UNIVERSITA DEGLI STUDI
DI GENOVA

Department of Computer Science, Bioengineering, Robotics and
System Engineering

A Hierarchical Architecture for Flexible
Human-Robot Collaboration

Kourosh Darvish

advisor:

Giuseppe Casalino
co-advisors:

Fulvio Mastrogiovanni

Enrico Simetti

In partial fulfillment of the requirements for the degree of

Doctor of Philosophy
April 30, 2019

Acknowledgements

First and foremost, I would like to thank my supervisor and co-
supervisors. Giuseppe Casalino, who gave me a unique view of Control
Theory and in specific for controlling the robots. Whom, his enthu-
siasm to discuss fundamental problems always was always a source
of motivation for me. Fulvio Mastrogiovanni who lightened the way
to do this project. His advice and guidance throughout this shared
journey was an invaluable support to me. Enrico Simetti for oppor-
tunities and knowledge that has provided me during this research, for
his availability and patience, during all research phases.

I would like to thank Barbara Bruno for her availability along this
research, for the knowledge which shared with me.

I would like to thank all my lab mates in EmaroLab and GRAAL who
helped me to do this thesis.

A special thank to all my family that has always supported and en-
couraged me during my journey. To my parents, to whom I owe so
much of what I am and what I am becoming. I thank them with all
my heart. To my sister, Leila, and my brothers, whom I have always
been close with even if distant and for their unconditional love.

I thank all my friends who have been close to me and helped me to
do this work.

A special thanks is for azizam Chiara, who believed in me and sup-
ports me always. Thank you for all your invaluable inspiration and
patience which made this work possible.

To my beloved Mom and Dad,

lontani chilometri ma neanche ad un passo dal cuore

Abstract

This thesis is devoted to design a software architecture for Human-
Robot Collaboration (HRC), to enhance the robots’ abilities for work-
ing alongside humans. We propose FLEXHRC, a hierarchical and
flexible human-robot cooperation architecture specifically designed
to provide collaborative robots with an extended degree of auton-
omy when supporting human operators in tasks with high-variability.
Along with FLEXHRC, we have introduced novel techniques appro-
priate for three interleaved levels, namely perception, representation,
and action, each one aimed at addressing specific traits of human-
robot cooperation tasks.

The Industry 4.0 paradigm emphasizes the crucial benefits that col-
laborative robots could bring to the whole production process. In this
context, a yet unreached enabling technology is the design of robots
able to deal at all levels with humans’ intrinsic variability, which is
not only a necessary element to a comfortable working experience
for humans but also a precious capability for efficiently dealing with
unexpected events. Moreover, a flexible assembly of semi-finished
products is one of the expected features of next-generation shop-floor
lines. Currently, such flexibility is placed on the shoulders of human
operators, who are responsible for product variability, and therefore
they are subject to potentially high stress levels and cognitive load
when dealing with complex operations. At the same time, operations
in the shop-floor are still very structured and well-defined. Collabora-
tive robots have been designed to allow for a transition of such burden
from human operators to robots that are flexible enough to support
them in high-variability tasks while they unfold.

As mentioned before, FLEXHRC architecture encompasses three per-
ception, action, and representation levels. The perception level relies
on wearable sensors for human action recognition and point cloud
data for perceiving the object in the scene. The action level em-
braces four components, the robot execution manager for decoupling
action planning from robot motion planning and mapping the sym-
bolic actions to the robot controller command interface, a task Pri-

ority framework to control the robot, a differential equation solver to
simulate and evaluate the robot behaviour on-the-fly, and finally a
random-based method for the robot path planning. The representa-
tion level depends on AND/OR graphs for the representation of and
the reasoning upon human-robot cooperation models online, a task
manager to plan, adapt, and make decision for the robot behaviors,
and a knowledge base in order to store the cooperation and workspace
information.

We evaluated the FLEXHRC functionalities according to the applica-
tion desired objectives. This evaluation is accompanied with several
experiments, namely collaborative screwing task, coordinated trans-
portation of the objects in cluttered environment, collaborative table
assembly task, and object positioning tasks.

The main contributions of this work are: (i) design and implemen-
tation of FLEXHRC which enables the functional requirements nec-
essary for the shop-floor assembly application such as task and team
level flexibility, scalability, adaptability, and safety just a few to name,
(ii) development of the task representation, which integrates a hier-
archical AND/OR graph whose online behaviour is formally specified
using First Order Logic, (iii) an in-the-loop simulation-based decision
making process for the operations of collaborative robots coping with
the variability of human operator actions, (iv) the robot adaptation to
the human on-the-fly decisions and actions via human action recogni-
tion, and (v) the predictable robot behavior to the human user thanks
to the task priority based control frame, the introduced path planner,
and the natural and intuitive communication of the robot with the
human.

Contents

1 Introduction 1
1.1 Motivation 3
1.2 Objectives and Innovations 4
1.3 Dissertation Outline 7

2 Software Architecture for Flexible Human-Robot Cooperation 9

2.1 Stateof the Art 9
2.2 FLEXHRC System Architecture 15
2.2.1 Representation level 16
2.2.2 Perception level oo 16
2.2.3 Actionlevel 17

3 Human-Robot Cooperation at Representation level 18
3.1 Task Representation Model 18
3.1.1 Propositional logic AND/OR graph 20
3.1.1.1 Offline phase 22

3.1.1.2 Online phase 24

3.1.2 First order logic AND/OR graph 25
3.1.3 Single-layer AND/OR Graph Traversal Procedure 30
3.1.4 Hierarchical AND/OR graph 35

3.2 Task Manager 38
3.2.1 Task manager formalization 38
3.2.2 Proactive decision making 41
3.2.3 Reactive adaptation 43
3.2.4 Task manager algorithm 46

3.3 Knowledge Base oo 47
4 Human-Robot Cooperation at Perception Level 49
4.1 Human Action Recognition. 49
4.1.1 Probabilistic modeling for human action recognition 50
4.1.2 Data pre-processing 52

CONTENTS

4.1.3 Feature extraction L.
4.1.4 Modeling
4.1.4.1 Gaussian Mixture Modeling

4.1.4.2 Gaussian Mixture Regression

4.1.5 Comparison
4.1.6 Possibilities pattern extraction
4.1.7 Condition checking

4.2 Object and Scene Perception
4.2.1 Euclidean clustering
4.2.2 RANSAC method for classification
4.2.3 Principal Component Analysis (PCA) method for feature
extractiono

4.3 Objects manipulation

Human-Robot Cooperation at Action Level

5.1 Robot Execution Manager

5.2 Robot Path Planning
5.2.1 Path Planning Formulation
5.2.2 Path Planning Algorithm

5.3 Robot Controller
5.3.1 Control objectives L.
5.3.2 Control taskso
5.3.3 Activation and deactivation of control objectives
5.3.4 Task priority inverse kinematics
5.3.5 Control actions oo

5.4 Robot simulator

Experimental Evaluation of the FlexHRC

6.1 Collaborative Screwing Task
6.1.1 Experiment objectives and scenario
6.1.2 Reliability, robustness and flexibility
6.1.3 Computational performance
6.1.4 Performance of human action recognition
6.1.5 Task priority control
6.1.6 Discussion

6.2 Coordinated Object Transportation in Cluttered Environment
6.2.1 Experiment objectives and scenario
6.2.2 Experimental results L.
6.2.3 Discussion

6.3 Task Representation Experiments

vi

CONTENTS

6.3.1 Propositional Logic and First Order Logic AND/OR Graph
Performance Comparison 95

6.3.2 Single-layer and Hierarchical AND/OR Graph Performance
Comparison 96
6.4 Collaborative Table Assembly Experiments 99
6.4.1 Scenario 99
6.4.2 Computational performance 101
6.4.3 Flexibility analysis 101
6.4.4 Decision making and simulation analysis 105

6.4.5 Symbolic fusion of object recognition and human action
recognition modules 109
6.4.6 Discussion L Lo 110
7 Conclusions 117
7.1 Summary ... 117
7.2 Discussion on Functional Requirements 119
A Software Implementation 123
A.1 Task Representation 123
A2 Task Manager 128
References 143

vil

List of Figures

2.1

3.1

3.2

3.3

3.4
3.5

4.1
4.2
4.3
4.4

4.5

5.1
5.2

FLEXHRC'’s architecture: in green the representation level, in blue
the perception level, in red the action level.

A generic AND/OR graph with six nodes and three hyper-arcs: h;
and hg are and hyper-arcs, whereas hs is a or hyper-arc.
The decision tree used by the Simulator module for online task
allocation and parameter grounding. SD stands for a screwdriver,
Ag stands for an agent, and Tab stands for a table.
Action-State table search and update example: red circles denote
actions for which the robot is responsible, while blue circles denote
actions for which the human is responsible. Yellow, red and green
filling colors denote, respectively, ambiguous, null and clear mode
of the table search. a; — ag are labels of actions; n; — ny are labels
of feasible states; and w,,, — w,, denote the weight of each state. .
The Task Manager online phase flowchart.
The graph of ontology for placing the screwdriver on the table
associated with Figure 3.2o

A schematic description of the Human Action Recognition module.
An example of action possibility evolutions for a cooperation task.

A schematic description of the Object and Scene Perception module.

A schematic of object body frame (M) required for a specific ma-
nipulation task and center of volume of the object (O).
A schematic of a grasped object by a two-finger gripper (shown in
green colour); C'M is the centre of mass of the object with weight
mg, G is the grasping position of the end-effector with contact
force and torque F.and T,..

A sketch of the Controller internal structure.
Activation function for inequality control objective with the upper

threshold.

Viil

45
47

48

20
51
o8

61

LIST OF FIGURES

6.1
6.2

6.3

6.4
6.5

6.6

6.7

6.8

6.9

6.10

6.11

6.12

The software architecture for collaborative screwing task. 79
The AND/OR graph representation of the screwing task: different
colors (blue, black and red) indicate different action sequences the
cooperation can unfold in. Hyper-arcs costs appear beside the
hyper-arcs they refer to. 80
The sequence of actions associated with My,.x, chosen after the op-
erator decided not to follow My, by performing the action initial
bolt sink. 81
An example of time allocation in case of Pyye. 85
Delays introduced in human action recognition in one trial. Dots
represent recognition times; vertical dotted lines mark the mo-
ments in which human gestures actually end. 86
A human operator does not have to necessarily perform actions in
front of the robot for those actions to be recognized and classified:
(a) the operator performs the initial bolt sink action in sight of the
robot, (b) the operator performs the initial bolt sink action out of

sight of the robot. 87
An activity part of Py,., when an obstacle is detected and avoided
by the robot’s elbow joint.o 88

Activation function of the robot’s elbow avoidance task for the
right arm: in blue for a single-arm operation, in orange for a dual-
arm operation. 88
A series of successive still frames from one of the coordinated trans-
portation experiments. As it can be seen in the last two frames
6.9¢ and 6.9d, the elbow is gradually raising its height to stay out

of the bounding box defined for the obstacle. 92
The software architecture for the coordinated transportation of an
object in cluttered environment. 93

In figure 6.11a scene and objects recognized by Object and Scene
Perception and relative frame of the vision system, each color is
identifying a different object. Figures 6.11b and 6.11c are for the
experiments with obstacle avoidance of the grasped object at the
path planning level and figures 6.11d, 6.11e, and 6.11f are for the
experiment related to obstacle avoidance both at Path Planner
and Controller. 94
The PL (Propositional Logic) and the FOL AND/OR graph for
representation of placement of two identical balls (A and B) into
two identical boxes (C and D) (left: PL AND/OR graph, right:
FOL AND/OR graph). 96

1X

LIST OF FIGURES

6.13

6.14

6.15
6.16

6.17
6.18

6.19

6.20

6.21

6.22

6.23

6.24

6.25

6.26

6.27

6.28

6.29

6.30

6.31

The hierarchical AND/OR graph for the table assembly with two
legs (left: high level AND/OR graph for table assembly, right: low
level AND/OR graph for connecting a leg to a tabletop). 97
The mean computational time (logarithmic scale) of the hierarchi-
cal (solid black line) and standard (dashed blue line) Task Rep-
resentation of the collaborative table assembly task with different
number of legs. top: offline phase of the AND/OR graph, bottom:

online phase of the AND/OR graph. 98
Different tabletops and legs for the table assembly task. 99
The sequence of actions associated with tabletop placement by the

robot. 102
The robot connects all the legs to the tabletop. 103
The human connects all the legs to the tabletop and the robot

reactively adapts to the human online decision. 104

The human and robot connect the legs to the tabletop coopera-
tively; the robot adapts reactively to the human online decisions. . 105
The human and robot connect the legs to the tabletop coopera-
tively; the robot adapts reactively to the human decision online

and asks proactively the human to perform a task. 106
The sequence of actions the human performs to monitor the con-
nections between the legs and the tabletop. 107
The real (solid line) and simulated (dashed line) joints positions of
the robot left arm with low disturbance. 107

The real (solid line) and simulated (dashed line) tool frame orien-
tation and position of the robot left arm with high disturbance. . 108
The real robot (solid line) and simulated robot (dashed line) joints
position of the left arm for a failed action: some of the joint posi-

tions do not converge to constant values. 109
The objects in the shared workspace using rgh-D data. 113
Raw inertial data associated with human screwing action of the
table leg along z(red), y(green), z(blue) axis. 113
Body acceleration feature associated with human screwing action
of the table leg along z(red), y(green), z(blue) axis. 114
Gravity acceleration feature associated with human screwing ac-
tion of the table leg along z(red), y(green), z(blue) axis. 114
GMR model of the body acceleration associated with human screw-
ing action of the table leg along z(red), y(green), z(blue) axis. . . 115

GMR model of the gravity acceleration associated with human
screwing action of the table leg along z(red), y(green), z(blue) axis.115
Online inertial data associated with the experiment of Figure 6.18. 116

LIST OF FIGURES

6.32 The trend of possibility of the human performing pick up (red
color), screwing(green color), and put down(blue color) actions. . 116

x1

Chapter 1

Introduction

History of humankind encountered a number of universal revolutions which have
affected the human life forever, such as Scientific Revolution and Industrial Rev-
olution. The industrial revolution has been allowing the mass and cheap pro-
duction, which paved the way for the current progress of science to continue the
scientific revolution Harari (2014).

The advent of the computers, allowed the examinations of many theories in
Artificial Intelligence (AI) and Robotics Buchanan (2005). In specific, the Tur-
ing’s 1950th seminal paper Turing (1950) and Shakey robot (1966-1972) Nilsson
(1984) were a number of landmarks in the Al and robotics history just to name.
The developments both in methodological and hardware in last decades have
fostered a new revolution in the industry, namely Industry 4.0 or Smart Facto-
ries; in which the humans and robots work alongside and share their workspace
(collaborative robot). One of the objectives of Industry 4.0 is to enable the mass
customization Esmaeilian et al. (2016); euRobotics aisbl (2014). This dissertation
is meant to meet some of the requirements for these new paradigms, by intro-
ducing a new software architecture for the collaborative robot which allows the
cooperation between human and robot to produce customized products.

The study of collaborative robots falls into the field of Human-Robot Interac-
tion(HRI). As defined by Goodrich & Schultz (2007), Human-Robot Interaction
(HRI) is “a field of study dedicated to understanding, designing, and evaluating
robotic systems for use by or with human”; whereas in a Human-Robot Collabo-
ration (HRC) ! scenario, the human and robot work together to reach a common
goal Bratman (1992); Grosz (1996); Hoffman & Breazeal (2004). Therefore, a
human and a robot which collaborate together also interact together in a cer-
tain way; and we benefit from the literature of the interactive robots to design a
collaborative robot.

n this thesis, we consider the words collaboration and cooperation have identical meaning.

To benchmark a good HRI design, we should set common metrics to compare
our findings with others Steinfeld et al. (2006). In the field of HRI, these metrics
are at human, robot, and system level through the application space. Therefore,
to have a good evaluation, the design of HRI should be human-centred Kiesler &
Goodrich (2018); Norman (2013). In this work, we have designed and evaluated a
HRC architecture based on functional requirements reference to the application,
human, robot, and system level requirements and considerations. Do so, we study
the taxonomy and features of the HRI limited to collaborative robots in industrial
and shop-floor environment.

In shop-floor scenarios, the collaborative robot has a proximate interaction
with the human, such that they share the space and time together. Proximate
or remote interaction affects the human-robot communication as a principal part
of the interaction. The two primary dimensions of the information exchange are
communication medium (e.g., seeing, hearing, touch, physiological signals, etc.)
and format (e.g., natural language, symbolic, etc.) Goodrich & Schultz (2007).
In a shop-floor environment, some of these communication mediums and formats
may prefer to others because of the peculiar working conditions or the application
scenarios. To design collaborative robots, the designer should take into account
the physical aspects as well as the social aspects for the long-term interaction
Ajoudani et al. (2018); Goodrich & Schultz (2007).

In the context of mass customization, the collaborative robot is a peer for
the human, with limited autonomy and authority; such that the human does not
supervise or intervene to the robot’s action constantly. Vernon (2014); Vernon
et al. (2007) defines autonomy as the degree of self-determination of a system. In
a human-robot interaction scenario, the autonomy rather than being an end is a
medium to support productive interaction Goodrich & Schultz (2007). Authority
determines the responsible for making certain decisions; and as an organizational
question in human-robot interaction scenarios, it is correlated to the autonomy
and the team structure. The designer of interaction should define the level of
autonomy and authority for a scenario.

For some shop-floor scenarios, we may require a different level of autonomy,
authority, communication medium or format, the physical or the social inter-
actions, team organization, or the learning and adaptation of the collaborative
robot or the training of the human user. This demand entails the dynamic inter-

action, in which interaction features changes on the basis of the time or the task
Goodrich & Schultz (2007).

1.1 Motivation

1.1 Motivation

According to the Industry 4.0 paradigm, manufacturing is expected to undergo
an important paradigm shift involving the nature of shop-floor environments.
One of the main ideas put forth in smart factories is getting closer to customers,
increasing their satisfaction through a high degree of personalization and just in
time goods delivery. The paradigm of consumer- and demand-driven manufactur-
ing introduces the need for customised, high quality production at lower prices,
and with faster delivery times Esmacilian et al. (2016); euRobotics aisbl (2014).
Demand-driven manufacturing and high product customisation are better man-
aged in small-scale production, which is typical of medium-sized manufacturing
enterprises (SMEs). This poses serious challenges to shop-floor operators, in so
far as work stress, fatigue and eventually alienation are concerned, with reper-
cussions also on work quality and faulty semifinished products.

Among the recommendations to reduce such drawbacks on human operators,
collaborative robots have been proposed to work alongside humans to perform
a series of tasks traditionally considered stressful, tiring or difficult Lenz (2011).
However, while large-scale manufacturing benefits from robots already, small-
scale production does not fully exploit the benefit of robot-based manufacturing
euRobotics aisbl et al. (2017); Kock et al. (2011). Consumer- and demand-driven
manufacturing requires robots characterised by high flexibility, fast reconfigura-
tion and installation, as well as low maintenance costs. Collaborative robots are
expected to meet such demands, decrease manufacturing costs, and therefore in-
crease products variability and customisation Esmaeilian et al. (2016); euRobotics
aisbl (2014); Kock et al. (2011). In fact, they are considered key enabling factors
to automate small-scale production when operations to be carried out are highly
dynamic and partially unstructured International Federation of Robotics (2018).

Recently, many authors argued that consumer- and demand-driven manu-
facturing can benefit from the introduction of human-robot cooperation (HRC)
processes. Clearly, this proposal implies a number of challenges related to human-
robot interaction both at the physical and the cognitive levels of the cooperation
DeSantis et al. (2008); Hayes & Scassellati (2016); Lemaignan et al. (2017), which
depend also on their type Helms et al. (2002). Beside basic safety considerations,
which are a necessary prerequisite Kuehn & Haddadin (2017), a number of key
issues must be taken into account: sensing and human activity recognition Pe-
drocchi et al. (2013), definition of suitable cooperation models to reach certain
goals Johannsmeier & Haddadin (2017); Kock et al. (2011); Shah et al. (2011),
robot action planning and execution in the presence of humans Lemaignan et al.
(2017), and the effect of robot’s predictable behaviour on the operator well-being
and performance Bortot et al. (2013), just to name a few.

Among the possible use cases where human-robot cooperation can be partic-

1.2 Objectives and Innovations

ularly relevant, we consider cooperative assembly as a motivating scenario. If we
focus on assemblage tasks, typically involving a small number of semi-finished
pieces, a number of difficult-to-model situations arise: the order of assemblage
operations is often not strict, i.e., different sequences are possible and equally
legitimate as far as the final result is concerned; an operator and a robot engage
in a sort of turn-taking process, where the robot is expected to assist and adapt
to human actions at run-time; for a fruitful cooperation to occur, the operator
and the robot must understand each other actions and intentions.

1.2 Objectives and Innovations

The customised production advocated by consumer- and demand-driven manu-
facturing still relies on human operator cognitive capabilities since collaborative
robots are largely unable to efficiently manage inter-tasks or intra-task variations
International Federation of Robotics (2018). The ability of human operators to
decompose complex tasks into simpler operations (e.g., assembling furniture parts
to obtain other semifinished parts to be used later), or to naturally manage small
variations (e.g., assembling furniture with parts of different size, like tables with
differing flat top size or leg length), still poses a significant challenge for collabo-
rative robots Garca et al. (2013).

To do so, in a human-robot cooperation scenario, the human operators and
robots purposely interact to achieve a common objective, and they do so work-
ing together in a shared workspace. The design of collaborative robots should
adhere to a number of human-centric principles so that cooperation can be ef-
fective, efficient, and natural. Human-centric design enforces such factors as the
explainablity of robot decisions, the usability of robot interfaces (in a broad sense),
the awareness of the cooperation process, and a fair workload, as well as safety
requirements for human operators Adams (2005); Steinfeld et al. (2006).

These considerations can be synthesized in a number of functional require-
ments focusing on improving the operator’s working experience Meneweger et al.
(2015), effectiveness, efficiency, and applicability of the collaborative robot.

Fy [Task Level Flexibility] The human and robot cooperate on similar tasks,
such as the assembly of several table types, without requiring different repre-
sentations. The architecture of the collaborative robot should handle these
variations autonomously; and doing so by abstracting the structure of tasks
from perceptual variabilities and uncertainties Darvish et al. (2018a); De-
Santis et al. (2008); Kock et al. (2011).

Fy [Team Level Flexibility] Operators should not be forced to follow a strict,
predefined sequence of operations, but should be allowed to decide what

1.2 Objectives and Innovations

Fy

actions to perform on the fly, subject to their adherence to the overall
cooperation goals. As a consequence, robots should trade-off between pro-
viding operators with optimal suggestions about next actions to perform
and reacting appropriately when operators do not follow such instructions.

[Intelligibility & Intuitiveness| While the cooperation process unfolds, op-
erators should be capable of intuitively understanding robot actions and
intentions, and this may be achieved at a symbolic, linguistic level of com-
munication. Therefore, collaborative robots should be able to decouple
action planning (whose results are meaningful for operators) from motion
planning and control, the latter hiding low-level complexities associated
with robot motions also when the workspace is partially unknown.

[Naturalness| It has been demonstrated that a natural and efficient coopera-
tion is possible only by a reasoned trade-off between the cooperation objec-
tive (e.g., the assemblage of a semifinished product), which must be achieved
as a functional requirement, and the human or robot degrees of autonomy
when the task is only partially well-defined (e.g., such assemblage can be
done using different action sequences), which can be somewhat enforced
or relaxed on a context-dependent basis Ferland et al. (2013); Goodrich &
Schultz (2007).

[Adaptability] In order for a robot to detect and classify meaningful actions
carried out by an operator, it should not be necessary that different opera-
tors undergo a specialised action modelling and adaptation process, i.e., the
robot should adapt to them without requiring an operator-specific calibra-
tion process. In this sense, collaborative robots should be able to reactively
adapt to human operator actions while retaining the capability of planning
specific action sequences to meet the cooperation objective Argall et al.
(2009); Darvish et al. (2018b); Valli (2008).

[Decision Making] The collaborative robot should plan for its future be-
haviour to reach the cooperation goal, estimate the execution of its planned
future behaviours online, exploits such estimates to take decisions as far as
cooperation is concerned, and allocates tasks to either humans or robots.
Such a capability enhances the robot dexterousness in partially structured
and uncertain environments.

[Transparency] Operators should not be required to limit their freedom
as far as motions are concerned, e.g., being forced to stay in front of a
collaborative robot all the time, to have their actions duly monitored during
the cooperation process.

1.2 Objectives and Innovations

Fy [Safety] Since it has been shown that the effectiveness and the overall per-
formance of human operators is positively correlated with robot motion
predictability Bortot et al. (2013), collaborative robots should prevent psy-
chological discomfort, stress, and a high induced cognitive load on human
operators, and furthermore ensures the physical safety of the human De-
Santis et al. (2008); Kock et al. (2011); Lasota et al. (2017).

Fy [Scalability] Collaborative robots should exhibit decision making capabili-
ties grounded on hierarchical task representations and enforcing a scalable
definition of action sequences able to map high-level complex tasks to low-
level, simple robot operations. In a scalable system, the user combines
simple tasks to perform a complex scenario Garca et al. (2013), which re-
sults in reducing the setup and reconfiguration time for different scenarios
and increasing the efficiency.

In the literature, different approaches have been proposed to model HRC
processes as a whole. While some of them are aimed at introducing aspects of
social interaction Crandall et al. (2018); Lemaignan et al. (2017); Pincau et al.
(2003); Shah et al. (2011), others focus explicitly on HRC processes for collabo-
rative manipulation or assembly Capitanelli et al. (2018); Darvish et al. (2018b);
Hawkins et al. (2014); Johannsmeier & Haddadin (2017); Levine & Williams
(2014); Michalos et al. (2014); Toussaint et al. (2016). Among them, it is possi-
ble to discriminate between those architectures allowing for an online adaptation
of robot action sequences on the basis of human operator actions Caccavale &
Finzi (2017); Darvish et al. (2018b); Hawkins et al. (2014); Levine & Williams
(2014); Sebastiani et al. (2017), and approaches limiting plan adaptation to time
constraints Johannsmeier & Haddadin (2017); Karpas et al. (2015); Shah et al.
(2011). Proactive planning or online decision making is considered in the frame-
works described in Capitanelli et al. (2018); Darvish et al. (2018a); Lemaignan
et al. (2017); Levine & Williams (2014); Miiller et al. (2007); Nikolaidis et al.
(2017), whereas the others perform it offline. Different task representation and
planning methods have been adopted to model the cooperation process, namely
Markov Decision Processes (MDPs) Claes & Tuyls (2014); Crandall et al. (2018);
Toussaint et al. (2016), Task Networks (TNs) Lemaignan et al. (2017); Levine
& Williams (2014); Shah et al. (2009), satisfiability-based planners Capitanelli
et al. (2018), and AND/OR graphs Darvish et al. (2018b); Hawkins et al. (2014);
Johannsmeier & Haddadin (2017).

In this dissertation, we present an integrated architecture for flexible HRC
processes, which we refer to as FLEXHRC, to address a number of important
functional requirements as identified above. FLEXHRC enables online human-
robot decision making and adaptation, flexible execution of HRC tasks, a scal-
able representation of such tasks enforcing modularity and reuse. FLEXHRC

1.3 Dissertation Outline

can adapt the behaviour of collaborative robots to human operator actions re-
actively, while proactively taking decisions aimed at meeting cooperation goals.
The innovations of the current work at functional levels are:

o Human-robot cooperation level. A hybrid reactive-deliberative architecture
for online, flexible and scalable HRC processes is proposed, characterised
by proactive decision making and reactive adaptation to the peculiar co-
operation state, i.e., a perceived sequence of human operator actions, also
when certain robot operations cannot be successfully executed. FLEXHRC
supports all the functional requirements defined above.

o Tusk representation level. An integrated hierarchical representation of HRC
processes employing First Order Logic (FOL) and AND/OR graphs to
model static and dynamic aspects of HRC-related tasks. The proposed
method enables the necessary scalability by introducing the hierarchical
task representation, intuitiveness using the linguistic communication at this
level with the human, and optimality of the action sequences for the collab-
orative robot at representation level to deal with Fy, F3, and Fj;. The Task
Manager enables the Fy, F5, Fy, Fg functional requirements by integrating
the representation, perception, and action levels, and predicting the future
robot behaviour online.

e Action Level. Although robot operations are well-defined in terms of mo-
tion trajectories and, above all, intended effects, reactive behaviors allow
for dealing with partially unknown or dynamic workspaces, e.g., to per-
form obstacle avoidance, without the need for whole trajectory re-planning
Simetti & Casalino (2016); Srivastava et al. (2014). FLEXHRC control
and path planning framework decouple human-robot action planning from
robot motion planning and control Simetti & Casalino (2016), and avoid
the obstacles Karaman & Frazzoli (2011) therefore addressing F3 and Fg.

o Perception Level. FLEXHRC benefits from the human action recognition
and workspace object perception using wearable sensors and RGB-d data,
which do not pose any constraint on operator motions, to address Fr; it
exploits statistical techniques for action modeling Bruno et al. (2013) to
take Fj into account; and it integrates the different perceptive information
at symbolic level to support the Fy, Fy, Fy, Fg, Fy.

1.3 Dissertation Outline

The dissertation is organized as follows. Chapter 2 describes relevant state-of-the-
art approaches in HRC processes and introduces the main traits of FLEXHRC.

1.3 Dissertation Outline

We describe the representation level, including the Task Representation, Task
Manager, and Knowledge Base in Chapter 3. In Chapter 4, we explain the Hu-
man Action Recognition and Object and Scene Perception, where we integrate
the perceptive information at the symbolic level. The portray of the action level,
including the Controller, Path Planning, and Robot Fxecution Manager is pre-
sented in Chapter 5. In Chapter 6, we describe the experimental scenarios and
discuss relevant results. Conclusions follow.

Chapter 2

Software Architecture for
Flexible Human-Robot
Cooperation

Summary

In this Chapter, we portray the software architecture for the flexible human-robot
cooperation which responds to the functional requirements described in Chapter
1. First, we present the state of the art for the collaborative robots at architecture,
representation, action, and perception level. Then, we analyze the literature
according to their methodologies and approaches for answering to the introduced
functional requirements. Finally, we describe the FLEXHRC architecture, and
the three levels of the architecture, namely representation, action, and perception
level.

2.1 State of the Art

During the past few years, human-robot interaction gained much attention in the
research literature. Whilst approaches focused on cooperation consider aspects
related to natural interaction with robots, e.g., targeting human-robot coordi-
nation in joint action Huber et al. (2013); Sebanz et al. (2006); Valdesolo et al.
(2010), this analysis focuses on the human-robot cooperation process from the
perspective of the functional specifications discussed in Chapter 1.

The problem of allowing humans and robots to perform open-ended coop-
eration by means of coordinated activity did not receive adequate attention so
far. An approach highlighting the challenge is presented in Shah et al. (2011),
in which an execution planning and monitoring module adopts two teamwork

2.1 State of the Art

modes, i.e. when humans and robots are equal partners and when humans act as
leaders. On the one hand, a reference shared plan is generated off line, and ac-
tions are allocated to a human or a robot according to their capabilities. On the
other hand, coordination is achieved by an explicit step-by-step, speech-based,
human to robot communication, which makes the user experience cumbersome
and unnatural in most cases.

The ability of robots to mediate between high-level planning and low-level
reactive behaviours has been subject of huge debates in the past three decades.
When it comes to human-robot cooperation, the need arises to balance the re-
quirements of reaching a well-defined goal (e.g., a joint assembly) and providing
human co-workers with as much freedom as possible. A number of conceptual el-
ements for joint and coordinated operations are identified in Vesper et al. (2010).
The authors propose a minimalistic architecture to deal with aspects related to
agents cooperation. In particular, a formalism to define goals, tasks and their
representation, as well as the required monitoring and prediction processes, is
described. The work discussed in Lemaignan et al. (2017) significantly extends
the notions introduced in Vesper et al. (2010) to focus on social human-robot in-
teraction aspects. The architecture makes an explicit use of symbol anchoring to
reason about human actions and cooperation states. An approach sharing some
similarities with FLEXHRC is described in Johannsmeier & Haddadin (2017).
As in the proposed approach, AND/OR graphs are used to sequence actions for
the cooperation process. However, unlike FLEXHRC, action sequences cannot be
switched at runtime, but are determined off line in order to optimize graph-based
metrics. As a matter of fact, the possibility of multiple cooperation models is pro-
vided for, although off line: optimal paths on the AND/OR graph are converted
to fized action sequences, and then executed without any possible variation. In a
similar way, multiple cooperation models are considered in Hawkins et al. (2014),
where an AND/OR graph is converted to a nondeterministic finite state machine
for representation, and later to a probabilistic graphical model for predicting and
monitoring human actions, as well as their timing. An architecture for flexible
execution of the concurrent tasks in the context of HRI is adopted in Caccavale
& Finzi (2017); Caccavale et al. (2016). The architecture embeds a hierarchical
planning approach, i.e. Hierarchical Task Networks (HTNs) Erol et al. (1995), to
progress toward the interaction goal using task-oriented and stimuli-driven atten-
tional processes. Likewise, Sebastiani et al. (2017) presented an offline conditional
plan generation for HRI scenarios. Online, it clarifies the plan by negotiating with
the human. Karpas et al. (2015) extended online executive to unify the intention
recognition and plan adaptation for temporally flexible plans. It takes as input a
temporal plan network with uncertainties, handles uncontrollable action duration
by enforcing strong temporal controllability, and in case of exceeding the limits
starts negotiating with the humans to relax the temporal constraints.

