
Theoretical Computer Science 130 (1994) 73-84

Elsevier

73

On-line load balancing*

Yossi Azar**
Computer Science Deparlment. Tel Aviv University. Tel Aviv 69978, Israel

Andrei Z. Broder and Anna R. Karlin
Digital Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, USA

Abstract

Azar, Y., A.Z. Broder and A.R. Karlin, On-line load balancing, Theoretical Computer Science 130

(1994) 73-84.

The setup for our problem consists of n servers that must complete a set of tasks. Each task can be

handled only by a subset of the servers, requires a different level of service, and once assigned cannot

be reassigned. We make the natural assumption that the level of service is known at arrival time, but

that the duration of service is not. The on-line load balancing problem is to assign each task to an

appropriate server in such a way that the maximum load on the servers is minimized. In this paper

we derive matching upper and lower bounds for the competitive ratio of the on-line greedy

algorithm for this problem, namely, [(3n)*“/2](1 + o(l)), and derive a lower bound, Q@r/*), for any

other deterministic or randomized on-line algorithm.

1. Introduction

Consider an idealized local area network that links multimedia workstations,

computers, I/O devices, etc. Each device is directly connected to one or more gateways

(bridges) to the net. Communication tasks arrive and disappear at arbitrary times.

Upon arrival, each task requests a certain guaranteed bandwidth (e.g. low for file

transfers, medium for graphic applications, high for video) and must be assigned to

one of the gateways directly connected to the device, for the duration of the task.

Service must begin immediately. The problem is to assign each task in such a way that

no bridge is overloaded.

Correspondence to: A. Broder, Digital Systems Research Center, 130 Lytton Avenue, Palo Alto, CA 94301,

USA. Email addresses of the authors: azar@cs.stanford.edu, broder@src.dec.com and karlin@;src.dec.com.

*A preliminary version of this paper appeared in the Proc. 33rd Symp. on Foundations of Computer
Science, 1992.

**Part of this work was done while the author was at Digital Systems Research Center, Palo Alto.

0304-3975/94/$07.00 0 1994-Elsevier Science B.V. All rights reserved

SSDI 0304-3975(93)E0128-0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82174564?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

14 Y. Azar PI al

The above is an example of the following general problem. Consider n servers that

must complete a set of tasks. Each task can be handled only by a subset of the servers,

and requires a different level of service, called the weight of the task. Tasks arrive and

depart one by one. Service must start as soon as the task arrives. A task, once assigned,

cannot be reassigned. At assignment time only the weight is known, but not the

duration of service. The on-line load balancing problem is to assign each task to an

appropriate server in such a way that the maximum load on the servers is minimized.

As usual nowadays, we evaluate the performance of the on-line algorithm by its

competitive ratio, which is the ratio between its maximum load and the maximum

load of the optimal off-line algorithm for the worst-case sequence of tasks.

Previous analyses (e.g. [2&4, lo]) were restricted to models where either the tasks

continued forever, or where the tasks can be delayed for arbitrarily long periods of

time; thus, forsaking real-time service.

If the arrival and departure times are known in advance, the servers are called

machines, and the tasks are called jobs, the question becomes an instance of the

well-known class of static load balancing problems, studied in a myriad of variants.

(See [6] and references therein.)

There are two independent dichotomies that characterize the tasks, and this leads

to four possible load balancing problems. The first is according to how long a task

runs: We call tasks which start at arbitrary times but continue forever permanenf,

while tasks that begin and end are said to be temporary. The second is according to the

set of servers on which a task can run. If a task can be assigned to any server, we say it

is unrestricted, whereas if it can only be assigned to a proper subset of the servers, we

say it is restricted. Three of the four possible problems were considered in the past.

Here we address the fourth one.

Graham [S] showed that for permanent, unrestricted tasks, the greedy algorithm

achieves a competitive ratio of 2- l/n. (There is a recent improvement of this result

due to Bartal et al. [3] to 2 -6, using a more complicated algorithm.) It is straightfor-

ward to check that Graham’s analysis of the greedy algorithm extends to temporary

tasks and that the competitive ratio is still 2- l/n.

