1,404 research outputs found

    A Virtual University Infrastructure For Orthopaedic Surgical Training With Integrated Simulation

    No full text
    This thesis pivots around the fulcrum of surgical, educational and technological factors. Whilst there is no single conclusion drawn, it is a multidisciplinary thesis exploring the juxtaposition of different academic domains that have a significant influence upon each other. The relationship centres on the engineering and computer science factors in learning technologies for surgery. Following a brief introduction to previous efforts developing surgical simulation, this thesis considers education and learning in orthopaedics, the design and building of a simulator for shoulder surgery. The thesis considers the assessment of such tools and embedding into a virtual learning environment. It explains how the performed experiments clarified issues and their actual significance. This leads to discussion of the work and conclusions are drawn regarding the progress of integration of distributed simulation within the healthcare environment, suggesting how future work can proceed

    Procedural-Reasoning Architecture for Applied Behavior Analysis-based Instructions

    Get PDF
    Autism Spectrum Disorder (ASD) is a complex developmental disability affecting as many as 1 in every 88 children. While there is no known cure for ASD, there are known behavioral and developmental interventions, based on demonstrated efficacy, that have become the predominant treatments for improving social, adaptive, and behavioral functions in children. Applied Behavioral Analysis (ABA)-based early childhood interventions are evidence based, efficacious therapies for autism that are widely recognized as effective approaches to remediation of the symptoms of ASD. They are, however, labor intensive and consequently often inaccessible at the recommended levels. Recent advancements in socially assistive robotics and applications of virtual intelligent agents have shown that children with ASD accept intelligent agents as effective and often preferred substitutes for human therapists. This research is nascent and highly experimental with no unifying, interdisciplinary, and integral approach to development of intelligent agents based therapies, especially not in the area of behavioral interventions. Motivated by the absence of the unifying framework, we developed a conceptual procedural-reasoning agent architecture (PRA-ABA) that, we propose, could serve as a foundation for ABA-based assistive technologies involving virtual, mixed or embodied agents, including robots. This architecture and related research presented in this disser- tation encompass two main areas: (a) knowledge representation and computational model of the behavioral aspects of ABA as applicable to autism intervention practices, and (b) abstract architecture for multi-modal, agent-mediated implementation of these practices

    Command and Control Systems for Search and Rescue Robots

    Get PDF
    The novel application of unmanned systems in the domain of humanitarian Search and Rescue (SAR) operations has created a need to develop specific multi-Robot Command and Control (RC2) systems. This societal application of robotics requires human-robot interfaces for controlling a large fleet of heterogeneous robots deployed in multiple domains of operation (ground, aerial and marine). This chapter provides an overview of the Command, Control and Intelligence (C2I) system developed within the scope of Integrated Components for Assisted Rescue and Unmanned Search operations (ICARUS). The life cycle of the system begins with a description of use cases and the deployment scenarios in collaboration with SAR teams as end-users. This is followed by an illustration of the system design and architecture, core technologies used in implementing the C2I, iterative integration phases with field deployments for evaluating and improving the system. The main subcomponents consist of a central Mission Planning and Coordination System (MPCS), field Robot Command and Control (RC2) subsystems with a portable force-feedback exoskeleton interface for robot arm tele-manipulation and field mobile devices. The distribution of these C2I subsystems with their communication links for unmanned SAR operations is described in detail. Field demonstrations of the C2I system with SAR personnel assisted by unmanned systems provide an outlook for implementing such systems into mainstream SAR operations in the future