10

2.1 State of the Art

Task representation and action planning for HRC scenarios are traditionally
considered challenging research efforts, specifically when the task to be carried
out is characterised by high-variability, and human operators are allowed to au-
tonomously decide how to proceed. Approaches in the literature focus on specific
aspects of the cooperation process. A general approach for encoding such complex
scenarios is a hierarchical representation of the abstract behaviours or actions.
The symbolic level representation of the behaviours allows the learning repre-
sentation of general tasks and automatic generation of the behavioural system
Nicolescu & Matari¢ (2002).

Representation level. The work described in Darvish et al. (2018b); Levine
& Williams (2014) is aimed at recognising the peculiar sequence of actions per-
formed by human operators online, and to provide robots with methods to re-
actively adapt to those actions. The recognition of action sequences carried out
by human operators assumes actions to be completed before they can be prop-
erly recognised, which is expected to introduce possibly unacceptable delays in
the cooperation process, and therefore jeopardise efficiency and naturalness. A
slightly different approach, pursued in Hawkins et al. (2014), employs methods to
predict rather than recognise human operator actions, thereby trading-off recogni-
tion performance and prediction accuracy. However, in case of misclassifications,
the overall cooperation process can be negatively affected, above all in so far as
effectiveness is concerned. Rather than providing human operators with high
freedom in how to carry out a given cooperative task, the approach proposed in
Nikolaidis et al. (2017) envisions a sort of dyadic, mutual adaptation between hu-
man operators and robots, where robots act as leaders guiding human operators
towards an efficient task execution strategy. It is no mystery that such an ap-
proach can lead to a lack of naturalness in the cooperation process. While human
action prediction, recognition, and adaptation are forms of implicit human-robot
communication, an explicit, speech-based communication is adopted instead in
Lemaignan et al. (2017); Shah et al. (2011). Aspects related to naturalness are
enforced using speech-based communication only in principle. In fact, this is done
at the detriment of effectiveness and efficiency, since speech recognition can yield
to dramatically poor results in industrial scenarios. MDPs have been used in
Claes & Tuyls (2014); Crandall et al. (2018) to enforce adaptation to human op-
erator behaviours online. Such an approach leads to purely reactive approaches,
which are considered indeed natural, but neither effective nor efficient. Classi-
cal planning integrated into a hierarchical reactive/deliberative architecture has
been proposed in Capitanelli et al. (2018) as a trade-off between the two con-
trasting requirements of efficiency and naturalness. While such a trade-off has
been demonstrated in a specific domain, there is no evidence that such a balance
can be easily replicated in other HRC scenarios.

It is noteworthy that naturalness in HRC scenarios should not be treated

11

2.1 State of the Art

independently from the perception of natural robot behaviours, i.e., human-like
morphology and robot motions. However, when goal-oriented cooperation tasks
are involved, it is necessary to pursue a trade-off between optimality in robot
motions and action sequences, and human-like behaviours Bortot et al. (2013),
so that human operators can understand, explain and predict robot behaviours
Adams (2005); Steinfeld et al. (2006). Among different task representation meth-
ods, only those approaches based on AND/OR graphs and TNs explicitly consider
explainability and predictability at the representation level.

In order to model action planning in HRC scenarios, hierarchical approaches
have been used in Hayes & Scassellati (2016); Lemaignan et al. (2017). As men-
tioned above, a hierarchical representation allows for the modelling of complex
cooperation tasks efficiently, and it enforces modularity and scalability in the
representation. With the sole exception of the use of HT'Ns in Lemaignan et al.
(2017), hierarchical approaches do not explicitly consider the interplay between
efficiency and naturalness in the cooperation process.

TNs and approaches based on classical planning are characterised by a natural
description layer based on FOL Capitanelli et al. (2018); Cashmore et al. (2015);
Lemaignan et al. (2017), which is expected to enforce effectiveness since it consti-
tutes a close-to-human language used to associate semantics to each robot action
Russell & Norvig (2010). However, traversal and planning algorithms cannot
guarantee explainable nor predictable robot action sequences, unless severe con-
straints are posed. FOL-based MDPs Boutilier et al. (2001); Yoon et al. (2002),
also referred to as relational MDPs, are a tentative solution to trade-off these
aspects, and indeed have been adopted to model cooperative assembly tasks in
Toussaint et al. (2016). In a similar perspective, AND/OR graphs naturally yield
explainable results Luger (2009), and are amenable to be represented using FOL
for the purpose of cooperative task representation.

Action level. One of the main challenges to address in HRC scenarios is de-
ciding how to allocate actions, either to the human operator, the robot, or in
principle to both Goodrich & Schultz (2007). Action allocation is a necessary
modelling choice relating task representation to task and motion planning com-
bined together, and obviously, it has a great impact on effectiveness and efficiency.
When a human operator is given the freedom of autonomously deciding how to
accomplish a task, action allocation cannot be defined beforehand and must be
resolved online to be effective Arai et al. (2002); Chen et al. (2014); Miyata et al.
(2002). In order to schedule resources and to allocate tasks to human operators or
robots, a multi-objective optimisation problem is typically formulated Chen et al.
(2014); Tsarouchi et al. (2017). In particular, the allocation problem is addressed
from the perspective of a utility measure, which estimates the overall team per-
formance as a function of such parameters as quality of an action result, its cost,
its associated cognitive load, and the resources needed for its completion Gerkey

12

2.1 State of the Art

& Matari¢ (2004). Such optimisation problem is then resolved online for dynamic
task allocation Chen et al. (2014); R. A. Giele et al. (2015); Shah et al. (2009);
Wilcox et al. (2012), while other approaches are limited to offline solutions Jo-
hannsmeier & Haddadin (2017); Tsarouchi et al. (2017). As described in Darvish
et al. (2018a), resolving action allocation online can be done only if the relevant
parameters of the employed utility measure are either estimated beforehand or it
is safe to assume they can be quantified while the cooperation process unfolds.
For example, in the approach described in Tsarouchi et al. (2017), expected ac-
tion completion times are estimated offline, whereas robot workspace reachability
is assumed to be a function of the Euclidean distance between current and goal
robot’s end-effector poses. The approach discussed in Darvish et al. (2018a) pro-
poses a fast in-the-loop simulation to estimate relevant utility parameters online,
whereas in Miiller et al. (2007) it is suggested that simulations should be done
a priori. It is noteworthy that offline task allocation is limited as far as the
reliability is concerned, due to uncertainties and changes in the workspace and
unpredictable human decisions.

In the literature, among different task planning approaches have been pro-
posed for HRC scenarios; the approaches described in Johannsmeier & Haddadin
(2017); Lemaignan et al. (2017) generate different plans offline, and optimize a
utility function to find the optimal sequence of actions and to perform task al-
location. During online execution, humans and robots are constrained to follow
the optimal plan while executing the cooperation task. Major issues arise when
the cooperation process cannot be described in its entirety, or some relevant fea-
tures of the environment are uncertain, or cannot be properly perceived by the
robot or represented. In all these cases finding an optimal sequence of actions
for allocated tasks cannot be but sub-optimal. Other approaches Darvish et al.
(2018b); Hawkins et al. (2014); Levine & Williams (2014) allow for tuning the
cooperation process as it unfolds, by enabling human operators only to decide
how to progress, while a robot reactively adapts to human actions.

It is noteworthy that the integration of task representation, online task plan-
ning, task allocation, and motion planning is expected to enhance the robustness
to failures and the overall HRC process efficiency Darvish et al. (2018a). Further-
more, it has been shown in Darvish et al. (2018a) that in-the-loop robot motion
predictions are beneficial to a natural interaction, as opposed to the prediction
of human operator motions Hawkins et al. (2014); Koppula & Saxena (2013);
Mainprice et al. (2015).

The development of sensing and control architectures able to integrate and
coordinate action planning with motion planning and control is an active research
topic. However, the challenge is typically addressed to deal with cases where
planning cannot be guaranteed to be monotone, i.e., when sensory information
must be used to validate the plan during execution Agrawal et al. (2016). Its

13

2.1 State of the Art

application to human-robot cooperation tasks has not been fully addressed in
the literature. An approach in that direction is described in Toussaint et al.
(2016), where an integrated approach to Monte Carlo based action planning and
trajectory planning via Programming by Demonstration is adopted in a scenario
of toolbox assembly. Concurrent activities are formalized using a Markov decision
process, which determines when to initiate and terminate each human or robot
action. A multi-objective optimization approach for solving the subtask allocation
for the project scheduling problem of HRC is introduced in Chen et al. (2014),
where an evolutionary algorithm takes care of real-time subtask allocation. The
proposed framework considers both parallel and sequential features and logic
restrictions as well as given objectives for human and robot action time and cost,
idle time, etc.

Perception level. Finally, a few approaches consider the issue of allowing
human operators to retain a certain freedom of motion or action when interacting
with a robot, but at the price of introducing a few assumptions in the process
Bauer et al. (2008); Cartmill et al. (2011). A Bayesian framework is used in Huber
et al. (2013) to track a human hand position in the workspace with the aim of
predicting an action’s time-to-completion. The hand must be clearly visible for
the estimate to be accurate, which limits certain motions. The opposite approach
is adopted in Shah et al. (2011), where an extended freedom of motion is obtained
resorting to speech-based communication to indicate performed actions to the
robot, as well as action start and end times. The obvious drawback of this
approach relies on the fact that such a communication act must be voluntary,
and therefore human stress and fatigue may jeopardize the will to do it. A
more comprehensive approach is described in Lemaignan et al. (2017), which
integrates human body position (determined by an external sensory system, e.g.,
motion capture), deictic gestures, gaze and verbal communication to determine
a number of human actions. A gesture lexicon for giving commands to other
partners in industrial environments is studied in Gleeson et al. (2013). The work
investigates the gestures commonly performed by humans to communicate with
each other about part acquisition, manipulation, and operation tasks. In the
experimental evaluation, such gestures were replicated by an industrial robot
and the understanding of human operators was measured. Both solutions rely
on an external system for human activity recognition, which may be of difficult
deployment in a shop-floor environment, and occlusions may occur nonetheless.

From this focused analysis, it emerges that although a number of approaches
have been discussed, which take the identified functional specifications into ac-
count, they do so only partially. FLEXHRC attempts to provide a holistic and
integrated solution to these heterogeneous challenges.

14

2.2 FlexHRC System Architecture

Task

Simulator
Representation l
A
feasible states & solved states &
state transitions state transitions
action / ack
—> Task Manager €
i ’ Path Planner
query action / ack
response A
query / LA] action / path
Knowledge response | Robo_t
gesture Biia Execution
\ Manager)
A
suggested |]
T robot action / ack
) configuration _
Human Action Object & Scene i
Recognition Perception
) A .
inertial RGB-D sENsAty controf
data) Jeedhogk command

Figure 2.1: FLEXHRC’s architecture: in green the representation level, in blue

the perception level, in red the

action level.

2.2 FlexHRC System Architecture

FLEXHRC is based on a distributed hybrid reactive-deliberative architecture,
which is conceptually described in Figure 2.1. FLEXHRC is a cognitive architec-
ture as it holds all the attributes of a cognitive architecture including autonomy,
perception, learning, anticipation, action, and adaptation Vernon (2014). Some
of these attributes are emphasized highly as the core of FLEXHRC, while others

are less.

15

2.2 FlexHRC System Architecture

The architecture of FLEXHRC is organised in three levels, namely the rep-
resentation level (in green in Figure 2.1), the perception level (in blue), and the
action level (in red). The representation level maintains all the relevant infor-
mation related to cooperative tasks via the Task Representation module, and to
the shared workspace in the Knowledge Base module. The representation level
performs action planning and decision making for task execution, as well as for
action allocation via the Task Manager module. The perception level acquires
information about the workspace in terms of objects and other entities therein us-
ing Object and Scene Perception, and it is responsible for detecting and classifying
actions performed by human operators as done in the Human Action Recognition
module. Starting from raw data, the perception level updates the representation
level with relevant semantic information about objects and human operator ac-
tions. On the basis of such information, the action level serialises the execution
of robot actions (via the Robot Ezecution Manager module), plans a path for the
robot end-effector, performs in-the-loop robot action simulations in the Simulator
module, and controls online all robot motions using the Controller module.

2.2.1 Representation level

The Task Representation module maintains knowledge about all possible states
and state transitions modelling cooperative tasks. The module also defines how
the HRC process can progress by providing suggestions to the human operator
or the robot about what to do next. As anticipated above, we apply AND/OR
graphs to represent cooperative tasks, as better described in the next Section
Darvish et al. (2018b); de Mello & Sanderson (1990). The module receives in input
the current cooperation status from the Task Manager, and therefore provides
it with next action suggestions. The Task Manager module maps cooperation
states as represented in the AND/OR graph structure to either human or robot
actions, and informs the human for such actions through the robot display. The
module plans for suggested states receiving appropriate information from the
Task Representation module, it grounds action parameters to actual values, and
it performs action assignments on the basis of incoming perceptual information
Darvish et al. (2018a,b). The Knowledge Base module maintains and explicitly
represents the cooperation state and workspace-related perceptual information
using custom data structures Darvish et al. (2018a).

2.2.2 Perception level

The Human Action Recognition module provides FLEXHRC with information
about actions performed by human operators. The module models action tem-
plates using Gaussian Mixture Models and Gaussian Mixture Regression starting

16

2.2 FlexHRC System Architecture

from a relevant dataset of inertial data obtained using operator-worn sensors,
and applies online statistical distance metrics to determine the likelihood of the
occurrence of an action. It applies a pattern matching algorithm to detect and
recognise meaningful actions as performed by human operators. To do so, the
module receives an inertial data stream, and informs Task Manager about the
detected and recognised human operator actions Bruno et al. (2014); Darvish
et al. (2018b). The Object and Scene Perception module provides information
about objects in the robot workspace and models them using a set of primitive
shapes characterised by their geometrical characteristics. The module simply
applies Euclidean distance to cluster a point cloud originating from an RGB-D
sensor located on the robot body, and it applies the Random Sample Consensus
(RANSAC) algorithm to model those clusters as primitive shapes, and to deter-
mine their relevant features. Additionally, Principal Component Analysis (PCA)
is used to find complementary object features for manipulation purposes. Recog-
nised objects and their features are maintained in the Knowledge Base module
Buoncompagni & Mastrogiovanni (2015); Fischler & Bolles (1981); Wold et al.
(1987).

2.2.3 Action level

The Robot Ezxecution Manager maps action commands issued by the representa-
tion level to simple commands fed to the Simulator or the Controller module.
The module receives workspace-related information from the Knowledge Base for
manipulation purposes. The Path Planner plan a path for the manipulator robot
end-effector such that does collide with the obstacles of the workspace. The in-
the-loop Simulator module simulates closed-loop robot kinematics and control
to predict the robot behaviour online. It receives reference information from the
Robot Execution Manager, and provides it with the results of the simulation (e.g.,
failure/success of a given command, action execution time, final robot pose, or
estimated energy consumption) Darvish et al. (2018a). The Controller module
controls robot motions using a Task Priority framework at the kinematic level,
taking into account multiple control objectives, both of equality and inequality
type, and their priorities. The reference robot velocity is found solving a se-
quence of prioritized optimization problems Simetti & Casalino (2016); Simetti
et al. (2018).

17

Chapter 3

Human-Robot Cooperation at
Representation level

Summary

In this chapter, we describe the theory and implementation of FLEXHRC at the
representation level. First, we explain the Task Representation module and in
specific the AND/OR graph. We introduce the elements and theory of the Propo-
sitional Logic AND/OR graph. Later, we extend the AND/OR graph notion
to a First-Order-Logic Task Representation method, and found the hierarchical
AND/OR graph Task Representation. In Section 3.2, we establish the theory
and implementation of Task Manager which includes proactive decision making
and reactive adaptation. Finally, we describe the customized Knowledge Base

developed for FLEXHRC.

3.1 Task Representation Model

In order to formalise and to explicitly represent in FLEXHRC the human-robot
cooperation process we adopt AND/OR graphs. An AND/OR graph allows for
an easy representation of problems to solve or procedures to follow, which can
be clearly decomposed in subproblems (as parts of the graph), as well as the
logic relationships among those subproblems (the interconnectivity of the graph).
Since the root node conventionally represents the solution, solving the problem
means traversing the graph from leaf nodes to the root note according to the
graph structure. Therefore, AND/OR graphs can take limited forms of non-
determinism or uncertainty into account de Mello & Sanderson (1990); Luger
(2009); Russell & Norvig (2010) via the availability of various branches possibly
leading to the solution. On the basis of previous work Darvish et al. (2018a,b),

18

3.1 Task Representation Model

Table 3.1: Definition of symbols related to propositional logic AND/OR graphs

Symbol Definition

n A node in the AND/OR graph

N The set of all nodes in the AND/OR graph

h An hyper-arc in the AND/OR graph

H The set of all hyper-arcs in the AND/OR graph
G(N,H) An AND/OR graph composed of the |N| nodes and

c(hi), p(h:)

W,

3

|H| hyper-arcs

Hyper-arc h; connects child nodes ¢(h;) to parent node
p(hi)

Weight of node n;

Weight of hyper-arc h;

The root node of the AND/OR graph

An action associated with one or more hyper-arcs in
G

The set of actions associated with hyper-arc h;
Action a; is finished when performed by an agent
Hyper-arc h; is done when all the actions in A; are
finished

Node ny is solved if there is at least one hyper-arc
h; € H such that p(h;) = ng and d(h;) holds

The AND/OR graph G is solved if s(n,) holds

Node ny is feasible if there is at least one hyper-arc
h; € H such that p(h;) = n; and for all nodes n; €
c(h;), s(n;) holds

Hyper-arc h; is active if p(h;) = ny and f(ny) holds
The set of all active hyper-arcs at a given time

The set of all feasible nodes and active hyper-arcs in
the AND/OR graph G at a given time

A cooperation path traversing G

Cost of path P

The ordered sequence of actions corresponding to P
The cooperation path followed at a given time

The sequence of actions followed at a given time

19

3.1 Task Representation Model

Figure 3.1: A generic AND/OR graph with six nodes and three hyper-arcs: hy
and hg are and hyper-arcs, whereas hs is a or hyper-arc.

where an online use of such a representation has been adopted to model simple
cooperation processes, we systematise and extend the original formulation along
two directions: first, we provide a conceptualisation of AND/OR graphs compat-
ible with a FOL-based task representation framework; second, we introduce and
analyse the benefits of hierarchical AND/OR graphs to support scalable, modular
and flexible task representation. Table 3.1 recaps the definitions of the symbols
related to the Representation Level for ease of reference by the reader.

3.1.1 Propositional logic AND/OR graph

An AND/OR graph G(N, H) is defined as a data structure where N is a set of
ni,...,n | nodes and H is a set of hy,..., hy hyper-arcs. Nodes in N define
reachable states, whereas hyper-arcs in H define transition relationships among
states. Each hyper-arc h; € H defines a many-to-one transition relationship
between a set of |c| child nodes c(h;) = (np,,,...,7n,,) and a parent node
p(h;) = ng. The child nodes of a hyper-arc are in logical and, while different
hyper-arcs with the same parent node are in logical or. Both nodes and hyper-
arcs are associated with costs, namely w,,, ... s Wn and wp,, . .. s Why - Figure
3.1 shows an example of AND/OR graph with six nodes termed n,,ny,...,ns

20

3.1 Task Representation Model

and three hyper-arcs, called hy, hy and hs. Node n, is called root node. Hyper-
arc h; establishes an and relationship between n; and n, towards n,, i.e., in
order to reach state n, it is necessary to have reached both n; and ns. A similar
condition holds true for hz, which connects ny and ns to ny. Hyper-arc hy is an
or relationship between the and relationship involving n; and ns, node ns and
n,. The semantics associated with hs is such that in order to reach n, either the
couple n; and ny (via hy), or alternatively ng must be reached first.

In FLEXHRC, each hyper-arc h; models a set A; of actions ay, ..., a,, and
an action a; € A; can be assigned either to a human or a robot. If the order
in which to execute actions in A; is important, A; is defined as an ordered set
such that A; = (a1, ...,a4,;), i.e., a temporal sequence is assumed in the form
a; X ag X ... X ay,. Initially, all actions a; € A; are labeled as unfinished, i.e.,
—e(a;). When an action a; has been executed, it is labeled as finished, i.e., e(a;).
For all actions in A;, if e(a;) holds then h; is done, and the notation d(h;) is used.
If an ordering is induced, d(h;) holds if and only if also the temporal execution
sequence is satisfied.

A node can be either solved or unsolved. A node n;, € N is solved, specified
with s(ng), if there is at least one hyper-arc h; € H such that p(h;) = ng, d(h;)
holds, and for all n; € ¢(h;) it holds that s(n;). A node ny is unsolved otherwise,
and specified with —s(ng). Leaves in G, i.e., nodes ny for which there is no
hyper-arc h; € H such that p(h;) = ni (as is the case of ny, ng, ny and ns in
Figure 3.1), are initialized as solved or unsolved, depending on the initial state
of the cooperation. An AND/OR graph G is traversed from leaves to the root
node n, € N. When s(n,) holds, then G is solved, i.e., s(G). During the traversal
procedure, a node ny € N is feasible, i.e., f(ny) holds if there is at least one hyper-
arc h; € H such that p(h;) = ns and for all nodes n; € c(h;) it holds that s(n;).
In this case h; is labeled as active, i.e., a(h;). Otherwise, ny is unfeasible, i.e.,
—f(ng). Leaves that are not solved at the start of the cooperation are initialized
as feasible. While the cooperation unfolds, there is a set of active hyper-arcs
H,C H in G.

We define the graph representation state Sg as the set of all feasible nodes
and active hyper-arcs in G, i.e., possible action alternatives for the human or the
robot. A cooperation path P in G is defined as a sequence of visited nodes and
hyper-arcs. Each cooperation path is associated with a traversal cost, namely
cost(P), which defines how effortful following P is, on the basis of the involved
nodes and hyper-arcs weights. A cooperation model M is a ordered sequence of
| M| actions, such that M = (aq,...,am); X) C Sg, corresponding to an allowed
cooperation path in GG. At any given time instant, there is one current cooperation
model M, as well as one current cooperation path P..

All available cooperation models and cooperation paths are maintained by the
Task Representation module; which is composed of two online and offline phases.

21

3.1 Task Representation Model

Algorithm 1 Setup()
Require: A description of an AND/OR graph G = (N, H)
Ensure: A data structure encoding G
G <+ loadDescription()
s(G) < false
for all n € N do
updateFeasibility (G, n)
end for
P <« generateAllPaths(G)
n* < findSuggestion(P)

3.1.1.1 Offline phase

Algorithm 1 starts the process, loading the description of a cooperative task
to create the corresponding AND/OR graph G and set it as unsolved. Then, all
node feasibility states are determined (line 4), the set P of all possible cooperation
paths P, ..., P are generated (line 6) and the first node to solve n* is determined
(line 7). With reference to the loadDescription() function, it is noteworthy that
each description is made up of three data chunks, respectively encoding: (i) the
structure of the AND/OR graph in terms of the sets N and H, (ii) the set A; with
all actions associated with a hyper-arc h;, as well as their temporal constraints
(if any), and (iii) a number of action-specific parameters, e.g., whether the action
must be executed by the operator or the robot, the symbolic action name (for
humans) and associated planning and control parameters (for robots).

Feasibility check is performed on each node in N. The process is described
in Algorithm 2. Feasible nodes are ignored (line 2) and leaves are set as feasible
(line 5). For all other nodes, the algorithm looks for active hyper-arcs (lines 8
to 20): if there is at least one hyper-arc h for which p(h;) = n and all child
nodes are solved, then the hyper-arc is active (line 16) and n is feasible (line 17);
otherwise, the hyper-arc is ignored (lines 9 to 14). If a node has no associated
active hyper-arcs, then it is not feasible (line 21).

When Algorithm 2 is complete, the graph representation state Sg is available,
and it is possible to determine all available cooperation paths. This is done by
Algorithm 3, which is a variation of a depth-first traversal procedure for AND/OR
graphs. The set of cooperation paths P and an empty path P are defined (lines
1 to 3). All nodes are initially marked as unexplored (line 5) and the root node
n, is added to path P (line 7). Then, the procedure iterates calling Algorithm
4 on the unexplored nodes (lines 12 and 13) until all nodes are explored and all
paths defined (lines 9 and 10).

Algorithm 4 proceeds along a single cooperation path P, starting from the

22

3.1 Task Representation Model

Algorithm 2 updateFeasibility/()
Require: An AND/OR graph G = (N, H), anoden € N
Ensure: f(n) or —f(n)

1. if f(n) = true then

2: return

3: end if

4: if ¢(n) = () then

5: f(n) < true

6: return

7. end if

8: for all h € H such that p(h) =n do
9 allChildNodesSolved <« true

10: for all m € ¢(h) do

11: if s(m) = false then

12: allChildNodesSolved <« false
13: end if

14: end for
15: if allChildNodesSolved = true then

16: a(h) < true
17: f(n) < true
18: return

19: end if

20: end for

21: f(n) < false

22: return

current node. The cost of P is updated and the node is marked as explored (lines
1 and 2). If the node does not have child nodes, the exploration of the path P
from node n is completed (lines 4 and 5); otherwise, if all the child nodes of n
belong to the same hyper-arc h, the hyper-arc is added to P (line 7) and the child
nodes are added to P for later exploration (line 9); finally, if the child nodes of
n belong to more than one hyper-arc, a new path is created for each hyper-arc,
as a copy of the current path (lines 15 and 16). The different hyper-arcs and the
corresponding child nodes are added to the new paths (lines 17 and 19) for later
exploration.

When these procedures end, FLEXHRC is ready for online cooperation. De-
pending on the optimal cooperation path P* i.e., the one minimizing the overall
cost depending on node and hyper-arc weights, the robot may start moving or
waiting for operator actions.

23

3.1 Task Representation Model

Algorithm 3 generateAllPaths()

Require: An AND/OR graph G = (N, H)
Ensure: The set P of all cooperation paths
P+ 0
P <+ initNewPath()
P—PUP
for all n € N do
e(n) < false
end for
addNode(P, n,)
while true do
if VP € P it holds that Vn € P, e(n) = true then
return P
else
P, n < getUnexploredNode(P)
generatePath(G, n, P)
end if
: end while

[e T s S e S =Y
A T

3.1.1.2 Online phase

Whenever a node is solved and the graph state Sg is updated, the next node to
solve n* in the current cooperation path P. (which might have changed due to
the operator’s actions) can be defined.

This is done by Algorithm 5. The Algorithm loops indefinitely until the root
node n, is reached, and therefore s(G) holds (lines 4, 5 and 14). In the meantime,
it updates all feasibility states (lines 7-9) as well as cooperation paths (line 10),
and provides a suggested next node n* to solve (line 11).

Whilst feasibility updates are managed by Algorithm 2, cooperation path
updates are done as described in Algorithm 6. The set P* of all paths to update
is determined (line 2) as those containing the last solved node n. For each path
P, its associated cost is updated as:

cost(P) = cost(P) — (w, + h' — wp,), (3.1)

where w,, is the weight associated with n, A} is the maximum weight of the
hyper-arcs connecting any parent node to n, and wy, is the weight of the hyper-
arc connecting any parent node to n in P.

Suggestions for the next node n* are determined by the procedure in Algorithm
7. The optimal cooperation path P* is determined, such that it is characterized
by the minimum cost (line 1). Then, for all nodes in P*, the first node n is found
such that f(n) and —s(n) hold, which is labeled as n*.

24

3.1 Task Representation Model

Algorithm 4 generatePath()

Require: An AND/OR graph G = (N, H), the current node n, a cooperation
path P
Ensure: A valid cooperation path P
1: updatePathCost(P, n)
2: e(n) < true
3: for all h € H such that p(h) =n do

4: if |h| = 0 then

5: return

6: else if |h| =1 then

7: addArc(P, h)

8: for all m € ¢(h) do

9: addNode(P, m)

10: end for

11: return

12. elseif |h| > 1 then

13: P P

14: for all h € H such that p(h) =n do
15: P < initNewPath(P’)
16: P+—PUP

17: addArc(P, h)

18: for all m € ¢(h) do
19: addNode(P, m)
20: end for

21: end for

22: return

23: end if

24: end for

The hyper-arcs with n* as parent (i.e., within the current cooperation model),
together with all hyper-arcs with other, currently feasible nodes as parent (i.e.,
within other, admissible cooperation models) are marked as active and constitute
the new Action-State table, which the Planner uses to monitor and drive the
suggestions for actions, by giving highest priority to the actions in the hyper-arc
with minimum cost.

3.1.2 First order logic AND/OR graph

An AND/OR graph G in FOL can be formally defined as a tuple (N, H) where
N is a set of |N| nodes, and H is a set of |H| hyper-arcs. An hyper-arc h € H

25

3.1 Task Representation Model

Algorithm 5 NextSuggestedNode()

Require: An AND/OR graph G, the last solved node n € N
Ensure: An updated AND/OR graph G, the next node to solve n*
1: loop < true
2: s(n) < true
3: while loop = true do
if n = n, then
loop < false
end if
for all m € N do
updateFeasibility(m)
end for
10: updateAllPaths(P)
11: n* < findSuggestion(P)
12: return
13: end while
14: s(G) < true
15: return

Algorithm 6 updateAllPaths()

Require: The set P of all cooperation paths, the last solved node n € N
Ensure: An updated set P
¢ P+ @
: P* + findPathsToUpdate(n)
: for all P € P* do
cost(P) < updateCost()
end for

Algorithm 7 findSuggestion()

Require: The set P of all cooperation paths
Ensure: The next node to solve n*
P* + findOptimalPath(P)
for all n € P* do
n* « findOptimalNode()
end for
return

induces two sets of nodes, namely the set N.(h) C N of its child nodes, and the

26

3.1 Task Representation Model

singleton N,(h) C N made up of a parent node, such that:
h: N.(h) — N,(h). (3.2)

For the scenarios considered in this paper, at the semantic level each node n € N
represents a peculiar state related to the cooperation between a human operator
and a collaborative robot, whereas each hyper-arc h € H represents a (possibly)
many-to-one transition among states, i.e., activites performed by human opera-
tors or robots that make the cooperation move forward. In FLEXHRC, a node
n € N is associated with a conjunction S(n) of literals, such that:

S(n):sl/\.../\sk/\.../\sw(n”, (33)

where each literal s, may consist of variables, constants or logic predicates, also
negated. As it will be described later, each literal can be considered a represen-
tation fragment related to the cooperation state defined by n. As a consequence,
we will refer to S(n) as the cooperation state represented in n. It is notewor-
thy that a given S does not have to necessarily include only grounded literals,
i.e., constants or grounded predicates, but it can include variables as well, and
as such the corresponding node can be treated as a class of states at the Task
Representation level Russell & Norvig (2010).

Using the definition of states in (3.3), it is possible to better specify the state
transition in (3.2) as a relationship induced on the hyper-arc h between a set of
requirements made up by joining all the literals defining states S(n;) associated
with all the nodes n; € N.(h), and a set of effects made up by the state S(n)
associated with the single node n € N,(h), such that:

h:Smi) Ao ANSng) Ao AS(nyw,) = S(n). (3.4)

It can be observed that the relation among child nodes in hyper-arcs is the
logical and, whereas the relation between different hyper-arcs inducing on the
same parent node is the logical or, i.e., different hyper-arcs inducing on the same
parent node represent alternative ways for a cooperation process to move on.
Furthermore, we define n € N as a leaf node if n is not acting as a parent node
for any set of nodes, i.e., if h € H does not exist such that n € N,(h), or as a
root node if it is the only node that is not a child node for any other node, i.e.,
if h € H does not exist such that n € N.(h).

