
Università degli Studi di Padova

Doctoral Thesis

Cognitive Task Planning for Smart
Industrial Robots

Author:
Elisa Tosello

School Director:
Prof. Matteo Bertocco

Coordinator:
Prof. Carlo Ferrari

Supervisor:
Prof. Enrico Pagello

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

Intelligent Autonomous Systems Laboratory (IAS-Lab)
Department of Information Engineering (DEI)

Area of interest:

Information and Communication Science and Technologies (ICT)

July 31, 2016

http://www.unipd.it/
http://www.dei.unipd.it/~epv/
http://robotics.dei.unipd.it/
https://www.dei.unipd.it/

To my parents for their unconditional love,
support and encouragement in following my dreams.

Abstract
Cognitive Task Planning for Smart Industrial Robots

by Elisa Tosello

Keywords: Task Planning, Navigation Among Movable Ostacles, Manipulation, Cloud Robotics,
Cognitive Robotics, Ontology, Robot Operating System.

This research work presents a novel Cognitive Task Planning framework for Smart Industrial
Robots. The framework makes an industrial mobile manipulator robot Cognitive by applying
Semantic Web Technologies. It also introduces a novel Navigation Among Movable Obstacles
algorithm for robots navigating and manipulating inside a firm.

The objective of Industrie 4.0 is the creation of Smart Factories: modular firms provided with
cyber-physical systems able to strong customize products under the condition of highly flexible
mass-production. Such systems should real-time communicate and cooperate with each other
and with humans via the Internet of Things. They should intelligently adapt to the changing
surroundings and autonomously navigate inside a firm while moving obstacles that occlude free
paths, even if seen for the first time. At the end, in order to accomplish all these tasks while being
efficient, they should learn from their actions and from that of other agents.

Most of existing industrial mobile robots navigate along pre-generated trajectories. They follow
electrified wires embedded in the ground or lines painted on the floor. When there is no expectation
of environment changes and cycle times are critical, this planning is functional. When workspaces
and tasks change frequently, it is better to plan dynamically: robots should autonomously navigate
without relying on modifications of their environments. Consider the human behavior: humans
reason about the environment and consider the possibility of moving obstacles if a certain goal
cannot be reached or if moving objects may significantly shorten the path to it. This problem is
named Navigation Among Movable Obstacles and is mostly known in rescue robotics. This work
transposes the problem on an industrial scenario and tries to deal with its two challenges: the high
dimensionality of the state space and the treatment of uncertainty.

The proposed NAMO algorithm aims to focus exploration on less explored areas. For this reason it
extends the Kinodynamic Motion Planning by Interior-Exterior Cell Exploration algorithm. The
extension does not impose obstacles avoidance: it assigns an importance to each cell by combining
the efforts necessary to reach it and that needed to free it from obstacles. The obtained algorithm
is scalable because of its independence from the size of the map and from the number, shape,
and pose of obstacles. It does not impose restrictions on actions to be performed: the robot
can both push and grasp every object. Currently, the algorithm assumes full world knowledge
but the environment is reconfigurable and the algorithm can be easily extended in order to solve
NAMO problems in unknown environments. The algorithm handles sensor feedbacks and corrects
uncertainties.

Usually Robotics separates Motion Planning and Manipulation problems. NAMO forces their
combined processing by introducing the need of manipulating multiple objects, often unknown,
while navigating. Adopting standard precomputed grasps is not sufficient to deal with the big
amount of existing different objects. A Semantic Knowledge Framework is proposed in support of
the proposed algorithm by giving robots the ability to learn to manipulate objects and disseminate
the information gained during the fulfillment of tasks. The Framework is composed by an Ontology

iv

and an Engine. The Ontology extends the IEEE Standard Ontologies for Robotics and Automation
and contains descriptions of learned manipulation tasks and detected objects. It is accessible
from any robot connected to the Cloud. It can be considered a data store for the efficient and
reliable execution of repetitive tasks; and a Web-based repository for the exchange of information
between robots and for the speed up of the learning phase. No other manipulation ontology exists
respecting the IEEE Standard and, regardless the standard, the proposed ontology differs from
the existing ones because of the type of features saved and the efficient way in which they can
be accessed: through a super fast Cascade Hashing algorithm. The Engine lets compute and
store the manipulation actions when not present in the Ontology. It is based on Reinforcement
Learning techniques that avoid massive trainings on large-scale databases and favors human-robot
interactions.

The overall system is flexible and easily adaptable to different robots operating in different industrial
environments. It is characterized by a modular structure where each software block is completely
reusable. Every block is based on the open-source Robot Operating System. Not all industrial
robot controllers are designed to be ROS-compliant. This thesis presents the method adopted
during this research in order to Open Industrial Robot Controllers and create a ROS-Industrial
interface for them.

Sommario
Cognitive Task Planning for Smart Industrial Robots

di Elisa Tosello

Parole chiave: Task Planning, Navigation Among Movable Ostacles, Manipulation, Cloud
Robotics, Cognitive Robotics, Ontology, Robot Operating System.

Questa ricerca presenta una nuova struttura di Pianificazione Cognitiva delle Attività ideata per
Robot Industriali Intelligenti. La struttura rende Cognitivo un manipolatore industriale mobile
applicando le tecnologie offerte dal Web Semantico. Viene inoltre introdotto un nuovo algoritmo
di Navigazione tra Oggetti Removibili per robot che navigano e manipolano all’interno di una
fabbrica.

L’obiettivo di Industria 4.0 è quello di creare Fabbriche Intelligenti: fabbriche modulari dotate di
sistemi cyber-fisici in grado di customizzare i prodotti pur mantenendo una produzione di massa
altamente flessibile. Tali sistemi devono essere in grado di comunicare e cooperare tra loro e con
gli agenti umani in tempo reale, attraverso l’Internet delle Cose. Devono sapersi autonomamente
ed intelligentemente adattare ai costanti cambiamenti dell’ambiente che li circonda. Devono saper
navigare autonomamente all’interno della fabbrica, anche spostando ostacoli che occludono percorsi
liberi, ed essere in grado di manipolare questi oggetti anche se visti per la prima volta. Devono
essere in grado di imparare dalle loro azioni e da quelle eseguite da altri agenti.

La maggior parte dei robot industriali mobili naviga secondo traiettorie generate a priori. Seguono
fili elettrificati incorporati nel terreno o linee dipinte sul pavimento. Pianificare a priori è funzionale
se l’ambiente è immutevole e i cicli produttivi sono caratterizzati da criticità temporali. E’
preferibile adottare una pianificazione dinamica se, invece, l’area di lavoro ed i compiti assegnati
cambiano frequentemente: i robot devono saper navigare autonomamente senza tener conto dei
cambiamenti circostanti. Si consideri il comportamento umano: l’uomo ragiona sulla possibilità di
spostare ostacoli se una posizione obiettivo non è raggiungibile o se tale spostamento può accorciare
la traiettoria da percorrere. Questo problema viene detto Navigazione tra Oggetti Removibili ed è
noto alla robotica di soccorso. Questo lavoro traspone il problema in uno scenario industriale e
prova ad affrontare i suoi due obiettivi principali: l’elevata dimensione dello spazio di ricerca ed il
trattamento dell’incertezza.

L’algoritmo proposto vuole dare priorità di esplorazione alle aree meno esplorate, per questo
estende l’algoritmo noto come Kinodynamic Motion Planning by Interior-Exterior Cell Exploration.
L’estensione non impone l’elusione degli ostacoli. Assegna ad ogni cella un’importanza che combina
lo sforzo necessario per raggiungerla con quello necessario per liberarla da eventuali ostacoli.
L’algoritmo risultante è scalabile grazie alla sua indipendenza dalla dimensione della mappa e
dal numero, forma e posizione degli ostacoli. Non impone restrizioni sulle azioni da eseguire:
ogni oggetto può venir spinto o afferrato. Allo stato attuale, l’algoritmo assume una completa
conoscenza del mondo circonstante. L’ambiente è però riconfigurabile di modo che l’algoritmo
possa venir facilmente esteso alla risoluzione di problemi di Navigazione tra Oggetti Removibili in
ambienti ignoti. L’algoritmo gestisce i feedback dati dai sensori per correggere le incertezze.

Solitamente la Robotica separa la risoluzione dei problemi di pianificazione del movimento da quelli
di manipolazione. La Navigazione tra Ostacoli Removibili forza il loro trattamento combinato
introducendo la necessità di manipolare oggetti diversi, spesso ignoti, durante la navigazione.

vi

Adottare prese pre calcolate non fa fronte alla grande quantità e diversità di oggetti esistenti.
Questa tesi propone un Framework di Conoscenza Semantica a supporto dell’algoritmo sopra
esposto. Esso dà ai robot la capacità di imparare a manipolare oggetti e disseminare le informazioni
acquisite durante il compimento dei compiti assegnati. Il Framework si compone di un’Ontologia e
di un Engine. L’Ontologia estende lo Standard IEEE formulato per Ontologie per la Robotica e
l’Automazione andando a definire le manipolazioni apprese e gli oggetti rilevati. È accessibile a
qualsiasi robot connesso al Cloud. Può venir considerato I) una raccolta di dati per l’esecuzione
efficiente ed affidabile di azioni ripetute; II) un archivio Web per lo scambio di informazioni tra
robot e la velocizzazione della fase di apprendimento. Ad ora, non esistono altre ontologie sulla
manipolazione che rispettino lo Standard IEEE. Indipendentemente dallo standard, l’Ontologia
proposta differisce da quelle esistenti per il tipo di informazioni salvate e per il modo efficiente in cui
un agente può accedere a queste informazioni: attraverso un algoritmo di Cascade Hashing molto
veloce. L’Engine consente il calcolo e il salvataggio delle manipolazioni non ancora in Ontologia. Si
basa su tecniche di Reinforcement Learning che evitano il training massivo su basi di dati a larga
scala, favorendo l’interazione uomo-robot. Infatti, viene data ai robot la possibilità di imparare
dagli umani attraverso un framework di Apprendimento Robotico da Dimostrazioni.

Il sistema finale è flessibile ed adattabile a robot diversi operanti in diversi ambienti industriali. È
caratterizzato da una struttura modulare in cui ogni blocco è completamente riutilizzabile. Ogni
blocco si basa sul sistema open-source denominato Robot Operating System. Non tutti i controllori
industriali sono disegnati per essere compatibili con questa piattaforma. Viene quindi presentato il
metodo che è stato adottato per aprire i controllori dei robot industriali e crearne un’interfaccia
ROS.

List of Publications
Papers closely related to the scientific achievements of this Thesis:

I E. Tosello, Z. Fan, A. C. Gatto, and E. Pagello
Cloud-based Task Planning for Smart Robots
The 14th International Conference on Intelligent Autonomous Systems (IAS-14); Proceedings
of. July 3-7, 2016. Shanghai (China).

II N. Castaman, E. Tosello, and E. Pagello
A sampling-based Tree Planner for Navigation Among Movable Obstacles
ISR 2016; 47th International Symposium on Robotics; Proceedings of. June 21-22, 2016.
Munich (Germany). pp. 292-299.

III E. Tosello, Z. Fan, and E. Pagello
A Semantic Knwoledge Base for Cognitive Robotics Manipulators
Toward Intelligent Social Robots - Current Advances in Cognitive Robotics, Workshop on.
Nov 3rd, 2015. Seul (Korea).

IV S. Michieletto, E. Tosello, F. Romanelli, V. Ferrara, and E. Menegatti
ROS-I Interface for COMAU Robots
Simulation, Modeling, and Programming for Autonomous Robots. 4th International Confer-
ence, SIMPAR 2014; Proceedings of. October 20-23, 2014. Bergamo (Italy). Online ISBN:
978-3-319-11900-7. pp. 243-254.

V E. Tosello, S. Michieletto, A. Bisson, E. Pagello, and E. Menegatti
A Learning from Demonstration Framework for Manipulation Tasks
ISR/Robotik 2014; 45th International Symposium on Robotics; Proceedings of. June 2-3,
2014. Munich (Germany). ISBN: 978-3-8007-3601-0. pp. 1-7.

VI Z. Fan, E. Tosello, M. Palmia, and E. Pagello
Applying Semantic Web Technologies to Multi-Robot Coordination
NRF-IAS-2014; New Research Frontiers for Intelligent Autonomous Systems; Workshop. July
19, 2014. Venice (Italy).

Contribution report
The author of this Thesis has given a main contribution to Papers I, II, III, IV and VI, while she
has only partially contributed to Paper V through experiments implementation, data analysis and
discussion of results.

viii

The following papers are not strictly correlated to the main topics developed in this Thesis.

• E. Tosello, S. Michieletto, E. Pagello
Training master students to program both virtual and real autonomous robots in a teaching
laboratory
EDUCON 2016; IEEE Global Engineering Education Conference; Proceedings of. April
10-13, 2016. Abu Dhabi (AUE). pp. 621 - 630.

• S. Michieletto, E. Tosello, E. Pagello, E. Menegatti
Teaching Humanoid Robotics by means of Human Teleoperation through RGB-D Sensors
Robotics and Autonomous Systems, Journal of. Available online 23 October 2015.

• N. Boscolo, E. Tosello, S. Tonello, M. Finotto, R. Bortoletto, and E. Menegatti
A Constraint Based Motion Optimization System for Quality Inspection Process Improve-
ment
Simulation, Modeling, and Programming for Autonomous Robots. 4th International Con-
ference, SIMPAR 2014; Proceedings of. October 20-23, 2014. Bergamo (Italy). Online
ISBN: 978-3-319-11900-7. pp. 545-553.

• E. Tosello, R. Bortoletto, S. Michieletto, E. Pagello, and E. Menegatti
An Integrated System to approach the Programming of Humanoid Robotics
4th International Workshop Teaching Robotics, Teaching with Robotics & 5th International
Conference Robotics in Education; Proceedings of. July 18, 2014. Padova (Italy). ISBN
978-88-95872-06-3. pp. 93-100.

• D. Kurabayashi, Y.Takahashi, R. Minegishi, E. Tosello, E. Pagello, R. Kanzaki
Property Investigation of Chemical Plume Tracing Algorithm in an Insect Using Bio-
machine Hybrid System
Living Machines. 29 July - 2 August, 2013. London (United Kindom). pp. 131-142.

Paper published prior PhD:

• S. Tonello, G. P. Zanetti, M. Finotto, R. Bortoletto, E. Tosello, E. Menegatti
WorkCellSimulator: A 3D Simulator for Intelligent Manufacturing
Simulation, Modeling, and Programming for Autonomous Robots. Springer Verlag Berlin.
November 5-8, 2012. Tsukuba (Japan). pp. 311-322.

Acknowledgments

I am grateful to Prof. Pagello, my supervisor and my mentor, for the opportunity he gave me
by working in the world of Research. He gave me his passion, almost devotion, for Robotics. A
man always ready to put into practice new ideas and lead innovation in this field. I want to thank
him for giving me the opportunity to make my little Robotics contribution. Thanks also to Prof.
Menegatti for welcoming me in the Intelligent Autonomous System Lab. They both gave me the
opportunity to professionally and personally grow, improve myself... and travel!

Huge thanks to my colleagues for sharing ideas and hard work. Special thanks to Roberto, my
right-hand man and my referee in the lab. “Cicca?”.

Thanks to Prof. Kavraki. She let me conclude this chapter of my life becoming a Citizen of the
World. I will do my best!

Thanks to my old friends, the ones who never get tired to ask me out and feel say no, the ones
who were awake at night to keep me company while I was preparing the presentation for my first
conference. Thanks to those I’ve known all my life. Vale, sometimes we haven’t heard in ages but
every time it is like it was yesterday. I know you will be close to me even when I will be away!
Thanks to passing friends because they lightened my journey. Thanks to friends of all nationalities,
the ones I met at summer schools and conferences.. Spanish, Turkish, German, French, Chinese
(nationalities are too many to list all) people that made me realize that the world is full of people
who want to improve it. Pedro, you are one of them!

Particular thanks to my parents, Manuela and Corrado, because if I came up here I owe all it to
them, their unconditional love, and sacrifices. Thanks for accepting my choices (even those you do
not understand :P).

Thanks to my cousin Betty. She is like a sister for me!

And finally thanks to the man who read all my papers and is still waiting for his “robot carrying
beer”, Francesco. Thanks for having supported me all the times I thought of giving up. Thanks
for understanding my studies in Robotics. Believe! That robot will come!

Elisa

Padova, Italy, July 2016

Contents
List of Figures xv

List of Tables xvii

List of Abbreviations xix

1 Background and Motivation 1
1.1 Motivations . 2
1.2 Challenges . 5
1.3 Contributions . 6
1.4 Thesis Outline . 8

2 Navigation Among Movable Obstacles 9
2.1 State of Art . 10
2.2 Problem Statement . 11
2.3 Action Space . 13

2.3.1 Navigation . 13
2.3.2 Manipulation . 13

2.4 Problem Complexity . 14
2.5 Idea . 15
2.6 Proposed Solution . 15

2.6.1 Navigation . 15
2.6.2 Manipulation . 18

2.6.2.1 The relocation routine of graspable objects 18
2.6.2.2 The relocation routine of pushable objects 19

2.7 Implementation Details . 20
2.7.1 Navigation . 20
2.7.2 Manipulation . 21
2.7.3 Uncertainty . 22

2.8 Experiments . 22
2.8.1 Experiment 1: a Point-like Robot . 23
2.8.2 Experiment 2: a Footprint Robot . 23
2.8.3 Experiment 3: a Simulated Robot . 24

2.9 Results . 25
2.9.1 Experiment 1 . 25
2.9.2 Experiment 2 . 26
2.9.3 Experiment 3 . 27

2.10 Discussion . 28

3 Manipulation 29
3.1 Reinforcement Learning . 30

3.1.1 Overview . 30
3.1.2 The Framework . 30

3.2 Robot Learning from Demonstration . 31
3.2.1 Overview . 31
3.2.2 The Framework . 32

3.2.2.1 Data Acquisition . 32

xii Contents

3.2.2.2 Retargeting . 32
3.2.2.3 Motion Controllers . 34

3.2.2.3.1 Position Controller . 35
3.2.2.3.2 Velocity Controller . 35

3.3 Discussion . 36

4 Open Semantic Framework 37
4.1 State of Art . 39

4.1.1 Cloud Computing . 39
4.1.2 Big Data . 40

4.2 Idea . 40
4.3 Ontologies vs Database models . 40
4.4 RTASK . 42

4.4.1 Design . 42
4.4.2 Implementation details . 42
4.4.3 Languages . 44

4.5 Engine . 45
4.5.1 Data Retrieval . 45
4.5.2 Data Insertion . 47
4.5.3 Human-Robot Interaction . 47

4.6 Experiments . 49
4.6.0.1 Sense . 49
4.6.0.2 Model . 50
4.6.0.3 Act . 50

4.6.1 Results . 50
4.7 Discussion . 52

5 Flexible robots: Open Controllers and ROS-I Interfaces 53
5.1 State of Art . 54
5.2 Idea . 54
5.3 A ROS-I Interface for C4G Open Controller . 55

5.3.1 Comau C4G Open Controller . 56
5.3.2 Open Motion Planning Library . 57
5.3.3 The ROS-I Interface . 58

5.3.3.1 Real robot . 58
5.3.3.2 Simulation . 59

5.4 Experiments . 59
5.4.1 Objectives . 59
5.4.2 Experimental Setup . 59

5.4.2.1 Scenario 1 - Position Controller 59
5.4.2.1.1 Assignment . 60
5.4.2.1.2 Simulated Setup . 60
5.4.2.1.3 Real Setup . 60

5.4.2.2 Scenario 2 - Velocity Controller . 60
5.4.2.2.1 Assignment . 61
5.4.2.2.2 Simulated Setup . 61
5.4.2.2.3 Real Setup . 61

Contents xiii

5.5 Results . 61
5.5.1 Scenario 1 - Position Controller . 61

5.5.1.1 Simulation . 61
5.5.1.2 Real World . 62

5.5.2 Scenario 2 - Velocity Controller . 62
5.5.2.1 Simulation . 62
5.5.2.2 Real World . 62

5.6 Discussion . 63

6 Conclusions and Future Work 65
6.1 Conclusions . 66
6.2 Future Work . 67

A Appendix 69

B Appendix 73

C Appendix 77

Bibliography 81

List of Figures
1.1 A Navigation Among Movable Obstacles scenario. 3

2.1 The Configuration Space. 11
2.2 Stilman NAMO planner. 12
2.3 The positions generation routine of a graspable obstacle. 19
2.4 The positions generation process of a pushable obstacle. 20
2.5 From Robot Footprint to Cells. 21
2.6 Objects in the scene and their segmentations. A marker is visible for every reference

system. Objects are ordered depending on the distance from the robot. 22
2.7 The robot in the scene. 23
2.8 Experiment 1: A point-like robot moving on a map. One obstacle is selected for the

relocation routine. 24
2.9 Computational time with respect to the number of obstacles populating the grid. . 25
2.10 Computational time with respect to the size of the map. 25
2.11 Experiment 2: Robot Fooprint . 26
2.12 Experiment 3: The simulated routine. 27

3.1 The AGILE output. 30
3.2 Action definition for the grasping task. 31
3.3 The skeleton joints provided by the tracker. 32
3.4 Robot Comau Smart5 SiX Specifications. 33
3.5 System Controllers . 34

4.1 Objects in the world . 38
4.2 The Ontology. 43
4.3 The RTASK extension to the IEEE Ontology for Robotics and Automation. 44
4.4 The Robotic Cloud. 45
4.5 Image processing pipeline for the matching phase. 46
4.6 The Reasoning Pipeline. Blue parts represent human interventions. 48
4.7 The Sense-Model-Act Framework. 49
4.8 a) The robot in the scene; b) The detected scene; c) The segmented objects; d) The

grasp of the nearest object. 51

5.1 Architecture of the obtained system. It includes including the initial structure (gray)
and the integration with ROS (red). 55

5.2 Standard architecture for the Comau C4G robot controller. 56
5.3 Open Control architecture for the Comau C4G robot controller. 57
5.4 The first experiment: use of a Position Controller 60
5.5 The second experiment: use of a velocity controller 61
5.6 Robot joint positions and velocities during the second test. 62

A.1 Kinodynamic Motion Planning by Interior-Exterior Cell Exploration: Cells Dis-
cretization. 70

A.2 Computational statistics. 71

B.1 Scale-invariant feature transform: the Scale-space Extrema Detection phase. 74
B.2 Scale-Invariant Feature Transform . 74

xvi List of Figures

C.1 Signature of Histograms of Orientations. 78
C.2 The rail_segmentation tool. 79

List of Tables
2.1 Mean time of 10000 executions (time expressed in ms). 24
2.2 Mean obstacles weight of 10000 executions. 24
2.3 Results of 10 attempts. Behaviors of a 2x2 and a 3x4 pixels robot footprints are

compared (time expressed in seconds). 26

4.1 Elaboration time taken for features matching. 50
4.2 Elaboration time taken for features extraction. 51

List of Abbreviations
AGILE Antipodal Grasping Identification and LEarning
AGV Automatic Guided Vehicles
ANN Approximate Nearest Neighbor
B-Spline Basis Spline
BIC Bayesian Information Criterion
BSD Berkeley Software Distribution
CoM Center of Mass
CORA Core Ontology for Robotics & Automation
CORE Cloud-base Object Recognition Engine
DBMS Database Management System
DoF Degree of Freedom
DoG Difference of Gaussians
DSP Digital Signal Processing
EM Expectation Maximization
EST Expansive Space Trees
GMM Gaussian Mixture Model
GMR Gaussian Mixture Regression
JSON JavaScript Object Notation
KPIECE Kinodynamic Motion Planning by Interior-Exterior Cell Exploration
LoG Laplacian of Gaussian
MAP Manufacturing Automation Protocol
MPC Model Predictive Control
NAMO Navigation Among Movable Obstacles
OpenCV Open source Computer Vision library
ORA Ontology for Robotics & Automation
ORL Open realistic Robot Library
OSD Object Segmentation Database
OWL Web Ontology Language
PCA Principal Component Analysis
PCL Point Cloud Library
RAS Robotics and Automation Society
RDF Resource Description Format
RLfD Robot Learning from Demonstration
RL Reinforcement Learning
ROS-I Robot Operating System-Industrial
ROS Robot Operating System
RRT Rapidly-exploring Random Trees
RTAI Real-Time Application Interface

xx List of Tables

RTnet Real-Time networking
SBL Single-query Bidirectional probabilistic roadmap planner with Lazy collision checking
SHOT Signature of Histograms of OrienTations
SIFT Scale Invariant Feature Transform
SMP+ System Master Processor
SOM Semantic Object Map
SOM Semantic Object Maps
SPARQL Simple Protocol and RDF Query Language
SVM Storage Virtual Machine
URDF Universal Robot Description Format
W3C World Wide Web Consortium
WG Working Group

1
Background and Motivation

The first Chapter depicts the Motivation of the conducted Research. Challenges and Contributions
are highlighted.

