2,389 research outputs found

    Optimization of craniosynostosis surgery: virtual planning, intraoperative 3D photography and surgical navigation

    Get PDF
    Mención Internacional en el título de doctorCraniosynostosis is a congenital defect defined as the premature fusion of one or more cranial sutures. This fusion leads to growth restriction and deformation of the cranium, caused by compensatory expansion parallel to the fused sutures. Surgical correction is the preferred treatment in most cases to excise the fused sutures and to normalize cranial shape. Although multiple technological advancements have arisen in the surgical management of craniosynostosis, interventional planning and surgical correction are still highly dependent on the subjective assessment and artistic judgment of craniofacial surgeons. Therefore, there is a high variability in individual surgeon performance and, thus, in the surgical outcomes. The main objective of this thesis was to explore different approaches to improve the surgical management of craniosynostosis by reducing subjectivity in all stages of the process, from the preoperative virtual planning phase to the intraoperative performance. First, we developed a novel framework for automatic planning of craniosynostosis surgery that enables: calculating a patient-specific normative reference shape to target, estimating optimal bone fragments for remodeling, and computing the most appropriate configuration of fragments in order to achieve the desired target cranial shape. Our results showed that automatic plans were accurate and achieved adequate overcorrection with respect to normative morphology. Surgeons’ feedback indicated that the integration of this technology could increase the accuracy and reduce the duration of the preoperative planning phase. Second, we validated the use of hand-held 3D photography for intraoperative evaluation of the surgical outcome. The accuracy of this technology for 3D modeling and morphology quantification was evaluated using computed tomography imaging as gold-standard. Our results demonstrated that 3D photography could be used to perform accurate 3D reconstructions of the anatomy during surgical interventions and to measure morphological metrics to provide feedback to the surgical team. This technology presents a valuable alternative to computed tomography imaging and can be easily integrated into the current surgical workflow to assist during the intervention. Also, we developed an intraoperative navigation system to provide real-time guidance during craniosynostosis surgeries. This system, based on optical tracking, enables to record the positions of remodeled bone fragments and compare them with the target virtual surgical plan. Our navigation system is based on patient-specific surgical guides, which fit into the patient’s anatomy, to perform patient-to-image registration. In addition, our workflow does not rely on patient’s head immobilization or invasive attachment of dynamic reference frames. After testing our system in five craniosynostosis surgeries, our results demonstrated a high navigation accuracy and optimal surgical outcomes in all cases. Furthermore, the use of navigation did not substantially increase the operative time. Finally, we investigated the use of augmented reality technology as an alternative to navigation for surgical guidance in craniosynostosis surgery. We developed an augmented reality application to visualize the virtual surgical plan overlaid on the surgical field, indicating the predefined osteotomy locations and target bone fragment positions. Our results demonstrated that augmented reality provides sub-millimetric accuracy when guiding both osteotomy and remodeling phases during open cranial vault remodeling. Surgeons’ feedback indicated that this technology could be integrated into the current surgical workflow for the treatment of craniosynostosis. To conclude, in this thesis we evaluated multiple technological advancements to improve the surgical management of craniosynostosis. The integration of these developments into the surgical workflow of craniosynostosis will positively impact the surgical outcomes, increase the efficiency of surgical interventions, and reduce the variability between surgeons and institutions.Programa de Doctorado en Ciencia y Tecnología Biomédica por la Universidad Carlos III de MadridPresidente: Norberto Antonio Malpica González.- Secretario: María Arrate Muñoz Barrutia.- Vocal: Tamas Ung

    Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): Guidelines for medical 3D printing and appropriateness for clinical scenarios

    Get PDF
    Este número da revista Cadernos de Estudos Sociais estava em organização quando fomos colhidos pela morte do sociólogo Ernesto Laclau. Seu falecimento em 13 de abril de 2014 surpreendeu a todos, e particularmente ao editor Joanildo Burity, que foi seu orientando de doutorado na University of Essex, Inglaterra, e que recentemente o trouxe à Fundação Joaquim Nabuco para uma palestra, permitindo que muitos pudessem dialogar com um dos grandes intelectuais latinoamericanos contemporâneos. Assim, buscamos fazer uma homenagem ao sociólogo argentino publicando uma entrevista inédita concedida durante a sua passagem pelo Recife, em 2013, encerrando essa revista com uma sessão especial sobre a sua trajetória

    Effectiveness of Automatic Planning of Fronto-orbital Advancement for the Surgical Correction of Metopic Craniosynostosis