Each hyper-arc h € H implements the transition in (3.4) by checking the truth
values associated with all requirements defined by relevant nodes, executing a
number of actions associated with h, and generating effects compatible with the
cooperation state of the parent node. In particular, each hyper-arc h € H is
responsible for executing an ordered set A(h) of actions, such that:

A(h) = (a1, ..., ak, ... a4 2), (3.5)

27

3.1 Task Representation Model

where the precedence operator < defines the pairwise expected order of action
execution. Before an hyper-arc h is executed, all actions a € A(h) are marked as
undone, and we refer to this using a predicate done(a) < false. When one action
a is executed either by the human operator or the robot, its status changes to done
as done(a) < true. An hyper-arc h € H is marked as solved, i.e., solved(h) < true
iff all actions a € A(h) are done in the expected order. In a similar way, nodes
n € N may be associated with a (possibly ordered) set of processes P(n), i.e.,

P(n) = (P, P -5 0P) (3.6)

Diffently from actions, which are instrumental to perform transitions among
states and must be necessarily executed by human operators or robots, processes
are relevant within states as fluents, and model physical or other non-functional
variations of some quantity over time, without leading to qualitatively different
states from the human-robot cooperation state perspective. An example may be a
robot behaviour aimed at keeping a certain object in a given pose or configuration
using two grippers, the effects of external forces notwithstanding. In this case,
such a process does not lead to a different cooperation state, and its effects are
limited to the current state. When a node n € N is reached, all of its processes
are activated, i.e., activated(p) < true for each p € P(n). A process p € P(n) can
be deactivated when certain process-specific termination conditions are met, i.e.,
activated(p) < false. A node n is marked as met, i.e., met(n) < true, if all the
associated processes are deactivated if necessary in the prescribed order, or P(n)
is an empty set.

Using these definitions, it is possible to introduce the notion of feasibility for
nodes and hyper-arcs. A noden € N is feasible, which we refer to as feasible(n) <
true, iff a solved hyper-arc h € H exists, for which n € N,(h), and met(n)
false, i.e.,

dh € H. (solved(h) Nn € N,(h) N —met(n)) . (3.7)

All leaf nodes in an AND/OR graph are usually feasible at the beginning of the
human-robot cooperation process, which means that the cooperation itself can
be performed in many ways and is not constrained to follow certain sequences of
operations. In a similar way, an hyper-arc h € H is feasible, i.e., feasible(h) «+
true, iff for each node n € N.(h), met(n) < true and solved(h) < false, i.c.,

Vn € N.(h). (met(n) N —solved(h)) . (3.8)

Once an hyper-arc h; € H is solved, all other feasible hyper-arcs h; € H \ {h;},
which share with h; at least one child node, i.e., N.(h;) N N.(h;) # 0, are marked
as unfeasible, in order to prevent the cooperation process to consider alternative
ways to cooperation that have become irrelevant.

28

3.1 Task Representation Model

The human-robot cooperation process is therefore modelled as a graph traver-
sal procedure which, starting from a set of leaf nodes, must reach the root node
of the graph by selecting hyper-arcs and reaching states in one of the available
sequences, depending on the feasibility status of nodes and hyper-arcs. To this
aim, each node n € N is associated with a weight w(n), and each hyper-arc h € N
is similarly associated with a weight w(h). Weights depend on a number of pa-
rameters, which may be related to the number, difficulty or time-to-completion
of actions/processes, and on other more qualitative metrics related to human op-
erator preferences Buoncompagni & Mastrogiovanni (2018). Then, a cooperation
path cp induced by G is a set of nodes and hyper-arcs, such that

ep=(ng,...,nk, by), (3.9)

which represents a peculiar way to connect leaf nodes to the root node. We refer
to the set of cooperation pathes induced by G as C'P(G), where each element
cp € CP is in the form described by (3.9). According to the structure of the
modelled human-robot cooperation task, multiple cooperation paths may exist,
meaning that multiple ways to solve the task may be equally legitimate. Each
cooperation path ¢p € C'P can be associated with an overall cost ¢(cp), such that:

l

k
clep) =Y w(ng) + Y w(hy). (3.10)
Jj=1 Jj=1

The different cooperation paths in C'P can be ranked according to their overall
costs. Two cooperation paths cp; and cp; € C'P are equal iff the corresponding
sets of nodes and hyper-arcs are the same, and are equivalent iff their corre-
sponding overall costs are the same.

The traversal procedure dynamically follows the cooperation path that at any
time is characterised by the lowest cost. As a consequence, the traversal procedure
suggests to human operators actions in the hyper-arcs that are part of the path,
and sends to robots actions they must execute. However, human operators can
override at any time suggestions, executing different actions, which may cause
the system to be in a cooperation state not part of the current cooperation path.
When this situation is detected, FLEXHRC tries to progress from that state
onwards Darvish et al. (2018a,b). This mechanism enables FLEXHRC to pursue
an optimal path leading to the solution, while it allows human operators to choose
alternative paths when they deem it fit.

As long as the human-robot cooperation process unfolds, and the AND/OR
graph is traversed, we refer with Ny and H to the sets of currently feasible nodes
and hyper-arcs, respectively. In fact, the actual members of these two sets depend
on the particular evolution of the cooperation process. We say that an AND/OR
graph G is solved, and we write solved(G) < true, iff its root node r € N is

29

3.1 Task Representation Model

Algorithm 8 offlinePhase()

Require: An AND/OR graph G = (N, H)
Ensure: A data structure encoding G

G <+ loadDescription()

solved(G) <« false
updateGraphFeasibility (G)

CP <+ generateAllPaths(G)

{(z4, c(z;))} + findSuggestions(G)

met, i.e., met(r) < true. Otherwise, if the condition Ny U H; = (i.e., there are
no feasible nodes nor hyper-arcs) then the human-robot cooperation process is
failed, because there is no feasible cooperation path leading to the root.

It is noteworthy that representations based on AND/OR graphs, when up-
dated online, do not require the full knowledge of the robot workspace, nor actions
that are irrelevant for the current cooperation path. In fact, while a given co-
operation path is followed, the traversal algorithm only needs knowledge about
feasible nodes and hyper-arcs for making the task progress.

3.1.3 Single-layer AND/OR Graph Traversal Procedure

The single-layer AND/OR graph traversal procedure is composed of two phases,
the first being offline and the second online. The offline phase is described in
Algorithm 8. The AND/OR graph structure presented in this paper is based on
the one introduced in Darvish et al. (2018b), with notable differences such as
the possibility of allowing for multiple hyper-arcs connecting the same children
nodes to a parent node, ensuring the minimum cost returned from each hyper-
arc or node, and supporting the FOL-based representation of the cooperation
task. The first feature allows the AND/OR graph to model different possible
state transitions from one cooperation state to another, the second one ensures
an optimal and therefore a predictable robot behaviour, whereas the last one
increases the overall expressive power of the representation structure.

The functions loadDescription() and generateAllPaths() in Algorithm 8 are
described with great detail in Darvish et al. (2018b). In summary, loadDescrip-
tion() generates the data structure G (line 1), the graph G is setup as unsolved
(line 2), all feasibility statuses for nodes and hyper-arcs are checked (line 3), the
set C'P of cooperation paths is generated (line 4), and suggestions for next ac-
tions (in terms of nodes and hyper-arcs) are computed on the basis of path costs
defined as in (3.10).

It is worth discussing the behaviour of function updateGraphFeasibility(G),
described by Algorithm 9, which updates the feasibility statuses of all involved

30

3.1 Task Representation Model

Algorithm 9 updateGraphFeasibility()

Require: An AND/OR graph G = (N, H)
Ensure: The feasibility sets Ny and Hy
Ny=10
Hy=10
for alln € N do
(Ny, Hy) < updateNodeFeasibility(n, Ny, Hy)
end for
for all h € H do
(N¢, Hy) < updateHyperarcFeasibilty(h, Ny, Hy)
end for

nodes and hyper-arcs, and populates the corresponding sets Ny and Hy. The
Algorithm works simply by iteratively invoking two functions, namely updateFea-
sibilityNode() (line 4) and updateFeasibiltyHyperarc() (line 7). The two functions
are further developed in Algorithm 10 and Algorithm 11. Given a node n and a
hyperarc h the two Algorithms use such predicative knowledge on n and h as the
values of feasible(n), feasible(h), met(n), and solved(h) to update the feasibility
of graph nodes and hyper-arcs, respectively, therefore producing updated sets Ny
and Hy. In Algorithm 10, lines 3-19 update the feasibility status of a relevant
hyper-arc A when n € N.(h) and met(n) holds true. In case node met(n) holds
false (lines 20-32), lines 21-23 change the node feasibility when it does not have
any child nodes, i.e., if n is not a parent of any hyper-arc, whereas lines 24-31
check for a solved hyper-arc connected to node n, and in case at least one of such
hyper-arcs exist, then it is marked as feasible. In Algorithm 11, lines 2-13 update
the feasibility statuses when the hyper-arc h is solved. The feasibility of the h’s
parent node (line 3) is updated in lines 4-7. The feasibility of all the hyper-arcs
that have a common set of child nodes with h is updated in lines 8-13. Lines 14-27
check the feasibility of the unsolved hyper-arc h; if a child node of A (line 17) is
not met (lines 18-21) or there is another solved hyper-arc A’ with a common set
of child nodes with h (lines 22-25), the hyper-arc h becomes infeasible. Finally,
findSuggestions() in Algorithm 12 determines the set of feasible nodes and hyper-
arcs, generically indicated using z, and their associated cost ¢(z). There might
be different paths from the feasible nodes Ny or hyper-arcs H; to the root of G.
Therefore, the AND/OR graph is expected to provide the minimum cost among
all these cooperation paths such that the optimality of the cooperation process
is ensured. The cost ¢(z) for a node or hyper-arc is the minimum cost of the
cooperation path ¢p which the node or the hyper-arc belongs to, and therefore
the Algorithm guarantees the optimality of the AND/OR graph because for all

31

3.1 Task Representation Model

Algorithm 10 updateNodeFeasibility()

Require: A node n

Ensure: The feasibility sets Ny and Hy
1: feasible(n) < false
2. Ny < Nf\{n}
3: if met(n) then

4: for all h s.t. n € N.(h) do

5: if solved(h) then

6: feasible(h) < false

7 Hf — Hf\{h}

8: else

9: feasible(h) < true

10: Hf — Hf U {h}

11: for all n’ s.t. ' € N.(h) do
12: if met(n’) then

13: feasible(h) < false
14: Hf — Hf\{h}
15: break

16: end if

17: end for

18: end if

19: end for

20: else

21: if N.(n) =0 then

22: feasible(n) < true

23: Ny« Ny U {n}

24: else

25: for all i s.t. n € Ny(h) do
26: if solved(h) then

27 feasible(h) « true
28: Hf — Hf U {h}

29: end if

30: end for

31: end if

32: end if

nodes or hyper-arcs in Ny or Hy, respectively, it holds that:
min c(cp). (3.11)

reep

In Algorithm 12, lines 3-11 return feasible nodes and the minimum cost of the

32

3.1 Task Representation Model

Algorithm 11 UpdateFeasibiltyHyperarc()

Require: A hyper-arc h

Ensure: The feasibility sets Ny and Hy
1: feasible(h) < false
2: if solved(h) then
3: n < Np<h)

4: if —met(n) then

5: feasible(n) < true

6: Ny« Ny U {n}

7: end if

8: for all n s.t. n € N.(h) do
9: for all A’ s.t. n € N.(h') do
10: feasible(h') < false
11: Hf — Hf\{h/}

12: end for

13: end for

14: else

15: feasible(h) < true
16: Hf — Hf U {h}
17: for all n s.t. n € N.(h) do

18: if —-met(n) then

19: feasible(h) < false

20: Hf — Hf\{h}

21: break

22: else if J7’' s.t. solved(h’) An € N.(h') then
23: feasible(h') < false

24: Hf — Hf\{h,}

25: end if

26: end for

27: end if

cooperation paths which include them. The same applies to hyper-arcs in lines
12-20.

During online execution, when a node is met or a hyper-arc is solved, the
Task Manager module queries the AND/OR graphs to get updated Ny and Hy,
as well as the associated costs, in order to make the cooperation progress. This
is done by Algorithm 13. In the Algorithm, the two sets of met nodes and solved
hyper-arcs are referred to as N,, and Hj, respectively. Upon the reception of
the Task Manager’s query, the Algorithm updates node and hyper-arc statuses
(in terms of solved, met and feasible predicates) in lines 2-9. Later, the solved

33

3.1 Task Representation Model

Algorithm 12 findSuggestions()

Require: An AND/OR graph G = (N, H)
Ensure: A set ® = {(x;,c(x;))}

1. =10

2: cost < 0

3: for all n € N s.t. feasible(n) do

4: cost < inf

5: for all cp € CP(G) s.t. n € cp do
6: if cost < ¢(cp) then

7: cost < ¢(cp)

8: end if

9: end for

10: O« O U (n, cost)

11: end for

12: for all h € H s.t. feasible(h) do

13: cost < inf

14: for all cp € CP(G) s.t. h € cp do
15: if cost < ¢(cp) then

16: cost < ¢(cp)

17: end if

18: end for
19: O+ O U (h,cost)
20: end for

status for the whole AND/OR graph is checked. If the root node is met, then
the graph is marked as solved (line 11). Otherwise, line 14 updates all the path
weights, which include nodes in NV, and hyper-arcs in H;. Finally in line 15 the
new feasible nodes and hyper-arcs, and their associated costs, are made available.
In the Algorithm, the functions metNode(n, G) and solvedHyperarc(h, G) check
first if feasible(n) or feasible(h) hold true, then update G by met(n) < true and
solved(h) < true. In particular, Algorithm 14 updates the cooperation path costs
at each query. For a given cooperation path ¢p € C'P, the path cost ¢(cp) at each
moment is the cost of traversing it from the current to the root state. Initially,
all the path costs are computed from the leaves to the root using (3.10). When
a node or hyper-arc belonging to a given cooperation path is met or solved, its
overall cost is reduced of an amount related to its weight (lines 3 and 8).

34

3.1 Task Representation Model

Algorithm 13 onlinePhase()

Require: An AND/OR graph G = (N, H), the feasibility sets Ny and Hy, the
met set INV,,, the solved set H
Ensure: An updated AND/OR graph G, updated feasibility sets Ny and Hy,
the associated costs ¢
n, < getRoot(G)
for all n € N,, do
metNode(n, G)
updateNodeFeasibility(n, Ny, Hy)
end for
for all h € H, do
solvedHyperarc(h, G)
updateHyperarcFeasibility(h, Ny, Hy)
end for
if met(n,) then
solved(G) « true
return
. end if
: updateAllPaths(G, N,,, Hy)
{{z,c(x))} + findSuggestions(G), where x € Ny U Hy
: return

I e S e e T
S AR s

Algorithm 14 updateAllPaths()

Require: An AND/OR graph G = (N, H), the met set N,,, the solved set Hj
Ensure: An updated set C'P

1: for all n € N,,, do

2: for all cp € CP s.t. n € cp do

3: c(ep) = c(ep) —w(n)

4: end for

5: end for

6: for all h € H, do

7: for all cp € CP s.t. h € cp do
8: c(ep) = c(cp) — w(h)

9: end for

10: end for

3.1.4 Hierarchical AND/OR graph

In order to deal with HRC tasks, the use of hierarchical AND/OR graphs has
two motivations, the first related to the computational complexity of single-layer

35

3.1 Task Representation Model

AND/OR graphs, the second by flexibility and scalability requirements. On the
one hand, it has been shown that AND/OR graphs are characterised by a poly-
nomial time complexity in the number of nodes and hyper-arcs Laber (2008),
whereas the problem of determining whether a solution in terms of a path from
the set Ny, of leaf nodes to the root node is NP-hard Sahni (1974). In the online
phase of HRC tasks, being able to quickly determine and select an alternative
cooperation path to take into account human operator preferences is of the ut-
most importance to enhance the overall usability of the collaborative robot. On
the computational side, this means reducing the number of nodes and hyper-arcs
which the Task Manager module must reason upon. On the other hand, different
real-world operations are structured as mandatory or alternative sets of human
or robot actions, which can be seen as atomic. Being able to identify and re-use
the same sub-sequences of operations in different parts of the same HRC process
or as part of different processes is expected to enhance flexibility, because such
sub-sequences can be easily substituted if needed, and scalability, since the overall
complexity can be increased maintaining a manageable representation overhead.
Analogously to single-layer AND/OR graphs, a hierarchical AND/OR graph
H can be defined as a tuple (I',0) where I' is an ordered set of |I'| AND/OR
graphs, such that:
I'=(Gi,...,Gr; %), (3.12)

and O is a set of |O| transitions between couples of AND/OR graphs. In (3.12),
the AND/OR graphs are pairwise ordered according to their depth level. With
a slight abuse of notation, we associate a depth level [to an AND/OR graph G
and we indicate it with G', the highest level being [= 0. AND/OR graphs with
increasing depth levels are characterised by a decreasing level of abstraction, i.e.,
deeper graphs model HRC more accurately. Transitions in © define how different
AND/OR graphs in I" are connected, and in particular model the relationship
between any G' and a deeper connected graph G'*!.

It is necessary to better define transitions. If we recall (3.4) and we contes-
tualise for an AND/OR G! = (N!, H'), we observe that a given hyper-arc in H'
represents a mapping between the set of its child nodes and the singleton par-
ent node. We can think of a generalised version of such mapping to encompass
a whole AND/OR graph G'*! = (N1 H!*1) where the set of child nodes is
constituted by the set N,é“ of leaf nodes, and the singleton parent node by the
graph’s root node r'*! € N+ such as:

GH oS A L ASMETY AL A S(n!T] |) — S(rtth. (3.13)

1+1
INL

As a consequence, a transition 7' can defined between a hyper-arc ! € H' and
an entire deeper AND/OR graph G'*1, such that:

T:h — G (3.14)

36

3.1 Task Representation Model

subject to the fact that appropriate mappings can be defined between the set of
child nodes of h' and the set of leaf nodes of the deeper graph, i.e.,

M, : N.(h') = N, € N, (3.15)

and the singleton set of parent nodes of h! and the root node of the deeper graph,
ie.,
My : Ny(hh) — r1 e NI (3.16)

Mappings M; and M, must be such that the conjunction of literals of nodes
in N,(h!) and the conjunction of literals of leaves in G'** should be semantically
equivalent, i.e., they should be the same or representing the same information with
a different depth of representation, for example each literal of nodes in N.(h') may
correspond to one or more literals of nodes in NILH. The same applies for the
root of G'*1 and N,(h'). Once these mappings are defined, it easy to see that H
has a tree-like structure, where graphs in I are nodes and transitions in © are
edges.

As far as the overall workflow is concerned, an AND/OR graph G! is feasible,
and we refer to it as feasible(G') if it has at least one feasible node or hyper-arc.
If a transition 7" exists in the form (3.14), a hyper-arc h' € H' is feasible iff the
associated deeper AND/OR graph G'*!, is feasible:

VT (feasible(G'*") «» feasible(h')) . (3.17)

As a consequence, when hyper-arc h! becomes feasible in G', the nodes in Nfrl
of G™! become feasible as well. Furthermore, hyper-arc h! is solved iff the
associated deeper AND/OR graph G'*! is solved:

VT. (solved(G™") <+ solved(h')) . (3.18)

For all hyper-arcs in H' for which a transition 7" towards G'*! exists, we must
define how to compute the related weight. In particular, if we define ¢p*'* the
cooperation path in G+ characterised by the lowest cost, we easily define:

w(h') = ¢ (ep'*'). (3.19)

It is noteworthy that in this case the weight is attributed using an optimistic
strategy, because as per change of the cooperation path in G'*! it may happen
that the actual w(h!) is underestimated.

Similarly to the single-layer case, hierarchical AND/OR graphs are used in
two phases, first offline and then online. From a computational standpoint, a
transition 7' is modelled using a function in the form G'*! = LOWERGRAPH(A'),
whereas the inverse relationship is obtained using h' = UPPERHYPERARC(G'T1).

37

3.2 Task Manager

The offline phase, similar to what already described for the single-layer case in
Algorithm 8, first loads the description of the highest-level AND/OR graph G°.
Considering any nesting level [, if a hyper-arc h € H' is associated with a deeper
AND/OR graph description G"*! by a transition, the Algorithm recursively calls
the function OfflinePhase() on G+ to build it before going on with G'.

Algorithm 15 describes the workflow associated with the hierarchical AND/OR
graph during online execution. Whenever the status of the HRC process needs
updating, the graph representation is updated starting from all sets N;,, of met
nodes, and the sets H; ; of solved hyper-arcs, for all AND/OR graphs in I" (lines
3-12). In particular, after node statuses are updated in lines 5-6, the Algorithm
checks whether any graph is solved (line 7): if this holds true and the solved graph
is not the root graph of H, then the associated higher-level hyper-arc is labelled
as solved (line 9) and then included in the corresponding set of solved hyper-arcs
H, ;. Lines 14-19 update the feasibility statues for all solved hyper-arcs. Then,
if the root node of the root graph is met, then the whole graph is solved (line
21) and the Algorithm terminates (line 22). Otherwise, all cooperation paths are
updated (line 25), and the set @ of next suggestions is found (line 30), as better
described in Algorithm 16. It is noteworthy that ® includes ® and adds to each
triplet the graph label containing the node or hyper-arc.

The Algorithm 16 finds first feasible nodes part of an optimal cooperation
path (lines 2-12), as well as the associated cost and graph. A similar operation is
done in lines 13-32 for hyper-arcs. However, in this case it is necessary to check
whether a transition exists towards a deeper AND/OR graph. If this is not the
case, the hyper-arc is stored as a suggestion. Otherwise, the associated graph
is determined and the function is recursively called on it. Finally, the minimum
cost from the parent node of a hyper-arc to the root node of the corresponding
graph is computed in line 27, and the suggestion updated accordingly.

3.2 Task Manager

Task Manager receives the set of feasible states or state transitions from the
Task Representation, determines the sequences of actions for all the states or
state transitions, and grounds the parameters of the actions and assigns actions
to humans or robots such that the cooperation utility maximizes. The module
reactively adapts to the human online decisions.

3.2.1 Task manager formalization

The principal attribute in the Task Manager is the notion of action. An action
a is a transition applied on the parameters of the action from a set of physical

38

3.2 Task Manager

Algorithm 15 ONLINEHIERARCHICALPHASE()

Require: A hierarchical AND/OR graph H = (I', ©), feasibility sets NN; ; and

H; ¢, the met set N, ,,, the solved set H; ; for each G; € I’

Ensure: An updated hierarchical AND/OR graph H, updated feasibility sets

W W RN NN DNDND DN DN N DN — = o s s
O © 090 O R XN RS © 0N O AW O

N; s and H;; for each G; € T, a set ® = {(z,c(z), g(x)} of suggestions
GY + GETROOTGRAPH(T)
r? + GETROOT(G?)
for all G, € I" do
for all n € N;,, do
METNODE(n, G;)
UPDATENODEFEASIBILITY (n, G;)
if solved(G;) and G; # G then
h <— UPPERHYPERARC(G);)
solved(h) < true
H;s « H; U{h}
end if
end for

: end for
: for all G; € I" do

for all h € H; ; do
SOLVEDHYPERARC(h, G;)
UPDATEHYPERARCFEASIBILITY (h, N; ¢, H;)
end for

: end for
. if met(r?) then

solved(GY) < true
return

: end if
: for all G; € I" do

UPDATEALLPATHS(G;, N, His)

: end for

: Nf <_N1,fU---UNIP|,f

: Hf — Hl’fU...UHmJ

O =)

: {{z,c(x),g(x))} < FINDSUGGESTIONS(H, &)
: return

states (conjunction of literals, preconditions) to the new states (goal), a : s — §'.

39

3.2 Task Manager

Algorithm 16 FINDSUGGESTIONS()

Require: A hierarchical AND/OR graph H = (I,0,), a set &7 =

{{z,c(x),g(x))} of suggestions

Ensure: An updated set ®/
1: cost < 0
2: for all G; = (V;, H;) € T do

3:

10:
11:
12:

13

for all n € N; s.t. feasible(n) do

cost < inf
for all cp € CP(G;) s.t. n € ¢p do
if cost < ¢(cp) then
cost < c(cp)
end if
end for
O« 1 U {(n, cost, G;)}

end for
end for
: for all G; = (N;, H;) € T" do

14: for all h € H; s.t. feasible(h) do

15: cost < inf

16: for all cp € CP(G;) s.t. h € cp do
17: if cost < c¢(cp) then

18: cost < c(cp)

19: end if

20: end for

21: if LOWERGRAPH(h) = null then
22: O+ ®F U {(h,cost,G;)}

23: else

24: Gj < LOWERGRAPH(h)

25: ®H « FINDSUGGESTION(G;, ®), with x € N, ; U H; ¢
26: for all (z,c(z),g(z)) € ® do
27 cost < cost —w(h) + c(z)
28: O+ oH U {(z,c(x),g(x))}
29: end for

30: end if

31: end for

32: end for

33: return 7

Using PDDL-like formalization, an action is defined as:

action : a(Parameters := {pary, ..., par, }, Agents),
PreCondition : (pcy A ... \ pey,) (3.20)

Effect:(effiN..Neff)

40

3.2 Task Manager

where Parameter, PreCondition C s, and PostCondition C s’ are conjunction
of literals which their interpretations are known. Agents(a) = Ag; X ... X Ag,
are the responsible agents for performing the action a. If the number of agents
performs an action a; is bigger than one, we call it a joint action. In this for-
malization, although the interpretation of the literals are known they may not
be grounded. We assume the grounding of the parameters does not affect the
planning problem, otherwise, we solve a new planning problem.

Given the feasible state transitions from the Task Representation, all the initial
states and goals are defined as well the domain of the actions. Taking into account
the interpretation of the variables in Task Manager we define a planning problem
to find the ordered sequence of actions (ay,,a,) from the initial states to the
goal such that the state transition is executed. We assume the sequence of these
actions is provided.

Given the set of feasible states or state transitions and the associated costs,
the Task Manager either proactively decides for the state transition to follow
(proactive decision making), or follows the human preferred decision through the
planning recognition (reactive adaptation). We call the selected state or state
transition optimal state, which has the minimum cost according to Equation
(3.10) to reach the cooperation goal.

3.2.2 Proactive decision making

It is the process of selecting the state with the minimum costs (optimal state),
grounding the literals, assigning the actions to the human or robot, and the ex-
amination of the optimal state execution. Given the optimal state, Task Manager
gets the information of the workspace from the Knowledge Base, finds all the pos-
sible grounding of the parameters of the actions and the possible agents (human
or robot) who can perform all the actions of the optimal state. Using all the pos-
sible combination of parameters grounding and assigned agent, we create a data
structure so-called decision tree to make decisions for future actions of the cooper-
ation process Darvish et al. (2018a), which is different from the classical decision
tree introduced in Russell & Norvig (2010). Then, we examine the execution of
all the branches by simulating the robot actions online. We use the results of the
simulations to compute the wutility value of the decision tree branches, which is
a metric to estimate the performance and the quality of the execution of a state
transition Gerkey & Matari¢ (2004). In this work, we define the utility function

as:
1

k=K

(3.21)
k=1 Uk

J = unit(success, failure) x

where K is the number of actions in the optimal states, t; is the execution time
of the action £ in the simulation, and the unit function equals to one if all the

41

3.2 Task Manager

{ Put(?SD, ?Tab, ?Ag) I : [Approach(?5D, ?Ag)]—-[Grasp(?Ag)]—-[Approach(?Tab, ?Ag)]—-[Ungrasp| ?Ag)]
Approach(Tab1, R1) |——{ Ungrasp(R1) | (1)
Approach(5D1, R1)]—'{ Grasp(R1)

Approach(Tab2, R1) }——[Ungrasp(R1) l (2)
Approach(Tabl, R1) }‘—-’[Ungrasp(R1)] (3)
Approach{tab2, R1) }—{ UngrasplRa) | (2
Approach(Tabl, R2) J—-[Ungrasp(R2) J (5)
Approach(Tab2, R2)]—-[Ungrasp(R2)] (6)
Approach(Tab1, R2) |——{ Ungrasp(R2) | (7)
Approach(Tab2, R2)]——[Ungrasp(R2)] (8)

Approach(SD2, R1) }—0[Grasp({R1)

Put{?SD, ?Tab, ?Ag)
sl E L

Approach(SD1, R2)]—-[Grasp(R2)

Approach(SD2, R2)]—*[Grasp(R2)

Figure 3.2: The decision tree used by the Simulator module for online task allo-
cation and parameter grounding. SD stands for a screwdriver, Ag stands for an
agent, and Tab stands for a table.

actions in the simulation executed successfully, otherwise, it is zero. Finally, we
ground the parameters of the optimal state and assign the actions to the agent
based on the branch with the maximum utility value.

Consider the action Put down screwdriver on table, which does not specify
which screwdriver and table are involved; in principle, there may exist more than
one screwdriver and table in the robot workspace, which may ground such a com-
mand. On the one hand, the robot should consider all the possible instances of
screwdriver and table to find the optimal and complete plan to address such a
command. On the other hand, there might be more than one agent capable of
performing the associated put down action, and therefore they should coordinate
to determine which one executes it. In fact, if the number of instances of screw-
drivers and tables are m and n, respectively, and k agents (human operators or
robots) can perform the action, there are m x n x k possible realization of the
put down action.

An example of the analysis done by the Simulator in the case of action Put
down screwdriver on table associated with the optimal path P; is shown in Figure
3.2, where it is assumed that in the workspace there are two tables {T'abl, T'ab2},
two screwdrivers {SD1,SD2}, and two robot agents { R1, R2} that can perform
all the steps required by the action. In the case of Figure 3.2, there are 2x2x2 = 8
possible combinations to ground the parameters and allocate the tasks to the
agents, represented as 8 branches of the decision tree. We select the branches
to simulate using Breadth-first search algorithm. When all the branches are
simulated, we compare them according to the utility value of each branch. In
this work, utility value is simply a function of execution time as shown in (3.21).

On the basis of (3.21), the Task Manager module determines the most appro-
priate and realistic combination of screwdriver, table and robot maximizing the

42

3.2 Task Manager

utility among all the branches, to finally allocate it to one agent or the other.

If an action execution fails in the decision tree, the Task Manager deletes the
branch associated to that action. For example, if Approach(SD1, R1) fails in the
simulation, the Task Manager deletes branches (1) and (2). If Approach(Tabl, R1)
fails to perform, it deletes only branch (1). If all the branches are deleted, the
simulations imply the robots cannot execute the state transition. Therefore the
Task Manager sets the feasibility value of the state transition associated to the
optimal path P; to false. Later the Task Manager get updated, and generates
new decision tree for the feasible state transition associated with a new optimal
path P,. In other words, if the utility value of all the decision tree branches
becomes zero, the Task Manager makes the optimal state infeasible and finds a
new optimal state. With this method, the Task Manager proactively avoids the
cooperation from failure and increases the robustness of the architecture to the
failure.

Failures occur whenever a robot does not succeed in executing a given com-
mand because of unexpected conditions of the workspace, uncertainty, or the
impossibility to meet specific kinematics constraints or safety requirements. In
this case, the Simulator module can proactively determine the feasibility of ac-
tions before they are actually executed and it can suggest the Task Manager to
allocate actions to human operators if their outcome is uncertain, or inefficient,
given the robot capabilities and the current status of the workspace.

we estimate the time and failure/success of the actions in Equation 3.21 by
simulating online the robot kinematic behaviour. If the disturbances are low
and the robot model is precise, the simulation and real robot behaviour will
be similar. Therefore, the estimates in Equation 3.21 is realistic and similar to
what will happen in reality. One may simulate the robot in dynamic level, but
this option may not provide more information to the user because of dynamic
uncertainties in interaction with the environment.

3.2.3 Reactive adaptation

Using the sequences of the actions for all the feasible state transitions with their
associated costs, we create a data structure called Action-State Table Darvish
et al. (2018b). This table keeps the information of the grounded optimal state,
the progression of the optimal state, and execution of the actions. This table
simply chooses the minimum cost cooperation path to follow if possible. However,
if the human decides to follow another feasible state of the Action-State Table, the
Task Manager gives priority to the human decision, therefore reactively adapts
to the human decisions. For simplicity, in this section we call both hyper-arcs
and nodes as states.

Moreover, if the robot/human cannot perform a given action in a certain

43

3.2 Task Manager

amount of time or with a pre-defined quality despite the successful simulation, the
Task Manager reactively stops the collaborative human /robot from their current
responsibilities, makes the optimal state infeasible, and finds a new optimal state
among the available ones, so that the system becomes robust to the failures and
environment’s uncertainties reactively.

Once an executed action has been detected or classified, the executed action
label is forwarded to the Task Manager module, which identifies the correspond-
ing action a; and checks whether it appears in the set of actions associated with
the currently feasible state. For each state in the Action-State table:

e if action a; appears in the set of actions associated with the state, predicate
done(a;) is set to true and the state is kept;

e if not, the state is marked at infeasible and removed from the set of feasible
hyper-arcs.

On the basis of the number of feasible states after the above check, the Task
Manager updates the status of the cooperation:

e [f there is only one feasible state, along the current cooperation model M.,
FLEXHRC enters a clear mode, inferring that the cooperation is proceeding
along the optimal path.

e [f there is only one feasible state, along a different cooperation model with
respect to the current one, FLEXHRC enters a clear mode and it is inferred
that the operator switched to another cooperation model.

e If there are two or more feasible states, FLEXHRC enters an ambiguous
mode and waits for further inputs (i.e., other completed actions) to repeat
the check and determine which cooperation path P in G is followed.

e [f there are no feasible state, FLEXHRC enters a null mode, inferring that
an unexpected action occurred, and ends the cooperation.