Contents
1.1 Motivations . 2
1.2 Challenges . 5
1.3 Contributions . 6
1.4 Thesis Outline . 8

2 1. Background and Motivation

The goal of this thesis is proposing a novel approach for Cognitive Task Planning for Smart
Industrial Robots.

Focusing on tasks such as Navigation and Manipulation, the aim is that of giving industrial mobile
manipulator robots the ability of autonomously navigate in a factory while deciding if moving
obstacles could shorter the path or could let the achievement of goals otherwise unreachable.
The potential of solving Task Planning problems while combining Navigation and Manipulation
capabilities is then given to robots, together with the Cognitive capabilities required to improve
robots autonomy. Every robot should be able to learn how to accomplish a task from other agents
and should solve tasks by applying what learnt. This is especially useful in robotics manipulation
because of the large variety of existing manipulable objects and of the large variety of possible
gripper manipulation poses. For this purpose, an Open Semantic Framework for Knowledge
acquisition is proposed in support of the Navigation planner and can be treated as an information
resource for robots performing Manipulation tasks.

1.1 Motivations

In the cyber-physical production world of Industrie 4.0, the idea of populating factories with robots,
designed merely as universal machines to boost productivity, and transporting goods through static
production lines is becoming outdated. The aim is that of increasingly evolving robots into factory
servants and assistants able to support human workers and accomplish multiple tasks. They should
act as AGVs able to substitute conveyor belts by moving in swarms and autonomously finding
their destinations without floor markings, induction loops or magnets. They should be able to
move products, workpieces or entire productions units, and reposition them in different locations.
Moreover, the possibility of adopting a safe and productive human-robot interaction in presence of
ambiguous situations and tight workspaces should be the everyday. Robots should collaborate with
humans or learn from humans, e.g., through a RLfD framework [V], [1]. Multi-robots cooperative
systems should be adopted to speed up and improve the way to operate. A team of robots, in fact,
can subdivide tasks according to their abilities [VI].

Formally, this means that Smart Robots should populate Smart Factories: versatile and efficient
Artificial Intelligence systems able to support human workers. Versatile because robots should
be able to perceive and independently, safely, and timely adapt to external influences and to the
resulting constantly changing surroundings. Efficient because, in order to intelligently act, robots
should be able to learn from past experiences, errors, actions performed by other agents (either
humans or robots), and build on their capabilities based on that knowledge. These capabilities
cannot arise from precomputed software routines. This thesis argues that robots should be able to
reason and act like humans: they should decide which path to cover while moving in swarms or if
moving obstacles out of their way can shorter that path. They should learn how to manipulate
objects and they should share what learnt in order to improve the global knowledge growth. This
means that robots should be Cognitive: agents able to learn how to solve new tasks and increase
their capabilities based on that knowledge. Moreover, they should combine their Navigation and
Manipulation capabilities in order to solve those tasks. For these reasons, this thesis focuses on the
resolution of Motion Planning problems through a Cognitive combination of robotics Navigation
and Manipulation capabilities.

Over the last decades, many Motion Planning algorithms have been developed in order to find
a continuous robot motion connecting a robot start configuration qS and a goal configuration
qG. Usually, these algorithms limit the search of the path within the collision-free space, while

1.1. Motivations 3

Figure 1.1: A Navigation Among Movable Obstacles scenario.

avoiding contacts with obstacles in the scene. They ignore the fact that mobile manipulators have
both navigation and manipulator capabilities and they are in contrast to how humans naturally
act: humans do not hesitate to utilize their manipulation capabilities to modify the environment,
create gaps among obstacles, and minimize efforts and time necessary to reach a goal. Figure
1.1 depicts a symbolic scenario: instead of circumnavigating the collision space that occludes the
goal, humans first try to move the obstacle. If the manipulation is too onerous (e.g., the object is
heavy, the time required to manipulate the object exceeds the time to perform the collision-free
path, etc.), then they will interrupt the task and walk through the existing free space. Robots
should demonstrate similar behavior. This thesis highlights the need of a Motion Planning solver
that combines navigation and manipulation capabilities for robots in automation while keeping
in mind that other fields argue the same need. Service robots, for example, should be able to
autonomously navigate inside a home or an office while opening doors or moving chairs. Rescue
robots should be able to act in areas affected by disasters such as mining accidents, floods, and
earthquakes; they should be able to decide when moving obstacles out of their way in order to
reach and save humans in the shortest possible time. NAMO is an instance of Motion Planning
that gives robots the ability to reason about the environment and choose when manipulating
obstacles [2]. It plans robot movements taking into consideration the possibility of moving objects
if the goal is otherwise unreachable or if moving objects may significantly shorten the path. This
thesis proposes a Sampling-based tree planner that solves NAMO problems by giving robots the
capability of finding the shorter path to a goal pose eventually manipulating objects that obstruct
free navigable spaces. The planner is designed for cognitive robots and tested on mobile industrial
ones [II].

Once established the will to combine robotics navigation and manipulation capabilities, a second
fact should be take on: a wide variety of manipulable objects exist. Given the large number of
different existing objects and robotic grippers, off-line precomputing all manipulation actions is
inefficient or even impossible. It requires robots to be equipped with large on board CPU stacks
and it does not make them intelligent. Instead, robots should be able to perceive and explore the
surrounding workspace in order to detect objects to be manipulated, obstacles to be avoided, or
event the agents with which they are collaborating. They have to be able to compute or learn the
arm’s path that allows them to approach objects without colliding and the gripper data necessary
for the manipulation (e.g., the grasp pose, the gripping force, the stability of finger contacts). Given
an object seen for the first time, they could combine a trial-and-error Reinforcement Learning

4 1. Background and Motivation

technique with a matching phase that compares the achieved results with the desired ones. For all
known objects or similar ones, they should exploit the already adopted strategies [3, 4]. This thesis
argues the lack of a sharable, Cloud-based Semantic Knowledge Base that can be adopted as an
information resource for intelligent, autonomous, cognitive robots performing manipulation tasks.
Its adoption will overcome the limited capacity of robots on-board data memory while offering a
common medium to communicate and share knowledge. This will speed up the learning phase of
each manipulator robot. Imagine a robot that can learn how to manipulate an object (e.g., by
exploring the workspace or observing actions performed by other agents) and can save the acquired
information on a common Knowledge Base, together with data describing detected objects and
explored environments. In this way, the information can be shared with other robots, facilitating
future replicas by the same robot or by different robots with the same assignment. The purpose is
not to formulate a cognitivist precoded symbolic representation of the workspace; the aim is to
create a Knowledge Base able to improve the co-determination of emergent systems. Traditional
cognitive modeling approaches involve symbolic coding scheme as a means for depicting the world.
This symbolic representation originates a designer-dependent action domain [5] that is successful
if the system acts under the conditions specified by descriptors; otherwise, a semantic gap [6]
between perception and possible interpretation follows and must be bridged by implementing
ad-hoc frameworks [7]. Co-determination is the solution. It means that the agent constructs
its reality (its world) because of its operations in the world: intelligently acting is functionally
dependent on the interaction between perception and cognition. With this aim, the proposed
Open Semantic Framework is composed of an Ontology and a Cloud-based Engine. The former
stores data about objects and actions necessary to manipulate them. The latter detects objects
in the scene and retrieves their manipulation actions from the Ontology. If no ontological data
exists, the Engine generates and stores it within the Ontology. Adopting a Cloud server allows to
offload robots from CPU-heavy tasks and to perform intensive computation while meeting the hard
real-time constraints of operations. The Web Ontology, instead, lets the definition of a common
vocabulary that ensures a common understanding during the interaction as well as an efficient
data transfer and integration.

Finally, in order to guarantee the flexibility and adaptability of the system according to the
assigned task (e.g., navigation or manipulation), the robot has to be part of a modular framework
structured into reusable blocks. Every block should identify a function that accomplishes part
of the task. In this way, the framework becomes independent from the blocks nature and allows
users to customize their applications according to their needs: they can use the entire system
or maintain only some of its modules. Hence, code reusability makes the software portable and
manufacturer-independent. Updating single blocks is easier and faster, as well as finding and
fixing bugs. This improves robustness and efficiency. Blocks composition is dynamic; hence, the
functionality of the system can change at runtime in accordance to the highlighted flexibility and
adaptability requirements. This thesis argues the lack of consistent incentives offered to software
developers in order to stimulate them in taking the reuse direction. There exist projects that
finance the scientific community in order to apply its research on industrial products. However,
most of manufactures do not support the community efforts: these researches represent a long-term
cost and fall outside of industrial short-term goals. For this reason, most of existing industrial
applications are robot dependent: programmers implement robotics software packages for specific
robot platforms performing tasks in specific environments. Applications, similar to the existing
ones, are every time implemented from scratch. In order to make the proposed framework reusable,
ROS has been adopted [8].

Not all industrial robot controllers are ROS-compliant. The last part of this thesis focuses on
the efforts done during this research to combine ROS high-level functionalities with the low-level

1.2. Challenges 5

reliability and safety of industrial robot controllers in order to create a robust and reliable software.
The validity of the system is proved by describing the results obtained after the opening of a Comau
robot controller and the implementation of its ROS interface. Opening a controller is essential in
order to make it ROS-compliant. According to Technical Committee of Open Systems of IEEE,
“An open system provides capabilities that enable properly implemented applications to run on a
variety of applications and present a consistent style of interaction with the user” [9]. From user
point of view, the “openness” of systems consists in capabilities to integrate, extend, and reuse
software modules in control systems [10]. In our case, for example, the robot has to detect the
object on the surrounding workspace in order to manipulate it. Hence, vision sensors integration is
essential. Even opening industrial robot controllers is not an established habit and, for this reason,
it falls among the nowadays robotics challenges. Two features have to be considered when dealing
with an industrial robot. The former is its insertion in an industrial environment populated by
people: the robot has to be designed observing several requirements, such as industrial standards
and safety regulations. The latter regards the maintenance of the trade secret. The combination
of these two factors has always led manufactures to keep their controllers closed to the users
who want to improve their capabilities and extend their computational power. Closure hinders
the robotics performance improvement: software modules are application-specific, they cannot
be reused for other applications and cannot be modified, external hardware such as sensors and
vision systems cannot be integrated. Hence, designing and testing new algorithms in a short time
and at limited costs is not possible. Many robot manufactures have realized that this policy is
counterproductive, limiting the possibility of offering flexible, integrable and highly reconfigurable
robotics units. Reducing the manufacturer “lock-in” and increasing the innovation changes will
speed up the 4th Industrial Revolution.

1.2 Challenges

The goal of this thesis is to develop a practical system that allows a robot to reason about the
environment and eventually move obstacles away. The robot should be able to cognitive learn how
to solve the planning and flexibly adapt to the changing surroundings. Multiple challenges address
the framework.

Real-timing In order to create a reusable and adaptable industrial framework, the industrial
robot controller should be opened and made ROS-compliant. The controller should have real-time
characteristics in order to let the robot real-time react to external influences and sensor feedbacks.
This is a challenge because of the non real-time ROS nature. Moreover, a real-time Web connection
between the ROS framework and the Cloud Engine has to be guaranteed: once detected the object
to be manipulated, the robot should real-time access the Web Ontology to retrieve manipulation
data. Delays could compromise the successful outcome of the action. If no data has been stored
on the Ontology, the robot has to try to manipulate (or learn to manipulate) the object itself in
real-time.

Dimensionality When solving a NAMO problem, the planner has to face very high dimensional
spaces. This challenge is related to the size of the space, the lack of meaningful heuristics for
choosing objects, and the complex nonlinearity of object interaction that leads to local minima.
In order to understand the state space dimensionality, consider navigating in a room populated
by manipulable obstacles. As stated by Levihn in his PhD thesis [11], planning for a single
mobile robot with a fixed number of DoFs is not enough. NAMO requires to consider also the
displacement of any movable obstacle taking the dimension of the state space exponential in the
number of objects it contains. Formally, if Cr ∈ Rdr is the configuration of a robot r (dr is the

6 1. Background and Motivation

dimension of the robot state space, i.e. the number of its DoFs) and Co ∈ Rdo is the configuration
of an object o (do is the dimension of the object state space), then an environment composed
of a robot r and N obstacles oi (1 ≤ i ≤ N) will be represented by the product of subspaces
Cr × Co1 × ...× Coi × CoN ∈ R(dr+Ndo). If d is the discretization resolution of every dimension of
the considered discretized environment, then the number of possible states will be O(d(dr+Ndo)).
Proper heuristics should be formulated for efficiently selecting the objects to be displaced and
deciding where to move them. As done by Stilman in [12], without loss of generality, this thesis
reduces the navigation domain to a sub-domain, namely L1, where disconnected components
of free-space could be connected independently by moving a single obstacle. If heuristics are
correctly formulated, the implemented algorithm will be scalable: an algorithm characterized by
a computational time of an order of magnitude such that the system will be as independent as
possible from the size of the map and from the number, size and shape of obstacles.

Uncertainty Usually, real robots do not have a complete knowledge of their workspace. While
acting, they have to perceive the environment and exploit sensor feedbacks in order to auto-localize,
locate and recognize objects, and verify the outcome of their actions. Existing sensors have
limited capacities, resulting in state and action uncertainties while physical interacting with the
environment. While moving, for example, motor engines could be imprecise, the terrain could be
rough or characterized by an unexpected friction. For those reasons, the robot final state could
not correspond to the desired one. While grasping or pushing an object, the weight of that object
could be different from the estimated one and the action could not reflect what planned. Also
in this case, friction and the dynamic features of the object could affect the motion. Improving
existing objects recognition and localization methods is beyond the scope of this thesis but existing
tools accomplishing these functions should be well employed in order to give robots the capability
of manage state and action uncertainties.

Autonomy A robot is autonomous if it does not need human intervention. This objective is
especially challenging when sharing and exchanging data. Communication protocols should be
programming language and transport agnostic. Information should be represented in a machine-
understandable format: the meaning of the content should be represented explicitly, separately
in terms of logical axioms that a robot can understand, and these logical axioms should be well-
defined. This means that a common vocabulary should be defined in order to ensure a common
understanding during the interaction as well as an efficient data transfer and integration.

1.3 Contributions

A very short description of the contributions of this thesis with respect to the exposed challenges
follows. Their implementations will be detailed in the following chapters.

Real-timing In order to guarantee the real-time performances of the implemented Task Planning
framework, the framework is composed of ROS blocks. The industrial robot controller has been
opened and a ROS interface has been implemented in order to let the framework, and more
generally ROS users, send commands to this controller. The connection between the framework
and the Cloud-Engine is as real-time as possible.

The controller has been made real-time by adding an external PC based on GNU/Linux Operating
System. The PC extends the standard kernel with real-time capabilities by using the RTAI module
[13]. In addition, a real-time communication layer is provided using the RTnet stack [14], an
open source hard real-time network protocol compatible with RTAI. The gap of ROS of not being
real-time has been overcome by developing a communication node connecting the real robot with

1.3. Contributions 7

the ROS module. The node includes both a real-time and a normal priority thread. The former
establishes the connection between the controller and the real robot. The latter provides the
controller with the motion data: if a ROS compliant platform aims to control the robot by sending
it specific motion directives, then the thread will deliver these motion commands to the controller
in the form of ROS messages. If a non-ROS compliant processor has the same request, the thread
will send the motion primitives to the controller in the form of TCP/IP messages.

On the other hand, the Cloud infrastructure is based on a service architecture (synchronous). The
communication between nodes of the ROS Client framework and that of the Cloud Engine is
based on Python WebSockects over HTTP and ros_bridge [15], a middleware abstraction layer
that provides socket-based programmatic access to robot interfaces and algorithms by ROS. All
messages are transported as serialized ROS messages represented as JSONi objects. Within the
Cloud Engine, the Ontology access is “super-fast” thanks to the implementation of a “super-fast”
Similar Search routine: for every object stored on the Ontology, its descriptors are saved also on a
server folder. When detecting an object, descriptors of the folder are compared using a super-fast
cascade hashing algorithm (ten times faster than other image matching algorithms) [16]. The
comparison returns the name of the class representing similar descriptors. The name is used to
filter the Ontology. This procedure lets query the Ontology only once. As result, the architecture
has real-time performances and is scalable.

Dimensionality A Sampling-based Tree Planner has been implemented in order to solve NAMO
L1 problems. The planner exploits the exploration strategy of KPIECE, which focuses exploration
on less covered areas, by assigning an importance function that gives priority to unexplored spaces
(see Appendix A). As stated in [17, 18], KPIECE projects the state space to a lower dimensional
Euclidean space and discretizes it by using a grid. The discretization is used to estimate the
coverage of the state space and to evaluate cells goodness: for every cell, the algorithm saves
the number of times it has been explored and the progress achieved by exploring it. Combining
collected information, KPIECE is able to deterministically select the regions to explore: the best
less explored ones. While KPIECE searches for a collision-free path, the NAMO importance
function takes into consideration also those areas populated by obstacles and the effort done by
robots to remove them. The algorithm extends KPIECE because, if compared with other Motion
Planning algorithm, KPIECE makes a better use of the information collected during the planning
process. This information is used to decrease the amount of forward propagation the algorithm
needs. As consequence, both runtime and memory requirements decrease making the algorithm
suitable to handle high dimensional systems with complex dynamics. The obtained algorithm
is locally optimal and its computation time has an order of magnitude that makes it almost
independent from the size of the map and from the number, shape, and position of obstacles.

Uncertainty A Microsoft Kinect vision sensor is mounted on the robot. Data filters, feature
descriptions, and segmentation techniques of the Point Cloud Library [19, 20] are exploited in
order to process the Kinect signals and extract the scene, segment and recognize objects, and
extract their poses. This information is used to update the NAMO occupancy map, recalculate
the path if necessary, verify the outcome of an action (manipulation or navigation), and eventually
plan a corrective action (see Appendix C).

Autonomy An Ontology has been implemented in order to define a common manipulation
vocabulary. It encodes information about assigned tasks, objects, and their manipulation data.
Defining an Ontology instead of an SQL Database makes robots more autonomous. In fact, the

iJSON is a lightweight data-interchange format that is easy for humans to read and write and for machines to
parse and generate

8 1. Background and Motivation

logical data structure of a DBMS is limited in scope and biased toward the employed implementation
strategy. An Ontology, instead, makes all pertinent knowledge about a domain explicit and is
represented in a computer-interpretable format. This format allows a software to reason on that
knowledge in order to infer additional information. Following these concepts, the implemented
Ontology extends the work proposed by the IEEE RAS ORA WG [21, 22, 23] by covering the
manipulation task domain. Data is represented through the union of the Resource Description
Format (RDF)ii and the Web Ontology Language (OWL)iii, namely OWL Full. While RDF is
used to define data structure, OWL adds semantic to the schema and allows the user to specify
relationships among data. OWL Full allows an Ontology to augment the meaning of the RDF
vocabulary by guaranteeing the maximum expressiveness of OWL and the syntactic freedom of
RDF. Indeed, OWL is adopted by the W3C and is the representation language used by the RAS
ORA WG.

1.4 Thesis Outline

The rest of this work is organized as follows:

• Chapter 2 - Navigation Among Movable Obstacles presents the proposed algorithm
to solve NAMO problems while focusing exploration on less explored areas;

• Chapter 3 - Manipulation proposes some methods to Cognitive manipulate objects: using
a Robot Learning from Demonstration Framework or a Reinforcement Learning technique;

• Chapter 4 - Open Semantic Framework collects efforts done to tap into the Cloud
and develop an Open Semantic Framework for Knowledge acquisition of Cognitive robots
performing Manipulation tasks;

• Chapter 5 - Flexible robots: Open Controllers and ROS-I Interfaces details con-
tributions of this thesis to robots flexibility. It focuses on the Opening of Industrial Robot
Controllers and the development of a common ROS-I control interface. It is focused on the
Comau case;

• Chapter 6 - Conclusions and Future Work provides concluding remarks and outlines
future research directions.

iiResource Description Format (RDF): http://www.w3.org/RDF
iiiWeb Ontology Language (OWL): http://www.w3.org/TR/owl-features/

2
Navigation Among Movable

Obstacles
This chapter describes the algorithm developed to solve Navigation Among Movable Obstacles
problems. It exploits the exploration strategy of the Kinodynamic Motion Planning by Interior-
Exterior Cell Exploration algorithm in order to favor exploration on less explored areas.