    Cognitive Task Planning for Smart Industrial Robots

    Get PDF
    This research work presents a novel Cognitive Task Planning framework for Smart Industrial Robots. The framework makes an industrial mobile manipulator robot Cognitive by applying Semantic Web Technologies. It also introduces a novel Navigation Among Movable Obstacles algorithm for robots navigating and manipulating inside a firm. The objective of Industrie 4.0 is the creation of Smart Factories: modular firms provided with cyber-physical systems able to strong customize products under the condition of highly flexible mass-production. Such systems should real-time communicate and cooperate with each other and with humans via the Internet of Things. They should intelligently adapt to the changing surroundings and autonomously navigate inside a firm while moving obstacles that occlude free paths, even if seen for the first time. At the end, in order to accomplish all these tasks while being efficient, they should learn from their actions and from that of other agents. Most of existing industrial mobile robots navigate along pre-generated trajectories. They follow ectrified wires embedded in the ground or lines painted on th efloor. When there is no expectation of environment changes and cycle times are critical, this planning is functional. When workspaces and tasks change frequently, it is better to plan dynamically: robots should autonomously navigate without relying on modifications of their environments. Consider the human behavior: humans reason about the environment and consider the possibility of moving obstacles if a certain goal cannot be reached or if moving objects may significantly shorten the path to it. This problem is named Navigation Among Movable Obstacles and is mostly known in rescue robotics. This work transposes the problem on an industrial scenario and tries to deal with its two challenges: the high dimensionality of the state space and the treatment of uncertainty. The proposed NAMO algorithm aims to focus exploration on less explored areas. For this reason it extends the Kinodynamic Motion Planning by Interior-Exterior Cell Exploration algorithm. The extension does not impose obstacles avoidance: it assigns an importance to each cell by combining the efforts necessary to reach it and that needed to free it from obstacles. The obtained algorithm is scalable because of its independence from the size of the map and from the number, shape, and pose of obstacles. It does not impose restrictions on actions to be performed: the robot can both push and grasp every object. Currently, the algorithm assumes full world knowledge but the environment is reconfigurable and the algorithm can be easily extended in order to solve NAMO problems in unknown environments. The algorithm handles sensor feedbacks and corrects uncertainties. Usually Robotics separates Motion Planning and Manipulation problems. NAMO forces their combined processing by introducing the need of manipulating multiple objects, often unknown, while navigating. Adopting standard precomputed grasps is not sufficient to deal with the big amount of existing different objects. A Semantic Knowledge Framework is proposed in support of the proposed algorithm by giving robots the ability to learn to manipulate objects and disseminate the information gained during the fulfillment of tasks. The Framework is composed by an Ontology and an Engine. The Ontology extends the IEEE Standard Ontologies for Robotics and Automation and contains descriptions of learned manipulation tasks and detected objects. It is accessible from any robot connected to the Cloud. It can be considered a data store for the efficient and reliable execution of repetitive tasks; and a Web-based repository for the exchange of information between robots and for the speed up of the learning phase. No other manipulation ontology exists respecting the IEEE Standard and, regardless the standard, the proposed ontology differs from the existing ones because of the type of features saved and the efficient way in which they can be accessed: through a super fast Cascade Hashing algorithm. The Engine lets compute and store the manipulation actions when not present in the Ontology. It is based on Reinforcement Learning techniques that avoid massive trainings on large-scale databases and favors human-robot interactions. The overall system is flexible and easily adaptable to different robots operating in different industrial environments. It is characterized by a modular structure where each software block is completely reusable. Every block is based on the open-source Robot Operating System. Not all industrial robot controllers are designed to be ROS-compliant. This thesis presents the method adopted during this research in order to Open Industrial Robot Controllers and create a ROS-Industrial interface for them

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man

    Service-oriented agent architecture for autonomous maritime vehicles

    Get PDF
    Advanced ocean systems are increasing their capabilities and the degree of autonomy more and more in order to perform more sophisticated maritime missions. Remotely operated vehicles are no longer cost-effective since they are limited by economic support costs, and the presence and skills of the human operator. Alternatively, autonomous surface and underwater vehicles have the potential to operate with greatly reduced overhead costs and level of operator intervention. This Thesis proposes an Intelligent Control Architecture (ICA) to enable multiple collaborating marine vehicles to autonomously carry out underwater intervention missions. The ICA is generic in nature but aimed at a case study where a marine surface craft and an underwater vehicle are required to work cooperatively. They are capable of cooperating autonomously towards the execution of complex activities since they have different but complementary capabilities. The architectural foundation to achieve the ICA lays on the flexibility of service-oriented computing and agent technology. An ontological database captures the operator skills, platform capabilities and, changes in the environment. The information captured, stored as knowledge, enables reasoning agents to plan missions based on the current situation. The ICA implementation is verified in simulation, and validated in trials by means of a team of autonomous marine robots. This Thesis also presents architectural details and evaluation scenarios of the ICA, results of simulations and trials from different maritime operations, and future research directions

