50 research outputs found

    Coded Slotted ALOHA: A Graph-Based Method for Uncoordinated Multiple Access

    Full text link
    In this paper, a random access scheme is introduced which relies on the combination of packet erasure correcting codes and successive interference cancellation (SIC). The scheme is named coded slotted ALOHA. A bipartite graph representation of the SIC process, resembling iterative decoding of generalized low-density parity-check codes over the erasure channel, is exploited to optimize the selection probabilities of the component erasure correcting codes via density evolution analysis. The capacity (in packets per slot) of the scheme is then analyzed in the context of the collision channel without feedback. Moreover, a capacity bound is developed and component code distributions tightly approaching the bound are derived.Comment: The final version to appear in IEEE Trans. Inf. Theory. 18 pages, 10 figure

    Communication Through Collisions: Opportunistic Utilization of Past Receptions

    Full text link
    When several wireless users are sharing the spectrum, packet collision is a simple, yet widely used model for interference. Under this model, when transmitters cause interference at any of the receivers, their collided packets are discarded and need to be retransmitted. However, in reality, that receiver can still store its analog received signal and utilize it for decoding the packets in the future (for example, by successive interference cancellation techniques). In this work, we propose a physical layer model for wireless packet networks that allows for such flexibility at the receivers. We assume that the transmitters will be aware of the state of the channel (i.e. when and where collisions occur, or an unintended receiver overhears the signal) with some delay, and propose several coding opportunities that can be utilized by the transmitters to exploit the available signal at the receivers for interference management (as opposed to discarding them). We analyze the achievable throughput of our strategy in a canonical interference channel with two transmitter-receiver pairs, and demonstrate the gain over conventional schemes. By deriving an outer-bound, we also prove the optimality of our scheme for the corresponding model.Comment: Accepted to IEEE INFOCOM 2014. arXiv admin note: text overlap with arXiv:1301.530

    Embracing interference in wireless systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, February 2013."February 2013." Cataloged from PDF version of thesis.Includes bibliographical references (p. 169-183).The wireless medium is a shared resource. If nearby devices transmit at the same time, their signals interfere, resulting in a collision. In traditional networks, collisions cause the loss of the transmitted information. For this reason, wireless networks have been designed with the assumption that interference is intrinsically harmful and must be avoided. This dissertation takes an alternate approach: Instead of viewing interference as an inherently counterproductive phenomenon that should to be avoided, we design practical systems that transform interference into a harmless, and even a beneficial phenomenon. To achieve this goal, we consider how wireless signals interact when they interfere, and use this understanding in our system designs. Specifically, when interference occurs, the signals get mixed on the wireless medium. By understanding the parameters of this mixing, we can invert the mixing and decode the interfered packets; thus, making interference harmless. Furthermore, we can control this mixing process to create strategic interference that allow decodability at a particular receiver of interest, but prevent decodability at unintended receivers and adversaries. Hence, we can transform interference into a beneficial phenomenon that provides security. Building on this approach, we make four main contributions: We present the first WiFi receiver that can successfully reconstruct the transmitted information in the presence of packet collisions. Next, we introduce a WiFi receiver design that can decode in the presence of high-power cross-technology interference from devices like baby monitors, cordless phones, microwave ovens, or even unknown technologies. We then show how we can harness interference to improve security. In particular, we develop the first system that secures an insecure medical implant without any modification to the implant itself. Finally, we present a solution that establishes secure connections between any two WiFi devices, without having users enter passwords or use pre-shared secret keys.by Shyamnath Gollakota.Ph.D

    Optimum Header Positioning in Successive Interference Cancellation (SIC) based Aloha

    Full text link
    Random Access MAC protocols are simple and effective when the nature of the traffic is unpredictable and sporadic. In the following paper, investigations on the new Enhanced Contention Resolution ALOHA (ECRA) are presented, where some new aspects of the protocol are investigated. Mathematical derivation and numerical evaluation of the symbol interference probability after SIC are here provided. Results of the optimum header positioning which is found to be in the beginning and in the end of the packets, are exploited for the evaluation of ECRA throughput and Packet Error Rate (PER) under imperfect knowledge of packets positions. Remarkable gains in the maximum throughput are observed for ECRA w.r.t. Contention Resolution ALOHA (CRA) under this assumption.Comment: Accepted for publication in the IEEE International Conference on Communications (ICC) 201

    Zig Zag decoding : combating hidden terminals in wireless networks

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (leaves 59-62).This thesis presents ZigZag, an 802.11 receiver that combats hidden terminals. ZigZag exploits 802.11 retransmissions which, in the case of hidden terminals, cause successive collisions. Due to asynchrony, these collisions have different interference-free stretches at their start, which ZigZag uses to bootstrap its decoding. ZigZag makes no changes to the 802.11 MAC and introduces no overhead when there are no collisions. But, when senders collide, ZigZag attains the same throughput as if the colliding packets were a priori scheduled in separate time slots. We build a prototype of ZigZag in GNU Radio. In a testbed of 14 USRP nodes, ZigZag reduces the average packet loss rate at hidden terminals from 82.3% to about 0.7%.by Shyamnath GollakotaS.M

    Partial OFDM Symbol Recovery to Improve Interfering Wireless Networks Operation in Collision Environments

