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Abstract

Autism Spectrum Disorder (ASD) is a complex developmental disability affecting as

many as 1 in every 88 children. While there is no known cure for ASD, there are

known behavioral and developmental interventions, based on demonstrated efficacy, that

have become the predominant treatments for improving social, adaptive, and behavioral

functions in children.

Applied Behavioral Analysis (ABA)-based early childhood interventions are evidence

based, efficacious therapies for autism that are widely recognized as effective approaches to

remediation of the symptoms of ASD. They are, however, labor intensive and consequently

often inaccessible at the recommended levels.

Recent advancements in socially assistive robotics and applications of virtual intelligent

agents have shown that children with ASD accept intelligent agents as effective and often

preferred substitutes for human therapists. This research is nascent and highly experimental

with no unifying, interdisciplinary, and integral approach to development of intelligent

agents based therapies, especially not in the area of behavioral interventions.

Motivated by the absence of the unifying framework, we developed a conceptual

procedural-reasoning agent architecture (PRA-ABA) that, we propose, could serve as a

foundation for ABA-based assistive technologies involving virtual, mixed or embodied

agents, including robots. This architecture and related research presented in this disser-

tation encompass two main areas: (a) knowledge representation and computational model

of the behavioral aspects of ABA as applicable to autism intervention practices, and (b)

abstract architecture for multi-modal, agent-mediated implementation of these practices.
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Chapter 1

Introduction

1.1 The Prevalence of Autism

Autism Spectrum Disorder (ASD) is a complex developmental disability characterized

by impairments in social interaction and communication and by restricted, repetitive,

and stereotyped patterns of behavior (American Psychiatric Association, 2000). It is a

prevalent and challenging condition affecting 1 in 88 children (Baio, 2012) and 1 in 50

boys (Blumberg et al., 2013).

1.2 Therapies, Treatments, and Interventions

While there is no known cure for ASD, there are a number of interventions aimed at

remediation of the symptoms of the disorder. These interventions for individuals affected

by autism range from pharmacological therapies, diet modifications, vitamin therapy,

occupational therapy, speech and language therapy, to behavioral and developmental

approaches (Volkmar et al., 2005). Behavioral and developmental interventions, based

on demonstrated efficacy (Foxx, 2008), have become the predominant treatments for

improving social, adaptive, and behavioral functions in children.

1



1.3 Applied Behavioral Analysis and Discrete Trials

The focus of the research of this dissertation is on the group of behavioral treatment

interventions based on the principles of Applied Behavior Analysis (ABA) and derived

from the work of Lovaas et al. (1981).

ABA is a generic behavioral intervention not specific to autism, although frequently

applied in the field of special education. It is a discipline of behavioral science concerned

with the application of principles of behaviorism in practical settings such as schools,

clinics, workplace, society, etc., with the aim of addressing socially significant behavioral

issues such as behavioral problems, learning and habits. Cooper et al. (2007) define ABA

as:

a scientific approach for discovering environmental variables that reliably

influence socially significant behavior and for developing a technology of

behavior change that takes practical advantage of these discoveries.

Baer et al. (1968) defined the seven dimensions that describe the essential characteris-

tics of ABA:

• Applied - ABA deals with problems of demonstrated social importance

• Behavioral - interventions deal with measurable, observable behavior

• Analytic - ABA requires objective demonstration that its procedures are causing the

behavioral effect

• Technological - techniques making up the particular interventions need to be

describable at the level of details at which anyone with appropriate training and

resources could replicate the procedure and produce the same results just by reading

the description of the intervention

• Conceptual Systematic - ABA interventions originate from well-established scien-

tific and theoretical foundations of behavioral science, so its methods and procedures

must be based on these well-established principles
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• Effective - objective of the applied interventions is to produce strong, observable,

and socially important effects. Although measure and analysis of the behavior is

important, the end goal is to change existing or introduce new behaviors. If this is

not happening, then intervention is not effective and hence not working

• General - ABA interventions need to be general and persist over time. They are

designed to be effective in new environments and to continue to have effect even

after the original treatments have with been withdrawn

According to (Foxx, 2008, p.821), ABA incorporates all of the factors identified by

National Research Council (US). Committee on Educational Interventions for Children

with Autism (2001) as characteristic of effective interventions in educational and treatment

programs for children who have autism.

Intensive ABA, according to the American Academy of Pediatrics (Myers et al., 2007),

was found to be the most effective of all behavioral and developmental approaches com-

pared. Three comparative studies (Cohen et al., 2006; Eikeseth et al., 2002; Howard et al.,

2005) found that intensive ABA is the most efficacious at 25-40 hours of individualized

hours of treatment with a therapist. With prevalence rates stated earlier (1 in 88 children)

and with high therapy hourly costs, this effective therapy, at the recommended levels, is

largely inaccessible to many of the patients in need.

1.4 ABA Based Instructional Methods

1.4.1 Discrete Trials Training

Discrete Trials Training (DTT) is a form of an individualized and environmentally

restricted ABA intervention with the aim of teaching new skills, discriminations, and forms

of behaviors. It is an evidence-based intervention that has shown systematic effectiveness

in education and behavioral interventions with children with autism (Smith et al., 2007).

The idea behind DTT is to accomplish large or long-term behavioral goals by breaking
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them down into small, achievable learning units that are to be learned in the format of a

discrete trial. A particular trial is to be performed multiple times until the skill is mastered.

DTT is, therefore, structured as a series of repeated, single teaching units (Lovaas et al.,

1981) called trials, with each trial consisting of three components: discriminative stimulus

(SD), the subject’s response (R), and the consequence (SR):

SD ⇒ SR

In a DTT session, there is a pause between each trial before the presentation of the

next discriminative stimulus. Smith (2001) describes the DTT in the context of special

education as having the following structure:

Cue (discriminative stimulus, also called Antecedent) is a presentation of a brief and

clear instructions or a question such as “What color is this?” Prompt is a supplemental

teaching aid aimed at assisting students in responding correctly to the cue. It may be the

holding of a child’s hand, co-vocalization, etc. Response is student’s correct or incorrect

response to the instructor’s cue. Consequence is an instructor’s action following the

correct or incorrect response. Correct responses receive positive reinforcements. Incorrect

responses receive a clear signal that response was incorrect, followed by instructor’s

demonstration of what is correct response (correction). Inter-trial interval duration is pre-

determined amount of time between trials in teaching situations.

Discrete trials are authored by a certified DTT therapist as scripts that repeatedly can

be used in a controlled setting. A simple discrete trial, as exemplified by Cosgrave (2013),

might look like one of these:

Full Gestural Trials

The teacher places one red and one blue card on the table then says “point to red.” The

teacher then immediately points to the red card (full gestural prompt). Jane responds by

pointing to the red card.

The teacher would say, “That’s right! Great job!”. There would be a very short pause

before a new discrete trial would begin.

CLB,CLB,CLB,CLB,CLB,CLB,CLB,CLB
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Partial Gestural Trials

The teacher places one red and one blue card on the table, then says “point to red”. The

teacher then immediately gestures halfway toward the red card (partial gestural prompt).

Jane responds by pointing to the red card. The teacher would say “You’re right! That’s

Brilliant!” There would be a very short pause before a new discrete trial would begin.

Independent Trials

The teacher places one red and one blue card on the table, then says, “point to red”

Teacher gives no prompt (independent). Jane responds by pointing to the red card.

The teacher would say, “That’s right! Well done!” There would be a very short pause

before a new discrete trial would begin.

1.4.2 Pivotal Response Training

Pivotal Response Training (PRT) (Koegel and Kern Koegel, 2006) is another behavioral

intervention based on ABA principles. PRT is considered a naturalistic behavioral

intervention because it is intended to be integrated in a natural learning setting and

implemented as a component of a non-scripted, regular teaching process with naturally

occurring consequences. Its intent is to promote generalization, spontaneity, and reduce

prompt dependency by conducting the reinforcement learning in a natural setting.

The PRT development stems from a number of studies that identified important,

“pivotal” behaviors — those essential to a broad spectrum of a child’s development areas

and non-targeted behaviors. Because of the complexity and diversity of the environment

that it requires, PRT is beyond the scope of this dissertation but the outcome of our research

and the framework we desire to put in place could lead to implementation of the agents

capable of conducting the PRT.
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1.5 Role for Intelligent Agents in Special Education and

Autism Therapies

Evidence suggests (Barakova et al., 2009) the role that computers and related interactive

technologies can play in early childhood interventions for autism. In the paper “An

Approach to the Design of Socially Acceptable Robots for Children with Autism Spectrum

Disorders”, Welch et al. (2010) defines the need for more accessible and cost effective

technology-based autism therapies:

an important direction for research on ASD is the identification and develop-

ment of technological tools that can make application of effective intensive

treatment more readily accessible and cost effective.

Furthermore, Welch concludes that:

there is increasing consensus in the autism community that development of

assistive tools that exploit advanced technology will make application of

intensive intervention for children with ASD more efficacious. (p.391)

In Autism and Learning, Murray (Powell and Jordan, 2012) outlines the following

reasons why computers suit individuals with autism:

• Contained, very clear-cut boundary conditions

• Naturally monotropic∗ thus context-free

• Restricted stimuli in all sensory modalities

• Rule-governed and predictable, thus controllable (despite annoying mistakes)

• Safe error-making

• Highly perfectible medium
∗monotropic is a technical term introduced by Murray meaning here “inducing attention-tunnel”
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• Possibilities of non-verbal or verbal expression

• Interacts co-tropically† with the individual, i.e., it joins the individual’s attention

tunnel, starts where the child is

1.5.1 Use of Intelligent Agents

Interactive, graphical user interface (GUI) based technologies have existed for decades

(Ashton, 2001) (see Figure 1.1), and they have been applied in standard school settings,

including recent inclusion of tablet-based interactive software (Venkatesh et al., 2013), ever

since the first introduction of the applications.

Figure 1.1: DTT a GUI-based Discrete Trial Training software (AES, 2014)

Recently, research has shifted to the use of instructional agents over the entire

Milgram’s Mixed Reality spectrum (Milgram and Kishino, 1994; Holz et al., 2009), with

emphasis on two primary areas: use of virtual/animated pedagogical agents and use of

embodied agents (Figure 1.2) for interactive play and instruction.

1.6 Motivation for Research

The use of intelligent agents, including robots, for the Autism Spectrum Disorder-focused

interventions is an active area of research that brings together researchers from the fields of
†another technical term introduced by Murray meaning “participating in an attention tunnel”
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Figure 1.2: Embodied Agent Kaspar (Wainer et al., 2010) in Autism Research. Image
courtesy of Science Daily.

psychology, special education, neuroscience, computer science, and electrical engineering.

These research efforts focus on different areas of the applications of robotics and virtual

reality to autism therapies. We recognize the opportunity and the need to develop a unifying

approach that will integrate the robotic and agent technologies and the instructional practice

into a single framework. We chose the behavioral instruction, and specifically DTT because

of their prescriptive, restricted and almost algorithmic nature. We also believe that the

unifying framework should be independent of a technology or a specific implementation,

and that it should serve as a conceptual model for any intelligent-agent like implementation.

The hypothesis of this research is therefore based on the following observations:

• the deterministic, scripted, and technologic nature (Baer et al., 1968) of ABA-based

therapies is well suited for computational representation

• intelligent agents (including robots) can play an important role in the education of

the children with ASD; and

• a control architecture for the instructional agent (embodied or virtual) can be

abstracted away from the implementational and physical specifics
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1.7 Thesis

As we have discussed in the previous sections, ABA-based early childhood interventions

for ASD are effective, evidence-based approaches that, if applied early and intensively,

yield significant long term improvements in an individual’s ability to overcome typical

social and communicative impairments associated with autism (Eldevik et al., 2009). We

also have reviewed the promise and interest in the research community for use of intelligent

agents (virtual, embodied, mixed) in early autism interventions as socially acceptable and

comforting instructional agents.

This is a nascent field of research, and there is still an absence of a foundational

computational framework for implementation of ABA-based, intelligent agent-mediated

interventions that would serve as a basis for development of instructional agents. With this

observation in mind, we embarked on developing a foundation for such a framework. We

hypothesized about the plausibility of such a conceptual, computational model for ABA-

based interventions because of ABA’s foundations in principles of behavioral science,

its “technologic”, deterministic nature (Cooper et al., 2007, p.5), and its prescriptive,

algorithmic structure (Alberto et al., 2009, p.239). To advance this goal and to confirm

the hypothesis, we developed a conceptual model and a prototype of a framework that

would formalize the fundamental ABA instructional concepts (Cooper et al., 2007, Ch.2),

and we translated it into an executable, agent-based procedural architecture. We call

this architecture a (PRA-ABA) Procedural Reasoning Architecture for Applied Behavior

Analysis-based instructions. We emphasize the procedural nature of the architecture

because of ABA’s repetitive, prescriptive, and procedural nature. We emphasize reasoning

because of the need for the intelligent agent, unlike the GUI, to semi-autonomously reason

about the progress of the instruction, the student’s behaviors, and his or her preferences.
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1.8 The Scope of Research and Representation

ABA is a broad framework based on the principles of behaviorism. The focus of this

research is on the identification of the essential principles that govern direct, interactive

aspects of ABA-based learning between the student and instructor that can be translated

effectively into interactions and reasoning tasks for the intelligent agent.

Outside of the scope are elements of the ABA such as single and multiple subject de-

sign, manual measurements, functional behavioral analysis (FBA), behavioral hypotheses,

and ethical considerations that are usually conducted by teams of specialists and in a non-

controlled environment prior or post instructional sessions.

The diagram 1.3 depicts which ABA general topics are and are not within the scope of

developing the representational and reasoning formalism of this research. In-scope areas

are shaded in blue.

Behavioral Hypothesis

Functional Behavioral Analysis

 Behavioral Intervention

3-Term Contingency-based 
Intervention

Behavioral Objectives

Data Collection

Measurement of Behavior
Prompt 
Fading ChainingThining

Schedules of Reinforcement

Generalization

Setting and Environment

Behavioral
Intervention

Plan

Behavioral
Intervention

Educational
Setting

Figure 1.3: Scope of Representation
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We expect that this scope will expand in future work as ABA-based instructional agents

become more sophisticated and independent in their capability to conduct the behavioral

interventions. For now, we are limiting the scope for the sake of practicality and limitations

of the scope of the doctoral dissertation.

1.9 Approach to Research

Guided by the assumptions that behavioral instruction can be computationally represented,

and that this computational representation can be translated into an architectural frame-

work, we based our research approach around three main activities:

1. research and development of the computational foundation for ABA (an ABA

ontology (Soares et al., 1997)),

2. design and development of the agent-oriented instructional control architecture, and

3. formal and practical evaluation of the resulting architecture.

1.9.1 Domain Study, Knowledge Acquisition, and Concept Analysis

In knowledge representation terms, knowledge acquisition is a process of acquisition of

knowledge from human experts, books, electronic data, documents, sensors, etc. For this

research, knowledge acquisition encompassed knowledge acquisition from human experts,

analysis of literature, study of ABA procedures, ABA certification tutorials, and manuals.

As part of this step, we sought to discover logical and ontological foundations underlying

ABA as applied in early autism interventions, and to formalize the concepts and principles

of ABA as an ABA ontology. The ABA ontology is discussed in Chapter 2.
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1.9.2 Design and Development of the Agent-oriented Instructional

Architecture

Operating under the assumption that there can be an abstract control component that

would offer a sufficient and complete medium for agent-driven control of the behavioral

instruction, we worked to develop an abstract, software-oriented framework that would be

capable of autonomous or semi-autonomous control of the behavioral instruction. This

architecture needed to support the agent’s “understanding” of the key elements of the

behavioral instruction and the capability to assemble them into a coherent instructional

program. This area of research is covered in Chapter 4.

1.9.3 Validation and Evaluation

To validate the working hypothesis of this research we wanted to ensure that:

1. we have covered the right aspects of the domain,

2. our (formal) coverage of the domain is complete, and

3. the resulting architecture, based on the representation of the domain, can be built and

that the solution works.

To arrive to these points, we:

1. evaluated the resulting theoretical and conceptual elements of the architecture with

domain experts and

2. built and tested working prototypes in multiple modalities.

Validation and evaluation steps for the architecture are described in more details in chapter

5.
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Chapter 2

Background and Related Work

The research presented in this dissertation encompasses two fields: behavioral instruction

as applied in special education and intelligent-agents oriented applications, both in the

context of autism interventions. For this reason we review the fundamentals of behavioral

instruction, the background on intelligent agents, and the state-of-the-art in the robotics

applications in autism research.

2.1 The Theory of Applied Behavioral Analysis

In Chapter 1 we briefly reviewed the main concepts and the meaning of the ABA as a

branch of psychology that provides strategies for correcting or improving certain behaviors

in individuals, especially those with special needs. In this chapter, we will survey the

behavioral theories that ABA is based on, its principles and intervention techniques, and

how are these intervention techniques systematically applied to achieve the desired learning

outcomes.

2.1.1 Roots of ABA in Behavioral Science

Behavior is defined as an observable or measurable action exhibited by an individual.

Its principles and manifestations are the subject of behavioral science, a field of study
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focused on the examination of causes and principles of the behavior of all species, including

humans. ABA is specifically influenced by the works of behavioral psychologists Watson

(1914), Skinner (1953), and Lovaas (1987).

2.1.2 Behavioral Learning

Behavioral learning is the process of learning of new behaviors or the modification of

existing ones as a result of the interaction between the organism and the environment,

and the nature of the interaction itself.

Under the educational classification (Lord et al., 1989), behaviors fall under three

categories, namely social skills, academic skills, and challenging behaviors. Examples

of social skills are greetings, raising one’s hand, and shaking someone else’s hand.

Completing a writing task and doing oral mathematical computation are examples of

academic skills. Challenging behaviors may include grabbing toys, hitting another student,

screaming, or self-injury. The absence of development of academic and social skills, and

presence of persistent challenging behaviors during the childhood significantly impedes the

child’s overall progress (Rao et al., 2008), and potential for future normal development.

Respondent Conditioning

Also known as classical conditioning, respondent conditioning (Skinner, 1938) is a basic

form of behavioral learning. It involves pairing of a neutral stimulus with another

stimulus that may elicit a spontaneous response. The neutral stimulus is known as the

conditioned stimulus; the second stimulus is called unconditioned stimulus. The ultimate

goal in respondent conditioning is for the participant to eventually transition from showing

unconditioned or natural response to the unconditioned stimulus to showing conditioned

response to the neutral stimulus (Figure 2.1).
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Figure 2.1: Respondent Conditioning

Respondent conditioning occasionally occurs in the academic and family setting. A

child may associate sitting on a high chair by the table with eating his or her meal. The

food placed on the table serves as the unconditioned stimulus while the high chair becomes

the neutral stimulus. Stimulation such as excitement may be shown by the child upon

seeing the food. Without associating the chair to the serving of food, no natural reflex may

be shown to the chair per se. As part of successful conditioning, the child should eventually

be showing some excitement upon seeing the high chair since it has been associated with

the food. This happens as both stimuli are presented to the child.

To increase the occurrences of a positive operant behavior, rewards such as verbal praise

or tokens are given. On the other hand, to decrease negative operant behavior, some forms

of punishment are applied. A good example is intentional ignoring.

Operant Conditioning

Operant conditioning (Skinner, 1938) is a form of behavioral learning based on the system

of rewards and punishments (consequences). Consequences are used to help introduce new
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behaviours or modify existing ones (Figure 2.2). With operant conditioning applied in an

educational setting, a student learns to associate certain positive behaviors with rewards

and disruptive behaviors with negative consequences.

Reinforcement
Consequence 

(C)

Setting Event (Antecedent)
Discriminative Stimuli (SD)

Behavior
Response (R)

Behavioral Instruction (ABC)

Generalization and Maintenance

Setting Event (Antecedent)
Discriminative Stimuli (SD)

Behavior
Response (R)

Figure 2.2: Operand Conditioning

Operant conditioning and the related three-term contingency framework are the funda-

mental concepts of ABA.

2.1.3 Three-Term Contingency

Three-term contingency is a framework for expression of events or situations before,

during, and after a certain action of a learner who is the subject of intervention. Three-term

contingency has three components: Antecedent (A), Behavior (B), and Consequence (C),

which are known as “ABC”. Telling someone to sit down is a form of Antecedent. When the

person takes his or her seat and sits down, this action is an example of Behavior. Note that

the behavior — sitting down — is prompted by the instruction “sit down” (antecedent).

Giving verbal praise or a token like a piece of candy is an example of Consequence.
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Consequences that follow a behavior promote the student’s learning to exhibit desired

behaviors or to reduce occurrence of the undesired ones (e.g. hitting, yelling, self-injury).