Contents
2.1 State of Art . 10
2.2 Problem Statement . 11
2.3 Action Space . 13

2.3.1 Navigation . 13
2.3.2 Manipulation . 13

2.4 Problem Complexity . 14
2.5 Idea . 15
2.6 Proposed Solution . 15

2.6.1 Navigation . 15
2.6.2 Manipulation . 18

2.6.2.1 The relocation routine of graspable objects 18
2.6.2.2 The relocation routine of pushable objects 19

2.7 Implementation Details . 20
2.7.1 Navigation . 20
2.7.2 Manipulation . 21
2.7.3 Uncertainty . 22

2.8 Experiments . 22
2.8.1 Experiment 1: a Point-like Robot . 23
2.8.2 Experiment 2: a Footprint Robot . 23
2.8.3 Experiment 3: a Simulated Robot . 24

2.9 Results . 25
2.9.1 Experiment 1 . 25
2.9.2 Experiment 2 . 26
2.9.3 Experiment 3 . 27

2.10 Discussion . 28

10 2. Navigation Among Movable Obstacles

2.1 State of Art

As stated in [2, 24, 25, 26], Wilfong [27] first proved that deterministic NAMO with an unconstrained
number of obstacles is NP-hard. Demaine [28] showed that even when considering only unit square
obstacles the problem remains NP-hard. Stilman first simplified the problem and made it a
practical challenge that can be addressed with existing hardware and computation. In [2], he
defined and solved a subclass of NAMO problems, namely L1, where disconnected components of
free-space could be connected independently by moving a single obstacle. These planners solved
NAMO problems assuming full world knowledge but real robot systems only have limited sensor
range and partial environment knowledge.

Improvements solve NAMO problems in unknown environments. An example is [25]: the robot
gains the information about the position and size of objects through the use of a laser range
finder. Objects movability, instead, is determined by interaction. The algorithm discretizes the
environment in a N x M grid and calculates a plan from qS to qG through an A*-Search using the
Euclidean distance as heuristic. Every unknown cell in the map is assumed to be free and every
object is considered movable unless a failed push action is performed. Authors presented a baseline
as well as an optimized approach. The baseline approach calculates plans for all possible actions
on all known objects for any change in the environment. The method does not scale for larger
environments. The optimized method does not automatically recompute plans if new information
becomes available. When encountering new obstacles, it recomputes plans only when the current
one becomes invalid due to collisions. For every new obstacle considered for the re-plan, it evaluates
push actions limiting their number by the cost of just avoiding the obstacle itself. It maintains an
ordered list of costs relative to the manipulation of each object and, at every step, it selects the
minimum cost one. With respect to the baseline, the optimized approach reduces the number of
objects that have to be evaluated during the selection but it does not guarantee local optimality, it
supports only push actions, and it constrains obstacle shapes to be rectangular.

In [26], Levihn improved [25] guaranteeing local optimality. This new formulation of the algorithm
does not restrict the robot action set to pushes and does not restrict objects to be rectangular:
they can have arbitrary shapes. It introduces a dynamic bound that limits the number of obstacles
evaluations. This bound is based on the cost of all previously evaluated objects and on that of
moving into the collision free space. It maintains two lists of cost underestimates for every plan.
Each entry of the first list refers to the minimum distance that the robot has to cover if it decides
to move a certain object. The minimum distance assumes free-space in all other areas then that
covered by that object, even in known parts of the environment, in order to achieve independence
of the entries from future environment changes. Every entry of the second list, instead, refers to
the information of the obstacles already evaluated. This means that it stores, according to the
index of the movable object, the lowest value that was determined in the most recent evaluation
of a NAMO plan displacing that object. The use of these two lists and of the dynamic bound
increases the computational efficiency and guarantees local optimality. Levihn proved that the
algorithm guided the robot to a desired goal in a time between 18 and 50 seconds in an environment
containing between 2 and 70 randomly generated obstacles in randomized configurations.

In [29], Kakiuchi presented a solution for NAMO problems in unknown environments and exper-
imented it on the humanoid robot HRP-2 using only on-board sensors. Movable obstacles are
detected using active sensors and a color range sensor. When an obstacle is moved, the perception
of the environment is reconstructed.

2.2. Problem Statement 11

Figure 2.1: The Configuration Space.

2.2 Problem Statement

Consider a robot acting in a workspace W populated by obstacles. The environment can be
modeled as a three-dimensional Euclidean Space with

• r - the robot. r ∈ RN for a robot with N DoFs. Every DoF is represented by a polyhedral
link;

• O - the set of obstacles, i.e. the collision space.

In detail, O = Ofixed ∪ Omovable, with:

• Ofixed = {of1 , ..., ofi
, ..., ofm} - the set of polygonal Fixed Obstacles that must be avoided;

• Omovable = {om1 , ..., omj , ..., omk
} - the set of polygonal Movable Obstacles that can be

manipulated by applying forces at allowable contacts.

Definition 1 (LaTombe [30]): A Motion Planning problem aims to find a collision free path
τ from a robot Start configuration, qS , to a Goal configuration, qG:

τ : [0, 1]→ Cfree with τ(0) = qS , τ(1) = qG (2.1)

where Cfree is the free space. Formally, if C is the configuration space, i.e. the set of all possible
robot configurations, that means the set of all transformations that can be applied to a robot given
its kinematics, then

Cfree = {q ∈ C |A(q) ∩ O = ∅} (2.2)

is the free space, with A(q) the robot in configuration q ∈ C .

Cobs = {q ∈ C |A(q) ∩O 6= ∅} = Ofixed ∪ Omovable = O (2.3)

is the collision space, and
C = Cfree ∪ Cobs (2.4)

is the Configuration Space (see Figure 2.1).

12 2. Navigation Among Movable Obstacles

Figure 2.2: Stilman NAMO planner.

According to this definition, the path τ is composed of a sequence (W S , ...,W t, ...,W G) where

W t = (t, qt) ∈ Cfree (2.5)

is the non colliding world state at time t. W S is the world state at the robot initial configuration,
qS , and the goal is to achieve a robot final configuration, qG.

Definition 2 (Stilman [12]): A Navigation Among Movable Obstacles (NAMO) problem
aims to find a path τ from a robot Start configuration, qS , to a Goal configuration, qG, by giving
the robot the ability to manipulate obstacles if this can shorter the path or let the achievement of
an otherwise unreachable qG (see Figure 2.2):

τ : [0, 1]→ C with τ(0) = qS , τ(1) = qG (2.6)

Then, the path τ is composed by a sequence (W S , ...,W t, ...,W G) where

W t = (t, qt, otm1 , ..., o
t
mj
, ..., otmk

) ∈ C (2.7)

is the world state at time t. W S depicts the world state at the robot initial configuration, qS , and
that of each movable obstacle oSmj

. The goal is to achieve a robot final configuration qG.

In other words, an instance of the NAMO problem can be formally defined by the tuple S =
(Cmovable,U , qS , qG, f) where:

• Cmovable = Cfree ∪ Omovable is the allowed robot state space;

• U is the control space;

• qS is the robot start state;

• qG is the goal;

• f : Q × U → T gQ is the forward routine describing the dynamics, where T gQ is the
tangent bundle of Q.

A solution of the NAMO problem instance consists of a sequence of controls u1, ..., un ∈ U and
times t1, ..., tn ∈ R≥0 such that q0 = qS , qn = qG and qk ∈ Cfree ∪Omovable, k = 1, ..., n− 1, can be
obtained sequentially by integrating f . This means that the motion plan can iterate navigation
and objects manipulation routines until the robot reaches qG.

2.3. Action Space 13

2.3 Action Space

NAMO lets a robot combine two actions, Navigation and Manipulation, by iterating a two steps
procedure. First, the robot moves to a contact state through a Navigation action, then it applies a
Manipulation action in order to displace the object. The robot also uses Navigation to reach a Goal
state. Taking into consideration concepts proposed by Stilman in [12], each action is parameterized
by a path τ(qi, qj) that defines the motion of the robot between two configurations: τ [0, 1]→ C

where τ [0] = qi and τ [1] = qj . Details follow.

2.3.1 Navigation

Navigation means the robot’s ability to plan a path towards some Goal locations while avoiding
contacts with obstacles. While navigating, the robot does not have to displace any obstacle by
collision or friction. It simply moves its joints as specified by τ :

Navigation : (W t, τ(qt, qt+1)→ W t+1 (2.8)

2.3.2 Manipulation

Manipulation refers to the capability of the robot to modify its workspace by displacing objects.
It includes both grasp and push routines. Depending on the routine, the robot approaches its
end-effector to the object and searches for the appropriate end-effector/object contacts. Given an
object to be grasped (or pushed) multiple contacts can be generated depending on the orientation
of the end-effector with respect to the object and depending on the gripper joints configurations.
Moreover, distinct grasps (or pushes) can lead to different object motions given the same end-
effector trajectory. Let G(Oi) = {Gi} be the set of relative transformations between the robot
end-effector and the object Oi that constitute a grasp contact. Let P(Oi) = {Pi} be the set of
relative transformations between the robot end-effector and the object Oi that constitute a push
contact. Then,

Manipulation : (W t,Oi,Pi ∪ Gi, τ(qt, qt+1)→ W t+1 (2.9)

That means Manipulation maps a world state, contact, and path to a new world state where the
robot and Oi have been displaced. The action is valid when neither the robot not object collide or
displace other objects.

Every Manipulation translates the trajectory of the robot into a motion for the object. The motion
depends on which the object is being grasped or pushed:

Grasp A grasped object remains at a fixed transform relative to the robot end-effector. In addition
to requiring collision-free paths, a valid grasp constrains the initial state of the robot end effector
by imposing some form closures. The observance of these constraints indicate that a desired motion
of the robot will not cause it to release the object. It is also possible to constrain grasps with
regard to robot force capabilities. Grasping allow to easily predict the possible displacement of an
object by looking at robot and object geometry. However, some objects, such as large boxes, are
difficult or impossible to be grasped. Moreover, restrictions can be imposed on robot poses and
gripper motions. They can all make grasping impossible.

Push Pushes are non-prehensile manipulation actions that do not require grasps with closure.
Given any contact between the robot and the object, pushing manipulation restricts the path that

14 2. Navigation Among Movable Obstacles

the manipulator can follow in order to maintain a fixed transform between the end-effector and the
object. The most studied version of pushing manipulation is based on static friction during pushing
[31]. At sufficiently low velocities, static friction prevents the object from slipping with respect
to the contact surface. Given the friction coefficient and the friction center of the object we can
restrict robot paths to those that apply a force inside the friction cone for the object. Pushes are
more general than grasps but they need more detailed modeling because they require the friction
management. Incorrect pushes could bring to slips and unplanned behaviors.

2.4 Problem Complexity

Combining the choose of paths for Navigation and that of paths and contacts for Manipulation
means that, when planning motions, robots have to take into consideration both the state of
the environment and that of all movable obstacles. This constraint exponentially increases the
dimensionality of the state space and, as stated by Wilfong[27], makes complete planning for
full domain computationally infeasible. In fact, there is no method for identifying non-trivial
manipulations. Any Manipulation changes the world state and the set of accessible configurations.
Even if the change seems to decrease immediate accessibility, it is possible that Manipulation opens
spaces for future displacement of other objects.

In order to reduce the problem complexity, the free space Cfree can be partitioned into disjoint sets
of robot configurations closed under Navigation: {C1,C2, ...,Cn}, with n the number of disjoint
free spaces among obstacles. Partitioning the free space results in an abstraction for identifying
useful manipulation subgoals.

Definition 3 (Stilman[12]): A keyhole, K (W 1,Ci), is a subgoal problem in NAMO that specifies
a start state, W 1, and a component of free space, Ci. The goal is to find a sequence of operators
(Navigations and Manipulations) that results in W 2 s.t. every free configuration in Ci is accessible
to the robot:

Ci ∩ Cfree(W 2) ⊂ Cacc(W 2) and Ci ∩ Cfree(W 2) 6= ∅ (2.10)

To restrict the number of obstacles moved in solving a keyhole we define a keyhole solution according
to the maximum number of permitted Manipulations.

Definition 4 (Stilman [12]): A k-solution to K (W 1,Ci) is a sequence of valid actions including
at most k Manipulations that results in W 2 satisfying Eq. 2.10.

In order to solve a NAMO problem, a robot must resolve a sequence of keyholes until qt ∈ CG at
some future time t. It is therefore possible to define a class of problems where keyholes can be
solved independently.

Definition 5 (Stilman [12]): A NAMO problem, (W 0, qG), is linear of degree k, or Lk, if and
only if:

1. There exists an ordered set of n ≥ 1 distinct configuration space components, {C1, ...,Cn}
such that Cn = CG and C1 = Cacc(W0);

2. For any i (0 < i < n), any sequence of k-solutions to {K (Wj−1,Cj)|j < i} results in Wi−1
such that there exists a k-solution to K (Wi−1,Ci);

3. If n > 1, any sequence of k-solutions to {K (Wj−1,Cj)|j < n} results in Wn−1 such that there
exists a k-solution to K (Wn−1,Cn) that results in Wn where qj ∈ Cfree(Wn).

2.5. Idea 15

The definition ensures that once the robot has reached a configuration in Ci it can always access
Ci+1. The third condition guarantees the existence of a final keyhole solution such that the goal is
in CG ⊂ Cfree(W n).

2.5 Idea

This thesis focuses on NAMO problems that are linear of degree 1, or L1, where disconnected
components of free space can be connected independently by moving a single obstacle. The idea is
to focus exploration on less explored areas. For this reason, extending KPIECE [17, 18] seams a
good choice [II]. KPIECE is a Sampling-based Motion Planning algorithm, in the sense that it
explores the state space of the robotic system by growing a tree of valid motions from the start
state of the system towards a goal region, using a model of motion [32]. Its strength, as well as
innovation, is focusing the exploration on less explored areas. It projects the state space to a
lower dimensional Euclidean space and discretizes it by using a grid. The discretization is used
to estimate the coverage of the state space and to evaluate cells goodness: for every cell, the
algorithm saves the number of times it has been explored and the progress achieved by exploring
it. Combining collected information, KPIECE is able to deterministically select the regions to
explore: the best less explored ones (see Appendix A). The algorithm we want to propose should
adopt the same exploration strategy but should not impose obstacle avoidance. The importance
function assigned to each cell should combine efforts necessary to reach it and that needed to free
it from obstacles.

Focusing on the structure of actual robots, Motion Planning should not longer ignore their
complexity focusing on the resolution of basic geometric problems, such as the piano movers’
problem [33], and hoping on controllers able to follow the paths by keeping velocities slow. It
should also account for kinematic and dynamic constraints such as friction, gravity, limits in forces.
Being KPIECE a tree planner that only depends on forward propagating the model of motion -
numerically evaluating motions only forward in time - it is suitable for this scenario. With respect
to other forward propagation algorithms, e.g. RRT [34], EST [35] , or SBL, KPIECE improves
the decision phase by making better use of the information collected during the planning process.
This information is used to decrease the amount of forward propagation the algorithm needs. As
consequence, both runtime and memory requirements decrease making the algorithm suitable to
handle high dimensional systems with complex dynamics.

The algorithm will focus on the resolution of L1 NAMO problems in known environments. However,
it will be able to deal uncertainties using sensor feedbacks. This feature will make it suitable for
the resolution of NAMO problems in unknown environments.

2.6 Proposed Solution

2.6.1 Navigation

As for KPIECE, every q ∈ C is projected into an Euclidean space E through a projection Proj. If
p = Proj(q), then the coordinates of p in E will be:

Coord(p) = Coord((p1, ..., pk)) = (bp1 − o1
d1

c, ..., bpk − ok
dk

c) (2.11)

16 2. Navigation Among Movable Obstacles

Algorithm 1 NAMO
Input: C : the state space, qS : the start state; qG: the goal state
Output: P ath: a set of states minimizing the cost for reaching qG

1: Project C into and Euclidean space E: i = P roj(qi) with qi ∈ C
2: Discretize E through a grid G
3: Create a tree data-structure T of nodes vi: vi refers to qi ∈ Cell(i)
4: for each Cell(i) ∈ T do
5: Cell(i).distance← A∗(Cell(i), Cell(qG))
6: Cell(i).weight← weight
7: Cell(i).selection, Cell(i).visits← 0
8: end for
9: Let vS and vG be the qS and qG nodes respectively
10: T .pushBack(vS)
11: Cell(qS).visits++
12: current ← vS

13: while current 6= vG do
14: current ← SelectBestCurrentNode(T)
15: Cell(current).selection++
16: next ← SelectBestNextNode(current)
17: Cell(next).visits++
18: T .pushBack(next)
19: end while
20: for each vi ∈ T do
21: P ath.pushBack(qi)
22: end for
23: Let the robot perform P ath

where (p1, ..., pk) are the components of p, (o1, ..., ok) is the origin of the Euclidean map, and
(d1, ..., dk) is its resolution.

E is discretized through a grid G of NxM cells of length d. Without loss of generality, d is chosen
as the propagation step size of the expansion tree. This means that d = d1 = ... = dk will be the
resolution of the map.

Cell(p) = {q ∈ Q|Coord(Proj(q) ∈ Cell(p)} (2.12)

defines, for every p ∈ E, the corresponding cell of G.

A tree data structure T is defined. Every vertex vi ∈ T refers to the cell Cell(i) ∈ G; vi points to
the state of Q projected into Cell(i) and used for the propagation. The algorithm proceeds as
described in Algorithm 1.

T is initialized with vS referring to qS ∈ Cell(qS). At every iteration, the importance of cells
referring to the current node and to its neighbors are updated. The node of the tree referring
to the most important cell is selected and a state of it is chosen for the expansion. The process
iterates until T reaches Cell(qG).

The importance of Cell(i) is defined as:

Importance(i) =

1
1 +Distance(i) +Weight(i)TOT

1 + Selection(i) + V isits(i) (2.13)

where

• Distance(i) is the effort done to cover the Euclidean distance separating Cell(i) from
Cell(qG). It reflects the A* search;

2.6. Proposed Solution 17

Algorithm 2 Select The Best Current Node
1: function SelectBestCurrentNode(T)
2: current ← T .begin()
3: max_importance ← GetImportance(Cell(current))
4: best_current ← current
5: while current 6= T .end() do
6: current ← T .next()
7: importance ← GetImportance(Cell(current))
8: if importance > max_importance then
9: max_importance ← importance
10: best_current ← current
11: end if
12: end while
13: return best_current
14: end function

Algorithm 3 Select The Best Next Node
1: function SelectBestNextNode(n)
2: best_next ← a random neighbour of n
3: max_score ← 0
4: while n has non-selected neighbours do
5: next ← a random neighbour of n
6: score ← GetImportance(Cell(next))
7: if score > next_score then
8: max_score ← score
9: best_next ← next
10: end if
11: end while
12: return best_next
13: end function

• Selection(i) is the number of times that Cell(i) was selected for expansion;

• V isits(i) refers to the number of times that Cell(i) was considered during the selection
phase, namely it is the coverage of Cell(i);

• Weight(i)TOT is the cost of the path to be performed in order to reach Cell(i), i.e., the sum
of weights of the cells that NAMO sampled as parents of Cell(i).

Weight(i) assigned to Cell(i) is defined as follows:

Weight(i) = α ·Reach(i) +
∑
k

(β ·Move(k, i) + γ ·Return(i)) (2.14)

where

• Reach(i) is the effort done by the robot in order to reach qi within Cell(i) from the current
state;

• Move(k, i) is the effort required to remove the k-th obstacle from Cell(i) and place it out of
the Euclidean distance separating Cell(qS) and Cell(qG) (0 ≤ k ≤ n, with n the number of
obstacles within Cell(i));

• Return(i) is the effort required to come back.

In order to homologue data, efforts are represented as time variables.

Note: Unknown regions are considered free. Unknown objects have a null weight. These
assumptions encourage the exploration of unknown areas.

18 2. Navigation Among Movable Obstacles

Importance can be computed in constant time since all the values it depends on can be made
readily available. Once visited a cell, its coverage is updated. Once selected a cell from which
continuing the expansion, its selection rate is incremented and a robot state within it is sampled.
A chain of states Path = (q0, ..., qk, ..., qn) results, with q0 = qS and qn = qG. The robot real-time
performs the Path.

It is easy to observe that, as for KPIECE, NAMO prefers expanding from cells that are less covered
rather than from cells that are well covered. Cells that have been selected for expansion fewer times
are preferred over cells that have been selected many times. Moreover, NAMO gives priority to
cells closer to the goal, i.e., less explored areas; and it prioritizes cells that carry the robot to make
the least effort, combining navigation and manipulation efforts. Studies show that considering
these heuristics in the selection of cells work well in practice [17]. The author of this thesis thinks
that formulating these heuristics will facilitate the resolution of the NAMO problem in unknown
environments.

2.6.2 Manipulation

Once detected the obstacle on the path, the robot has to decide which manipulation action to apply
in order to move it. Generally, if the object is small enough (width or length less than the gripper
maximum opening) and has a weight that observes the robot payload, the robot tries to grasp it,
otherwise it proceeds with a push. Remember that unknown obstacles are considered weightless.
For that objects, the robot evaluates only their size. Depending on the action, a different method
has been implemented in order to geometrically compute the new object position (the re-estimation
of the orientation is unnecessary). Every approach refers to the obstacles positions (current or next)
as the positions of their CoM. Actions are generated for a generic mobile manipulator robot.

2.6.2.1 The relocation routine of graspable objects

Figure 2.3 depicts the new position generation routine of a graspable object. Starting from the
manipulator \base_link, n positions are generated around the manipulator robot. Every position
(xi, yi) (0 ≤ i < n) has the following coordinates:

xi = ri · sin θi (2.15)
yi = ri · cos θi (2.16)

where ri is the radius:

ri =
{ min i = 0
ri−1 + ∆r otherwise

max i = n− 1
(2.17)

∆r is the radius resolution, min is the minimum reach of the robotics arm allowing the placement
of the object out of the footprint polygon of the mobile base, and max is its maximum reach. θi is
the direction:

θi =
{ 0 i = 0
θi−1 + ∆θ otherwise

2π i = n− 1
(2.18)

2.6. Proposed Solution 19

Figure 2.3: The positions generation routine of a graspable obstacle.