For permanent, restricted tasks, Azar et al. [2] showed that the competitive

ratio of the greedy algorithm is precisely logn and that no algorithm can do better.

Although the analysis of [2] does not generalize to temporary tasks, it is natural

to ask whether the logn competitive ratio holds for restricted temporary tasks, the way

the 2- l/n competitive ratio holds for unrestricted tasks, both permanent and temporary.

We answer this question negatively. More precisely, we obtain matching upper and

lower bounds show that the competitive ratio of the greedy algorithm for restricted

temporary tasks is a surprisingly high [(3n)‘j3/2](1 + o(1)). (The function implied by

o(1) is different for the upper and lower bound, but the leading term is exactly the

same!) Moreover, we show a lower bound of Cl(n’12) for any deterministic or random-

ized algorithm.

A variation on the model described so far is when the weight of a task can be split

among its allowed servers. For this case we show that the competitive ratio for the

On-line load balancing 75

natural, “water-level”, algorithm is also 0(n2’3), and for any other algorithm (deter-

ministic or randomized) the lower bound is again R(n”‘).

Recently, our lower bound of R(n’/2) was matched by an algorithm of Azar et al.

[11; and a related problem, where preemptive rescheduling is allowed was considered

by Philips and Westbrook [9], who give algorithms that exhibit different trade-offs

between the maximum on-line load and the number of preemptions.

Our problems can be recast in the dynamic-graph framework. Previous results on

on-line algorithms for dynamic graphs (e.g. graph coloring [S, 111, on-line matching

[7]) allowed only vertex additions. Our results pertain to the more challenging fully

dynamic case, where arbitrarily long sequences of vertex additions and deletions are

allowed. However, since the tasks-on-servers framework is more natural, this is the

one we adopt here.

1.1. Formal definition of the problem

Let M be a set of servers (or machines) that is supposed to run a set of tasks that

arrive and depart in time. Each task j has associated to it a weight, or load, w(j)>O,

an arrival time r(j), and a set M(j)c M of servers capable of running it.

As soon as it arrives, each task must be assigned to exactly one of the servers

capable of running it, and once assigned, it cannot be transferred to a different server.

The assigned server starts to run the task immediately, and continues to run it until

the task departs.

When task j arrives, an assignment algorithm must select a server ieM(j), and

assign task j to it.

The load on server i at time t, denoted Li(t), is the sum of the weights of all the tasks

running on server i at time t.

Let G be a sequence of task arrivals and departures, and let 1 CT 1 be the time of the last

arrival. Then the cost C,(a) of an assignment algorithm A on the sequence 0, is defined

as

An on-line assignment algorithm must assign an arriving task j at time r(j) to

a server in M(j) knowing only w(j), M(j), the current state of the servers, and the

past - the decision is made without any knowledge about future arrivals or depar-

tures. An optimal ofS_line assignment algorithm, denoted OPT, assigns arriving tasks

knowing the entire sequence of task arrivals and departures and does so in a way that

minimizes its cost.

The competitive ratio of an on-line algorithm A is defined as the supremum over

sequences 0 of C,(c)/Co,,(a). Our goal is to find an on-line assignment algorithms

with minimum competitive ratio.

Note that computing the optimal off-line solution is NP-complete even when all the

tasks are permanent, unrestricted, and there are only two processors. (An easy

reduction from PARTITION.)

76 Y. Azur rt al.

1.2. Notation

Before plunging into proofs, we summarize the notations we already used, or plan

to use soon.

M is the set of all servers (machines). 1 M I= n.

Task (job) j has a weight w(,j), an arrival time r(j), and a set M(j)c M of servers

capable of running it.

T,(t) is the set of tasks run (by the on-line algorithm under consideration) on server

i at time t, and T(t) = u 1 s isn T,(t).

L,(t) is the load on server i at time t, i.e. Li(t)=~iET,(rjw(j).

m(j)~ M(,j) is the server on which OPT (the optimum off-line algorithm) runs task j.

Thus, for S c M, m l(S) is the set of tasks assigned by OPT to servers in S.

r?(t), for REM and SC M, is defined at T,(t)\m- ’ (S), i.e. i”?(t) is the set of tasks

being run on server i except for those tasks being run by OPT on servers in S.