Three-term contingency is a core function of behavior modification that relates the

behavior to its antecedent (setting event for the behavior) and the consequences that follow

it. It is a fundamental mechanism for alteration of behavior, including learning of new

behaviors.

2.1.4 Reinforcement

Reinforcement is a description of the relationship between the behavior and a consequence

that immediately follows it. A relationship is reinforcing if the consequence increases the

probability of the future occurrence of the behavior. Reinforcement is a crucial method in

behavioral learning; it is used to promote recurrence of the desired behavior. Following are

the principles that must guide its application in order for reinforcement to be effective.

1. Reinforcement must be contingent on the displayed behavior. Reinforcement should

never be applied arbitrarily. Instead, it must be purposeful and always connected

to a desired behavior. Without a display of positive behavior, no reinforcement is

warranted.

2. Reinforcement must be applied immediately. Immediacy is critical in the efficacy of

any form of reinforcement. Once a behavior is manifested, it should be reinforced

within the first few moments. Otherwise, the student will not be able to establish the

connection between the behavior and the reinforcer.

3. Reinforcement must be appropriate to the behavior. A reinforcement must be suitable

to the task or behavior. A minor task requires a simple reinforcer while a more

demanding task deserves a lot more. A half cookie may suffice for identifying a

color but not for completing seatwork for 5 or 10 minutes.

4. Reinforcement must be specific and clear. A behavior that is reinforced using verbal

affirmation must be clearly identified using specific words. Generic expressions such
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as “Good job” or “Nice” are not clear enough because they do not indicate the actual

behaviors. The student must know exactly what he or she has done and how well.

Better alternatives include: “You finished your writing in 5 minutes.” or “You spelled

all the words correctly.”

Reinforcement may be positive or negative. A positive reinforcement refers to any event

or outcome that is given following a certain behavior. A verbal praise after the completion

of a math homework is an example of positive reinforcement. If this reinforcement is given,

it is likely that succeeding similar tasks will be completed.

A negative reinforcement often requires the removal of a pleasant event or outcome

following a certain behavior. Removing time restriction on playing with certain toys is an

example of a negative reinforcement.

2.1.5 Punishment

Punishment is an application of consequent stimulus (SD) that:

• decreases the probability of the future occurrence of the behavior,

• is issued for the undesired or inappropriate behavior, and

• is issued immediately following the undesired or inappropriate behavior.

Punishment can be positive or negative. An example of a positive punishment is giving

additional chores such as washing dishes or asking child to take out the trash. Limiting TV

time or removing computer privileges are examples of negative punishment.

Behavioral practitioners prefer using reinforcement rather than punishment since a

student may not understand why he or she is being given a negative consequence for a

certain behavior. At times, students with special needs cannot distinguish what is favorable

from unfavorable behavior.
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2.1.6 Extinction of Behavior

Extinction is a procedure in which reinforcement for a problem behavior is discontinued in

order to decrease or eliminate the occurrence of that behavior.

2.1.7 Schedules of Reinforcement

Schedules of reinforcement play an important role in the gradual development of the

reinforcement-independent mastery of behaviors. Functionally, they are used to define

parameters and boundaries when working with and delivering reinforcers. A good schedule

of reinforcement provides both the teacher and the student the rules which govern the

learning environment.

These defined rules are dynamic, changing the schedules of the reinforcement as the

needs of the student change. Depending on the student’s learning performance and mastery

of the skill, reinforcement might be given after every correct response or for every three

responses or after a certain amount of time has passed.

The two categories of reinforcement schedules are continuous schedules and intermit-

tent schedules (Figure 2.3).

A continuous schedule of reinforcement happens when a reinforcement is given

immediately following the identified or targeted behavior while an intermittent schedule

of reinforcement occurs when the reinforcement is provided following every other correct

behavior is executed.

One would use a continuous schedule when introducing a new behavior and an

intermittent schedule when reviewing and maintaining previously learned behaviors. Both

continuous and intermittent schedules provide the student with reinforcement for correctly

demonstrated behavior.
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Figure 2.3: Schedules of Reinforcement

Continuous Schedules of Reinforcement

Continuous (CR) schedules of reinforcement are utilized to teach that every single time

Behavior A occurs Reinforcement B will follow. Continuous schedules are used when

teaching constants such as a child’s name, letters of the alphabet, numbers, etc.

Intermittent Schedules of Reinforcement

In contrast to the continuous schedule of reinforcement offering no variance, an intermittent

schedule of reinforcement (See Table 2.1) has four basic types:

1. A fixed-ratio schedule (FR) is a schedule of reinforcement in which the reinforce-

ment occurs after a predetermined number of correct responses is given. When using

a fixed-ratio schedule in discrete trial training, the value of trials must always be

defined. When the value is defined as two (FR2), the student receives reinforcement

every second correct response. When the value is defined as one (FR1), it is

technically the same as a continuous reinforcement schedule.
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2. A variable-ratio schedule (VR) is a schedule of reinforcement in which the reinforce-

ment must average out as a specific number. When using variable-ratio schedules

in discrete trial training, the value can be any number, but must always be defined.

For example, if a student has a total of 10 correct responses and was provided 5

reinforcements throughout the trial, the reinforcement was delivered for every 2nd

correct response on average.

3. A fixed-interval (FI) schedule is a schedule where the reinforcement becomes

available only after target behavior occurs before the set time interval has ended.

When used in discrete trial training, the schedule is represented as (FI) plus the

selected measure of time. For example, if the student’s target behavior is to stay

in his or her designated area for 2 minutes, the schedule is represented as FI2. At

the end of two minutes, if the student remains in his or her designated area, the

reinforcement is given.

4. A variable-interval (VI) schedule is a schedule of reinforcement in which a certain

period of time must pass prior to student’s reinforcement. The availability of

reinforcement must average out to a specific interval of time. For example, a

VI 4 schedule would indicate that reinforcements are available on average every

4 minutes. As with the fixed-interval schedule, the student must be observed

performing the desired behavior before reinforcement is received.

Thinner and Thicker Schedules

The terms Thinner Schedule of Reinforcement or Thicker Schedule of Reinforcement may

be used to define adjustments made to the student’s currently implemented schedule of

reinforcement.

For example, a FR5 schedule (reinforcement delivered after every 5th correct response),

then a “thinner” schedule would mean increasing the amount of correct responses needed

to gain reinforcement. The “thinner” schedule would look like FR7 (where reinforcement

21



Table 2.1: Schedules of Reinforcement

Type of Reinforcement Definition
Continuous (CR) Reinforcement is provided after each correct

response.
Intermittent Reinforcement is provided for some, but not all,

correct responses.
Ratio reinforcement schedule Reinforcement is provided after a specific

number of correct responses. Two types of ratio
reinforcement schedules may be used: fixed and
variable.

1. Fixed Ratio Schedule (FR) Reinforcement is delivered after a specified
number ,n, of correct responses. Symbol: FRn

2. Variable Ratio Schedule (VR) A student is reinforced every n-th correct
response on average. Symbol: VRn - VR5
reinforce, on average, every fifth behavior. For
example, if the average reinforcement is set as
3, instructor will reinforce either second, third
of fourth correct response and the counter will
reset.

Interval reinforcement schedules Learners are reinforced after a period of time.
1. Fixed interval schedules (FI) A learner is reinforced following a specified t

amount of time (in minutes) of correct behavior.
(e.g., staying seated) Symbol: FIt Example: FI5
where 5 is 5 minutes.

2. Variable interval schedules (VI) Reinforcement is provided after an average
amount of time t where t is the number of
minutes. Symbol: VIt Example: VI3 means
that instructor might provide reinforcement on
an average every 3 minutes.

would be delivered after every 7th correct response) thus “thinning” the amount of

reinforcement the student is given for correct response or behavior.

As an example of a “thicker” schedule, the currently implemented schedule of FR5

(reinforcement delivered after every 5th correct response) would decrease to FR3 (rein-

forcement delivered after every 3rd correct response) thus “thickening” the reinforcement

schedule.
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Combining Schedules of Reinforcement

In an educational or classroom setting, a combination of schedules is often required

to maximize a student’s success of new skills while maintaining previously attained

skills. Combinations of reinforcement schedules allow teachers to use verbal praise on

a continuous (FR1) schedule of reinforcement for previously acquired skills while the new

or introduced skill is on a FR1 with tangible reinforcement). One would write FR1 praise,

FR2 token to indicate differences in the discrete trial scripting notes.

2.1.8 Thinning of Reinforcers

Thinning of reinforcement refers to the introduction of spacing into a reinforcement

schedule, and it is a technique employed to gradually remove the reinforcers. Ideally, the

instructor’s objective is to remove the need to reinforce desired behaviors so that student

can exhibit behaviors independently without needing a reward (e.g. writing his or her name

without needing a reward). Thinning is a gradual process where such state of skill mastery

is acquired over time by spacing out the reinforcers.

2.1.9 Prompting and Prompt Fading

Prompting is help or a cue provided by the instructor to assist the student in performing the

correct behavior. For example, highlighting or pointing to the correct object to be selected

by the student is an example of prompting. Prompt fading is the gradual removal of the

prompt as the student acquires a certain level of mastery of the behavior. The ultimate goal

is to remove the prompt altogether and avoid the student’s dependency on the prompt.

2.1.10 Chaining

Depending on their needs and level of development, some students may be unable to

handle certain activities that involve long, tedious, or more complicated procedures. In

such cases, the teacher may employ chaining, a teaching technique that involves breaking
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down a difficult task into smaller units to make learning easier. An example of complex

behavior may be joint attention. This learning objective might be acquired by breaking it

down into maintenance of the gaze and focus of the conversation by chaining it together in

step-by-step fashion.

Forward Chaining and Backward Chaining

Chaining is also helpful in behavior modification whereby the teacher can disrupt a chain of

actions to stop a certain behavior from happening. In chaining, the student can be assisted

in two ways — either forward or backward. Forward chaining is a strategy that helps the

student complete tasks from beginning to the end of the process (Figure 2.4). The student

is assisted with the first step of the sequence of tasks and then on to the next until the last

one is mastered. Here, the student learns to connect the steps with the use of prompts and

reinforcers. For example, if a student is to be taught how to play fair, this behavior could

be broken down into smaller tasks such as learning to borrow or ask permission to use a

toy that another child is playing with, sharing toys with other kids, and keeping the toys in

their proper containers. The training provides a framework of sequential, succient steps for

typical behaviors.

Here are the steps in administering forward chaining:

1. Determine what behavior is desired.

2. Break down the task to simpler steps.

3. Demonstrate the initial step and give reinforcer for the skill to be acquired.

4. Take note of the improvement (or lack of it) and determine how the student could be

helped differently.

5. Prompt the student to the next step once the initial task is mastered.

6. Do the same for the rest of the tasks.
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Figure 2.4: Forward Chaining

Backward chaining is the opposite - the student tries to master the steps by starting

from the final task all the way to the initial step (Figure 2.5). For example, a child knows

how to keep his or her toys, but grabs all the toys he or she wants every play time. In this

scenario, backward chaining is most appropriate for teaching the child the first two steps.

The teacher begins by prompting the child to say, “May I use this toy?” and waiting for

the other child to respond favorably. After this is mastered, the child may then be taught

how to share toys with prompts and sample demonstration from the teacher. From here, the

child is now ready to be prompted to the last step of the target behavior. The entire chain

must be rehearsed until mastered and the child could perform the behavior independently.

The steps in backward chaining include the following:

1. Establish the desired behavior.

2. Determine the individual steps in the sequence.

3. Identify the last step and then teach it using reinforcers.

4. Gather data on the progress of the student in developing a particular skill.
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5. Teach the student the task preceding the last step once the final task is learned.

6. Introduce the previous step and then the one preceding it until all the skills are

mastered backwards.

Complex 
Behavior

Simple 
Component 
Behavior 1

Simple 
Component 
Behavior 2

Simple 
Component 
Behavior 3

Figure 2.5: Backward Chaining

2.1.11 Analysis of a Behavior Change

Analysis of behavior change is the quantitative analysis of the relationship and manipula-

tions of the independent variable (intervention condition) and its effects on the dependent

variable (behavior). Mathematically, analysis of behavior change is a statistical method for

tracking the frequency of behavior and analyzing the trend using linear regression (Seber

and Lee, 2012). As part of the analysis of behavior change, data on skill acquisition and the

change in behavior should be recorded and analyzed on a regular basis. The data collected

through this process needs to be reviewed by the supervisor of the instruction and used to

measure the student’s progress. This data also serves as a basis for any adjustments to the

design of the instruction.
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2.1.12 Generalization

Generalization is a state of mastery of the skill that allows students to transfer behaviors

learned in one circumstance to another. Baer et al. (1968) state this condition as:

A behavioral change may be said to have generality if it proves durable over

time, if it appears in a wide variety of the possible environments, or if it spreads

to a wide variety of the related behaviors (p. 96).

There are three types of generalization recognized in ABA:

1. stimulus generalization - a behavior that previously occurred with some stimulus SD1

now occurs in the presence of the similar, but different stimulus SD2 ;

2. maintenance - a learned, desired behavior occurs even when the ABA setting has

been withdrawn; and

3. response generalization - a student will exhibit similar behaviors to the same stimulus

class (similar stimuli).

2.1.13 Discrete Trial Training (DTT)

As we discussed in Chapter 1, the discrete trial consists of three distinct components,

namely: antecedent, behavior, and consequence.

Antecedent

The antecedent is the first step in discrete trial training. The antecedent provides the

instigating cue or instruction to prompt the student to perform a specific behavior in order

to receive reinforcement. The teacher may say, “Give me red,” or “Show me nice hands.”

In each example, the antecedent is a specific instruction given by the teacher for the student

to demonstrate a specific task. It is possible for antecedents to be nonverbal cues or visual

stimuli. A teacher might point to the cubicle where the student’s backpack hangs which
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signals to the child it is time to leave. In any discrete trial, the antecedent should provide a

clear and concise signal to the student to perform a specific behavior.

Behavior

The response or behavior of the student just after the antecedent is the second step in a

discrete trial. The student may elicit the correct response, an incorrect response, or no

response. Discrete trial training is based on the individual learner, therefore the behaviors

received are broad. For example, a student may touch, point, repeat, look, or perform

an action as a response to the antecedent. The criteria for a correct response should be

established in advance and communicated to all team members working with the student.

It is critical that team members are consistent and accept only the previously established

behaviors as correct. For example, if the child is asked to “Give me red,” acceptable items

red in color are predetermined. Discrete trial training requires defined expectations in order

to promote consistency and increase the skill mastery.

Consequence

The consequence is the third part and final part of the discrete trial. The teacher provides

the consequence immediately after the student’s response in order to reinforce the student’s

response. In every trial, a reinforcement is provided for both a correct or incorrect

response. There are two types of feedback provided during a trial: Reinforcement and

Corrective feedback. When the student delivers a correct response, reinforcement is

the consequence delivered immediately after the correct response. There are multiple

reinforcement strategies used in DTT including, but not limited to, verbal praise,food,

preferred activities, preferred drink, etc. The reinforcement, however, must be based on

the learner’s individual preferences. When the student delivers an incorrect response,

corrective feedback is provided in order to teach the learner that his or her response was not

appropriate. Corrective feedback is comprised of verbal statements such as, “No,” or “try

again.” In DTT, the teacher must always provide a consequence immediately following
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a student’s response. Reinforcement is used to increase the amount of correct responses,

and corrective feedback is used to decrease the amount of incorrect responses. The three

components of discrete trial training are used to teach students the relationship between the

surrounding environment and their own behaviors. For typical students, these relationships

come naturally, but some students require consistent repetition to learn basic relationships.

Examples of Antecedent-Behavior-Consequence

By clearly pairing the discriminative stimulus (SD) with the reinforcing consequence, the

learner is taught to recognize that she has given a correct response. The learner may

require some assistance in generating a correct response at the beginning of the trial. This

assistance is provided by the teacher in the form of a prompt. Prompts are provided after

the antecedent is given to help the student perform the correct response. Example: a team

member says, “Point to the cow.” However, the student has not had much experience with

animal recognition, so the teacher prompts the student to respond correctly by guiding the

student’s finger to the photo of the cow, or the teacher may model the correct response

by pointing to the photo of the cow so that the student can imitate the correct response.

DTT prompt forms include gestures, physical guidance, verbal, proximity, visual, and

others. Prompts are used to teach and promote correct responding, however, they must

be systematically faded over time in order to promote independent responding. Prompts

should only be used when necessary to avoid dependency on prompts. It is in the student’s

best interest to work to fade prompts from any given discrete trial lesson. Once the

student has progressed and mastered a set of skills with discrete trial teaching, the student’s

educational team may choose to identify additional skills that may benefit from discrete

trial training.

It is critical to promote the generalization of skills mastered with DTT. Once the skills

are maintained and utilized, the student should be able to generalize these skills to other

settings and demonstrate the same skills mastered in the DTT setting. Utilizing previously
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mastered skills in the student’s natural environments is the ultimate goal of Discrete Trial

Training.

DTT has three distinct benefits as outlined by the Texas Guide for Effective Teaching

(Texas Statewide Leadership for Autism Training, 2012):

1. A skill is made into simpler and shorter tasks that a student can easily handle.

2. By using a reinforcement, the child’s level of motivation soars.

3. Tasks needed for a skill are made clear and consistent.

DTT is a proven instructional method in teaching academic, social, and language skills

to children with special needs such as the children with ASD. However, DTT cannot stand

alone; in fact, it must be complemented with other intervention techniques so that skills are

transferred from the teaching environment to normal, everyday situations that the student

may be in.

Because of the teacher-centeredness of DTT, students may often rely on the antecedents

or on the teacher as well as the anticipated reinforcements. Another disadvantage of this

technique is that students tend to manifest a communication style that is passive since they

simply respond to teacher-directed stimuli instead of initiating interaction without prompts.

2.2 Related Work in Computer Science

The focus of our research is the development of an intelligent agents-oriented, integrative

framework that should encompass virtual, mixed, or embodied setting. In this section,

we review the fundamental concepts of agents-oriented architectures and their applications

in regular and special education. As a special case (Cordeschi, 2013) of agent-oriented

application we review the recent and relevant robotics applications in autism therapies.
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2.2.1 Intelligent Agents and Mixed Reality Applications

Intelligent agents are entities that autonomously or semi-autonomously operate in the

environment, receive inputs, reason about the inputs, their state, the state of the world

and of other actors’ and issue actions. We review here three types of agent architectures of

interest, namely: procedural reasoning architecture, architecture for animated pedagogical

agents, and behavioral-instructional architecture.

2.2.2 Agent Architecture

An agent architecture, in addition to the typical input-output and processing components

that characterize the software systems, needs also to support the capability of the agent

to act in the environment and to reason about its own actions and the actions of the

other participants in that environment. Russell and Norvig (2010) define the agent as the

assembly of the architecture and the agent program. The architecture represents all the

agent’s components through which it interacts with the environment. The agent program

is the ’code’ that runs the entire process integrating the architecture with the reasoning

elements.

agent = architecture + program

Agent Function

The agent function is the mapping between the agent’s percepts and its actions. Mathemat-

ically, an agent function is defined as a mapping from any given percept sequence (P ∗) to

an action of an agent (A). A percept sequence P ∗ is a history of everything that the agent

has ever perceived.

f : P ∗ → A

Percepts of the ABA Agent’s function are environmental data representing the agent’s

and student’s position in the environment, agent’s own and student’s actions (student’s
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behavior), and other related environmental percepts, and it produces positional and

instructional actions.

2.2.3 Belief Desire Intention (BDI)-based Agents

The Believe, Desire and Intention (BDI) architecture (Rao and Georgeff, 1991) is a well

established agent architecture for rational agents. It is used to represent and model an

agent’s internal state and what it knows about itself and its environment, its goals, and its

plan to achieve agent’s desired state of the world.

2.2.4 The Procedural Reasoning System (PRS)

PRS (Georgeff and Lansky, 1987) is an agent design framework based on the Belief-Desire-

Intention (BDI) model for intelligent agents. It was developed for the tasks requiring agents

to follow prescribed procedures that can be dynamically adjusted based on the state of the

world and the agent’s beliefs (Figure 2.6).

The procedures for the PRS system are externally defined and deployed to the PRS

system as knowledge areas. The PRS system is controlled by a PRS interpreter accepting

the environmental events and running them against the knowledge areas. The PRS is

a blueprint for an intelligent system that can adjust its beliefs and dynamically select

procedures to follow.

