20 research outputs found

    Lower Bounds for On-line Interval Coloring with Vector and Cardinality Constraints

    Full text link
    We propose two strategies for Presenter in the on-line interval graph coloring games. Specifically, we consider a setting in which each interval is associated with a dd-dimensional vector of weights and the coloring needs to satisfy the dd-dimensional bandwidth constraint, and the kk-cardinality constraint. Such a variant was first introduced by Epstein and Levy and it is a natural model for resource-aware task scheduling with dd different shared resources where at most kk tasks can be scheduled simultaneously on a single machine. The first strategy forces any on-line interval coloring algorithm to use at least (5m3)dlogd+3(5m-3)\frac{d}{\log d + 3} different colors on an m(dk+logd+3)m(\frac{d}{k} + \log{d} + 3)-colorable set of intervals. The second strategy forces any on-line interval coloring algorithm to use at least 5m2dlogd+3\lfloor\frac{5m}{2}\rfloor\frac{d}{\log d + 3} different colors on an m(dk+logd+3)m(\frac{d}{k} + \log{d} + 3)-colorable set of unit intervals

    Lower bounds for on-line graph colorings

    Full text link
    We propose two strategies for Presenter in on-line graph coloring games. The first one constructs bipartite graphs and forces any on-line coloring algorithm to use 2log2n102\log_2 n - 10 colors, where nn is the number of vertices in the constructed graph. This is best possible up to an additive constant. The second strategy constructs graphs that contain neither C3C_3 nor C5C_5 as a subgraph and forces Ω(nlogn13)\Omega(\frac{n}{\log n}^\frac{1}{3}) colors. The best known on-line coloring algorithm for these graphs uses O(n12)O(n^{\frac{1}{2}}) colors

    An on-line competitive algorithm for coloring bipartite graphs without long induced paths

    Get PDF
    The existence of an on-line competitive algorithm for coloring bipartite graphs remains a tantalizing open problem. So far there are only partial positive results for bipartite graphs with certain small forbidden graphs as induced subgraphs. We propose a new on-line competitive coloring algorithm for P9P_9-free bipartite graphs

    Adding Isolated Vertices Makes some Online Algorithms Optimal

    Full text link
    An unexpected difference between online and offline algorithms is observed. The natural greedy algorithms are shown to be worst case online optimal for Online Independent Set and Online Vertex Cover on graphs with 'enough' isolated vertices, Freckle Graphs. For Online Dominating Set, the greedy algorithm is shown to be worst case online optimal on graphs with at least one isolated vertex. These algorithms are not online optimal in general. The online optimality results for these greedy algorithms imply optimality according to various worst case performance measures, such as the competitive ratio. It is also shown that, despite this worst case optimality, there are Freckle graphs where the greedy independent set algorithm is objectively less good than another algorithm. It is shown that it is NP-hard to determine any of the following for a given graph: the online independence number, the online vertex cover number, and the online domination number.Comment: A footnote in the .tex file didn't show up in the last version. This was fixe

    Online graph coloring against a randomized adversary

    Get PDF
    Electronic version of an article published as Online graph coloring against a randomized adversary. "International journal of foundations of computer science", 1 Juny 2018, vol. 29, núm. 4, p. 551-569. DOI:10.1142/S0129054118410058 © 2018 copyright World Scientific Publishing Company. https://www.worldscientific.com/doi/abs/10.1142/S0129054118410058We consider an online model where an adversary constructs a set of 2s instances S instead of one single instance. The algorithm knows S and the adversary will choose one instance from S at random to present to the algorithm. We further focus on adversaries that construct sets of k-chromatic instances. In this setting, we provide upper and lower bounds on the competitive ratio for the online graph coloring problem as a function of the parameters in this model. Both bounds are linear in s and matching upper and lower bound are given for a specific set of algorithms that we call “minimalistic online algorithms”.Peer ReviewedPostprint (author's final draft

    On-line load balancing

    Get PDF
    AbstractThe setup for our problem consists of n servers that must complete a set of tasks. Each task can be handled only by a subset of the servers, requires a different level of service, and once assigned cannot be reassigned. We make the natural assumption that the level of service is known at arrival time, but that the duration of service is not. The on-line load balancing problem is to assign each task to an appropriate server in such a way that the maximum load on the servers is minimized. In this paper we derive matching upper and lower bounds for the competitive ratio of the on-line greedy algorithm for this problem, namely, [(3n)23/2](1+o(1)), and derive a lower bound, Ω(n12), for any other deterministic or randomized on-line algorithm
    corecore