LS(f)=Cj,r:(r,w(.i).

Upper bounds

The greedy algorithm is formally defined as follows:

Algorithm GREEDY: Upon arrival of a task j assign it to the server in M(j) with the

current minimum load (ties are broken arbitrarily).

Lemma 2.1. Consider an execution of‘ the algorithm GREEDY. Suppose that the optimal

qfS_line cost is A. ifthere is a server (without loss ofgenerality, server l), and a time t such

that L1 (t) = 11, then ,for every k > 1, such that

there exists u time tk< t, and a set of’ k servers S (without loss qf‘ generality,

S={1,2,...,kl) such that

Lf(t,)>p-(1 +k)i.,

Lz(tk)>p-((l +2)+k)&

L:(tk)ap-((1 +2+3)+k)A

Proof. The proof is by induction on k. The base case is trivial: Take t1 = t. Since

S = { 1 j, Ls (t) > p - i. (The total load that may be excluded is the load that OPT has on

server 1, which is at most A.)

On-line load balancing II

For the induction step, assume that the hypothesis holds for k. Without loss of

generality, assume that S = (1,2,. . ., k}. Consider the set of tasks T= Ui~sTs(tk). Let

rk+ 1 =maxjd t(j). Let j *E T be the task that started at time tk + 1_ Note that the servers

in S may work at time tk+ 1 on tasks that are no longer present at time tk, but that all

the tasks in T are present at time tk + 1.

By definition of Tf, the server m(j*)$S. Without loss of generality, assume that

m(j*)=k+l. Therefore, at time tkfl, GREEDY could have placed task j* on server

m(j*), but did not. Hence,

since w(j*) < A. Similarly, for any set of servers S, we have Cj,m- i(s) w(j) d 1 S I . A, thus

L

Finally, for 1~ i < k,

/I-(k+ 1)3..

>p-((j:l)+O)A
since every task in Ti(tk) contributes to Ti(t k+ 1) with the possible exception ofj*. 0

Theorem 2.2. For any sequence o of task arrivals and departures, the greedy on-line

assignment algorithm is [(3n)‘j3/2] (1 + o(1)) competitive.

Proof. By Lemma 2.1, if the maximum load GREEDY ever has on some server is ,D and

the optimal off-line algorithm reaches a maximum load of I,, then there is a time when

the sum of the loads on all the servers is at least

for any k such that

But by hypothesis, the sum of all loads is at most nA. Taking k to be (m- 2)

completes the proof. III

78 Y. Azrrr et al.

3. Lower bounds

3.1. Lower bound for the greed)> algorithm

Theorem 3.1. The competitive rutio of the greedy on-line assignment algorithm is at least

qyl+o(l)).

Proof. We assume that all tasks have unit weight, and allow GREEDY to break ties in

any deterministic way.

Let S(t)=(S,(t),S,(t),..., S,,(t)) be the sorted (nonincreasing) n-tuple of the loads that

GREEDY has on servers at time r, and let si(t) be the server whose load is Si(t). Write

S(t)>S(t’) if the tuple S(t) is lexicographically greater than S(t’).

We prove the lower bound by showing that there is a finite sequence of requests

0 for which the following three conditions hold:

(1) For all j such that Sj(l~/)>O, Sj~1(IaI)-Sj(IaI)~j-l.

(2) There are n tasks running at time /G/.

(3) The maximum off-line load at all times t, O< t < 1~1, is 1.

If such a sequence 0 can be found, the theorem follows, since at lgl GREEDY'S

maximum load p must satisfy

where q is the number of busy servers at time t and (“,)<p. Thus,

and the competitive ratio is at least [(3n)‘!“/2](1+ o(1)).

We build the sequence c via a two-step process. First, we suppose that we can

construct a sequence of requests p such that at time I pi the following properties are

satisfied:

(1) At time 1~1, the number of active tasks 1 T(lpl) is n.

(2) At every time t, 0 <t < I p 1, every server in the optimal off-line assignment has

load at most 1. (Thus, at time p, every server in the optimal off-line assignment has

load exact/y 1.)