A PRS consists of the following components:

1. Database - store for the relevant facts about the world.

2. Goals - conditions over an interval of time on internal and external state descriptions

(desires) that the agents need to accomplish.

3. Knowledge Areas (KAs) - plans that define sequences of low-level actions toward

achieving a goal in specific situations.

4. Intentions - a selection of KAs for current and eventual execution.
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5. Interpreter or inference mechanism that runs the system.

Agent

Goals
(Desires)

Interpreter
(Reasoner, Agent 

Program)

Intention 
Structure

Beliefs
(Knowledge 

Base)

Knowledge 
Area (KA) 

Library (Plans)

SensorsMonitor

ActuatorsCommand 
Generator

En
vi

ro
nm

en
t

Figure 2.6: Procedural Reasoning System (PRS) Architecture

2.2.5 Animated Pedagogical Agents (APA)

APA (Johnson et al., 2000) are software agents that interactively support human learners

with instructional prompts and guidance while the learner is engaged on a learning task

(Figure 2.7). The degree of “intelligence” of the agents varies, ranging from a very simple

assistive agents run by scripted, interactive scenarios often found in a popular online and

desktop learning software, to more advanced types (Sklar and Richards, 2010) that are

capable of observing and judging the learning progress.

The latter, which are of interest to our research, consists of an interactive component as

well as internal teaching, knowledge domain, and adaptivity components that enable these

agents not only to interact with a learner, but to reference its own knowledge base and to

adapt to the learner’s progress. Figure 2.7 depicts this architecture.

33



System 
Adaptivity

User Interface

Student 
Model

Control 
Component

Domain 
Knowledge

Teaching 
Component

Figure 2.7: Architecture of Pedagogical Agents (APA) (Sklar and Richards, 2010)

2.2.6 Embodied Conversational Agents (ECA)

Another category of intelligent agents in which we are interested consists of standard

Embodied Conversational Agents (ECA) as well as their more evolved counterparts called

ECA with ASD (Milne et al., 2011). The purpose of that research is to discover the

characteristics that make them unique in a real-world therapy (Serenko et al., 2007).

The standard ECA

The standard ECA, also called neurotypical ECA, is an intelligent agent endowed with

artificial intelligence-like features. ECAs have existed for years and are, in essence, agents.

According to some researchers (Wooldridge, 1997), an agent is an encapsulated computer

system located in a particular environment and capable of flexible, autonomous action in

that environment in order to reach its objectives. In many ECA systems, the module that

processes behavior is often implemented as one monolithic unit or as multiple components

with complex interrelations (Cassell, 2000). One of its main components deals with the
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representation of the knowledge structure of multimodal behavior. An interesting example

of standard ECA is the Northwestern University Multimodal Autonomous Conversational

Kiosk (NUMACK) (Werf, 2008), which, through speech, gestures, and facial expressions

gives directions on campus. Users can interact with NUMACK with head movements and

speech.

The ECA with ASD

An ECA with ASD is an ECA known to have human characteristics such as pleasure,

agreeableness, and dominance that are computable (Vilhjálmsson et al., 2007). It contains

a module that incorporates autistic features (personality, emotion, and mood) into its

interaction with a human subject. The main feature that differentiates an ECA with

ASD from the standard ECA is the existence of a conversation data set that contains,

for a given topic, typical sentences uttered by a child with autistic syndrome. These

conversations should display emotion and personality traits measured according to a given

mathematical formula. They are the result of the careful work of an expert psychologist

who extracts information from a child with ASD. This data acquisition procedure is very

similar to that of a knowledge engineer collecting and eliciting knowledge from an expert

and representing and storing it in a knowledge base in order to build a useful expert system.

Here the interactions between the ECA with ASD and the subject range from simple

communications (Tepper et al., 2004) to more elaborate emotion problem-solving tasks

that consist of identifying inconsistencies. A very good example is the Rachel system, an

ECA developed at the University of Southern California, for interactions with children with

autism (Mower et al., 2011). Such systems handle the syntactic and semantic structure of

the content, the affective state of the ECA, and ascribe particular segments of text with

appropriate nonverbal behaviors (Lee and Marsella, 2006). The purpose of the ECAs with

ASD is to facilitate the communication between the parents, therapists, and the child with

ASD, as well as to promote the communication skills between the child with ASD and the

ECA with simulated ASD conditions.
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2.2.7 Intelligent Agent-based Serious Games

An intelligent agent-based serious game is a therapeutic approach to the application of

gaming and virtual reality (VR) technologies for the improvement of the social and

communication skills of children with ASD (Bartoli et al., 2013). The most recent

representative technology of this approach is the ECHOES (Bernardini et al., 2013), an

agent-based technology built on the principles of the FAtiMA (Dias and Paiva, 2005)

architecture.

Figure 2.8: “Andy” avatar from the ECHOES application. From Porayska-Pomsta et al.
(2012).

The PRA-ABA shares many characteristics and objectives with ECHOES. Both are

intelligent agent-based, focused on the improvement of the social behaviors, and capable

of reasoning about the student’s state. The main differences are the modality of the

implementation (ECHOES is VR-only), and ECHOES’ focus on specific social skills (joint

attention). The focus of the PRA-ABA-related research is on the development of the multi-

modal, reusable architecture for behavioral instructions.

2.2.8 Embodied Agents

Recent studies (Diehl et al., 2012) have shown that embodied agents, such as robots, present

a possibly promising alternative as instructional agents or participants in autism therapies.

Diehl’s study organizes use of embodied agents into four broad categories:
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• use of robots to observe the response of individuals with ASD to robots or robot-like

behavior in comparison to human behavior

• use of robots to elicit behaviors

• use of robots to model, teach, and/or practice a skill

• use of robots to provide feedback on performance

All four uses are initial attempts to introduce robots into the therapeutic process. The

most significant advances and the most related research to our approach is happening in the

field of Socially Assistive Robotics (SAR).

2.2.9 Socially Assistive Robotics (SAR)

SAR (Feil-Seifer and Mataric, 2005) is a recently developed (2005 and onwards) and active

field of research within computer science that lays at the intersection of social and assistive

Robotics. Social robotics involves robots interacting with humans socially through speech,

gestures, or other forms of human-recognizable expression (Breazeal, 2003; Shamsuddin

et al., 2012). The field of Assistive Robotics (Breazeal, 2003) focuses on robots that aid

people in general and those with special needs such as those in physical therapy and

rehabilitation. SAR focuses on design and implementation of robots that assist humans,

often therapeutically, through social means. One of the earliest applications of this field

is in autism therapies, where SAR explores the design and development of the robots that

assist and encourage children with autism to develop social skills.

According to Scassellati et al. (2012), the main role of SAR system in autism therapy

is to promote the development of social skills in children. This role is to be fulfilled

by designing robots to partake in relevant therapeutic interactions such as capturing,

maintaining, and evoking joint attention, imitation, and mediating turn-taking. The authors

emphasize that, within SAR, autonomous robots that can sense and respond to human

behavior are the least developed. They suggest that significant research work will be needed

in order to integrate control architectures for autonomous robots into practical autism
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therapies. According to these authors, one of the central questions of SAR is how can the

field of SAR model the behavior of the learner and serve as the object of encouragement

by the therapist. A robot in this role serves as the extension of the personality of the user.

Scassellati et al. (2012) (2012) define three roles for the robots in autism therapy:

• a leader-robot demonstrates social behavior and guides the interaction

• toy-robot responds to the child and mediates social behavior between the child and

others

• proxy-robots can act as proxies between the children and others in the therapy,

allowing children to express emotions or desires through a robot

In a typical ABA scenario, robots most likely would be in a leadership role, although

other roles might be appropriate for learning social behavior.

Behavior-Based Behavior Intervention Architecture (B3IA)

B3IA (Feil-Seifer and Mataric, 2008) is a behavior-based robot control architecture

purposefully designed for robots engaged in various autism interventions and behavior

oriented therapies (Figure 2.9). The intent of the B3IA is to provide a modular

and extensible platform for robots that can sense and interpret subjects’ actions, act

autonomously within established scenarios, temporally process observed data to understand

the interaction with the subject as a historically meaningful event, evaluate the interaction

related to target quantity and quality of social behaviors, and adjust its own behavior based

on the parameters specified by a human supervising the learning program.
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Figure 2.9: B3IA Architecture of Behavioral Control. Adopted from Feil-Seifer and
Mataric (2008).

B3IA consists of the following modules:

The Sensor and Interpreter Module (SIM) controls the robot’s observation of the

behavior of humans and objects in the environment. The Activity History Module (AHM)

collects and stores interpreted sensor data as well as interpretations of the user’s and robot’s

behaviors (including robot’s actions) in a time-indexed form. The purpose of this collection

activity is to enable analysis similar to human annotation of video recordings.

The Task Module (TM) is a behavior network that makes most of the operational

decisions related to the robot’s behavior. In B3IA, this module is where most of the task-

or scenario-specific control occurs. The network consists of a combination of specific

behaviors necessary for the robot to operate safely in a given scenario.

Interaction Evaluation Module (IEM) uses historical data from the AHM as input, as

well as the technique proposed by Tardif et al. (1995) for quantitative evaluation of the

quality of interaction for children with autism to evaluate how much interaction is currently

occurring and how rich is that interaction.

The Interaction Priority Module (IPM) is designed to allow the human operator to set

priorities for the intervention interactions. IPM is inspired by human-centric behavioral
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therapies whereby a therapist can modify his or her behavior based on the personal needs

and on the relevance of the behavior to the student with ASD. Authors of B3IA consider

this feature to be important for future robot-assisted interventions in clinic or home settings

because it might enable therapists and parents to develop personalized therapies.

The Expression Behavior Module (EBM) stores the robot’s affect generating behaviors,

such as expression of emotions, personality, and direction of the robot’s attention through

physical effectors.

The Effector Module (EM) controls the operation of the robot’s hardware and is

designed to support a variety of effectors. The B3IA architecture is an elaborate

architecture for behavior control of the robot’s expression, and it represents the state of

the art in Socially Assistive Robotics. B3IA, however, emphasizes control of the behavior

of the robot in the interactions with the student/subject, whereas our research is focused on

the robot’s ability to introduce or modify behaviors of the student.

2.2.10 Behavior Modeling with Robots

Another prominent application of embodied agents in behavioral interventions is inte-

gration of an interactive, humanoid robot into social skills interventions (Barakova and

Lourens, 2013; Diehl et al., 2012). The purpose of this research (Shamsuddin et al.,

2012) is to examine if the integration of the humanoid robot in social skills interventions

has a positive impact on the learning of social routines. The robot is programmed to

demonstrate, in a simplified manner, social communication behaviors, such as gestures

and facial expressions, with the goal of teaching students with autism how to understand

them and use them in social context.

2.2.11 The Need for a Unifying Framework

Behavioral instruction is a well established, highly beneficial, and well defined domain

with already applied computational methods (functional behavioral analysis), and logic-

like concepts (three-term contingency). However, more work is required to bring translate
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its principles and concepts into a form that is amenable to computation. Furthermore,

there is a significant ongoing research related to intelligent agents and robotics-oriented

applications in the area of early childhood development and special education. More work

is needed also to formally bring these two areas together, and this is the focus of this

dissertation. In the following chapters we describe the research we performed to:

• computationally formalize the behavioral instruction,

• design the architecture with behavioral-instruction specific controls and reasoning

components, and

• produce a framework that is intended for use in multiple modalities.
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Chapter 3

The Representation of ABA Concepts

and Procedures

As mentioned in Chapter 1, an agent is an entity capable of acting in the environment. An

intelligent agent is an agent that does what is appropriate in the given circumstances, is

flexible to the changing environment, learns from the experience, and can maintain internal

representation of the world. In the case of behavioral instruction, the instructional agent has

to have and maintain the internal representation of the state of instruction, the lessons, the

student, and to make decisions about its own actions based on the computations involving

the internal representation and the rules of ABA.

Research in this dissertation encompasses two interdisciplinary areas: (i) knowledge

representation and computational model of the behavioral aspects of ABA as applicable to

autism intervention practices, and (ii) abstract architecture for multi-modal, agent-mediated

implementation of these practices. In this section, we establish the fundamental concepts

of knowledge representation and reasoning over dynamic domains and computational rep-

resentations of behavioristic approaches, both general and specific to autism interventions.
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3.1 Knowledge Representation

Knowledge Representation is a foundational discipline for any system intended for

engaging in or exhibiting any form of ”intelligent“ behavior, i.e., capable of inferring

and reasoning about the situations, conditions, and other (human or artificial) agents in

a dynamic and interactive setting. Despite its fundamental role in artificial intelligence and

related fields, a precise and comprehensive definition of knowledge representation remains

to be established. In his PhD thesis, Smith (1982) stated the Knowledge Representation

Hypothesis as:

Any mechanically embodied intelligent process will be comprised of structural

ingredients that

a) we as external observers naturally take to represent a propositional account

of the knowledge that the overall process exhibits, and

b) independent of such external semantical attribution, play a formal but causal

and essential role in engendering the behavior that manifests that knowledge

(p. 2).

A knowledge representation scheme therefore has in some form to be understandable to a

human reader, but it also has to serve as a foundation of intelligent, independent behavior

of some non-human, intelligent agent capable of independent reasoning about the domain

being represented.

Davis et al. (1993) offer an intensional∗ definition for Knowledge Representation that

defines Knowledge Representation through the five different roles it serves.

According to Davis, Knowledge Representation is defined through five roles as:

1. Surrogate for the actual phenomena it represents. A Knowledge Representation

system is used to enable an intelligent agent to determine outcomes by reasoning

about the domain rather than taking action in it.

∗intensional definition gives term its meaning by specifying all of its properties.
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2. Set of ontological commitments. These commitments are formal representations and

relationships that the agent should know about the world being represented.

3. Fragmentary theory of intelligent reasoning. This theory is expressed in terms of

three components:

(a) the representation’s fundamental conception of intelligent reasoning;

(b) the set of inferences the representation sanctions; and

(c) the set of inferences it recommends.

4. Medium for pragmatically efficient computation. Knowledge Representation is the

computational environment in which thinking is accomplished. One contribution to

this pragmatic efficiency is supplied by the guidance a representation provides for

organizing information to facilitate making the recommended inferences.

5. Medium of human expression. Knowledge Representation is a language in which

humans state facts, properties, relations, and other concepts about the world.

These five roles serve as the guiding principle for the representational aspects of the

framework developed for this research.

3.2 ABA Ontology

Ontology (Gruber et al., 1993) is a computational medium for capturing the knowledge

about the domain, the key concepts, rules, and relationships within the domain. We define

a ABA ontology as a conceptual foundation for the reasoning and inference functions of the

instructional architecture. It is a formalization of concepts, rules, and processes that govern

the ABA-based instruction with the intention of providing the unambiguous reference for

computational process such as tracking of the student’s learning rate and overall progress,

and appropriate schedules of reinforcements.

Through the ABA process ontology, we define the key concepts, namely: classes,

relations, interactions, rules, metrics, and measures that the instructional agent uses to
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create the internal representation of the instructional setting and to conduct the instructional

session.

In our design, the ABA ontology consists of the three parts - theoretical (formalizing

the ABA concepts and instructional process), instructional (formalizing the instructional

setting, progression and the participants and computational (formalizing the measures and

metrics that govern the instructional process) (Figure 3.1). Theoretical and instructional

aspects of the ABA process ontology relate to the descriptive and taxonomic aspects of the

ABA - definition of the setting, suitable reinforcers, behavior, etc. Computational aspects

of the ABA process ontology define the criteria and the computation for proper conduct

of the ABA-based instructional process - three-term contingency (i.e. when to reward and

when to punish), prompting, advancing of the learning objectives, etc.

Ontology of ABA Theory, 
Concepts and Instructional 

Practice

Ontology of Instructional 
Setting and Participants

Ontology of Measures, 
Recordings and Metrics

Dimensions of Behavior

Learning Performance

Measure of Behavior

Performance Objective

Instructor
Student
Setting

Environment
Objects

Behavior
Discrete Trial

Reinforcement
Prompt and Prompting
Antecedent (Cue, SD)

Thinning of Reinforcers 
Prompt Fading
Generalization

Schedules

Generalization

Figure 3.1: Ontology of ABA
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3.2.1 Sources of Knowledge

The source of knowledge about the ABA process comes from three sources - engineered

knowledge, externally provided, and internally derived knowledge.

Engineered Knowledge

Engineered knowledge is knowledge derived during the study of the literature, interviews

with the special education teachers, and ABA certified instructors. This knowledge is also a

result of the formal concept analysis (Wille, 2005), and the ontology engineering processes

DOGMA (Jarrar and Meersman, 2009) and NeON (Suárez-Figueroa, 2010) that we applied

to the domain materials.

Externally Provided

Although ABA is prescriptive and deterministic, a significant aspect of the ABA process

is, and will remain, externally provided with respect to the agent’s knowledge and

representation of the instructional processes. The student’s preferences, learning needs,

and lesson plans are determined by the educational team consisting of the primary

educators, psychologist, physical occupational and speech therapist, parents/guardians,

and, sometimes, a physician. A functional relationship between the stimuli and the

relationship as well as the function the behaviors might serve are determined outside of

the direct instructional process (Haynes and O’Brien, 1990). The outcomes of all of these

activities need to be represented and provided to the instructional agent to be used as

reasoning criteria in the agent-mediated instructional process.

Internally Derived

Internally derived knowledge is the knowledge that the agent derives through the execution

of the instruction, interaction, and the observations about the student, the learning process,

and the environment. In our design, this knowledge is about the student’s preferences,

learning performance, position in the environment, and the environment itself.
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Knowledge and Process Mapping

The National Professional Development Center (NPDC) on Autism Spectrum Disorders

recommends nine steps for the implementation of Discrete Trials. Some steps are

conducted by the multidisciplinary team consisting of educators, behavior specialists,

parents, and other individuals involved in the educational and care taking process for the

child with special needs. This team work is beyond the scope of the proposed ontology

for the single-agent system. However, most of the knowledge and processes related to the

steps proposed for the implementation of Discrete Trials are to some degree represented in

the ontology. A Discrete Trial is represented as either engineered knowledge, externally

provided, or internally derived. Table 3.1 outlines the mapping between the recommended

steps and practices (Bogin et al., 2010) and how are these translated into the ABA Ontology.

Table 3.1: Ontology Mapping to NPDC Steps

NPDC Steps for Implementation Ontology Source of
Knowledge

Step 1. Decide what to teach: As-
sessment and Summarizing Results

Antecedent, Behavior and Conse-
quence Structure Criterion classes

External

Step 2. Breaking the Skill Down
into Teachable Steps

Skill, Lesson, Session and Trial
classes. Desirable and non-
desirable behavior classes

External

Step 3. Setting-up the Data Collec-
tion System

Data structures for data collection
on success measures, approxima-
tion, prompting needs.

Internal
(externally
modifiable)

Step 4. Designating Location(s) Setting and environment classes Either
Step 5. Gathering Materials Reinforcers, instructional material

classes
Either

Step 6. Delivering the Trials Trial Procedure Internal
Step 7. Massed Trial Teaching Maintenance Trial, Prompting, Re-

inforcing, and Progression Rules
Internal

Step 8. Conducting Discrimination
Training

Distractor class, Change of stimuli,
Random rotation of stimuli and
situations, Generalization

Internal,
externally
modifiable

Step 9. Review and Modify Steps, Maintenance trials, General-
ization rules

Internal,
externally
modifiable

47



3.2.2 Ontology of the ABA Theory

The ontology of the ABA theory covers the concepts, definitions, and rules from the general

theory of Applied Behavior Analysis and its applications in the educational practice. As

we discussed in Chapter 1 (Figure 1.3), we represent only concepts that are relevant to the

reasoning and operational functions (instruction, rewarding, prompting, etc.) aspects of the

instructional agent.

Taxonomy of Stimuli and Behavior

Stimuli and Behavior (events and actions emitted by either an agent or a student) are the

top-most concepts in the taxonomy of representation of the environmental inputs. Stimulus

is anything that one sees, hears, smells, tastes, or feels, and it is, therefore, a subsumptive

class of all other environmental phenomena. Behavior is the range of one’s actions in

response to a particular situation or stimulus.

Human behavior is a complex and diverse phenomenon with the breadth and complexity

of expression that is, representationally, beyond the scope of the research covered in

this dissertation (see Future Work). Therefore, we focus our research and the ontology

engineering effort on the ontology of the behavior in the context of instructional setting. We

specifically focus on the functional aspects of the behavior - attributes and characteristics

relevant to the learning of the skills (behaviors) in a typical early childhood and special

education setting. Furthermore, from the instructional control and skill acquisition

reasoning perspective, we are concerned about the recognition of the behavior and level

of approximate correctness of the student’s behavior and the expected behavior, rather than

the entire taxonomy of behaviors.