Once all the actions associated with a state have been performed, the state is
marked as solved/met. Then, the Task Manager informs the Task Representation
module, which updates the AND/OR graph and determines the next suggested
action for operators or robots.

Figure 3.3 illustrates the procedure. In the Figure, each row corresponds to
an feasible state and the set of actions associated with the states are shown in
circles on the right-hand side. Actions assigned to the human operator are shown
as red circles, while actions assigned to the robot are shown as blue circles. As
an example, the top row shows that actions ai, as, as, ay compose the set A; of

44

3.2 Task Manager

Action-State table

Perceived sequence
of actions 2

Perceived sequence
of actions 3

1'11,Wn1=3 e e e e
=6 (=)o)
=1 (=)o)
Perceived sequence

of actions 1
(2

Figure 3.3: Action-State table search and update example: red circles denote
actions for which the robot is responsible, while blue circles denote actions for
which the human is responsible. Yellow, red and green filling colors denote,
respectively, ambiguous, null and clear mode of the table search. a; — ag are
labels of actions; ny — ny are labels of feasible states; and w,,, — w,, denote the
weight of each state.

actions associated with state ny, that operator and robot should perform to solve
it.

Let us assume that, at the beginning of the cooperation, the feasible states
are those shown in Figure 3.3 and that the state with minimum cost is the top
one.

Depending on the sequence of operator and robot actions perceived by the
Human Action Recognition and Robot Execution Manager modules, we have dif-
ferent scenarios, as outlined hereafter:

1. If the sequence corresponds to sequence 1, upon the recognition of operator
action as, the Task Manager commands the robot to execute actions ag
and a4, and once the latter is completed the state is marked as solved/met.
Upon the completion of action a3z, FLEXHRC is in clear mode and it is

45

3.2 Task Manager

Algorithm 17 PlanningOffline()

Require: A description of actions definition, offline action-state table, agents
information, and cooperation task name

Ensure: Create a data structure for online Execution

G < {cooperationTaskName}

load Agents()

loadActions()

loadOfflineAction-State(G)

return

inferred that the cooperation has followed the optimal cooperation model.

2. If the sequence corresponds to sequence 2, after action as, the operator
performs action ag, which does not appear in any of the feasible states.
FLEXHRC thus enters the null mode and ends the cooperation.

3. If the sequence corresponds to sequence 3, after action as, the Task Manager
commands the robot for the execution of action as, along the top state, but
the operator interrupts its execution by performing action ag. The first two
states become infeasible, and the Task Manager switches to state ns (which
has a lower cost than state ny) to command the execution of ay. Upon its
completion, FLEXHRC is in clear mode and it is inferred that the operator
has switched cooperation model.

3.2.4 Task manager algorithm

The Task Manager has two offline and online phases. Algorithm 17 shows offline
phase. Line 3 of the Algorithm 17 loads the description of the actions and possible
robots or humans who can perform each action. Line 4 loads the set of sequences
of actions for all the states or state transitions of the cooperation. Using the
loaded information offline, we create the necessary data structures for the fast
online execution. Offline, the user may not provide the grounded parameters of
the actions or the responsible individuals to perform the actions.

Figure 3.4 shows the flowchart of the online phase. When the response of
the query from the Task Representation arrives with the set of feasible states
or state transition; Task Manager checks first if the cooperation graph is solved
successfully. Later, it generates the Action-State Table data structure and checks
for a met state or a solved state transition in Check state execution function;
recalling that there might be some state with an empty process set. Afterwards,
among the feasible states, we find the optimal state by function Find optimal
state; we check if the actions in the optimal state are grounded or assigned and

46

3.3 Knowledge Base

Command

O Suggestion
1o robot

o human

[Ny, Hy]
Success ©4 [cooperation is solved] [human is responsible]
feise] D'| Create decision tree
Find sl il
P _
[human was not responsibla]
Rest rabot] [Guneralc Action-State Tablu]
|
[else] Evaluate decision tree
i [optimal state is evaluated)
Robot action
L L Y
Update Action-State Tabla #| Check state execution Y
Update optimal state

Failure

[a state/state transition is solved]

Ny Hy

Figure 3.4: The Task Manager online phase flowchart.

if the robot can successfully execute the actions in the simulation. To ground
the optimal state actions’ parameters and assign the actions to the agents, we
generate the decision tree in Create decision tree, simulate all the actions of
the branches, and finally find the utility value for all the branches in Evaluate
decision tree. Function Update optimal state checks for the maximum util-
ity value, grounds the parameters actions, and assign the actions to the agents in
the optimal state. If the maximum utility value is zero, Update optimal state
makes the current optimal state infeasible. Eventually, Find next action finds
the first action in the optimal state which is not done; and Find responsible
agent gives the command to the assigned agent.

When the acknowledgement of an action execution arrives (either successful
or failed execution), Update Action-State Table updates the representation in
the Action-State table reactively. In case the human performs an action which
Task Manager did not give it a priory; we send a command to the robot to drop
the current command and go to its resting configuration. Finally, if the Action-
State table does not hold any feasible state or state transition, the cooperation
is failed.

3.3 Knowledge Base

The Knowledge Base module maintains and explicitly represents the cooperation
state and workspace-related perceptual information using custom data structures
Darvish et al. (2018a). The module is a data structure that stores information
related to the status of the workspace (i.e., the objects therein) and the robot and

47

3.3 Knowledge Base

. Cooperation

properties
isFree

Objects

subClassOf

domain domain|

[graspingPose] [freeArea ‘

range range

Vector Vector
double double

Figure 3.5: The graph of ontology for placing the screwdriver on the table asso-
ciated with Figure 3.2

the human. Similar to standard knowledge representation, the Knowledge Base
is consist of classes and properties. The customized knowledge base presented in
this work is a simplified ontology in First-Order-Logic for the cooperation process
Krotzsch et al. (2012). It allows the definition of the concepts or classes, individ-
uals or instances, and properties for the description of the classes features in the
cooperation domain Noy et al. (2001). The knowledge base tool developed here
does not allow for reasoning, while the standard ones such as protégé platform
allow Noy et al. (2001); Protege (2018).

The ontology of the example shown in Figure 3.2 is presented in Figure 3.5. As
shown in this figure, each class can be a subclass of another class. The domain
of a property defines the type of the input class, while the range defines the
output type. The graph of ontology is defined offline, whereas the instances of
the classes and the value of the range of properties are determined online, coming
from the perception level. Different modules may query Knowledge Base in two
different ways; either they query the instances of the classes (for example in case
of decision tree generation), or they query for the values of the properties of some
instances.

48

Chapter 4

Human-Robot Cooperation at
Perception Level

Summary

In this chapter, first, we introduce the Human Action Recognition module. We
demonstrate the pipeline of the module, and we describe the necessary steps
to successfully recognize the human actions. Section 4.2 describes the software
pipeline for Object and Scene Perception. We provide the theoretical description
of the steps, in which it enables the robot to manipulate the objects in the
workspace.

4.1 Human Action Recognition

As shown in Figure 2.1 (green loop), operator actions affect both the Human
Action Recognition and the Task Manager modules. The former performs gesture
recognition using inertial data collected at the operator’s wrist, whereas the latter
determines if the recognized gesture corresponds to an action in hyper-arcs and
assesses its effects on the overall cooperation.

The Human Action Recognition module (Figure 4.1) employs a system for
gesture recognition and classification first described in Bruno et al. (2013, 2014).
The approach assumes two phases: an offline training phase, where a set G of
g1, - -, gjs gesture models are created from a training set of inertial data, and an
online phase, where operator motions are classified on the basis of the gesture
models in G. After a data filtering step to isolate gravity and body acceleration as
features, the modeling process adopts Gaussian Mixture Modeling (GMM) and
Gaussian Mixture Regression (GMR) to compute an ezpected regression curve
and the covariance matrix for each g € G. Once the regression curve for a model

49

4.1 Human Action Recognition

Offline phase *

Inertial data

Data pre-processing

Feature extraction
Modelling

Models

Inertial data

Modelling features

VY ¥

i
W

v

Action possibilities

v

Recognition result

* 3 Eéiéié Online phase
" Inertial data

Data pre-processing

Feature extraction

mparison

Possibilities pattern
extraction

Condition checking

Gesture

Figure 4.1: A schematic description of the Human Action Recognition module.

g is obtained, the number of data points in it needs not to be the same as that
in the trials in the training set, which is of the utmost importance to cope with
computational requirements in the online phase.

4.1.1 Probabilistic modeling for human action recognition

While the cooperation process unfolds, Human Action Recognition executes a
number of steps, in part similar to the procedure in the offline phase. Online,

4.1 Human Action Recognition

Possibility
o
ot
T

time [s]

Figure 4.2: An example of action possibility evolutions for a cooperation task.

once inertial data are processed to extract gravity and body acceleration features
(typically focusing on a time window depending on gesture model lengths), ges-
ture recognition is performed by comparing those features against the models in
G, thereby labeling data with a gesture symbol. It is noteworthy that such an
approach assumes the operator does not artificially hesitate in performing the
gesture. Two distance metrics are adopted, i.e., the well-known Mahalanobis dis-
tance and the maximization of the so-called possibilities, to take into account the
variability associated with gesture models Bruno et al. (2014). The Mahalanobis
distance is a statistical measure comparing a current data stream and models rep-
resented using a regression curve and the associated covariance matrices for each
point; however, it does not explicitly take into account the temporal variability
associated with gesture execution. A state of the art approach to consider tempo-
ral variabilities is Dynamic Time Warping. In previous work Bruno et al. (2013),
we proposed a metric for gesture classification integrating the Mahalanobis dis-
tance and Dynamic Time Warping. Our experiments showed that the increased
computational time needed to warp the two signals (the computational complex-
ity of Dynamic Time Warping being polynomial in the data window size) does
not provide substantial classification improvements, and therefore we decided to
adopt only the Mahalanobis distance in FlexHRC to reduce delays introduced
by gesture recognition and classification. As the experiments show, the implicit
encoding of temporal differences in the covariance matrices of the gesture mod-
els is robust to small variations in the execution of the gestures to the point, in
particular, of retaining good recognition performance for the modelled gestures
even with users who did not provide recordings for the training set. Possibilities
are computed on the basis of Mahalanobis distances, as described in Bruno et al.
(2014).

In FlexHRC, possibilities are used to determine which gesture has been ex-

o1

4.1 Human Action Recognition

ecuted Bruno et al. (2014). At a given time instant, a time window contains
an inertial data pattern related to a gesture model g. The correlation between
the time window and the correct gesture model is maximum when the former
is in perfect overlap with the model. Accordingly, the possibility value tends to
increase, reaches a peak and decrease afterwards. Figure 4.2 shows possibility
values for four gestures, using different colors (see Chapter 6 for a more detailed
description). Focusing on the red pattern, the associated possibility value is zero
for the first 45 seconds, it jumps to reach almost 1, and afterwards it decreases
reaching 0 again. There might be small oscillations in possibility values, which
might cause local maxima and minima. In our case, a threshold is introduced to
find the (semi-global) maximum of the possibility pattern. When, after the peak,
the possibility reaches the threshold value (currently set at 90% of the peak pos-
sibility value, red dot in the Figure 4.2 at 62 seconds), the corresponding gesture
g is considered as executed, subject to the fact that it corresponds to the highest
value among all other model possibilities.
Following we describe each of the steps presented in Figure 4.2.

4.1.2 Data pre-processing

For filtering the noise of the acceleration signal a median filter is applied as it
outperforms the linear filter in our scenario since the signal-to-noise ratio is high
Arias-Castro et al. (2009); Bruno et al. (2013).

Besides, to model the time series data we need to truncate and synchronize
the raw data in offline phase. This process becomes important when we have big
data and it is not possible to handle them manually. Also, the synchronization
and truncation of the data affects the model we want to generate, and therefore
the delay and the precision of the Human Action Recognition. The procedure we
benefit is valid when the signal-to-noise ratio is high, and data acquisition is done
with the same sample rate.

To do so, for an action/gesture g the user finds and truncates a reference data
series ref, = (g%, ...,g") among the available raw data series such that ref , data
series visually is a good representation of the action. The window size of the
action T is defined by the user. Later, for all the raw time series data, we find
the Euclidean distance between the moving horizon window of the raw data trial
and ref,. We assume the place in which the distance reaches its minimum, the
raw time series data is more similar to ref . and therefore action g; is performed.
We truncate the raw series data at this point.

o2

4.1 Human Action Recognition

4.1.3 Feature extraction

To extract the features of the human movements, a low-pass filter is applied
on raw acceleration data (a,,ay,a,) in order to extract the body (b,,b,,b.,1?)
and gravity accelerations (g, gy, g»,t) Bruno et al. (2012, 2013); Van Hees et al.
(2013). After the low-pass filter filter : (ay,ay,a.) = (9z, gy, g-) is applied, body
accelerations are computed as following:

(bz7by7bz) - (axaay7az) - (gac7gy7gz)7 (41)

4.1.4 Modeling

GMM and GMR produce a probabilistic model for each motion primitive. Con-
sider we have N motion primitives. For a motion primitive n € N we have
S,, number of training set trials with a window of (1,...,7;,) sample times. Let
&t e R is a point related to the ¢'th sample time of trial m of the motion
primitive n; and £ € R* = (€%, t) be a generic feature among the ones we have
with dimensionality D = 4, i.e. the body or gravity acceleration. Later, the set
of all samples trails of the motion primitive n is generated as:

= = {e), gk 2y, (4.2)

as explained before, these trails are synchronized and truncated. Gaussian Mix-
ture Modeling (GMM) and Gaussian Mixture Regression (GMR) methods return
=ém (f” ﬁ]”), where f" is the expected curve for modeling the feature & of
motion primitive n and 3" is the covariance matrix associated with f"

4.1.4.1 Gaussian Mixture Modeling
Assume the dataset £ of all trials of motion primitive n, can be modelled by K

Gaussian distributions with dimension D by Cohn et al. (1996):

1 1y \Ts—lpe
p(£t|k‘) — N(gt)l’[/knzl{?) — me 2(£t .U‘k) Ek (Ei l’“k), (43)

where i is the expected value and ¥, is the covariance matrix of k’th Gaussian
distribution. In (4.3), p(&|k) represents the conditional probability of a variable
& with respect to normal distribution N (py, Xx). The number of Gaussian dis-
tributions K is found by Expectation Maximization (EM) algorithm Dempster
et al. (1977). The prior probability of k’the normal distribution is defined by:

p(k) = T, (4.4)

93

4.1 Human Action Recognition

Therefore, the probability density functions is given by:

K

p(&) = Zp(k)p(ftwf), (4.5)

k=1

Similarly, we can represent the mean value and covariance matrix by:

Lo = { Lot ks Ps i s

Yo (Et,k Ets,k) (46)
b Est,k Es,k ’

where p; 1, and ps 5 are the time step and features or spatial mean values of k’th
Gaussian model, and ¥, is the cross-correlation of the temporal and spatial
features.

4.1.4.2 Gaussian Mixture Regression

GMR returns a smooth generalized trajectory associated with K Gaussian dis-
tributions and covariance matrices Calinon et al. (2007). For each Gaussian dis-
tribution £, the conditional expectation and covariance of &, given & are found
by:)
sk = Mo + St (St) (& — pek),
Yok = Dsh — Zst,k(zt,k)_l(xts,k)a

To mix é;k and f)s,k associated k’th Gaussian distributions, prior (55 finds the
probability that k’th Gaussian distribution is responsible for &;:

5, = p(&lk) (4.8)

5 pléds)

(4.7)

As a result the conditional expectation and covariance of & given & is computed
by:

~ K ~

gs = Z 6]658,]67
=

- (4.9)

Es = Z ﬁzzs,k-
Jj=1

4.1.5 Comparison

Online, when the new data arrives we perform the data pre-processing and feature
extraction on them. We consider a window of moving horizon acceleration data

o4

4.1 Human Action Recognition

with length N, equal to the longest modeled data arg max,cy 7T,,. Mahalanobis
distance provides a similarity value or rank between the model and incoming ac-
celeration data Later De Maesschalck et al. (2000); it is computed as the distance
between the model =6 and online features =¢:

@, 5) = (& = &) E — &), (4.10)

where r is an element of the model and j is an element of online feature. When the
distance is found for different elements, we compute the distance for the body
and gravity features using the mean value of distances for each feature. The
possibility of the execution of an action by the human is computed accordingly.

4.1.6 Possibilities pattern extraction

Algorithm 18 receives as input the modelled actions possibilities value; when an
action has been recognized returns the tag of the action otherwise returns —1.
Recognizing the global maximum in real-time is hard, as there are local maximum
and minimums in the pattern of the possibilities as well as the correlation between
the possibilities of different actions; in fact, in some cases, the possibilities arise
and decline together as shown in Figure 4.2.

Line 1 in Algorithm 18 stores the highest possibility of action 7 in variable
highest Poss|i] starting from the last moment an action has been recognized.
In line 2-3, the variables MaxPoss and MaxPossElement store the maximum
possibility value among all the actions and the tag of the action which owns
MaxPoss from the last moment an has been recognized. Instead, lines 4-5 store
similar information related to the last recognized action. In Algorithm 18, there
are two parameters to tune for recognizing when the human has performed an
action, i.e. when the possibility of an action i reaches its (semi) global maximum
and the possibility value of action ¢ is higher than other actions. The tuning
parameters are MaxThreshold|| and MinThreshold[] which are defined at lines
6-7. These thresholds define when the possibility pattern reaches its (semi) global
maximum or minimum. We call them (semi) global, as these extremum values
are neither global nor the local extremums. As shown in Figure 4.2, there might
be small oscillations in the possibility values that might cause local extrema. To
overcome this issue, a threshold is introduced to find the (semi) global maximum
of the possibility pattern. If this threshold is too low, the delay of human’s action
recognition will be high. In Figure 4.2, this threshold is shown by the black dotted
line.

In Line 8, ActionsNo is the number of offline modelled actions. Lines 9-23
update the highest possibility value of an action 7. If an action 7 is not the
same as the last recognized action, PrevMaxPossElement, it simply updates

95

4.2 Object and Scene Perception

the highest Poss|i]; otherwise the algorithm starts updating highest Poss|i] if the
possibility of ¢ goes less than the minimum threshold or higher than the maximum
threshold (lines 14-22). Once an action has been recognized PrevMaxPossElement,
the current possibility value of this action might be higher than other actions pos-
sibility. To prevent multiple times the recognition of the same action, the highest
possibility value of highest Poss[PrevMaxPossFElement] is maintained zero un-
til either it is lower than a pre-defined threshold (red dotted horizontal line in
Figure 4.2 for the action with red colour), or it is higher than PrevMazPoss.
Later in lines 24-27, the algorithm updates the possibility value and the action
tag with maximum possibility. Lines 28-35 check if possibility pattern related
to action ¢ reaches its maximum and starts decreasing more than MaxPoss X
MaxThreshold[i]; then it returns the tag i as the recognized action.

4.1.7 Condition checking

To improve the robustness of the human action recognition, the module exploits
the knowledge of the sequence of actions that are allowed or expected to perform.
For example, consider Action B that may be performed only if action A has been
performed before. Online, if Possibilities pattern extraction recognize actions C
and then B; the Condition checking filter out the recognized action B and does
not return it to Task Manager.

4.2 Object and Scene Perception

Figure 4.3 shows the pipeline of the Object and Scene Perception module. The
module receives the RGB-d data using a Kinect sensor; in pre-processing step,
it performs downsampling to decrease the number of point clouds and enhance
the computational efficiency. Moreover, a depth filter is applied in pre-processing
step to remove the irrelevant data, such that it only keeps the point clouds inside
a sphere centred at Kinect sensor and therefore decrease more the computational
time in next steps of the module Buoncompagni & Mastrogiovanni (2015).

In the clusterization step, we find the support of the objects in the workspace.
We assume the support is a horizontal plane in the workspace of the robot. To find
the horizontal plane we apply iteratively Random Sample Consensus (RANSAC)
method Fischler & Bolles (1981); Schnabel et al. (2007). Later, the point cloud
belong to support is deducted from the set of point clouds; and a Euclidean
distance clustering algorithm is applied to cluster the remained point cloud. The
output of this step will be the geometrical information of the support plane and
several clusters of point cloud associated with the objects in the workspace.

o6

4.2 Object and Scene Perception

Algorithm 18 Possibilities pattern extraction()

Require: Vector of current possibility values NewPossli|,Vi > 0 € ActionsNo
Ensure: Tag of an action when human has performed

1:

— = = =

16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:

,_.
e

highestPoss|| + 0 > Poss stands for possibility
MazxzPoss < 0
MazxPossElement <— NULL

PrevMaxPoss < 0 > Prev stands for previous
PrevMaxPossElement <~ NULL

MaxThreshold] > defined by user
MinThreshold]| > defined by user

for all © € ActionsNo do
if i # PrevMaxzPossElement then
if NewPoss[i] > highestPoss[i] then
highestPoss|i] < NewPoss|i]
end if
else
if highestPoss|i] = 0 then
if NewPoss[i] < MinThreshold[i] x PrevMaxPoss Or
NewPossli] > PrevMaxPoss then
highest Poss|i] < NewPoss|i]
end if
else
if NewPoss[i] > highestPoss[i] then
highest Poss|i] < NewPoss|i]
end if
end if
end if
if highestPoss|i] > MaxPoss then
MazxPoss < highestPossli]
MazxPossElement < i
end if
if i = MaxPossElement then
if NewPoss[i] < MaxPoss x MaxzThreshold[i] then
PrevMaxzPoss <— MaxPoss
PrevMazxzPossElement < MaxPossElement
highestPoss|| < 0
return i
end if
end if
end for
return -1

57

4.2 Object and Scene Perception

filtered

e point cloud _. . point cloud | o
—— > Pre-processing —— > Clusterization

point cloud
clusters

v

Classification

geometrical
objects

v
eometrical objects & features z = =y . =
¥ ’ 4 Manipulation | Geometric feature
<€ . — .
manipulation features __featu re extraction | geometrical L extraction

~ objects & features

Figure 4.3: A schematic description of the Object and Scene Perception module.

In classification step, RANSAC method for different primitive objects in-
cluding plate, sphere, cone, and cylinder is applied to point cloud clusters. In
geometric feature extraction a Principal Component Analysis (PCA) Huang et al.
(2009); Wold et al. (1987) is applied in order to attain other geometrical features
of the objects in the workspace which is not possible with RANSAC method.
Finally, in manipulation feature extraction, we use the geometrical features of the
primitive objects found online and some offline information of the objects pro-
vided by the user to compute the frames of the objects for manipulation tasks
such as grasping frames, connection frames. Moreover, we compute the bounding
box and bounding sphere of the objects for path planning and motion planning.

Later in this section, we introduce the Fuclidean distance clustering method,
RANSAC method, and PCA method, and how we use the incoming information
for manipulation scenarios.

4.2.1 Euclidean clustering

Let p be a point of the point cloud set P. Using Euclidean distance clustering
method we generate a k-d tree to divide the P into the smaller sets of cluster C'.
It assigns a point p € P to a cluster ¢ € C if the Euclidean distance between p
and Vp; € c is less than the threshold r» Rusu (2009); Tuerker (2018). In other
words, the minimum distance between two points in distinct clusters ¢; and c
should be more than a given threshold.

o8

4.2 Object and Scene Perception

4.2.2 RANSAC method for classification

In RANSAC method, we assume a point cloud belonging to a cluster P, = {Vp|p €
c} is consist of inliers and outliers O’Leary (2018). Inliers P fit a model with
a set of unknown parameters considering the noises while the outliers Pouers do
not fit the model.

Using RANSAC method we assume P, belongs to one of the primitive geo-
metrical object model set including Models = {cylinder, sphere, plane, cone}.
If the number of inliers is less than a specific threshold it returns as unknown
object. To fit the points of a cluster P. to a model m with a set of n unknown
parameters wy, ..., w,, we choose randomly the minimum number of necessary
points to determine all the parameters of m. We assume all these randomly se-
lected points belong to inliers and then we use them to fit a model to P.. After
finding the parameters, we examine how well the rest of points in P. fit to the
model we found. If a point p* € P, fits the model we hypothetically consider the
point as an inlier. We try this for all the points in the P,., and if the model m is
a good fit of the cluster (|P™%ers|\|P,| is high), we update the model parameters
estimation with the set of all the inliers. Finally, among all the found parameters
for model m, we choose the one with highest |Pirs|\|P,| value. We perform
the same procedure for all the models inside the models set. The output of the
classification step will be a model tag with its associated parameters which fits
the best to the cluster. If the value | Prs|\ |P.| is less than a specific threshold
for all the models, it returns unknown as the output.

4.2.3 Principal Component Analysis (PCA) method for
feature extraction

The outputs of the classification problem are the geometrical object models and
their associated parameters. In order to manipulate the objects, using only these
parameters is not sufficient. For example, for a plane in space with the formula:

ar+by+cz+d=0, (4.11)

the classification outputs will be the parameters of the plane {a,b,c,d}, and the
mean value of the inlier set P’ To manipulate an object with a planar shape,
we need to know at least the size of the plane and their directions or the vertices
of a plane. In the case of cylinder and cone, we do not have the information about
the height of them. To find, we apply the PCA method to the set of inliers of
each classified cluster, considering their recognized geometrical features. In the
case of the plate, we find the first and second principal components, map all the
inliers on these two principal components to find the plate size, and accordingly
their vertices.

29

4.3 Objects manipulation

To do so, we find the mean value p € R” and covariance matrix ¥ € RP*P

of the n inliers X € R™P_ where D = 3. Later, k eigenvectors of the X, which
shows the axis with the maximum variability, is found by:

E’Ui =)\Z"UZ', 1€ 1, ceey k (412)

where)\; is the i’th eigenvalue of the of ¥ and £ < D. Finally, the data with
reduced dimensionality is represented by z = U,.q X x, where U,..q4 is:

Urea = € RF>m, (4.13)

and x € X and z € Z are the original data and reduced dimensional data.

4.3 Objects manipulation

To manipulate objects, such as transporting an object from one point to another
one or screwing an object into another one, we need to know the position and
orientation of some specific frames of the object being manipulated. However,
the perception system is able to estimate the position and orientation of a frame
attached to the object, which, in general, does not coincide with the ones needed
for the manipulation task. For example, as shown in Figure 4.4, let us assume
that for executing a manipulation task the robot needs to know the position of
the reference frame (M) attached to the body of the object obj;. However, the
perception system can estimate only the position and orientation of the frame
(0O), attached to the object body.

To overcome this difficulty, the user provides the information of the manipu-
lation frame (M) with respect to (O), therefore ¢, T the homogeneous transfor-
mation matrix in the coordinate system attached to obj; body. As a result, if
the robot can estimate the position and orientation of the frame (O) with re-
spect to the world frame subject to obj;, then the position and orientation of the
manipulation frame (M) in the robot’s world frame is computed by:

W =0T x"T. (4.14)

Moreover, using the information coming from the Geometric feature extraction
we define the bounding boxes and bounding spheres for all the objects, taking
into account some user pre-defined safety factor, to ensure the collision avoidance.

In order to manipulate the objects, the robot should grasp them such that it
can perform the given task. The problem of grasping depends on the object geo-
metrical features, the manipulation task given to robot, the robot configuration,

60

4.3 Objects manipulation

Figure 4.4: A schematic of object body frame (M) required for a specific manip-
ulation task and center of volume of the object (O).

and the robot end-effector Miller & Allen (2004); Murray (2017). A simulation-
based planning for computing the grasping pose is applied in Miller & Allen
(2004). They reconstruct the simulated world using perception information; plan
for the grasping pose, analyze, and finally execute it. Recently, learning methods
are applied for scalable grasping pose computation, in which the robot learns how
to grasp an object online, by interacting with objects in the environment during
the training sessions Calandra et al. (2018); Levine et al. (2018); Morrison et al.
(2018). After computing the grasping pose of an object, a visual servoing ap-
proach is applied widely in the literature Chaumette & Hutchinson (2006, 2007);
Horaud et al. (1998) to successfully grasp the object.

Besides, to perform the visual servoing, the robot should track the object
while approaching it. Successful visual servoing depends on the position of the
camera on the robot and robot configuration, such that occurrence rate of camera
occlusion is low.

In this work, we use a passive method for grasping the object; which means
the visual perception is updated once at the beginning of approaching the object
(using the Object and Scene Perception), we give the desired goal to Task Execu-
tion Manager and therefore Controller, and the error at each moment is getting
updated in the Controller with this assumption that the object does not move
while the robot is going to grasp.

Let us assume a manipulation scenario, where the robot grasp an object and
transport it to another position to perform a given task. While transporting,
the grasped object may slip in the robot end-effector, in case the holding force is
not sufficient. On the other hand, the robot cannot exceed certain holding force

61

4.3 Objects manipulation

mg

v

Figure 4.5: A schematic of a grasped object by a two-finger gripper (shown in
green colour); C'M is the centre of mass of the object with weight mg, G is the
grasping position of the end-effector with contact force and torque F,. and T..

thresholds, because of the limited tension the object can afford. Therefore, the
grasping pose should be computed in such a way that the object’s local stability
increases, i.e. the object does not move or slip involuntarily with respect to robot
end-effector while grasped. As shown in Figure 4.5 by reducing r, the necessary
object holding torque decreases. Conversely, the grasped object may act like an
inverted pendulum, considering the robot end-effector movement and velocity to
reach the desired goal, it becomes unstable while grasped.

While the robot transports the grasped object to another point, it may slip. To
overcome this problem and ensure the manipulation task succeeds, it is necessary
to compute the error between the grasped object manipulation frame (M) and
the desired frame in workspace (M ges).

In our setup, we use a simple gripper with two fingers with a limited amount
of holding force without the possibility to control it actively (therefore grasped
object may slip while transporting). To minimize the slip and increase the rota-
tional movement stability of the grasped object with single arm, we plan to grasp
the object such that the arm length r (Figure 4.5) between the centre of contact
(the position the end-effector grasp the object, point G in Figure 4.5) and the
gravity vector passing by centre of mass C'M minimized. We assume the centre
of mass and the centre of volume of the objects are the same, therefore the object

62

4.3 Objects manipulation

mass distributed identically for the manipulating object. By grasping the object
above the CM the object behaves like a pendulum while if G is below the C'M
the object will act like an inverted pendulum.

63

Chapter 5

Human-Robot Cooperation at
Action Level

Summary

This chapter describes the FLEXHRC at action level. The action level is consist
of four modules, namely Robot Execution Manager, Path Planner, Controller, and
Stmulator. For each of these modules a section is dedicated accordingly.

5.1 Robot Execution Manager

The Robot Ezxecution Manager enhances the scalability of the FLEXHRC by a
modularized implementation of different actions. When a new action is defined
symbolically at the representation level, at the action level we should determine
how the robot should perform the action. This module is responsible for turning
high-level action commands, received from the Task Manager, into commands
that the robot Controller can execute, i.e., it performs a symbolic-to-numerical
mapping to the controller-level representation and checks the success/failure of an
executed action. Some actions are simple and it is sufficient to call a control in-
terface, e.g. approaching an object, while others might be more complicated, such
as screwing a part to another part. The complicated actions should be chunked
to a number of simple ones or should be learned via learning by demonstration or
the robot interaction with the environment given a goal by the user Argall et al.
(2009).

While the current implementation does not support the robot learning, it pro-
vides the necessary modularity for the scalability of FLEXHRC. When a com-
mand arrives from Task Manager, it can be a command for calling the Simulator,
Controller, or the Path Planning. In case it is a simulation command, it responds

64

5.2 Robot Path Planning

the given command by success/failure and attributes of the executed action in
simulation such as the time and configuration values of the robot after performing
the given action. In case it is a path planning command, it calls the Path Plan-
ner module to find a path; if such a path exists, it stores the path in Knowledge
Base. Finally, if the given command is an execution command, Robot Ezecution
Manager calls the Controller after chunking the given action into simpler ones.

5.2 Robot Path Planning

The Path Planner computes a feasible path for the movements of a robot’s end-
effectors, mobile robot platform, or the transported objects carried by a robot;
without caring for the robot kinematic or dynamic limitations. The path plan-
ner receives the working space region, the final goal region, the obstacle regions
described as boxes or cubes, the transported object cube size, and the initial
position of the path from the Robot Execution Manager.

The Rapidly-Exploring Random Tree Star (RRT*) algorithm presented by
Karaman & Frazzoli (2011) finds the obstacle-free path for a point which repre-
sents a robot or mobile platform. In this work, we have extended the algorithm
to Extended-RRT*, such that it finds the path for a box/cube which represents
the robot or the mobile platform. There are two profits in Extended-RRT* with
respect to its original version: i) when the object or robot size with respect to
the workspace and obstacle size is considerable, it fits better the reality, i.e.,
considering the object/robot size instead of increasing the safety factor of all the
obstacles for collision avoidance; ii) sometimes to find a path for reaching the goal
region, the object/robot orientation may need to change. While we can define
the orientation for a cube or box in space, it is not possible for a point in space.

