research

Lower Bounds for On-line Interval Coloring with Vector and Cardinality Constraints

Abstract

We propose two strategies for Presenter in the on-line interval graph coloring games. Specifically, we consider a setting in which each interval is associated with a dd-dimensional vector of weights and the coloring needs to satisfy the dd-dimensional bandwidth constraint, and the kk-cardinality constraint. Such a variant was first introduced by Epstein and Levy and it is a natural model for resource-aware task scheduling with dd different shared resources where at most kk tasks can be scheduled simultaneously on a single machine. The first strategy forces any on-line interval coloring algorithm to use at least (5m3)dlogd+3(5m-3)\frac{d}{\log d + 3} different colors on an m(dk+logd+3)m(\frac{d}{k} + \log{d} + 3)-colorable set of intervals. The second strategy forces any on-line interval coloring algorithm to use at least 5m2dlogd+3\lfloor\frac{5m}{2}\rfloor\frac{d}{\log d + 3} different colors on an m(dk+logd+3)m(\frac{d}{k} + \log{d} + 3)-colorable set of unit intervals

    Similar works

    Full text

    thumbnail-image