    Get PDF
    The uplink data rate region for interfering transmissions in wireless networks has been characterised and proven, yet its underlying model assumes a complete temporal overlap. Practical unplanned networks, however, adopt packetized transmissions and eschew tight inter-network coordination, resulting in packet collisions that often partially overlap, but rarely ever completely overlap. In this work, we report a new design called (), that specifically targets the parts of data symbols that experience no interference during a packet collision. bootstraps a successive interference cancellation (SIC) like decoder from these strong signals, thus improving performance over techniques oblivious to such partial packet overlaps. We have implemented on the WARP software-defined radio platform and in trace-based simulation. Our performance evaluation presents experimental results from this implementation operating in a 12node software network testbed, spread over two rooms in a nonlineofsight indoor office environment. Experimental results confirm that our proposal decoder is capable of decoding up to 60 % of collided frames depending on the type of data and modulation used. This consistently leads to throughput enhancement over conventional WiFi under different scenarios and for the various data types tested, namely downlink bulk TCP, downlink videoondemand, and uplink UDP

    Network coding-aided MAC protocols for cooperative wireless networks

    Get PDF
    The introduction of third generation (3G) technologies has caused a vast proliferation of wireless devices and networks, generating an increasing demand for high level Quality of Service (QoS). The wide spread of mobile applications has further reinforced the user need for communication, motivating at the same time the concepts of user cooperation and data dissemination. However, this trend towards continuous exchange of information and ubiquitous connectivity is inherently restricted by the energy-greedy functionalities of high-end devices. These limitations, along with the pressure exerted on the Information and Communications Technology (ICT) industry towards energy awareness, have induced the design of novel energy efficient schemes and algorithms. In this context, the Medium Access Control (MAC) layer plays a key role, since it is mainly responsible for the channel access regulation, the transmission scheduling and the resource allocation, thus constituting an appropriate point to effectively address energy efficiency issues that arise due to the users overcrowding. This dissertation provides a contribution to the design, analysis and evaluation of novel MAC protocols for cooperative wireless networks. In our attempt to design energy efficient MAC schemes, we were extensively assisted by the introduction of new techniques, such as Network Coding (NC), that intrinsically bring considerable gains in system performance. The main thesis contributions are divided into two parts. The first part presents NCCARQ, a novel NC-aided Cooperative Automatic Repeat reQuest (ARQ) MAC protocol for wireless networks. NCCARQ introduces a new access paradigm for cooperative ARQ schemes, exploiting NC benefits in bidirectional communication among wireless users. The NCCARQ performance in terms of QoS and energy efficiency is assessed by means of analytical probabilistic models and extensive computer-based simulations, revealing the significant gains we can achieve compared to standardized MAC solutions. In addition, the impact of realistic wireless channel conditions on the MAC protocol operation further motivated us to study the NCCARQ performance in wireless links affected by correlated shadowing, showing that the channel correlation may adversely affect the distributed cooperation benefits. The second part of the thesis is dedicated to the investigation of MAC issues in wireless data dissemination scenarios. In particular, the existence of multiple source nodes in such scenarios generates conflicting situations, considering the selfish behavior of the wireless devices that want to maximize their battery lifetime. Bearing in mind the energy efficiency importance, we propose game theoretic medium access strategies, applying energy-based utility functions which inherently imply energy awareness. In addition, Random Linear NC (RLNC) techniques are adopted to eliminate the need of exchanging excessive control packets, while Analog NC (ANC) is employed to efface the impact of collisions throughout the communication. During the elaboration of this thesis, two general key conclusions have been extracted. First, there is a fundamental requirement for implementation of new MAC protocols in order to effectively deal with state-of-the-art techniques (e.g., NC), recently introduced to enhance both the performance and the energy efficiency of the network. Second, we highlight the importance of designing novel energy efficient MAC protocols, taking into account that traditional approaches - designed mainly to assist the collision avoidance in wireless networks - tend to be obsolete.La presente tesis doctoral contribuye al diseño, análisis y evaluación de nuevos protocolos MAC cooperativos para redes inalámbricas. La introducción de nuevas técnicas, tales como la codificación de red (NC), que intrínsecamente llevan un considerable aumento en el rendimiento del sistema, nos ayudó ampliamente durante el diseño de protocolos MAC energéticamente eficientes. Las principales contribuciones de esta tesis se dividen en dos partes. La primera parte presenta el NCCARQ, un protocolo cooperativo de retransmisión automática (ARQ), asistido por NC para redes inalámbricas. La segunda parte de la tesis se centra en el diseño de protocolos de capa MAC en escenarios inalámbricos de difusión de datos. Teniendo en cuenta la importancia de la eficiencia energética, se proponen técnicas de acceso al medio basadas en teoría de juegos dónde las funciones objetivo están motivadas por el consumo energético. Las soluciones propuestas son evaluadas por medio de modelos analíticos y simulaciones por ordenador

    Broadcast Coded Slotted ALOHA: A Finite Frame Length Analysis

    Full text link
    We propose an uncoordinated medium access control (MAC) protocol, called all-to-all broadcast coded slotted ALOHA (B-CSA) for reliable all-to-all broadcast with strict latency constraints. In B-CSA, each user acts as both transmitter and receiver in a half-duplex mode. The half-duplex mode gives rise to a double unequal error protection (DUEP) phenomenon: the more a user repeats its packet, the higher the probability that this packet is decoded by other users, but the lower the probability for this user to decode packets from others. We analyze the performance of B-CSA over the packet erasure channel for a finite frame length. In particular, we provide a general analysis of stopping sets for B-CSA and derive an analytical approximation of the performance in the error floor (EF) region, which captures the DUEP feature of B-CSA. Simulation results reveal that the proposed approximation predicts very well the performance of B-CSA in the EF region. Finally, we consider the application of B-CSA to vehicular communications and compare its performance with that of carrier sense multiple access (CSMA), the current MAC protocol in vehicular networks. The results show that B-CSA is able to support a much larger number of users than CSMA with the same reliability.Comment: arXiv admin note: text overlap with arXiv:1501.0338
    corecore