The path for the object found by RRT* method converges to an asymptoti-
cally global optimal solution; such that it finds the minimum distance path from
the object initial point to its goal region Karaman & Frazzoli (2011). The op-
timality of RRT* method is highly tied with the intuitiveness and intelligibility
and safety of the robot behaviour as described in Chapters 1 and 2. Moreover,
RRT* method provides probabilistic completeness; in which the failure probabil-
ity of the algorithm for finding a solution if one exists goes to zero by increasing
the number of samples to infinity Karaman & Frazzoli (2011).

The problem we want to solve in this section is to find the points for the center
of the robot/object in the workspace region. As mentioned before, Extended-
RRT* is an extension of the RRT* method Karaman & Frazzoli (2011); therefore
its formulation of the solution and the algorithms is very similar to the semi-
nal paper of Karaman & Frazzoli (2011) with some changes. Finally, the path
planning module is embedded in ROS.

65

5.2 Robot Path Planning

5.2.1 Path Planning Formulation

Let X be an open subset of n € N dimension real space R™ subject to 2 < n <3
and cl(X) is the closure of X. X, C X, Xops C Xus, Xpree C Xus, and
Xgoat C Xjpree are the workspace region, obstacle region, obstacle-free region,
and goal region respectively. Let X,o, C Xus, Trop € Xus, and d € R™ be the
robot /object region, position of the center of robot/object in the workspace, and
the robot dimension which we want to find the path. Obstacle-free region is found
by X tree = {VZrob € Xuws| Xrob N Xobs = 0}; which makes the main difference with
respect to the original RRT* method. Initially, the robot center x,,, is located
in Zinit € Xfree. The path planning objective is to find a collision free path for
the robot which starts at x;,;; and finishes at X .. Such a path is presented by
continious function o : [0, s] = X ye; such that 0(0) = zp and 05 € Xyou-

A directed graph G = (V, E) on Xy, is composed of finite set of vertices
V C Xyus and edges E C V x V. A directed path p on G is a sequence of vertices
(v1, 02, ..., Up) O X fpee such that (v;,v;41) € E for all 1 < i < n—1, and p;
is ¢’th element of the path. For vertex v € V, the set {Vu € V|(u,v) € E} is
called incoming neighbors, and the set {Vu € V|(v,u) € E} is called outgoing
neighbors. The directed tree is a directed graph such that all the vertices but one
has only one incoming neighbor. The excepted one does not have any incoming
neighbor which is called the root vertex. The vertices with no outgoing vertex is
called leaves. In edge e = (u,v), vertex u is the parent of vertex v. The result of
the Extended-RRT* is a tree G on Xy, if such a path exists (feasible path). A
feasible path (vy, ..., v,,) starts at root of the graph v; = x;,;; and the leaf ends
in v, € Xgou- Moreover, the Extended-RRT* ensures the optimality of returned
path (if such a path exist) o* : [0,s] — cl(X{ree) Where the cost of path will be
minimum ¢(o*) = minaegcl(xfm)c(a) thanks to a procedure called rewiring.

5.2.2 Path Planning Algorithm

Algorithm 19 describes the overall procedure of the Extended-RRT* algorithm
which is similar to the other incremental sampling-based path planning methods
such as Rapidly-Exploring Random Tree (RRT) and Rapidly-Exploring Random
Graph (RRG) Karaman & Frazzoli (2011); Kuffner & LaValle (2000); LaValle &
Kuffner Jr (2001). Lines 1-2 generate the vertices and edges sets of the graph
G. It initializes the vertex set V with the initial position of the robot ;.
and the edge set as an empty set. In lines 4-5, P is the set of all the feasible
paths and p is the feasible path with minimum cost; they are initialized as an
empty set and an empty sequence. At each iteration, lines 6-11, the algorithm
updates the graph G, samples an independent identically distributed random
value Zrgng on Xyree, and extends the graph G with the samples value using

66

5.2 Robot Path Planning

Algorithm 19 Body of Extended-RRT*()

Require: A workspace region X, obstacle regions X, goal region X4, robot
initial region X, ., and %,

Ensure: A path p

Vo {x'mzt}

B+ (Z)

140

- P (—@

p+ ()

while i < n do
G+ (V,E)
Trand < Sample(7)
14—1+1

10: (V, E) < Extend(G, Zrqna)

11: end while

122 G+ (V, E)

13: P < feasiblePaths(G)

14: p < optimalPath(P)

15: return p

W N

S

function Extend(G, Z,qna). When the number of iteration reaches its limit n,
graph G is updated in line 12. Algorithm 20 describes function Extend(G, z4n4q)-
In line 13, function feasiblePaths : (G) — P finds all the feasible paths:

feasiblePaths(G') = {Vp € G|p1 = Zinie and ppp| C Xgoar} (5.1)
and line 14 finds the path with minimum cost among them:
optimalPath(P) = argminyep Cost(p), (5.2)

Function Cost(v) is the cost of the unique path from the root vertex x;,; to
vertex v; and for the root vertex it is equal to zero Cost(z;,;;) = 0. Finally, if the
returned path p at line 15 is an empty sequence, it means the path planning fails
to find a feasible path by n iterations.

In Algorithm 20, lines 1-2 store the vertex and edges values of graph G on a
new variables V" and E’. In Line 3, function Nearest : (G, z) — v finds the closest
vertex Tnearest € V' to the sampled random variable x. The distance measurement
in this work is the Euclidean distance, and therefore:

Nearest(G = (V, E), x) = argmin,ey ||z — v||, (5.3)

67

5.3 Robot Controller

Line 4 calls the steering function to find x,.,. Basically, the function Steer :
(x,y) — z returns a point z € R such that z is closer to y than z. In this work,
the function is:

Steer(m, y) = argmianRd,Hz—x\KnHZ - y“v (54)

where 1 > 0 is a predefined value. Function ObstacleFree : (z,y) — bool in line 5
tests the collision between the line connecting the two points with the obstacles
in space. It returns true iff the line segment between the two points are in X sy,
ie., [z,y] C Xfree. Lines 6 adds the new point ., as a vertex of the graph to
V’: and line 7 stores Zpearest value on a new variable called x,,;,. Later, x,,;, will
be updated as the parent vertex of z,,. Function Near : (G, Zpew, |V|) = Xnear
in line 8 returns a set of |V| vertices close to Zpey:

Near(G,z,n) ={v e V| ||v —z|| <r(n)}, (5.5)

where r(n) is the radius of a ball with the center x.

Lines 9-16 update the parent vertex of z,., using the vertices X, found
before. Line 10 checks for collision between [Zpeqr, Tnew|; and line 11 finds the
cost ¢ of vertex X, arriving from ... Function Line(z,y) : [0,s] = Xpree
returns the path between z and y, and s = ||z —y||. In line 11, ¢(Line(Zeqr, Tnew))
returns the cost between the two points Z,eq, and x,e,. Finally, lines 12-14 find
the parent vertex (Zi,) of vertex e, by minimizing cost of ¢. Line 17 adds
the new edge (Zmin, Tnew) to the set of edges F'.

Lines 18-25 perform the rewiring procedure; in which it checks the connections
of the vertices in the set of X,,cq; \Znew N order to minimize the cost of reaching
a vertex Tpeqr. 10 do so, it checks if the connection between ,.q and ., is
collision free and the cost of going to x,cq by connecting it to ., is less than
cost of Tpeqr. If S0, it Teturns the parent vertex xpgrent of the 2,4, using function
Parent(Zyeqr) : v € V — v € V; then eliminates the edge (Zparents Tnear) from the
edges set F’, and adds (Z,ew, Tnear) to E'. Finally, line 27 returns the updated
graph G'.

After Extended-RRT* returns the sequence of way-points between initial po-
sition and goal region of the robot, we interpolate between the initial orientation
and desired orientation of the robot for finding the corresponding object orienta-
tion at each way-point to relax for a smooth transition.

5.3 Robot Controller

This Section describes the Task Priority Inverse Kinematics framework Simetti
& Casalino (2016); Simetti et al. (2018) integrated within the Controller module

68

5.3 Robot Controller

Algorithm 20 Extend|()

Require: A workspace region X,;, obstacle regions X, goal region Xgoq, a
graph G, and a random sample x
Ensure: An updated tree G

1. Vi<V

2. B F

3: Tpearest < Nearest(G, x)

4 Tpew < Steer(Tpearest;)

5: if ObstacleFree(Z, carest; Tnew) then

6: V' V'U Zpew

T Tmin < Tnearest

8: Xpear < Near(G, Tpew, |V])

9: for all 2,4, € X, 1ear do

10: if ObstacleFree(car, Tnew) then
11: ' < Cost(Tpear) + c(Line(Zpear, Tnew)
12: if ¢ < Cost(Zyew) then

13: Loin < Tnear

14: end if

15: end if

16: end for

17: E' <« E'"U (Zmin, Tnew)

18: for all ,c0r € Xpear \{Tmin} do

19: if ObstacleFree(x,cw, Theqr) and
20: Cost(Zpear) > Cost(Tpew) + c(Line(Tpew, Tnear)) then
21: Tparent < Parent(Zpeqr)

22: E' +— E'\{(Zparents Tnear) }

23: E' «— E'U{(Tnew, Tnear) }

24: end if

25: end for

26: end if

27 return G' = (V' E')

(Figure 5.1), and elaborates on its decoupling of action planning, as performed
by the Task Manager and Robot Ezxecution Manager modules, and control. The
framework is general and can handle multi-arm mobile manipulators, but it can
be scaled down to be used with fixed-base robots such as Baxter. In the section,
x € R represents a scalar, x € R” is a vector with n elements, and X € R™*"
is a matrix with m rows and and n columns. In addition, z and z are the
reference value and the rate of change of variable x respectively. The robot
configuration vector is referred to as ¢ € R™ and contains the robot DOFs, e.g.,

69

5.3 Robot Controller

action based on activation function a(x, p)
current action ap(p) task reference
task Jacobian

Control
objective 1

control
command

Action Action Control

manager objective 2

Control
objective n

sensory feedback

objective progress l

Figure 5.1: A sketch of the Controller internal structure.

joint positions and vehicle position, while the robot velocity vector is named
vy € R”, and represents the controls to actuate the robot, e.g., joint velocities and
vehicle velocities. The world frame in the cooperation scenario is attached to the
robot torso and is fixed.

5.3.1 Control objectives

A control objective o expresses what the robot needs to achieve, e.g., reaching
a desired position for its end-effectors. In mathematical terms, let us consider a

scalar variable x,(c). For this variable, two broad classes of control objectives
can be defined:

1. the requirement, for ¢ — oo, that z,(c) = z, is called a scalar equality
control objective,

2. the requirement, for t — oo, that z,(¢c) < Zomaz OF To(€) > Tpmin is called
a scalar inequality control objective,

where z, is a given reference value, whereas @, i, and @, ;4. serve as lower and
upper thresholds for the values scalar variables can assume. In the following, the
dependency of x on ¢ will be dropped to ease the notation. Each control objective
updates its variables, its Jacobian and the associated activation function (see
below) based on the robot’s feedback.

70

5.3 Robot Controller

5.3.2 Control tasks

To achieve a control objective o, a desired feedback reference rate is defined as:

i‘o(xo) é ’7(1‘2 - xo)a 7 > 07 (56)

where ~ is a positive gain proportional to the desired convergence rate for the
considered variable, and z is a point inside the state region where o is satisfied.
The mapping between the task velocity scalar x, and the system velocity vector
v is given by the Jacobian relationship:

5'50 = Jo(c>y7 (57)

where J,(c) € R™" is the Jacobian matrix of the task. The control task 7,
associated with the objective o is defined as the need of minimizing the difference
between the actual task velocity 4, and the feedback reference rate 7.

5.3.3 Activation and deactivation of control objectives

Control objectives may or may not be relevant in a given situation. For example,
if we consider the problem of avoiding an obstacle with one of the robot’s links,
then the related task would be relevant only when the link is close to the obstacle.
This task should not over-constrain the robot whenever the link is sufficiently
far away from the obstacle. Therefore, let us define a prototype for activation
functions such that:

a(x,) = ao(w,), (5.8)

where a,(z,) € [0, 1] is a continuous sigmoid function of a scalar objective variable
x, in case of inequality control objective, whose value is zero within the validity
region of the associated control objective o. In specific, for the inequality objective
with upper threshold a,(z,) is defined as:

0 To < xo,max - 5
OCO(IO) = S($O) xo,maa: - 5 S xo g :Eo,max) (59)
1 @ > Tomax

where s(z,) is an increasing sigmoid function as shown in Figure 5.2.
In case, the control objective is equality type, a,(x,) equals to one.

5.3.4 Task priority inverse kinematics

The approach of Task Priority schemes is to define p priority levels so that: (i)
each task is assigned to one priority level; (ii) low priority tasks are inhibited

71

5.3 Robot Controller

aop(x,) 4

08—

»
>

X
Xo,max 0

Figure 5.2: Activation function for inequality control objective with the upper
threshold.

from interfering with high priority ones; (iii) different scalar objectives assigned
to the same priority level can be grouped in a (possibly multidimensional) control
objective. Assuming a priority level k£ with m scalar control tasks (and therefore
m control objectives), the following vectors and matrices are defined.

o I, 2 [i‘l’k, . ,im,k]T is the stacked vector of all the reference rates, where
the first index indicates control objectives o4, ..., 0,, placed at the priority
level k.

e J; is the Jacobian relationship expressing the current rate of change of the
k-th task vector [:i:Lk, e xmk] T with respect to the system velocity vector
Y.

o A, £ diag(aiy,. .., my) is the diagonal matrix of all the activation func-
tions in the form of (5.8).

With these definitions, the control problem is to find the system’s velocity refer-
ence vector ¢ complying with the aforementioned priority requirements. In order
to compute such a vector, a Task Priority Inverse Kinematics (TPIK) procedure
has been proposed in Simetti & Casalino (2016). Here, it would suffice to describe
the single regularization and optimization step, which unfolds iteratively taking
into account all lower priority tasks. The manifold of solutions at the k level is:

Sp 2 {arg R- min || Ay(&x — Jkgj)HZ} : (5.10)

YESK_1

where S;_; is the manifold of solutions of all the previous tasks in the hierarchy,
with Sy £ R™. Since k is increased at each step, the recursion stops when k = p.
The notation R-min is used to highlight the fact that the minimization must be

72

5.3 Robot Controller

regularized to avoid algorithm singularities during transitions between pairwise
control tasks. This regularization mechanism and the resulting TPIK algorithm
as reported in Simetti & Casalino (2016) are initialized with:

90:07Q0:I7 (511)
and for k =1, ..., p, where p is the total number of priorities:

Wi, = Ji Q-1 (J3Qpr) A0k

Qi = Qi1 (I — (JeQr)" J.Q1 1)
T 2 (I — Qp1(JxQp)" - TW, Ty

pr = Tiprp_1 + Qu1(Jp Q)" Wz,

(5.12)

and finally control output will be y = p,.

5.3.5 Control actions

. From the robot control standpoint, an action a in input to the Controller module
in Figure 2.1 can be defined as a prioritized list of m control objectives o0y, ..., 0p,
and the associated control tasks 7,...,7,,, to be managed concurrently.

Let us make a few examples to clarify the granularity and flexibility of the
proposed approach, where each action is described in terms of its list of control
objectives, in order of priority. A grasping action a, for a single manipulator
involves:

01 arm joint limits,
0o arm obstacle avoidance,
03 arm manipulability,
o4 end-effector linear position control,
o5 end-effector angular position control,
og arm preferred pose.
A dual-arm object manipulation action ag may involve:
01 object firm grasp kinematic constraint,
0y arms joint limits,

03 arms obstacle avoidance,

73

5.3 Robot Controller

04 arms manipulability,

o5 end-effectors linear position control,
og end-effectors angular position control,
o7 arms preferred pose.

Finally, a force regulation along a prescribed path action ay for a single manipu-
lator could involve:

0, force regulation,

0o arm joint limits,

o3 arm obstacle avoidance,

o4 alignment to the surface’s normal,
05 arm manipulability,

og end-effector path following, and
o7 arm preferred pose.

Thanks to the proposed TPIK scheme, safety-oriented objectives such as arm
joint limits and arm obstacle avoidance can be given high priority in the hierarchy,
and they can be deactivated whenever irrelevant, through the use of properly
defined activation functions. This is an important difference with respect to
previous frameworks such as Chiaverini (1997); Siciliano & Slotine (1991), which
handle only equality control objectives, or more recent frameworks such as Moe
et al. (2016), where the management of inequality control objectives is not linear
in the number of tasks. The TPIK output, i.e., the system reference velocity
vector ¥, is given to the underlying dynamic control layers for execution and

tracking.
Two remarks can be made. The first is that, in principle, an action a embeds
an arbitrary number of m prioritized objectives o0y, ..., 0,,, organized in different

hierarchies. Typically, the main difference between any two actions is the set of
objectives needed to achieve their goals and possibly other prerequisite objectives,
whereas safety-oriented tasks are common to all actions. The second is that
since actions are sequenced according to a cooperation model represented by an
AND/OR graph, each action in hyper-arcs is defined with a few control objectives
relevant to the action goal only.

Given the second remark, it is necessary to describe how transitions between
two subsequent actions are implemented to achieve a safe — yet natural — robot

74

5.4 Robot simulator

behavior. As discussed above, it is realistic to assume that actions are charac-
terized by a common set of safety-oriented objectives, and differ only by a few
action-specific objectives. For the sake of argument, let us imagine a unified list
made up of all control objectives of two actions a; and as, e.g., 01,...,0m,+m,-
It is easy to imagine how, by a simple removal of some of the control objectives,
the two initial sets can be easily determined. To do so, activation functions in
the form of (5.8) are modified as:

a(z,p) = a(r)ay(p), (5.13)

where a,(p) € [0,1] is a continuous sigmoid function of a vector of parame-
ters p external to the control task itself. In particular, a,(p) can be conve-
niently parametrized by the two subsequent actions, as well as the time elapsed
from the start time Ty, of the current action, to obtain the desired activa-
tion/deactivation smooth transition function between sets of objectives.

Once all the actions in cooperation models are defined, such a unified list of
objectives can be easily built. Safety-oriented tasks are common to all actions,
and they will be at the same (high) priority levels. As a consequence, for such
tasks it will result that a,(p) = 1. All other tasks will be instead managed
by activation functions in the form «,(p), to activate/deactivate action-specific
and prerequisite objectives. Therefore, when a new action to execute is received,
the Action Manager block (shown in Figure 5.1) activates and deactivates each
control objective exploiting a,(p).

Whenever a robot action is successfully executed, the Robot Fxecution Man-
ager and consequently the Task Manager is invoked to update the Action-State
table and the state of the cooperation.

5.4 Robot simulator

The Robot Simulator module predicts the robot behavior in its workspace by
simulating the robot’s closed loop kinematic model, thus allowing for predicting
the outcome (in terms of success/failure) of any given action before its actual
execution. A simulation is marked as successful if the robot reaches the given
goal within a predefined time, and it is marked as failed otherwise. Although
we simulate the robot’s kinematic motion, during online execution there may
be disturbances affecting robot motion; that may prevent the success of action
eventually. For the work described here, we assume that the Controller module
can compensate such disturbances. The output of the simulator includes a label
indicating success or failure of an action, estimated execution time, suggested
robot’s trajectory, and the effort to perform the action.

75

5.4 Robot simulator

The robot simulator solves a system of ordinary differential equations in the
form:

X(t) = F(X(t),U(X)). (5.14)

from time ¢y and initial conditions X, to time t.,q, where X () is the vector of
system states at each moment, and U(X) is the control output vector, which is
a function of states at each moment. To solve (5.14) we use the Runge-Kutta
method, whereas to compute the control outputs we use the Task Priority based
controller described above.

76

Chapter 6

Experimental Evaluation of the
FlexHRC

Summary

In this chapter, we evaluate FLEXHRC based on the functional requirements and
taking into account the human, robot, interactions metrics. This evaluation is
accompanied with several experiments, namely, collaborative screwing task, co-
ordinated object transportation in a cluttered environment, task representation
experiment, and finally collaborative table assembly. For all of these modules,
the scenario is defined, the parts of FLEXHRC used for the experiment is deter-
mined, the evaluation is performed and finally, the results are discussed based on
functional requirements.

The equipments adopted for the evaluation of the proposed system includes a
dual-arm seven DoF Baxter robot for cooperative manipulation, an LG G watch
R (W110) smartwatch to acquire the acceleration data from the right wrist of the
person, an LG G3 smartphone as a communication bridge between the smart-
watch (Bluetooth) and the workstation (WiFi), and a Microsoft Kinect to acquire
RGB-D data of the workspace. The whole FlexHRC architecture shown in Figure
2.1 is based on ROS Indigo and it runs on a workstation with Ubuntu 14.04 LTS
64-bit, 16 GB RAM, and Intel Core i7-4790, 3.60GHz CPU (for the collaborative
screwing experiment, it runs on a 64 bit i5 2.3 GHz workstation, equipped with
4 Gb RAM, and Ubuntu 14.04.1 with kernel 3.19.0.).

7

6.1 Collaborative Screwing Task

6.1 Collaborative Screwing Task

6.1.1 Experiment objectives and scenario

In this experiment, a sensing, representation, planning and control architecture
for flexible human-robot cooperation, shown in Figure 6.1 which is a part of
the FLEXHRC, is examined. It deals with the specifications outlined in Section
1.2 by design, in particular enforcing flexibility, intelligibility, adaptability, and
transparency.

In this experiment, although robots suggest actions to perform based on op-
timality considerations and the goal to achieve, operators can choose an action
without following robot’s suggestions Hawkins et al. (2014), while the robot reacts
to operators and plans for the next action accordingly Bertenthal (1996); Loehr
et al. (2013); Vesper et al. (2010). Moreover, even if robot operations are well-
defined in terms of motion trajectories and above all intended effects, reactive
behaviors allow for dealing with partially unknown or dynamic workspaces, e.g.,
to perform obstacle avoidance, without the need for whole trajectory re-planning
Simetti & Casalino (2016); Srivastava et al. (2014).

To this aim, the proposed architecture shown in Figure 6.1 implements a
hybrid, reactive-deliberative human-robot cooperation architecture for assisted
cooperation Helms et al. (2002); Kriiger et al. (2009) integrating different mod-
ules, namely: (i) human action recognition using wearable sensors, which do not
pose any constraint on operator motions, to address F7, and exploiting statistical
techniques for action modeling Bruno et al. (2013) to take F5 into account; (ii)
representation of human-robot cooperation models and on line reasoning using
AND/OR graphs in propositional logic level Hawkins et al. (2014); Johannsmeier
& Haddadin (2017); Sanderson et al. (1988) and Task Manager enjoying only the
reactive adaptation to deal with Fy; (iii) control schemes based on a Task Prior-
ity framework and the Task Manager to decouple human-robot action planning
from robot motion planning and control Simetti & Casalino (2016), therefore
addressing F3.

As a prototypical example, a screwing task has been considered. A human
operator wearing a smartwatch and Baxter face each other on the opposite sides
of a table, where bolts, wooden plates and screwdrivers are located in a priori
known positions. The goal of the task is to sink a bolt inside a plate using a
screwdriver, and place the assembled piece in a final position on the table.

Common sense and experience lead to the identification of three different
cooperation models, referred to as Myue, Mpjaer and M,..q in the following para-
graphs, and represented in the corresponding AND/OR graph by three different
paths, namely Py, Poack and Prq (Figure 6.2). In this case, cooperation mod-
els are structured in advance. It is noteworthy that current work is devoted to

78

6.1 Collaborative Screwing Task

Task
Representation

feasible states & solved states &
state transitions state transitions

gesture
—> Task Manager €————
action / ack
v
Human Action suggested .
Recognition action Controller
N
inertial ¥ sensary o
data feedback pR—.

Figure 6.1: The software architecture for collaborative screwing task.

learning cooperation paths from open-ended observations of how humans would
behave if not instructed about how to cooperate with the robot, in order to ex-
tract the most natural interaction sequences from a human perspective. However,
this is out of the scope of the paper. The resulting AND/OR graph has |[N| =9
states and |H| = 9 hyper-arcs. The weight associated with each hyper-arc is
specified by the estimated effort needed by an operator or a robot to complete
the corresponding actions. As described above, such an effort does not necessar-
ily consider only time, but may be a complex function taking into account also
operator preferences, ergonomic aspects of the operation, as well as its intrinsic
difficulty. However, such a function must be monotonic, i.e., actions with asso-
ciated low weights are to be preferred to actions characterized by high weights
within each cooperation model. For this validation scenario, values have been
a priori determined through a test campaign with expert users. As Figure 6.2
shows, given this weights assignment, it follows that the optimal cooperation
model is therefore My, with a total expected cost of cost(Pye) = 14.

As an example of a cooperation model, Figure 6.3 shows snapshots of an
actual human-robot cooperation process for the screwing task described above,

79

6.1 Collaborative Screwing Task

(IX) Screwed plate
in final position

5
\A A/
(V) Driver in

final position ‘

2

. LA A
(VII) Plate, screw, driver in
screwing position

(V1) Plate, screw in
screwing position

' (IV) Plate in screwing
position

(V) Plate, screw in
i initial position

3/?\

| (I11) Plate in initial (I1) Screw in (1) Driver in
‘ position | initial position . initial position |

Figure 6.2: The AND/OR graph representation of the screwing task: different
colors (blue, black and red) indicate different action sequences the cooperation
can unfold in. Hyper-arcs costs appear beside the hyper-arcs they refer to.

which starts with My;,., but switches to My, when the operator performs the
first action (Figures 6.3b and 6.3c), which is different from the one expected in
Mye. For this task, modeled human and robot actions are:

e initial bolt sink: the human sinks the bolt in the wooden plate’s countersink
while the plate is still located on the table (Figures 6.3a to 6.3c);

e wooden plate pick up and positioning: the robot picks the wooden plate from
a predefined position on the table and keeps it firmly using both grippers
(Figure 6.3d and Figure 6.3e);

e bolt or screwdriver pick up: the operator picks up a bolt or a screwdriver

30

6.1 Collaborative Screwing Task

Figure 6.3: The sequence of actions associated with My, chosen after the
operator decided not to follow My, by performing the action initial bolt sink.

from the table (Figure 6.3f);
e bolt screw: the operator sinks the bolt using the screwdriver (Figure 6.3g);

e screwdriver put down: the operator puts the screwdriver down on the table
(Figure 6.3h and Figure 6.31);

81

6.1 Collaborative Screwing Task

Table 6.1: Recap of the reliability, robustness and flexibility experiments: number
of trials (#) for each cooperation path P, success rate (S), average time (avg)
and standard deviation (std) for completing the task successfully.

P # S[% avgls|] std s
Poue 21 9524 7986 3.54
Poaer 23 3043 9741 2.66
P.ea 22 6818 9394 3.73

e wooden plate put down: the robot puts the wooden plate down in a prede-
fined position on the table (Figure 6.3j and Figure 6.3k);

e reset pose: robot’s pose is reset (Figure 6.31).

Obviously enough, other human and robot actions can be modeled, as well as are
other states in the cooperation models.

In the following, a number of cooperation experiments are discussed. In all
experiments, a trial is considered successful if the operator and the robot reach
the root state of the AND/OR graph, namely screwed plate in final position, by
means of any of the allowed paths. The operator and the robot are not allowed
to repeat the sequence of actions in a hyper-arc: if, at the first execution, actions
are not successfully accomplished, the trial is considered failed. Experiments have
been designed with three specific validation goals in mind:

e assessing reliability, robustness and flexibility of FlexHRC in terms of co-
operation success rate and possible explanations for failures;

e quantifying computational performance, in terms of latency of action recog-
nition and reasoning time;

e determining the Controller module’s capabilities in solving constrained mo-
tion problems reactively, i.e., without burdening the Task Manager module.

6.1.2 Reliability, robustness and flexibility

In a first set of experiments, a total of 66 human-robot cooperation trials have
been conducted with a single human operator. Table 6.1 shows, for each coopera-
tion path Pyye, Poack and Proq, the number of trials, the success rate, the average
completion time and the standard deviation for successful cases. It is possible to
observe that not all cooperation models are equally difficult. Py, is characterized

82

6.1 Collaborative Screwing Task

by a very high success rate, whereas the same does not occur for Py and Preg.
Both of them are characterized by a greater number of actions, which is reflected
in a higher average time needed to complete the operations. Overall, there are
24 failures over 66 experiments, and in particular one failure for Py,., sixteen
failures for Py, and seven failures for P,.4. As far as failures are concerned, two
of them are due to human mistakes, e.g., misinterpretation of Task Manager’s
suggestions, four of them are related to communication failures and temporary
high latencies among software modules, one to a robot failure while executing a
command, whereas seventeen of them have been caused by inaccurate recognition
of the operator gestures.

A trend analysis on all experiments highlights a phenomenon related to how
humans adapt their motions in order to facilitate gesture recognition over time.
This means that inertial measurements become more correlated with gesture mod-
els encoded using GMM and GMR as the human progresses in performing them.
The most direct consequence is that success rate increases, whereas average com-
pletion time and standard deviation decrease. In fact, if one looks only at the last
10 experiments per cooperation path, the success rate for Py, and P,.q become
50% and 80%, respectively. Although adaptation can be expected, current work
is devoted to better characterize this phenomenon. As a preliminary analysis, it
can be noticed that it occurs especially for initial bolt sink. If one looks at this
model, it can be observed that it shares similarity with other models to a high
degree, such as bolt or screwdriver pick up or screwdriver put down, mainly in
the first part. After some trials, operators are able to modify their motions to
allow Human Activity Recognition to disambiguate between all models, with an
average increase in successful recognition of about 20%.

As far as robustness considerations are concerned, the system proves to switch
seamlessly among different cooperation models. Examples of such switches can
be observed in the accompanying video'. Here, let us focus on the switch oc-
curring between Py, and Py, in Figures 6.3a to 6.3c. At the beginning of
the cooperation, Baxter follows the optimal cooperation path, namely Py,., by
default. It moves its right arm to perform wooden plate pick up and positioning
(Figure 6.3b) to reach the state Plate in screwing position. However, at the same
time, the operator decides to perform initial bolt sink, i.e., the state Plate, screw
wn initial position is reached. This state is part of cooperation model My .., and
therefore FlexHRC sets Pyqox as the current context. At this point, the best
solution involves reaching Plate, screw in screwing position, which means for the
robot to perform wooden plate pick up and positioning. Then, My, unfolds from
this moment on. It is noteworthy that, from the operator perspective, this model
switch does not imply any perceivable interruption in the operation workflow.

!Please refer to: https://youtu.be/MZv4fUuklq8.

33

https://youtu.be/MZv4fUuklq8

6.1 Collaborative Screwing Task

Table 6.2: Required reasoning, human, and robot average time percentages for
successful tasks.

P avg Ty, [%] avg Ty, [%] avg T, [%)]

Piue 0.09 44.04 55.86
Priack 0.09 45.93 53.97
Preq 0.09 51.94 47.95

This capability demonstrates requirement R; described in the Introduction.

6.1.3 Computational performance

Table 6.1 shows, in the last two columns, the average time required to complete
cooperation models and the associated standard deviations. Overall, Py,. out-
performs Py, and P,.4 in terms of required time, while the three cooperation
models are comparable in terms of determinism in execution.

Table 6.2 reports, for each successfully executed cooperation path, the per-
centages of average time related to FlexHRC reasoning (7},), and the time needed
for human operators (7},) and robot actions (7). The first percentage is a mea-
sure of the time needed by the AND/OR graph traversal algorithm to suggest
next actions to be performed either by the operator or the robot. Assuming a
sequence of n actions, Ty, is defined as the sum of all such n—1 contributions (the
first being set by default on the optimal path), and each contribution is given by
the difference between the time T,.,; when the next action a; suggestion is ready
and the time T, when an acknowledge for a previous action a;_; is received,
such that:

Tao = ZTnezt(ai) - Tack(ai—1)~ (61)
=2

The second percentage refers to the time spent by operators in the cooperation,
as well as the time required to detect their motion. It is noteworthy that this is
a greedy estimate of human motions, since operators may perform other motions
irrelevant for the cooperation. Let us assume that the operator performs m
actions, and let us define T, as the sum of all such m contributions, then each
contribution depends on the sum of effective human motion time and the time
needed by the Human Action Recognition module to recognize such a motion.

84

6.1 Collaborative Screwing Task

T T T T
Planning@ga® & 8¢ &% & » S0 W » .
Human r B | =
Robot s —— I i
1 1 1 1
0 20 40 60 80 100
time [s]

Figure 6.4: An example of time allocation in case of Pyye.