∆θ is the angle resolution.

In order to facilitate the new position selection, a weight wi is assigned to every (xi, yi):

wi =
{ 1 (xi, yi) behind the robot

0.1 (xi, yi) in front of the robot
− cos θ otherwise

Positions are inserted in an ordered list L depending on wi and di, the Euclidean distance between
(xi, yi) and the manipulator \base_link:

L = [(x1, y1, w1, d1), ..., (xi, yi, wi, di), ..., (xj , yj , wj , dj), ..., (xn, yn, wn, dn)] (2.19)

with w1 > ... > wi > ... > wj > ... > wn. If wi = wj , than di ≤ dj .

Typically, human navigation routines prefer a forward motion instead of a backward one. Inspired
from this behavior, the implemented positions generation process prefers to relocate encountered
obstacles behind the robot. This decision should minimize the probability of reconsidering the
object again while solving the NAMO problem.

If, during the displacement, no (xi, yi) ∈ L is kinematically feasible and collision-free, than the
constraint ri ≤ max is relaxed allowing the motion of the mobile base. Depending on the relaxation,
L is reformulated.

2.6.2.2 The relocation routine of pushable objects

Figure 2.4 depicts the positions generation process of a pushable object. A Zig-Zag mode is
adopted: new positions are generating to the right or the left of the current one taking into account
the space that the robot requires to move. (xi, yi) (0 ≤ i < n) has coordinates:

xi = x0 + i∆d (2.20)
yi = y0 ± l (2.21)

20 2. Navigation Among Movable Obstacles

Figure 2.4: The positions generation process of a pushable obstacle.

where (x0, y0) is the current position of the object, ∆d is the distance resolution, and l is the robot
maximum side.

As for the Grasp routine, a weight wi is assigned to every (xi, yi). The adopted rule follows:

wi =
{ 1 xi = x0

1
di

otherwise

where di = D((xi, yi), (x0, y0)) is the Euclidean distance between the new and the current object
position with respect to the object reference system. An ordered list

L = [(x1, y1, w1), ..., (xi, yi, wi, di), ..., (xj , yj , wj , dj), ..., (xn, yn, wn)] (2.22)

is formulated with w1 ≥ ... ≥ wi ≥ ... ≥ wj ≥ ... ≥ wn.

In case of failed displacement, the routine increases l. L is reformulated.

2.7 Implementation Details

2.7.1 Navigation

The implementation extends the ROS Indigo Navigation stacki and, in detail, its costmap_2d
package.

costmap_2d discretizes the environment into a grid and builds a 2D map of the robot workspace by
distinguishing the environment between free or obstructed. This information is used by the planner
in order to compute a collision-free path between qS and qG. No distinction is made between
obstacles in the scene: every object refers to a collision.

ihttp://wiki.ros.org/navigation

2.7. Implementation Details 21

Figure 2.5: From Robot Footprint to Cells.

In our package, every 3D object is characterized by a displacement weight. Like for costamap_2d,
the sole of every 3D object is mapped into a 2D polygon. Thanks to the ray-tracing algorithm of
Bresenham [36], the polygon is projected on the grid: the algorithm first extracts cells corresponding
to the footprint vertexes, then it determines the points of the 2D raster that approximates the
straight lines between every two vertexes. This approach is the same used to draw line primitives
in a bitmap image. Every point of every line is mapped into the corresponding cell. Once boundary
cells are extracted, inner cells derived (see Figure 2.5).

If two objects are in the same position of the XL plane but have different Z coordinates, their soles
will be projected onto the same cells. Different from costamap_2d, our implementation verifies
the height from the ground at which every object is situated. If the height is such that the object
does not influence the robot motion, then that object will not be taken into consideration during
the building of the collision map. Moreover, each cell links the 3D objects that belong to it, this
means that every cell has a weight equal to the sum of the weights of obstacles that belong to it.
Only if the cell refers to free space, then it will have no weight.

Starting from this information, the planner assigns an importance function to each cell and a tree
is built (see Section 2.6). In order to build the tree and understand which obstacles can constitute
a collision and should be eventually displaced, the polygonal footprint of the robot is extracted
and used as robot reference.

2.7.2 Manipulation

Once L has been computed, the displacement routine starts: it extracts the positions in L starting
from the first and try to place there the object. The robot approaches its end-effector to the object
and grasps (or pushes) it until it reaches the goal position. In this phase, the geometry of objects
to be manipulated and of the gripper are known. For this reason, gripper joints configurations
necessary to manipulate objects are pre coded through the MoveIt! Simple Grasps tool developed
by Dave T. Colemanii. MoveIt! is used to plan the motion. It provides a collision checking for

iiD. T. Coleman: MoveIt! Simple Grasps, available at https://github.com/davetcoleman/moveit_simple_grasps

22 2. Navigation Among Movable Obstacles

Figure 2.6: Objects in the scene and their segmentations. A marker is visible for every reference system.
Objects are ordered depending on the distance from the robot.

the mobile robot, the robot arm, and the gripper during the motion from the current to the goal
position.

2.7.3 Uncertainty

While moving in a workspace, robots may have to deal with unexpected events. Moreover, both
object positions and robot movements may be subject to uncertainty. For these reasons, sensors
should be mounted on every robot and every automaton should be able to correct its actions based
on sensor feedbacks. In our case, the Point Cloud Library [19] and the ROS rail_segmentation
packageiii have been exploited in order to implement a routine able to read signals of a vision sensor
and process them. rail_segmantation provides tabletop segmentation functionalities for handle
objects given a Point Cloud (see Appendix C for further details): the robot detects the objects on
ground, segments them, and extracts their coordinates (See Figure 2.6). This information is used
to update the occupancy map and eventually recompute the NAMO path.

If the robot detects a new unknown object, its mass is considered negligible. If it detects new
unknown spaces, they are considered free. These choices arise robot curiosity and led it to explore
less explored areas.

2.8 Experiments

Experiments aim to prove the effectiveness of the proposed solution when dealing with complex
dynamic systems, i.e. large robot state spaces. Tests started from a point-like robot: only if
the algorithm is scalable for a simple system, it can be scalable when taking into consideration
the dynamic of a complex robot. Then, we considered the projection of a robot footprint on a
two-dimensional plane and tested the changes on time performances. At the end, a simulated
robot was analyzed. We evaluated its correct behavior when moving among simulated movable
obstacles and dealing with uncertainties.

All tests were performed on known environments.
iiihttp://wiki.ros.org/rail_segmentation

2.8. Experiments 23

Figure 2.7: The robot in the scene.

Time performances refers to tests performed on a MacBook Pro equipped with an Intel Core i7 2.2
GHz quad-core processor and 16 GB DDR3 RAM memory.

2.8.1 Experiment 1: a Point-like Robot

The robot was reduced to a point reflecting its CoM. Two different C++ versions of the algorithm
were compared: the proposed one and its random version. While our algorithm selects the leaf
from which expanding the tree and its subsequent neighbor by always choosing the most important
node, KPIECE selects the leaf as the most important existing one but the neighbor is randomly
selected among states in the neighborhood. Comparing these two approaches lets proving the
computational time improvement achieved by the proposed algorithm, as well as its good behavior
with respect to the growth of the map size and of the number of obstacles.

Two different scenario were set up. In both setups, obstacles were polygons of random size,
randomly placed on the map. For simplicity, three different weights [1, 3, 5] were considered.
Weights were randomly assigned to obstacles.

Setup 1 : Two types of maps were created: one with 70 obstacles and one with 100 obstacles. Every
map was discretized into a 25x25 and a 50x50 grid. 100 different maps were generated depending
on the size of the grid and on the number of obstacles. For each map, tests were repeated 100
times.

Setup 2 : 1) Given a 50x50 grid, the number of obstacles populating it was varied from 10 to 250.
2) Given 70 obstacles, the size of the grid was changed from 20x20 to 100x100.

2.8.2 Experiment 2: a Footprint Robot

Considering the robot footprint instead of its CoM lets verify the accuracy of the algorithm in a
simple but possible real scenario. Moreover, it aims to confirm the effectiveness of the proposed
solution while considering the robot occupancy.

24 2. Navigation Among Movable Obstacles

Figure 2.8: Experiment 1: A point-like robot moving on a map. One obstacle is selected for the relocation
routine.

25x25 50x50
Obstacles determ. random determ. random

70 0.265 1.021 0.389 3.742
100 0.257 1.350 0.380 3.590

Table 2.1: Mean time of 10000 executions (time expressed in ms).

25x25 50x50
Obstacles determ. random determ. random

70 1.056 1.278 1.000 1.333
100 1.126 1.280 1.000 1.306

Table 2.2: Mean obstacles weight of 10000 executions.

A map populated by three obstacles was generated. Obstacles were placed in front of the robot
in order to form a barrier. As depicted in Figure 2.11, the barrier was composed of two heavy
obstacles (back rectangles) and an obstacle observing the robot payload (the gray rectangle). The
robot had to reach a position beyond the barrier while deciding it navigating in the free space or
moving some obstacle. Two footprint were considered: one larger than the other. For every type
of footprint, experiments were repeated 10 times.

2.8.3 Experiment 3: a Simulated Robot

Gazebo was used as simulator. An Husky mobile robot equipped with an UR5 robot manipulator,
a Robotiq 2-finger gripper, and a Microsoft Kinect vision sensor was in the scene (see Figure 2.7).
The robot had to reach a position behind the barrier.

2.9. Results 25

Figure 2.9: Computational time with respect to the number of obstacles populating the grid.

Figure 2.10: Computational time with respect to the size of the map.

2.9 Results

2.9.1 Experiment 1

Figure 2.8 depicts a point-like robot performing a path from a Start to a Goal point while adopting
the proposed methodology. Is is noted that the Goal was not occluded. The robot could freely
choose if navigating along the free space or moving obstacles. It had to evaluate if moving obstacles
could shorter the path. At the end, one obstacle was selected for the relocation routine.

Table 2.1 proves that the elaboration time is not influenced by the number of obstacles. The
implemented version is faster than the random one and less affected by the growth of the grid
size.

Table 2.2 shows that, on average, only light obstacles are chosen. The implemented version selects
less obstacles than the random one. The choice shows the ability of the robot to select those
objects whose displacement requires less effort.

26 2. Navigation Among Movable Obstacles

(a) 2x2 pixels Footprint (b) 3x4 pixels Footprint

Figure 2.11: Experiment 2: Robot Fooprint

Table 2.3: Results of 10 attempts. Behaviors of a 2x2 and a 3x4 pixels robot footprints are compared
(time expressed in seconds).

2x2 Robot 3x4 Robot
Time Removed Time Removed

0.0258952 Y 0.0267104 Y
0.0206904 Y 0.0236292 Y
0.0213171 N 0.0252328 Y
0.0217194 N 0.0280514 Y
0.0199351 N 0.0311342 Y
0.0200567 Y 0.0230287 Y
0.0182324 Y 0.0226662 Y
0.0168608 N 0.0261195 Y
0.0209737 N 0.0286647 Y
0.0203648 N 0.0267853 Y

Mean 0.0206046 40% 0.0262022 100%

In both cases, the execution time increases linearly with the growth of the number of obstacles but,
as depicted in Figure 2.9, the random execution time increases faster than the other one. Figure
2.10 shows that the random algorithm time increases exponentially with respect to the change of
the grid size. The one of the implemented algorithm, instead, increases more slowly and linearly.

Without loss of generality, we can state that the algorithm is scalable with respect to the size
of the map and the number, weight, size and location of obstacles. Please note that weights are
randomly assigned to obstacles and obstacles are randomly located on the map.

2.9.2 Experiment 2

Figure 2.11 includes two screen shots of the Debug phase of the experiments. Every square of the
map has dimension equal to 1 pixel. Figure 2.11(a) depicts a 2x2 pixels robot footprint; Figure
2.11(b), instead, a 3x4 pixels one. Black rectangles refers to heavy obstacles, the gray ones depicts
obstacles observing the robot payload. Screen shots show that the first robot easily circumnavigates
the barrier; the second robot, instead, moves the lightest object. Table 2.3 details the results. On

2.9. Results 27

(a) Segmentation (b) Map Creation

(c) Path Planning (d) Robot Motion

Figure 2.12: Experiment 3: The simulated routine.

10 attempts, the 2x2 pixels robot removes the lightest obstacle in 40 percent of the cases, for an
average computational time of 20 ms. The 3x4 pixel robot, instead, decides to remove the lightest
obstacle in 100 percent of the cases. The computational time is higher, about 0.26 ms, but does
not influence the scalability of the system.

2.9.3 Experiment 3

Footprints of known obstacles were computed and projected on the ground. Every polygon was
remapped into the cells it occupied. At the same time, the vision sensor detected the scene and
rail_segmentation segmented the objects. The correspondence between the known scene and the
detected one was tested, if some differences were found, the map was updated. The planner started.
The robot had to decide if circumnavigating the barrier or cross it. At the end, it decided to cross
the barrier and remove the lightest object (see Figure 2.12). It is noted that the mass of every
known object is known a priori, as well as the robot average velocity. This means that efforts
required by the robot to remove obstacles are proportional to the time required to place obstacles
on the new computed positions. If an obstacle is new, its mass is imposed as negligible in order to
arise curiosity.

28 2. Navigation Among Movable Obstacles

2.10 Discussion

Experiments prove that our algorithm addresses a primary NAMO challenge: scalability. Its
computational time makes it scalable with respect to the size of the map and the number, shape,
and pose of obstacles. The algorithm does not impose restrictions on actions to be performed:
the robot can both push and grasp every object. It works on a two-dimensional projection of a
three-dimensional cluttered workspace letting consider both objects in contact and not in contact
with the ground. It assumes full world knowledge but the environment is reconfigurable and the
algorithm can be easily extended in order to solve NAMO problems in unknown environments. In
fact, it is able to handle sensor feedbacks and correct uncertainties regarding obstacle poses and
robot actions.

During trials, objects were known as well as actions necessary to manipulate them. The need of
making robots Cognitive during the manipulation was born. Robots should be able to manipulate
objects seen for the first time without the need of pre calculated poses.

3
Manipulation

This Chapter proposes some Cognitive Manipulation techniques.

Contents
3.1 Reinforcement Learning . 30

3.1.1 Overview . 30
3.1.2 The Framework . 30

3.2 Robot Learning from Demonstration . 31
3.2.1 Overview . 31
3.2.2 The Framework . 32

3.2.2.1 Data Acquisition . 32
3.2.2.2 Retargeting . 32
3.2.2.3 Motion Controllers . 34

3.2.2.3.1 Position Controller . 35
3.2.2.3.2 Velocity Controller . 35

3.3 Discussion . 36

30 3. Manipulation

Figure 3.1: The AGILE output.

Once selected objects to be manipulated, the robot has to be able to manipulate them. Pre coding
gripper poses for all existing objects and grippers is onerous or even impossible. Moreover, it does
not make robots Intelligent.

This Chapter proposes some manipulation methods that make robots Cognitive: a RL technique
and a RLfD framework. They make robots learn from their actions an from actions performed by
other agents. These methods are not the main Research of the author but the author collaborated
for their implementation. The RL technique was proposed by Gatto in his Master thesis [37].
RLfD is the main research of Michieletto [38]. The author collaborated for the development of a
RLfD framework for manipulator robots, below summarized.

3.1 Reinforcement Learning

3.1.1 Overview

As stated in [39], RL enables a robot to autonomously discover an optional behavior through
trial-and-error interactions with its environment. Instead of explicitly detailing the solution of a
problem, the designer provides feedback in terms of a scalar objective function that measures the
one-step performance of the robot. The state of the system is available, s, as well as the set of
actions, a. A function that generates the movements necessary to accomplish that actions would
be called the policy. A RL problem is to find a policy that optimizes the long term sum of rewards
R(s, a); a RL algorithm is the one designed to find such a (near)-optimal policy.

Gatto proposed a RL algorithm for the resolution of grasp problems for robots equipped with
2-(parallel)-fingers grippers. Rewards are given by humans evaluating the goodness of grasps (e.g.,
finger poses on the object, object stable grasped).

3.1.2 The Framework

States and actions are defined. States represent objects to be grasped, actions are grasps. In
detail, after objects in the scene are segmented, SIFT extracts their features. Since SIFT features
are large vectors, PCA is applied to reduce the vectors size. 5 components vectors result. They
define objects states. Actions, instead, are defined as shown in Figure 3.2. The main idea is that

3.2. Robot Learning from Demonstration 31

Figure 3.2: Action definition for the grasping task.

the relationship between actions and states should be simple. For this reason, the proposed RL
algorithm calls the AGILE grasp algorithm. AGILE [40] detects grasps poses of a 2-fingers gripper
directly from the geometrical features of the point cloud: it search for antipodal points inside the
point cloud itself. An example of the AGILE output from a virtual Kinect is shown in Figure 3.1:
Given the object to be grasped, it returns a list of possible planar grasps, (x, y, θ), with (x, y) the
position of the grasp and θ its orientation. Instead of assigning a single action to every (x, y, θ) of
the grasps list, the implemented RL algorithm works a follows:

• Only 4 actions are defined (see Figure 3.2). An action identify a grasp if only if its θ value
lies in one of the orientation ranges;

• 4 ranges are defined: 0◦ − 90◦, 90◦ − 180◦, 180◦ − 270◦, and 270◦ − 0/360◦.

The expected result is that the algorithm will choose the action (the planar grasp) that has a high
probability to be successful. Once a tuple of (x, y, θ) parameters is selected, the robot executes the
action. A human operators assigned a reward evaluating the final result of the grasp. The RL
engine waits for that feedback in order to understand if that grasp is the correct one or if another
action should be executed in order to improve the obtained result.

3.2 Robot Learning from Demonstration

3.2.1 Overview

A RLfD framework lets a human demonstrator teach a robot how to accomplish a task: the robot
will learn that task by imitating the teacher. Three processes are identified: sensing, understanding,
and doing. They can be redefined as: observing the action, representing the action, and reproducing
it.

There exists several modalities to collect data in order to control a robot by demonstration, e.g.
motion sensors or kinesthetic teaching. Motion sensors must be worn by the teacher, they might
be uncomfortable and prevent the human to act in a natural way. Kinesthetic demonstration,
instead, involves robot motion guided by a human performer. The here presented RLfD framework
uses a vision system. Vision sensors let achieve a sufficient accuracy while maintaining the motion
naturalness and the comfort of the human actor performing the task.

32 3. Manipulation

Figure 3.3: The skeleton joints provided by the tracker.

3.2.2 The Framework

A human demonstrator performs the task and an RGB-D sensor acquires the scene (human
in action). A skeleton tracking algorithm extracts the useful information from the acquired
images (positions and orientations of skeleton joints) and this information is given as input to
the motion re-targeting system that remaps the skeleton joints into the manipulator ones. After
the remapping, the collected data are used to train a Gaussian Mixture Model (GMM)[41] that
retrieves a generalized motion trajectory by applying a Gaussian Mixture Regression (GMR). Two
types of controllers are modeled: a position controller and a velocity one. The former has already
been presented in [42]. The robot motion controller interprets the generated trajectory to make
the manipulator fulfill movements similar to the human ones.

This Section focuses on the re-targeting of human joints into the first three robot joints. This lets
the robot to perform only simple push actions. Bisson completed the job by re-targeting also the
final three joints, those of the robot end-effector [43]. In this way, humans can teach the robot
more complex actions. The same method can be adopted to remap human hands and teach the
robot to grasp.

3.2.2.1 Data Acquisition

An RGB-D sensor (characterized by a frame rate of 30 fps and a resolution of 640x480 pixels)
extracts the teacher’s movements. A skeleton tracking algorithm (with a frame rate of 30 fps)
educes the skeleton joints positions and orientations and stores them (see Figure 3.3).

3.2.2.2 Retargeting

The implemented retargeting system gives the teacher the possibility to control the manipulator
using his all body. This is a novelty with respect to existing retargeting techniques. Most of them
allows to caputre and remap only the motion of the arm of the actor, omitting his lower-body.

3.2. Robot Learning from Demonstration 33

(a) Real robot (b) Robot specifications

Figure 3.4: Robot Comau Smart5 SiX Specifications.

The Euler angles of the 15 skeleton joints are extracted and remapped into the first 3 robot joints
(Axis1, Axis2, Axis3 of Figure 3.4):

• The Axis1 rotation angle α is the projection P onto the XY plane of the robot coordinate
system of the vector v(neck,right_hand) starting from the neck skeleton joint and ending in
the right hand skeleton joint (see Figure 3.3):

α =
{ arccos(xv

PXY (v)) if yv ≥ 0
− arccos(xv

PXY (v)) otherwise
(3.1)

where xv and yv are the x and y components of the considered vector v.

• The rotation β around the Axis2 is referred to the relative motion of the demonstrator with
respect to his initial position. In order to be robust to the sensor noise we considered the
position of the segment w(left_shoulder, right_shoulder) from left shoulder skeleton joint to
right shoulder skeleton joint:

β = π

2 − arccos PX(M−1
R ∗ dw)

lAxis2
(3.2)

M =

yw

‖w‖
xw
‖w‖ 0

− xw
‖w‖

yw

‖w‖ 0
0 0 1

 (3.3)

where

– MR R is the rotation matrix between initial and current w segment;

– dw is the distance between initial and current position of the w mean point pm ∈ w;

– PX denotes the projection onto X;

– lAxis2 is the length of the robot part involved in the motion.

34 3. Manipulation

(a) The System to be controlled: Real and Simu-
lated Comau Smart5 Six Robot.

(b) Axis 1 Controller

(c) Axis 2 Controller (d) Axis 3 Controller

Figure 3.5: System Controllers

• The rotation of Axis3 represents the motion of the human arm remapped through a combina-
tion of both v and w (see Figure 3.5(c)). The obtained movement is similar to a composition
of a translation and a rotation of the actor.

The Axis3 rotation γ really represents the human arm and it depends from both v and w:

γ =
{
β − π

2 − arccos
√
x2

v+y2
v

‖v‖ if zv ≥ 0

β − π
2 + arccos

√
x2

v+y2
v

‖v‖ otherwise
(3.4)

3.2.2.3 Motion Controllers

Motion controllers have been defined by generalizing the forms of motion, positions ξ̂ = {ξs, ξ̂s}
and velocities ˆ̇ξ = {ξ̇s, ˆ̇ξs} respectively. Starting from stored demonstrated movements, the
generalization keeps in memory only the means and the covariance matrices of Gaussian components
calculated through the Gaussian Mixture Model of acquired human joints positions and velocities.
A detailed description follows.