However, we propose a representational framework in which any future behavior can be

described, recognized, and measured according to the criteria we require of the reasoning

agent. We call this abstract criterion a degree of correctness of the behavior, and it is a

foundation for the entire reinforcement instructional process.
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Different behaviors are qualified by different dimensions and attributes. The related

recognition mechanism interprets these behaviors appropriately (see reference implemen-

tation and experiments). From a process ontology perspective and the operand value of the

behavior, we need to understand if the behavior is:

1. Correct (C),

2. Approximately Correct (A),

3. Incorrect (I), or

4. No Response, Not Evident (N).

We will further define the criteria for this classification when we will talk about the

correctness of the behavior later in this chapter.

Behavioral psychologist recognize verbal and non-verbal behavior as two parent

categories of all possible behaviors (Burns, 1980). In our approach, we also introduce

the supra-verbal behavior (see Figure 3.2) - the behavior that is both verbal and non-verbal.

An example of supra-verbal behavior is a child asking for a toy and simultaneously pointing

at the toy.

Stimulus

Behavior

Verbal Non-verbal

Supra-verbal

Figure 3.2: Taxonomy of Behavior
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Three-term Contingency

Three term contingency is a formalization of the relationship between an environmental

stimulus, behavior, and consequence.

Antecedent (A), also known as a Discriminative Stimulus SD, is a setting event for the

expected behavior.

A setting event is an action that serves or is supposed to trigger a behavior. This action

can be any form of expression; it is usually voice, gestural, visual stimuli, or a combination

thereof.

Behavior (B) - Behavior is what the student does in response to the setting event

(Antecedent).

Consequence (C) is a stimulus that immediately follows the behavior. Depending on the

appropriateness of the behavior, the consequence can be either rewarding (R) or a punishing

(P).

Consequence 
(C)

Reinforcement 
(R)

Punishment 
(P)

Figure 3.3: Hierarchy of Consequences

Formally, we define a three term contingency as a modal (Emerson, 1990) relationship

between the discriminating stimulus A (antecedent), a response behavior B and a conse-

quence C:

A→ ∇B → C

A → ∇B is a contingency relationship meaning that antecedent A will always

be followed with either expected behavior B or unexpected behavior (¬B). We use the
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contingency expression ∇B which is, for formula B, defined as ∇B def
= (�B ∧ �¬B). We

use a modal logic (Kripke, 1963) operator � for possibility. However, there is a consequence

regardless of the occurrence or the appropriateness of the behavior. Desired or expected

behavior will have a reinforcing consequence for expected, or punishment for unexpected

or undesired behavior.

Reinforcement: (A→ Expected(B))→ R

or punishing (P ):

Punishment: (A→ ( Unexpected(B) ∨ Undesired(B)))→ P

Reinforcement is a consequence that increases the likelihood that following the

antecedent, the expectd behavior will occur.

Functionally, reinforcement is a relationship between the student’s behavior and a

consequence that follows that behavior. A relationship is reinforcing if it increases the

probability that a given behavior will occur in the future given the antecedent stimuli.

Formally, R is a reinforcing relationship between Behavior B and a Consequence C, if

the probability of occurrence of behavior B at some point of time tj is consistently higher

than the probability of occurrence of the same behavior B at some point of time ti, if the

behavior B was accompanied by the consequence C.

Reinforces (C,B) ⇐⇒ Issued(C,B, ti)→ P (B, tj) > P (B, ti)

where tj > ti.

Punishment is anything that decreases the likelihood that following the antecedent, the

expected behavioral response, will occur.

Functionally, a relationship is punishing if it decreases the probability that a given

behavior will occur in the future given the antecedent stimuli.

Formally, P is a punishing relationship between Behavior B and Consequence C, if

the probability of occurrence of behavior B at some point of time tj is consistently lower
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than the probability of occurrence of the same behavior B at some point of time ti, if the

behavior B was accompanied by the consequence C.

Punishes(C,B) ⇐⇒ Issued(C,B, ti)→ P (B, tj) < P (B, ti)

where tj > ti.

3.2.3 Ontology of Instructional Practice

This aspect of the ontology describes the procedural and structural elements of the ABA-

based instructional process and the instructional process itself.

Instructional Process

An instructional process is a series of instructional steps aimed at reaching a particular

learning goal. The learning goal is a mastery of some new behavior or extinction of some

undesired behavior. If the behavior is complex (Figure 3.4), the learning goal is broken

down into more than one step, each involving learning simple behaviors leading to a more

complex behavior (chaining). The student has learned a behavior if he or she has reached

the mastery criterion. Mastery criterion is defined as n trials withm percent success rate or

higher (number of total successful trials). Typically, this mastery criterion is 80% success

rate on past ten sessions of ten trials each.

Each step is learned through a number of sessions consisting of multiple, most

commonly ten, discrete trials. The Discrete trial is the fundamental, atomic unit of

instruction. It is a process based on the ABC structure, enhanced with additional

instructional aid (prompt), consisting of the following components:

• cue,

• prompt,

• response, and
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Behavior

Behavior

Learning 
Step

Learning 
Step

Complex 
Behavior

Behavior

Learning 
Goal

Learning 
Step

Instruct until overall performance goal 
is reached and maintained

Instruct until performance goal 
is reached and maintained

Instruct until performance goal 
is reached and maintained

Instruct until performance goal 
is reached and maintained

Figure 3.4: Structure of Complex Learning

• consequence.

A Cue is an instance of a stimulus, or a behavior, issued at the beginning of the trial.

Cue is a synonym for discriminative stimulus (SD).

A Prompt is an assistive teaching tool which purposely aides the student in producing

the expected behavior.

We formalize this taxonomy of prompts into three hierarchies according to their genus,

expression, and didactic intensity.

In terms of its genus, a prompt is either a stimulus or a behavior issued by the instructor.

Expressively, a prompt can be verbal, gestural, model, or physical. Prompts are also

organized in a hierarchy of levels ordered by the degree of contact, intensiveness, and

the help experienced by the student (didactic intensity). The prompt taxonomy and its

hierarchical structure are discussed later in this chapter.
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Temporal Attributes

A Discrete Trial is a time-bounded procedure for which we define the following time

units:

Duration of the Trial (TD) is the maximal possible duration of the trial expressed

in seconds. TD includes the maximum time given for the student to respond (including

waiting time) and the time needed to present the prompt.

Prompt wait time (Pwt) is the time between the completion of the issuance of the Cue

and the issuance of the prompt. Pwt is expressed in seconds. Typically, this is a value that

is externally specified, generally between 0 and 5 seconds, by the designers of the learning

process.

Consequence delay time (Cdt) is the time within which the consequence (reinforcement

or a punishment) should be issued; typically,( Cdt) is between 0 and 3 seconds.

Intra-trial interval (ITI) is the waiting time between the execution of trials. (Holt

and Shafer, 1973, p. 181) define the length of the ITI as a “temporal variable that may

influence the number of trials to criterion, final performance reached, and stability of final

performance.” It is expressed in seconds, and its recommended default duration is 3-5

seconds.

Instructional Setting, Environment, and Participants

This section of the ABA ontology formalizes actors involved in the instructional setting

(Figure 3.5), their properties, relationships, the setting and the environment of the

instructional process. We limit the properties of the classes to the ones relevant to the

instruction - i.e., we abstract away the properties of the student or the environment that

are universally recognized and otherwise iconic in everyday life but of no relevance to the

instruction.

The Student representation captures three aspects about the student in the instruction

relevant to the instructional computation (Figure 3.6): (i) student’s preferences including
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Figure 3.5: Instructional Setting

preferred reinforcers, cue, and stimuli, (ii) student’s personalized learning plan which

includes a list of target behaviors, learning steps, learning goals, and recommended stimuli,

cues, prompts, and reinforcers, and (iii) learning record consisting of student’s overall

learning performance and the list of records for the learning steps, sessions and the trials.

Student representation also defines the age and the identification (first name, last name, and

student id) of the student.

The Instructor representation captures the features of the instructor relevant to the

external appearance. These attributes are important because knowing the appearance of

the instructor, correlating it with the learning performance of the student, and being able to

alter it supports the generalization objectives of the learning process.

The Setting representation captures all the physical elements of interest within an

instructional setting (Figure 3.7). These include (i) setting itself, which is defined as the

composition of the instructional area and the environment, (ii) instructional area which

is a specific area and the physical placement of all the objects relevant to the instruction

(instructional objects, distractors, objects such as chairs), and (iii) the environment which

is the broader setting in which the instructional setting is situated. All these elements are
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Figure 3.6: Student Representation

abstractly defined because their specific instantiation will depend on the realization of the

instruction (virtual vs. embodied).

Prompting, Generalization and Schedules of Reinforcement

In the previous chapter, we described the theory of prompting and the associated best

practices in the current instructional practice. We defined prompting hierarchy and different

approaches to the application of prompts. Here we translate those educational definitions

into rules and taxonomy of prompts as well as define the computational procedures for the

application of prompting.

CLB,CLB,CLB,CLB
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Figure 3.7: Setting Details

Expressional Taxonomy of Prompts

Following the classification proposed by the educational practice, we recognize

the following taxonomy of prompts (Figure 3.8) based on their manifestation in the

instructional setting:

• gestural - a movement of part of the body, a hand or the head, performed by the

instructor indicating the correct response. The gestural prompt is a non-verbal

behavior.

• verbal - a verbal expression performed by the instructor indicating the correct

response. The verbal prompt is a verbal behavior.

• visual - a visual indicator helping student express a correct behavior. This is a

stimulus.

• model - an expected behavior performed by an instructor. This can be a verbal or

non-verbal behavior.

• physical - a full or partial physical assistance (i.e., hand-over-hand) by the instructor

helping the student to perform a behavior. This is a non-verbal behavior.
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Figure 3.8: Taxonomy of Instructional Prompts

Prompting Hierarchy

A prompting hierarchy is an organization of prompts into groups based on the

instructional intensity of the stimuli serving as the prompts. It is applied in the hierarchical

prompting schemes such as least-to-most and most-to-least. The recommended hierarchy

consists of at least three level of prompts:

1. Independent level, which requires no prompts.

2. Intermediate level, which consists of at least one level of prompts, but in practice is

likely to consist of multiple levels.

3. Controlling level, which is an application of a full physical assistance.

The prompts are applied as an aid for the student hesitating to produce behaviors after

the cue has been issued.
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We formalize this procedure as:

Step 1: Agent issues a Cue

Step 2: Agent awaits the behavior

Step 2.a: Agent issues a Prompt from the appropriate hierarchy if the student does

not respond within prompt waiting interval where prompt waiting interval (Pwi) is a time,

measured in seconds, between the time that the Cue was issued and the time when the agent

should issue a prompt.

Step 3: Agent issues a Consequence

Applications

We formalize two strategies for the application of prompting - least-to-most and most-

to-least. We do not formalize graduated guidance[sic] and other similar applications

because they are subjective and “common-sense”-based which makes them unlikely and

difficult candidates for automation.

With least-to-most prompting (see Algorithm 3.2.3), the agent first presents the cue and

expects the behavior without providing any prompts (i.e., presents the prompt from the

independent level). If the student struggles to demonstrate the expected behavior across the

entire session, the agent will, in the next session, present the prompt from the next level

of the prompting hierarchy. The student’s performance on the task serves as the criterion

for the presentation of the next level of prompts or for their fading. If the student does not

show any improvement, prompt levels continue to increase from the least to most assistive.
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If the maximal level is exceeded, the agent will terminate the instructional program and

indicate the need for lesson redesign.

Algorithm 3.2.1: prompt least to most(student,session)

for each trial in session
issue prompt at the current hierarchy level
if no increase in learning performance(LP)

increment current hierarchy level
if the prompt is already at the maximal level{

stop instruction and require re-design of the instruction

else
decrement current hierarchy level
if prompt hierarchy is already at the lowest (independent) level{

use independent level

With the most-to-least prompting approach (See Algorithm 3.2.3), the agent starts with

the issuance of the prompts at the highest level (full physical prompt). If the student shows

the improvement across the entire session, in the next session, the agent will, present the

prompt from the next lower level of the prompting hierarchy. The student’s performance

on the task serves as the criterion for the presentation of the next level of prompts or for

their fading. If the student does not show any improvement at the highest level, the agent

will terminate the instructional program and indicate the need for lesson re-design.

Algorithm 3.2.2: prompt most to least(student,session, trial)

for each trial in session
issue prompt at the current hierarchy level
if learning performance(LP) increases{

decrement current hierarchy level
use independent if the prompt hierarchy is already at the lowest (independent) level
else
increment current hierarchy level
if the prompt is already at the maximal level{

stop instruction and require re-design of the instruction

Prompt Dependence is the condition where the student cannot maintain the learning

performance without the prompted assistance. Prompt dependence is detected by observing
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the drop of learning performance (LP) when prompts are removed. We formalize this

condition as:

Let PTt be the set of prompted trials performed at time interval t and let uPT(t+1) be the

set of unprompted trials of the same size and type performed at the time t+ 1.

If the student’s learning performance for P is by n percent greater than the student’s

learning performance for uPT , then reintroduce the most recent prompt.

The Degree of Prompt Dependence (PD):

PD = LP (PT (t))− LP (uPT (t+ 1))

Generalization is a student’s desirable learning ability to transfer behaviors learned in

one learning setting to other settings without a significant drop in performance. In order to

evaluate generalization, the instructor needs to measure if the student can demonstrate the

same or similar level of performance in a different setting (instructor, environment). For

this purpose, we define the following measures:

Generalized Learning Performance (GLP) is the difference between the learning

performance in the original environment (Eoriginal) and the new environment (Enew).

Negative learning performance indicates the percent of the loss of generalization.

GLPE = LP (Enew)− LP (Eoriginal)

We can apply the same formula for the measurement of generalization with the new

(Inew) vs. with the original instructor (Ioriginal):

GLPI = LP (Inew)− LP (Ioriginal),

new (SDoriginal) vs. original discriminative stimulus/Cue (SDoriginal):

GLPSD = LP (SDnew)− LP (SDoriginal), or

new (Roriginal) vs. original reinforcer (Roriginal):

GLPR = LP (Rnew)− LP (Roriginal).
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The process of generalization entails alteration of the components of the instructional

process, which includes practicing the trials in other settings, practicing with (i) different

adults, (ii) different reinforcers, and/or (iii) different instructions/stimuli.

Generalization is formalized as a configurable procedure (See Algorithm 3.2.3) that,

based on the student’s learning procedure, might use different instances of the environment,

instructor, reinforcers, or cues.

Algorithm 3.2.3: procedure for generalization()

if learning performance equals target learning performance(LP )

perform maintenance trial

if maintenance trial is successful

record generalization step

alter some generalizing aspect of instruction

perform n sessions

if learning performance isbelow target learning performance(LP )record generalization step failure

retract generalizing aspect of the instruction

Schedules of Reinforcement

Different schedules of reinforcement exist to support the thinning of reinforcers (Chowd-

hury and Benson, 2011) and independence. We present here a formalization of the

hierarchy of reinforcement schedules along with a formula for the application of different

schedules that we will use in the application of schedules in the reinforcement algorithms.

In ABA, reinforcement schedules are divided into Continuous and Intermittent sched-

ules. Intermittent schedules can be applied on a fixed or variable ratio. In general,

reinforcement is applied if (a) behavior meets the reinforcement criteria (correctness of

behavior), and (b) reinforcement is on the appropriate schedule.

Expected(B)≈ Observed(B) ∧ IsScheduled(Schedule(s), Last(Reinforced(s)), Current(T))

→ Issue(s, r)
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where s is a student under instruction, T is a set of student’s trials, Schedule is a function

returning student’s reinforcement schedule.

The IsScheduled function is polymorphic (Reynolds, 1974); its implementation de-

pends on the type of a reinforcement schedule.

Continuous Reinforcement (CR) is a reinforcement schedule where each reinforce-

able behavior is reinforced. Hence, the IsScheduled function always returns boolean true.

Formally, we define CR as a formula:

if Correct(R) & Schedule(t) == CR then

Reinforce(s,r)

where R is a student’s response, tis a trial, s is a student, and r is a suitable reinforcer.

correct and reinforce are abstract functions. correct returns a boolean value depending on

the correctness of the student’s response R, and reinforce function (procedure) applies the

reinforcer r to the student s.

Fixed Ratio (FRn) is a reinforcement schedule where every n-th behavior is rein-

forced. Formally, we define FRn as :

if correct(R) & schedule(trial) == FR then:

if index(R) modulo n == 0:

reinforce(s,r)

where n is the ratio of reinforcement, and Index(R) is the function that returns index i

of the current correct response.

Variable Ratio (V Rn) is the schedule of reinforcement where every n-th correct

response is reinforced.

Formally, we define V Rn as:

i = random(0,n*2)

if correct(R) & schedule(trial) == VR:
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if index(R) modulo i == 0:

reinforce(s,r)

Ratio n is a randomly selected value within n distance from the current trial. This value

is re-selected for each session.

Fixed Interval (FIt) is a reinforcement schedule where behavior is reinforced every

t-th minute.

Formally, we define FIt as:

if correct(R) & schedule(trial) == VR:

if (tc − tl) ≥ t:

reinforce(s,r)

tl = tc

where tc is the time of the current trial and the tl is the time of the last reinforcement.

Variable Interval (V Iµt) is the schedule of reinforcement where every n-th correct

response is reinforced, on average, every t-th minute.

Formally, define V Iµt as:

t = random(0,µt*2)

if correct(R) & schedule(trial) == VR:

if average(tc − tl) ≥ t:

reinforce(s,r)

tl = tc

where tl is the time since the last reinforcement, tc is the current time, and µt is the

average interval of reinforcement.

3.2.4 Ontology of Computation

ABA and Discrete Trial Training procedure is a data and computation dependent pro-

cess. The progression and the outcome of Discrete Trial Training and related ABA

procedures largely depend on the data collection and computations performed on this
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data. Instructional goals are defined in terms of the student’s mastery and performance

in trials and across sessions; data is collected during the trial on the correctness of

the student’s responses, cues, and prompts used; lesson steps are advanced when the

student accomplishes a certain level of mastery which is defined in terms of the student’s

learning performance (percent of successful trials); the prompt levels are changed or the

reinforcements are thinned out based on the student’s performance on the trials. All these

are computable measures derived from the collected data.

Metrics and Measures

Performance Goal and Learning Performance are two metrics that drive the entire ABA-

based instructional process.

Performance Goal (PG) (Willett, 1988) is a desired learning performance of the student.

In practice, it is expressed as a specific learning performance such as 80 % success rate over

the past ten sessions.

Learning Performance (LP) is the ratio of successful trials over the interval of

recording. Interval of recording can be: (i) a count of n last trials, or (ii) a count of n

last trials over the time interval t.

Count-based Learning Performance (LPn) defines the learning performance as ratio of

successful trials Ts over the total number of trials Tn in the last n consecutive trials:

LPn = Ts
Tn

Time interval-based Learning Performance (LPnt) defines the learning performance as

the ratio of successful trials Ts over the total number of trials Tn within a time interval

[ts, te] where ts is a start time and te is an end time for interval recording.

LPnt = Ts
Tn

Learning Rate (LR) is the change in the learning performance between the two periods

of observation:
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LR = ∆LP

∆LP is a difference between current learning performance LPc and some learning

performance measured at some reference trial r that occurred before the current trial:

∆LP = LPc-LPr

Positive learning rate is called a Learning Progression. Negative learning rate is called a

Learning Regression.

Tracking and Measurement Data Structures

The progression of steps and trials, the use of prompts and prompt fading rules, the

application of reinforcement schedules, and the thinning of the reinforcements are all

determined by the statistical calculations over data collected before and during the

instructional process. Data structures presented in this section are defined with the purpose

of capturing all the data relevant to the instructional process, and for supporting the

instructional agent in reasoning about the student’s learning progress.

Trial record is used to capture all the relevant data about a single trial. It is a data

structure that tracks the antecedent, cue, prompt (type and level), and reinforcers used in a

trial, the duration of the trial, the outcome of the trial including the degree of correctness

of the behavioral and temporal measures of the trial. Session Record is used to capture

all the relevant data about the instructional session (n number of trails performed in one

“sitting”). The Session Record data structure tracks the following aspects of the session:

the session’s index in the learning plan, the number of trials in the session, the number of

successful trials in the session, the current trial, the setting of the session, the time and date

of the session, and its duration.