Therefore, T}, is given by:

m

Th = ZTrec(ai) - Tnezt(ai)y (62)

=1

where T, is the recognition instant. However, it is also necessary to take into ac-
count cooperation model switches. Assuming to have k context switches during a
single cooperation task, an additional term to T} must be added, which considers
the interval between the time Ty, when the switching action a; starts and the
time T}, when the next action a;;; in the new cooperation path is suggested,
such as:

k
Th = Th + Z Tnext(ai—i-l) - Tstart(ai>- (63)
i=1
The average time percentage of AND/OR graph traversing is in all cases less than
0.1% of the total time. This is also due to the proposed control framework, which
does not require a computationally intensive planning in the configuration space,
thanks to its ability of reactively solving local obstacle avoidance constraints.
As far as T, and T, are concerned, it is possible to observe that they are
comparable, with the contributions of operators more evident in Py, and Preq.
Figure 6.4 shows an example of time distribution for one task which follows
Pyrue- The Figure shows that the majority of the time is related to either operator
or robot actions, and just a negligible part of the whole cooperation task is related
to AND/OR reasoning. The total time to perform the assembly in this test is 82
seconds, of which 44.13% spent by the human, 55.56% spent by the robot, and
0.09% by the Task Manager module.
A specific analysis of the delay introduced by the Human Action Recognition
module during cooperation tasks has been performed as well. In particular, it

85

6.1 Collaborative Screwing Task

20 T T T T T
>0
n
~
£ 10]
=
S
s
g o0
)
[
<
_10 L= L L = l= = L
0 20 40 60 80 100 120
time [s]
(a) Inertial data along x axis.

1 T T = == T
> A [(-
= HH
= HE pm—
= 0.5F : .
@
o
¥

0 L L L - L

0 20 40 60 80 100 120

time [s]

(b) Trend in possibilities.

Figure 6.5: Delays introduced in human action recognition in one trial. Dots
represent recognition times; vertical dotted lines mark the moments in which
human gestures actually end.

is necessary to characterize the interval between the time 7,.. the action a; is
recognized by the module and the time T,,4 the action truly ends.

Figure 6.5 shows an example of Py.. On the top, acceleration data along
the x axis are presented, and on the bottom the corresponding possibility trends
are shown. Operator actions are represented using different colors (black for bolt
or screwdriver pick up, red for bolt screw, blue for screwdriver put down, green for
initial bolt sink). Colored circles represent the time instants 7. at which Human
Action Recognition assesses actions, whereas vertical dotted lines show the actual
completion instants 7,4, which have been determined by manually inspecting
acceleration data. In this case, the time required to recognize bolt or screwdriver
pick up, bolt screw, screwdriver put down and initial bolt sink are approximately
1.2, 0.1, 6.1 and 2.6 seconds, respectively. Overall, around 10 out of 120 seconds
of cooperation time are due to the human action recognition delay. In all the
tests, Human Activity Recognition introduces a delay accounting for about 10%

36

6.1 Collaborative Screwing Task

(b)

Figure 6.6: A human operator does not have to necessarily perform actions in
front of the robot for those actions to be recognized and classified: (a) the operator
performs the initial bolt sink action in sight of the robot, (b) the operator performs
the initial bolt sink action out of sight of the robot.

Table 6.3: Recap of the experiments to assess the performance of human action
recognition with operators who did not contribute to the training of the gesture
models.

Action S [%] S (first) [%] S (last) [%]
bolt or screwdriver pick up 100 100 100
screwdriver put down 100 100 100
bolt screw 100 100 100
wmitial bolt sink 53.19 55.55 30

of the overall cooperation time.

6.1.4 Performance of human action recognition

In a second set of experiments, the system has been tested with 10 people who did
not participate in the training phase to evaluate whether gesture models obtained
using a specific training set are general enough to be used with more than one
operator. The age of all participants (two females, eight males) ranges between
21 and 30 years. Each participant is required to perform 5 trials. Before the
trials, the participant is verbally instructed on how to cooperate with the robot,
an example cooperation model is shown by an experimenter, and the participant
is allowed to practice with the initial bolt sink action.

Table 6.3 shows the results of these experiments. In the Table, the second
column indicates the overall success rate, the third column the success rate of the

87

6.1 Collaborative Screwing Task

Figure 6.7: An activity part of Py.., when an obstacle is detected and avoided
by the robot’s elbow joint.

Task Elbow Avoidance Activation

QR—single

Q' R—bimanual | |

=]
oo
T

=]
[=>}
T

activation value [0-1]
=
=S
T

=4
o
T

0 2‘0 4‘0 6‘0 8‘0 1(;0
time |[s]

Figure 6.8: Activation function of the robot’s elbow avoidance task for the right

arm: in blue for a single-arm operation, in orange for a dual-arm operation.

first trial, and the fourth column the success rate of the last trial. Among a total
number of 50 trials, in one case the participant did not follow the instructions, two
times the communication stopped, and 22 times the cooperation failed because
of incorrect action recognition, always, specifically, of initial bolt sink. Indeed,
initial bolt sink is not characterized by any improvement as far as the different
trials are concerned. Other actions seem more natural and are always recognized
correctly without a specific training.

As far as naturalness is concerned, it is noteworthy that FlexHRC detects
and classifies operator actions even if those are not executed within the robot
workspace or field of view. An example is shown in Figure 6.6.

38

6.1 Collaborative Screwing Task

6.1.5 Task priority control

In the experiments to evaluate the Controller module, which embeds the Task
Priority control scheme described in Section 5.3, the evaluation objective is two-
fold: on the one hand, assessing the Controller capabilities in dealing with sit-
uations requiring reactive control, e.g., obstacle avoidance, which does not need
planning in the operational space; on the other hand, assessing its capability of
doing so without jeopardizing the overall cooperation context process, in so far
as cooperation time is concerned. To this aim, the same operator of the first set
of experiments performed an additional number of trials after the introduction of
obstacles in the robot’s workspace.

As an example, Figure 6.7 shows a cooperation task where a lateral obstacle
has been located on the right hand side of the robot. Such an obstacle would
impede the robot to perform wooden plate pick up and positioning. Therefore,
beside action-specific control objectives and tasks, an arm obstacle avoidance
objective has been introduced in the tasks hierarchy. In this particular case,
we focused on the robot’s elbow avoidance, but the proposed technique can be
employed for any frame inside the rigid body space of the manipulator. The
robot is equipped with a Kinect sensor mounted on the head to perceive the
environment. The acquired point cloud is processed by a perception module
(first described in Buoncompagni & Mastrogiovanni (2015); Buoncompagni et al.
(2017)), whose output is a lumped representation of the plane approximating the
wall. The control objective variable x for the arm obstacle avoidance is defined
as the norm of the vector between the origin of the elbow frame and the closest
point on the plane, which is required to be maintained above a minimum safe
threshold.

Figure 6.8 shows the trend of the corresponding activation function (5.8) for
the arm obstacle avoidance objective, during both single-arm and dual-arm op-
erations. It is possible to observe that the activation never reaches its maximum
value, and the avoidance task is completed within the established thresholds.
Such an example shows how the Task Manager can focus on the generation of
Cartesian trajectories for the end-effectors or for the object being manipulated,
once grasped by both robot grippers, without planning in the operational space, as
the underlying robot controller has the reactive capabilities to deal with (local)
avoidance of obstacles that were not taken into account in the original trajec-
tory planning. There is no observable difference on actual cooperation context
execution times due to the effect of reactive tasks. For instance, in the trial re-
ferring to Figure 6.8, avg T, = 0.06 seconds, avg T = 54.76 seconds and avg
T, = 44.96 seconds. Although an exhaustive experimental campaign varying ob-
stacle size and number has not been carried out, these preliminary results allow
us to conclude that FlexHRC complies with requirement Ry as described in the

89

6.1 Collaborative Screwing Task

Introduction.

6.1.6 Discussion

In this experiment, a novel architecture for human-robot cooperation is proposed,
which is aimed at addressing a few challenges in shop-floor environments. The
proposed architecture supports a natural, intuitive, assisted and direct cooper-
ation. On the one hand, operator gestures implicitly drive the cooperation by
executing meaningful actions, and the robot flexibly and seamlessly adapts to
those actions via a number of allowed cooperation models. On the other hand,
the robot controller deals with all low-level complexities, e.g., to perform obsta-
cle avoidance in a full reactive fashion, without the need for re-planning in most
cases. The proposed architecture in this experiment has obviously a number of
limitations, which are considered as challenges in current research activities.

1. Inertial data models obtained via GMM and GMR can be very similar to
each other, depending on the action. This may lead to false positives, and
requires processing as much data as possible before action recognition can
occur. To solve these ambiguities, work is currently carried out to integrate
different sensing modalities, such as RGB-D sensors and wearable suits, as
well as investigating different classification techniques. However, an adap-
tation trend on the human side has been observed: people naturally tend
to move in such a way as to maximize the likelihood for their actions to be
properly recognized. This leads to a possible extension, i.e., to include on
line learning capabilities to perform co-adaptation, as discussed in Fragki-
adaki et al. (2015); Hadfield-Menell et al. (2016); Nikolaidis et al. (2014);
Saveriano et al. (2015).

2. Human activity recognition is based only on the detection and classification
of certain gestures, no guarantees about the use of specific tools can be
given. For example, an operator manually operating a screwdriver to sink
a bolt, and the same operator mimicking the gesture without holding a
screwdriver appear as indistinguishable to the system.

3. Actions are a priori assigned to operators or robots, depending on their
different capabilities as far as object manipulation is concerned, in a way
maybe similar to what has been done in Mastrogiovanni et al. (2013). An
on the fly assignment to the operator or the robot would increase to a great
extent the flexibility of the cooperation process.

4. Safety considerations in FlexHRC are considered only to a limited extent.
Different safety strategies including the detection of sudden, unwanted con-

90

6.2 Coordinated Object Transportation in Cluttered Environment

tacts, as well as active or adaptive safety measures are investigated exten-
sively in the literature Makris et al. (2016); Michalos et al. (2015). Cur-
rently, the adoption of safety measurements in FlexHRC is limited to the
possible adoption of specific tasks with high priority in the control frame-
work.

5. FlexHRC does not consider activities where physical cooperation and pur-
posive contacts are chiefly needed. Currently, cooperation models take a
form of turn-taking, with a few implicit turns where physical interaction
is necessary. However, an explicit account of such tasks is of the utmost
important in a whole range of real-world shop-floor activities.

6. The use of AND/OR graphs limits the allowed cooperation paths to a few
ones, which are designed through common sense and human experience,
whereas more versatile action planning techniques may be adopted. On
the one hand, an AND/OR graph leaves to the operator the responsibility
to decide which cooperation path to pursue among the allowed ones, which
makes sense in shop-floor scenarios. On the other hand, planning techniques
are in principle more flexible, but at the expense of being unpredictable to
a large extent, and leading to non intuitive cooperation paths, which are
solely determined on the basis of plan optimality.

Finally, it is noteworthy that an important aspect to be addressed is the
intersection between Task Priority control, motion planning and execution, as
well as the AND/OR graph. In particular, determining what to do when gestures
are not properly recognized, or detecting when the motion controller is stuck in a
local minimum, and the development of motion or whole task re-planning for error
recovery constitute an important research topic, as demonstrated by a number of
contributions in the field Agrawal et al. (2016); Srivastava et al. (2014).

6.2 Coordinated Object Transportation in Clut-
tered Environment

6.2.1 Experiment objectives and scenario

In this work, to demonstrate the capabilities of our proposed architecture shown
in Figure 6.10, we have chosen as a test case an “hybrid” object bi-manual ma-
nipulation task, performed using a bimanual robot and an RGB-D optical sensor.
In the experiments, the dual arm robot needs to move the object to a required
position, avoiding obstacles that interfere both with its end-effectors and its el-
bows, whilst maintaining the rigid grasp of the object. The obstacle avoidance

91

6.2 Coordinated Object Transportation in Cluttered Environment

problem, in particular, is tackled using two different strategies at the same time:
(a) a path planner is computing in real time a feasible path for the movements of
the end effectors, without caring for the rest of the arm links, and (b) a control
task is reactively avoiding the obstacles for the elbow joints. The results achieved
show the capabilities of the underlying control architecture in solving local prob-
lems, in the perspective of simplifying the amount of work of higher levels that
can therefore focus better on high level objectives.

Indeed, this work is framed within an integration effort between Al techniques
and control Darvish et al. (2016), with the goal of moving towards a smoother
combination of the two that could possibly make the difference in terms of per-
formance, flexibility and dependability, especially for factory of the future envi-
ronments.

Figure 6.9 shows the coordinated transportation of an object in the workspace
in existence of the static obstacles. There are two balls in the scene playing the
role of the obstacles and a plate as the object to transport. The robot arms
should transport the plate coordinately using a bimanual control task (coordina-
tion task); and while the object is avoiding the obstacles thanks to the software
architecture depicted in Figure 6.10, the elbow joints of the robot arms should
avoid the obstacle reactively at the kinematic control level.

Figure 6.9: A series of successive still frames from one of the coordinated trans-
portation experiments. As it can be seen in the last two frames 6.9¢ and 6.9d,
the elbow is gradually raising its height to stay out of the bounding box defined
for the obstacle.

6.2.2 Experimental results

We have done two experiments to show the interaction between the software ar-
chitecture shown in Figure 6.10 and the Controller module; and together, how
they solve the avoidance task through planning and in a reactive manner, respec-
tively. In particular, in the first experiment the elbow obstacle avoidance task
has not been included while it is in the second one.

92

6.2 Coordinated Object Transportation in Cluttered Environment

‘ Path Planner ‘

"

action / path

query/ ¥

Knowledge response | Robot '
Base Execution

. Manager

t A

robot action / ack

configuration

Object & Scene
Perception

Controller ‘

A
sensory

feedback

Figure 6.10: The software architecture for the coordinated transportation of an
object in cluttered environment.

Figures 6.11b and 6.11d show that, in both experiments, the grasped object
(object frame) is avoiding the obstacles within the workspace and reaching its
final goal by following the path generated by the Path Planner. Figure 6.11c
shows the distance between the closer obstacle to the left arm elbow joint of
the robot. The object is following its path, but the elbow is getting closer to
an obstacle in the working space. Figures 6.11e and 6.11f depict the distance
between the elbow and the obstacle and the activation function. When he elbow
joint distance get close to the threshold of the obstacle bounding box the task
is activated, and while the object is following its path, the elbow is avoiding the
obstacle within the defined threshold.

As the results of the experiments show, the kinematic control layer of the
Controller controls the robot arms to reactively avoid the elbow’s obstacle, freeing
the higher level from having to plan a path taking into account all the possible

93

6.2 Coordinated Object Transportation in Cluttered Environment

Object Frame Tracking Elbow Distance Vector Norm
0.44

— 0. vl N]

Angular (rad)

S—
e e] \
§ I —y N,
5 — = __T g
05 0.26
0 1 2 3 1 5 6 7 s 0 1 2 3 1 5
(a) (b) ()
Object Frame Tracking . Elbow Distance Vector Norm Task Elbow Avoidance Activation Function
05 0.
0 e ‘ =
E o 4, L [\ [en
3 N S — A VT
2 — 4 E N~ N\ /] [M\ | [
d ~— \/ _ AVAERN J
\
L
Voo
\ 4
__ P \/
e e—— —z V,
Eosf=—" —y
I S —f /
E = -
3 i
(d) (e) (f)

Figure 6.11: In figure 6.11a scene and objects recognized by Object and Scene
Perception and relative frame of the vision system, each color is identifying a
different object. Figures 6.11b and 6.11c are for the experiments with obstacle
avoidance of the grasped object at the path planning level and figures 6.11d,
6.11e, and 6.11f are for the experiment related to obstacle avoidance both at
Path Planner and Controller.

collisions.

6.2.3 Discussion

The experiments show the benefit of chopping the execution of complex behaviors
into a number of different modules and as a consequence translating the desired
system abilities into a set of control objectives. The proposed Controller can
enforce safety measures autonomously and exposes a rich interface which releases
the Robot Execution manager and Path Planner from dealing with the complexity
of low-level problems. Moreover, the robot end-effector or the object will follow
a asymptotically global optimal path and does not trap in local minimum.
Beside the promising results we attain by the integration of the RRT* based
Path Planner and the Controller as shown in Figure 6.10; there are a number of
challenges in the proposed architecture: (i) the path planner finds a path for a
point in the workspace. In order to avoid the collision between the transporting
object and the obstacles in the workspace, we consider the object size to the

94

6.3 Task Representation Experiments

obstacle safety margins. With this approach, if the object size with respect to
obstacles and workspace size is not negligible; it causes problem for finding the
path for the object and we may not find a path for the object to reach the goal
(although there might be a solution for path planning); (ii) The Path Planning
time increases proportional to the workspace size and the number of obstacles in
the workspace, and therefore the RRT* method might not be the best option for
workspaces where there exist human; (iii) the RRT* method can not ensure the
human safety and avoiding the collision with the human which is moving in the
robot workspace (dynamic obstacle).

6.3 Task Representation Experiments

Two types of experiments have been performed to evaluate the novelties of the
Task Representation: 1) stand-alone (robot only) tests have been executed to
show how the FOL AND/OR graph outperforms the standard propositional-
logic (PL) AND/OR graph; II) further stand-alone tests have been executed to
show the scalability of the proposed Tuask Representation module by comparing
the benefits of the Hierarchical AND/OR graph with respect to the standard
single-layer one.

6.3.1 Propositional Logic and First Order Logic AND/OR
Graph Performance Comparison

To compare the two versions of the FOL and PL state and state transition rep-
resentation of the AND/OR graph, let us consider placing two identical balls
(A and B) into two identical boxes (C and D). Even if the objects are identical,
their location in the workspace is different. Therefore, in the execution level the
ball(?) and box(?) predicates should be grounded to either A or B and C or D,
so that their locations are known when giving a command to the robot controller.

In the representation level, it does not matter which ball and box is chosen.
Fig. 6.12 on the left, shows all the possible ways to place the two balls into
the two boxes when they are grounded in the Task Representation level. The
placement task is composed of 11 nodes, seven hyper-arcs and two paths to follow.
Instead, Fig. 6.12 on the right shows the placement task when the ball(?) and
box(?) predicates are used. The placement task is composed of seven nodes,
three hyper-arcs, and one path to follow. By comparing the two graphs, it is
evident how the P AND/OR graph is more complex to design and requires an
higher computational time to be solved online.

We have performed the ball placement task shown in Figure 6.12 ten times.
As expected, the FOL AND/OR graph outperforms the PL. AND/OR in terms

95

6.3 Task Representation Experiments

PL AND/OR graph | FOL AND/OR graph
Placing done | Placing done

|
|
|

Ball{A)+Box(C), Ball(B)+Box(C), | 1% Ball+1° Box,

Ball(B)+Box(D) Ball(A)+Box(D) | | 2" Ball+2™ Box
i
|
2 |

Ball(A)+ Ball(B)+ Ball(B)+ Ball(A)+ et

Box(C) Box(D) Box(C) Box(D) | 1° Ball+1% Box
|
|
|
t

Ball(A) Ball(B) Box(C) Box(D) 2" Ball 1% Ball 1 Box 2" Box

Figure 6.12: The PL (Propositional Logic) and the FOL AND/OR graph for
representation of placement of two identical balls (A and B) into two identical
boxes (C and D) (left: P AND/OR graph, right: FOL AND/OR graph).

of computational time mean and standard deviation values for both online and
offline phases. The offline phase takes 2.23 x 10~* seconds on average for com-
putation of FOL, while in case of PL it takes 2.91 x 10~* seconds. The standard
deviations are 1.66 x 1075 seconds and 5.09 x 10~° seconds respectively. For
the online phase, the mean computational time and the standard deviations are
3.26 x 10~ seconds and 2.74 x 1075 seconds for FOL AND/OR graph, while for
the PL are 3.50 x 10~* seconds and 6.34 x 10~° seconds.

6.3.2 Single-layer and Hierarchical AND/OR Graph Per-
formance Comparison

The second set of tests was conceived to compare the benefits of using an hierar-
chical AND/OR graph with respect to the standard single-layer one. To this aim,
we have performed several table assembly tasks, gradually increasing the number
of tables legs to be assembled from one to nine.

Figure 6.13 shows the hierarchical graph of a table assembly with two legs. We
used the FOL to represent this assembly task. To connect a leg to the tabletop
there are four paths that can be followed: I) the robot connects the leg and the
tabletop directly (blue path, cost of one); II) the human connects the leg and
the tabletop directly (red path, cost of three); III) the robot places the leg in a

96

6.3 Task Representation Experiments

Assembled table,0

Leg + tabletop,0

h3(human), 2

Leg middle pose,0

Tabletop in
| assembly pose,0

h1, 1

Tabletop on

nd st
2" Leg on table,0 | 1% Leg on table,0 . table,0

Leg on table,0 Tabletop,0

Figure 6.13: The hierarchical AND/OR graph for the table assembly with two
legs (left: high level AND/OR graph for table assembly, right: low level AND/OR
graph for connecting a leg to a tabletop).

new position in the workspace and later connects the leg to the tabletop (black
path, cost of two); IV) after the leg is in the new position, the human connects
the leg to the tabletop (green path, cost of three). The reason for introducing a
temporary new position for the table leg in the assembly scenario is that, in case
of a dual-arm robot, there might be situations where one arm can reach the initial
leg position, but only the other arm can transport the leg to its final position.
Although the cost of the red and green paths are equal (three); if the robot can
perform hyper-arc hl, it follows the green path. Because in the green path, the
first feasible hyper-arc Al is common in black and green paths; therefore solving
this hyper-arc can lead to the black path, which has a lower cost (two), as well
as the green path. Before solving the Leg middle pose node, the robot does not
know if it can execute the hyper-arc h2 or not (using simulation); therefore it
will follow the green path if possible. It is noteworthy that human can traverse
to the red path online if he decides.

Figure 6.14 depicts the average computational time of the assembly task both
for the offline phase (top) and online phase (bottom). For each number of legs,
we have performed the table assembly task ten times, and reported the average
time. The figure represents the time on a logarithmic scale. As it can be seen,
the standard AND/OR graph has an exponential complexity in the number of
legs (both online and offline phase) while the hierarchical representation compu-
tational time grows linearly. The standard deviation of the computational time

97

6.3 Task Representation Experiments

10° ; . . . ; . .

= | |==Thicrarchical _ -0
@ [|=0= standard .8
e gl -
= otk . i
' -
T i -
E . S - " o —eo—6——o—0
1p-1 I i I i L L L
1 2 3 ! h [7 8 |
number of legs
107 . T
W iteaekiaad .
= == hicrarchica Pt
%=)| (=0 standard -]
an -
c -
ul in 2 1
E = = D
- i i

number of legs

Figure 6.14: The mean computational time (logarithmic scale) of the hierarchical
(solid black line) and standard (dashed blue line) Task Representation of the
collaborative table assembly task with different number of legs. top: offline phase
of the AND/OR graph, bottom: online phase of the AND/OR graph.

of the hierarchical AND/OR graph does not increase meaningfully both for the
online and offline phase. The mean of the computational time for offline and on-
line phases are 4.60 x 10~° seconds and 9.81 x 10~° seconds respectively, while in
the standard AND/OR graph, the computational time increases from 1.22 x 107>
seconds (one leg) to 18.40 seconds (nine legs) for the offline phase, and from
2.08 x 107° seconds to 1.13 seconds for the online phase.

Furthermore, as shown in Figure 6.13, using the Hierarchical AND/OR Graph
the user can easily represent a table assembly task with different number of legs
without going into the details of how the robot and human connect the legs to
the tabletop, with great advantages in terms of scalability of the problems that
can be tackled.

In conclusion, these experiments show how the increased expressiveness of the
Hierarchical AND/OR graph eases the design of AND/OR graph and also makes
it computationally more efficient.

98

6.4 Collaborative Table Assembly Experiments

Figure 6.15: Different tabletops and legs for the table assembly task.

6.4 Collaborative Table Assembly Experiments

6.4.1 Scenario

In this set of tests, several human-robot cooperative table assembly tasks have
been performed using different types of tables without any changes in the ar-
chitecture, to show the architecture’s flexibility at the task level. We have used
two different rectangular tabletops, two sets of four legs, and four customized 3D
print skirts (to guide the legs when placing them into the screws for precision
compensation, and also to fix the legs to the tabletop), depicted in Figure 6.15.
Hence, four different types of tables can be assembled which are not known a
priori to the human or robot.

Initially, the legs and tabletop are located randomly in the human and robot
shared workspace. The scenario representation encompasses all the possibilities,
ranging from either the human or the robot assembling the whole table on their
own, to all the combinations of human and robot cooperative assembly.

In these experiments, while the robot is manipulating the object, the human
is standing in front of it and monitors the robot actions. In a real assembly line
scenario, the human would monitor the task execution of several robots, moving
between them and intervening whenever necessary.

99

6.4 Collaborative Table Assembly Experiments

The modeled human actions in this assembly scenario are:
e pick up, when the human initially stands and picks up one of the legs for

manipulation;

e put down, when the human has performed the manipulation task and goes
to his standing pose;
e screwing, when the human screws the leg to tabletop;
while the robot actions are:

e approach, when the robot approaches the grasping pose of an object;

transport, when the robot transports an object to a desired goal position;

e screw, when the robot screws the leg to the tabletop;

unscrew, when the robot rotates its end-effector in opposite direction of the
screwing action;

e grasp, when the robot closes its gripper;

ungrasp, when the robot opens its gripper;

update workspace, when the robot updates its belief of the workspace using
perception modules.

We model the table assembly task with four legs using a single-layer FOL
AND/OR graph similar to the one shown in Fig. 6.13. The experiments demon-
strate the architecture’s flexibility at two levels:

1. Team level: the human and robot perform the same table assembly task
with a different level of cooperation, from completely done by the robot to
completely done by the human. This organizational flexibility is reached
online, as the cooperation unfolds.

2. Task level: The human and robot cooperate on similar tasks, such as the
assembly of several table types, without requiring different representations.

We reach these flexibilities through the proactive decision making and reactive
adaptation of the Task Manager, the rich cooperation models of the Task Rep-
resentation using first-order-logic AND/OR graph, the online object recognition
and automatic computation of different object frames, and finally the action
modules.

The software architecture to perform the table assembly is FLEXHRC as
shown in Figure 2.1 without including the Path Planner module. Examples of
table assembly scenario can be viewed in the accompanying video®.

!Please refer to: https://youtu.be/G7T1a_X9Dac.

100

https://youtu.be/G7T1a_X9Dac

6.4 Collaborative Table Assembly Experiments

Table 6.4: Computational performance of different modules in FLEXHRC for the
table assembly task.

Section avg time [s] avg time [%] std [s]
Task Manager 0.01 0.00 0.00
Task Representation 0.57 0.23 0.01
Sitmulator 4.15 1.66 0.40
Robot Action 219.45 87.75 56.90
Human Action 25.82 10.32 5.67
TOTAL 250.09 100.00 51.87

6.4.2 Computational performance

We have performed the table assembly test eight times with one volunteer. He
was free to decide online how to proceed with the cooperation. The results are
summarized in Table 6.4, and they show that the representation level and the
decision making process, including the simulator, take less than 2% of the table
assembly scenario, with a low standard deviation. The main sources of time
consumption in these experiments are the human and robot actions (including
the perception level). The high standard deviation of the experiments length is
due to the human online decision, and significant difference between the human
and robot speed to perform the given actions. In these experiments, the maximum
robot joint angular velocity, and end-effector angular and linear velocities are 0.6
rad/s, 0.8 rad/s, and 0.4 m/s respectively.

6.4.3 Flexibility analysis

To avoid the repetition in showing the results and discussion, we subdivide the
cooperative assembly task in three segments. In the first segment, the robot
places the tabletop in the workspace (tabletop placement), the second segment
is the connection of the legs to the tabletop (legs connection), and in the last
segment the human monitors and controls the connections (monitoring).

Figure 6.16 shows the tabletop placement in the workspace. This task is
always done only by the robot, and the robot can manage the task for different
types of tabletops or in different poses autonomously. The left and right arms of
the robot approach the tabletop (a-b), grasp it (c), change the orientation of the
tabletop coordinately and place the tabletop on the table horizontally (d-e), and
finally they return to the resting pose (f).

101

6.4 Collaborative Table Assembly Experiments

Figure 6.16: The sequence of actions associated with tabletop placement by the
robot.

Figures 6.17, 6.18, 6.19, 6.20 show different situations in which the human
and the robot connect the legs to the tabletop cooperatively. Depending on the
workspace situation and the human online decisions, the human and robot define
the amount of the cooperation online. The human and robot are free to choose
which leg to pick up for manipulation, while the order of the bolts on the tabletop
is fixed in our scenario.

Figure 6.17 shows the case in which the robot connects all the legs to the
tabletop. At the beginning, the robot can choose between the four legs and its
two arms. Hence, it evaluates the utility value for all eight options through the
Simulator module. In this example, it chooses the second leg from the right and
picks it up with its right arm (a-c). The human decides to not intervene in the
assembly process, and since the robot can perform all the assembly tasks on its
own, it does not ask the human for an intervention. Therefore, the robot follows
the cooperation path with the blue color shown in Fig. 6.13.

Figure 6.18 shows the case where the human decides to connect all the legs to
the tabletop. The robot tries, by default, to follow the minimum cost cooperation
path (blue color in Figure 6.13), but as soon as it recognizes the human Pick up
action, it adapts and follows the corresponding cooperation plan (red color in
6.13).

Figure 6.19 shows the case in which the human and robot cooperate together
to connect all the legs to the tabletop. In particular, Figs. 6.19 (a-c) show how
the robot approaches one of the legs, but the human intervenes in the middle
and performs the first connection. The robot adapts to the human decision when
it recognizes the human action. It updates its belief of the workspace using

102

6.4 Collaborative Table Assembly Experiments

Figure 6.17: The robot connects all the legs to the tabletop.

the Object and Scene Perception module, it updates the AND/OR graph and
determines the new feasible states. Later (Figs. 6.19 (d-f)), the robot decides to
connect the leg on the left side of the workspace, grasping it with the left arm,
to the second bolt of the tabletop. Then, the robot connects the third leg to the
tabletop, and finally the human decides to perform the connection of the last leg.

Figure 6.20 demonstrates the robot reactive adaptation to the human decisions
and proactive request to the human to perform a task which the robot cannot
perform. In Figures (a-e) the robot connects the first two legs to the tabletop.
Afterwards, (Figures (f-h)) the human decides to connect the third leg to the
tabletop. Finally, Figures (i-1) show the situation where the robot cannot perform
the given task and therefore it asks the human to connect the last leg to the
tabletop. By following the green cooperation path in Figures 6.13, first the robot

103

6.4 Collaborative Table Assembly Experiments

Figure 6.18: The human connects all the legs to the tabletop and the robot
reactively adapts to the human online decision.

transports the leg in front of the human and finally the human connects it to the
tabletop.

Figure 6.21 shows the human controlling the legs’ connection to the tabletops
at the end of the table assembly task. If the connections are loose, the human
fixes them.

In Figures 6.17, 6.18, 6.20 the human and robot assemble the larger tabletop
and longer legs, while in Figure 6.19 they assemble cooperatively the table with
larger tabletop and smaller legs. These examples show the ability of the archi-
tecture to handle different parts for the same cooperation task without encoding
new information. This feature not only increases the flexibility in task level but
also supports the idea of the scalability.

104

6.4 Collaborative Table Assembly Experiments

Figure 6.19: The human and robot connect the legs to the tabletop cooperatively;
the robot adapts reactively to the human online decisions.

6.4.4 Decision making and simulation analysis

Figure 6.16 (a) shows the initial configuration of the workspace: the robot ini-
tializes the cooperation state, receives the first feasible state transitions from the
Task Representation module and simulates them to allow the Task Manager to
optimally allocate them to the agents. Figure 6.22 shows the configuration values
in simulation (dashed lines) and reality (solid lines) for the robot left arm for the
action Approach(Tabletop), corresponding to scenes (a-c) of Figure 6.16. Figure
6.22 demonstrates that the simulation can reliably predict the robot behavior in
case of small disturbances. Scenes (c-¢) of Figure 6.16 show the placing of the
tabletop in its final position. The tabletop weighs 1.4 Kg, and, to test a condi-
tion of high disturbance, this fact is purposefully not considered in the simulation.

105

6.4 Collaborative Table Assembly Experiments

Figure 6.20: The human and robot connect the legs to the tabletop cooperatively;
the robot adapts reactively to the human decision online and asks proactively the
human to perform a task.

Figure 6.23 shows the simulation and reality results for the left arm tool frame.
As expected, the controller is able to compensate the high disturbances on the
robot while performing the joint transportation action.

Once the tabletop is in its final position, the state of the cooperation is up-
dated and the robot is given the new feasible states and state transitions, which
all lead to the placement of a leg. The optimal path given by the Task Represen-
tation, is the blue path as shown in Figure 6.13. Therefore, the robot should try
to connect a leg to the tabletop. Since this scenario assumes two robot agents and
four legs in the workspace, the Task Manager and Simulator generates and tests
eight simulation branches of the decision tree. On the basis of the simulation re-

106

6.4 Collaborative Table Assembly Experiments

Figure 6.21: The sequence of actions the human performs to monitor the connec-
tions between the legs and the tabletop.

a1
1 —P)
- a3
0F — 44
/ — Q5
-le _ — g6
/ —
2L

0 5 10 15
time [s]

joint position [rad]

Figure 6.22: The real (solid line) and simulated (dashed line) joints positions of
the robot left arm with low disturbance.

sults, the Task Manager assigns the action to the robot left arm or the robot right
arm as shown in Figures 6.17, 6.18, 6.20, 6.19. Once, one leg and the tabletop
are connected and the robot, upon analysing the workspace, again updates its
Task Representation. The Simulator analyses the new feasible actions, generat-
ing six simulation branches (two agents and three remaining legs). This process
is continued for the rest of the legs in the workspace that are not connected yet.