3.2. Robot Learning from Demonstration 35

3.2.2.3.1 Position Controller The position controller has been modeled using a GMM. The
GMM input dataset consists of a sequence of robot joint angles ξs ∈ RD−1 recorded at a specific
temporal instant ξt ∈ R. D is the dimensionality of the problem, e.i. the number of DoFs of the
robot. Equation 3.5 defines the input dataset and Equation 3.6 the resulting probability density
function:

ξ = {ξj}j=1,...,N , ξj ∈ RD (3.5)

p(ξ) =
K∑
k=1

πkN (ξj ;µk,Σk) (3.6)

πk is the prior probability and N (ξj ;µk,Σk) is the k-th Gaussian distribution. It is characterized
by a mean µk and a covariance matrix Σk. The optimal mixture parameters (πk, µk,Σk) are
estimated using the Expectation Maximization (EM) algorithm [41] and the optimal number K of
Gaussian components in the mixture is calculated through the Bayesian Information Criterion
(BIC) [41]. Equation 3.7 describes the score assigned at each k.

SBIC = −L + np
2 logN (3.7)

where L =
∑N
j=1 log(p(ξj)) is the model log-likelihood (it measures how well the model fits the

data) and np = (K − 1) + K(D + 1
2D(D + 1)) is the number of free parameters required for a

mixture of K components with full covariance matrix. It aims to maintain the generality of the
model while avoiding data overfitting. The last refinement is obtained by applying a Gaussian
Mixture Regression that lets the retrieval of a smooth generalized version of the signal encoded in
the associated Gaussian Mixture Model (GMM). The conditional expectation of robot joint angles
ξ̂s is calculated starting from the known a priori temporal value ξt. A Gaussian component k is
defined by (πk, µk,Σk), with:

µk = {µt,kµs,k} (3.8)

Σk =
[

Σt,k Σts,k

Σst,k Σs,k

]
(3.9)

Then, the conditional expectation and its covariance can be estimated using Equations 3.10 and
3.11, respectively:

ξ̂s = E[ξs|ξt] =
K∑
k=1

βkξ̂s,k (3.10)

Σ̂s = Cov[ξs|ξt] =
K∑
k=1

β2
kΣ̂s,k (3.11)

where βk = πkN (ξt|µt,k,Σt,k)∑K

j=1 N (ξt|µt,j ,Σt,j)
is the weight of the k-th Gaussian component through the mixture,

ξ̂s,k = E[ξs,k|ξt] = µs,k + Σst,k(Σt,k)−1(ξt − µt,k) is the conditional expectation of ξs,k given ξt, and
Σ̂s,k = Cov[ξs,k|ξt] = Σs,k + Σst,k(Σt,k)−1Σts,k is the conditional covariance of ξs,k given ξt.

3.2.2.3.2 Velocity Controller Through a similar approach, a GMM is created to model a
velocity control. Each demonstration in input to the EM algorithm consists of a sequence of
joint velocities ξ̇s ∈ RD−1. Equation 3.12 represents the input dataset, while Equation 3.13 is the
probability density function:

ξ̇ = {ξ̇j}j=1,...,N , ξ̇j ∈ RD (3.12)

p(ξ̇) =
K∑
k=1

π̇kN (ξ̇j ; µ̇k, Σ̇k) (3.13)

36 3. Manipulation

where π̇k is the prior probability and N (ξ̇j ;µk,Σk) is the k-th Gaussian distribution modeling the
input joint velocities. It is characterized by a mean µ̇k and a covariance matrix Σ̇k. Again, the
numberK of Gaussians composing the mixture is given by the Bayesian Information Criterion (BIC)
(Equation 3.7). The GMR calculates the conditional expectation of the joint velocities ˆ̇ξs and its
covariance matrix ˆ̇Σs, as reported in Equation 3.14 and Equation 3.15.

ˆ̇ξs = E[ξ̇s|ξs] =
K∑
k=1

β̇k
ˆ̇ξs,k (3.14)

ˆ̇Σs = Cov[ξ̇s|ξs] =
K∑
k=1

β̇2
k

ˆ̇Σs,k (3.15)

where β̇k is the weight of the k-th Gaussian component through the mixture, ˆ̇ξs,k is the conditional
expectation of ξ̇s,k given ξs, and ˆ̇Σs,k is the conditional covariance of ξ̇s,k given ξs.

3.3 Discussion

This Chapter proposed some Manipulation routines able to make robots Cognitive: a RL technique
and a RLfD framework. Both routines make robots able to interact with humans, learn from their
experiences. and from that performed by other agents.

Experiments proving the validity of proposed methods were not reported in this Chapter. The
ones proving the validity of the RL technique can be found in [37]. Gatto tested the algorithm on
a NAO robot grasping objects on a table. The ones proving the goodness of the RLfD framework
can be found in Chapter 5 and in [43].

4
Open Semantic Framework

This Chapter collects efforts done to tap into the Cloud and develop an Open Semantic Framework
for Knowledge acquisition of Cognitive robots performing Manipulation tasks.

Contents
4.1 State of Art . 39

4.1.1 Cloud Computing . 39
4.1.2 Big Data . 40

4.2 Idea . 40
4.3 Ontologies vs Database models . 40
4.4 RTASK . 42

4.4.1 Design . 42
4.4.2 Implementation details . 42
4.4.3 Languages . 44

4.5 Engine . 45
4.5.1 Data Retrieval . 45
4.5.2 Data Insertion . 47
4.5.3 Human-Robot Interaction . 47

4.6 Experiments . 49
4.6.0.1 Sense . 49
4.6.0.2 Model . 50
4.6.0.3 Act . 50

4.6.1 Results . 50
4.7 Discussion . 52

38 4. Open Semantic Framework

(a) Objects in an house. (b) Objects in a firm.

Figure 4.1: Objects in the world

The robot is now able to autonomously navigate in cluttered workspaces and manipulate objects.
It is able to interact with humans and learn from their demonstrations. Two constraints still
limit its intelligence: the limit capacity of on board memory and the absence of a common
medium to communicate and share knowledge between robots with different hardware and software
components.

Focusing on objects manipulation: a large variety of objects exists and every object has to be
manipulated in a certain way (see Figure 4.1). In order to let a robot manipulate all existing
objects, its amount of on board memory has to be great enough for storage of vast resources of
data. If no communication exists among robots, the same data could be stored several times. This
is ineffective and inefficient.

Think about a common Knowledge Base where robots can save the acquired data and from which
they can gleaned the information necessary to fulfill an assigned task. Think about an external
Engine that elaborates this Big Data. Offloading robots from CPU-heavy tasks and from Big Data
could speed up the computation. Storing data on a common Base and sharing it could speed up
the Learning phase and let robots systems quickly perform complex tasks [44]. Focusing again on
manipulation, this can facilitate incremental learning of grasp strategies [45] by matching sensor
data against 3D CAD models stored on the Base. Examples of sensor data could include 2D image
features [46], 3D features [44], and 3D Point Clouds [47], as well as demonstrations [48]. All data
exceeds the processing capacity of conventional robotics systems. Other positives follow: robots
could learn the stability of finger contacts from previous manipulations on the same object [3]
or it could apply strategies used (by it or others) on some objects on similar parts encountered
later [4].

The W3Ci states that the Semantic Web provides a common framework that allows data to be
shared and reused across application, enterprise, and community boundaries. According to this
definition, the author thinks that tapping into the Cloud could be the solution. A Cloud server
allows to offload robots from CPU-heavy tasks and to perform intensive computation while meeting
the hard real-time constraints of operations. It provides, in fact, access to ten of thousands of
remote processors for massively-parallel computation. A Semantic Web Ontology, instead, lets the

iWorld Wide Web Consortium: http://www.w3c.com/

4.1. State of Art 39

definition of a common vocabulary that ensures a common understanding during the interaction
as well as an efficient data transfer and integration.

This Chapter collects efforts done to tap into the Cloud and complete the conversion of simple
robots into complex Cognitive robotics systems.

4.1 State of Art

As stated in [49], automation manufactures started their efforts in exploiting networking to connect
machines over 30 years ago. The first was General Motors that, in the 1980s, developed the
Manufacturing Automation Protocol (MAP) [50]. Since that data, manufactures started developing
their adHoc communication protocols and in 1990, when the World Wide Web popularized the
HTTP over IP protocols [51], the IP protocol was adopted as standard. In 1994, the first industrial
robot was connected to the Web with an intuitive graphical user interface that allowed visitors
to teleoperate the robot via any Internet browser [52]. In the mid and late 1990s, researchers
developed a series of Web Interfaces to robots and devices to explore issues such as user interfaces
and robustness that initiated the subfield of Networked Robotics [53]. In 1997, Inaba et al. described
the advantages of remote computing for robot control [54]. In 2009, the RoboEarth project started:
a World Wide Web for robots: a giant network and database repository where robots can share
information and learn from each other about their behavior and environment [55]. It was mainly
focused on service robotics and the need of saving and sharing on the Cloud heavy data such as 3D
models of environments. In 2010, James Kuffner coined the term “Cloud Robotics” to define that
branch of robotics which studies the use of Cloud technologies in order to make robots communicate
with each other. Steve Cousins summarized the concept as “No Robot is an Island”.

With the advent of Industrie 4.0 and the Internet of Things, the use of Big Data and Cloud
Computing by all industrial robots begin to be consolidated requirements. In 2012, General Electric
introduced the term Industrial Internet to describe new efforts where industrial equipment such as
wind turbines, jet engines, and MRI machines connect over networks to share data and processing
for industries including energy, transportation, and healthcare.

Many projects are emerging. We now focus on the work done to make the Cloud suitable for robots
and that done to create Knowledge Bases suitable for robotics Big Data.

4.1.1 Cloud Computing

Different Could Platforms exist but most of them are not suitable for robotics applications. An
example is the Google App Engineii. It is an efficient and widespread Cloud Platform but it exposes
only a limited subset of program APIs tailored specifically for Web applications, allows only a
single process, and does not expose sockets. These limits make it unsuitable for robotic scenarios.
Robotic applications are state-full, multi-processed, and require a bidirectional communication
with the Client. ROS, for example, requires the existence of sockets. An example of efficient Cloud
Robotics Platform, instead, is Rapyuta, the RoboEarth Cloud Engine [56].

iiGoogle, Inc. “Google App Engine”. Online: https://cloud.google.com/appengine/ (2014)

40 4. Open Semantic Framework

4.1.2 Big Data

Many Robotics Knowledge Bases are available online. Examples are the SOMs of Rusu at al. [57], its
extended version (SOM+s) presented by Pangercic at al. [58], the Columbia Grasp dataset [59], the
KIT object dataset [60], and the Willow Garage Household Objects Database [47]. KnowRob [61],
the knowledge base of RoboEarth [55], is the most widespread. They store information about
objects in the environment and their grasp poses. They can be used to evaluate different aspects of
grasping algorithms, including grasp stability [3], robust grasping [62] and scene understanding [63].
The Household object database is a simple SQL database. The others are well-defined by an
Ontology. RobotEarth models objects as 3D colored point clouds [64], the others store objects
as triangular meshes. Stored items are of high quality but each object model consists of several
recordings from different point of views; thus requiring either a lot of manual work or expensive
scanning equipment.

4.2 Idea

The idea is that of creating a Robotics Cloud Engine and a Knowledge Base specialized in the
computation, storing, and sharing of robotics manipulation data and actions [I, III, VI]. With
respect to the State of Art, we aim to guarantee a quick Cloud data access through the adoption
of an efficient Cascade Hashing algorithm. We aim also to avoid data duplication during the
insertion of new data by using a novel powerful interlinking algorithm that finds the interlinking
pattern of two data sets by applying two machine learning methods: the K-medoids [65] and the
Version Space [66]. The algorithm was developed by Zhengjie Fan [67]. The Knowledge Base
has to be scalable and should guarantee an intelligent data storage and access also thanks to
the type of stored data. For this reason, we want to adopt and Ontology that defines data. Its
name will be RTASK and will give users the possibility of storing multiple types of objects visual
data: 2D Images, B-Splines, and Point Clouds. In this way, users will be free to save the data
that they prefer and data access will be efficient: in order to search an object on the Base, the
recognition process will be able to start from the comparison of the smallest features (e.g., the
ones representing 2D Images) and eventually expand to the others (B-Splines and Point Clouds, in
increasing order). With respect to the existing work, we do not want to impose an onerous manual
work in order to store objects from different view points: an object should be stored even if there
exist only a single registration of one of its views. The idea is to replace the onerous training
with a human helping the robot in recognizing objects when viewed from other orientations. The
teacher will exploit the connection between new view points and other properties, e.g., name and
function. These new features will be stored in the Ontology and will gradually increment robots
knowledge about the object itself. Moreover, RTASK will differ from existing ones because it will
observe the IEEE Standards proposed by the IEEE RAS ORA WG by extending the Knowledge
Base it proposed [21, 22, 23]. Balakirsky et al. [68] proposed a kitting ontology that observes
these standards. RTASK will generalize the manipulation concept by introducing the notion of
manipulation task and action. This means that any manipulation task can be represented, e.g.,
grasps and pushes.

4.3 Ontologies vs Database models

As stated in [69], the first Relational Database model was proposed by Codd in 1970. Its release
caused a revolution in the management of mass data repositories. New technologies for data

4.3. Ontologies vs Database models 41

representation and exploitation subsequently emerged: Object Oriented Databases for representing
complex data [70], Multimedia Databases for storing multimedia files [71], Parallel or Distributed
Databases for sharing the load of data or processes [72], XML Databases for interacting with the
Web [73]. All these databases let the efficient and flexible data storage and querying. However,
these technologies present several problems in a Semantic Web context because the information
cannot be semantically annotated. On one hand, the content of these databases is only shown
when a query is performed in the database, and on the other, the semantic description of databases
is represented using its schema, often unavailable or even useless because it cannot be exploited
depending on the format chosen to represent it.

An Ontology is the manifestation of a shared understanding of a domain that is agreed between a
number of agents and such agreement facilitates accurate and effective communications of meaning,
which in turn leads to other benefits such as interoperability, reuse, and sharing (Agarwal [74]).
Ontologies allow to depict key concepts with their properties, relationships, and constraints making
all pertinent knowledge about a domain explicit. Their format is computer-interpretable and
allows instances to be understood and processed automatically by software agents without people’s
mediation.

Some pros and cons are detailed.

A Database schema is usually designed to meet the requirements of a particular application. When
these requirements change, the schema also need to be modified. Ontologies, instead, are usually
independent from text and implementation because they operate on a higher level of abstraction.

Ontologies do not need to distinguish between basic or complex data types and their properties have
much more semantics than Database data types, since Ontologies do not need to be normalized.
Databases, instead, are not able to represent axioms. This disadvantage could be solved with the
use of logic rules. However, it is the way through which Ontologies represent data that is different
and innovative: while Databases make a clear distinction between schema and data, Ontologies
mix the schema specification with real data, named instances. Moreover, it is not necessary that
Ontologies have data. As consequence, Ontologies are more flexible and instances of classes can be
instanced again without corrupting the already stored information.

Ontologies do not follow any rule: a new instance definition does not require any defined constraint
to be accomplished - these are simply added. A Database representation, instead, must accomplish
all the requirements defined therein in order to ensure data integrity. More specifically, a Database
tuple cannot be included in the Database if it does not satisfy all the relational model constraints,
such as primary keys, foreign keys, null rules, etc. Consequently, the closed world assumption is
applied to the Relational Database model, which represents a big semantic loss in the process of
modeling information. On the other hand, Ontologies use reasoners to determine which instances
belong to them. Each time an instance check is required, the reasoner is executed, contrary to
Database system, in which information integrity is always ensured.

Ontology reasoners are also used to extract new information. In a similar way, query languages
like SQL are used to develop such tasks in the Database area. The main difference between both
technologies is that reasoners can find new information regardless of whether data is defined therein.
From Databases, we can only obtain new information using the tuples stored in the system and
new information related to the schema or mixing parts of the schema. Tuples are never obtained.

Ontologies languages, such as RDF or OWL, allow to express more semantic concepts than
Database languages which only include constructs for defining or extracting data.

42 4. Open Semantic Framework

While Ontologies represent reality quite well, this technology is not efficient in managing instances
since these are represented in OWL or RDF files. Consequently, when the number of instances
increases, they need to be stored in a database environment, and then the Ontology provides an
interface that enables them to be accessed.

This is what we did: an Ontology has been implemented instead of a simple Relational Database.
However, a Database supports the Ontology in order to quickly retrieve data.

4.4 RTASK

RTASK formulates a common vocabulary for robotics manipulation. As proposed in [75], it
separates the concepts of tasks and tasks executions. Tasks are abstract entities that describe goals
to be reached; while tasks executions are events composed of actions that are performed by robots
in the world in order to reach goals.

4.4.1 Design

Figure 4.2 depicts the Ontology design: a Task is assigned to an Agent, e.g., a Robot. It should
be executed within a certain time interval and requires the fulfillment of a certain Motion in
order to be performed. Manipulation is a sub-class of Task. Several types of manipulations
exist, e.g., grasps and pushes. They involve the handling of an Object located at a certain Pose
(Position and Orientation) through the execution of a Manipulating action. If the Task is
assigned to a Robot, then the Motion will be represented by a Robot Action. In detail, the
Robot Manipulation Action involves the activation of the robot End Effector. Studies have
demonstrated that: i) placing the arm in front of the object before acting improves actions; ii)
humans typically simplify the manipulation tasks by selecting one of only a few different prehensile
postures based on the object geometry [76]. On this view, the End Effector is first placed at a
Pose p’ at a distance d from the Object, with its actuable Joints at a certain Pre manipulation
Posture. Then, the End Effector is placed at a Pose p close to the Object and the effective
manipulation Posture is assigned to its Joints. In order to retrieve the manipulation data of
an object in the scene, the object should be recognized as an instance previously stored in the
Ontology. For this purpose, every Object is characterized by an id, name, function, and the visual
features obtained by the Sensors. For every Object, RTASK stores multiple types of visual
features: 2D Images, B-Splines, and Point Clouds.

4.4.2 Implementation details

Figure 4.3 depicts how RTASK follows the IEEE Standards by extending CORA [23]. In details:

• SUMO is a top-level Ontology that aims to define the main ontological categories describing
the world;

• CORAX includes concepts and relations associated with design, interaction, and environment,
which are not covered in SUMO;

4.4. RTASK 43

F
ig
ur
e
4.
2:

T
he

O
nt
ol
og
y.

44 4. Open Semantic Framework

Figure 4.3: The RTASK extension to the IEEE Ontology for Robotics and Automation.

• CORA has to maintain the consistency among the different sub-ontologies in the Standard.
It commits the existence of four main notions in the whole domain of R & A: device, robot,
robot group, and robotic system. It defines robots as devices that exhibit agency (capability
of acting by themselves), including devices ranging from clockwork robots to autonomous
robots. Robots can form robot groups, which display their own agency. Finally, robots and
robot groups, together with auxiliary equipment, can form robotic systems, such as robotic
manufacturing systems;

• RPARTS is a sub-ontology of CORA that specifies the notions related to specific kinds of
robot parts: robots are devices composed of other devices and robot part is the role played
by devices while they are connected to robots. Robot parts can be: robot sensing parts, robot
actuating parts, robot communicating parts, and robot processing parts;

• POS allows to describe positions, orientations, and poses in coordinate systems, which are
abstract entities that are defined in relation to a single reference object. This ontology
also provides means of describing positions and orientations qualitatively and quantitatively.
Regarding the information about position, in the quantitative case, it can be described as a
position point in a given coordinate system; and, in the qualitative case, it can be described
as a position region defined as a function of a reference object. Besides these concepts, POS
also specifies other important notions such as transformation and spatial operator.

A detailed overview of the final obtained schema can be found in Figure 4.2.

4.4.3 Languages

RTASK is represented thorugh the union of RDFiii and OWLiv, namely OWL Full. RDF is used
to define the structure of the data, OWL adds semantic to the schema and allows users to specify
relationships among data. OWL Full allows an ontology to augment the meaning of the RDF
vocabulary guaranteeing the maximum expressiveness of OWL and the syntactic freedom of RDF.
Indeed, OWL is adopted by W3C and it is the representation language used by the RAS ORA
WG. Protégé is used as ontology editorv.

Queries allow robots to investigate the knowledge base and retrieve existing data. A robot able to
query the database has the capability of efficiently and intelligently perform tasks. In our case,
iiiResource Description Format (RDF). Online: htpp://www.w3.org/RDF
ivWeb Ontology Language (OWL). Online: http://www.w3g/TR/owl-features
vProtégé. Online: http://protege.stanford.edu/

4.5. Engine 45

Figure 4.4: The Robotic Cloud.

a C++ interface lets ROS users query RTASK using SPARQLvi. Apache Jena Fuseki is used as
SPARQL servervii.

4.5 Engine

Given an object previously segmented from the scene, the Cloud-based Engine accesses RTASK
and retrieves the manipulation actions necessary to manipulate it. If no ontological data exists,
the Engine saves the new objects in RTASK together with its semantic and visual properties
(e.g., name, function, 2D Images, Point-Clouds, and B-Splines). Then, it generates the relative
manipulation actions.

The current implementation of the Cloud-based Engine is based on CORE [77]. The robot has an
internal ROS node that receives the segmented objects and sends them to the Cloud-based Engine.
The Engine is composed on another ROS node capable of reading the content of received messages.
The communication is based on the ros_bridge interface, which provides a Web socket channel
between nodes [15].

4.5.1 Data Retrieval

The robot asks the Cloud Server for the retrieval of the manipulation data of an object. It sends a
message containing the type of its gripper and the compressed point cloud of the manipulable object.
The compressed point cloud representation saves space and connection time. The compressed point
cloud is encoded in order to be transmitted over the Web socket channel. After the encoding the
whole message is represented as JavaScript Object Notation (JSON) objects. The ROS message
being encoded on the Web socket request follows.
viSimple Protocol and RDF Query Language (SPARQL). Online: http://www.w3.org/TR/sparql11-query

viiApache Jena Fuseki. Online: https://jena.apache.org/documentation/fuseki2/index.html

46 4. Open Semantic Framework

Figure 4.5: Image processing pipeline for the matching phase.