(3) If at time I p 1, GREEDY uses server i at all (i.e. Li (I p I) > 0) then GREEDY runs on i the

task that OPT runs on i, for the simple reason that it cannot be run anywhere else.

(Symbolically, M(m- ‘(i))=(i) .)

The following sequence p of n requests satisfies these conditions: for each server

REM, a new task ui arrives, with M(vi)= {i}. Clearly, both GREEDY and OPT must assign

ci to server i. Properties l-3 are trivially satisfied at time I p I.

The second step is to show that any sequence p satisfying these three properties

either has the property

On-line load balancing 19

(Pl) For all j, such that Sj(lpl)>O,

or it can be extended by a subsequence p’ such that at time Ipp’l, properties 1-3 are

satisfied, and S(lpp’l)>S(lpl).

Indeed, assume that we have constructed a sequence p that satisfies properties l-3.

If it satisfies property (Pl), we stop and set a=p. If not, then we can extend the

sequence p with the following subsequence p’.

Let j>2 be the smallest value for which Sj(lpl)>O and Sj_,(Jpl)-Sj(lpl)=

d<j-2.

The sequence p’ is constructed as follows:

(1) For 1~ i < d, task m- I (si) departs. This results in a decrease in the load on each

of the servers sl,...,sd by 1.

(2) Tasks m- ‘(sj) and m-‘(sj_ 1) depart.

(3) For 1~ i<d, a new task ci with M(ci)= {Si,Sj} arrives. GREEDY assigns all of

these tasks to sj, since it is always less loaded than the alternative machine. The result

is that Lj becomes equal to Lj_ 1. (OPT assigns Ci to Si.)

(4) Two additional tasks c, and cb arrive with M(c,)=M(cb)= {Sj, Sj- 1}. GREEDY

assigns one of them, say c,, to sj_ i, and the other to Sj. (OPT assigns c, to Sj and cb to

sj_ 1, i.e. the opposite of GREEDY.)

(5) Tasks ci, 1 <i<d depart, and then arrive again renamed c:, this time with

M(c;)= {Si}, and task cb departs and then arrives again, this time renamed CA with

M(Cb)=Sj-1.

(6) Each task h run by GREEDY on server sj departs and then arrives again, renamed

h’, this time with M(h’)=m(h).

It is straightforward to check that properties l-3 hold at time /pp’I, and that

S(lPP’l)>S(lPl).
Clearly, the sequence can be extended only a finite number of times because

each extension increases the lexicographic value of its state S(jp I) and the state

S can take only a finite number of different values since it consists of y1 nonnegative

integers whose sum is n. But as long as property (Pl) does not hold, the sequence

can be further extended. Therefore, after a finite number of extensions, property

(Pl) must hold. 0

The proof can be extended to deal with a randomized variant of the greedy on-line

assignment algorithm RGREEDY, whereby ties are broken using random bits.

Theorem 3.2. The competitive ratio of the randomized greedy on-line assignment

algorithm, is at least

qyl+o(l)).

80 Y. Azar et al.

Proof. The proof is almost identical to the proof of Theorem 3.1. The idea is to modify

the sequence g such that RGREEDY has no random choices to make. The modified

sequence satisfies the following:

(1) For all j such that Sj(/al)>O, Sj-~(lol)-Sj(lol)~j-l.

(2) There are n tasks running at time Ig/.

(3) The maximum off-line load at all times t, 0 < t < I gl, is 2.

We need to make two modifications to the construction of C:

(a) At every time t, 0 6 t 6 Jp 1, every server in the optimal off-line assignment is

allowed a load up to 2. But at time p, every server in the optimal off-line assignment

has load exactly 1.

(b) Steps 4 and 5 in the construction of the extension sequence p’ are modified as

follows:

(4’) Three additional tasks c,, cr,, and c, arrive with M(c,)= {Sj}, M(cb) = {sj, sj_ r},

and M(c,)= (s~-~). RGREEDY assigns c, to .sj and cb and c, to Sj_ 1, since there are no

ties. OPT assigns c, and cb to Sj, and c, to Sj_ r. (At this point, and only at this point, OPT

has load 2 on sj.)