If the simulations fail: none of the robot arms is able to place any of the legs
on the tabletop, given their current placement within the workspace (see Figure

107

6.4 Collaborative Table Assembly Experiments

T
— — 0,
ol
g — 90,
~ 2L
= e 0,
=
g ol
2 P
=
o
-2 | | | | | | | | |
0 2 4 6 8 10 12 14 16 18
time [s]
1 T T T T T T T T
—X
e o o o o — |
F 05} J— 4
=) z
o
= e S SRS
-
8 0F -]
o
0.5 1 1 1 1 1 1 1 1 1

o
o
'S
=
o0

10 12 14 16 18
time [s]

Figure 6.23: The real (solid line) and simulated (dashed line) tool frame orienta-
tion and position of the robot left arm with high disturbance.

6.24). This situation tests the ability of the FLEXHRC architecture to recover
from failures. As a result of the failure notification, the optimal state transition
(hyper-arc in the AND/OR graph) becomes unfeasible, the path cost is updated
and a new optimal path is identified by the Task Manager module using the
Action-State table, which, in particular, requires the robot to move a leg in front
of the human to let him or the other robot arm screw it to the tabletop , Figure
6.13 paths green or black. The new set of feasible states and state transitions
found in Task Manager and, consequently, simulates. Since the simulation proves
successful, the action is actually executed (scenes (j-k) of Figure 6.20). Having
placed a leg in front of the human operator, in scene (k) the robot performs new
simulations. As it fails (black path in Figure 6.13), the robot asks the person to
connect a leg to the tabletop to proceed along the cooperative process (scene (1)
of Figure 6.20 associated with green path in Figure 6.13).

108

6.4 Collaborative Table Assembly Experiments

— Q1
—q2

q3
— 4
— g5

q6
—qr

joint position [rad]

0 5 10 15 20 25 30
time [s]

Figure 6.24: The real robot (solid line) and simulated robot (dashed line) joints
position of the left arm for a failed action: some of the joint positions do not
converge to constant values.

6.4.5 Symbolic fusion of object recognition and human
action recognition modules

In this section we describe, how the Object and Scene Perception and the Human
Action Recognition are integrated at the symbolic level so that we can recognize
robustly the human actions and the cooperation state even if there are uncer-
tainties and noises from the sensory information. Additionally, while the human
and robot are cooperating, it is highly possible the field of view of the camera
is occluded. To overcome this problem, some have proposed active perception
strategies Bajcsy (1988); Bajesy et al. (2018) or using multiple cameras Krumm
et al. (2000); Wang (2013). In this work, we have proposed an integration between
the wearable sensors and RGB-D information at the symbolic level, suitable for
multi human-robot cooperation scenarios.

Figure 6.25 shows the shared workspace RGB-D data after clusterization step
of Figure 6.25. As shown in Figure 6.16 the Kinect camera sensor is placed on
top of the robot’s display. Figure 6.25 (a~-d) shows the workspace states associ-
ated with Figure 6.16 at the before and after placing the tabletop cooperation.
When the robot is acting in the workspace the view of the robot is occluded, and
therefore only by vision, FLEXHRC is not able to recognize the robot places the
tabletop horizontally in the workspace. In this case, we use the proprioceptive
information of the robot via Controller to recognize the robot successful actions
while executing the given actions, and later it updates the cooperation state using

109

6.4 Collaborative Table Assembly Experiments

the Object and Scene Perception. In Figure 6.25, scenes (e-f), (g-h), (i-j), and
(k-1) show the cases when one, two, three, or all the legs are connected to the
tabletop. Only using the vision-based camera, the robot can not detect if the
legs are connected well to the tabletop, therefore at the end when all the legs are
connected, the human monitors and fixes all the connections.

While we use the proprioceptive information of the robot to recognize its
successful action execution, in the case of the human we use the wearable sensors
and therefore the information coming from the Human Action Recognition.

As mentioned before, in this experiment, we have modeled three human ac-
tions, i.e., pick up, put down, and screwing. Among them we present the screwing
action model generated offline. Figure 6.26 shows the raw inertial data along z,
y, z direction of the sensor body frame associated with Figure 6.18 scene (c). The
extracted features of the action by using the low-pass filter, i.e. body and gravity
accelerations, is shown in Figure 6.27 and 6.28. Finally, the GMR model of the
screwing action projected in 2D space is represented in Figure 6.29 and 6.30.

Figure 6.31 shows the raw online acceleration of the human’s right wrist.
These acceleration data are associated with the human’s actions of Figure 6.18.
Using the Mahalonis distance (4.10) between the online incoming data and the
GMR model of different actions, the online possibility pattern of the human
activity is represented in Figure 6.32.

Considering Equation (3.20) to formalise the actions, the human screwing
action is defined as: screwing(Leg(?), Tabletop(?), Human(?)). Using the Hu-
man Action Recognition module, we can classify (recognize) the performed human
action online, e.g. screwing among the modelled ones, using the ID of the smart-
watch we can identify which human has performed the action (in our scenario
there is only one human). As shown in Figure 6.32, there are not meaningful
difference between the possibility patterns for doing different pick up, screwing,
and put down actions of the human related to different legs. In order to fully rec-
ognize the human action, we profit from the Object and Scene Perception module.
Therefore, in the case of the screwing action, the manipulated leg and tabletop
are grounded using the information coming from RGB-D data.

6.4.6 Discussion

Regarding the functional requirement, in this paper we propose a simulation-
based approach for the robot decision-making (Fs). The results of the simulation
and decision-making include future robot trajectories, and human or robot ac-
tions. Communicating such information to the human results in increased effec-
tiveness and safety of the collaboration, while reducing the cognitive load on the
human operators (F3, Fy). For a natural and intuitive interaction, the robot may

110

6.4 Collaborative Table Assembly Experiments

communicate future robot motions and actions (Fg) through the Augmented Re-
ality (AR) technologies to the human Green et al. (2008); Michalos et al. (2016).

As mentioned in functional requirement, a collaborative robot architecture
not only should provide the necessary autonomy for object manipulation, but
it should also enable the collaborative robot to adapt reactively to the human
behaviour online (F5). This adaptation should be in the context of the available
plans to reach the cooperation goal (F3). In this paper, we propose an architecture
which fulfills this requirement. FLEXHRC equips the robot with the ability of
autonomous object manipulation, exploiting the proposed rich perception and
action modules. Using the AND/OR graph and the Task Manager modules, the
architecture proposes all the possible plans, together with their associated cost,
to the robot or the human throughout the cooperation. Among them, the robot
always tries to follow the optimal plan option. If the human decides to follow
another path, the robot reactively adapts to the human decision. These features
of the FLEXHRC allow to achieve a very high level of flexibility and autonomy.

Furthermore, the FLEXHRC architecture separates the low-level uncertain-
ties from the high-level structure of the task. The perception modules handle
uncertainties in sensory data, while the uncertainties in action execution are han-
dled in the Robot Ezecution Manager and Controller modules. These modules
communicate to the Task Manager using high-level information at the semantic
level (F3 requirement).

Finally, FLEXHRC enables some scalability attributes for performing complex
manufacturing and assembly tasks (Fy requirement). In the Task Representation
level, the introduction of the FOL and hierarchical AND/OR graph simplifies the
definition of manipulation tasks and it greatly increases the computational effi-
ciency in performing complex scenarios. This allows to build a library of simple
tasks, which can be combined together to create a more advanced task, and so
forth. Moreover, the Task Manager module provides the decision-making capa-
bilities necessary in complex scenarios. Finally, by defining the primitive actions
in Robot Fxecution Manager, we enable the robot to plan and perform a given
task. In order to fully respond to the F} requirement, in a future implementation
the robot should learn from the human demonstration and interaction with the
environment both at the task and action levels.

111

6.4 Collaborative Table Assembly Experiments

112

6.4 Collaborative Table Assembly Experiments

(k) (1)
Figure 6.25: The objects in the shared workspace using rgbh-D data.

Figure 6.26: Raw inertial data associated with human screwing action of the
table leg along z(red), y(green), z(blue) axis.

113

6.4 Collaborative Table Assembly Experiments

a, [m/&¥

time [s]

Figure 6.27: Body acceleration feature associated with human screwing action of
the table leg along z(red), y(green), z(blue) axis.

Q 0.5 1 15 2 25 3 35 4
time [s]

/521
ity |mf s

A b o owm

=1
=]
n
n
na
n
n
w
w
n
-

time [s}

@

T T T T

=
T

wm
T

a. [m/s?)]

o L 1 1 L L L L
[i] 05 1 15 2 25 3 35 4
time [s]

Figure 6.28: Gravity acceleration feature associated with human screwing action
of the table leg along z(red), y(green), z(blue) axis.

114

6.4 Collaborative Table Assembly Experiments

1 1.5 2 2.5 3
time |5

Figure 6.29: GMR model of the body acceleration associated with human screw-
ing action of the table leg along z(red), y(green), z(blue) axis.

time [s

Figure 6.30: GMR model of the gravity acceleration associated with human screw-
ing action of the table leg along z(red), y(green), z(blue) axis.

115

6.4 Collaborative Table Assembly Experiments

20 T T T T T I 1

a, [m/ .w'"’]
o o
]
1

|
10 20 30 40 50 60 70

time [s|

10 T T T T T T T

a, [m/s]
o

-10 1 1 1 L 1
0 10 20 30 40 50 60 70

time \]

il :_-Ulf,‘az]

|
10 20 30 40 50 60 70

time [s|

Figure 6.31: Online inertial data associated with the experiment of Figure 6.18.

1 T T T T T T T
0.8+ -1
= 06
2 04
0.2+
0 1
0 40
time [H

Figure 6.32: The trend of possibility of the human performing pick up (red color),
screwing(green color), and put down(blue color) actions.

116

Chapter 7

Conclusions

7.1 Summary

In this dissertation, we have presented FLEXHRC, a software architecture for
flexible human-robot cooperation. FLEXHRC is a novel approach to human-
robot cooperation in shop-floor settings aimed at increasing the online flexibility,
scalability, adaptation capabilities, and the controlled autonomy of collaborative
robots. The architecture enables flexible and scalable manufacturing tasks in a
partially structured and partially dynamic environment. FlexHRC estimates fu-
ture robot behaviors online, exploits such estimates to take decisions as far as
cooperation is concerned, allocates tasks to either humans or robots, and reac-
tively adapts to human operator decisions. It is a hybrid reactive-deliberative
architecture composed of three levels; namely perception, representation, and ac-
tion. FLEXHRC has been evaluated with several experimental scenarios includ-
ing collaborative screwing task, coordinated object transportation in cluttered
area, stand-alone task representation experiments, and finally collaborative table
assembly task.

In Chapter 1, an introduction to human-robot cooperation has been provided.
We described the motivation behind the FLEXHRC, its principal applications in
shop-floors and factories, and we outlined the specifications of such applications.
According to this study, we explained the functional objectives that FLEXHRC
should enable.

Chapter 2 provides an overview and evaluation of the available architectures
for collaboration of the human and robot in the literature. Using the functional
requirements introduced in Chapter 1, this chapter determines the functional
components of such architecture, the available methods to achieve such function-
alities at the component level. According to this literature review, we introduce
the software architecture for the collaborative robot, namely FLEXHRC. Its com-

117

7.1 Summary

ponents are embraced in three levels, i.e. perception, action, and representation.
We described interrelation among these levels and with the human to reach the
desired goal.

In Chapter 3, we have addressed the representation level, where the cooper-
ation process is defined, handled, and stored. It includes Task Representation,
Task Manager, and Knowledge Base modules. The Task Representation module
describes the cooperation task as an organized set of states and state transitions;
online provides feasible states and state transitions to the Task Manager, in return
the latter updates the Task Representation when the status of the cooperation
changes. The change can be caused by the human operator, thus signalled to the
Task Manager by the Human Action Recognition module or by the robot, there-
fore signalled by the Robot Execution Manager. Task Representation is founded
on AND/OR graph, in which its notion is extended to first-order logic and hierar-
chical AND/OR graph. Task Manager allows the reactive adaptation to different
situations through the action-state table, whereas the proactive decision making
is endowed by the simulation-based decision tree. The shared workspace infor-
mation is stored in the Knowledge Base, which is a data structure that maintains
up-to-date the information related to the workspace (i.e., the objects therein) and
the robot status.

Chapter 4 describes the perception level. It is composed of two modules,
namely Object and Scene Perception and Human Action Recognition (HAR).
The former provides information about the workspace states while the latter
delivers the human actions. The Human Action Recognition module works in
two stages. Offline, it models human actions using Gaussian Mizture Modeling
and Gaussian Mixture Regression over inertial data provided by a wrist-worn
inertial sensor. Online, it computes the Malahanobis distance between the con-
tinuous data stream and the modeled actions, therefore it provides the possi-
bility of each modelled actions to match the data stream. Finally, it analyses
the possibility patterns of all actions to recognize the execution of one of them.
The Object and Scene Perception receives point cloud data corresponding to the
robot’s workspace using an RGB-D sensor mounted on top of the robot, applies
a Fuclidean distance metric for clustering the point cloud, and uses Random
Sample Consensus (RANSAC) method to classify objects. Additionally, Princi-
pal Component Analysis (PCA) computes complementary features to manipulate
the objects.

In Chapter 5, the action level is detailed. It manages the robot actions and
consists of four modules, i.e., Robot Ezxecution Manager, Controller, Simulator,
and Path Planner; the last three being related to actions defined by the former.
The execution of the actions can be carried out by the real or the simulated robot;
the simulation results are used for feasibility checking and decision makings in
representation level. Robot Ezecution Manager turns a high-level command into

118

7.2 Discussion on Functional Requirements

one or a sequence of commands that Controller, Simulator, or Path Planner can
execute. On the basis of the feedback provided by the Controller, Stimulator, Path
Planner, Robot Execution Manager reports back to the Task Manager about the
success or failure of an executed or a simulated action. The Path Planner employs
an extension of RRT* method to find a feasible path for the robot end-effector or
transporting an object in the cluttered environment. The Controller employs a
Task Priority framework to control robot motions at the kinematic level, and the
Stmulator module predicts the robot’s behaviour in its workspace by simulating
the robot’s closed-loop kinematic model.

Chapter 6 provides an evaluation of FLEXHRC by several experiments in
terms of functional requirements introduced in Chapter 1. In collaborative screw-
ing task, the human and robot collaborate together in order to connect a bolt
to a plane hole. In this experiment, a simplified version of FLEXHRC has been
evaluated with limited functionalities. In the second experiment, coordinated
transportation of an object in a cluttered environment, mainly the action level
modules have been evaluated. In the third experiment, the task representation
module has been tested in terms of efficiency and scalability. Finally, the collab-
orative table assembly scenario, as a real-world complex assembly task, is given
to FLEXHRC and according to the functional requirements, the system has been
evaluated.

7.2 Discussion on Functional Requirements

In this section, we provide an overview and discussion on the degree to which
FLEXHRC has achieved the functional requirements mentioned in Chapter 1.
The discussion has been done for shop-floor scenarios but is not limited to that
and in fact, FLEXHRC can be extended for other applications.

The introduced FOL and hierarchical AND/OR graph make the task repre-
sentation efficient enough to perform different and complex scenarios, simplify the
design phase, and ensure a human-like and predictable behaviour of the robot.
As shown in Section 6.3, the proposed novel task representation does not grow
exponentially as the scenario’s complexity increases. However, the user is still
required to manually design the graph, which requires him/her to know the col-
laboration task and the robot capabilities very well. This process is prone to
error and can be time-consuming. The design of Task Manager and Simulator
allow the efficient online decision making and adaptability as shown in Sections
6.1, 6.4. Although Task Manager leads to promising features for effective and
efficient cooperation, it does not acknowledge the concurrent execution of dif-
ferent actions in a collaboration scenario. This feature may highly enhance the

119

7.2 Discussion on Functional Requirements

efficiency of manipulation tasks.

The effectiveness, robustness to the uncertainties, and the reproducibility of
FLEXHRC for a scenario in different conditions are other important factors to
address which are highly connected together. Experiments presented in Chapter
6 show that at the representation level, FLEXHRC can achieve these objectives.
The main problem comes from the perception and action level. In the perception
level, if the human modelled actions are similar, the rate of correct recognition will
decrease. Applying other methods for Object and Scene Perception such as deep
learning methods Qi et al. (2017a,b) may provide a richer perception necessary
for manipulation task when the objects are partially visible and perception is not
limited to the primitive objects on horizontal plane support. In action level, the
kinematic level control of FLEXHRC and the lack of skill learning is a limiting
component for performing more complex manipulation scenarios. To do complex
manipulation or assembly scenarios, the controller should allow both force and
motion control in robot task space. Moreover, a visual servoing method enhances
the accurate placement which is a very common task in assembly scenarios.

Task Level Flexibility. At the task level, FLEXHRC allows the robot to ma-
nipulate objects in different poses, shapes and sizes autonomously. When a task
is defined, FLEXHRC performs it without asking for new information from the
human; it handles the low-level dissimilarities autonomously. The task flexibil-
ity is achieved utilizing different modules of FLEXHRC including Object and
Scene Perception to recognize the manipulation features of the objects in the
workspace, Task Representation by the first-order logic description of the tasks
in the workspace, and Task Manager and Simulator using the proactive decision
making feature of the cooperation.

Team Level Flexibility. At the cooperative level, Task Representation and Task
Manager allow the human or robot to choose the degree of cooperation on-the-fly,
as the manufacturing task unfolds. To achieve this level of flexibility in team level,
the robot uses the Human Action Recognition module to adapt reactively to the
human’s decision on-the-fly; and by applying online simulations make decisions
based on the workspace conditions. Task Representation gives the possibility to
the human and robot to choose the cooperation model among different available
ones; while the proactive decision making and reactive adaptation feature of the
Task Manager enable the team level flexibility.

Intelligibility & Intuitiveness. FLEXHRC makes possible both the symbolic
and numerical communication of the robot with the human. It provides visual and
textual feedback to the human operator; It communicates the currently executing
action (symbolic feedback) and its following path (numerical feedback) with the
human. In the experiments we have performed in Chapter 6, using the available
hardware, the robot gives the visual feedback on the robot front screen. This
information can be given to the human via the augmented reality technology as

120

7.2 Discussion on Functional Requirements

well Makris et al. (2016). Moreover, the robot takes an optimal decision and
follows the minimum distance path while avoiding the obstacles; therefore, it
allows the human to easily recognize the robot’s intention.

Naturalness. FLEXHRC enables natural cooperation between the human and
robot concerning the communication modalities and the cooperation models. We
obtained to some degrees natural communication between the human and the
robot. Although a natural language speech-based communication is missing, the
robot communicates via visual interfaces with the human in semantic level close
to the human natural language. Moreover, the human communicates with the
robot about his actions, through the Human Action Recognition module without
an explicit effort from the human to convey his intention or actions to the robot.
As a result, the robot adapts to the human on-the-fly decisions and does not force
the human for following a strict cooperation model to reach the cooperation task
objective. In fact, FLEXHRC empowers both the human and the robot to select
a convenient choice of the cooperation model among the available ones.

Adaptability and Decision Making. Task Representation provides several co-
operation models, and Task Manager gives the possibility to human or robot to
follow one of them such that the robot adapts to the human behaviour and to
the workspace peculiar situations. The robot adapts to the human on-the-fly
decisions by recognizing his actions, and it adjusts to the partially uncertain or
unstructured environment by proactive decision making. The ability of the robot
to simulate its future actions on-the-fly given the online perception information
coming from the workspace and the next task to follow, permits the robot to
make decisions on-the-fly. This adaptation and decision making eventually avoid
failure of the cooperation.

Transparency. FLEXHRC allows monitoring the human actions in an intuitive
and natural way, without forcing the human to be in a specific place or orienta-
tion in front of the camera. This transparency is achieved using the perception
modules along with the Task Manager. In fact, the use of wearable devices al-
lows monitoring the human’s actions continuously all around the shop-floor. In
some cases for collaborative manipulation as shown in Section 6.4, only using the
wearable devices does not allow to fully recognize the human action. Therefore,
Task Manager integrates the incoming information from Human Action Recogni-
tion and Object and Scene Perception at symbolic level. This integration can be
extended to other perception information as well.

Safety. Ensuring the safety of the human in the workspace of the collaborative
robot is one of the main challenges in the field human-robot cooperation Lasota
et al. (2017). FLEXHRC enhances the safety in a limited manner, by providing a
collaborative robot with predictable behaviour to the human. FLEXHRC ensures
the predictable behaviour of the robot both at motion and (symbolic) action level.
In the action level, it follows the cooperation model which has the common sense

121

7.2 Discussion on Functional Requirements

with the human daily life. Before performing an action, it provides symbolic
level information to the human. Moreover, in motion level, the robot follows
a minimum distance path while avoiding the collision with the objects in the
workspace. Using the results of Simulator or Path Planner, FLEXHRC can
provide the robot future motions to the human by augmented reality technology.

Scalability. In terms of scalability, the user can perform complex manipulation
scenarios building from simple tasks. To this aim, a new first-order-logic hierar-
chical task representation has been developed and integrated within FLEXHRC.
Moreover, the design of Task Manager and Robot FExecution Manager allows the
user to define new actions for a collaboration scenario. As mentioned before in
Chapter 1, an important feature of a scalable collaborative robot would be the
learning capability both at the semantic action or task level and at the skill or
action execution level Argall et al. (2009); Ekvall & Kragic (2008); Konidaris
et al. (2012); Nikolaidis et al. (2015); Stopp et al. (2003). While at the task level
the robot learns the sequences of semantic and discrete actions Ekvall & Kragic
(2008); Munzer et al. (2017), at the skill level it learns controlling its movements
to reach a given goal Argall et al. (2009); Kormushev et al. (2010). The robot
may learn through the interaction with the world and/or human or through the
human demonstration Argall et al. (2009). The desired scalability in an industrial
or shop-floor environment is possible only if the robot learns new skills with a
limited number of trials.

122

Appendix A

Software Implementation

In this appendix, to complement the theories described in Chapter 3, the offline
description of the Task Representation and Task Manager are described.

A.1 Task Representation

Task Representation module is developed as a ROS service Quigley et al. (2009).
Starting the process, it loads the AND/OR graph description from a text file,
and generates the AND/OR graph G. Online, upon the request of the Task
Manager, it updates the graph GG, and returns new feasible nodes and hyper-arcs
as described in Chapter 3.

To generate the AND/OR graph, we describe it with the following structure
offline:

#1st line:

[AND/OR graph name] [No. nodes (N)] [root node name]
#list all the nodes in the AND/OR graph:

[node_1 name] [node_1 cost]

[node_2 name] [node_2 cost]

[node_N name] [node_N cost]

123

A.1 Task Representation

#After the list of nodes, list all the hyper-arcs (H

< hyper-arcs):

[hyper-arc_1 name] [No. child nodes(NC1)] [parent node name]
< [hyper-arc_1 cost]

[1st child node name]

[NC1'th child node name]
[hyper-arc_2 name] [No. child nodes(NC2)] [parent node name]
< [hyper-arc_2 cost]

[1st child node namel]

[NC2'th child node namel]

[hyper-arc_H name] [No. child nodes(NCH)] [parent node name]
— [hyper-arc_H cost]

[1st child node name]

[NCH'th child node namel

In the case of a hierarchical AND/OR graph, only the description of the
hyper-arcs will change:

[hyper-arc_1 name] [No. child nodes(NC1)] [parent node name]

< [hyper-arc_1 cost] [hyper-arc_1 lower level graph file name]

124

A.1 Task Representation

[1st child node name]

[NC1'th child node namel

If a hyper-arc does not hold a lower level AND/OR graph, we simply put a dash
(“-”) character.

The description of the hierarchical AND/OR of a table assembly scenario with
two legs, presented in Figure 6.13, is as following;:

TableAssembly 7 Table_FinalPose
Plate_initialPose 0

Plate_assemblyPose 0

Legl_initialPose 0

Leg2_initialPose O

Legl_Plate_connected O

Leg2_Plate_connected 0

Table_FinalPose 0

hO 1 Plate_assemblyPose 1 -
Plate_initialPose

hl 2 Legl_Plate_connected 1 basic_connection
Legl_initialPose

Plate_assemblyPose

h2 2 Leg2_Plate_connected 1 basic_connection
Leg2_initialPose

Legl_Plate_connected

h3 1 Table_FinalPose 1 -

Leg2_Plate_connected

125

A.1 Task Representation

In this description basic_connection is the lower level AND/OR file name
which exists in the same path (folder) of the higher level AND/OR graph. This
AND/OR graph describes how the human or the robot can cooperatively connect
a leg to a plate (tabletop) using FOL AND/OR:

ConnectlLegPlate 4 Leg_Plate_Connected
Leg_Plate_Connected 0
Leg_initialPose 0

Leg_middlePose O

Plate O

hl 2 Leg_middlePose 2 -
Leg_initialPose

Plate

h2 2 Leg_Plate_Connected 1 -
Leg_initialPose

Plate

h3 1 Leg_Plate_Connected 1 -
Leg_middlePose

h4_human 1 Leg_Plate_Connected 2 -
Leg_middlePose

h5_human 2 Leg_Plate_Connected 5 -
Leg_initialPose

Plate

The interpretation of nodes and hyper-arcs titles given in the description of
the table assembly AND/OR graph is presented in Table A.1.

126

A.1 Task Representation

Table A.1: Interpretation of titles in hierarchical AND/OR graph for the table

assembly:.
Title Interpretation
TableAssembly the name of the higher level AND/OR graph G° (how
to assemble a table)
ConnectLegPlate the name of the lower level AND/OR graph G' (how

Table_FinalPose

Plate_initialPose

Plate_assemblyPose
Leg(i)_-initialPose
Leg(i)_Plate_connected

hi

basic_connection

Leg_middlePose

Plate

Leg Plate_Connected

h(7)_human

to connect a leg to a plate or tabletop)

the root node name of G° (the table is assembled and
it is in its final pose)

a node name (the tabletop or plate is in its initial
position)

a node name (the plate is in assembly position)

a node name (the leg 7 is in initial position)

a node name (the leg 7 is connected to the plate)

a hyper-arc name (a state transition from the child
nodes to the parent node)

the file name of the lower level AND/OR, Graph G!
a node name of Graph G' (a leg is placed in front of
the human)

a node name of Graph G! (a plate or tabletop)

a root node name of Graph G! (a leg is connected to
the tabletop)

a hyper-arc name of graph G' (a state transition from
the child nodes to the parent node and done by hu-

man)

127

A.2 Task Manager

A.2 Task Manager

As mentioned in Algorithm 17, when the Task Manager process starts, it loads
the information of the cooperative agents, the description of actions that agents
can perform, and the offline Action-State list.

The description of collaborative agents are:

[First agent name] [First agent typel

[Second agent name] [Second agent typel

[N'th agent name] [N'th agent typel

At each row, the user first defines the agent’s name, and later defines if the agent
is a “Human” or a “Robot”. The human-type agents are allowed to change the
cooperation process to another model (even if the models with lower cost are
possible), and the robot-type agents will reactively adapt.

We define the symbolic description of the actions as:

[First action name] [First parameter predicate] ... [Last
<+ parameter predicate] [powerset of agents who can perform the

« first action]

[N'th action name] [First parameter predicate] ... [Last
<+ parameter predicate] [powerset of agents who can perform the

< N'th action]

At each line, first we determine an action name, list all the predicates of the
parameters of the action, and finally, determine the powerset of agents who can
perform the action. The relation between the subsets of the powerset is logical
OR, while the relation between the elements of inside each subset is logical AND.
If several agents should cooperate together to perform an action, the convention
or agreement between agents for performing the joint action is defined either in
Robot Ezecution Manager or in Controller.

The offline Action-State list describes the sequence of actions in order to solve
a hyper-arc or meet a node as follows:

128

A.2 Task Manager

[First node or hyper-arc name] [First action] ... [Last action]

[Last node or hyper-arc name] [First action] ... [Last action]

In this description, at each row, first we determine the node or hyper-arc name
used in the description of the AND/OR graph in Task Representation, then we
determine the sequence of actions to be performed. Actions predicates and their
responsible agents are either defined offline by the user or they are grounded
online using the information of the workspace stored in Knowledge Base.