    Get PDF
    The surgical correction of metopic craniosynostosis usually relies on the subjective judgment of surgeons to determine the configuration of the cranial bone fragments and the degree of overcorrection. This study evaluates the effectiveness of a new approach for automatic planning of fronto-orbital advancement based on statistical shape models and including overcorrection.The authors have no financial interest in relation to the content of this article. This work was supported by grants R42 HD081712 (Eunice Kennedy Shriver National Institute of Child Health and Human Development), K99DE027993 (National Institute of Dental and Craniofacial Research), and PI18/01625 (Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III and European Regional Development Fund “Una manera de hacer Europa”)

    Conceptual Modeling in Web-based Hypermedia Engineering with Com HDM

    Get PDF
    The coexistence of different complex features in web hypermedia applications such as information structures, navigation access mechanisms. and user interface interaction, raises new issues on the user-centered modeling approach paradigm. Thus, to provide a clear structured view of application domain, web designers must identify and clearly define complex processes existed in such applications

    Automatic landmark annotation and dense correspondence registration for 3D human facial images

    Full text link
    Dense surface registration of three-dimensional (3D) human facial images holds great potential for studies of human trait diversity, disease genetics, and forensics. Non-rigid registration is particularly useful for establishing dense anatomical correspondences between faces. Here we describe a novel non-rigid registration method for fully automatic 3D facial image mapping. This method comprises two steps: first, seventeen facial landmarks are automatically annotated, mainly via PCA-based feature recognition following 3D-to-2D data transformation. Second, an efficient thin-plate spline (TPS) protocol is used to establish the dense anatomical correspondence between facial images, under the guidance of the predefined landmarks. We demonstrate that this method is robust and highly accurate, even for different ethnicities. The average face is calculated for individuals of Han Chinese and Uyghur origins. While fully automatic and computationally efficient, this method enables high-throughput analysis of human facial feature variation.Comment: 33 pages, 6 figures, 1 tabl

    Tissue thickness measurement tool for craniofacial reconstruction

    Get PDF
    Craniofacial Reconstruction is a method of recreating the appearance of the face on the skull of a deceased individual for identification purposes. Older clay methods of reconstruction are inaccurate, time consuming and inflexible. The tremendous increase in the processing power of the computers and rapid strides in visualization can be used to perform the reconstruction, saving time and providing greater accuracy and flexibility, without the necessity for a skillful modeler.;This thesis introduces our approach to computerized 3D craniofacial reconstruction. Three phases have been identified. The first phase of the project is to generate a facial tissue thickness database. In the second phase this database along with a 3D facial components database is to be used to generate a generic facial mask which is draped over the skull to recreate the facial appearance. This face is to be identified from a database of images in the third phase.;Tissue thickness measurements are necessary to generate the facial model over the skull. The thesis emphasis is on the first phase of the project. An automated facial tissue thickness measurement tool (TTMT) has been developed to populate this database