Learning Objective is defined by the name/id of the behavior, the abstract behavior

descriptor, and the performance goal (PG).
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Measure of the Correctness of Behavior (|B|)

Earlier we classified the expression of behavior in terms of its operand value as:

• Correct Behavior (C),

• Approximately Correct Behavior (A), and

• Incorrect Behavior (I).

Although No Behavior (N), depending on the learning objective, can be treated as either

correct, approximate, or incorrect behavior, in some instances it might be useful to record

it as an auxiliary measure (e.g., child exhibiting no behavior might signal another issue

beyond the learning objective).

Degree of correctness |B| of behavior is defined as a difference between the expected

behavior and observed behavior, where the measure of the difference is specific to the

attributes of that behavior class.

This measure is a real number between 0 and 1 expressing the degree to which the

attributes of the observed behavior match the attributes of the expected behavior. The exact

method for establishing this measurement depends on the sub-classification and dimension

of the behavior.

We are also interested in an approximately appropriate behavior. This approximation

is determined by behavior a similarity function S, which is defined contextually for each

class of behaviors.

In a general form, the behavior similarity function accepts the actual behavior

description (Ba) and expected behavior description (Be) and returns a scalar degree of

similarity measure.

We define the behavior similarity function S as a mapping between the pair of behaviors

of the same class BC and the interval [0,1]:

S : {B1,B2} → [0, 1]
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Behavior description is defined abstractly as a set of all behaviors BC that share the

same attributes. Each sub-class of behavior will have its own attributes and associated

comparison function that compares the similarity of the two behaviors that are members of

the same behavior class.

Abstractly, any member b of the sub-class Bk is describable by the same set of

identifying attributes Ak = a1, a2, a3, ....

For example, any verbal behavior is describable by two attributes: lexical correctness

and duration. Therefore, we might, define the class of verbal behaviors Bv as a set of

elements such that each member of the set has the same set of attributes Av = duration,

lexical correctness.

BV = {v | v has {duration, lexical correctness} }

More complex behavior might have multiple spatial, temporal and other attributes.

3.3 Representation of States

The agent’s behavior in the instructional process is partially determined by reasoning over

global and local states with respect to the student and the instruction.

Global instructional states are representing the state of the student’s overall learning

progress and the state of the learning process itself (step in a learning goal, etc.). Local

states are the states related to the instructional session - state of the student’s attention, the

state of the instructional session respective to the cue-prompt-response-consequence chain,

and the state of the agent itself.

3.3.1 Tracking Global and Local States

The agent’s behavior of the agent in the instructional process is controlled by reasoning over

two levels of states — global state sets and local state sets respective to the instructional

session.
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Global instructional states are representing the state of the student’s learning progress

and the state of the learning process. Local states are related to the instructional session.

They are the state of the instructor, the state of student’s attention, and the state of

instructional session respective to the ABC. We have chosen the finite state machine

approach for the design of the instructional reasoning engine because of the ABA’s

significant reliance and dependence on the situation, context, and state of the student’s

learning of student.

Instructor’s States

Instructor states help track instructor’s current activity. They are useful for both internal

tracking (self-awareness) of the instructor’s state in the instructional process and for the

visibility and awareness into the process by any external observers.

Instructor’s states are (See Figure 3.9):

• Initial - instructor has not engaged the student, but it is about to engage.

• Gaining Student’s Attention - instructor has started the instruction and is attempting

to engage the student.

• Instructing - instructor is actively engaged in the instructional session.

• Seeking Student - the student has left the instructional setting, so the instructor is

temporarily disengaged from the instructional session.

• Done Instructing - Instructor is disengaged from the instructional session.

Instructor states are formally represented as NFA by a 5-tuple, (Q,Σ,∆instructor, q0, F ),

consisting of:

• a finite set of states Q ={q0 (Start),q1(Gaining Attention),q2(Seeking Student),

q3(Instructing),q4(Done)}

• a finite set of input symbols Σ={A (Student Inattentive), B (Student Absent),C

(Student Attentive), D ( Lesson Complete), E(Student Gone)}
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Figure 3.9: States of Instructor

• a transition relation ∆instructor : Q× Σ→ P (Q)

• an initial state q0 ∈ Q

• a set of states F distinguished as accepting (or final) states F ⊆ Q. F={q4}

Transition relation ∆instructor is defined with the following transition table:

Table 3.2: Transition Relations for Instructor State

A B C D E

q0 q1 q2 ∅ ∅ ∅
q1 ∅ q2 q3 ∅ q4
q2 q1 ∅ ∅ ∅ q4
q3 q1 q2 ∅ q4 q4
q4 ∅ ∅ ∅ ∅ ∅

The State of Instruction

The state of instruction (See Figure 3.10) refers to a state of the overall lesson for the

student. In the ABA instruction, the instructor may be working with the student on a

new behavior through a series of steps and towards a desired performance goal. It is also
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possible that the instructor is running maintenance trials to establish if the student has

mastered the behavior. Otherwise, the instructor may be helping the student to generalize

by changing the aspects of the instruction. All these global states are important so that the

instructor-agent can save them and resume the overall progress of the instruction.
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of the New 
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Maintenance 
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Behavior

- No progress/success.

Maintenance
EstablishedLearning 

Starts

Learning Performance
Goal Met

q0

F

q2 q3

q4
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D

EA B C
Generalization

Behavior
Generalized

F

E

Figure 3.10: States of Overall Instruction

Instructor states are represented as NFA by a 5-tuple, (Q,Σ,∆instruction, q0, F ),

consisting of:

• a finite set of states Q ={q0 (Start),q1(Acquisition of the New Behavior),q2(Maintenance

of the Behavior),q3(Generalization),q4(Done)}

• a finite set of input symbols Σ={A (Learning Starts), B(Learning Performance

Goal Met), C (Maintenance Established),D (Behavior Generalized), E (Learning

Performance Drop), F (No Progress)}

• a transition relation ∆instruction : Q× Σ→ P (Q)

• an initial state q0 ∈ Q

• a set of states F distinguished as accepting (or final) states F ⊆ Q. F={q4}
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Transition relation ∆instruction is defined with transition table:

Table 3.3: Transition Relations for the Global State of Instruction

A B C D E F

q0 q1 ∅ ∅ ∅ ∅ q4
q1 ∅ q2 ∅ ∅ ∅ q4
q2 ∅ ∅ q3 ∅ q1 q4
q3 ∅ ∅ ∅ ∅ q2 q4
q4 ∅ ∅ ∅ ∅ ∅ ∅

The State of Trial

This state machine (See Figure 3.11) is central to the realization of the instructional session

based on the three-term contingency (antecedent, behavior and consequence). Its purpose

is tracking the state of operand conditioning in the learning session - if the setting event has

been issued, if the agent is expecting a behavior, if the prompt has been issued, or if the

consequence has been issued.

Trial states are represented as NFA by a 5-tuple, (Q,Σ,∆trial, q0, F ), consisting of:

• a finite set of states Q ={q0 (Start),q1(Issued Cue), q2(Awaiting Response),q3(Issued

Prompt),q4(Issued Consequence),q5 (End of Trial)}

• a finite set of input symbols Σ={A (Cue), B (Prompt Wait Time Expired),C

(Hesitation), D(Consequence),E(Student’s Absence)}

• a transition relation ∆trial : Q× Σ→ P (Q)

• an initial state q0 ∈ Q

• a set of states F distinguished as accepting (or final) states F ⊆ Q. F={q5}

Transition relation ∆trial for the trial is defined with:

72



Issued 
Cue

Awaiting 
Response

E

End of Trial

Issued
Prompt

Issued
Consequence

- Student Absent or Inattentive

Cue

Response
(incl. no behavior) 

PWT Expired

q0

q1

q4

q3q2

q5

A

E

C

E

B

Figure 3.11: States of Discrete Trial

Table 3.4: Transition Relations for the Discrete Trial

A B C D E

q0 q1 ∅ ∅ ∅ q5
q1 q2 ∅ ∅ ∅ q5
q2 ∅ q3 q4 ∅ q5
q3 ∅ ∅ q4 ∅ q5
q4 ∅ ∅ q4 ∅ ∅

Agent’s Representations of Student’s State

The representation of the student is the instructional agent’s internal representation of

the student’s state in the learning process and the student’s state of attendance. We use

these two state representations to track two different aspects of learning and required agent

responses:

1. specific learning state - a representation of how well the student is progressing and if

there is a need for the agent to change the instructional and reinforcement approach.
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2. physical situation - a representation of whether the student is physically attentive and

accessible by the instructional agent. The student might be completely inattentive

or physically depart from the learning environment (e.g., walk away) and we want

to track this situation and enable the agent to appropriately react (e.g., call out to a

student or inform others).

Student State During Instruction

The state of learning (See Figure 3.12) is used to track the student’s progress in the learning

process and to appropriately advance and adjust the agent’s instructional and corrective

actions. During the learning process, the student is assumed to start in the initial (“blank

slate”) state when being introduced to new skills. From that state, the agent might advance

to a progressing state, regressing state, or to a mastery state which is a final state for the

learning task. No progress in the student’s learning performance indicates the need for

re-designing the lessons.

Attained 
Mastery

Progressing

Regressing Maintaining
Skills

Need for Lesson Redesign

Satisfactory Performance
Degradation of 
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Improvement in 
Performance
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D

C B
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Figure 3.12: States of Student in Lesson

The student’s learning states are represented as NFA by a 5-tuple, (Q,Σ,∆learning, q0, F ),

consisting of:

• a finite set of states Q ={q0 (Start),q1(Progressing),q2(Regressing),q3(Maintaining),q4(Mastery)}
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• a finite set of input symbols Σ={A (Progress), B (Regression),C (Learning Perfor-

mance Plateau), D (Skill Mastery), E (No Progress)}

• a transition relation ∆learning : Q× Σ→ P (Q)

• an initial state q0 ∈ Q

• a set of states F distinguished as accepting (or final) states F ⊆ Q. F={q4}

Transition relation ∆learning for the student’s learning is defined with:

Table 3.5: Transition Relations for Student’s Learning States

A B C D E

q0 q1 ∅ ∅ ∅ ∅
q1 ∅ q3 q2 ∅ ∅
q2 q1 ∅ ∅ ∅ q4
q3 ∅ ∅ q2 q4 ∅
q4 ∅ ∅ ∅ ∅ ∅

Student State During Instructional Session

The state of attendance (See Figure 3.13) represents the student’s state of attentiveness

during the trial. This state machine is constructed to track and account for the student’s

attentiveness to the learning process - physical presence, behavioral, and cognitive

attentiveness (bound by observational ability) to the lesson. The instructional agent relies

on this machine to know when to intervene and call out to the student once he or she is

determined to be inattentive or the student leaves the lesson.

The student’s states in a trial are represented as NFA by a 5-tuple, (Q,Σ,∆attention, q0, F ),

consisting of:

• a finite set of states Q ={q0 (Start),q1(Attentive),q2(Inattentive),

q3(Absent),q4(Responding),q5 Done)}

• a finite set of input symbols Σ={A (Attentiveness), B (Inattentiveness),C (Ab-

sence),D(Instruction),E(Responded), F(Permanent Absence)}
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Figure 3.13: States of Student in Trial

• a transition relation ∆learning : Q× Σ→ P (Q)

• an initial state q0 ∈ Q

• a set of states F distinguished as accepting (or final) states F ⊆ Q. F={q5}

Transition relation ∆attention for the student’s learning is defined with:

Table 3.6: Transition Relations for Student’s States of Attention

A B C D E F

q0 q1 q2 ∅ ∅ ∅ ∅
q1 ∅ q2 q3 q4 ∅ ∅
q2 q1 ∅ q3 ∅ ∅ ∅
q3 ∅ q2 ∅ ∅ ∅ q5
q4 q1 q2 q3 ∅ q5 ∅

3.4 Instructional Procedures

As part of the ABA ontology we also define the instructional procedure as a set of abstract

instructional scripts. The abstract scripts are high level algorithms defined independently of

any specific technology and implementation concerns. The instructional script is a series
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of instructional steps consisting of the interactions with the student with the purpose of

eliciting and rewarding the student’s learning of new behaviors or the modification of the

existing ones.

We use discrete trial (See Figure 3.14) as a foundation for the implementation of the

agent’s instructional capabilities.

Trial 1:
Cue "Show me red"

Prompt "One in the middle"
Consequence: "Good job."

Trial 1:
Cue "Show me red"

Prompt "One in the middle"
Consequence: "Good job."

Session 1
Session 1

Learning Objective:
Recognizing Objects 

by Color
Performance Goal:
80% correct trials in 

the last 8-10 sessions

Step 1:
Recognizing 

Colors
Session 1:

10 Trials
Trial 1:

Cue "Show me red"
Prompt "One in the middle"
Consequence: "Good job."

Step 2:
Recognizing 

Objects

Step 3:
Recognizing 

Colored 
Objects

Increase in
Complexity
(Chaining)

Figure 3.14: Discrete Trial Training Process

3.4.1 Global Instructional Procedures (GIP)

Global procedures govern the execution of the entire lesson plan with the students

and the global learning instructional methods such as step progression, prompt fading,

generalization, application of appropriate schedules of reinforcement, and the thinning of

reinforcers.
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Conduct Lesson

Conduct Lesson (See Algorithm 3.4.1) is a top-most procedure that governs the executions

of the sessions.

Algorithm 3.4.1: conduct_lesson(lesson, student)

for each step in lesson

do



for each session in step

do



conduct session

if learning performance improves and if change criteria applies

then



reduce prompt level

change reinforcement schedule(thinning)

if change cannot be made{
change instructional setting

then

else increase prompt level

compress reinforcement schedule

if change cannot be made{
stop instruction

3.4.2 Session Instructional Procedures (STP)

Session Procedure (conduct session)

Session procedure (see Algorithm 3.4.2) consists of an execution of all trials in the session.

Algorithm 3.4.2: conduct_session(session, student)

for each trial in session

do


set preferred stimuli

set preferred prompt

get student′s attention

conduct trial

The session might terminate early if the student leaves the learning environment

permanently, or if his or her conditions do not permit the continuation.
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Trial Procedure (conduct trial)

Trial procedure (see Algorithm 3.4.2) closely resembles the procedure of the educational

Discrete Trial. It consists of sub-procedures for the issuance of the cue, prompt, and

consequence. Prompts are issued on the expiration of a pre-defined Prompt Wait Time

(PWT).

Algorithm 3.4.3: perform_trial(cue, prompt, schedule, reward, correction, student)

get cue from the trial specification

issue cue

wait for response

if no response within Prompt Wait Time (PWT)

then


get prompt from trial specification

issue prompt to student

record prompting

if behavior is expected

then

{
issue reward to student

record success

else

{
issue correction to student

record failure

3.4.3 Global Control Procedures (GCP)

Global control procedures govern the agent’s interaction with the environment, observa-

tions about the placements of the objects, expressions of behavior, calling and observing

the student’s attendance and behavior. The three main control procedures are:

• Presence determination procedure establishes if the student is physically present

within an instructional area. Input to this procedure is the environmental observation

of the student in the environment and the output is the update to the state of the

student.

• Attention determination procedure establishes if the student is attentive to the

instructional process. Input to this procedure is the observation of the student’s

activity and the output is the update to the state of the student.
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• Progress determination procedure establishes if the student is making progress. Input

to this procedure is the data collected in the lesson and session record and the output

is the learning performance measure.
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Chapter 4

The Instruction Control Architecture

The ABA Ontology formalizes the conceptual, computational, and representational aspects

of the ABA; the instruction control architecture formalizes the executive, reasoning, and

operational elements of the overall agent system. In the words of Bass et al. (2003):

The software architecture of a program or computing system is the structure

or structures of the system, which comprise software elements, the externally

visible properties of those elements, and the relationships among them (p. 3).

The architecture of the architectural agent is also a connecting and coordinating

component between the computation happening within the agent and the environment

where the instruction is situated.

4.1 Design and Development of the Architecture

Hofmeister et al. (2007) define the formal process for the development of the software

architectures. This process consists of the following four phases: (i) architectural analysis,

(ii) architectural synthesis (design), (iii) architecture evaluation, and (iv) architecture

evolution. The purpose of this process is to rigorously examine the requirements and

functions that the system has to support and to foster the creation of the blueprint for an

efficient and complete solution of the identified problem. The same four-phase process
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serves as a procedural foundation for design and development of the Procedural-Reasoning

Architecture for Applied Behavior Analysis-based instruction (PRA-ABA). The outcomes

of that process are presented in the following sections.

4.2 Architectural Analysis

Architectural analysis is the process understanding of the context, requirements, and the

operating environment for the future system. The main outcome of this phase is the

collection of essential requirements called Architecturally Significant Requirements (ASRs)

(De Boer and Van Vliet, 2009) that the future architecture has to support.

As part of the process of architectural analysis and development of ASRs, we examined

the theory of the Applied Behavior Analysis, its ontological formalization, the state

of teaching practice, and the state-of-the-art in the applications of intelligent agents

in the special education domain. We used certification material from the Behavior

Analyst Certification Board (2012), and we reviewed and prioritized the requirements

in collaboration with Doctoral-level Board Certified Behavior Analyst (BCBA-D) (The

BCBA Board of Directors, 2013). We synthesized the resulting requirements for the system

and its reasoning component into a set of competency questions (Grüninger and Fox, 1995).

We used the competency questions as both requirements for the system and, later, as the

input and quality metrics for the evaluation (Chapter 5).

4.2.1 Architecturally Significant Requirements

We synthesized our analysis into the following requirements for the features and function-

ality of the instructional agent-based system.

The Agent-based instructional system should be capable to:

• execute the execution of the main components of the behavioral instruction (three-

term contingency, discrete trial, session, and lesson) in an appropriate order,
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• infer the student’s learning progress in an ABA-based instruction, i.e., the agent

should “know” if the student is progressing, regressing, or struggling with particular

aspects of the instruction,

• apply the appropriate behavioral instructional methods: issuance of cues, application

of prompts, prompt fading, issuance of the consequences, promotion, and recognition

of the generalization,

• infer student’s state (presence, attentiveness) and learning performance within the

instructional session.

In addition, the architecture should support the overall system with the abilities to:

• control the execution of the instruction in the mixed modality (virtual, embodied,

etc.),

• pause and resume the instruction,

• modify the execution based on the learning progress of the student, and

• alter the stimuli and behaviors used in the instruction (cues, prompts, consequences).

4.2.2 Agent-specific Characteristics of the Architecture

In their book Computational Intelligence, Poole and Mackworth (Poole and Mackworth,

2010, p.14) define three aspects of computation that constitute the intelligent agent’s

reasoning framework:

• the computation that is part of the design of the agent,

• the computation that the agent does before it observes the world and needs to act, and

• the computation that is done by the agent while it is acting and interacting with the

world.

In PRA-ABA, these aspects are reflected as:
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• a set of rules and scripts based on the guiding principles and rules of ABA as

represented in the ABA ontology that are part of the agent design,

• a computation that agent performs to select the appropriate instructional policy given

the learner’s needs and progress in the learning process, and

• a reasoning and selection of the appropriate sequence of behavioral instructions while

conducting the discrete trial.

4.2.3 The Dimensions of Implementation Complexity

Another analytic device adopted from Poole and Mackworth (2010) was a nine-dimension

taxonomy for the categorization of intelligent agents. We used this taxonomy to further

define the characteristics of the emerging architecture.

1. The Modularity dimension qualifies the architecture of the system, and how it can

be decomposed into interacting modules that can be understood separately - flat,

modular, hierarchical. The design of the PRA-ABA is modular, consisting of the

modules relating to the instructional controls, execution, reasoning, and knowledge

persistence.

2. The Representation Scheme specifies how the world is described. Agents typically

reason in terms of states, features, relational descriptions, or in terms of individuals

and relations. The PRA-ABA representational emphasis is on the states, actions, and

percepts that alter these.

3. The Planning Horizon dimension examines how far the agent “looks” into the future

when deciding how to act. Within the planning horizon dimension, an agent can be

a non-planning agent, finite, one with an indefinite, or one with an infinite planning

horizon. PRA-ABA design is for a finite planning agent that works on predetermined

lesson plans (scripts) with finite terminating conditions.
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4. The Uncertainty dimension examines how uncertain the agent is about its environ-

ment and its own action. This dimension is therefore sub-divided into two sub-

dimensions:

• The Sensing Uncertainty examines if the agent can determine the state of the

world from the observations as fully observable or partially observable. For the

scope of the research and practicality of the implementation, the design assumes

full observability. However, we recommend that future research should explore

partial observability.