(5’) Tasks ci, 1 didd, depart, and then arrive again renamed c;, this time with

M(cl)={si}. T as k c, departs. (At this point OPT has again load 1 on every server.)

With these modifications, the required properties are clearly satisfied and the

bound follows. 0

3.2. The general lower bound

Theorem 3.3. The competitive ratio of any randomized on-line assignment algorithm is

at least C2(n’lz).

Proof. We follow the outline of the proof of Theorem 3.1. As before, we assume that

all tasks have unit weight. Let A be any randomized on-line algorithm. We use the

notion of an adjusted loud L;(t). The adjusted loads have the following properties:

(1) Each task j contributes to the adjusted load of exactly one server in M(j), say k,

and the value ofj’s contribution to L;(t) is pk, the probability that A assigns task j to

server k. If IM(j)l > 1, the choice of kEM(j) depends on the randomized algorithm

A but not on the outcome of its coin flips. Note that if IM(j)l= 1, task j always

contributes exactly 1 to its server.

(2) The sequence of requests generated by the adversary for the lower bound will

ensure that task j contributes to server k’s adjusted load only if pk>, l/3. Therefore, if

r tasks are running at time t, then CiEMLi(t)>r/3.

The first property implies that L:(t) is a lower bound on the expected load on server

i at time t, i.e. Li(t)<E(L,(t)).

Let S’(r) =(S; (t), S;(t), . , S;(t)) to be the sorted (nonincreasing) n-tuple of adjusted

loads that A has at time t. Define a partial order on S’ as follows: S’(t) > S(t’) if there is

aj such that for all 1 di<j, Si(t)>Si(t’), and S;(t)-S;(t’)>1/3.

On-line load balancing 81

We prove the lower bound by showing that there is a sequence of requests 0, and

a way to define the adjusted loads L’ so that the following three conditions hold:

(1) For all j such that Si(JoJ)>O, S>_i(lal)-S>(lal)> l/3.

(2) There are n tasks running at time I CT I. Therefore, 1 isM L:(I al) > n/3.
(3) The maximum off-line load at all times is at most 1.

If such a c can be found, the theorem follows, since at time Ial, maximum adjusted

load ,U of A (and, hence, maximum expected load) must satisfy

p+(p-l/3)++22/3)+...+(&q-1)/3)2 C L:(lal)>n/3,
icM

where q < 3~ + 1 is the number of servers with a nonzero adjusted load at time 101.

Hence.

p2P#~Z
-$1+0(l))

and the competitive ratio is at least [(2n)“*/3] (1 + o(1)).

We build the sequence 0 via a two-step process. First, we suppose that we can

construct a sequence of requests p, and define the adjusted loads L’ such that at time

1 pl the following properties are satisfied:

(1) The number of active tasks I T(lpI)I is n. Thus, CitML;(lpI)<n.
(2) For any t, 0 < t d I p 1, every server in the optimal off-line assignment has a load of

at most 1.

(3) For any server i with Lf(lpl)>O, the algorithm A runs on i the task that OPT

runs on i, for the simple reason that it cannot be run anywhere else. (Symbolically,

M(m- l(i)) = {i>). Therefore, this task contributes precisely 1 to i’s adjusted load. We

conclude that if L:(lpl)>O, then L;(lpl)2 1.

The following sequence p of n requests satisfies these conditions: for each server

ieM, a new task Ui arrives, with M(vi) = {i}. Clearly, both A and OPT must assign Vi to

server i. Since we must have Li(I p I) = 1 for all iE M, we observe that properties l-3 are

trivially satisfied.

The second step is to show that any sequence p satisfying these three properties

either has the property

(P2): For all j such that S>lpl >O,

or it can be extended by a subsequence p’ such that at time Ipp’I, properties l-3 are

satisfied, S’(lpp’I)>S’(IpJ).
Indeed, assume that we have constructed a sequence p that satisfies properties 1-3.

If it satisfies property (P2), we stop and set CJ =p. If not, then we can extend the

sequence p with the following subsequence p’:
(1) Let a and b be two distinct servers such that l/3 > Lb - Lb 2 0 and Lb > 0. Tasks

m-‘(a) and K1 (b) depart. By Property 3, this results in a decrease in Lb and Lb by 1.