    SURGICAL NAVIGATION AND AUGMENTED REALITY FOR MARGINS CONTROL IN HEAD AND NECK CANCER

    Get PDF
    I tumori maligni del distretto testa-collo rappresentano un insieme di lesioni dalle diverse caratteristiche patologiche, epidemiologiche e prognostiche. Per una porzione considerevole di tali patologie, l’intervento chirurgico finalizzato all’asportazione completa del tumore rappresenta l’elemento chiave del trattamento, quand’anche esso includa altre modalità quali la radioterapia e la terapia sistemica. La qualità dell’atto chirurgico ablativo è pertanto essenziale al fine di garantire le massime chance di cura al paziente. Nell’ambito della chirurgia oncologica, la qualità delle ablazioni viene misurata attraverso l’analisi dello stato dei margini di resezione. Oltre a rappresentare un surrogato della qualità della resezione chirurgica, lo stato dei margini di resezione ha notevoli implicazioni da un punto di vista clinico e prognostico. Infatti, il coinvolgimento dei margini di resezione da parte della neoplasia rappresenta invariabilmente un fattore prognostico sfavorevole, oltre che implicare la necessità di intensificare i trattamenti postchirurgici (e.g., ponendo indicazione alla chemioradioterapia adiuvante), comportando una maggiore tossicità per il paziente. La proporzione di resezioni con margini positivi (i.e., coinvolti dalla neoplasia) nel distretto testa-collo è tra le più elevate in ambito di chirurgia oncologica. In tale contesto si pone l’obiettivo del dottorato di cui questa tesi riporta i risultati. Le due tecnologie di cui si è analizzata l’utilità in termini di ottimizzazione dello stato dei margini di resezione sono la navigazione chirurgica con rendering tridimensionale e la realtà aumentata basata sulla videoproiezione di immagini. Le sperimentazioni sono state svolte parzialmente presso l’Università degli Studi di Brescia, parzialmente presso l’Azienda Ospedale Università di Padova e parzialmente presso l’University Health Network (Toronto, Ontario, Canada). I risultati delle sperimentazioni incluse in questo elaborato dimostrano che l'impiego della navigazione chirurgica con rendering tridimensionale nel contesto di procedure oncologiche ablative cervico-cefaliche risulta associata ad un vantaggio significativo in termini di riduzione della frequenza di margini positivi. Al contrario, le tecniche di realtà aumentata basata sulla videoproiezione, nell'ambito della sperimentazione preclinica effettuata, non sono risultate associate a vantaggi sufficienti per poter considerare tale tecnologia per la traslazione clinica.Head and neck malignancies are an heterogeneous group of tumors. Surgery represents the mainstay of treatment for the large majority of head and neck cancers, with ablation being aimed at removing completely the tumor. Radiotherapy and systemic therapy have also a substantial role in the multidisciplinary management of head and neck cancers. The quality of surgical ablation is intimately related to margin status evaluated at a microscopic level. Indeed, margin involvement has a remarkably negative effect on prognosis of patients and mandates the escalation of postoperative treatment by adding concomitant chemotherapy to radiotherapy and accordingly increasing the toxicity of overall treatment. The rate of margin involvement in the head and neck is among the highest in the entire field of surgical oncology. In this context, the present PhD project was aimed at testing the utility of 2 technologies, namely surgical navigation with 3-dimensional rendering and pico projector-based augmented reality, in decreasing the rate of involved margins during oncologic surgical ablations in the craniofacial area. Experiments were performed in the University of Brescia, University of Padua, and University Health Network (Toronto, Ontario, Canada). The research activities completed in the context of this PhD course demonstrated that surgical navigation with 3-dimensional rendering confers a higher quality to oncologic ablations in the head and neck, irrespective of the open or endoscopic surgical technique. The benefits deriving from this implementation come with no relevant drawbacks from a logistical and practical standpoint, nor were major adverse events observed. Thus, implementation of this technology into the standard care is the logical proposed step forward. However, the genuine presence of a prognostic advantage needs longer and larger study to be formally addressed. On the other hand, pico projector-based augmented reality showed no sufficient advantages to encourage translation into the clinical setting. Although observing a clear practical advantage deriving from the projection of osteotomy lines onto the surgical field, no substantial benefits were measured when comparing this technology with surgical navigation with 3-dimensional rendering. Yet recognizing a potential value of this technology from an educational standpoint, the performance displayed in the preclinical setting in terms of surgical margins optimization is not in favor of a clinical translation with this specific aim

    Incorporating 3-dimensional models in online articles

    Get PDF
    Introduction The aims of this article are to introduce the capability to view and interact with 3-dimensional (3D) surface models in online publications, and to describe how to prepare surface models for such online 3D visualizations. Methods Three-dimensional image analysis methods include image acquisition, construction of surface models, registration in a common coordinate system, visualization of overlays, and quantification of changes. Cone-beam computed tomography scans were acquired as volumetric images that can be visualized as 3D projected images or used to construct polygonal meshes or surfaces of specific anatomic structures of interest. The anatomic structures of interest in the scans can be labeled with color (3D volumetric label maps), and then the scans are registered in a common coordinate system using a target region as the reference. The registered 3D volumetric label maps can be saved in.obj,.ply,.stl, or.vtk file formats and used for overlays, quantification of differences in each of the 3 planes of space, or color-coded graphic displays of 3D surface distances. Results All registered 3D surface models in this study were saved in.vtk file format and loaded in the Elsevier 3D viewer. In this study, we describe possible ways to visualize the surface models constructed from cone-beam computed tomography images using 2D and 3D figures. The 3D surface models are available in the article's online version for viewing and downloading using the reader's software of choice. These 3D graphic displays are represented in the print version as 2D snapshots. Overlays and color-coded distance maps can be displayed using the reader's software of choice, allowing graphic assessment of the location and direction of changes or morphologic differences relative to the structure of reference. The interpretation of 3D overlays and quantitative color-coded maps requires basic knowledge of 3D image analysis. Conclusions When submitting manuscripts, authors can now upload 3D models that will allow readers to interact with or download them. Such interaction with 3D models in online articles now will give readers and authors better understanding and visualization of the results
    corecore