• The Effect Uncertainty dimension examines if, given the state of the world

and the agent’s action, the agent can accurately predict the state of the world

resulting from its actions. Taxonomy specifies that the effects of the agent’s

actions can be deterministic or stochastic. In the PRA-ABA design, the effects

of the agent’s actions are generally deterministic, although our design accounts

for stochastic events (e.g. randomness of the student’s attention and responses).

5. The Preference dimension is about the agent’s preference and to which degree its

actions are driven by some desirable outcomes. The preference dimension examines

whether an agent has: (i) goals, which can be achievement or maintenance goals, or

(ii) complex preferences, which can be ordinal or cardinal. The PRA-ABA system

design focuses primarily on learning achievement goals and considers both kinds of

complex preferences, with greater focus on the ordinal preferences.

6. The Number of Agents examines whether the agent system design is for a single or

multi-agent system. The PRA-ABA is a single-agent system interacting only with

one human subject.

7. The Learning dimension examines whether the knowledge of the world is given or

whether it is learned. In the PRA-ABA design, knowledge is both learned and given.

8. The Computational Limits dimension examines whether an agent has perfect ratio-

nality - the agent reasons without taking into account any constraints imposed by
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limitations of computational resources, or bounded rationality - the agent reasons by

taking into consideration computational limitations. The PRA-ABA design assumes

perfect rationality given the imposed restrictions of the problem domain (see The

Dimensions of ABA in Chapter 1).

9. The Interaction of Dimensions dimension examines the degree of interaction and the

impact between the eight other dimensions of implementation. This dimension also

examines the complexity of these relationships. The dimensions in PRA-ABA are

inter-related although the relationship is relatively straightforward. Table 4.1 outlines

the analysis of the PRA-ABA dimensions according to Pool and Mackworth’s

taxonomy.

Table 4.1: The Dimensions of Complexity

Pool and Mackworth Di-
mension

PRA-ABA Characteristic

Modularity Modular
Representation Scheme States and Actions
Planning Horizon Finite Planning
Uncertainty
Sensing Full observability for sensing uncertainty
Action Effect Mixed deterministic and stochastic on action effect

uncertainty
Preference:
Goals Learning achievement goals
Complex Preferences Both ordinal and cardinal preferences
Number of Agents Single
Learning Knowledge is initially provided, but agent learns about

student’s preferences and learning performance
Computational limits Perfect rationality
Interaction of Dimensions Generally interactive

4.2.4 Agent Inputs

An intelligent agent is an interactive entity that operates in its environment by receiving

the external inputs (observations), examining these inputs against the internal inputs (prior
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knowledge, history, states, procedures, etc.), and issuing actions back onto the environment.

The PRA-ABA instructional agent operates on the following inputs:

• prior knowledge consisting of the knowledge about the instructional process,

student preferences, setting, and the agent itself (appearance);

• history of agent’s interaction with the instructional environment, consisting of:

– observations about the current environment, and

– previous actions, recordings, and data;

• goals represented as a lesson plan consisting of a sequence of learning steps and the

student’s target performance criteria; and

• abilities - the agent’s ability to operate in the environment, interact with the student,

emit behaviors, and reason about the instructional process.

Table 4.2 outlines the analysis of the PRA-ABA characteristics according to Russell and

Norvig (2010) PAGE (Percepts, Actions, Goals, Environment) taxonomy for classifying

intelligent agents. PAGE is another well-established scheme for analysis of the properties

and classification of the intelligent agents:

Table 4.2: The PAGE Characteristics of PRA-ABA

Percepts Actions Goals Environment
Behaviors Stimuli Learning New Be-

havior
Instructional Envi-
ronment

Movements Reinforcers Target Learning
Performance (LP)

Student

Objects Prompts Objects
Other stimuli Objects Placements

Movements (for
embodied agent)

In summary, the PRA-ABA agent has to satisfy two main functions: (i) execution

of the instruction in the environment and with a student, and (ii) inference of the

87



student’s progress, preferences, and dynamic adjustments to the behavioral aspects of the

instructional process.

To realize these two functions, we proposed an approach where the PRA-ABA

architecture is structured as a union of the three main groups of components dedicated

to: (i) control of the execution of the instruction and (ii) reasoning about student’s progress

and preferences.

4.3 Architectural Synthesis

The Architectural synthesis is the process of translating the findings of the architectural

analysis into a design for the future system. The architectural design is driven by the ASRs

identified during the architectural analysis and its main objective is to fully realize all of

these requirements. Furthermore, the architectural synthesis establishes the core technical

principles that should drive all of specific technical implementations of the system. In the

case of PRA-ABA, the three main architectural principles that were identified during the

synthesis process were: (i) the PRA-ABA is a procedural architecture, (ii) its design relies

on the abstraction hypothesis, and (iii) it requires elementary (procedural) reasoning.

4.3.1 Abstraction Hypothesis

Architectural abstraction (Jennings, 2001) is the fundamental assumption of the PRA-

ABA’s design - i.e., the design of the overall system is based on the assumption that an

instructional control system, including procedural, ontologic, and reasoning elements can

be designed while abstracting away the locomotoric, spatial, and environmental specifics.

Other agent-based initiatives such as Virtual Human (VH) (Reidsma et al., 2011), BML

(Vilhjálmsson et al., 2007), and MPML (Prendinger et al., 2004), have demonstrated the

viability of the abstraction of machine-generated and interpreted the multi-modal behavior

and the implementation of the abstract control system that orchestrates them.
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Adhering to this assumption, we identified following essential, high-level abstractions

(Shaw et al., 1995) for the proposed control architecture:

• Percepts - These are the representations for all external stimuli serving as inputs to

the control architecture. Percepts were abstracted as external inputs to the system

consisting of the student’s posture and behavior descriptors; descriptors of the

student’s and agent’s position and their presence in the instructional setting; and the

information about the setting itself.

• Agent program - This is a “driver” for all sequential control, reasoning, and

knowledge retrieval or update routines. The agent program is responsible for the

execution of the instructional steps in the appropriate order or for the termination of

the instruction. The agent program is also responsible for appropriately coordinating

the actions of the other components of the architecture.

• Reasoning components - These are the elements of the overall architecture that can

infer the student’s state of progress in the instruction, and dynamically recommend

the appropriate adjustments to the execution of the instruction (e.g., prompting,

prompt fading, thinning of the reinforcers).

• Actions - These are the high level behavioral instructions issued to the physical

peripherals of the agent platform. These are abstract descriptions of the agent’s

behavior and issuance of the stimuli. The actions are issued as consequences of

the instruction progress, the state of the instruction, and the state of the student in the

instruction and the environment.

4.4 The Reasoning Components of the Architecture -

Beliefs, Desires, and Intentions (BDI) Model

We have chosen the Belief -Desire-Intention (BDI) (Rao and Georgeff, 1991) agent

model as a high-level reasoning framework for the formalization of procedurally-oriented
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reasoning aspects of the PRA-ABA instruction. The structure of the BDI model (Figure

4.1) logically separates the agent’s reasoning characteristics into three major components:

(i) agent’s beliefs about the state of the world (instruction), (ii) agent’s desires or the

objectives of the instruction, and (iii) intentions which are, in the context of ABA-specific

instructional scripts and actions. A BDI model is a basic model for representing the

reasoning capabilities of the rational-agent. In this rudimentary form, it has a limited

support for the representation of planning, online search, and for other advanced agent

capabilities (Busoniu et al., 2008). However, for the PRA-ABA architecture, BDI offers

the appropriate and complete conceptual formalization given the prescriptive nature of the

ABA-based instruction.

BDI Agent 
Reasoning
Architecture

Beliefs
Instruction
Student
Self

Intentions
Steps
Trial
3-term

Desires
Learning 
Performance
Generalization
Maintenance

Figure 4.1: BDI Architecture

4.4.1 Beliefs

The beliefs are the agent’s internal representations of its understanding of the world. In

the PRA-ABA architecture, beliefs are representations of the states that were conceptually

defined in the ABA ontology.

PRA-ABA defines three groups of beliefs: beliefs about the state of the instruction,

beliefs about the state of a student in the instruction, and the agent’s beliefs about itself.
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Each one of these beliefs have a global (instruction-level) and immediate (trial-level)

context.

The states of the agent’s beliefs are managed by the instructional reasoner component

which is reviewed later in the Chapter 4.9.

Global Beliefs about the Student

These beliefs represent the agent’s understanding of the student’s learning progress and his

or her state of learning at a global level of instruction:

• Progressing (P) - A student is progressing in the current learning step;

• Regressing (R) - A student is regressing in the current learning step;

• Maintaining (M) - A student is maintaining knowledge;

• Generalizing (G) -A student is in the process of generalizing a learned skill; and

• Finished (F) - A student has finished the learning process.

Immediate Beliefs about the Student’s State of Attention

The immediate beliefs represent the agent’s understanding of the student’s state in the

immediate instructional session. They reflect the student’s mental and physical presence

and participation in the process:

• Inattentive (I) - the student is not attentive;

• Absent (ABS) - the student is absent;

• Attentive (AS) - the student is attentive; and

• Finished (FS)- the student is finished with a session.
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Immediate Beliefs about the Student’s State at the Trial Level

The immediate beliefs at a trial level represent the agent’s understanding of the student’s

state of responding in the discrete trial.

• Responding (R) - the student is about to respond;

• Hesitating (H) - the student is hesitating to respond;

• Correct (C) - the student responded correctly;

• Incorrect (I) - the student responded incorrectly;

• Done (DT) - the student is done with the trial.

Beliefs about Self at the Global Level

The beliefs about self represent the agent’s understanding of its own state in the instruc-

tional process. These beliefs play an essential role in the agent’s ability to sequence the

instruction, maintain the student’s attention, and to restart the instruction, if interrupted.

The agent’s global beliefs reflect the agent’s understanding of its own state in the overall

process:

• Gaining Student’s Attention (GA) - the agent is trying to gain the student’s attention

in order to commence the learning process;

• Seeking Student (SS) - the student is absent, and the agent is trying to find the student;

• Instructing (AI) - the agent is engaged instructing; and

• Finished (FI) - the agent is finished with the process.

Beliefs about Self in the Instruction

These beliefs represent the agent’s understanding of its own state related to the conduct of

the behavioral instruction in the trial:
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• Issued Cue (IC) - the agent has issued a cue;

• Awaiting Response (AR) - the agent is awaiting the student’s response;

• Issued Prompt (IP) - the student has responded correctly (C);

• Issued Consequence (IC) - the agent has issued a consequence; and

• Finished (FT) - the agent is done with the trial.

4.4.2 Desires

Desires are instructional objectives that the agent wants to accomplish. They are expressed

as learning performance levels that the agent is helping the student to accomplish:

• target learning performance (TLP) is a level of learning performance (LP) that the

student should reach on the task;

• maintenance of the skill (SM) is defined as an acceptable variance of the student’s

learning performance within some predetermined control limits (MacGregor and

Kourti, 1995);

• overall learning objective (LO), and

• generalization (G) of the student’s learning performance across different learning

settings.

Desires are encoded within a reasoner and stored in the knowledge base as either control

limits of a control chart for SM and G or as a target measure for TLP and LO bounded by

halting conditions. The halting condition is defined as the maximal number of trials to be

performed if the performance is not met, and its purpose is to prevent the “infinite loop”

problem.
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4.4.3 Intentions

Intentions are specific steps that the instructional agent is going to take in order to

accomplish or maintain certain goals. Intentions are encoded as a set of actions to be

performed in order to accomplish the goal. The agent program, which we discuss in the

next section, is responsible for the selection, sequencing, and dynamic re-ordering of the

intentions. Following are the intentions defined within PRA-ABA architecture:

• Teach Learning Step (TLS) - the agent will teach n sessions until the student’s target

learning performance is met (TLP);

• Draw Attention (DA) - the agent will execute attention drawing actions until the agent

has the student’s attention. If the initial action does not produce the expected result

(student’s attention), alternate different attention drawing actions until the agent has

the student’s attention. Terminate the instructional procedure if the agent cannot get

student’s attention within n attempts. (n is a configurable parameter);

• Teach Session (TS) - the agent will teach n discrete trials t; and

• Teach Trial - the agent will execute the trial script t (consisting of a typical

cue/prompt/response/consequence structure).

Intention scripts, actions, and related desires are defined and stored within the

knowledge base as executable, parametrized scripts.

4.5 Percepts

A percept is a general concept representing any external input received by the agent system.

In PRA-ABA, the percepts are abstract. They are represented in terms of concepts defined

in the ABA ontology (behaviors and stimuli). This approach is taken in support of the

abstraction hypothesis, and in order to make the essence of the architecture and its functions

portable across different modalities. In different implementations, modality-specific
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interpreters translate the low-level percepts (signals, sensor readings, etc.) into percepts

understood by the architecture. For example, in a virtual context, a percept interpreter

implemented using Kinect SDK (Lai et al., 2012), might interpret Kinect-observed face

and eye tracking input indicating the continuous gaze as attention (Oikonomidis et al.,

2011); pointing motion at the object would be interpreted as the behavior (Chang et al.,

2011).

4.5.1 Instructional Percepts

Instructional percepts are any percepts that describe the states and the instruction process:

• the student’s responses (behaviors) which are the percepts that represent the student’s

vocal, verbal, gestural, physical, and other behaviors;

• the student’s attentiveness which are the abstract indicators of the fact that the student

is maintaining the attention to the instructional process. They are the translations of

the common physical indicators of attention: maintenance of the eye gaze, presence,

attentive posture, etc.; and

• objects and stimuli, which are the percepts describing the placement of the objects or

stimuli used in the behavioral instruction as cues, prompts, distractors, or reinforcers.

4.5.2 Environmental Percepts

These are the percepts that describe the physical properties of the instructional environment

such as the features of the environment and the locations and placement of the non-

instructional objects and stimuli.

4.6 Actions

Actions are high-level, abstract instructional or instruction-related commands issued by

the agent controller. They are translated into modality specific steps such as sounds,
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movements, or other simulated or actuator-based commands. Actions can take parameters

and return the results. (Some actions do not return values; they run as procedures.)

4.6.1 Environmental Actions

Environmental actions are actions that in some way change the state of the instructional

environment. The two environmental actions defined by PRA-ABA are:

• Place, the action that the agent uses to place the object into the environment. Its

purpose is to place the objects with instructional purpose (object of instruction or a

distractor) within the instructional setting, and is defined by the location variable.

The location is a three-dimensional coordinate for the placement of the object. The

syntax for the action is Place(object, location){};

• Move, the action that the agent uses to move the object within the environment. The

syntax for the action is Move(object, old_location, new_location){}; the polymorphic

version of this action is Move(self, location){} for the agents own movement.

4.6.2 Non-instructional Actions

Non-instructional actions are actions that are not directly related to the behavioral

intervention. Their purpose is to support the preparation and effective execution of the

instruction. The non-instructional actions are:

• Gain Attention of the student (GA). This action is issued to the student. It involves is-

suing a stimuli or a behavior that is known to help gain the student’s attention (sound,

voice, gesture). The syntax for the action is GainAttention(student,prompt){has

attention,no attention}. The action returns the outcome of its execution. The outcome

indicator is used by the agent’s program controller to decide on the next suitable

action (i.e. to proceed with the instruction, or to try again to gain attention).

• Look for Student (LS). This action is issued when the student moves out of the

immediate instructional setting, and he/she cannot be found (i.e., student wanders
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off). This is an abstract action whose implementation depends on the modality of

the agent system implementation. Its syntax is LookForStudent(student):{found,not

found}. The action returns the indicator for the outcome of the action. This indicator

is examined by the program control to determine the next action and the state of

instruction.

• Exit Instruction (EI). This is the action that the agent performs at the end of the

instruction. It includes any close-out, data recording and reporting tasks. The syntax

for the action is ExitInstruction():{success,failure}. The action returns an indicator

of whether the overall instruction was a success or a failure.

4.6.3 Instructional Actions

Instructional actions are actions that directly relate to the actions otherwise performed by

the human instructor in the ABA/DTT-based process. They are implementations of the

three-term contingency steps:

• Issue Cue (IC). This action issues a cue (Antecedent (A), Discriminative Stimuli

(SD)) to the student. This action is procedural and does not return any value. The

action takes cue and a student identifier as parameters. The syntax for the action is

IssueCue(cue,student):{}.

• Issue Prompt (IP). This action issues a prompt contingent on no response within time

t. The action takes as parameters prompt and a time delay value; it does not return

any value. The syntax is IssuePrompt(prompt,t):{}.

• Issue Consequence (IC). This action issues a consequence for the student’s response.

It takes a consequence as parameter and does not return any value. The consequence

is abstractly defined - it can be a reinforcing or a correcting consequence. The syntax

for the action is IssueConsequence(consequence):{}.
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4.6.4 Virtual Actions

These actions are only available in a virtual setting. Virtual modality allows for the

flexibility and ease of changing of the environment, the setting, the layout, and even the

appearance of the instructor conducting the instruction. This flexibility of the virtual

modality is particularly suitable for promotion of the generalization in learning. The

student can be introduced easily and gradually into the new instructional setting. If the

generalization does not happen, changes can easily be rolled back. Actions available in this

modality are:

• Alternate Setting (ALS). This action enables changing of some or all of the features

of the instructional setting - the environment, objects and the appearance of the

instructor. It is applied for students with maximal learning performance (LP). The

syntax for the action is AlternateSetting(old setting, new setting):{}.

• Alternate Environment (ALE). This action allows for the change in the instructional

environment (time of the day, surrounding objects). The syntax for the action is

AlternateEnvironment(old environment, new environment){}.

• Alternate Instructor (ALI). With this action, the agent can alter its appearance

(sex, age, race,voice,features,clothing) which, under the right circumstances, helps

the generalization of learning. The syntax for the actions is AlternateInstructor(old

instructor, new instructor){}.

• Alternate Stimuli (ALS). Stimuli are used by the instructor as a teaching cues,

prompts, or distractors. Alternating stimuli allows student to generalize behaviors

to different stimuli. The syntax for the action is AlternateStimuli([role], old stimuli,

new stimuli){}. The role parameter, which is optional, indicates if the stimulus is in

a role of a cue, prompt, or something else.
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4.7 Instructional Reasoning Components

Instructional reasoning components of the PRA-ABA manage the dynamic aspects of the

behavioral instruction:

• applications and changes to the use of stimuli based on the preference, ability, and

learning performance of the student, and

• sequencing of the generalizing and independence-promoting actions (prompt fading,

chaining, thinning of the reinforcements) based on student’s learning plan, and his or

her abilities.

The component driving this process is an instructional statistical reasoner operating

over a hierarchy of state machines (representing beliefs), instructional rules and the

recordings about the instructional session.

4.7.1 Instructional Reasoner (IR)

The responsibility of the IR is to track the learning progress of the student, to infer his

or her learning abilities and preferences, and to issue appropriate adjustments to the key

aspects of the instruction (the layout, stimuli, the schedules of the reinforcement). To

accomplish this, the IR maintains the internal representation of the learning state and it uses

statistical process control structures (Bakker et al., 2008) to monitor the state of student’s

learning. IR adjusts the progress and the elements of the instruction based on the associated

statistical process control rules (Gülbay and Kahraman, 2006). Table 4.3 outlines the

mapping between the Nelson (1992) rules and the actions inferred by the instructional

reasoner.

These rules are established individually for each student and they cover changes in the

learning progress (progress, regress), the continuing lack of progress (plateau), and the

monitoring of the generalization.

The Instructional Reasoner impacts the progress of the instruction by issuing changes

to the states and by issuing actions, where and when appropriate. Internally, IR executes
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Table 4.3: Nelson (1992) Rules for Inference of States and Actions

Rule Description PRA-ABA Interpretation

1 One observation is three or more
standard deviations above or below
the mean.

There are out of control behaviors.

2 Nine or more observations in a row
are on the same side of the mean.

There is a prolonged bias as
either under-performance or over-
performance.

3 Six or more observations, in a
row, are continually increasing or
decreasing.

There is a trend of learning progres-
sion or a learning regression.

4 Fourteen or more observations in a
row alternate in direction, increas-
ing then decreasing.

This oscillation in performance indi-
cates instability in learning. Changes
to the instruction are needed.

5 Two or three, out of three observa-
tions in a row, are more than two
standard deviations from the mean
in the same direction.

There is a mild tendency for behaviors
to be somewhat out of control.

6 Four or five, out of five observa-
tions, in a row are more than one
standard deviation from the mean in
the same direction.

There is a strong tendency for behav-
iors to be slightly out of control.

7 Fifteen observations in a row are all
within one standard deviation of the
mean on either side of the mean.

Learning is at the plateau. Depending
on the objective, this is indicator of,
maintenance or lack of no-progress.