    A Hierarchical Architecture for Flexible Human-Robot Collaboration

    Get PDF
    This thesis is devoted to design a software architecture for Human- Robot Collaboration (HRC), to enhance the robots\u2019 abilities for working alongside humans. We propose FlexHRC, a hierarchical and flexible human-robot cooperation architecture specifically designed to provide collaborative robots with an extended degree of autonomy when supporting human operators in tasks with high-variability. Along with FlexHRC, we have introduced novel techniques appropriate for three interleaved levels, namely perception, representation, and action, each one aimed at addressing specific traits of humanrobot cooperation tasks. The Industry 4.0 paradigm emphasizes the crucial benefits that collaborative robots could bring to the whole production process. In this context, a yet unreached enabling technology is the design of robots able to deal at all levels with humans\u2019 intrinsic variability, which is not only a necessary element to a comfortable working experience for humans but also a precious capability for efficiently dealing with unexpected events. Moreover, a flexible assembly of semi-finished products is one of the expected features of next-generation shop-floor lines. Currently, such flexibility is placed on the shoulders of human operators, who are responsible for product variability, and therefore they are subject to potentially high stress levels and cognitive load when dealing with complex operations. At the same time, operations in the shop-floor are still very structured and well-defined. Collaborative robots have been designed to allow for a transition of such burden from human operators to robots that are flexible enough to support them in high-variability tasks while they unfold. As mentioned before, FlexHRC architecture encompasses three perception, action, and representation levels. The perception level relies on wearable sensors for human action recognition and point cloud data for perceiving the object in the scene. The action level embraces four components, the robot execution manager for decoupling action planning from robot motion planning and mapping the symbolic actions to the robot controller command interface, a task Priority framework to control the robot, a differential equation solver to simulate and evaluate the robot behaviour on-the-fly, and finally a random-based method for the robot path planning. The representation level depends on AND/OR graphs for the representation of and the reasoning upon human-robot cooperation models online, a task manager to plan, adapt, and make decision for the robot behaviors, and a knowledge base in order to store the cooperation and workspace information. We evaluated the FlexHRC functionalities according to the application desired objectives. This evaluation is accompanied with several experiments, namely collaborative screwing task, coordinated transportation of the objects in cluttered environment, collaborative table assembly task, and object positioning tasks. The main contributions of this work are: (i) design and implementation of FlexHRC which enables the functional requirements necessary for the shop-floor assembly application such as task and team level flexibility, scalability, adaptability, and safety just a few to name, (ii) development of the task representation, which integrates a hierarchical AND/OR graph whose online behaviour is formally specified using First Order Logic, (iii) an in-the-loop simulation-based decision making process for the operations of collaborative robots coping with the variability of human operator actions, (iv) the robot adaptation to the human on-the-fly decisions and actions via human action recognition, and (v) the predictable robot behavior to the human user thanks to the task priority based control frame, the introduced path planner, and the natural and intuitive communication of the robot with the human

    Learning Manipulation under Physics Constraints with Visual Perception

    Full text link
    Understanding physical phenomena is a key competence that enables humans and animals to act and interact under uncertain perception in previously unseen environments containing novel objects and their configurations. In this work, we consider the problem of autonomous block stacking and explore solutions to learning manipulation under physics constraints with visual perception inherent to the task. Inspired by the intuitive physics in humans, we first present an end-to-end learning-based approach to predict stability directly from appearance, contrasting a more traditional model-based approach with explicit 3D representations and physical simulation. We study the model's behavior together with an accompanied human subject test. It is then integrated into a real-world robotic system to guide the placement of a single wood block into the scene without collapsing existing tower structure. To further automate the process of consecutive blocks stacking, we present an alternative approach where the model learns the physics constraint through the interaction with the environment, bypassing the dedicated physics learning as in the former part of this work. In particular, we are interested in the type of tasks that require the agent to reach a given goal state that may be different for every new trial. Thereby we propose a deep reinforcement learning framework that learns policies for stacking tasks which are parametrized by a target structure.Comment: arXiv admin note: substantial text overlap with arXiv:1609.04861, arXiv:1711.00267, arXiv:1604.0006

    A virtual university infrastructure for orthopaedic surgical training with integrated simulation

    Get PDF
    This thesis pivots around the fulcrum of surgical, educational and technological factors. Whilst there is no single conclusion drawn, it is a multidisciplinary thesis exploring the juxtaposition of different academic domains that have a significant influence upon each other. The relationship centres on the engineering and computer science factors in learning technologies for surgery. Following a brief introduction to previous efforts developing surgical simulation, this thesis considers education and learning in orthopaedics, the design and building of a simulator for shoulder surgery. The thesis considers the assessment of such tools and embedding into a virtual learning environment. It explains how the performed experiments clarified issues and their actual significance. This leads to discussion of the work and conclusions are drawn regarding the progress of integration of distributed simulation within the healthcare environment, suggesting how future work can proceed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Learning Manipulation under Physics Constraints with Visual Perception

    No full text
    Understanding physical phenomena is a key competence that enables humans and animals to act and interact under uncertain perception in previously unseen environments containing novel objects and their configurations. In this work, we consider the problem of autonomous block stacking and explore solutions to learning manipulation under physics constraints with visual perception inherent to the task. Inspired by the intuitive physics in humans, we first present an end-to-end learning-based approach to predict stability directly from appearance, contrasting a more traditional model-based approach with explicit 3D representations and physical simulation. We study the model's behavior together with an accompanied human subject test. It is then integrated into a real-world robotic system to guide the placement of a single wood block into the scene without collapsing existing tower structure. To further automate the process of consecutive blocks stacking, we present an alternative approach where the model learns the physics constraint through the interaction with the environment, bypassing the dedicated physics learning as in the former part of this work. In particular, we are interested in the type of tasks that require the agent to reach a given goal state that may be different for every new trial. Thereby we propose a deep reinforcement learning framework that learns policies for stacking tasks which are parametrized by a target structure
    corecore