129

References

ApAMS, J.A. (2005). Human-robot interaction design: Understanding user needs

and requirements. In Proceedings of the 2005 Annual Meeting on Human Fac-
tors and Ergonomics Society (HFES), vol. 49, Orlando, FL, USA. 4, 12

AGrawAL, P., NaIr, A., ABBEEL, P., MaLik, J. & LEVINE, S. (2016).
Learning to poke by poking: Experiential learning of intuitive physics. arXiv
preprint arXiw:1606.07419. 13, 91

AJOUDANI, A., ZANCHETTIN, A.M., IvAaLDI, S., ALBU-SCHAFFER, A., Ko-
SUuGE, K. & KnATIB, O. (2018). Progress and prospects of the human-robot
collaboration. Autonomous Robots, 1-19. 2

Aral, T., PAceLLO, E. & PARKER, L.E. (2002). Advances in multi-robot
systems. IEEE Transactions on robotics and automation, 18, 655-661. 12

ARrRGALL, B.D., CHERNOVA, S., VELOSO, M. & BROWNING, B. (2009). A sur-

vey of robot learning from demonstration. Robotics and Autonomous Systems,
57, 469-483. 5, 64, 122

ARIAS-CASTRO, E., DONOHO, D.L. et al. (2009). Does median filtering truly
preserve edges better than linear filtering? The Annals of Statistics, 37, 1172—
1206. 52

Bajcsy, R. (1988). Active perception. 109

Bajosy, R., ALommMonos, Y. & Tsotsos, J.K. (2018). Revisiting active per-
ception. Autonomous Robots, 42, 177-196. 109

BAUER, A., WOLLHERR, D. & Buss, M. (2008). Human-robot collaboration:
a survey. International Journal of Humanoid Robotics, 05, 47-66. 14

BERTENTHAL, B.I. (1996). Origins and early development of perception, action,
and representation. Annual Review of Psychology, 47, 431-459. 78

130

REFERENCES

BorroT, D., BorN, M. & BENGLER, K. (2013). Directly or on detours? how
should industrial robots approximate humans? In Proceedings of the 2013
ACM/IEEE International Conference on Human-Robot Interaction (HRI),
Tokyo, Japan. 3, 6, 12

BOUTILIER, C., REITER, R. & PRICE, B. (2001). Symbolic dynamic program-
ming for first-order MDPs. In Proceedings of the 2001 International Joint Con-
ference on Artificial Intelligence (IJCAI), Seattle, WA, USA. 12

BrATMAN, M.E. (1992). Shared cooperative activity. The philosophical review,
101, 327-341. 1

BRrRUNO, B., MASTROGIOVANNI, F., SGORBISSA, A., VERNAZZA, T. & ZAC-
CARIA, R. (2012). Human motion modelling and recognition: A computational
approach. In Proceedings of the 2012 IEEE International Conference on Au-
tomation Science and Engineering (CASE 2012), 156-161, Seoul, Korea. 53

BRrRUNO, B., MASTROGIOVANNI, F., SGORBISSA, A., VERNAZZA, T. & ZAC-
CARIA, R. (2013). Analysis of human behavior recognition algorithms based on
acceleration data. In Proceedings of the 2013 IEEE International Conference
on Robotics and Automation (ICRA), Karlsruhe, Germany. 7, 49, 51, 52, 53,
78

BRUNO, B., MASTROGIOVANNI, F., SAFFIOTTI, A. & SGORBISSA, A. (2014).
Using fuzzy logic to enhance classification of human motion primitives. In
A. Laurent, O. Strauss, B. Bouchon-Meunier & R.R. Yager, eds., Informa-
tion Processing and Management of Uncertainty in Knowledge-Based Systems,
596-605, Springer International Publishing, Montpellier, France. 17, 49, 51, 52

BucHANAN, B.G. (2005). A (very) brief history of artificial intelligence. AI Mag-
azine, 26, 53-60. 1

BUONCOMPAGNI, L. & MASTROGIOVANNI, F. (2015). A software architecture
for object perception and semantic representation. In Proceedings of the 2015
Italian Workshop on Artificial Intelligence and Robotics (AIRQO), Ferrara, Italy.
17, 56, 89

BUONCOMPAGNI, L. & MASTROGIOVANNI, F. (2018). Dialogue-based supervi-
sion and explanation of robot spatial beliefs: a software architecture perspec-
tive. In Proceedings of the 2018 IEEE International Symposium on Robot and
Human Interactive Communication (RO-MAN), Nanjing and Tai’an, China.
29

131

REFERENCES

BUONCOMPAGNI, L., MASTROGIOVANNI, F. & SAFFIOTTI, A. (2017). Scene
learning, recognition and similarity detection in a fuzzy ontology via human ex-
amples. In Proceedings of the Fourth Italian Workshop on Artificial Intelligence
and Robotics (AIRO), Bari, Italy. 89

CACCAVALE, R. & Finzi, A. (2017). Flexible task execution and attentional
regulations in human-robot interaction. IEEFE Transactions on Cognitive and
Developmental Systems, 9, 68-79. 6, 10

CACCAVALE, R., CACACE, J., FIORE, M., ALawmi, R. & FiNzi, A. (2016). At-
tentional supervision of human-robot collaborative plans. In Proceedings of the

2016 IEEE International Symposium on Robot and Human Interactive Com-
munication (RO-MAN), New York City, NY, USA. 10

CALANDRA, R., OWENS, A., JAYARAMAN, D.; LiN, J., YuaNn, W., MALIK,
J., ADELSON, E.H. & LEVINE, S. (2018). More than a feeling: Learning to
grasp and regrasp using vision and touch. arXiv preprint arXiw:1805.11085. 61

CALINON, S., GUENTER, F. & BILLARD, A. (2007). On learning, representing,
and generalizing a task in a humanoid robot. IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics), 37, 286-298. 54

CAPITANELLI, A., MARATEA, M., MASTROGIOVANNI, F. & VaLrati, M.
(2018). On the manipulation of articulated objects in human-robot cooperation

scenarios. CoRR, abs/1801.01757. 6, 11, 12

CArTMILL, E.A.; BEILOCK, S. & GOLDIN-MEADOW, S. (2011). A word in the
hand: action, gesture and mental representation in humans and non-human pri-

mates. Philosophical Transactions of the Royal Society B: Biological Sciences,
367, 129-143. 14

CASHMORE, M., Fox, M., LoNG, D., MAGAZZENI, D., RIDDER, B., CAR-
RERA, A., PALOMERAS, N., HURTOS, N. & CARRERAS, M. (2015). Rosplan:
Planning in the robot operating system. In Proceedings of the 2015 Interna-
tional Conference on Automated Planning and Scheduling (ICAPS), Jerusalem,
Israel. 12

CHAUMETTE, F. & HUTCHINSON, S. (2006). Visual servo control. i. basic ap-
proaches. IEEFE Robotics € Automation Magazine, 13, 82-90. 61

CHAUMETTE, F. & HUTCHINSON, S. (2007). Visual servo control, part ii: Ad-
vanced approaches. IEEE Robotics and Automation Magazine, 14, 109-118.
61

132

REFERENCES

CHEN, F., SEKivamA, K., CANNELLA, F. & Fukupa, T. (2014). Optimal
subtask allocation for human and robot collaboration within hybrid assembly

system. IEEE Transactions on Automation Science and Engineering, 11, 1065—
1075. 12, 13, 14

CHIAVERINI, S. (1997). Singularity-robust task-priority redundancy resolution

for real-time kinematic control of robot manipulators. IEEFE Transactions on
Robotics and Automation, 13, 398-410. 74

CrAES, D. & TuvLs, K. (2014). Human robot-team interaction. In Proceedings

of the 2013 International Symposium on Artificial Life and Intelligent Agents
(ALIA), Bangor, Wales, UK. 6, 11

ConN, D.A.; GHAHRAMANI, Z. & JORDAN, M.I. (1996). Active learning with
statistical models. Journal of artificial intelligence research, 4, 129-145. 53

CrANDALL, J.W., OuDAH, M., CHENLINANGJIA, T., IsHOWO-OLOKO, F.,
ABDALLAH, S., BONNEFON, J., CEBRIAN, M., SHARIFF, A., GOODRICH,
M.A. & RanwaN, 1. (2018). Cooperating with machines. Nature Communi-
cations, 9, 233. 6, 11

DarvisH, K., BRuNO, B., SIMETTI, E., MASTROGIOVANNI, F. & CASALINO,
G. (2016). An adaptive human-robot cooperation framework for assembly-
like tasks. In Proceedings of the 2016 Workshop on Artificial Intelligence and
Robotics (AIRO), Genoa, Italy. 92

DarvisH, K., BRuNO, B., SIMETTI, E., MASTROGIOVANNI, F. & CASALINO,
G. (2018a). Interleaved online task planning, simulation, task allocation and
motion control for flexible human-robot cooperation. In Proceedings of the 2018
IEEE International Symposium on Robot and Human Interactive Communica-
tion (RO-MAN), Nanjing and Tai’an, China. 4, 6, 13, 16, 17, 18, 29, 41, 47

DarvisH, K., WANDERLINGH, F., BrRunoO, B., SIMETTI, E., MASTROGIO-
VANNI, F. & CASALINO, G. (2018b). Flexible human-robot cooperation mod-
els for assisted shop-floor tasks. Mechatronics, 51, 97-114. 5, 6, 11, 13, 16, 17,
18, 29, 30, 43

DE MAESSCHALCK, R., JOUAN-RIMBAUD, D. & MAssART, D.L. (2000). The
mahalanobis distance. Chemometrics and intelligent laboratory systems, 50,
1-18. 55

DE MELLO, L.S.H. & SANDERSON, A.C. (1990). And/or graph representation

of assembly plans. IEEE Transactions on Robotics and Automation, 6, 188—
199. 16, 18

133

REFERENCES

DEMPSTER, A.P., LAIrRD, N.M. & RuBIN, D.B. (1977). Maximum likelihood
from incomplete data via the em algorithm. Journal of the Royal Statistical
Society: Series B (Methodological), 39, 1-22. 53

DESANTIS, A., SiciLIANO, B., DELuUcA, A. & BiccHi, A. (2008). An atlas of
physical human-robot interaction. Mechanism and Machine Theory, 43, 253—
270. 3,4, 6

EkvAaLL, S. & KRrAcIc, D. (2008). Robot learning from demonstration: A task-
level planning approach. International Journal of Advanced Robotic Systems,
5, 33. 122

EroL, K., HENDLER, J.A. & NAu, D.S. (1995). Semantics for hierarchical
task-network planning. Tech. rep., Maryland University, Institute for Systems
Research, College Park, MD, USA. 10

ESMAEILIAN, B., BEHDAD, S. & WANG, B. (2016). The evolution and future
of manufacturing: A review. Journal of Manufacturing Systems, 39, 79-100.
1,3

EUROBOTICS AISBL (2014). Strategic research agenda for robotics in europe 2014—
2020. [Accessed 2018-08-04]. 1, 3

EUROBOTICS AISBL, EUROPEAN ROBOTICS ASSOCIATION & EUROPEAN COM-
MISSION (2017). Robotics 2020 multi-annual roadmap for robotics in europe,
horizon 2020 call ict-2017. [Accessed 2018-08-04, Release B, 02/12/2016]. 3

FERLAND, F., LETOURNEAU, D., AUMONT, A., FREMY, J., LEGAULT, M.A.,
LAURIA, M. & MIcHAUD, F. (2013). Natural interaction design of a humanoid
robot. Journal of Human-Robot Interaction, 1, 118-134. 5

FiscHLER, M.A. & Borres, R.C. (1981). Random sample consensus: a
paradigm for model fitting with applications to image analysis and automated
cartography. Communications of the ACM, 24, 381-395. 17, 56

FrAckiADAKI, K., LEVINE, S., FELSEN, P. & MaALIK, J. (2015). Recurrent
network models for human dynamics. In Proceedings of the 2015 IEEE Inter-
national Conference on Computer Vision (ICCV), Santiago, Chile. 90

GARcA, P., Caamao, P., Duro, R.J. & BELLAS, F. (2013). Scalable task
assignment for heterogeneous multi-robot teams. International Journal of Ad-
vanced Robotic Systems, 10, 105. 4, 6

134

REFERENCES

GERKEY, B.P. & MATARIC, M.J. (2004). A formal analysis and taxonomy of
task allocation in multi-robot systems. The International Journal of Robotics
Research, 23, 939-954. 12, 41

GLEESON, B., MacLean, K., HApDADI, A., CROFT, E. & ALCAZAR, J.
(2013). Gestures for industry: Intuitive human-robot communication from hu-
man observation. In Proceedings of the 2013 ACM/IEEE International Con-
ference on Human-robot Interaction (HRI), Tokyo, Japan. 14

GoODRICH, M.A. & ScHuLTz, A.C. (2007). Human-robot interaction: a sur-
vey. Foundations and Trends®) in Human—Computer Interaction, 1, 203-275.
1,2, 5, 12

GREEN, S.A., CHASE, J.G., CHEN, X. & BILLINGHURST, M. (2008). Evalu-
ating the augmented reality human-robot collaboration system. In Proceedings
of the 2008 International Conference on Mechatronics and Machine Vision in
Practice, Auckland, New Zealand. 111

Grosz, B.J. (1996). Collaborative systems (aaai-94 presidential address). Al
magazine, 17, 67. 1

HADFIELD-MENELL, D., RUSSELL, S.J., ABBEEL, P. & DRAGAN, A. (2016).
Cooperative inverse reinforcement learning. In Proceedings of 2016 Conference
on Advances in Neural Information Processing Systems, Barcelona Spain. 90

HARARI, Y.N. (2014). Sapiens: A brief history of humankind. Random House.
1

Hawkins, K.P., BANSAL, S., Vo, N.N. & BoBick, A.F. (2014). Anticipating
human actions for collaboration in the presence of task and sensor uncertainty.
In Proceedings of the 2014 IEEE International Conference on Robotics and
Automation (ICRA), Hong Kong, China. 6, 10, 11, 13, 78

HAYES, B. & ScASSELLATI, B. (2016). Autonomously constructing hierarchical
task networks for planning and human-robot collaboration. In Proceedings of
the 2016 IEEE International Conference on Robotics and Automation (ICRA),
Stockholm, Sweden. 3, 12

HeLwms, E., SCHRAFT, R.D. & HAGELE, M. (2002). rob@work: Robot as-
sistant in industrial environments. In Proceedings of the 2002 IEEE Interna-
tional Workshop on Robot and Human Interactive Communication (RO-MAN),
Berlin, Germany. 3, 78

135

REFERENCES

HorFMAN, G. & BREAZEAL, C. (2004). Collaboration in human-robot teams.
In AIAA 2004 Intelligent Systems Technical Conference, Chicago, IL, USA. 1

HorauD, R., DOrNAIKA, F. & Espiau, B. (1998). Visually guided object
grasping. leee Transactions on Robotics and Automation, 14, 525-532. 61

Huang, H., L1, D., Zuang, H., AscHiEr, U. & COHEN-OR, D. (2009).
Consolidation of unorganized point clouds for surface reconstruction. ACM
transactions on graphics (TOG), 28, 176. 58

HUBER, M., LENZ, C., WENDT, C., FRBER, B., KNOLL, A. & GLASAUER, S.
(2013). Increasing efficiency in robot-supported assemblies through predictive
mechanisms: An experimental evaluation. In Proceedings of the 2013 IEEE In-

ternational Symposium on Robot and Human Interactive Communication (RO-
MAN), Gyeongju, South Korea. 9, 14

INTERNATIONAL FEDERATION OF ROBOTICS (2018). Robots and the workplace
of the future. [Accessed 2018-08-04, positioning paper]|. 3, 4

JOHANNSMEIER, L. & HADDADIN, S. (2017). A hierarchical human-robot
interaction-planning framework for task allocation in collaborative industrial
assembly processes. IEEE Robotics and Automation Letters, 2, 41-48. 3, 6, 10,
13, 78

KARAMAN, S. & Frazzori, E. (2011). Sampling-based algorithms for optimal

motion planning. The international journal of robotics research, 30, 846-894.
7, 65, 66

Karras, E., LEVINE, S.J., Yu, P. & WiLLiams, B.C. (2015). Robust execu-
tion of plans for human-robot teams. In Proceedings of the 2015 International
Conference on Automated Planning and Scheduling (ICAPS), Jerusalem, Is-
rael. 6, 10

KIESLER, S. & GOODRICH, M.A. (2018). The science of human-robot interac-
tion. ACM Transactions on Human-Robot Interaction (THRI), 7, 9. 2

Kock, S., VitTtor, T., MATTHIAS, B., JERREGARD, H., Kriman, M.,
LUNDBERG, I., MELLANDER, R. & HEDELIND, M. (2011). Robot concept
for scalable, flexible assembly automation: A technology study on a harmless
dual-armed robot. In Proceedings of the 2011 IEEE International Symposium
on Assembly and Manufacturing (ISAM), Tampere, Finland. 3, 4, 6

KoONIDARIS, G., KUINDERSMA, S., GRUPEN, R. & BARTO, A. (2012). Robot
learning from demonstration by constructing skill trees. The International
Journal of Robotics Research, 31, 360-375. 122

136

REFERENCES

Koprpura, H.S. & SAXENA, A. (2013). Anticipating human activities for re-
active robotic response. In Proceedings of the 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan. 13

KORMUSHEV, P., CALINON, S. & CALDWELL, D.G. (2010). Robot motor skill
coordination with em-based reinforcement learning. In Proceedings of the 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei,
Taiwan. 122

KrOTZSCH, M., SIMANCIK, F. & HORROCKS, I. (2012). A description logic
primer. arXww preprint arXiv:1201.4089. 48

KRUGER, J., LIEN, T. & VERL, A. (2009). Cooperation of human and machines
in assembly lines. CIRP Annals in Manufacturing Technology, 58, 628-646. 78

KrumM, J., HARRIS, S., MEYERS, B., BRumITT, B., HALE, M. & SHAFER,
S. (2000). Multi-camera multi-person tracking for easyliving. In Proceedings
Third IEEE International Workshop on Visual Surveillance, Dublin, Ireland.
109

KUEHN, J. & HADDADIN, S. (2017). An artificial robot nervous system to teach

robots how to feel pain and reflexively react to potentially damaging contacts.
IEEE Robotics and Automation Letters, 2, 72-79. 3

KUFFNER, J.J. & LAVALLE, S.M. (2000). Rrt-connect: An efficient approach
to single-query path planning. In Proceedings of the 2000 IEEFE International
Conference on Robotics and Automation (ICRA), San Francisco, CA, USA. 66

LABER, E. (2008). A randomized competitive algorithm for evaluating priced
and/or trees. Theorical Computer Science, 1, 120-130. 36

Lasora, P.A., Fong, T. & SHAH, J.A. (2017). A survey of methods for safe
human-robot interaction. Foundations and Trends®) in Robotics, 5, 261-349.
6, 121

LAVALLE, S.M. & KUFFNER JR, J.J. (2001). Randomized kinodynamic plan-
ning. The International Journal of Robotics Research, 20, 378-400. 66

LEMAIGNAN, S., WARNIER, M., SisBoT, E.A., Crobic, A. & Avrami, R.
(2017). Artificial cognition for social humanrobot interaction: An implementa-
tion. Artificial Intelligence, 247, 45-69. 3, 6, 10, 11, 12, 13, 14

LeEnz, C. (2011). Context-aware human-robot collaboration as a basis for fu-
ture cognitive factories. Ph.d. dissertation, Technische Universitat Miinchen,
Miinchen. 3

137

REFERENCES

LEVINE, S., PASTOR, P., KRIZHEVSKY, A., IBARZ, J. & QUILLEN, D. (2018).
Learning hand-eye coordination for robotic grasping with deep learning and

large-scale data collection. The International Journal of Robotics Research,
37, 421-436. 61

LEVINE, S.J. & WiLLiAMS, B.C. (2014). Concurrent plan recognition and ex-
ecution for human-robot teams. In Proceedings of the 2014 International Con-
ference on Automated Planning and Scheduling (ICAPS), Portsmouth, NH,
USA. 6, 11, 13

LoeHRr, J.D., SEBANZ, N. & KNOBLICH, G. (2013). Joint action: From
perception-action links to shared representations. In W. Prinz, M. Beisert
& A. Herwig, eds., Action Science: Foundations of an Emerging Discipline,
chap. 13, 333, The MIT Press, Cambridge, Massachusetts. 78

LUGeR, G.F. (2009). Artificial Intelligence: Structures and Strategies for Com-
plex Problem Solving. Addison-Wesley Publishing Company, Boston, MA,
USA, 6th edn. 12, 18

MAINPRICE, J., HAYNE, R. & BERENSON, D. (2015). Predicting human reach-
ing motion in collaborative tasks using inverse optimal control and iterative
re-planning. In Proceedings of the 2015 IEEE International Conference on
Robotics and Automation (ICRA), Seattle, WA, USA. 13

MAKRIS, S., KARAGIANNIS, P., KOUKkAS, S. & MATTHAIAKIS, A.S. (2016).
Augmented reality system for operator support in human-robot collaborative
assembly. CIRP Annals - Manufacturing Technology, 65, 61-64. 91, 121

MASTROGIOVANNI, F. PAIKAN, A. & SGORBISSA, A. (2013). Semantic-aware
real-time scheduling in robotics. IEEE Transactions on Robotics, 29, 118-135.
90

MENEWEGER, T., WURHOFER, D., FUCHSBERGER, V. & TSCHELIGI, M.
(2015). Working together with industrial robots: Experiencing robots in a
production environment. In Proceedings of the 2015 IEEE International Sym-
posium on Robot and Human Interactive Communication (RO-MAN), Kobe,
Japan. 4

MicHALOS, G., MAKRIS, S., SPILIOTOPOULOS, J., Misios, 1., TSAROUCHI,
P. & CHRYSSOLOURIS, G. (2014). Robo-partner: Seamless human-robot co-
operation for intelligent, flexible and safe operations in the assembly factories
of the future. Procedia CIRP, 23, 71-76. 6

138

REFERENCES

MicHALOS, G., MAKRIS, S., TSAROUCHI, P., GuascH, T., KONTOVRAKIS,
D. & CHRYSSOLOURIS, G. (2015). Design considerations for safe human-robot
collaborative workplaces. Procedia CIRP, 37, 248-253. 91

MiCHALOS, G., KARAGIANNIS, P., MAKRIS, S., NDER TOKALAR & CHRYS-
SOLOURIS, G. (2016). Augmented reality (AR) applications for supporting
human-robot interactive cooperation. Procedia CIRP, 41, 370-375. 111

MiILLER, A.T. & ALLEN, P.K. (2004). Graspit! a versatile simulator for robotic
grasping. IEEE Robotics € Automation Magazine, 11, 110-122. 61

MivaTA, N., Ota, J., Arar, T. & Asama, H. (2002). Cooperative transport
by multiple mobile robots in unknown static environments associated with

real-time task assignment. IEEE Transactions on Robotics and Automation,
18, 769-780. 12

MoOE, S., ANTONELLI, G., TEEL, A.R., PETTERSEN, K.Y. & SCHRIMPF,
J. (2016). Set-based tasks within the singularity-robust multiple task-priority
inverse kinematics framework: General formulation, stability analysis, and ex-
perimental results. Frontiers in Robotics and Al, 3, 16. 74

MORRISON, D., CORKE, P. & LEITNER, J. (2018). Closing the loop for robotic

grasping: A real-time, generative grasp synthesis approach. arXiv preprint
arXiv:1804.05172. 61

MULLER, A., KirscH, A. & BEETZ, M. (2007). Transformational planning

for everyday activity. In Proceedings of the 2007 International Conference on
Automated Planning and Scheduling (ICAPS), Providence, RI, USA. 6, 13

MUNZER, T., ToussaINT, M. & LoPEs, M. (2017). Preference learning on the
execution of collaborative human-robot tasks. In Proceedings of the 2017 IEEE
International Conference on Robotics and Automation (ICRA). 122

MURRAY, R.M. (2017). A mathematical introduction to robotic manipulation.
CRC press. 61

NicoLEscu, M.N. & MATARIC, M.J. (2002). A hierarchical architecture for
behavior-based robots. In Proceedings of 2002 International Joint Conference
on Autonomous Agents and Multiagent Systems: part 1 (AAMAS), Bologna,
Italy. 11

NikorAIDIs, S., Gu, K., RAMAKRISHNAN, R. & SHAH, J.A. (2014). Ef-
ficient model learning for human-robot collaborative tasks. arXiv preprint
arXw:1405.6341. 90

139

REFERENCES

NIKOLAIDIS, S., RAMAKRISHNAN, R., Gu, K. & SHAH, J. (2015). Efficient
model learning from joint-action demonstrations for human-robot collaborative
tasks. In Proceedings of the 2015 Annual ACM/IEEE International Conference
on Human-Robot Interaction (HRI), Portland, OR, USA. 122

NIKOLAIDIS, S., Hsu, D. & SRINIVASA, S. (2017). Human-robot mutual adap-
tation in collaborative tasks: Models and experiments. The International Jour-
nal of Robotics Research, 36, 618-634. 6, 11

NiLssoN, N.J. (1984). Shakey the robot. Tech. rep., SRI International, Menlo
Park, CA, USA. 1

NORMAN, D. (2013). The design of everyday things: Revised and expanded edi-
tion. Constellation. 2

Novy, N.F., SINTEK, M., DECKER, S., CRUBEZY, M., FERGERSON, R.W.
& MUSEN, M.A. (2001). Creating semantic web contents with protege-2000.
IEFEFE intelligent systems, 16, 60-71. 48

O’LEARY, G. (2018). Point cloud library (pcl) documenation: How to use ran-
dom sample consensus model. [Accessed 2018-11-24]. 59

PeEDROCCHI, N., VICENTINI, F., MATTEO, M. & TosATTI, L.M. (2013). Safe
human-robot cooperation in an industrial environment. International Journal
of Advanced Robotic Systems, 10, 27. 3

PINEAU, J., MONTEMERLO, M., POLLACK, M., ROy, N. & THRUN, S. (2003).
Towards robotic assistants in nursing homes: Challenges and results. Robotics
and Autonomous Systems, 42, 271-281. 6

PROTEGE (2018). Protege wiki. [Accessed 2018-11-11]. 48

Qr, C.R., Su, H., Mo, K. & GuiBas, L.J. (2017a). Pointnet: Deep learning
on point sets for 3d classification and segmentation. Proc. Computer Vision
and Pattern Recognition (CVPR), IEEE, 1, 4. 120

Qr, C.R., Y1, L., Su, H. & GuiBas, L.J. (2017b). Pointnet-++: Deep hierar-
chical feature learning on point sets in a metric space. In Advances in Neural
Information Processing Systems, 5099-5108. 120

QUIGLEY, M., CoNLEY, K., GERKEY, B., Faust, J., FooTE, T., LEIBS,
J., WHEELER, R. & Nag, A.Y. (2009). Ros: an open-source robot operating
system. In Proceedings of the 2009 ICRA Workshop on open source software,
Kobe, Japan. 123

140

REFERENCES

R. A. GieLg, T., Mioch, T., A. NEERINCX, M. & C. MEYER, J.J. (2015).
Dynamic task allocation for human-robot teams. In Proceedings of the 2015
International Conference on Agents and Artificial Intelligence (ICAART), Lis-
bon, Portugal. 13

RUSSELL, S. & NoRrviG, P. (2010). Artificial Intelligence: A Modern Approach.
Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd edn. 12, 18, 27, 41

Rusu, R.B. (2009). Semantic 3D Object Maps for Everyday Manipulation in Hu-
man Living Environments. Ph.D. thesis, Computer Science department, Tech-
nische Universitaet Muenchen, Germany. 58

SAHNI, S. (1974). Computationally related problems. STAM Journal on Comput-
ing, 4, 262-279. 36

SANDERSON, A.C., PESHKIN, M.A. & DE MELLO, L.S.H. (1988). Task plan-
ning for robotic manipulation in space applications. IEFE Transactions on
Aerospace and Electronic Systems, 24, 619-629. 78

SAVERIANO, M., 1. AN, S. & LEE, D. (2015). Incremental kinesthetic teaching
of end-effector and null-space motion primitives. In Proceedings of the 2015
IEEFE International Conference on Robotics and Automation (ICRA), Seattle,
WA, USA. 90

SCHNABEL, R., WAHL, R. & KLEIN, R. (2007). Efficient ransac for point-cloud
shape detection. Computer Graphics Forum, 26, 214-226. 56

SEBANZ, N., BEKKERING, H. & KNoOBLICH, G. (2006). Joint action: bodies
and minds moving together. Trends in Cognitive Sciences, 10, 70-76. 9

SEBASTIANI, E., LALLEMENT, R., Arami, R. & IoccHr, L. (2017). Dealing
with on-line human-robot negotiations in hierarchical agent-based task planner.

In Proceedings of 2017 International Conference on Automated Planning and
Scheduling (ICAPS), Pittsburgh, PA, USA. 6, 10

SHAH, J., WIKEN, J., WiLLiams, B. & BREAZEAL, C. (2011). Improved
human-robot team performance using Chaski, a human-inspired plan execu-
tion system. In Proceedings of the 2011 ACM/IEEE International Conference
on Human-Robot Interaction (HRI), Lausanne, Switzerland. 3, 6, 9, 11, 14

SHAH, J.A., CONRAD, P.R. & WiLLiaMS, B.C. (2009). Fast distributed multi-
agent plan execution with dynamic task assignment and scheduling. In Proceed-

ings of the 2009 International Conference on Automated Planning and Schedul-
ing (ICAPS). 6, 13

141

REFERENCES

SiciLiIANO, B. & SroTiNg, J.J.E. (1991). A general framework for managing
multiple tasks in highly redundant robotic systems. In Proceedings of the 1991
IEEFE International Conference on Advanced Robotics 'Robots in Unstructured
Environments” (ICAR), Pisa, Italy. 74

SIMETTI, E. & CASALINO, G. (2016). A novel practical technique to integrate in-

equality control objectives and task transitions in priority based control. Jour-
nal of Intelligent & Robotic Systems, 84, 877-902. 7, 17, 68, 72, 73, 78

SIMETTI, E., CASALINO, G., WANDERLINGH, F. & AICARDI, M. (2018). Task
priority control of underwater intervention systems: Theory and applications.
Ocean Engineering, 164, 40 — 54. 17, 68

SRIVASTAVA, S., FANG, E., RiaNoO, L., CHITNIS, R., RUSSELL, S. & ABBEEL,
P. (2014). Combined task and motion planning through an extensible planner-
independent interface layer. In Proceedings of the 201 IEEE International
Conference on Robotics and Automation (ICRA), Hong Kong, China. 7, 78,
91

STEINFELD, A., FoNG, T., KABER, D., LEwis, M., ScHOLTZ, J., SCHULTZ,
A. & GOODRICH, M. (2006). Common metrics for human-robot interaction. In
Proceedings of the 2006 ACM SIGCHI/SIGART Conference on Human-robot
Interaction (HRI), Salt Lake City, Utah, USA. 2, 4, 12

Stopp, A., HORSTMANN, S., KRISTENSEN, S. & LOHNERT, F. (2003). To-
ward interactive learning for manufacturing assistants. IEEE Transactions on
Industrial Electronics, 50, 705-707. 122

ToussaiNT, M., MUNZER, T., MOLLARD, Y., Wu, L.Y., VIEN, N.A. &
LoprEes, M. (2016). Relational activity processes for modeling concurrent coop-
eration. In Proceedings of the 2016 IEEFE International Conference on Robotics
and Automation (ICRA), Stockholm, Sweden. 6, 12, 14

TsAROUCHI, P., MICHALOS, G., MAKRIS, S., ATHANASATOS, T., DIMOULAS,
K. & CHRYSSOLOURIS, G. (2017). On a human-robot workplace design and
task allocation system. International Journal of Computer Integrated Manu-
facturing, 1-8. 12, 13

TUERKER, S. (2018). Point cloud library (pcl) documenation: Euclidean cluster
extraction. [Accessed 2018-11-22]. 58

TURING, A.M. (1950). Computing machinery and intelligence. Mind, 59, 433
460. 1

142

REFERENCES

VALDESOLO, P., Ouvang, J. & DESTENO, D. (2010). The rhythm of joint
action: Synchrony promotes cooperative ability. Journal of Ezperimental Social
Psychology, 46, 693-695. 9

VALLI, A. (2008). The design of natural interaction. Multimedia Tools and Ap-
plications, 38, 295-305. 5

VAN HeEgs, V.T., GOrRZELNIAK, L., LEoN, E.C.D., EDER, M., Pias, M.,
TAHERIAN, S., EKELUND, U., RENSTROM, F., FRANKS, P.W., HORSCH,
A. et al. (2013). Separating movement and gravity components in an accelera-
tion signal and implications for the assessment of human daily physical activity.
PloS one, 8, €61691. 53

VERNON, D. (2014). Artificial cognitive systems: A primer. MIT Press. 2, 15

VERNON, D., METTA, G. & SANDINI, G. (2007). A survey of artificial cognitive
systems: Implications for the autonomous development of mental capabilities

in computational agents. IEEFE transactions on evolutionary computation, 11,
151-180. 2

VESPER, C., BUTTERFILL, S., KNOBLICH, G. & SEBANZ, N. (2010). A mini-
mal architecture for joint action. Neural Networks, 23, 998-1003. 10, 78

WAaNG, X. (2013). Intelligent multi-camera video surveillance: A review. Pattern
Recognition Letters, 34, 3 — 19, extracting Semantics from Multi-Spectrum

Video. 109

WiLcox, R., NIkoLAIDIS, S. & SHAH, J. (2012). Optimization of temporal
dynamics for adaptive human-robot interaction in assembly manufacturing. In
Proceedings of the 2012 Robotics: Science and Systems, Sydney, Australia. 13

WoLb, S., ESBENSEN, K. & GELADI, P. (1987). Principal component analysis.
Chemometrics and Intelligent Laboratory Systems, 2, 37-52. 17, 58

YooN, S., FErRN, A. & GivAaN, R. (2002). Inductive policy selection for first-
order MDPs. In Proceedings of the 2002 Conference on Uncertainty in Artificial
Intelligence, Alberta, Canada. 12

143

	1 Introduction
	1.1 Motivation
	1.2 Objectives and Innovations
	1.3 Dissertation Outline

	2 Software Architecture for Flexible Human-Robot Cooperation
	2.1 State of the Art
	2.2 FlexHRC System Architecture
	2.2.1 Representation level
	2.2.2 Perception level
	2.2.3 Action level

	3 Human-Robot Cooperation at Representation level
	3.1 Task Representation Model
	3.1.1 Propositional logic AND/OR graph
	3.1.1.1 Offline phase
	3.1.1.2 Online phase

	3.1.2 First order logic AND/OR graph
	3.1.3 Single-layer AND/OR Graph Traversal Procedure
	3.1.4 Hierarchical AND/OR graph

	3.2 Task Manager
	3.2.1 Task manager formalization
	3.2.2 Proactive decision making
	3.2.3 Reactive adaptation
	3.2.4 Task manager algorithm

	3.3 Knowledge Base

	4 Human-Robot Cooperation at Perception Level
	4.1 Human Action Recognition
	4.1.1 Probabilistic modeling for human action recognition
	4.1.2 Data pre-processing
	4.1.3 Feature extraction
	4.1.4 Modeling
	4.1.4.1 Gaussian Mixture Modeling
	4.1.4.2 Gaussian Mixture Regression

	4.1.5 Comparison
	4.1.6 Possibilities pattern extraction
	4.1.7 Condition checking

	4.2 Object and Scene Perception
	4.2.1 Euclidean clustering
	4.2.2 RANSAC method for classification
	4.2.3 Principal Component Analysis (PCA) method for feature extraction

	4.3 Objects manipulation

	5 Human-Robot Cooperation at Action Level
	5.1 Robot Execution Manager
	5.2 Robot Path Planning
	5.2.1 Path Planning Formulation
	5.2.2 Path Planning Algorithm

	5.3 Robot Controller
	5.3.1 Control objectives
	5.3.2 Control tasks
	5.3.3 Activation and deactivation of control objectives
	5.3.4 Task priority inverse kinematics
	5.3.5 Control actions

	5.4 Robot simulator

	6 Experimental Evaluation of the FlexHRC
	6.1 Collaborative Screwing Task
	6.1.1 Experiment objectives and scenario
	6.1.2 Reliability, robustness and flexibility
	6.1.3 Computational performance
	6.1.4 Performance of human action recognition
	6.1.5 Task priority control
	6.1.6 Discussion

	6.2 Coordinated Object Transportation in Cluttered Environment
	6.2.1 Experiment objectives and scenario
	6.2.2 Experimental results
	6.2.3 Discussion

	6.3 Task Representation Experiments
	6.3.1 Propositional Logic and First Order Logic AND/OR Graph Performance Comparison
	6.3.2 Single-layer and Hierarchical AND/OR Graph Performance Comparison

	6.4 Collaborative Table Assembly Experiments
	6.4.1 Scenario
	6.4.2 Computational performance
	6.4.3 Flexibility analysis
	6.4.4 Decision making and simulation analysis
	6.4.5 Symbolic fusion of object recognition and human action recognition modules
	6.4.6 Discussion

	7 Conclusions
	7.1 Summary
	7.2 Discussion on Functional Requirements

	A Software Implementation
	A.1 Task Representation
	A.2 Task Manager

	References