8 Eight observations, in a row, are all
outside of one standard deviation
from the mean, and they are in both
directions from the mean.

This learning pattern shows lack of
maintenance or stability of the perfor-
mance.

reasoning functions that take as an input events from the percept interpreter and the internal

state of belief(s) and return appropriate actions or changes to the states.

4.7.2 Belief State Transition and Command Functions

Belief state transition and command functions are mappings between the current state of

instruction and percepts, and the next state of the instruction or the command actions,

respectively.
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The agent’s states are changed by a belief state transition function called remember. It

is a function from a set of all of the agent’s belief states S and percepts P onto a set of

states S:

remember: S × P → S

The mapping criterion for the state transition is defined by the rules in the knowledge base.

These rules are dynamically parametrized by control rules inferred by the IR.

A belief state transition function for discrete time t is a function from the set of all

agent’s belief states S and the set of possible percepts P onto a new state. State st+1 is a

resulting state at time t + 1 of the function remember, resulting from an application of the

function at some time t to the percept pt and the state st (p and s being current as of time

t):

st+1 = remember(st, pt).

An action function is a function of the agent controller that returns an action matching

the current state and a percept. It is a mapping between all of the agent’s belief states S and

the set of percepts P , and the set of all of the agent’s actions A:

do : S × P → A

The mapping criteron for the command function is defined by the rules sourced from the

knowledge base. These rules are dynamically parametrized by control rules inferred by the

IR.

Operant Machine - A Hierarchical State Machine (HSM) for Behavior Instruction

Given the complexity and number of states in the PRA-ABA, IR operates on the global

representation of beliefs called Hierarchical State Machine (HSM). HSMs (Alur et al.,

1999; Keating, 2011) are convenience devices that are structurally and logically equivalent

to multi-state representations, but are represented in a form that is externally easier to

comprehend. In PRA-ABA, IR conceptually reasons over an HSM called operant machine
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(Figure 4.2). The Operand machine consists of states called superstates. Each superstate

is a logical grouping of the machine states collectively representing the overall state of

instruction.

The IR operates on five superstates: (i) initial (IN), (ii) instructing (I), (iii) adjusting

instruction (A), (iv) interrupted (IR), and (v) finished (F).

q0

EAdjusting 
Instruction (A)

q2

Instructing  (I)

q3

q5

Initial (IN)

q1

D

Interrupted  (IR)

q4

Figure 4.2: Operant Machine - Hierarchical State Machine (HSM)

The Initial state (IN) is a bootstrapping state of the agent. It consists of the state of

instruction, the state of agent, and the state of the student in instruction from the knowledge

base (KB). Once these states are loaded from the KB and the student is attentive, the agent

program transitions to the Instructing state. In the instructing state, the agent is conducting

a session. Upon the completion of the session, the agent will assess, and, if appropriate,

adjust the layout of the instruction or some other aspects of the instruction (prompting,

schedules of reinforcement, etc.) This superstate is called an Adjusting Instruction state.

If all of the instructional objectives are accomplished, or if the instruction needs to be

re-designed, the agent will transition to a Finished state. If at any point, the student or

instruction requires a pause or it cannot proceed, the HSM will transition to an Interrupted

state. From an interrupted state, the agent can resume its previous state, or, if instruction

cannot proceed, it will transition to a Finished state while recording the permanently

interrupted condition to a knowledge base.
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4.8 Knowledge Base

In the BDI context, Knowledge Base (KB) serves as a repository for the rules that are

used by the state transition and command functions. These rules are simple expressions

involving the invocation of the action with a simple condition. Conditions are supplied

by the IR. In PRA-ABA, Knowledge Base plays a bigger role than in a typical BDI/PRS

knowledge base. The details of the structure of the KB and the expanded role of the KB in

PRA-ABA are discussed in more detail in the next section.

4.9 Control Components of the Architecture

Control components of the PRA-ABA architecture are the executive and coordinating

components that support the execution and operation of the agent as a system. Their

function (Figure 4.3) is to (i) execute all the functions of the agent in a coordinated,

efficient, and appropriate manner and (ii) coordinate the interaction of the agent within

an instructional environment.

Control Architecture

Interpreter

Knowledge Base

Instructional Reasoner

Controller

Percepts

Actions

Individualized General

Students
preferences

learning record
learning plan

Stimuli

ABA Ontology
Agent Memory

functions

procedures

states

states

Figure 4.3: Components of the Control Architecture
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4.9.1 Agent Program

The agent program is the “driver” component of the architecture. It is a set of procedures

that coordinate the functioning of the agent as an instructional entity. The interpreter

interacts with the student and the instructional environment via the percept interpreter.

The percept interpreter interprets the environmental stimuli and translates them into

percepts understandable by the program (behaviors, observations about the presence, and

attentiveness of the student). The agent program (Figure 4.4) evaluates these percepts

against the state of instruction (current procedure), the global and current state of a student,

the rules of the ABA (Knowledge Areas and Goals stored in a Database), and issues the

appropriate actions (behavior, stimuli) according to the inferred next steps (Intentions), and

the personal preferences of the student.

Agent Program

Rules
timing
generalization
fading
thinning
chanining

Learning History
lessons

Student 
Preferences
reinforcers
goals
setting
instructors

Stimuli
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prompts
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objects
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Enviromental 
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Interpret Inputs

Make Procedural 
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lessons
steps, trial

Formulate Action

Infer State

Personalize 
Procedures

Figure 4.4: ABA Agent Program
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4.9.2 Percept Interpreter and Action Generator (PI-AG)

The Percept Interpreter and Action Generator are bridge (Johnson et al., 1995) components

that enable PRA-ABA architecture to transcend the modalities of the instruction. We realize

the abstraction hypothesis through these two components as they translate abstract notions

of behaviors, stimuli, cues, situated states, etc. from and to modality-specific actions and

interpretations.

4.9.3 (Percept) Interpreter

The Interpreter translates environmental inputs such as positions, movements, expressions,

gestures, postures, and actions into events that are understood in terms of representations

defined in the ABA Ontology. The Interpreter is at any time producing synchronous

and asynchronous streams of events. The Asynchronous percepts are representations of

the student’s position and attention to the instruction. The Synchronous percepts are

representations of student’s actions in response to agent’s instructional actions. In both

cases, the interpreter acts non-deterministically; the interpreter can issue any event at any

time as they are representations of the student’s actions which are, for the agent, non-

deterministic. These events (Figure 4.5) are inputs for the transitions of the state machines

that the agent maintains about the state of the instruction and the state of the student in the

instruction.

4.9.4 Action Generator

The Action Generator translates the instructional actions such as cues, prompts, and conse-

quences into situational events that are appopriate for the modality of the implementation

(embodied, virtual, or mixed). The Action Generator also generates locomotoric and other

forms of expression that are dependent on the modality of the implementation (Figure 4.6).
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Figure 4.5: Interpretation of Instructional Events
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Figure 4.6: Translation of Instructional Actions

4.9.5 Knowledge Base

The Knowledge Base (KB) serves as the store for the general knowledge and facts about

the ABA process, individualized lesson plans and preferences, and the memory of the state

of instruction. It is also a repository for the rules for the “layout” of the instruction (how

the instruction proceeds).

The Knowledge base of the instructional agent consists of:

• General Knowledge (KB-G) - a repository for ABA Ontology-related facts, rules

and representations of stimuli and behaviors appropriate for the context (virtual,
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embodied). This segment of the knowledge base stores facts and rules related to

facets of ABA such as schedules or reinforcement or generalization.

• Individualized Knowledge (KB-I) - a repository for student profiles, preferences

(stimuli, reinforcers, and prompts), and their learning history. This component of the

knowledge base is inspired by a concept from the actual special education practice

called Individualized Education Program (IEP) (Smith, 1990). This base is accessed

at the beginning of the instruction when the student is first identified, and it is updated

as the instruction progresses with statistics about student’s learning performance and

preferences for reinforces, cues, and prompts.

• Memory (KB-M) - the memory component is used to store the states of the

instruction. It is used for bootstrapping purposes and for the resumption of the

incomplete or interrupted instructional session. KB-M is updated as frequently as

there are any changes to any of the states.

4.10 PRS - Putting It All Together

As discussed in Chapter 2, PRS is the blueprint for the intelligent agent-based im-

plementation of the BDI model in the settings that require dynamically adjusted and

sequenced execution of the predefined procedures. In the case of behavioral instruction,

pre-defined procedures are instructional procedures (trial, session, generalization, chaining)

that are sequenced and adjusted based on student’s learning abilities and preferences.

A PRS based system consists of a database, goals, knowledge areas, intentions, and an

interpreter. Each knowledge area consists of a unit of procedural knowledge. Based on

the interpretation of the situation, these units of procedural knowledge are selected for

execution as intentions. We use the PRS architecture as an implementation model for the

conceptual BDI architecture that we presented in the previous sections. The components

of the PRA-ABA mapped to PRS model are:
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• Database for the instructional agent’s beliefs about the states and characteristics of

the student, instruction, instructional setting, and the instructor itself,

• Goals to be accomplished by the system over the duration of the instructional session

and the learning process as a whole,

• Knowledge Areas (KAs), are sequences of actions to be performed in the specific

situations,

• Intentions which are KAs selected for execution, and

• Interpreter serving as an inference mechanism that manages the system.

The table 4.4 outlines the mapping of the PRA-ABA’s concepts to the PRS concepts.

Table 4.4: PRS to PRA-ABA Concept Mapping

PRS Concept PRA-ABA Concept
Database Knowledge Base (KB)
Goals Desires
Knowledge Areas (KAs) Instructional Scripts
Intentions Intentions
Interpreter Percept Interpreter, Instructional Reasoner

4.11 Evaluation

This step involves an evaluation of how well the architectural design satisfies the ASRs that

were identified during the architectural analysis phase. The architecture evaluation step can

be typically performed during the design process, right after the design was completed, or

after the architecture was implemented and deployed.

The evaluation for PRA-ABA was performed during the design process (concurrent

evaluation), after the design was completed (post-design), and through the POC (post-

construction). The results of this evaluation are presented in the next chapter.
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4.11.1 Concurrent Evaluation

This is the evaluation that was performed during the design process. Evaluation activities

included assurance that all the procedures and conceptual aspects of the ABA ontology

were covered by the design of the architecture. Special attention was given to the design

of the state machines introduced as part of the ABA ontology and assurance that states and

transitions were fully and accurately represented.

4.11.2 Post-design Evaluation

The post-design evaluation focused on the consistency, integrity, and comprehensiveness

of the design of the architecture as a whole. Some of the evaluative questions considered

were: (i) does the architecture cohesively support the implementation of all ASRs in a

agent-oriented way, (ii) does the architecture completely and unambiguously cover all of

the instructional scenarios, (iii) are all exceptional scenarios covered, and (iv) are there any

conditions that might cause the agent to fail to reach a calculable outcome.

4.11.3 Post-construction Evaluation

Post-construction evaluation was performed by implementing three functional proof-of-

concepts: one examining the agent in a role of a verbal behavior instructor, one performing

the instruction with a simulated student, and one, interactive, implemented in a virtual

setting. These implementations are discussed at the greater level of detail in the next

chapter.

4.12 Evolution

Given the research nature of this entire effort, and its early stage of implementation, the

process of the architecture evolution has not yet happened. However, the process of

technical evolution applies to any architecture, so it is likely that the architecture will

significantly evolve over time. A natural direction for the evolution of the architecture
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is in the areas related to various modalities of implementation, and in the areas related to

the implementation of the variants of the ABA methods.
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Chapter 5

Implementation and Experimental

Evaluation

In the previous two chapters, we described the theoretical properties and proposed

capabilities of the PRA-ABA. In this chapter, we describe how we evaluated the proposed

architecture and its feasibility as a blueprint for an agent-based instructional system.

We evaluated the PRA-ABA by applying both qualitative and quantitative evaluation

methods, namely scenario and simulation-based approaches. The examination consisted

of an evaluation of the completeness of the overall design and its features against the

Architecturally Significant Requirements (ASR), the functioning of the architecture in two

different modalities, and the reasoning characteristics of the architecture.

5.1 Assessment of the Software Architecture

There are four broad categories of software architecture evaluation methods, namely:

experience-based, simulation-based, mathematical modeling-based, and scenario-based.

For the purpose of PRA-ABA evaluation, we applied simulation and scenario-based

methods given that experience-based was not practical and that mathematical modeling

was feasible only for the small deterministic aspects of the reasoning components.
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The purpose of the software architecture is to implement some externally visible

functions through the interaction of its constituting components. The purpose of the

software architecture evaluation is to examine how well the architecture fulfills this

role. The function that the architecture implements is most commonly defined directly

or indirectly by the stakeholders (Chung et al., 1999). In the case of PRA-ABA, the

stakeholders are ABA-experts and educators that act on behalf of the students. The input

was collected from the actual user base as well as from the ABA literature describing the

desired characteristics of the instruction.

5.1.1 Completeness of the Implementation

The evaluation of the completeness of the implementation encompassed the evaluation of:

• coverage of the implementation of all the essential requirements of the future system,

• the prioritization and trade-offs in the design of implementing components, and

• efficiency of the implementation (non-redundancy).

The foundation for this assessment was provided by the requirements for the PRA-

ABA and its reasoning component synthesized during the architectural synthesis process

into a set of competency questions (Grüninger and Fox, 1995). Competency questions are a

special kind of requirements that are used as analytic devices to help define the scope of the

representation as well as the requirements for the reasoning power of the intelligent system

(including agents). Competency questions for PRA-ABA were defined with the help of the

domain experts: special education teachers, academics, and certified behavioral specialists.

We also used ABA training and certification materials (Shook et al., 2004; Field, S, 2013)

as a theoretical foundation.

The high-level system competencies for the PRA-ABA architecture were defined as:

• capability of executing the main components of the behavioral instruction (three-term

contingency, discrete trial, session, and lesson) and in an appropriate order,
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• capability of inferring the student’s learning progress in an ABA-based instruction.

That is, the agent should “know” if the student is progressing, regressing, or

struggling with particular aspects of the instruction,

• application of the appropriate behavioral instructional methods: issuance of cues,

application of prompts, prompt fading, issuance of the consequences, promotion,

and recognition of the generalization, and

• capability of inferring the student’s state (presence, attentiveness) and learning

performance within the instructional session.

In addition, the architecture should support the overall system with the abilities to:

• control the execution of the instruction in a mixed modality (virtual, embodied, etc.),

• pause and resume the instruction,

• modify the execution based on the learning progress of the student, and

• alter the stimuli and behaviors used in the instruction (cues, prompts, consequences).

These high-level competencies were translated into the following specific system

competencies:

1. responding to appropriate/expected, approximately expected, unexpected behavior,

and no behavior (Behavior recognition),

2. issuance of the appropriate consequence (Consequences),

3. advancing learning objectives from the simplest to more complex (Chaining),

4. issuance of the prompts (Prompting),

5. fading of the prompts (Fading),

6. reinforcing at the predefined schedules (Schedules of reinforcement),
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7. fading of the prompts at appropriate rate (Prompt fading),

8. detection of the student’s dependency on the prompts in order to produce expected

behavior (Prompt dependency),

9. detection of the student’s progress or regression (Progress Measurement),

10. “thinning” of the reinforcements (Thinning),

11. generalization,

12. detection of student’s attention and absence (Observation of the Student’s State),

13. progressing through the instructional process (Lesson advancement),

14. data collection throughout the process, and

15. orderly execution of the instructions including pausing, resumption, and termination

of the instructional process.

5.1.2 Evaluation Criteria

The evaluation of the PRA-ABA architecture was performed against the following criteria:

1. feature coverage - a measure of how many of the competencies of the future system

are covered by the features and functional components of the architecture.

2. extensibility - an evaluation of each component extensibility within the architecture.

3. multimodality - an assessment of how well the components of the architecture can be

implemented in a multimodal setting.
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Table 5.1: Mapping of Competencies to Features of the PRA-ABA

Competency PI AG IR AP HSM KB
1. Behavior Recognition X X X
2. Consequences X X X X
3. Chaining X X X
4. Prompting X X X X X
5. Fading X X X X
6. Reinforcement Schedules X X
7. Prompt Fading X X X
8. Prompt Dependency Detection X X
9. Progress Measurement X X X
10. Thinning X X X
11. Generalization X X X X
12. Observation of the Student’s State X X X X
13. Lesson advancement X X X X
14. Data collection X X
15. Resumable Execution X X X X

5.1.3 Findings

The resulting architecture was evaluated by multiple panels representing three groups of

stakeholders: special education teachers, certified behavioral therapists, and researchers in

the fields of artificial intelligence in education and intelligent agents.

As part of the evaluation, we first ranked competencies for the PRA-ABA by the priority

score assigned to them by the panel members, and then attempted to map these prioritized

system competencies to the components of the system that implements them. Table 5.1

lists the implementation mapping for the prioritized competency questions.

During the walkthrough with behavior specialists, we discovered that certain aspects of

the behavioral instruction cannot be easily implemented in a mixed modality. Functions

and features that have limited implementation and that are considered important for the

behavioral instruction are:

1. token economy (Ayllón and Azrin, 1968), which is frequently used in the context of

operant conditioning, was not implemented.
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2. physical/edible reinforcers were not covered nor implemented in a virtual setting

(they could be supported with special devices).

3. physical (full) prompts were not implemented.

Token economy could be implemented in the future by issuing specialized control

actions to devices that exchange tokens. The same applies for physical or edible reinforcers.

The physical prompts are difficult to implement in any of the modalities. In the virtual

setting, the agent will not be able to physically assist a student because of the virtual

nature of the implementation. In the physical setting the physical contact between the

child with a special needs and a machine might require special safety precautions and other

accommodations.

5.2 Verbal Behavior Instruction Simulator

The purpose of this simulator was to evaluate the complete implementation of all of

the features of the PRA-ABA architecture by implementing them in their simplest form.

The verbal-behavior instruction simulator implemented all the essential elements of the

behavioral instruction (cue, prompt, consequence, chaining, schedules of reinforcement,

etc.) while not implementing any of the more challenging situational or spatial aspects of

the instruction. This simulator was also the first opportunity to functionally evaluate one

of the fundamental and novel aspects of the proposed approach to the automation of the

behavioral instruction, a behavior recognition function and behavior similarity measure.

Implementation

The prototype framework was implemented as a simple Python-based simulator that allows

the user to interact with an agent via the command line interface. We used this simulator to

simulate the instruction of both verbal and non-verbal behavior. The central components of

the architecture were implemented in a Python-based, SPADE distributed agent framework

(Gregori et al., 2006). We chose this framework because of its loosely-coupled, simple
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but expressive, and flexible architecture. SPADE allowed for a great degree of freedom

and customization in the implementation of the PRA-ABA components. We also favored

SPADE because of its support for Finite State Machine (FSM) model, extensible knowledge

base architecture and because of its support of behavior-specific template handlers.

The Percept Interpreter (PI) and Action Generator (AG) of the verbal-behavior

instructional prototype were implemented using text-to-speech and OSX Dictation &

Speech voice recognition (Dixon, 2013, p.39) features which have been available since the

10.8 version of that operating system. We used this technology to issue verbal behaviors

- cues, prompts and consequences, as well as to capture the user’s voice input as a verbal

behavior. We translated the verbal behavior into text-strings and applied the normalized

Levenshtein distance (Yujian and Bo, 2007) to measure the degree of similarity between

the expected and received verbal behaviors.

The specific instructional scenario included execution of few verbal behavioral sessions

focused on the intraverbals (Frost and Bondy, 2009) of the well known and vocally non-

complex concepts (sun, moon, sky, sea).

Verbal behavior was measured by the implementation-specific behavior similarity

function S. S is implemented as an averaged difference between expected and actual

character (textual) descriptor of the intraverbal, and a scalar describing its expected and

actual duration. To measure textual similarity we used the normalized levenshtein distance

algorithm∗ (Yujian and Bo, 2007) to measure the similarity between the character string

representation of the expected verbal behavior and of the actual behavior. Formally, S is

defined as:

Let ce be the array of expected characters in the intraverbal of length le and let ca be

the array of actual intraverbal characters of length la.

We define the length difference function L : Ca, Ce → R as

L = levenshtein(ca, ce)

∗a dynamic programming algorithm that calculates the levenshtein metric expressed as the number of
single-characters edits required to change one word into another.
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Let de be the scalar duration of expected intraverbal and let da be the duration of the

actual intraverbal.

