of a variety of biological systems and inert complex materials, and represent fundamental building blocks of novel self-assembly strategies. The time scale of their thermal motion is set by their translational and rotational diffusion coefficients, whose measurement may become difficult for relatively large particles with small optical contrast. Here we show that Dark Field Differential Dynamic Microscopy is the ideal tool for probing the roto-translational Brownian motion of shape anisotropic particles. We demonstrate our approach by successful application to aqueous dispersions of non-motile bacteria and of colloidal aggregates of spherical particles

    Preparation and Characterization of Some Particulate Materials in the Aluminum Industry

    Get PDF
    Preparation and characterization techniques for the following particulate materials are reviewed: micromineralogical samples of bauxite, alumina and its trihydroxide, as well as sedimentary and respirable particles. Scanning electron microscopy (SEM), energy dispersive X-ray microanalysis (EDS) and image analysis were used to characterize the microminerals of bauxite. Comparisons were made among micromineralogical samples with various grain size fractions and the degree of weathering could be quantified. Programs were developed for characterization of the sandy and floury types of aluminum trihydroxide and alumina. We have used backscattered electron SEM images to characterize the size and shape of various aluminum trihydroxides. Comparison could be made between sandy and floury types of aluminum trihydroxide/alumina samples and the effects of technological changes could be quantified. The shape and composition of respirable particles in alumina plants were studied from the point of view of environmental protection

    Sedimentological characterization of Antarctic moraines using UAVs and Structure-from-Motion photogrammetry

    Get PDF
    In glacial environments particle-size analysis of moraines provides insights into clast origin, transport history, depositional mechanism and processes of reworking. Traditional methods for grain-size classification are labour-intensive, physically intrusive and are limited to patch-scale (1m2) observation. We develop emerging, high-resolution ground- and unmanned aerial vehicle-based ‘Structure-from-Motion’ (UAV-SfM) photogrammetry to recover grain-size information across an moraine surface in the Heritage Range, Antarctica. SfM data products were benchmarked against equivalent datasets acquired using terrestrial laser scanning, and were found to be accurate to within 1.7 and 50mm for patch- and site-scale modelling, respectively. Grain-size distributions were obtained through digital grain classification, or ‘photo-sieving’, of patch-scale SfM orthoimagery. Photo-sieved distributions were accurate to <2mm compared to control distributions derived from dry sieving. A relationship between patch-scale median grain size and the standard deviation of local surface elevations was applied to a site-scale UAV-SfM model to facilitate upscaling and the production of a spatially continuous map of the median grain size across a 0.3 km2 area of moraine. This highly automated workflow for site scale sedimentological characterization eliminates much of the subjectivity associated with traditional methods and forms a sound basis for subsequent glaciological process interpretation and analysis

    Design of an air-flow microchamber for microparticles detec

    Get PDF
    This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.A novel device, able to funnel a suspension of micrometric particles in air into a microchamber equipped with a capacitive sensor, has been designed for the detection and characterization of particulate matter (PM) in air. Numerical simulations have been performed to predict the trajectory of the microparticles through the PDMS microchamber where the sensor is located. The feasibility of detecting single PM10 particles has been demonstrated by our experiments, where sequences of single industrial talc particles (average diameter of 8 μm) have been detected and counted by a capacitive sensor. Our results indicate that radical miniaturization of air quality monitors is possible and, therefore, pervasive monitoring of air pollution will be soon feasible

    Thermal Infrared Imaging Experiments of C-Type Asteroid 162173 Ryugu on Hayabusa2

    Get PDF
    The thermal infrared imager TIR onboard Hayabusa2 has been developed to investigate thermo-physical properties of C-type, near-Earth asteroid 162173 Ryugu. TIR is one of the remote science instruments on Hayabusa2 designed to understand the nature of a volatile-rich solar system small body, but it also has significant mission objectives to provide information on surface physical properties and conditions for sampling site selection as well as the assessment of safe landing operations. TIR is based on a two-dimensional uncooled micro-bolometer array inherited from the Longwave Infrared Camera LIR on Akatsuki (Fukuhara et al., 2011). TIR takes images of thermal infrared emission in 8 to 12 μm with a field of view of 16×12∘ and a spatial resolution of 0.05∘ per pixel. TIR covers the temperature range from 150 to 460 K, including the well calibrated range from 230 to 420 K. Temperature accuracy is within 2 K or better for summed images, and the relative accuracy or noise equivalent temperature difference (NETD) at each of pixels is 0.4 K or lower for the well-calibrated temperature range. TIR takes a couple of images with shutter open and closed, the corresponding dark frame, and provides a true thermal image by dark frame subtraction. Data processing involves summation of multiple images, image processing including the StarPixel compression (Hihara et al., 2014), and transfer to the data recorder in the spacecraft digital electronics (DE). We report the scientific and mission objectives of TIR, the requirements and constraints for the instrument specifications, the designed instrumentation and the pre-flight and in-flight performances of TIR, as well as its observation plan during the Hayabusa2 mission

    Structural biology: a century-long journey into an unseen world

    Get PDF
    © Institute of Materials, Minerals and Mining 2015.When the first atomic structures of salt crystals were determined by the Braggs in 1912–1913, the analytical power of X-ray crystallography was immediately evident. Within a few decades the technique was being applied to the more complex molecules of chemistry and biology and is rightly regarded as the foundation stone of structural biology, a field that emerged in the 1950s when X-ray diffraction analysis revealed the atomic architecture of DNA and protein molecules. Since then the toolbox of structural biology has been augmented by other physical techniques, including nuclear magnetic resonance spectroscopy, electron microscopy, and solution scattering of X-rays and neutrons. Together these have transformed our understanding of the molecular basis of life. Here I review the major and most recent developments in structural biology that have brought us to the threshold of a landscape of astonishing molecular complexity

    Characterization of Microparticles through Digital Holography

    Get PDF
    In this work, digital holography (DH) is extensively utilized to characterize microparticles. Here, “characterization” refers to the determination of a particle’s shape, size, and, in some cases, its surface structure. A variety of microparticles, such as environmental dust, pollen, volcanic ash, clay, and biological samples, are thoroughly analyzed. In this technique, the microscopically fine interference pattern generated by the coherent superposition of an object and a reference wave fields is digitally recorded using an optoelectronic sensor, in the form of a hologram, and the desired particle property is then computationally extracted by performing a numerical reconstruction to form an image of the particle. The objective of this work is to explore, develop, and demonstrate the feasibility of different experimental arrangements to reconstruct the image of various arbitrary-shaped particles. Both forward- and backward-scattering experimental arrangements are constructed and calibrated to quantify the size of several micron-sized particles. The performance and implications of the technique are validated using the National Institute of Standards and Technology (NIST)-traceable borosilicate glass microspheres of various diameters and a Thorlabs resolution plate. After successful validation and calibration of the system, the resolution limit of the experimental setup is estimated, which is ~10 microns. Particles smaller than 10 microns in size could not be imaged well enough to ensure that what appeared like a single particle was not in fact a cluster. The forward- and backward-scattering holograms of different samples are recorded simultaneously and images of the particles are then computationally reconstructed from these recorded holograms. Our results show that the forward- and backward-scattering images yield different information on the particle surface structure and edge roughness, and thus, reveal more information about a particle profile. This suggests that the two image perspectives reveal aspects of the particle structure not available from a more commonly used forward-scattering based image alone. The results of this work could be supportive to insight more on the particles’ morphology and subsequently important for the advancement of contactree particle characterization technique
    corecore