Task name (pick , p lace for example)
s t r i n g task

Gripper name
s t r i n g gr ipper_id

Compressed po int c loud (ob j e c t r ep r e s en t a t i on)
s t r i n g data

The Server receives the Client request and performs a super-fast search of the object inside RTASK.
The search starts from the comparison of the object 2D images features (SIFTviii) (see Appendix
B). In case of mismatch, it compares the B-Spline. Finally, it try to compare the point clouds
features (SHOT) [20] (in increasing order of format size). Steps of the super-fast search of SIFT
features follow (see Figure 4.5). Other comparisons work in a similar way.

1. Decode the message and decompress the point cloud;

2. Convert the point cloud to a color image using OpenCV [78] (OpenCV) functions;

3. Extract the image SIFT features and store them on a binary file of a Server folder;

4. Match the features with the ones stored in the Server;

5. Query RTASK through SPARQL;

6. The Server returns a moveit_msgs::Grasp ROS message containing the relative manipulation
data.

The search is fast because of the novel and super-fast Cascade hashing algorithm adopted during
the matching phase (Step 4) and because of the way in which features are stored. The algorithm
allows constructing a dataset without a learning phase: there is not need to train the hashing
function as in other ANN methods. Given the input image, the function returns the names of
its most similar images features (according to the SIFT parameters). Names are in the form of
integer numbers and define the object classes of RTASK. Note that features of stored objects are
precalculated and stored on a Server folder (treated as a Database): they are not calculated at
every data set access. Thanks to the combination of these two characteristics, only one query at
the end of the matching process is needed in order to retrieve the similar objects stored on the
Ontology.
viiiChris Sweeney, Theia Multiview Geometry Library: Tutorial & Reference. Online: http://theia-sfm.org

4.5. Engine 47

Algorithm 4 Interlinking Instances across Data Sets
Input: Two Data Sets
Output: Links accross Data Sets

1: The data set D, D’; /*two data sets to be interlinked*/
2: Similarity threshold T
3: for Each property/relation in the data set D do
4: for Each property/relation in the data set D’ do
5: Match properties/relations that are corresponding to each other and store as the alignment A
6: end for
7: end for
8: for Each instance in the data set D do
9: for Each instance in the data set D’ do
10: Compare instances’ property values according to the correspondences of the alignment A;
11: Aggregate all similarities between property values as a similarity value v
12: if v >= T then
13: The two compared instances are interlinked with owl:sameAs.
14: end if
15: end for
16: end for

4.5.2 Data Insertion

An example of Client message aiming to create a new Object instance follows. It is encoded as a
JSON string.
{ " op " : " send_new_object " ,
" s e r v i c e " : " i n s e r t " ,
" new_object " :
[
{ " new_point_cloud " : " zc5p81H1cO8P+Ksmfdf . . . " ,
"X" : " 0 . 5 " , "Y" : " 2 . 5 " , "Z" : " 1 . 5 " , " rad " : " 0 .314 " } ,
]

}

When the Server receives the message, it calculates the relative B-Splines, SIFT and SHOT features
and inserts them both within the Server folder and RTASK.

During the insertion, duplication avoidance is desirable. To this end, Algorithm 4 is applied to
automate the interlinking process. It was proposed in [67] and finds out the interlink pattern of
two data sets by applying two machine learning methods: the K-medoids and the Version Space.
Although interlinking algorithms require interactions with users for the sake of the interlinking
precision, computations of comparing instances are largely reduced than manually interlinking. As
the work-flow of Algorithm 4 shows, when interlinking two instances across two data sets D and
D’, the algorithm first computes property/relation correspondences across two data sets (line 5).
Then, instances property values are compared by referring to the correspondences (line 10). A
similarity value v is generated upon all similarities of property values (line 11). If such a similarity
is equal to or larger than a predefined threshold T, the two compared instances can be used to
build a link with the relation owl:sameAs (line 12-14).

4.5.3 Human-Robot Interaction

Usually, an onerous a-priori human manual work is required to store objects visual features in a
Robotics Knowledge Base: every object is represented by a large amount of registrations from
different points of view. Objects representation is accurate but the a priori work is onerous. Our
approach eliminates this prerequisite by introducing a human teacher that supports robots during
their learning phase. First registrations will not be accurate, but knowledge will gradually increase
until becoming absolute and giving robots autonomy.

48 4. Open Semantic Framework

Figure 4.6: The Reasoning Pipeline. Blue parts represent human interventions.

Figure 4.6 highlights the reasoning at the bottom of this cooperation approach. Robots require
human intervention to confirm the identity of a recognized object or to assign an identity to a
new object. Moreover, humans help robots storing visual features of objects already stored in the
Knowledge Base but seen from other points of view. To perform the connection, other objects
properties are exploited, e.g., name and function.

This approach eliminates the a priori work currently done by humans by introducing a Cognitive
and Social robot able to interact with other agents. A robot capable of learning becomes a flexible,
adaptable, and scalable cyber-phisical system.

The message used for human-robot interaction follows.

Operation type
s t r i n g operat i on

Object c l a s s name
s t r i n g c l a s s_de s c r i p t i o n

Compressed po int c loud (ob j e c t r ep r e s en t a t i on)
s t r i n g data

The human operator shows an object to the robot and gives it a description (e.g., coke, can,
pen). The server seeks for a similar object filtering the Ontology by using the object description.
If matches are found, the server return a message containing the classes of the similar objects
found:

{ " op " : " search_object_response " ,
" s e r v i c e " : " query " ,
" s im i l a r_ob j e c t s " :
[
{ " c l a s s " : " 1 " , "X" : " 0 . 5 " , "Y" : " 2 . 5 " , "Z" : " 1 . 5 " , " rad " : " 0 .314 " } ,
{ " c l a s s " : " 2 " , "X" : " 0 . 1 " , "Y" : " 24 .5 " , "Z" : " 1 . 3 " , " rad " : " 0 .24 " } ,
{ " c l a s s " : " 3 " , "X" : " 0 . 2 " , "Y" : " 3 . 5 " , "Z" : " 0 . 5 " , " rad " : " 2 .14 " }
]
}

4.6. Experiments 49

Figure 4.7: The Sense-Model-Act Framework.

A human feedback confirms the object class and visual features are added to it. Otherwise, a new
instance is inserted in RTASK:

{ " op " : " send_new_object " ,
" s e r v i c e " : " i n s e r t " ,
" new_object " :
[
{ " new_point_cloud " : " zc5p81H1cO8P+Ksmfdf . . . " ,
"X" : " 0 . 5 " , "Y" : " 2 . 5 " , "Z" : " 1 . 5 " , " rad " : " 0 .314 " } ,
]

}

4.6 Experiments

Experiments aim to provide truthful temporal results on Cloud access and ontological data retrieval.
For this purpose, RTASK and the Engine have been integrated inside the Cloud environment of
CORE, which is available on the Wisconsin CloudLab clusterix under the project “core-robotics”.
It consists of one x86 node running Ubuntu 14.04 with ROS Indigo installed. Moreover, RTASK
has been integrated with OSDx: a data set of 726 MB currently containing 111 different objects,
all characterized by a 2D color image and a point cloud.

In simulation, an Husky mobile robot equipped with a Universal Robot UR5 manipulator and
a Robotiq 2 finger gripper has to solve a tabletop object manipulation problem: it has to grasp
the nearest object located on the table in front of it. A Microsoft Kinect acquires the scene.
Gazebo [79] is used as simulator. A ROS Sense-Model-Act framework has been implemented in
order to give the robot the ability to detect objects on the table, access the Cloud server, and
retrieve manipulation data (see Figure 4.7). Implementation details follow.

4.6.0.1 Sense

The Kinect acquires the RGB-D images of the environment. From the collected data, a compressed
segmented 3D Point Cloud of each individual manipulable object is computed using PCL.
ixCloudLab. Online: www.cloudlab.us
xObject Segmentation Database. Online: http://www.acin.tuwien.ac.at/forschung/v4r/software-tools/osd/

50 4. Open Semantic Framework

Table 4.1: Elaboration time taken for features matching.
Features Matching

Time Matches on 6105 possible image
pairs

15 inliers 4.82 s 1592
300 inliers 4.48500 s 18

4.6.0.2 Model

On the Cloud, from the compressed Point Cloud, their 2D image is computed together with
the B-Spline [80]. The relative visual features are computed, e.g., SIFTs and SHOT. A Cascade
Hashing algorithm starts searching for a match between the features of the segmented object and
that saved in the data set. The comparison starts from SIFTs and eventually expands to B-Splines
(by computing the squared distance among points) and SHOTs. If a match exists, a reasoner
accesses RTASK to find a match between the assigned action (e.g., push or grasp) and gripper.
If a match exists, the gripper joints configuration is outputted. Otherwise, the Manipulation
Data Generator computes the necessary poses by using the RL proposed by Gatto and detailed in
Chapter 3.

4.6.0.3 Act

The module lets the robot move by activating its simulated engines. MoveIt!xi generates the
kinematic information required for the system to pass from the current to the goal configuration.
During the motion, the information acquired by sensors is used to compare the system final state
with the expected one. In case of mismatch, a trial and error routine starts correcting the joints
configuration. The configuration that allows the task achievement is saved in RTASK.

4.6.1 Results

Figure 4.8 shows the system in operation: the robot detects the surrounding environment, segments
the object in front of it, and grasps the nearest objects through the manipulation configuration
retrieved from the Cloud.

Tables 4.2 and 4.1 reports the most significant time data. Table 4.2 depicts the time taken for the
extraction of the descriptors of the 2D images stored in the data set. The table shows two types
of extraction: the extraction of descriptors of all the 111 images contained in the data set and
that of descriptors of a single image. For each type of extraction, tests were done on 1, 2, 3, and 4
threads respectively. The system employees 0.387422 s to extract descriptors of a single image
using 4 threads. Table 4.1 focuses on the time taken for features matching. By using 300 inliers,
the match is accurate and the computational time does not affect the real-time constraints of a
robotics manipulation.

The reported computational times consider SIFT features. Times gradually increments if B-Splines
or HOGs are considered. Moreover, the computational effort depends on the richness of the features:
the more complex the point cloud is, the greater the extraction time will be. The segmentation
helps maintaining computational times low.
xiIoan A. Sucan and Sachin Chitta, “MoveIt!”, Online: http://moveit.ros.org

4.6. Experiments 51

Table 4.2: Elaboration time taken for features extraction.
Features Extraction

1 Thread 2 Thread 3 Thread 4 Thread
111 images 45.1554 s 21.8381 s 15.331 s 12.7545 s
1 image 0.379014 s 0.408295 0.396394 0.387422 s

Figure 4.8: a) The robot in the scene; b) The detected scene; c) The segmented objects; d) The grasp of
the nearest object.

During the experiments, MoveIt! took on average 3.765 s to find a feasible inverse kinematics
solution (best case: 0.162757 s; worst case: 7.367439 s; number of trials: 100) on a Dell Intel Core
i7-4470 CPU @ 3.40 GHz x 8, 15.6 GiB Memory, 970 GB Disk. In the best case, it completed the
planning after 0.8486 s. Reported data proves that the intelligent and efficient structure of the
proposed Open Semantic Framework does not adversely affect the time required to complete a
manipulation: executing the features extraction and matching on 4 threads off-loads robots and
increases system performances.

52 4. Open Semantic Framework

4.7 Discussion

The presented Open Semantic Framework increases robots knowledge and capabilities on objects
manipulation. The Framework is composed of an OWL Ontology and a Cloud-based Engine. From
the study of human actions when handling objects, the Ontology formulates a common vocabulary
that encodes the robotics manipulation domain. The Engine, instead, was developed in order to
transfer the computation on the Cloud: it off-loads robot CPUs and speeds up the robots learning
phase. Given an object in the scene, the Engine retrieves its visual features and accesses the
Ontology in order to extract the corresponding manipulation action. The Ontology respects the
IEEE Standard by extending the existing CORA. The Engine minimizes visual data processing
through an intelligent ontological data access and retrieval. During ontological data retrieval, a
Cascade Hashing algorithm is adopted in order to optimize the comparison between saved and
new visual features. In order to avoid data duplication during the insertion of new instances in
the Ontology, a novel efficient interlinking algorithm has been adopted. The training for objects
recognition and manipulation is replaced by a human-robot interaction.

We proved the efficiency and effectiveness of the proposed approach by building a ROS Sense-
Model-Act framework able to associate manipulation actions to the features of the objects in the
scene. Tests were performed in simulation.

5
Flexible robots: Open Controllers

and ROS-I Interfaces
This chapter highlights efforts done and contributions made in order to make robots flexible. It
focuses on the Opening of Industrial Robot Controllers and the development of a common control
interface.

Contents
5.1 State of Art . 54
5.2 Idea . 54
5.3 A ROS-I Interface for C4G Open Controller 55

5.3.1 Comau C4G Open Controller . 56
5.3.2 Open Motion Planning Library . 57
5.3.3 The ROS-I Interface . 58

5.3.3.1 Real robot . 58
5.3.3.2 Simulation . 59

5.4 Experiments . 59
5.4.1 Objectives . 59
5.4.2 Experimental Setup . 59

5.4.2.1 Scenario 1 - Position Controller . 59
5.4.2.1.1 Assignment . 60
5.4.2.1.2 Simulated Setup . 60
5.4.2.1.3 Real Setup . 60

5.4.2.2 Scenario 2 - Velocity Controller . 60
5.4.2.2.1 Assignment . 61
5.4.2.2.2 Simulated Setup . 61
5.4.2.2.3 Real Setup . 61

5.5 Results . 61
5.5.1 Scenario 1 - Position Controller . 61

5.5.1.1 Simulation . 61
5.5.1.2 Real World . 62

5.5.2 Scenario 2 - Velocity Controller . 62
5.5.2.1 Simulation . 62
5.5.2.2 Real World . 62

5.6 Discussion . 63

54 5. Flexible robots: Open Controllers and ROS-I Interfaces

Usually, standard controllers allow users to control real robots thanks to the motion primitives
formulated through the manufacturer motion planning library. In a Smart Factory users should
be able to command robots through any software platform using any motion planning library. In
order to avoid robot damages while testing new plans, every real robot should be accompanied by
its simulated counterpart and this counterpart should be controlled in the same way of the real
one.

Opening controllers and implementing for them a standard interface, compliant with industrial
use and reliable, means achieving these objectives. It gives robots new features and capabilities
such as sensory feedback control [81]. It increases ease of use, flexibility, and integrability of the
controller.

5.1 State of Art

In the last decades, several attempts have been made in order to open industrial controllers. Please
note [82] and [83]. Taking into account, for example, Comau Robotics and the efforts it done in
order to implement Open features, the Company released its first open controller in 1991 [84],
followed by more powerful implementations: C4G Open and C5G Open.

In order to increase ease of use, flexibility, and integrability of the open controller, a standard
interface, compliant with industrial use and reliable, is mandatory. Joying ROS-Industrial seams the
most appropriate way to develop this interface. ROS Industrial (ROS-I)i is the industrial extension
of ROS [8]. It extends ROS capabilities, such as advanced perception and path/grasp planning, by
enabling industrial robotic applications previously technically infeasible or cost prohibitive. The
combination of ROS high-level functionalities with the low-level reliability and safety of industrial
robot controllers lets the creation of a robust, reliable, and hardware-agnostic software. Many robot
manufactures are involved in the ROS-I program: ABB, Adept, Fanuc, Universal Robot, Motoman,
and, with the contribution described by this chapter, also Comau Robotics. To the author’s best
knowledge, only Motoman released production ready code. In the other cases the software is
not yet production ready and it has only some levels of unit-testing. For Adept and Fanuc only
joint position streaming is supported, with the controller currently overriding commanded velocity
with a constant one. Trajectory downloading, velocity or force control are not yet supported.
For ABB only trajectory streaming is supported [85]. The Motoman driver controller interface,
instead, provides a more high-performance interface for controlling Motoman robots and it meets
qualitative criteria for being used in production systems. The controller plans movements using an
existing ROS-compliant motion planning library: MoveIt!ii. Tt provides a low-level control of joint
position, velocity, and path timing. Being ROS non real-time, the computational load decreases
robot speeds down to 20% and 70% of robot capabilities.

5.2 Idea

The idea is to draw inspiration from what was done by robot manufactures that actually join the
ROS-I community: opening an unopened robot controller and implementing its ROS-I interface.
The opening should let the integration of external sensors. The interface should allow both ROS
and non ROS-compliant platforms to give motion commands to the controller. Users should be able
to choose the motion planning library through which controlling the robot and the open controller

ihttp://rosindustrial.org/
iihttp://moveit.ros.org/

5.3. A ROS-I Interface for C4G Open Controller 55

Figure 5.1: Architecture of the obtained system. It includes including the initial structure (gray) and the
integration with ROS (red).

should be able to elaborate, at least, position and velocity controls. Appropriate correction factors
should be implemented so that ROS does not affect the real-time capabilities of the controller.
Moreover, simulated robots should be provided. They should faithfully reproduce their real
counterparts by ensuring the correspondence of movements in case of both joint positions and
velocities streaming. For this purpose, the Comau case has been considered [IV].

5.3 A ROS-I Interface for C4G Open Controller

When the interface was implemented, C5G Open was not yet released. For this reason, this
work focuses on the opening of C4G and the development of its ROS-I interface. The interface
implementation can be extended to C5G Open.

Figure 5.1 the architecture of the obtained system. It is composed of:

• C4G Open: the Comau industrial Open Robot Controller;

• ROS nodes implementing the communication with C4G Open;

• the Comau Smart5 SiX robot model in the Universal Robot Description File (URDFiii)
format for the simulated representation of the automata;

• the Open realistic Robot Library (ORL) (the Comau motion planning library).

These tools allow either a ROS or a non ROS -compliant platform to move either a real or a virtual
Comau Smart5 SiX robot. Both a position and a velocity controller are supported and motion
commands can be issued using both ORL and any other ROS-compliant motion planning library.
As above mentioned, other manufactures offer packages suitable only for MoveIt. Moreover, in our
case both the real and the simulated automata are driven using C4G Open. Being it real-time, the
faithful control of the robot and its 100% speed are guaranteed
iiihttp://wiki.ros.org/urdf

56 5. Flexible robots: Open Controllers and ROS-I Interfaces

Figure 5.2: Standard architecture for the Comau C4G robot controller.

5.3.1 Comau C4G Open Controller

The standard COMAU C4G controller consists of a modular architecture with three different
hierarchical hardware levels (see Figure 5.2). The first level is the SMP+ control board. At this
level, all high level processes take place: interpretation of user programs, management of operator
interfaces, network communications, trajectory generation, computation of dynamic model and
management of assigned tasks, collisions detection, system diagnostics, high hierarchical level
centralized adjustment process, axes synchronizing control, management of all I/O devices. The
second level is the MPC board, inside: fine interpolation of the manipulator trajectory, robot
position adjustment, real time system diagnostics, master-slave axes management. The lower level
is the (DSP board, inside: control of electric motor currents and torque generation process for
individual axes control, power stage management, position sensor and acquisition of motor angular
measurements, high speed digital and analogical I/O management. The system architecture is
based on a real time communication. It has a frame rate of 1ms on an Ethernet network that uses
an UDP protocol, between the SMP+ board (client) and the MPC board (server).

This controller is powerful but it does not allow sensors and devices connections to the robot.
This restriction has been overcome opening the robot controller: a second server process has been
inserted introducing an external PC in the network (see Figure 5.3). The PC adds power to
the Robot Control Unit simplifying the implementation of complex manufacturing applications:
programming automated robotics cells is easier and external sensors integration is possible. In
this way, writing custom applications where standard control processes and trajectory generation
interact with external sensors, devices or PCs is feasible. Mixing trajectories between open and
standard modalities is also possible, together with the possibility of programming the robot

5.3. A ROS-I Interface for C4G Open Controller 57

Figure 5.3: Open Control architecture for the Comau C4G robot controller.

using different open modalities such as: additional and absolute position control, additional
current control, trajectory management and modification of pre-planned trajectory. Different Open
architectures have been presented in several European Projects (SME Robotiv and ARFLEXv)
to correct a real trajectory using vision systems or to integrate an inertial navigation tool. The
C4G Open Control is based on GNU/Linux Operating System and the real-time is achieved by
using the Real-Time Application Interface (RTAI) [13] module to extend the standard kernel with
real-time capabilities. On the other hand, in order to provide a real-time communication layer,
C4G Open architecture uses the Real-Time networking (RTnet) [14] stack, an open source hard
real-time network protocol compatible with RTAI: a real time thread provides the robot status
information from the external PC to the robot controller and vice versa.

5.3.2 Open Motion Planning Library

The Open realistic Robot Library (ORL) has been developed in order to perform operations on a
virtual robot without having it. The motivation behind the realization of this library is that C4G
Open forces the user to program at a low level in motor round references. The ORL allows the
user to program at a high level in order to let him develop custom applications with C4G Open (or
C5G Open, if we consider the new controller Comau is developing). The library allows to perform
the following operations:

• Initialization of the virtual robot on Linux (complete Comau robot family) starting from a
real configuration file

• Computation of Direct and Inverse Kinematics, for each Comau robot

• Error management of position and joint ranges
ivhttp://www.smerobot.org/
vhttp://www.arflexproject.eu/

58 5. Flexible robots: Open Controllers and ROS-I Interfaces

• Integration of Comau Trajectory Generator and Interpolator

• Computation of the Dynamic Model and Jacobian

All these operations are realistic, i.e. they describe what the robot would do if they were performed
via the Comau standard programming language (PDL2) on the real robot. Performing direct/inverse
kinematics allows the user to control the real robot workspace in advance (e.g. joint stroke-ends,
Cartesian avoided positions). Routines for the direct motor rounds control are included, together
with motion functions able to convert and manage degrees or Cartesian references.

5.3.3 The ROS-I Interface

In order to make the controller ROS compliant without loosing its real-time capabilities, existing
modules have been wrapped in ROS and the basic real-time communication thread has been
extended by developing other parallel threads. This extension lets the decoupling of the real-time
communication process from those that manage data input/output: the communication with the
robot becomes independent from the data used to control it and to interpret its feedbacks.

The wrapper maintains existing features. The user can still directly program the robot through
the PDL2 language or use ORL to formulate robot motion primitives that C4G Open converts
into the equivalent machine code.