82 Y. Azar et al.

(2) A new taskj with M(j)={a,b} arrives. Let pa (resp. pb) be the probability

(conditioned on the entire sequence of requests up to now) that A assigns j to a (resp.

to b). Clearly, pa + pb = 1.

(3) The rest of p’ depends on the value of pa.

l pa> l/3: OPT assigns j to b. Task j contributes pa to the adjusted load on a, and

nothing to the adjusted load on b. A new task k with M(j) = a arrives. All tasks

Tcontributing to the adjusted load on b depart and then arrive again, this time with

M(u)=m(u)(uGT).

l pa< l/3: OPT assigns j to a. Task j contributes pb to the adjusted load on b, and

nothing to the adjusted load on u. A new task k with M(j) = b arrives. All tasks

Tcontributing to the adjusted load on a depart and then arrive again, this time with

M(L)) =m(u) (LIE T).

It is straightforward to verify that properties l-3 hold at time Ipp’I.

Lastly, we show that S’(pp’) > S’(p): In case 3(a), the subsequence of adjusted loads

(L,(lpl),L~(lpl),O,O, . .O,O) was replaced by (-L(Ipl)+p,,O, 1,L . , 1, I). where
L,(1 PI)> 1 and pa3 l/3. In case 3(b), the subsequence of adjusted loads

(~,(I~l),~~(l~l),~,~,...,~,~~ was replaced by (L,(I~I)+p,,O,1,1,...,1,1) where
p,,>2/3 and Lb(I~I)+pb~La(l~I)+1/3, since L,(lpl)--L,(lpl)< l/3. (Theo’s and l’s

in these vectors correspond to servers running tasks in T).

Finally, note that after a finite number of extensions of the sequence p, property (P2)

will hold since the number of extensions is bounded by the length of the maximum

chain in the partial order on S’, which is finite, since every difference is bounded from

below, and the sum of all components is bounded from above. E

For a general deterministic algorithm, we can simplify this proof and obtain a lower

bound of [a].

4. Split assignments

In this section we consider a variant of the load balancing problem where the weight

of an incoming task can be split among its allowed servers. The weights can be split into

arbitrary positive real portions, and, as before, once assigned cannot be reassigned.

Algorithm WATER-LEVEL: Upon arrival of a task j, split its weight among the servers in

M(j) so that miniEMcj)Li is maximized.

The algorithm is called “water-level” since it raises the load equally on the least

loaded servers in M(j). Azar et al. [2] showed that for permanent tasks its competitive

ratio is O(logn) and this is tight. For the general case (i.e. temporary tasks are

allowed), we obtain the following theorem.

Theorem 4.1. The competitive ratio ofthe wuter-level algorithm for the split assignment

problem is [(3n)2’3/2](1 +0(l)). This is tight. Any other deterministic or randomized

on-line algorithm for this problem has competitive ratio R(n’j2).

On-line load balancing 83

Proof. We can easily derive a [(3n)‘j3/4] (1 + o(1)) lower bound by following the proof

of Theorem 3.2: since RGREEDY never encounters a tie, WATER-LEVEL on the same

sequence never splits any job and never produces nonintegral loads, while at the same

time OPT can keep its maximum load under 2. The bound can be pushed to

[(3n)2’3/2] (1 + o(1)) via an intricate modification of the sequence used in Theorem 3.1.

We omit this argument in the interest of brevity.

Similarly, the Q(n”*) lower bound of Theorem 3.3 can be extended to the split-

assignment problem by replacing the probability that the algorithm assigns a task to

one of two machines with the expected fraction of a job assigned to that machine. The

proof goes through, mutatis mutandis.

Finally, we show that a [(3n)2’3/2] (1+0(l)) upper bound for WATER-LEVEL follows

from Theorem 2.2 and the following lemma.

Lemma 4.2, The competitive ratio of WATER-LEVEL for the split-assignment problem is

not larger than the competitive ratio of GREEDY for the nonsplit assignment problem.

Proof. There are two steps to the proof.