We define the function D : R → R as the difference between two non-negative real

numbers representing time intervals for de and da, normalized on a [0,1] interval:

D = 1− abs(da−de)
max(de,da)

for (da − de) 6= 0

for max(da, de) = 0, D = 1

Consequently, S : R → R, the intraverbal-based behavior similarity function, is

defined as the arithmetic mean of the functions L and D:

S = L+D
2

5.2.1 Evaluation

The verbal behavior simulator was evaluated against the list of common everyday

intraverbals, common animal, and generalizing intraverbals (Hilsen, 2011). The simulator

was evaluated for the accuracy of three-term contingency execution, prompting, and

chaining. Prompt action was implemented as a timed task that issues a verbal prompt

if there is no verbal behavior within a specified period of time. If the produced verbal

behavior was approximately correct, the agent would issue a verbal praise and a corrective

intraverbal. If the verbal behavior was correct, the agent would issue a verbal praise. If

the verbal behavior was incorrect, the agent would issue a corrective consequence and a

corrective intraverbal.

5.2.2 Findings

Overall, the verbal simulator performed correctly on all functional tasks. The simulator had

a high error rate on onomatopeic animal intraverbal tasks (Ingvarsson and Le, 2011). It was

established that the error rate was related to the speech-to-text auto-correction features. In

summary we found that:
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• the behavior similarity measure is a suitable and practical way to compare the

behaviors;

• the speech recognition technology obfuscated or corrected some of the important

features of the intraverbals. Future implementation would require a different

technology to help capture the subtle pronunciation differences (’moo’ vs. ’moon’).

5.3 Evaluation of the Reasoning Components

This aspect of the evaluation was developed with the expert guidance from special

education teachers with extensive experience in conducting ABA-based instruction in the

classroom. They helped us construct the list of typical non-verbal behaviors including all

the typical variations and patterns of learning and unexpected behaviors.

We translated these behaviors into simulation scripts through an interactive collection

instrument. We translated classes of behaviors into codes, assigned them a familiar labels,

and created the user-friendly, interactive menus (See 5.1). The purpose of this exercise was

to:

• simulate, in a significantly simplified fashion, the actual behavioral interaction

between the instructional agent and the student;

• evaluate the capability of architecture to handle different and unexpected behaviors;

and

• record the scenarios for the future scripted evaluations of the architecture.

The textual menu offered a choice of actions where the script author for the simulated

behavior could choose from a selection of on-task behaviors, approximate behaviors, no or

off task behaviors.
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Show me the green circle>
1. Point to green circle
2. Motion towards green circle
3. Point to red circle
4. Lose attention
5. Wander off
6. Hesitate over green circle
7. Do nothing

choose your action:

Figure 5.1: Interactive Collection Instrument

5.3.1 Evaluation

The choices collected from the interactive collection instrument were recorded as coded

input scripts. These inputs were used in place of inputs that would be otherwise generated

by the Percept Interpreter component of the PRA-ABA. They had to be manually edited

to create session scenarios for evaluation. Simulated evaluation sessions covered five

scenarios:

1. behavioral instruction with an average learner†,

2. behavioral instruction with a “slow” learner,

3. behavioral instruction with a “fast” learner,

4. behavioral instruction with a learner who regresses, and

5. behavioral instruction with a sporadic learner.

Each session consisted of 10× 10 trials.

Session Set 1 - Average Learner (AL)

The session set 1 featured a simulated student that was making an expected progress (as

specified in instrumented simulation). The agent started the instructional session with no

prompts and with fixed schedules of reinforcement (every response was reinforced). The

student was modeled as not making any progress without prompts, so the agent had to
†the progress or speed of learning is judged by a Learning Rate (LR).

120



apply the initial level of prompting (1) following the least-to-most prompting strategy.

With prompts and initially saturated reinforcements the student started a learning progress

(detected by Rules 2 and 3). As student progressed, the prompts were scaled backed down

to level 0 and then the reinforcements were thinned out at the Fixed Ratio, FR3.
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Figure 5.2: Session Set 1 (AL) Instruction Results

Figure 5.2 shows a simulated learning process of an average learner. The Y-axis shows

the simulated correct behaviors measured by degree of correctness on the rational scale 0-1.

The scale on the right shows the application of reinforcement by the agent (scale 0-1) and

the level of prompts applied (0-4 where 0 is independent and 4 is simulated full prompt).

Session Set 2 - Slow Learner (SL)

For session 2 (Figure 5.3), the simulated student was making a slower progress than a

student in session set 1 (average learner). Applying the rule 7 (see SPC rules in Chapter

3), the Agent detected the plateau/no-progress in learning, so it started increasing prompt

levels from 0 to 3 quickly (from session to session). Higher level of prompts helped the

learner accelerate the learning progress. As the student’s performance improved, the agent
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reduced the prompt levels. This experiment confirmed the agent’s ability to adjust the

prompt levels based on the needs of the learner recognized by SPC rules.
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Figure 5.3: Session Set 2 (SL) Instruction Results

Session Set 3 - Fast Learner (FL)

In session 3 (Figure 5.4), the simulated student had a learning rate that helped master the

target behavior within four sessions. Applying rules 2, 3, and 7; the agent detected progress

and a plateau in performance, so it reduced the prompt level at session 4, thinned out the

reinforcers at fixed ratios 3 and 4, and performed the maintenance trial by session 6. The

agent stopped the learning process before the 10th session because of the student’s mastery

of the material (Figure 5.4).

Session Set 4 - Regression in Learning (RL)

This session examined the agent’s ability to detect the regression in learning. The script

was designed to simulate a student that starts as a fast learner, but that, as the prompts are

thinned out, starts exhibiting regression in learning. The agent relied on rules 2 and 3 to

detect this condition. As the prompts were introduced, the student’s learning performance
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Figure 5.4: Session Set 3 (FL) Instruction Results

increased. This situation also simulated, by design, a prompt dependency. Figure 5.5 shows

the final version of the progression of this simulated scenario.
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Figure 5.5: Session Set 4 (RL) Instruction Results
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Session Set 5 - Sporadic Learner (SPL)

The last experiment in this group of evaluations featured a simulated student that was not

sustaining the learning rate. The student was designed to start progressing and then, around

the middle of the scenario, start exhibiting the oscillation. The Agent was supposed to

detect this situation through SPC rule 4 as a lack of consistent learning. Once the rule was

activated, the agent attempted to alternate the stimuli. This alteration did not result in a

significant improvement, so the agent signaled this situation as a condition for re-design of

the lesson and terminated the session (Figure 5.6).
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Figure 5.6: Session Set 5 (SPL) Instruction Results

5.3.2 Findings

The simulations have demonstrated satisfactory results on four out of five scenarios. The

Agent successfully recognized average, slow, fast learning performance, and the regression

in learning. Initially, the agent did not recognize the sporadic learner. Upon closer

examination of the test results, it was determined that agent’s SPC rule was not activating

because measurements were taken at the 10-session sample. The rule had to be adjusted
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to activate on a smaller sample. In general, we observe that the PRA-ABA exhibited (i)

sensitivity to the duration of the session, and (ii) the need for a broader set of SPC rules.

5.4 Evaluation by Construction (Proof-of-Concept)

The purpose of this phase of the evaluation was to test the architecture by actually

constructing the proof-of-concept based on the blueprint proposed by the PRA-ABA. The

intent was to develop a solution as complete as possible using some existing, sufficiently

complete virtual reality technology. The intent of this phase of the evaluation was also

to exercise all of the essential elements of the architecture, examine the viability of its

construction, and, if the construction was deemed successful, demonstrate the execution of

the framework in the actual setting.

5.4.1 Evaluation

The evaluation consisted of the feasibility analysis (Hwang et al., 2006), feature cover

assessment, and testing of the virtual solution against the common instructional scenarios.

Proof-of-Concept Scenarios

The implementation of the proof-of-concept featured two scenarios. The first scenario

exercised general characteristics of the virtual instruction situated in the classroom with

the agent, appearing as a female teacher, presenting colored objects of the same shape,

and asking student to recognize them. The second scenario examined the capabilities of

the architecture to chain the instructional objectives, and to alter the appearance of the

instructor, the environment, and the stimuli.
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Recognition of Colors

In this scenario, the agent, embodied as a female teacher, instructed a student in a

controlled, classroom setting to recognize colors. Instructed colors were red and green

with black and yellow used as distractors.

The scenario started with the teacher presenting the objects of different colors and

asking the student to point to an object of the right shape. If the student hesitated, the

teacher (an agent) offered a visual, verbal, gestural, and model prompts. If the student

answered correctly, the teacher issued a rewarding verbal and gestural consequence. If the

student did not answer correctly, the teacher issued a correcting consequence in form of

a verbal and gestural correction. Each of the consequences used in the instruction were

intended to be modifiable by the instructional agent, or by the designer of the instruction.

The instruction consisted of ten sessions of ten trials. The target learning performance (LP )

was 90%. The schedule of reinforcement was set at a fixed ratio (FR3).

Chaining, Generalization, and Maintenance

In this scenario, the student was instructed to first recognize colors, and then to recognize

specific objects of a specific color. This scenario was used to examine the implementation

of the learning of complex behaviors through chaining (recognition of colors, recognition

of objects, recognition of colored objects). The setting of the instruction was changing

as the student progressed through the instruction and demonstrated learning progress (or

maintenance).

The scenario was begun with the agent-instructor, appearing as a female instructor,

asking a student to identify the objects of the appropriate color. The first trial was assumed

to be a maintenance trial. Once the student achieved consistent learning performance, the

new behavior was introduced. For the new behavior, the student was asked to identify

an object. Once the student achieved a consistent learning performance on this task, the

complex new behavior is introduced. The student was asked to identify the specific object

(cup) of the specific color (green). Once the student demonstrated satisfactory learning
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performance and the maintenance of the skill (LR 90), the agent program changed the

environment of the instruction and the sessions re-started.

Generalizing changes were applied in a pre-defined order: first, the environment was

changed; next, the appearance of the instructor was changed from female to male. The

instruction was to conclude if the student demonstrated a satisfactory learning performance

and maintenance of the newly acquired skill. Otherwise, the agent would re-adjust the

prompt level in order to support the student’s improvement of the learning performance.

5.4.2 Implementation

For the virtual reality version of PRA-ABA, we used the Unity 3D framework (Blackman,

2013). Unity 3D was chosen because of its successful use in other commercial, gaming,

and research-oriented virtual reality (Gratch et al., 2013) applications. Another reason for

using Unity 3D was its good support for the development of artificial intelligence-oriented

applications (Finkelstein et al., 2009). Related to specific PRA-ABA needs, the following

features were of particular interest:

• broad availability of free and commercial animation assets,

• Unity’s implementation of the concept of hierarchical state machines (Multilayer

Hierarchical State Machine (MHSM)) (with close mapping to PRA-ABA’s state

machine concepts),

• dynamic generation of character animations and expressions through its encompass-

ing Mecanim API.

In addition, Unity 3D supports custom scripting in C# and JavaScript. We chose C# for

the implementation of the custom code for PRA-ABA because of the greater availability of

AI-related code and learning materials in that language.
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Table 5.2: Mapping of PRA-ABA Components to Unity Components

PRA-ABA Component Animations Unity Engine MHSM Custom
Percept Interpreter X X X
Action Generator (Actions) X - X
Instructional Reasoner - - - X
Agent Program X
HSM X X
Knowledge Base - X

General Approach

One of the main objectives of the proof-of-concept (POC) was to demonstrate the

feasibility, dynamicity, and flexibility of the PRA-ABA when implemented in a virtual

modality. To this end, we explored options for the dynamic execution of the instruction,

changes to the appearance of the learning setting and the instructor, and ability to

parametrize the instruction.

To meet these goals we:

1. implemented the instruction in two different virtual settings (classroom and play-

ground, see figure 5.7);

2. used a collection of pre-built assets (animated scripts for verbal and gestural

behaviors, stimuli), and custom scripts for PRA-ABA actions;

3. used Unity finite state machine model (MHSM), otherwise used for AI programming

of non-player characters (NPCs), for the implementation of HSM; and

4. custom implemented a knowledge base (KB) and an agent program using the built-in

C# engine.

The mapping of the PRA-ABA components to Unity 3D architecture is outlined in

Table 5.2.

The scene shown in Figure 5.7 shows the default proof-of-concept instructional setting

with the agent presented as a female instructor and in a typical classroom setting.
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Figure 5.7: Virtual Instruction - Initial Classroom Scene

As part of the implementation of the behavioral instruction, we implemented all typical

actions and components of the discrete trial. Cues and prompts were implemented as Unity

3D animations. A complete, non-physical hierarchy of prompts was implemented using this

approach; we implemented verbal prompts, gestural prompts, and model prompts. Figure

5.8 shows the agent issuing a gestural prompt accompanied with a verbal prompt.

Figure 5.8: Instructor Prompts (Gesture) the Target Object

The prompts were activated using Unity 3D timer features that triggered the prompting

animation if the behavior was not produced within the specified prompt wait time (Pwt).
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Reinforcers were implemented in the same fashion as prompts, using select Unity 3D

animation assets. Their execution was controlled by the custom-built routines of the PRA-

ABA agent program. Figure 5.9 shows the agent reinforcing student’s response with a

verbal and gestural praise. These two actions play the role of a reward (R).

Figure 5.9: Instructor issues a Consequence (Reinforcement)

The same mechanism was used for the corrective prompts as well. Figure 5.10 shows

the instructor issuing the corrective consequence for the incorrect behavior (incorrect

response). Corrections, like rewards, were rule-driven and parametrized (i.e. the animation

representing a corrective action was replaceable, in a programmatic fashion, by another).

In the situation presented in Figure 5.10, we used combination of off-the-shelf Mixamo

animations (Mixamo Inc., 2013): pointing at the right object, providing a verbal direction,

and a head shake.

One of the significant strengths of this platform was its support for the promotion of

generalized learning. The POC implementation demonstrated support for the generaliza-

tion by: (i) alteration of the environment, (ii) alteration of the setting including instructional

objects and stimuli, and (iii) appearance of the instructor. These generalizing characteristics
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Figure 5.10: Instructor issues a Consequence (Correction)

of the instruction were implemented as configurable properties, adjustable by the agent

program and instructional reasoner. Figure 5.11 shows the alternations in the instructional

environment that have happened as the student had successfully progressed through the

sessions and chained behaviors.

Figure 5.11: Generalizing Instructional Environment
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5.4.3 Findings

The main intent of the proof-of-concept implementation was to examine the validity of the

PRA-ABA framework by implementing it in a practical or near-practical setting. During

this process, we primarily sought to discover any egregious obstacles or severe issues that

would uncover some flaw in the PRA-ABA architecture. There were no such discoveries.

Although this finding supports the general philosophy of the PRA-ABA architecture, the

POC was limited in the implementation, and was not evaluated in a formal experimental

setting with human subjects. Hence the findings outlined below are only preliminary:

• The Unity and C# Timers played the essential role in the implementation of the

discrete trial, namely the control of the trial duration, the prompting, and the issuance

of the consequences. Despite the successful final implementation, we experienced

challenges working with Unity 3D in this respect. The framework has a limited

support for complex, concurrent, and coordinated timers, so a custom framework had

to be implemented to overcome these limitations. We expect that the implementation

of the time-dependent routines in systems with more limited support for timers would

be significantly more challenging.

• Our original design of a Knowledge Base for action-producing rules had to be mod-

ified. Our original design represented actions as singular, atomic objects. Rewards

or correcting consequences in the Unity implementation had to be represented as

complex as they consisted of the multiple animations. Hence, we had to modify the

representation scheme of the areas of the knowledge base that maps the activation

rules for behaviors to actions (animations) .

• Although we did not perform a complete usability testing, we observed that virtual

modality will likely be an excellent environment for the promotion of generalization

in learning.
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5.5 Summary

After reviewing the performed evaluation steps and the outcomes of these evaluations, the

following high-level conclusions emerge:

• the ABA ontology is a strong theoretical foundation for the implementation of PRA-

ABA-based instruction. It provides a sufficient and complete conceptualization for

the practical implementation of the instruction.

• the instructional components (three-term contingency, prompting, generalization,

schedules of reinforcement) of the behavioral instruction are properly covered

by the PRA-ABA architecture, and they offer a good foundation for practical

implementation.

• further evaluatory implementations and usability experiments with actual students

are required in order to fully determine the practicality of the working PRA-ABA

solution, especially in the physically embodied setting.
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Chapter 6

Conclusions and Future Work

6.1 Findings and Conclusions

The intent for the architecture described in this dissertation is to serve as a conceptual

foundation for the implementation of a broad array of agent-mediated instructional

applications. Our preliminary experiments have shown that our architecture’s flexible

and decoupled design can support implementation of different behavioral instructions with

no substantial changes to any of the essential components. Of all the concepts covered

in this dissertation, we highlight three that, we believe, significantly contribute to the

advancement the knowledge in this area: (i) defining behavior measures that make the

behavioral instruction computable, (ii) use of the statistical process control methods to

track the progress of the instruction and the triggering of interventions, and (iii) inception

of the ABA ontology as the formalization of the behavioral instruction. All three concepts

warrant further research and development.

6.1.1 The Measures of Behavior

We treated behavior as a multi-dimensional phenomenon that can be mathematically

described by the set of numbers organized, perhaps as a multi-dimensional vector or a

matrix. This approach has been one of the pivotal choices of the entire research, as
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it allowed the agent to base its three-term contingency instructional reasoning on the

calculation about the appropriateness of the behavior exhibited by the student. We used this

approach in the problems where behavior was describable by simple tuples of numbers or

sequences of characters. We did not, however, pursued a full theoretical examination of the

possible complexity of behavior description or the recognition. We believe that problems

in this area are worth further exploring, especially the problem of the possible intractability

of comparing complex, behavioral representation structures (e.g. isomorphism of graph-

representations of the spatial behavior).

6.1.2 Utility of Statistical Process Control (SPC)

Introduction of the SPC methods to track the progress of the student’s learning, the

planned (or unplanned) variations, and anomalies in learning is another area that we believe

warrants further examination. We believe that our limited exploration of the SPC rules is

a step in the right direction for both computer and educational science, but we also believe

that it will likely need further exploration, modifications and experimental evaluations.

6.1.3 ABA Ontology and Reinforcement Instruction

Finally, we believe that the concept of ABA ontology is novel, and that it offers a potential

for further research. In particular, it offers a foundation for a new sub-area in machine

learning and agent-based systems which we speculate to call reinforcement instruction.

We see reinforcement instruction as a complementary method whereby instead of agents

learning how to perform the task, they learn how to most effectively instruct humans or

other agents in a behavioral instructional setting.

6.2 Future Work

While addressing questions of a conceptual nature the architecture itself leaves three

major areas to be further examined and developed, namely: (i) algorithms for behavior
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recognition, (ii) implementation of robust learning components, and (iii) development of

reusable virtual and embodied frameworks based on the proposed architecture. We are

already in process of addressing some of these issues in our ongoing research (Begoli et al.,

2013), but we believe that they warrant examination by the broader research community.

6.2.1 Behavior Recognition

In our architecture we proposed the percept interpreter component while leaving it,

except for the two small prototypes, largely unexplored. In the context of the proposed

architecture, behavior recognition in the context of the proposed architecture will require a

substantial and diverse effort involving image and motion recognition, behavior modeling,

and coding. We further speculate that human behavior recognition, as a computing

problem, has the potential to develop into its own sub-area of computer science. For

example, it is not entirely unreasonable to expect that there might be areas of computer

science dedicated to the formalization and improvement of machine recognition of spatial,

intensional and temporal aspects of different classes of human behavior.

6.2.2 Learning Component

Current implementation of the PRA-ABA architecture has a minimal deliberate learning

function which is based mostly on the student’s learning history, preferences and basic

statistic. We believe that, as part of the future enhancements, the system could benefit from

a more robust learning capability; the agent could be enhanced to learn about the changes

and characteristics of the environment, the instruction and the student beyond the currently

implemented personalization and history features. This learning component could further

enhance the agent’s ability to act independently and adjust the features of the instruction

(stimuli, prompts, consequences).
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6.2.3 Full Virtual Reality Implementations

The research in this thesis, focused mostly on the development of the conceptual model

and on the validation of the architecture. However, our overarching intention for the

idea of agent-mediated behavioral instruction, is to advance it towards the long-term

research and development program focused on the development of virtual and mixed-

reality therapeutical applications. Therefore, our long-term plan is to develop a complete

application development environment consisting of the programming API, a domain

specific language (DSL) for coding of the ABA-based instructional scenarios, and a

supporting compiler that will translate the DSL expressions into some form of executable

3D representation. One of the possible directions is collaboration with a Virtual Human

project (Gratch et al., 2013) whereby some of the elements of the ABA architecture and its

behavioral-instructional concepts would be integrated into a Virtual Human toolset and its

executables.
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