In addition, the user can impose motion directives in the form of ROS commands: a ROS message
with the motion request is sent to the system, ROS redirects the message to the motion planning
library, and the library answers with a ROS message containing the motion primitives the controller
needs to move the robot. ROS integration makes ORL a simple module of the system that can be
replaced at any time with any other ROS compliant motion library, e.g., MoveIt!.

A TCP/IP connection has been implemented in order to give non ROS compliant frameworks the
possibility to interface to the proposed system. This type of protocol provides a reliable, ordered,
and error-checked delivery of the data. The ordered data transfer guarantees the robot to execute
the motion primitives in the same order specified by the user. Reliability ensures the retransmission
of lost packets and the consequent execution of all motion primitives. As result, the robot will
executes all the desired motion commands in the desired order.

In order to provide users with a faithful simulation environment, a virtual model of a Comau
robot has been created. I can be used within any ROS compliant simulator (e.g., Gazebo [79] or
VRep [86]). Moreover, a plug-in allowing the user to control the robot inside the Gazebo simulator
has been developed.

A description of the process adopted to make the system usable both in the real and in the
simulated environment follows.

5.3.3.1 Real robot

In order to command a real Comau robot using ROS, we have to take into consideration the
fact that the robot communication is hard real-time (it has a frame rate of 2 ms) and ROS is
non real-time. In order to face this problem, a communication node was developed. It includes
both a real-time and a normal priority thread. The former establishes the connection between
the controller and the real robot. The latter provides the controller with the motion data: if a
ROS compliant platform aims to control the robot through specific motion directives, then the

5.4. Experiments 59

thread will deliver these motion commands to the controller in the form of ROS messages. If a
non ROS compliant processor has the same request, the thread will send the motion primitives to
the controller in the form of TCP/IP messages. Performed tests show that the proposed structure
ensures the absence of robot/controller connection errors and lets the user to control the robot
both through a real and a non real -time platform.

5.3.3.2 Simulation

The simulated counterpart of a Comau Smart5 Six robot has been developed. The package contains
robot meshes and the URDF file. The latter describes the geometry, kinematics and dynamics of
the robot, such as joints masses and inertial matrices. In order to control the robot virtual model
within the Gazebo simulation environment, a plug-in connecting the Comau Open Controller to
Gazebo has been developed, together with and a wrapper for ORL. The latter ensures the same
trajectories interpolation both for the virtual and the real robot, that results in the same robot
movements execution both in the virtual and in the real world.

5.4 Experiments

5.4.1 Objectives

Experiments aim to prove the reliability and versatility of the system. The robot has to properly
perform the imposed tasks both in the virtual and in the real world. The correctness of movements
has to be guaranteed when both joints position and velocity commands are imposed. The system
has to be independent from the motion planning library used to imprint motion primitives: any
ROS-compliant library should be used, e.g., ORL, MoveIt!, other open-source or customized
libraries.

In order to remain within the context of Industrie 4.0, experiments aim also to test the capability
of the Open Controller to process the information obtained from integrated sensors, and the one
of the robot to learn from human teachers. For these reasons, tests were performed through the
RDfL framework proposed in Section 3.

5.4.2 Experimental Setup

Every experiment is performed both in simulation and in the real world. Every experiment adopts
a specific controller and a specif motion planning library. The same controller and the same motion
planning library are used to move both the virtual and the real robot.

Data are acquired from 3 demonstrators repeating each task 15 times.

5.4.2.1 Scenario 1 - Position Controller

The first experiment aims to reproduce the displacement of a piece in the conveyor belt. The
task requires very accurate robot movements, so that the manipulator is controlled by setting
joint positions. The interpolation of robot motion is computed by ORL, that offers high reliable
functions to command a robot in position. Accuracy and repeatability tests are performed by
measuring the displacement of the piece and the consequent precision of movements.

60 5. Flexible robots: Open Controllers and ROS-I Interfaces

(a) Human demo (b) Simulated experiment

(c) Real experiment

Figure 5.4: The first experiment: use of a Position Controller

5.4.2.1.1 Assignment A human demonstrator moves a box along a line from the beginning
to the end of a 45 cm long table; the manipulator has to reproduce the task both in simulation
and in the real world (see Figure 5.4).

5.4.2.1.2 Simulated Setup A virtual model of a Comau Smart5 Six robot is in the scene. A
table, larger then that used by the demonstrator, is in front of it. A simulated box is on its top.
The virtual box and the table have the same characteristics of to the real ones, e.g., they have the
same friction coefficient. The box is equivalent to the real one less then the color. The table is
larger in order to avoid robot singularities when the box reaches the end of the simulated table.

5.4.2.1.3 Real Setup A Comau Smart5 Six is on the floor. A white paper sheet is situated on
the floor in front of it in order to simulate the table. A box is on the sheet. The box is the same
used by the human demonstrator. The absence of a real table is due to the robot configuration
(mounted on the ground).

5.4.2.2 Scenario 2 - Velocity Controller

The second experiment simplifies the arrest of a piece before its extraction from the conveyor belt.
The action can be interpreted as the block of an object after a certain event. A velocity controller

5.5. Results 61

(a) Humandemo (b) Real experiment

Figure 5.5: The second experiment: use of a velocity controller

is required in order to make the robot moving within a certain time interval. For this reason, a
custom interpolator has been used to compute velocities from joints positions. An ad-hoc motion
planning library, different from ORL, is used. Tests aim to verify the observance of a time limit.

5.4.2.2.1 Assignment A subject stops a Lego Mindstorms NXTvi robot performing a uniform
rectilinear motion on a 60 cm long table. The stop occurs when the NXT robot reaches a certain
position. The manipulator has to reproduce the task (see Figure 5.5). It stands out that the NXT
robot is performing a uniform motion, this means that the action of stopping the robot at a certain
position is equivalent to the one of gripping the robot after a certain time interval.

5.4.2.2.2 Simulated Setup A simulated Pionner vii robot moves in front of a simulated
Comau Smart5 Six robot. The manipulator robot has to stop the mobile robot.

5.4.2.2.3 Real Setup A Pioneer robot with a box on its top moves at a constant speed in
front of a Comau Smart5 Six robot. The manipulator robot has to stop the box on the Pioneer
within a certain period of time (see Figure 5.5).

5.5 Results

5.5.1 Scenario 1 - Position Controller

5.5.1.1 Simulation

The replica reflects the real human demonstration: on 25 attempts, the system obtained an average
displacement of 45.011 +/- 0.402 cm. The 0.402 cm variance is negligible because of sensors and
motors noises. Moreover, it may be due to the imprecise positioning of the box at the beginning of
every test.
vihttp://www.lego.com/en-us/mindstorms/?domainredir=mindstorms.lego.com

viihttp://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx

62 5. Flexible robots: Open Controllers and ROS-I Interfaces

Figure 5.6: Robot joint positions and velocities during the second test.

5.5.1.2 Real World

On 25 attempts, the system obtained an average displacement of 54.332 +/- 0.7547667 (see
Figure 5.4). The real robot motion leads to a gap of about 10 cm in the displacement. The
alteration is due to the different frictional forces: the material of the support surface used in the
real experiment has a friction coefficient lower then that of the tables used for the demonstration
and for the simulated representation. Having a lower friction coefficient facilitates displacements.
Thanking into consideration the different friction, sensors and motors noises, and box positioning
inaccuracies, the resulting gap can be considered negligible.

5.5.2 Scenario 2 - Velocity Controller

5.5.2.1 Simulation

In this case, simulation is used as a tool to formulate the necessary ROS controls and coordinate
the start of the two robots.

5.5.2.2 Real World

It is important to notice that the experiment does not require measurements because precision
is not required. The robot stopped the box in time in all the 25 performed trials. Figure 5.6
shows positions and velocities of the three joints controlled by the RLfD framework during the
experiment.

5.6. Discussion 63

5.6 Discussion

This chapter described the methods adopted to Open an Industrial Robot Controller and develop
its ROS-I interface. The final system lets users control both a real Comau robot and its simulated
counterpart through both a ROS-compliant and a non ROS-compliant platform. Both joints
position and velocity commands can be imprinted using the same controller both in the simulated
and in the real world. Any ROS-compliant motion planning library can be used to generate the
motion primitives.

In order to test the reliability and flexibility of the obtained system, a Comau Smart5 Six robot
was asked to perform two different tasks, both in simulation and in the real world. The former
involves the displacement of a static box and the latter considered the capture of a moving object.
The experiments choice allows to test the system using two types of controllers and two types of
motion planning libraries. A position controller is used in the first case and position primitives are
formulated through ORL. A velocity controller is used in the second case and velocity primitives
are formulated through an ad-hoc motion planning library. Experiments show that both the real
and the virtual robot perform the same movements during the execution of both assignments.
This proves that using the same controller in both environments guarantees the same trajectories
interpolation. The detected movements precision proves the good functioning of the system itself,
the proper development of the ROS-I interface, and the possibility of using any type of motion
planning library. Having a ROS-I interface makes the Comau system re-usable by the entire ROS
community, and having a replaceable motion planning library is an essential characteristic to make
the system freely accessible and usable.

6
Conclusions and Future Work

This chapter highlights achievements reached and discusses future developments within the Cognitive
Task Planning for Smart Industrial Robots.

Contents
6.1 Conclusions . 66
6.2 Future Work . 67

66 6. Conclusions and Future Work

6.1 Conclusions

This thesis presented a Cognitive Task Planning Framework for Smart Industrial Robots. Its aim
was to contribute to the creation of Smart Robots to be inserted into the Smart Industries of
the 4th Industrial Revolution. In details, it aims to make mobile industrial manipulator robots
able to Autonomously Navigate Among Movable Obstacles while combining their Navigation and
Manipulation capabilities. Robots were made Cognitive: able to learn from past experiences and
from actions performed by other agents.

A novel NAMO planner was proposed. It extends the exploration strategy of KPIECE, which
focuses the exploration on less explored areas, by removing the KPIECE constraint of obstacle
avoidance: it assigns an importance to each cell by combining the efforts necessary to reach it
and that needed to free it from obstacles. In this way, a path from a robot start configuration qS
to a goal configuration qG is found by taking into consideration the possibility of moving objects
if qG cannot be reached or if moving objects may significantly shorten the path. This approach
gives robots the capability of reasoning about the environment and choosing when manipulating
obstacles. The algorithm has a computational time that makes it scalable with respect to the size
of the map and the number, shape, and pose of obstacles. It does not impose restrictions on actions
to be performed: the robot can both push and grasp every object. It works on a two-dimensional
projection of a three-dimensional cluttered workspace letting consider both objects in contact
and not in contact with the ground. It assumes full world knowledge but the environment is
reconfigurable and the algorithm can be easily extended in order to solve NAMO problems in
unknown environments. In fact, it is able to handle sensor feedbacks and correct uncertainties
regarding obstacle poses and robot actions [II].

If a robot is able to choose when manipulating obstacles, it has also to be able to manipulate them.
A large variety of objects exist. Pre computing grasp or push actions necessary to manipulate
them is impossible or, however, inefficient. It does not do justice to efforts done to make robots
Intelligent, Autonomous, Cyber-Physical systems suitable for the firm of Industrie 4.0. For these
reasons, this thesis presented some alternative manipulation approaches based on the capability
of robots to learn from their actions and from that done by human teachers. A Reinforcement
Learning Approach is presented, together with a Robot Learning from Demonstration one. Both
approaches make robots Cognitive and do not require an onerous pre calculation of all manipulation
poses [V].

If a robot has to store all the information learned, a large amount of memory is necessary. This is
not efficient. Moreover, only sharing the acquired Knowledge could speed up the Learning. An
Open Semantic Framework was proposed. The Framework is composed of a Cloud-based Engine
and an OWL Ontology. The Engine off-loads robot CPUs by transferring the computation on
the Cloud. The Ontology defines the robots manipulation domain and can be considered both a
data store for the efficient and reliable execution of repeated tasks, and a Web-based repository
for the information exchange among robots. Given an object in the scene, the Engine retrieves
its visual features and accesses the Ontology in order to extract the corresponding manipulation
action. If no information is stored, the Engine generates the gripper manipulation poses that will
be stored in the Ontology. The Ontology respects the IEEE Standard by extending the existing
CORA. The Engine minimizes visual data processing through an intelligent ontological data access
and retrieval. During ontological data retrieval, a cascade hashing algorithm is adopted in order to
optimize the comparison between saved and new visual features. Instead, in order to avoid data
duplication during the insertion of new instances in the Ontology, a novel efficient interlinking
algorithm has been adopted. It finds the interlink pattern of two data sets by applying two machine

6.2. Future Work 67

learning methods, the K-medoids and the Version Space. The efficiency and effectiveness of the
proposed Framework was proved by building a ROS Sense-Model-Act framework able to associate
manipulation actions to the features of the objects in the scene [I, III, VI].

To ensure the flexibility and reusability of the final system, it has been coded as a modular
Framework where every block is based on ROS. Not all Industrial Controllers are ROS-compliant
and let the integration of external devices such as vision sensors (necessary in this thesis to detect
objects to be manipulated). A brief description on efforts done to Open Industrial Controllers and
develop their ROS-I interface was outlined. We focused on the Comau case. The final Comau
system lets users control both a real Comau robot and its simulated counterpart through both a
ROS-compliant and a non ROS-compliant platform. Both joints position and velocity commands
can be imprinted. The same controller can be used both in simulation and in the real world. Any
ROS-compliant motion planning library can be used to generate the motion primitives. The use of
ROS makes the system easily adaptable to changes, reusable, and flexible [IV].

6.2 Future Work

The first future goal is that of proving the goodness of the proposed NAMO planner on unknown
workspaces. This will let us study robotics behaviors in more realistic situations. Then, in order
to let robots better learn from human demonstrations, a more accurate gesture recognition system
will be integrated inside the proposed Learning from Demonstration Framework. This will allow
to perform manipulation in a real, no simplified industrial setting. Finally, we aim to extend
the proposed Ontology by defining other tasks and actions, e.g., we would like to include the
Navigation domain. In fact, it is useful for a robot, that has to navigate inside an environment
seen for the first time, to have information from other robots that have already passed through
that area. We aim to assign robots new tasks and execute the relative new actions (Navigations
and Manipulations) in order to increase the capabilities of the Cloud-based Engine.

A
Appendix

Kinodynamic Motion Planning by Interior-Exterior
Cell Exploration

Kinodynamic motion Planning by Interior-Exterior Cell Exploration (KPIECE) [17, 18] is a
sampling-based motion planning algorithm, specifically designed for use with physics-based simula-
tion. KPIECE is able to handle high dimensional systems with complex dynamics: it reduces both
runtime and memory requirements by using the information collected during the planning process
to decrease the amount of forward propagation the algorithm needs.

Problem: Find a collision free path from a robot Start configuration qS to a robot Goal
configuration qG.

Solution: A projection of the state space is discretized into cells. Multiple levels of dis-
cretization are defined depending on the size of the cells (see Figure A.1). Cells on one level all
have the same size and they are created when needed, to cover the tree of motions as it grows.
Coarser discretizations (larger cells) are used to grossly identify areas of the space that are less
covered. Finer discretizations (smaller cells) can be subsequently used to more accurately identify
less covered areas, within the grossly identified ones. In addition, cells are distinguished into
Interior and Exterior :

• Interior cells are ones that have 2n neighbors with n the dimension of the state space;

• Exterior cells are ones that cover the tree of motions but are not Interior.

When searching for a tree connecting qS and qG, KPIECE prefers to start the expansion from
Exterior cells (P(Exterior) = 0.9). Once selected the type of cell from which expanding the tree
(Exterior or Interior), a cell i is selected according to the formula:

Importance(i) = log10(I) ∗ score
S ∗N ∗ C

(A.1)

where:

• I is the iteration in which i is created;

• score is the estimated distance to the goal;

70 A. Appendix

Figure A.1: Kinodynamic Motion Planning by Interior-Exterior Cell Exploration: Cells Discretization.

Algorithm 5 KPIECE
1: Create a grid G = Cell(qS)
2: Create a list Cell(qS).list = qS

3: while time < tmax do
4: type ← Select a cell type (Exterior or Interior)
5: cell ← Select the most Important cell of that type
6: qold ← Select one of the visited states of cell
7: Sample a new state qrand with probability P such that distance(qold, qrand) ≤ ε
8: if (qold, qrand) is valid then
9: Add Cell(qrand) to G
10: Add qrand to Cell(qS).list
11: Save the path between qold and qrand in the solution tree
12: if qrand = qG then
13: return the path between qS and qG

14: end if
15: end if
16: end while

• S is the number of times in which i has been selected for expansion;

• N is the number of instantiated neighboring cells;

• C is the measure of coverage for i (the sum of its visited states).

Once selected the cell, one of its states, qold, is selected and inserted inside the list of visited states
of that cell, according to an half normalization distribution. From qold, the expansion starts. With
a certain probability P , a new state qrand is sampled. The state should be at a distance of at most
ε from qold. The edge joining the two states is evaluated. If it is valid:

• the cell of qrand is added to the grid (if not already present);

• qrand is added to the list of visited states of that cell;

• the search tree is updated by adding the new edge.

Otherwise:

• the last valid state qnew belonging to the edge is extracted;

• qrand = qnew.

71

Figure A.2: Computational statistics.

The process iterates until qG is reached (see Algorithm 5).

Computational improvement over other Motion Planning methods is observed (see Figure A.2).

B
Appendix

Open Source Computer Vision Library

Open Source Computer Vision (OpenCV) is a library of programming functions mainly aimed
at real-time computer vision, originally developed by Intel’s research center in Nizhny Novgorod
(Russia), later supported by Willow Garage, and now maintained by Itseez [78]. The library is
cross-platform and free for use under the open-source BSD license.

Images are described by visual features, or descriptors. Descriptors are compact descriptions of the
images. Two types of descriptors exist:

• Global descriptors: they encode the visual content of the entire image, e.g., the overall
appearance, color, intensity, etc. Since they encode a single, global image description, they
are fast to compute;

• Local descriptors: they describe an image region, i.e. the patch, around a point of the image,
i.e. the interest point. First, a set of image interest points are detected, then local descriptors
are extracted with respect to each point.

We review the 2D image descriptor included in OpenCv, publicly available, and used in this thesis
for Image Matching.

Scale-Invariant Feature Transform

SIFT is an algorithm in computer vision to detect and describe local features in images. The
algorithm was published by David Lowe in 2004 i.

SIFT is composed of five stepsii:

1. Scale-space Extrema Detection: A scale-space filtering is used to detect key points with
different scale. First, DoG is found. DoG is an an approximation of LoG. LoG acts as a blob
detector which detects blobs in various sizes due to change in σ, with σ a scaling parameter.
DoG is obtained as LoG but it blurs an image with two different scaling parameters, σ and
kσ. This process is done for different octaves of the image in Gaussian Pyramid (see Figure
B.1(a)). Once DoG is found, images are searched for local extrema over scale and space.
E.g., one pixel in an image is compared with its 8 neighbors as well as 9 pixels in next scale

iChris Sweeney, Theia Multiview Geometry Library: Tutorial & Reference. Online: http://theia-sfm.org
iihttp://docs.opencv.org/3.1.0/da/df5/tutorial_py_sift_intro.html#gsc.tab=0

74 B. Appendix

(a) Difference of Gaussians (b) Search of local extrema over scale and space

Figure B.1: Scale-invariant feature transform: the Scale-space Extrema Detection phase.

Figure B.2: Scale-Invariant Feature Transform

and 9 pixels in previous scales. If it is a local extrema, it is a potential key point. It basically
means that key point is best represented in that scale (see Figure B.1(b)).

2. Keypoint Localization: Once potential key points locations are found, they have to be refined
to get more accurate results. The Taylor series expansion of scale space is used to get more
accurate location of extrema. If the intensity at this extrema is less than a threshold value,
i.e. the Contrast Threshold (0.03 as per the paper), it is rejected. DoG has higher response
for edges, so edges also need to be removed. For this, a concept similar to Harris corner
detector is used: a 2x2 Hessian matrix computes the principal curvature and if a key point is
located above that threshold, called Edge Threshold, then that key point is discarded. The
process removes both low-contrast key points and edge key points; only strong interest points
remain;

3. Orientation Assignment: An orientation is assigned to each key point to achieve invariance
to image rotation. A neighborhood is taken around the key point location depending on the
scale. The gradient magnitude and direction is calculated in that region. An orientation
histogram with 36 bins covering 360 degrees is created. (It is weighted by gradient magnitude
and Gaussian-weighted circular window with σ equal to 1.5 times the scale of key point).
The highest peak in the histogram is taken and any peak above 80% of it is also considered
to calculate the orientation. It creates key points with same location and scale, but different
directions. It contribute to stability of matching;

75

4. Keypoint Descriptor : The key point descriptor is created. A 16x16 neighborhood around the
key point is taken. It is divided into 16 sub-blocks of 4x4 size. For each sub-block, a 8 bin
orientation histogram is created. So a total of 128 bin values are available and organized as
a vector in order to form the key point descriptor;

5. Keypoint Matching: Key points between two images are matched by identifying their nearest
neighbors. Because of noise, the second closest-match may be very near to the first. In that
case, ratio of closest-distance to second-closest distance is taken. If it is greater than 0.8,
they are rejected. This choice eliminates around 90% of false matches while discards only 5%
correct matches.

Figure B.2 shows the resulting set of key points after the application of the SIFT algorithm on a
2D image.

C
Appendix

Point Cloud Library

The Point Cloud Library (PCL) is a collection of stateof-the-art algorithms and tools to process
3-D data, which can be combined to efficiently solve common problems such as object recognition,
registration of point clouds, segmentation, and surface reconstruction [19]. The library is open
source and licensed under BSD terms and, therefore, free to use for everyone.

As for OpenCv, both Local and Global descriptors exist. The describe the content of point clouds.
In this thesis, SHOT is used. A brief description follows. It has been taken from [20].

Signature of Histograms of Orientations

The signature of histograms of orientation (SHOT) descriptor is a local descriptor that encodes
a signature of histograms representing topological traits, making it invariant to rotation and
translation and robust to noise and clutter. The descriptor for a given key point is formed
by computing local histograms incorporating geometric information of point locations within
a spherical support structure. For each spherical grid sector, a one-dimensional histogram is
constructed by accumulating point counts of the angle between the normal of the key point and
the normal of each point belonging to the spherical support structure. The final descriptor is
formed by orderly juxtaposing all histograms together according to the local reference frame.