In the first step, for any input instance I to WATER-LEVEL, we create another input I’

(to WATER-LEVEL) such that I and I’ have the same on-line and off-line costs and the

optimal off-line solution OPT on I’ does not split any weights.

To do this, suppose that the weight w(j) of taskj of I was split by OPT into portions

%(A, ‘.. , wd,(j). Then in I’, the arrival of task j is replaced by the consecutive arrival

of dj tasks, where the ith task has weight wi(j), 1 < ib dj, and they all have the same set

of allowed processors, namely, M(j). Similarly, the departure of task j of I is replaced

in I’ by the consecutive departure of these dj tasks.

It is easy to verify that this transformation has the two properties stated above.

Indeed, after the arrival (or departure) of the replacement tasks of a task in I,

WATER-LEVEL is the same state in both I and I’, and hence has the same costs. For the

second property, we observe that, by definition, further splitting cannot improve the

performance of OPT.

In the second step, we transform the input instance I’ into an input I” such that the

cost of GREEDY on I” is equal to the cost of WATER-LEVEL on I’, and OPT'S costs on I’ and

I” are the same.

Suppose that WATER-LEVEL split the weight w(j) of task j into several portions,

w1 (j), . . , wd,(j). In I”, the arrival of task j is replaced by the arrival of dj tasks, where

the ith has weight wi(j), 1 d i< dj, and they all have the same set of allowed processors,

namely M(j). Furthermore, in I” these dj tasks arrive in order of nonincreasing

weight.

It is easy to verify that both GREEDY and WATER-LEVEL have the same loads after the

arrival (or departure) in I” of all the replacement tasks for a task t from I’ as

WATER-LEVEL had after the arrival (or departure) oft in I’. The optimal off-line costs of

I’ and I” are the same, since OPT on I” can emulate OPT on I’, and vice versa.

This concludes the proof of the lemma. 0

84 Y. Azar et al.

Proof of Theorem 4.1 (conclusion). Since the competitive ratio of GREEDY is

[(3n)2’3/2] (1+0(l)), the proof of the theorem is complete. 0

References

[l] Y. Azar, B. Kalyanasundaram, S. Plotkin, K. Pruhs and 0. Waarts, Online load balancing of

temporary tasks, in: Workshop on Algorithms and Data Structures (WADS), Montreal, Canada, 1993,
119-130.

[2] Y. Azar, J. Naor and R. Rom, The competitiveness of on-line assignment, Proc. 3rd Ann. ACM-SIAM
SODA (1992) 203-210.

[3] Y. Bartal, A. Fiat. H. Karloff and R. Vohra, New algorithms for an Ancient Scheduling Problem, in:

Proc. 24th Ann. ACM Symp. on Theory oj’Computing (1992) 51-58.
[4] S. Baruah, G. Koren, B. Mishra, A. Raghunthan, L. Rosier and D. Shasta, On-line scheduling in the

presence of overload, in: Pror. 32nd IEEE Symp. on Foundations ofComputer Science (1991) 100-l 10.

[S] R.L. Graham, Bounds for certain multiprocessing anomalies, Be// System Tech. J. 45 (1966)
1563-1581.

[6] R.L. Graham, E.L. Lawler, J.K. Lenstra and A.H.G. Rinnooy Kan, Optimization and approximation

in deterministic sequencing and scheduling: a survey, Ann. Discretr Math. 5 (1979) 287-326.
[7] R. Karp. U. Vazirani and V. Vazirani. An optimal algorithm for on-line bipartite matching, in: Proc.

22nd Ann. ACM Symp. on Theory qj’ Computing, Baltimore, Maryland (1990) 352-358.

[S] L. LovBsz, M. Saks and W. Trotter, An on-line graph coloring algorithm with sublinear performance
ratio, Discrete Math. 75 (1989) 319-325.

[9] S. Phillips and J. Westbrook, Online load balancing and network flow, in: Proc. 25th Ann. ACM SJ’rnp.
on Theory oj Computing (1993) 402-411.

[lo] D. Shmoys, J. Wein and D.P. Williamson, Scheduling parallel machines on-line. in: Proc. 3Znd IEEE
Sllmp. on Foundations of

[l l] S. Vishwanathan, on Foundations of
Computer