Discrete quantization of the sphere introduces a boundary affect when used in combination with
histograms, resulting in abrupt changes from one histogram bin to another. Therefore, quadrilinear
interpolation is applied to each accumulated element, resulting in an evenly distribution into
adjacent histogram bins. Finally, for better robustness toward point-density variations, the
descriptor is L∞-normalized. The dimensionality of the used signature is 352.

The pipeline used to compute SHOT descriptors in PCL follows. An object of the class pcl::SHOT-
Estimation is created using the template parameters of our input data (cloud and normals). A
kdtree is provided to the estimator to perform NN searches. Indices represent the key points from
the input cloud where SHOT descriptors should be computed. The radius search represents the
size around each key point that will be described. Finally, calling the compute method returns a
point cloud with as many descriptors as key points.

78 C. Appendix

Figure C.1: Signature of Histograms of Orientations.

pc l : : SHOTEstimation< . . . > shot ;
shot . setSearchMethod (t r e e) ; // k d t r e e
shot . s e t I n d i c e s (i n d i c e s) ; // k ey po in t s
shot . setInputCloud (c loud) ; // input
shot . setInputNormals (normals) ; // normals
shot . setRadiusSearch (0 . 0 6) ; // suppor t
shot . compute (∗ shot s) ; // d e s c r i p t o r s

Figure C.1 depicts the working principles of the algorithm.

rail_segmentation

Segmentation is the process by which a scene Point Cloud is divided, i.e. segmented, into different
Point Clouds. Every Point Cloud depicts a detected object.

rail_segmentation is a ROS segmentation tool proposed by the RAIL Labi. It let users perform a
tabletop object segmentation, i.e. the segmentation of objects on a plane. Its pipeline follows.

1. Table Plane Estimation: this phase finds the table plane. The RANdom SAmple Consensus
(RANSAC) algorithm is used [87]. RANSAC is an iterative method to estimate the parameters
of a mathematical model from a dataset containing outliers. Given an input dataset, it
usually returns those points that fits a certain model. In the case in analysis, the input
model is the table’s plane. The points of the table are detected by first estimating a plane in
the point cloud, all the points belonging to such a plane will be the points of the table. Once
detected these points, they are separated from objects and removed.

2. Euclidean Cluster Extraction: the Euclidean Clustering method is used to divide the remain-
ing, unorganized Point Cloud P . Assuming that we use a Kd-tree structure for finding the
nearest neighbors, Algorithm 6 follows.

79

Figure C.2: The rail_segmentation tool.

Algorithm 6 Euclidean Cluster Extraction
1: Create a Kd-tree representation for the input point cloud dataset P
2: Set up an empty list of clusters C and a queue of the points that need to be checked Q
3: for every point pi ∈ P do
4: Add pi to the current Q
5: for every point pi ∈ Q do
6: Search for the set P i

k of point neighbors of pi in a sphere with radius r < dth

7: for for every neighbor pk
i ∈ P k

i do
8: Check if the point has already been processed, and if not add it to Q
9: end for
10: end for
11: When the list of all points in Q has been processed, add Q to the list of clusters C, and reset Q to an empty

list
12: end for
13: the algorithm terminates when all points pi ∈ P have been processed and are now part of the list of point

clusters C

Figure C.2 depicts an example of obtained results.

ihttp://wiki.ros.org/rail_segmentation

Bibliography
[1] Aude Billard, Sylvain Calinon, Rüdiger Dillmann, and Stefan Schaal. Robot Programming by

Demonstration, pages 1371–1394. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[2] M. Stilman and J. Kuffner. Navigation among movable obstacles: Real-time reasoning
in complex environments. In Proceedings of the 2004 IEEE International Conference on
Humanoid Robotics (Humanoids ‘04), volume 1, 2004.

[3] H. Dang and P. K. Allen. Learning grasp stability. In in Proc. Int. Conf. Robot. Autom.
(ICRA), pages 2392–2397, Saint Paul, MN, 2012.

[4] J. Glover, D. Rus, and N. Roy. Probabilistic models of object geometry for grasp planning. In
Proceedings of Robotics: Science and Systems (RSS), Zurich, Switzerland, 2008.

[5] G. Metta, G. Sandini, D. Vernon, D. Caldwell, N. Tsagarakis, R. Beira, J. Santos-Victor,
A. Ijspeert, L. Righetti, G. Cappiello, G. Stellin, and F. Becchi. The RobotCub project -
an open framework for research in embodied cognition. Humanoids Workshop, IEEE RAS
International Conference on Humanoid Robots, 2005.

[6] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-based image
retrieval at the end of the early years. IEEE Trans. Pattern Analysis and Machine Intelligence,
pages 1349–1380, 2000.

[7] J. Pauli and G. Sommer. Perceptual organization with image formation compatibilities.
Pattern Recognition Letters, pages 803–817, 2002.

[8] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy Leibs, Rob
Wheeler, and Andrew Y. Ng. Ros: an open-source robot operating system. In ICRA Workshop
on Open Source Software, 2009.

[9] A. Oliveira, E. De Pieri, and U. Moreno. An Open-architecture Robot Controller applied to
Interaction Tasks. In E. Hall, editor, Advances in Robot Manipulators. InTech, 2010.

[10] P. Lutz and W. Sperling. Osaca the vendor neutral control architecture. In Proceedings
European Conference Integration in Manufacturing, pages 247–256, Dresden, DE, 1997.

[11] Martin Levihn. Autonomous Environment Manipulation to Facilitate Task Completition. PhD
thesis, Georgia Institute of Technology, 2015.

[12] Mike Stilman. Navigation Among Movable Obstacles. PhD thesis, Carnegie Mellon University,
2007.

[13] L. Dozio and P Mantegazza. Real time distributed control systems using rtai. In Sixth IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing, Hakodate,
Hokkaido, Japan, 14-16 May 2003.

[14] Rtnet – a flexible hard real-time networking framework. In 10th IEEE International Conference
on Emerging Technologies and Factory Automation, Italy, 2005.

[15] C. Crick, G. Jay, S. Osentoski, B. Pitzer, and O. C. Jenkins. Ros-bridge: Ros for non-ros
users. In Proceedings of the 15th International Symposium on Robotics Research, 2011.

[16] Jian Cheng, Cong Leng, Jiaxiang Wu, Hainan Cui, and Hanqing Lu. Fast and accurate image
matching with cascade hashing for 3d reconstruction. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2014.

82 Bibliography

[17] I. A. Şucan and L. E. Kavraki. Kinodynamic Motion Planning by Interior-Exterior Cell
Exploration. Algorithmic Foundation of Robotics VIII: Selected Contributions of the Eight
International Workshop on the Algorithmic Foundations of Robotics, 57:449–464, 2010.

[18] I. A. Şucan and L. E. Kavraki. A Sampling-Based Tree Planner for Systems with Complex
Dynamics. IEEE Transactions on Robotics, 28(1):116–131, 2012.

[19] R. B. Rusu and S. Cousins. 3D is here: Point Cloud Library (PCL). In IEEE International
Conference on Robotics and Automation (ICRA), 2011.

[20] Federico Tombari Walter Wohlkinger Christian Potthast Bernhard Zeisl Radu Bogdan Rusu
Suat Gedikli Aitor Aldoma, Zoltan-Csaba Marton and Markus Vincze. Point Cloud Library -
Three-DimensionalObject Recognition and 6 DoF Pose Estimation. 2012.

[21] C. Schlenoff, E. Prestes, R. Madhavan, P. Goncalves, H. Li, S. Balakirsky, T. Kramer, and
E. Miguelanez. An IEEE standard Ontology for Robotics and Automation. In Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pages 1337 – 1342,
Vilamoura, Algarve, Portugal, 2012.

[22] Craig I. Schlenoff. An Overview of the IEEE Ontology for Robotics and Automation (ORA)
Standardization Effort. In Standardized Knowledge Representation and Ontologies for Robotics
and Automation, Workshop on the 18th, pages 1–2, Chicago, Illinois, USA, 2014.

[23] E. Prestes, S. R. Fiorini, and J. Carbonera. Core Ontology for Robotics and Automation.
In Standardized Knowledge Representation and Ontologies for Robotics and Automation,
Workshop on the 18th, pages 7–9, Chicago, Illinois, USA, 2014.

[24] S. Kagami M. Stilman, K. Nishiwaki and J. Kuffner. Planning and executing navigation
among movable obstacles. In IEEE/RSJ Int. Conf. On Intelligent Robots and Systems (IROS
06), 2006.

[25] M. Levihn H. Wu and M. Stilman. Navigation among movable obstacles in unknown environ-
ments. In IEEE/RSJ Int. Conf. On Intelligent Robots and Systems (IROS 10), 2010.

[26] M. Stilman M. Levihn and H. Christensen. Locally optimal navigation among movable
obstacles in unknown environments. In IEEE-RAS International Conference on Humanoid
Robots (Humanoids), 2014.

[27] G. Wilfong. Motion planning in the presence of movable obstacles. In SCG ‘88: Proceedings
of the fourth annual symposium on Computational geometry, New York, USA, 1988.

[28] J. O’Rourke E. Demaine and M. L. Demaine. Pushpush and push-l are np-hard in 2d. In
Proceedings of the 12th Canadian Conference on Computational Geometry, 2000.

[29] Yohei Kakiuchi et al. Working with movable obstacles using on-line environment perception
reconstruction using active sensing and color range sensor. In Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ International Conference on. IEEE, page 1696–1701, 2010,.

[30] Jean-Claude Latombe. Robot motion planning. 1991.

[31] Kevin M. Lynch and Matthew T. Mason. Stable pushing: Mechanics, controllability, and
planning. The International Journal of Robotics Research, 15(6):533–556, 1996.

[32] S. M. LaValle. Planning Algorithms. Technical report, Cambridge University Press, available
at http://planning.cs.uiuc.edu/, 2006.

Bibliography 83

[33] J. T. Schwartz and M. Sharir. On the piano movers’ problem: General techniques for
computing topological properties of real algebraic manifolds. Communications on Pure and
Applied Mathematics, 36:345–398, 1983.

[34] J.J. Kuffner and S. M. LaValle. RRT-Connect: an efficient approach to single-query path
planning. In IEEE Intl. Conf. on Robotics and Automation, 2000.

[35] J.-C. Latombe D. Hsu, R. Kindel and S. Rock. Randomized kinodynamic motion planning
with moving obstacles. Intl. Journal of Robotics Research, 21(3):233–255, 2002.

[36] Jack E Bresenham. Algorithm for computer control of a digital plotter. IBM Systems journal,
4(1):25–30, 1965.

[37] Alejandro Gatto. A Cloud based Reinforcement Learning Framework for humanoid grasping,
2016.

[38] Stefano Michieletto. Robot Learning by observing human actions. PhD thesis, Università degli
Studi di Padova.

[39] J. Kober, J. Andrew (Drew) Bagnell, and J. Peters. Reinforcement learning in robotics: A
survey. International Journal of Robotics Research, 2013.

[40] R. Platt. and A. Pas. Using geometry to detect grasp poses in 3d point clouds. International
Symposium on Robotics Research (ISRR), 2015.

[41] D.A. Reynolds. A Gaussian Mixture Modeling Approach to Text-Independent Speaker Identifi-
cation. PhD thesis, Georgia Institute of Technology, 1992.

[42] S. Michieletto, N. Chessa, and E. Menegatti. Learning how to approach industrial robot
taska from natural demonstrations. In IEEE Workshop on Advanced Robotics and its Social
Impacats (ARSO2013), 2013.

[43] Andrea Bisson. Development of an interface for intuitive teleoperation of Comau manipulator
robots using RGB-D sensors, 2014.

[44] C. Goldfeder and P.K. Allen. Data-driven grasping. Autonomous Robots, 31(1):1–20, 2011.

[45] K. Hsiao G. Bradski P. Brook M. Ciocarlie, C. Pantofaru and E. Dreyfuss. A side of data
with my robot. IEEE Robot. Autom. Mag., 18(2):44–57.

[46] M. Przybylski N. Vahrenkamp T. Asfour K. Huebner, K. Welke and D. Kragic. Grasping
known objects with humanoid robots: A boxbased approach. In Proc. Int. Conf. Adv. Robot.,
2009.

[47] M. Ciocarlie, K. Hsiao, E. Jones, S. Chitta, R. Rusu, and I. Sucan. Towards reliable grasping
and manipulation in household environements. In in Proc. Int. Symp. Experimental Robotics,
pages 1–12, Delhi, India, 2010.

[48] D. Kent and S. Chernova. Construction of an object manipulation database from grasp
demonstrations. In Proc. Int. Conf. Intell. Robot. Syst. (IROS), 2014.

[49] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg. A survey of research on cloud robotics and
automation. IEEE Transactions on Automation Science and Engineering, 12(2):398–409,
April 2015.

[50] J. D. Irwin. The industrial electronics handbook. CRC Press, 1997.

84 Bibliography

[51] Y. Kato Y. Murakwa K. Okabayashi M. Narita, S. Okabe and S. Kanda. Reliable cloud-based
robot services,. In Proc. Conf. IEEE Ind. Electron. Soc., page 8317–8322, 2013.

[52] K. Goldberg. Beyond the Web: Excavating the real world via mosaic. In Proc. 2nd Int. World
Wide Web Conf., page 1–12, 1994.

[53] K. Goldberg and R. Siegwart. Beyond webcams: An introduction to online robots. MIT
Press, 2002.

[54] M. Inaba. Remote-brained robots. In Proc. Int. Joint Conf. Artif. Intell., page 1593–1606,
1997.

[55] M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Galvez-Lopez, K. Haussermann,
R. Janssen, J.M.M. Montiel, A. Perzylo, B. Schiessle, M. Tenorth, O. Zweigle, and R. van de
Molengraft. RoboEarth - A World Wide Web for Robots. Robotics & Automation Magazine,
IEEE, 18(2):69–82, 2011.

[56] G. Mohanarajah, D. Hunziker, R. D’Andrea, and M. Waibel. Rapyuta: A cloud robotics
platform. IEEE Transactions on Automation Science and Engineering, 12(2):481–493, 2015.

[57] R. B. Rusu, Z. C. Marton, N. Blodow, A. Holzbach, and M. Beetz. Model-based and Learned
Semantic Object Labeling in 3D Point Cloud Maps of Kitchen Environments. In Procceding
of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), St.
Louis, MO, USA, October 11-15 2009.

[58] D. Pangercic, M. Tenorth, B. Pitzer, and M. Beetz. Semantic Objects Maps for Robotic
Housework - Representation, Acquisition and Use. In Procceding of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2012.

[59] C. Goldfeder, M. Ciocarlie, and P. Allen. The Columbia grasp dataset. In Proc. Int. Conf.
Robot. Autom. (ICRA), pages 1710–1716, Kobe, Japan, 2009.

[60] A. Kasper, Z. Xue, and R. Dillman. The KIT object models database: an object model
database for object recognition, localization and manipulation in service robotics. International
Journal of Robotics Research (IJRR), 31(8):927–934, 2012.

[61] M. Tenorth and M. Beetz. KnowRob: A Knowledge processing infrastructure for cognition-
enabled robots. International Journal of Robotics Research (IJRR), 23(5):566–590, 2013.

[62] J. Weisz and P. K. Allen. Pose error robust grasping from contact wrench space metrics. In
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pages 557–562, St. Paul, MN, USA, 2012.

[63] M. Popovic, G. Koostra, J. A. Jorgensen, D. Kragic, and N. Kruger. Grasping unknown
objects using an early cognitive vision system for general scene understanding. In Proc. Int.
Conf. Intell. Robot. Syst. (IROS), pages 987–994, San Francisco, California, USA, 2011.

[64] D. Di Marco, A. Koch, O. Zweigle, K. Haussermann, B. Schiessle, P. Levi, D. Galvez-Lopez,
L. Riazuelo, J. Civera, J. M. M. Montiel, M. Tenorth, A. Perzylo, M. Waibel, and R. Van de
Molengraft. Creating and using RoboEarth object models. In IEEE International Conference
on Robotics and Automation (ICRA), pages 3549–3550, 2012.

[65] L. Kaufman and P.J. Rousseeuw. Statistical Data Analysis Based on the L1-Norm and Related
Methods, chapter Clustering by means of Medoids, pages 405–416. North-Holland, 1987.

[66] V. Dubois and M. Quafafou. Concept learning with approximation: Rough version spaces.
In Rough Sets and Current Trends in Computing: Proceedings of the Third International
Conference (RSCTC), pages 239–246, Malvern, PA, USA, 2002.

Bibliography 85

[67] Zhengjie Fan. Concise Pattern Learning for RDF Data Sets Interlinking. PhD thesis, University
of Grenoble, 2014.

[68] S. Balakirsky, Z. Kootbally, T. RKramer, A. Pietromartire, C. Schlenoff, and S. Gupta. Knowl-
edge driven robotics for kitting applications. Robotics & Autonomous Systems, 61(11):1205–14,
2013.

[69] Carmen Martinez-Cruz, Ignacio J. Blanco, and M. Amparo Vila. Ontologies versus relational
databases: Are they so different? a comparison. Artificial Intelligence Review, 2011.

[70] Kim W. Introduction to object-oriented databases. Technical report, MIT Press, Cambridge,
1990.

[71] Subrahmanian VS Marcus S. Foundations of multimedia database systems. J ACM,
43(3):474–523, 1996.

[72] Valduriez P Özsu MT. Distributed database systems: Where are we now? Computer,
24(8):68–78, 1991.

[73] Goldfarb CF Graves M. Designing xml databases. Technical report, Prentice Hall PTR, Upper
Saddle River, 2001.

[74] Agarwal P. Ontological considerations in giscience. Int J Geogr Inf Sci, 19(5):501–536, 2005.

[75] Sandro Rama Fiorini, Joel Luis Carbonera, Paulo Gonçalves, Vitor A.M. Jorge, Vítor Fortes
Rey, Tamás Haidegger, Mara Abel, Signe A. Redfield, Stephen Balakirsky, Veera Ragavan,
Howard Li, Craig Schlenoff, and Edson Prestes. Extensions to the core ontology for robotics
and automation. Robot. Comput.-Integr. Manuf., 33(C):3–11, 2015.

[76] M. R. Cutkosky. On grasp choice, grasp models, and the design of hands for manufacturing
tasks. In Robotics and Automation, IEEE Transactions on, volume 5(3), page 269–279, 1989.

[77] W. J. Beksi, J. Spruth, and N. Papanikolopoulos. Core: A cloud-based object recognition
engine for robotics. In Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on, pages 4512–4517, 2015.

[78] G. Bradski. Dr. Dobb’s Journal of Software Tools.

[79] N. Koenig and A. Howard. Design and use paradigms for gazebo, an open-source multi-
robot simulator. In roc. of IEEE/RSJ International Conference on Intelligent Robots and
Systems(IROS 2004), pages 2149–2154, 2004.

[80] T. Mörwald and M. Vincze. Object modelling for cognitive robotics. PhD thesis, Vienna
University of Technology, 2013.

[81] V. Lippiello, L. Villani, and B. Siciliano. An open architecture for sensory feedback control of
a dual-arm industrial robotic cell. Industrial Robot: An International Journal, 34(1):46–53,
2007.

[82] K. Oonishi. The open manipulator system of the mhi pa-10 robot. Proceeding of International
Symposium on Robotics, 1999.

[83] A. Blomdell, G. Bolmsjo, T. Brogardh, P. Cederberg, M. Isaksson, R. Johansson, M. Haage,
K. Nilsson, M. Olsson, T. Olsson, A. Robertsson, J. Wang, and Department of Automation of
Lund University. Extending an industrial robot controller: implementation and applications
of a fast open sensor interface. Robotics and Automation Magazine, 12, 2005.

86 Bibliography

[84] F. Dogliani, G. Magnani, and L. Sciavicco. An open architecture industrial controller. Newsl.
of IEEE Robotics and Automation Soc., 7(3):19–21, 1993.

[85] E. Venator. Hardware and software architecture of abby: An industrial mobile manipulator.
In 9th IEEE International Conference on Automation Science and Engineering, August 2013.

[86] M. Freese, S. Singh, F. Ozaki, and N. Matsuhira. Virtual robot experimentation platform
v-rep: a versatile 3d robot simulator. In Proceedings of the Second international conference
on Simulation, modeling, and programming for autonomous robots, SIMPAR’10, page 51–62,
Berlin, Heidelberg, 2010. Springer-Verlag.

[87] M. Fischler and R. Bolle. Random sample consensus. a paradimg for model fitting with
applications to image analysis and automated cartography. Communications of the ACM,
24(6), 1981.

	List of Figures
	List of Tables
	List of Abbreviations
	Background and Motivation
	Motivations
	Challenges
	Contributions
	Thesis Outline

	Navigation Among Movable Obstacles
	State of Art
	Problem Statement
	Action Space
	Navigation
	Manipulation

	Problem Complexity
	Idea
	Proposed Solution
	Navigation
	Manipulation
	The relocation routine of graspable objects
	The relocation routine of pushable objects

	Implementation Details
	Navigation
	Manipulation
	Uncertainty

	Experiments
	Experiment 1: a Point-like Robot
	Experiment 2: a Footprint Robot
	Experiment 3: a Simulated Robot

	Results
	Experiment 1
	Experiment 2
	Experiment 3

	Discussion

	Manipulation
	Reinforcement Learning
	Overview
	The Framework

	Robot Learning from Demonstration
	Overview
	The Framework
	Data Acquisition
	Retargeting
	Motion Controllers
	Position Controller
	Velocity Controller

	Discussion

	Open Semantic Framework
	State of Art
	Cloud Computing
	Big Data

	Idea
	Ontologies vs Database models
	RTASK
	Design
	Implementation details
	Languages

	Engine
	Data Retrieval
	Data Insertion
	Human-Robot Interaction

	Experiments
	Sense
	Model
	Act

	Results

	Discussion

	Flexible robots: Open Controllers and ROS-I Interfaces
	State of Art
	Idea
	A ROS-I Interface for C4G Open Controller
	Comau C4G Open Controller
	Open Motion Planning Library
	The ROS-I Interface
	Real robot
	Simulation

	Experiments
	Objectives
	Experimental Setup
	Scenario 1 - Position Controller
	Assignment
	Simulated Setup
	Real Setup

	Scenario 2 - Velocity Controller
	Assignment
	Simulated Setup
	Real Setup

	Results
	Scenario 1 - Position Controller
	Simulation
	Real World

	Scenario 2 - Velocity Controller
	Simulation
	Real World

	Discussion

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendix
	Appendix
	Appendix
	Bibliography

